
 Eindhoven University of Technology

MASTER

Kerberos realm crossover

Caño Bellatriu, O.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/99ea353a-3218-4b04-8e4e-6f9fa66477fd

Kerberos Realm

Crossover

Master Thesis

Oriol Caño Bellatriu

Department of Mathematics and Computer Science

Security Group

Supervisors:
Dr. Boris Skoric

Dr.ir. Rick van Rein

Dr.ir. L.A.M. Berry Schoenmakers

version 1.0

Eindhoven, May 2016

Abstract

Kerberos is a well-known and widely used authentication protocol that uses a ticket-based sys-

tem to authenticate clients and services to each other. The clients and services are organised

in so-called realms, which are controlled by a secure central service, called Key Distribution

Center. Kerberos offers a way for clients from a realm to contact services from a different

realm. However, this communication requires the interaction of the administrators of both

realms. In order to set it up, the administrators need to agree on a shared secret key and

store it in the Kerberos database of both realms.

In this thesis, we introduce a protocol, named KXOVER, that allows clients to request ser-

vices from remote realms without any administrator interaction. KXOVER will use DANE

and the PKINIT Kerberos plugin to authenticate the Key Distribution Centers to each other

and to perform an Elliptic Curve Diffie-Hellman key exchange, used to agree on the shared

secret key with Perfect Forward Secrecy properties.

Besides the design of the KXOVER protocol, we also provide a proof-of-concept implemen-

tation in order to show that realm cross-over can be done without the interaction of the

administrators. In order to complete our work, we also provide a security analysis of both

the design and the proof-of-concept implementation of KXOVER.

Kerberos Realm Crossover iii

Acknowledgements

I would like to thank Rick for his constant supervision, his invaluable help, and his fast an-

swers at unbelievable times of the day. You are the mastermind of this project and I am glad

I had the opportunity to participate in it.

I would like to thank Berry for his supervision and for his help on writing this thesis. It got

a lot better thanks to your comments and suggestions.

Finally, I would like to thank E.S.T. Suca and all its members for countless hours of dis-

tractions and fun, which, even though they are not part of a thesis, help a lot with the

accumulated stress that comes with it.

Quiero darle las gracias a Nathalia, que me ha ayudado a superar momentos dif́ıciles y

siempre ha estado alĺı. Sin t́ı mi vida seŕıa más aburrida y monótona.

També vull donar les gràcies als meus pares, que m’han suportat econòmicament durant

tota la meva trajectòria acadèmica i m’han donat ànims per acabar.

Kerberos Realm Crossover v

Contents

Contents vii

List of Figures ix

Listings xi

1 Introduction 1

1.1 Goal . 1

1.2 Motivation . 2

2 Background 3

2.1 Kerberos . 3

2.1.1 Authentication Service Exchange . 4

2.1.2 Ticket-Granting Service Exchange . 6

2.1.3 Client/Server Authentication Exchange 7

2.1.4 Special Message Exchanges . 9

2.2 Realm Crossover . 10

2.3 Pre-authentication . 10

2.4 ASN.1 . 12

2.5 DNSSEC + DANE . 12

3 Design 15

3.1 Setup . 15

3.2 KXOVER Protocol . 16

3.2.1 Message Specification . 18

3.2.2 Diffie-Hellman Exchange . 21

3.3 Daemon . 24

3.3.1 Design . 24

3.4 Daemon communication . 25

3.5 Key Distribution Center Modifications . 26

4 Implementation 27

4.1 Overview . 27

4.2 Challenges . 30

Kerberos Realm Crossover vii

CONTENTS

4.3 Remote Key Distribution Center Authentication 30

4.3.1 Signing . 31

4.3.2 Checking . 31

4.4 Key Distribution Center Modifications . 31

4.5 Dependencies . 32

5 Security Analysis 35

5.1 KXOVER Exchange Analysis . 35

5.2 Certificate Validation . 36

5.3 Access Control . 37

5.4 DNSSEC Analysis . 38

5.5 Implementation Analysis . 39

6 Related Work 41

6.1 TLS-KDH . 41

6.2 PKCROSS . 42

6.3 Pseudonimity Support for Kerberos . 42

7 Future Work 43

7.1 Implementation Improvements . 43

7.2 Request for Comments . 44

7.3 New message type . 44

8 Conclusions 47

Bibliography 49

viii Kerberos Realm Crossover

List of Figures

2.1 Kerberos Design . 4

3.1 KXOVER . 17

4.1 KXOVER Protocol Sequence Diagram . 29

Kerberos Realm Crossover ix

Listings

2.1 Request message ASN.1 specification[4] . 6

2.2 Reply message ASN.1 specification[4] . 7

2.3 AP exchange messages ASN.1 specification[4] 9

2.4 TLSA Format . 13

3.1 KXOVER AS-REQ message specification . 20

3.2 KXOVER AS-REP message specification . 21

3.3 Custom PKINIT ASN.1 specification for Request 22

3.4 Custom PKINIT ASN.1 specification for Reply 23

3.5 CMS SignedData ASN.1 Specification . 24

Kerberos Realm Crossover xi

Glossary

AP-REP Application Reply. 8

AP-REQ Application Request. 8

AS-REP Authentication Service Reply. 5

AS-REQ Authentication Service Request. 5

ASN.1 Abstract Syntax Notation One. 12

BER Basic Encoding Rules. 12

CMS Cryptographic Message Syntax. 22

DANE DNS-based Authentication of Named Entities. 12

DER Distinguished Encoding Rules. 11

DNS Domain Name System. 12

DNSSEC Domain Name System Security Extensions. 12

KDC Key Distribution Center. 3

KXOVER Kerberos Realm Crossover. 15

RFC Request For Comments. 1

SRV Service record. 12

TGS-REP Ticket Granting Service Reply. 7

TGS-REQ Ticket Granting Service Request. 6

TXT Text record. 12

Kerberos Realm Crossover xiii

Chapter 1

Introduction

Kerberos is a network authentication protocol. It allows client and server applications to

authenticate to each other over an insecure network, using so-called tickets as credentials. In

order to do so, Kerberos relies on a trusted party set up in the network, which shares secret

keys with all clients and servers. Another benefit of the protocol is the fact that it provides

a single sign-on service for users, which makes it really convenient for the user experience. In

a typical Kerberos scenario, users only need to log in by typing their passwords once a day.

Kerberos was initially developed by the Massachusetts Institute of Technology (MIT). Several

versions of the protocol were developed internally, until they released Kerberos version 4 in

the late 1980s. A version 5 of Kerberos was released in 1993, which was later obsoleted by

RFC 4120 [4] in 2005.

Kerberos is a widely used and known protocol, being featured in many Unix-like operating

systems. Microsoft also developed their own implementation of the protocol, called Active

Directory. There are several implementations of the protocol, like Heimdal [5], Shishi [21],

the one developed by Microsoft, and the one released by MIT.

The protocol is constantly being updated and improved, thanks to the creation of the Kerberos

Consortium in 2007 by MIT. This consortium receives funding from well known companies

such as Oracle, Apple Inc., Google, Microsoft and others. Thanks to this consortium, the

Kerberos community is really broad, and there are lots of projects being developed constantly

to expand the functionalities of the protocol, keeping its security model intact.

1.1 Goal

The main goal of this thesis is to design a Kerberos protocol that will allow automatic commu-

nication between two different realms. On top of designing the protocol, a prototype is built

in order to show that the designed protocol functions properly. The prototype also helps

in the further refinement of the protocol itself, pointing out bits and pieces that could be

improved, and modifications that need to be done in the current Kerberos implementations.

The ultimate goal, though, is the formal definition of this protocol in an RFC, and the later

inclusion of the protocol into MIT’s Kerberos code base. However, these are long-term goals

that are beyond the scope of this thesis.

Kerberos Realm Crossover 1

CHAPTER 1. INTRODUCTION

1.2 Motivation

This thesis is part of a bigger project, called ARPA2 [1]. The main goal of ARPA2 is to

improve the current architecture of the Internet. In order to do so, they plan on providing

a hosting platform that can be installed by hosting companies. This platform would give

users more control, centralising all their online identities into one, controlled by the users

themselves. It would offer better security by using cryptography instead of passwords to

authenticate the users to online services. And it would also offer better privacy, by letting

the user own all their data, instead of relying on third-party systems.

In order to do all that, they have designed a so-called Identity Provider, which will provide

users with a way of managing their online identities. This whole idea of the system is to let

users authenticate themselves once they log on to their systems, and from there, the system

will authenticate the user automatically to online servers. This way, the user only has to enter

one password on a trusted machine, ownend by the user, and all the following authentication

processes are done through cryptographic means. This will be convenient for users, since they

will not need to create a new password for each online service they use. On top of that, the

Identity Provider will unite all the currently different online identities of a user in a single

one. For example, nowadays, you have to create different users to access different services,

like Facebook, Twitter, IRC, and many more. With the Identity Provider, a user will have

one online identity, controlled by him, and use all these different services using that identity.

On top of that online identity, the user could also make use of pseudonyms or aliases.

However, sometimes it is desirable to have different identities on different services. That

is why the Identity Provider will let users use different roles or groups, in order to have the

freedom of choosing what they want their online identity to be.

As can be seen, the Identity Provider system has been designed around Kerberos, but in

order to apply it to the Internet as a whole, realm crossover is necessary.

2 Kerberos Realm Crossover

Chapter 2

Background

2.1 Kerberos

Kerberos is a protocol that authenticates clients and services over an insecure network, and

also provides a single sign-on point for its users. In order to achieve that, it uses a trusted party

called Key Distribution Center (KDC) and three exchanges, separated into Authentication

Service, Ticket-Granting Service and Client/Server Authentication. These exchanges will be

explained in the following sections.

Kerberos is organized in so-called Realms, which represent networks controlled by a KDC.

Inside a Realm you can find both clients that want to use a service, and servers that provide

those services. Realms are identified by their Realm name. Realm names are case sensitive,

and the most used style for realm names is the domain style. In this style, realm names

must look like domain names and it is recommended by convention that all characters are

uppercase. All realm names used in this thesis will follow this style.

The entity controlling a realm is the Key Distribution Center. It acts as a trusted party,

since it shares long-lasting secret keys with all clients and services of its network. These long-

lasting secret keys are stored in a secured database. The database holds unique identities

of all clients and services of the network, which are called Principals. Each entry in the

database contains a principal and the attributes and policies associated with that principal.

The database also stores secret keys used for special instances in Kerberos. One type of

those instances are the secret keys used to perform cross-realm authentication, which will be

explained later on. The KDC must be hosted by a machine reachable by everyone in the realm.

However, that machine must have strict security measures to shield it from intrusion. This

is necessary because the KDC controls all authentications on the system, and compromising

this authentication infrastructure would allow an attacker to impersonate any principal on

the network after stealing its long-term key.

As we have mentioned before, Kerberos works with so-called tickets. Tickets represent

short-term session keys between a client and a service. Tickets are issued by the KDC, and

they contain two copies of the session key, one can only be read by the client and the other

can only be read by the service. A special instance of a ticket is the Ticket Granting Ticket,

Kerberos Realm Crossover 3

CHAPTER 2. BACKGROUND

which represents a session key shared between a client and the KDC itself, this is explained

in Section 2.1.2.

The KDC is divided into two different servers, the Authentication Server(AS), and the

Ticket Granting Server(TGS). The Authentication Server is the one handling the login process

of clients. It receives log in requests from clients, and hands out ticket granting tickets.

On the other hand, the Ticket Granting Server receives the ticket granting ticket from a client,

and hands out tickets for the servers that reside in the realm.

Figure 2.1: Kerberos Design

Source: http://www.kerberos.org/images/krbmsg.gif

2.1.1 Authentication Service Exchange

The first step of the Kerberos workflow is the client authentication. As has been mentioned

before, Kerberos provides a single sign-on mechanism, meaning that users do not need to

login to every service they want to use.

In this case, Kerberos provides the client with a Ticket Granting Ticket that can be used to

request tickets to the services in that realm. Kerberos provides authentication over insecure

networks, which means that the secret key of the user is not sent directly over the network.

Instead, the KDC encrypts part of the response with the secret key of the user. This way,

only the client with the correct secret key will be able to authenticate itself to the KDC. This

is the only step on the whole process where the exchange is encrypted using the long-term

secret key of the user. This means that an attacker could use a captured reply message in

order to try and guess the long-term secret key of a user.

4 Kerberos Realm Crossover

http://www.kerberos.org/images/krbmsg.gif

CHAPTER 2. BACKGROUND

The client authentication process is represented by the two top-most arrows in Figure 2.1,

and works as follows.

• First of all, the client generates an AS-REQ message that contains the client’s name

and realm, amongst others, and sends it to the Authentication Server.

A specification of the AS-REQ message can be seen in Listing 2.1. This specification

has been taken from RFC 4120 [4]. When the AS receives the request it checks if the

client name exists, and then retrieves the long-lasting secret key of the client from the

database.

• The KDC generates an AS-REP message that has two main components.

A Client/TGS Session Key, which will be encrypted using a secret key derived from

the client’s password. A Ticket Granting Ticket (TGT), encrypted using the TGS’s

secret key. This ticket contains information identifying the client, and specifying the

expiration date of the ticket. It also contains a copy of the same Client/TGS Session

Key. A specification of the AS-REP message can be seen in Listing 2.2.

Kerberos Realm Crossover 5

CHAPTER 2. BACKGROUND

AS−REQ : := [APPLICATION 10] KDC−REQ

TGS−REQ : := [APPLICATION 12] KDC−REQ

KDC−REQ : := SEQUENCE {
−− NOTE: f i r s t tag i s [1] , not [0]

pvno [1] INTEGER (5) ,

msg−type [2] INTEGER (10 −− AS −− | 12 −− TGS −−) ,
padata [3] SEQUENCE OF PA−DATA OPTIONAL

−− NOTE: not empty −−,
req−body [4] KDC−REQ−BODY

}

KDC−REQ−BODY : := SEQUENCE {
kdc−opt ions [0] KDCOptions ,

cname [1] PrincipalName OPTIONAL

−− Used only in AS−REQ −−,
realm [2] Realm

−− Server ’ s realm

−− Also c l i e n t ’ s in AS−REQ −−,
sname [3] PrincipalName OPTIONAL,

from [4] KerberosTime OPTIONAL,

t i l l [5] KerberosTime ,

rt ime [6] KerberosTime OPTIONAL,

nonce [7] UInt32 ,

etype [8] SEQUENCE OF Int32 −− EncryptionType

−− in p r e f e r en c e order −−,
addre s s e s [9] HostAddresses OPTIONAL,

enc−author i za t i on−data [1 0] EncryptedData OPTIONAL

−− Authorizat ionData −−,
add i t i ona l−t i c k e t s [1 1] SEQUENCE OF Ticket OPTIONAL

−− NOTE: not empty

}

Listing 2.1: Request message ASN.1 specification[4]

When the client receives the reply, it will try to decrypt the session key with a secret key

derived from the password entered by the user. This session key will be needed for a later

step in the protocol. The TGT is encrypted using a secret key unknown to the client, which

means that the client cannot access the information inside the ticket. The TGT can only be

read by the correct recipient, if it is sent unaltered.

2.1.2 Ticket-Granting Service Exchange

The Ticket-Granting Service Exchange is used to request mutual authentication to a service

in the realm. It can only be performed by clients that have authenticated themselves using

the Authentication Service Exchange. The exchange is represented by the two middle arrows

in Figure 2.1, and works as follows.

• In order to request authentication to a service, the client will need to generate a TGS-

6 Kerberos Realm Crossover

CHAPTER 2. BACKGROUND

REQ message and send it to the Ticket Granting Service.

The TGS-REQ message is similar to the AS-REQ one, and so they share the same

specification (Listing 2.1). However, in this request the client has to include two extra

components.

First, the client needs to include the Ticket Granting Ticket obtained from the AS.

Finally, it also includes an authenticator, which contains the client name and a times-

tamp, and is encrypted using the Client/TGS Session Key, also obtained from the AS.

This authenticator is used to prove the client’s authentication to the TGS and to avoid

replay attacks.

• When the Ticket Granting Service receives the request, it first obtains the TGT, and

decrypts it with its own secret key. From the ticket, it gets the Client/TGS Session Key,

which will then use it to decrypt the authenticator. After checking the authenticator,

the TGS generates a TGS-REP message. The TGS-REP specification can be seen in

Listing 2.2.

Again, the reply message contains two main components.

A Client/Server Session Key, which is encrypted using the Client/TGS Session Key.

A Client-to-Server Ticket, encrypted using the Server’s secret key. This ticket contains

information about the client, identifying it and specifying the expiration date of the

ticket. It also contains a copy of the Client/Server Session Key.

Once the client receives the TGS-REP, it decrypts the Client/Server Session Key using the

Client/TGS Session Key.

AS−REP : := [APPLICATION 11] KDC−REP

TGS−REP : := [APPLICATION 13] KDC−REP

KDC−REP : := SEQUENCE {
pvno [0] INTEGER (5) ,

msg−type [1] INTEGER (11 −− AS −− | 13 −− TGS −−) ,
padata [2] SEQUENCE OF PA−DATA OPTIONAL

−− NOTE: not empty −−,
crealm [3] Realm ,

cname [4] PrincipalName ,

t i c k e t [5] Ticket ,

enc−part [6] EncryptedData

−− EncASRepPart or EncTGSRepPart ,

−− as appropr ia te

}

Listing 2.2: Reply message ASN.1 specification[4]

2.1.3 Client/Server Authentication Exchange

When a client has obtained a ticket to a service, it can contact the service directly to finalize

the mutual authentication. In order to do so, the last Kerberos exchange needs to happen.

Kerberos Realm Crossover 7

CHAPTER 2. BACKGROUND

This exchange is represented with the two bottom-most arrows in Figure 2.1. The exchange

works as follows.

• The client has to craft an AP-REQ message, specified in Listing 2.3. This message

is composed of two parts. First, the ticket that the client obtained from the TGS,

the one that the client could not decrypt. Then, a new Authenticator, which includes

information about the client and a timestamp. The Authenticator is encrypted using

the Client/Server Session Key.

• The service receives the message, and uses its long-term secret key to decrypt the ticket.

From the decrypted ticket, it obtains the Client/Server Session Key, which it then uses

to decrypt the Authenticator, which is used to prove that the client has the other half

of the ticket, and to chek for replay attacks. Finally, the server creates an AP-REP

message, specified in Listing 2.3, and sends it to the client. The AP-REP message

contains the timestamp found in the Authenticator in order to prove that the service is

the correct one, ensuring mutual authentication.

When the client receives the AP-REP message, it checks whether the received timestamp

is correct or not. If it is correct, the client can be sure that it has authenticated itself to

the server, and the normal Client/Server interaction can start. The interaction between the

client and the server can be encrypted using the shared Client/Server Session Key.

8 Kerberos Realm Crossover

CHAPTER 2. BACKGROUND

AP−REQ : := [APPLICATION 14] SEQUENCE {
pvno [0] INTEGER (5) ,

msg−type [1] INTEGER (14) ,

ap−opt ions [2] APOptions ,

t i c k e t [3] Ticket ,

au then t i c a to r [4] EncryptedData −− Authent icator

}

Authent icator : := [APPLICATION 2] SEQUENCE {
authent i ca tor−vno [0] INTEGER (5) ,

crealm [1] Realm ,

cname [2] PrincipalName ,

cksum [3] Checksum OPTIONAL,

cusec [4] Microseconds ,

ctime [5] KerberosTime ,

subkey [6] EncryptionKey OPTIONAL,

seq−number [7] UInt32 OPTIONAL,

author i za t i on−data [8] Authorizat ionData OPTIONAL

}

AP−REP : := [APPLICATION 15] SEQUENCE {
pvno [0] INTEGER (5) ,

msg−type [1] INTEGER (15) ,

enc−part [2] EncryptedData −− EncAPRepPart

}

EncAPRepPart : := [APPLICATION 27] SEQUENCE {
ctime [0] KerberosTime ,

cusec [1] Microseconds ,

subkey [2] EncryptionKey OPTIONAL,

seq−number [3] UInt32 OPTIONAL

}

Listing 2.3: AP exchange messages ASN.1 specification[4]

2.1.4 Special Message Exchanges

Kerberos also allows clients to send messages using the benefits of Kerberos. These messages

are not part of the main interaction of the Kerberos system. This messages can be used by

clients and services of the realm, and its use depends on the requirements of the message

exchange. There are three types of messages.

• KRB SAFE. This message exchange can be used by clients requiring the ability to de-

tect modifications of the messages they exchange. In order to achieve it, the messages

include a keyed collision-proof checksum of the used data and some control informa-

tion. The message exchange requires an established session key between the two parties

exchanging the messages.

• KRB PRIV. This message exchange can be used by clients requiring confidentiality

and authenticity of the messages they exchange. In order to achieve it, the messages

Kerberos Realm Crossover 9

CHAPTER 2. BACKGROUND

are encrypted, and control information is included. The message exchange requires

an established session key between the two parties, in order to encrypt and sign the

messages.

• KRB CRED. This message exchange can be used by clients requiring the ability to

send Kerberos credentials from one machine to another. In order to achieve it, it

sends the tickets together with encrypted data containing the session keys and other

information associated with the tickets. This exchange also needs an established session

key between the two parties exchanging the messages.

2.2 Realm Crossover

Everything we have seen so far about Kerberos concerns a single realm. However, a KDC

in a realm may also authenticate a user in one realm to a service in another realm. This is

called Cross-Realm Authentication.

Currently, Cross-Realm Authentication needs the interaction of administrators in both realms.

In order to set it up, a common principal has to be created in both databases. All principals

for Cross-Realm Authentication need to have a common prefix, namely krbtgt, followed by

the service realm and the client realm, separated by an @. An example of such principal will

be seen later in this section.

These principals allow for one-way authentication, which means that two principals have to

be created in order to allow the authentication to work both ways.

The process for setting up Cross-Realm Authentication involves the administrators of the two

realms to get in contact with each other using a trusted channel. This is necessary because

the principals that have to be created in both databases need to have the same secret key,

key version number and encryption types on both sides.

It is also really important to use good secret keys, MIT recommends passwords of at least 26

random ASCII characters.

As an example, if we want the clients of a realm called rhcp.dev.arpa2.orgto be able to

authenticate to services provided by a realm called example.com, the administrators of both

realms will need to contact each other and create a principal named

krbtgt/example.com@rhcp.dev.arpa2.org in both databases with the same secret key.

If the administrators wish to let a client from the realm example.com to access a service

provided by the realm rhcp.dev.arpa2.org, then a new principal would need to be created,

this time named krbtgt/rhcp.dev.arpa2.org@example.com.

2.3 Pre-authentication

Kerberos version 5 introduced pre-authentication. In order to introduce pre-authentication,

a new field was added to the requests. This field is the one called padata (pre-authentication

data). There exists a framework that defines how pre-authentication should work ([20]).

However, since its creation, the use of the padata field has evolved, and nowadays it is also

used to carry extensions to Kerberos that have nothing to do with proving the identity of the

10 Kerberos Realm Crossover

CHAPTER 2. BACKGROUND

user.

The padata field is composed of a sequence of padata-type and padata-value pairs, that is the

reason why it is called a typed-hole. The padata-type element indicates how the padata-value

needs to be interpreted. The padata-type contains an Integer and the padata-value usually

contains the DER encoding of another type. The padata-type element is used as an identifier

for the Kerberos extension being used. Since it works as an identifier, it has to be registered

by IANA. In order to register a new Kerberos extension, an expert review is necessary. A list

of the current Kerberos extensions and pre-authentication data types can be found in [6].

Kerberos has numerous extensions in the form of plugins. One of them is called PKINIT [9],

and it offers Public Key Cryptography as a means of pre-authentication.

PKINIT integrates the usage of Public Key Cryptography into the initial authenticate ex-

change. Instead of prompting users for their password, this plugin allows the usage of either

Diffie-Hellman Key exchange or Public Key Encryption.

In both cases, it uses a field already defined in the KDC-REQ(2.1) and KDC-REP(2.2) mes-

sages, called padata. This pre-authentication data contains all the necessary information to

facilitate the authentication exchange. Concretely, the data holds an ASN.1 element called

SubjectPublicKeyInfo that allows to include a public key, and to specify the algorithm you

wish to use in conjunction with that key.

In the request, the client provides an AuthPack ASN.1 element, which contains an authenti-

cator, the client public key information, the Cryptographic Message Syntax ([16]) encryption

types supported by the client and an optional Diffie-Hellman nonce.

Besides this AuthPack element, the client may also provide a list of Certificate Authorities

trusted by the client that can be used to certify the KDC, and a KDC public key that the

client already has.

When the KDC receives the request, it has to validate the client using all the information

provided in the request. After validating, the KDC has to generate a shared secret that will

be used as a session key, either using Diffie-Hellman Key exchange, or Public Key Encryption,

depending on the client’s choice.

After generating the shared secret, the KDC has to make sure that the client also obtains

the session key. It does so by using the padata field on the KDC-REP. This reply will either

contain the Diffie-Hellman key information necessary to derive the session key or an encrypted

KeyPack structure directly containing it.

There also exists an extension to PKINIT that adds support for Elliptic Curve Cryptography[10].

This extension adds Elliptic Curve Diffie-Hellman key exchange, and describes how to specify

it.

In order to use it, a new element is introduced to PKINIT, called ECParamenters, that gives

the choice to include a named curve, an implicit curve or a specified curve. Besides specifying

the curve, the extension explains how you need to use the SubjectPublicKeyInfo element to

specify the point acting as public key for the Elliptic Curve Diffie-Hellman exchange.

Kerberos Realm Crossover 11

CHAPTER 2. BACKGROUND

2.4 ASN.1

‘ASN.1 is a formal notation used for describing data transmitted by telecommunications pro-

tocols, regardless of language implementation and physical representation of these data, what-

ever the application, whether complex or very simple.’ [8]

As we have seen before in this chapter, Kerberos specifies its messages using the ASN.1 no-

tation. This notation provides a certain number of pre-defined basic types, like integers, bit

strings, character strings, etc. Also, it allows to construct self-defined types by providing

elements like structures, lists and choices, amongst others.

ASN.1 [7] defines the abstract syntax of the messages. However, it is also associated

to several standardized encoding rules, that define how the data has to be encoded when

including it into the ASN.1 syntax. These encoding rules include BER (Basic Encoding

Rules), DER (Distinguished Encoding Rules), and many more.

Kerberos explicitly specifies the use of DER for its encodings. This encoding rules provide

exactly one way of encoding an ASN.1 value. This is valuable for cryptographic situations,

and it is also widely used for digital certificates such as X.509.

2.5 DNSSEC + DANE

The Domain Name System Security Extensions (DNSSEC) is a series of specifications that

secure certain kinds of information provided by DNS.

DNSSEC was designed to protect applications from using forged or modified DNS data.

In order to achieve this, all data obtained using DNSSEC is digitally signed. The system

used by DNSSEC is similar to PKI. However, DNSSEC does not provide encryption, only

authentication.

In the protocol designed in this thesis, all DNS look-ups will be executed using DNSSEC.

This is necessary in order to maintain the security of the protocol. The protocol uses three

different look-ups, the first two are an SRV and a TXT look-up. These two look-ups provide

information about the location of the remote KDC, and the names of the realms it handles.

The location of the server needs to be secured, otherwise when you contact a remote KDC

for the first time you could be contacting a rogue KDC posing as the original one.

The third look-up will regard TLS Trust Anchors (TLSAs). This look-up is the most

important one, since it will provide a means of authenticating signatures made by remote

KDCs. The TLSA resource record is defined on the DANE TLSA protocol [15], and it is used

to associate a TLS server certificate or public key with the domain name where the record is

found. In the protocol designed in this thesis, we are not using DANE to associate a domain

name to a TLS server, we associate it to a KDC instead. The structure of a TLSA record

can be seen in Listing 2.4.

12 Kerberos Realm Crossover

CHAPTER 2. BACKGROUND

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Cert . Usage | Se l e c t o r | Matching Type | /

+−+ /

/ /

/ C e r t i f i c a t e As soc i a t i on Data /

/ /

+−+

Listing 2.4: TLSA Format

A TLSA record is composed by 4 different fields.

• Certificate Usage. This field specifies the usage of the certificate association data.

There are 4 values defined for this field.

0. Certification usage 0 is used to specify a CA certificate.

1. Certification usage 1 is used to specify an end entity certificate. The target certifi-

cate must pass PKIX certification path validation.

2. Certification usage 2 is used to specify a certificate that must be used as the trust

anchor when validating the end entity certificate.

3. Certificate usage 3 is used to specify an end entity certificate as well. However,

unlike usage 1, it does not need to pass PKIX certification validation.

• Selector. This field specifies which part of the TLS certificate presented by the server

will be matched against the association data.

0. Full certificate.

1. SubjectPublicKeyInfo.

• Matching Type. This field specifies how the certificate association is presented.

0. Exact match on selected content.

1. SHA-256 hash of selected content.

2. SHA-512 hash of selected content.

• Certificate Association Data. This field specifies the certificate association data to

be matched. These bytes are either raw data or the hash of the raw data, depending

on the matching type field.

The KXOVER protocol uses these TLSA records in order to perform KDC-to-KDC authen-

tication. This authentication process will be explained later on.

Kerberos Realm Crossover 13

Chapter 3

Design

The goal of this thesis is to automate Cross-Realm Authentication. In order to do so, we

will be using mechanisms that already exist within Kerberos, and these mechanisms will be

slightly modified for our purposes.

The main idea is to replicate the authentication process that takes place between a client

and its Key Distribution Center. However, this authentication process will now take place

between two remote KDCs.

Since the final goal of the protocol is to be applied Internet-wide, we have to assume that

the connection between the two KDCs will be done through the Internet. We are also assum-

ing that the two KDCs have no prior knowledge of each other. This means that the normal

authentication process is not suitable here. Instead, we will be using the Public Key Cryptog-

raphy protocol extension PKINIT. We will specifically be using the Elliptic Curve extension to

PKINIT [10] to cryptographically sign an Elliptic Curve Diffie-Hellman key exchange between

the KDCs to agree on an authenticated shared secret.

All communication between KDCs is done through the Internet. In order to authenticate

each party, the protocol will rely on DNS records secured with DNSSEC, in relation to the

certificates provided inside the native Kerberos messages.

The resulting protocol that we have developed has been named Kerberos Realm Crossover,

which from now on will be abreviated as KXOVER.

3.1 Setup

In order for our protocol to work, some prior setup has to be done. This is so because the

protocol relies on DNS records in order to do some of its main tasks.

This means that the administrators of the Kerberos realms involved in the cross-realm com-

munication need to add some information to their DNS zones.

The DNS records being used by the protocol are the following.

• TXT. This record is used to obtain the realm name of the server we are trying to access.

A client could be requesting a server either by its domain name, or by its host name.

The administrators of the realm will need to add records to DNS for all the public

Kerberos Realm Crossover 15

CHAPTER 3. DESIGN

servers inside the realm that they wish to make available through KXOVER. The use

of TXT records to declare Kerberos realm names has been introduced by Rick van Rein

in [17]. The structure of the TXT record is the following.

kerberos.server IN TXT realmName

• SRV. This record is used to obtain the address and the port of the KDC itself. These

address and port are the ones that will be used to send all messages to the remote KDC.

The structure of the SRV record is the following.

kerberos. protocol.realmName IN SRV priority weight port target

• TLSA. The last record used by the protocol is a TLSA record. This record is used to

obtain a certificate for the remote KDC. This is the basis of the authentication process,

and it will be explained on Section 5.2. Since we want to allow self-signed certificates,

the Certificate Usage field is set to 3. The selector field is set to 0, because we are

checking a full certificate, instead of a SubjectPublicKeyInfo. The matching type field

depends on how the data is being stored, which can be either raw data, in which case

the matching type would be set to 0, or the hash of the raw data, in which case the

matching type could be set to 1 or 2. The port and realm name on this record are the

same ones that can be found in the SRV and TXT records respectively. The structure

of the TLSA record is the following.

port. realmName IN TLSA 3 0 matching data

All DNS records used for this protocol have to be secured using DNSSEC. As it has been

said before, this ensures the validity of the records, and eliminates some possible attacks like

DNS spoofing. This type of attacks will be argued in Section 5.4.

Another thing that the administrator of the KDC needs to do before running the protocol

is to setup a principal in the database that will manage the KXOVER interaction. This

principal has to be named kxover/admin@REALM-NAME.

This principal needs to have admin privileges on the Kerberos database, since it will be the

one creating the cross-over principals in the database during the execution of our protocol.

After creating the principal in the database, a keytab file for the principal needs to be created.

This keytab file will allow the automatic authentication of the kxover principal.

3.2 KXOVER Protocol

The protocol has been designed with security in mind. However, our second goal when de-

signing the protocol was to avoid requiring to modify the clients or services of a realm. With

our protocol design, only the KDC needs to be modified, which allows us to add our protocol

to Kerberos without needing to modify all client applications that use Kerberos.

The MIT Kerberos implementation that we are using has an unsuitable structure for long

16 Kerberos Realm Crossover

CHAPTER 3. DESIGN

remote queries,which would result in the whole process being blocked. That is the reason

why all the logic of the protocol is being done in an external process (daemon) instead of in

the KDC itself. With this design, the KDC only needs to redirect messages to the daemon

when they are related to Realm Crossover.

The workflow of the protocol can be seen in Figure 3.1.

Figure 3.1: KXOVER

1. When a Client wants to request a service, it sends a TGS-REQ to its KDC, from now

on, KDCc.

2. When KDCc receives a TGS-REQ for a service that is not in one of its realms, it

searches the database for a krbtgt principal for the remote realm. When it does not

find said principal, it redirects the TGS-REQ to the KXOVER daemon, from now on,

Daemonc.

3. When Daemonc receives a TGS-REQ, it extracts the server name from the request, and

uses it to lookup the realm name. When the daemon has the realm name, it obtains

the location of the remote KDC.

When the daemon has the location of the remote KDC, it generates an AS-REQ mes-

sage, and sends it to the remote KDC, from now on, KDCs. The request incorporates

all the necessary PKINIT initialization parameters. The request also has a distinctive

marker that identifies it as a KXOVER message.

Kerberos Realm Crossover 17

CHAPTER 3. DESIGN

4. When KDCs receives an AS-REQ, it checks whether it is part of the KXOVER protocol

or not. If the message comes from a remote KDC instead of a client in its own realm,

it redirects the AS-REQ to the KXOVER daemon, from now on, Daemons.

5. When Daemons receives the AS-REQ, it first retrieves the realm name from the request

and looks up the initiating KDC’s location. With that location, the remote daemon

looks up for the server certificate of the initiating KDC, and uses it to validate it against

the PKINIT certificate of the KDC.

Once the client KDC has been validated, the daemon obtains the Diffie-Hellman infor-

mation from the PKINIT data, and uses it to generate the shared secret. Then it uses

the shared secret to create a krbtgt in the database. After creating the principal, it

generates an AS-REP and sends it to KDCc.

6. When KDCc receives the AS-REP, it redirects it to Daemonc.

7. When Daemonc receives the AS-REP, it first extracts the PKINIT information from

it. Then, it validates the KDCs certificate using a TLSA look-up. After validating

the certificate, it generates the shared secret from the Diffie-Hellman information of the

remote KDC. Using the shared secret, it creates the krbtgt principal in the database as

well.

Finally, the Daemonc Generates and sends a TGS-REP to the Client, providing the

Ticket Granting Ticket for the remote realm.

8. Finally, the client can use the cross-realm Ticket Granting Ticket to generate a TGS-

REQ directed to the remote KDC, requesting again for the service.

3.2.1 Message Specification

In KXOVER, we are using custom-made messages, based mostly on the AS-REQ and AS-

REP. However, some modifications have been made, mainly by removing some unnecessary

and undesirable parts of the message that do not contribute to our protocol, like the ticket

itself. Our messages can be compared with the standard Kerberos messages, shown on Listings

2.1 and 2.2 from Section 2.1.

In Listing 3.1, the custom AS-REQ message, renamed as KX-AS-REQ, can be seen. The

initial part of the message does not change. However, the req-body has been changed. That

is the reason why it has been renamed to KX-REQ-BODY

The kdc-options field has been removed, because the exchange will not produce a ticket. This

means that no ticket options need to be used in the exchange. The encryption types field

etype has also been removed for the same reason. Since no ticket is being generated through

the exchange, no encryption type describing the encryption of the ticket is needed. Similarly,

the rtime field has also been removed since it indicates the maximum lifetime of the ticket in

the case of it being a renewed ticket.

The enc-authorization-data and additional-tickets fields have been removed because they are

only used in the TGS exchange.

18 Kerberos Realm Crossover

CHAPTER 3. DESIGN

Since the addresses being used in the KXOVER exchange are obtained via DNS look-ups, the

addresses field is also not needed in the KXOVER request.

The usage of the fields in our custom made AS-REQ messages is the following.

• pvno. This field specifies the Kerberos protocol version number. The current Kerberos

version is version 5.

• msg-type. This field specifies the message type. Since we are using a custom made

AS-REQ message, the msg-type is KRB AS REQ, which is represented with the number

10.

• padata. This field contains the pre-authentication data. In our case it includes our

custom message type, and all the PKINIT information that we are using for the Elliptic

Curve Diffie-Hellman exchange. Both contents will be explained later on.

• req-body. This field contains all the rest of the fields related to the request itself.

• cname. This field specifies the client name of the client performing the authentication.

In KXOVER, it specifies the name of the kxover principal. This is the principal that

has access to the database and creates the principals shared with the remote KDCs.

• realm. This field specifies the realm of the client performing the authentication. The

usage is the same in KXOVER, where it specifies the name of the realm initiating the

KXOVER exchange.

• sname. This field specifies the name of the service the request is directed to. In

KXOVER, it specifies the kxover principal of the remote realm that is being contacted.

• till. This field contains the expiration date requested by the client in a ticket request.

In KXOVER, it contains the expiration date of the cross-over principal created in the

database. After that time has passed, the principal has to be removed from the database,

and another KXOVER exchange needs to happen.

• nonce. This field contains a random number generated by the client. The same number

has to be included in the encrypted response from the KDC, it provides evidence that

the response is fresh and has not been replayed by an attacker. In KXOVER, the nonce

has to be sent back using the PKINIT signed data structure.

Kerberos Realm Crossover 19

CHAPTER 3. DESIGN

KX−AS−REQ : := SEQUENCE {
−− NOTE: f i r s t tag i s [1] , not [0]

pvno [1] INTEGER (5) ,

msg−type [2] INTEGER (10 −− AS −−) ,

padata [3] SEQUENCE OF PA−DATA,
req−body [4] KX−REQ−BODY

}

KX−REQ−BODY : := SEQUENCE {
cname [1] PrincipalName ,

realm [2] Realm ,

−− Server ’ s realm

sname [3] PrincipalName ,

t i l l [5] KerberosTime ,

nonce [7] UInt32

}

Listing 3.1: KXOVER AS-REQ message specification

The reply message being used by KXOVER has also been modified. The specification of

our custom-made AS-REP messages, named KX-AS-REP can be seen in Listing 3.2. This

modification is relevant, because KXOVER is not using the reply as it was originally intended.

Both the AS-REP and the TGS-REP are used to provide the client with a ticket. However,

in KXOVER we do not send a ticket with our reply.

For this reason, both the ticket and the enc-part fields of the original reply are not present

in our custom-made KXOVER replies.

The usage of the fields of the custom-made AS-REP message is the following.

• pvno.This field specifies the Kerberos protocol version number. The current Kerberos

version is version 5.

• msg-type. This field specifies the message type. Since we are using a custom made

AS-REP message, the msg-type is KRB AS REP, which is represented with the number

11.

• padata. This field contains the pre-authentication data. In our case it includes our

custom message type, and all the PKINIT information that we are using for the Elliptic

Curve Diffie-Hellman exchange. Both contents will be explained later on.

• crealm. This field contains the name of the realm in which the client is registered and

in which initial authentication took place. In KXOVER, we use it to specify the realm

name of the remote realm. Note that this usage is the opposite as the intended usage

for this field.

• cname. This field contains the name part of the client’s principal identifier. In KX-

OVER, it contains the name of the kxover principal that belongs to the initiating realm.

20 Kerberos Realm Crossover

CHAPTER 3. DESIGN

KX−AS−REP : := SEQUENCE {
pvno [0] INTEGER (5) ,

msg−type [1] INTEGER (11 −− AS −−) ,
padata [2] SEQUENCE OF PA−DATA,
crealm [3] Realm ,

cname [4] PrincipalName

}

Listing 3.2: KXOVER AS-REP message specification

As we have just seen, our custom messages are using the same identifiers as the original

AS exchange messages. Therefore, the KDC receiving these messages will identify them as

AS-REQ or AS-REP messages.

However, we need to provide a way for KDCs to detect that the AS-REQ comes from a remote

KDC instead of from one of its clients.

This is done with the use of the padata field. This field is the same one that contains all the

information used by PKINIT to complete the Diffie-Hellman Exchange.

In order to identify the messages related to the KXOVER protocol, a padata-type and padata-

value pair will be added to both the AS-REQ and AS-REP messages.

A 32-bit integer will be allocated as the type for PA-KXOVER, and it will be used as the

padata-value.

As mentioned in Section 2.3, the padata-type used by KXOVER has to be assigned by an

expert from IANA. Temporarily, the protocol is using one of the unassigned values for the

padata-type element.

3.2.2 Diffie-Hellman Exchange

The KXOVER protocol uses Elliptic Curve Diffie-Hellman key exchange to generate a shared

secret. This exchange is done using a modified version of the Kerberos plugin PKINIT.

PKINIT provides options for both Diffie-Hellman key exchange, and public key encryption.

For KXOVER, the optional public key encryption part of the messages is dropped, making

the resulting specification simpler than the original one.

In Listing 3.3 you can see the request message of the PKINIT plugin, after being customized

for the protocol needs.

The top-level request has been modified to contain only a signed AuthPack. The original

specification also contains two other values, called trustedCertifiers and kdcPkId. These two

fields are related to the Public Key part of PKINIT, and have been removed for KXOVER.

We are using the original AuthPack specification. No modifications were needed. The fields

of the AuthPack are the following.

• pkAuthenticator. This is used to prove to the receiving party that the requester has

recent knowledge of its signing key. This is done by providing a checksum over the

KDC-REQ-BODY sequence.

• clientPublicValue. This is used to transmit the Elliptic Curve information to the

receiving party. It uses the SubjectPublicKeyInfo type to do so.

Kerberos Realm Crossover 21

CHAPTER 3. DESIGN

• supportedCMSTypes. This field specifies the list of CMS algorithm identifiers that

are supported in order of decreasing preference.

• clientDHNonce. This field is used when one wishes to reuse a previously agreed

Diffie-Hellman Key. This nonce must be chosen randomly.

The EC Diffie-Hellman public key is mapped to the subjectPublicValue field of the Subject-

PublicKeyInfo sequence. The SubjectPublicKeyInfo type has not been modified, the fields

are the original ones and the use of those fields is also the original one. The algorithm

field allows to specify the ECParameters, which represent the curve the algorithm is working

with. The public key, represented by a point in the Elliptic Curve, is transmitted using the

subjectPublicKey field.

PA−PK−KX−AS−REQ : := SEQUENCE {
signedAuthPack [0] IMPLICIT OCTET STRING

}

AuthPack : := SEQUENCE {
pkAuthent icator [0] PKAuthenticator ,

c l i en tPub l i cVa lue [1] SubjectPubl icKeyInfo OPTIONAL,

supportedCMSTypes [2] SEQUENCE OF Algo r i t hmIden t i f i e r OPTIONAL,

clientDHNonce [3] DHNonce OPTIONAL,

. . .

}

PKAuthenticator : := SEQUENCE {
cusec [0] INTEGER (0 . . 9 9 9999) ,

ct ime [1] KerberosTime ,

nonce [2] INTEGER (0 . . 4294967295) ,

paChecksum [3] OCTET STRING OPTIONAL,

. . .

}

SubjectPubl i cKeyInfo : := SEQUENCE {
a lgor i thm Algo r i thmIden t i f i e r ,

subjectPubl icKey BIT STRING

}

Algo r i t hmIden t i f i e r : := SEQUENCE {
a lgor i thm OBJECT IDENTIFIER ,

parameters ECParameters OPTIONAL

}

ECParameters : := CHOICE {
namedCurve OBJECT IDENTIFIER

impl i c i tCurve NULL

spec i f i edCurve SpecifiedECDomain

}

Listing 3.3: Custom PKINIT ASN.1 specification for Request

22 Kerberos Realm Crossover

CHAPTER 3. DESIGN

The reply message used in the protocol is much simpler than the request. This is so

because the PKINIT protocol was designed to be an exchange between a client and its KDC.

In that case, the KDC is assumed to be an already secured and trusted party. In the case

of a KDC-to-KDC communication, this assumption is not completely correct, and should be

dealt with later on. This will be discussed later on with the creation of a new message type.

The customized reply message of the PKINIT plugin has only one main component instead

of two. Therefore, the type has changed from a CHOICE to a SEQUENCE and the encKey-

Pack field has been dropped. The dhInfo field contains the signed sequence that contains the

ECDH public key, and an optional nonce that is only present if and only if dhKeyExpiration

is present.

The KDCDHKeyInfo type contains the subjectPublicKey, which is the Diffie-Hellman pub-

lic value, the nonce that was present inside the pkAuthenticator (only if the DH keys are

not reused, otherwise the nonce value is 0), and the dhKeyExpiration which specifies the

expiration time in the case that the DH keys are reused.

PA−PK−KX−AS−REP : := SEQUENCE {
dhInfo [0] DHRepInfo

}

DHRepInfo : := SEQUENCE {
dhSignedData [0] IMPLICIT OCTET STRING,

serverDHNonce [1] DHNonce OPTIONAL,

. . .

}

KDCDHKeyInfo : := SEQUENCE {
subjectPubl icKey [0] BIT STRING,

nonce [1] INTEGER (0 . . 4294967295)

dhKeyExpiration [2] KerberosTime OPTIONAL,

. . .

}

Listing 3.4: Custom PKINIT ASN.1 specification for Reply

Both the reply and the request in the PKINIT plugin are signed. This is necessary to

guarantee the authenticity of the messages being sent. PKINIT uses a well known method

for sending signed messages, called Cryptographic Message Syntax (CMS)[16]. This syntax

can be used to sign, authenticate, or encrypt arbitrary message content.

In the case of PKINIT, the content type being used is SignedData(3.5).

This content type specifies how to send signed data, and it incorporates a field to store the

data, encapContentInfo, and a field to store signatures over the data being sent, signerInfos.

There can be multiple signatures over the same data.

On top of that, the content type allows the specification of certificates, using the certificates

field. The set of certificates specified in this content type should be sufficient to contain

certification paths from a recognized “root” or “top-level certification authority” to each of

the signers of the content. Also, the signer’s certificate may be included. This allows for

self-signed certificates.

Kerberos Realm Crossover 23

CHAPTER 3. DESIGN

This field is useful for KXOVER because it allows to send the certificate that will identify

the KDC itself. This certificate is the certificate that can be found in the TLSA records that

the protocol looks up. This is the main authentication method of the protocol, and will be

discussed in a later chapter of this document.

SignedData : := SEQUENCE {
ve r s i on CMSVersion ,

d ige s tAlgor i thms D ig e s tA l go r i t hmIden t i f i e r s ,

encapContentInfo EncapsulatedContentInfo ,

c e r t i f i c a t e s [0] IMPLICIT Ce r t i f i c a t e S e t OPTIONAL,

c r l s [1] IMPLICIT Revocat ionIn foChoices OPTIONAL,

s i g n e r I n f o s S i gn e r I n f o s

}

Listing 3.5: CMS SignedData ASN.1 Specification

3.3 Daemon

The main workflow of the KXOVER protocol takes place in an separate daemon instead of

in the KDC itself.

The main reason for designing a daemon instead of implementing the protocol in the KDC

itself is the fact that the KDC has read-only access to the database. Since there is a need

to add cross-over principals to the database, an external process is needed to modify the

database.

Another reason in favor of doing all the processing in a daemon, is the fact that the protocol

contains DNS lookups. DNS lookups are considered slow, compared to the normal execution

time of a Kerberos request, taking up to a couple of seconds. Since the KDC’s process when

it receives a request is synchronous, it would need to wait until the lookups are finished, not

doing anything meanwhile. This would slow down the whole process, and be a possible target

for Denial of Service attacks.

However, this issue can be resolved by the KDC directly. When launching the KDC, an option

can be set that specifies the number of processes that will be listening to the KDC ports and

processing the requests in parallel. This transforms the KDC into a multi-threaded process,

avoiding the issues mentioned earlier. When using this option, the top level process acts as a

supervisor, and the specified number of workers are forked from it. This option would allow

the KDC not to block while the KXOVER process is taking place. However, this is not a

default option, and the system administrator has to specify it when launching the KDC.

3.3.1 Design

The main objective for the design of the KXOVER daemon was to maximize the functionalities

of the daemon, and to minimize the modifications to the KDC. This means that all the

workflow of the protocol is done in the daemon, and the KDC basically acts as a proxy,

redirecting messages towards the daemon.

24 Kerberos Realm Crossover

CHAPTER 3. DESIGN

The design of the KXOVER daemon was inspired by the design of the KDC itself. Even

though the workflow of the whole process bounces between KDCs and daemons, the daemon

itself is stateless. This means that the daemon handles each request or reply individually. In

order to handle the messages, the daemon uses the same strategy used by the KDC, which is

having a dispatcher that receives all messages, and depending on the type of the message, it

is redirected to the correct handling functions.

The daemon has been designed as a process running on the same host as the KDC.

However, its design, and the KRB-PRIV communication mechanisms provided by Kerberos,

would allow the daemon to be executed in a different machine than the KDC. This would

allow an extra degree of flexibility regarding the KXOVER administration..

On a regular Kerberos setup, the machine hosting the KDC has to be secured against

any attackers. Since the KDC has access to the database, compromising it would allow an

attacker to have full control over the realm, being able to impersonate anyone.

In the case of the KXOVER daemon, the process has both read and write access to the

database, making it as worthy as an entry point as the KDC itself. This means that the

machine hosting the daemon needs, at least, the same amount of security measures as the

machine hosting the KDC. Since the machine hosting the KDC is already secured, it is a

recommended choice for hosting the KXOVER daemon as well.

3.4 Daemon communication

As mentioned in last section, the daemon does not necessarily have to be hosted in the same

machine as the KDC.

However, hosting the KXOVER daemon in a different machine needs some additions both in

the daemon and the KDC.

If the daemon is hosted in the same machine as the KDC, the communication method can

be the simplest possible. No extra security measures need to be taken, since the machine is

assumed to be secure.

In this case, the communication between the KDC and the daemon can be done through

UNIX Domain Sockets. The messages are sent through the sockets as clear text, with no

need for encryption.

Since the machine is also hosting the KDC, an attacker with the ability to read the Socket

communication between the daemon and the KDC would also be able to access both the KDC

and the database, having complete control over the network.

In the case of the daemon being hosted by a remote machine, the communication method

needs to be secured.

In order to do that, there is a method already available within the Kerberos protocol, the

KRB-PRIV Exchange. This exchange allows clients to send messages requiring confiden-

tiality and the ability to detect modifications done by rogue third parties. Both clients need

to share an encryption key in order for this mechanism to work.

This exchange method would allow the KDC to redirect the requests and replies to the dae-

mon in an encrypted way. In order for this to work, the KDC would need to access the secret

Kerberos Realm Crossover 25

CHAPTER 3. DESIGN

key of a principal in the database representing the daemon, and encrypt the message with it.

Afterwards, this message could be sent over an insecure network to the daemon, which would

be able to decrypt the message using its own copy of the secret key.

Even though this mechanism already exists in Kerberos, it is a message exchange directed to

clients, and not to the KDC itself. This means that the KDC would need to be modified in

order to encrypt the messages before sending them to the KXOVER daemon.

3.5 Key Distribution Center Modifications

Having the whole workflow of the protocol inside the KDC’s code was not desirable. At least

a daemon to access the database had to be designed.

Having this in mind, the design process of the protocol tried to achieve the complete opposite.

The daemon is in charge of the whole mechanics of KXOVER, and the KDC simply acts as

a proxy, redirecting the messages it receives towards the daemon.

As we have seen in Section 3.1, there are three different messages that the KDC has to

redirect towards the daemon.

• The first message is the TGS-REQ. This is the initiating message of KXOVER. When

the KDC receives a request directed to a service from another realm, it first tries to

locate the crossover principal in the database. If that check fails, the KDC sends the

message to the daemon instead of returning an error. The required modifications for

this step are minimal, since no extra checks have to be created.

• The second message is the AS-REQ. This is the first message generated by the daemon.

This means that the message will include the “PA-KXOVER” padata element. This

padata element identifies all messages that are part of the KXOVER protocol. The

KDC has to check whether the request has that element or not, and only redirect to the

Daemon the messages that have it. Since the KDC receives AS-REQ messages regularly,

and the added padata element is following the standards, the needed modifications to

the KDC are minimal.

• The final message is the AS-REP. The KDC currently never receives AS-REP mes-

sages, according to the protocol description. This means that there is no implemented

handling functions for this message type. A message handling function should be added,

that checks whether the message is related to KXOVER or not, and in the positive case,

the KDC redirects the message to the daemon.

26 Kerberos Realm Crossover

Chapter 4

Implementation

In order to prove that the protocol designed in the previous chapter works and to learn

about any oversights in the Internet Draft specifying it, a proof-of-concept implementation

has been done. A KXOVER daemon has been implemented, and the necessary modifications

to the KDC code have been made. This Chapter provides an overview of the proof-of-concept

implementation, and discusses some of the challenges and problems that were found while

developing it.

The Kerberos implementation used for the development of our proof of concept is the MIT

one. The daemon has been named kxoverd.

Due to the time constraints of this project, and having in mind that the implementation

is merely a proof of concept for the protocol, some parts of the protocol have not been

implemented. These parts will be explained in Section 4.3.

Even with some unimplemented features, the proof of concept developed in this thesis

has managed to correctly perform a Diffie-Hellman exchange, and to create the cross-over

principal in both KDCs. These two features enable realm cross-over, thus proving that the

protocol works.

4.1 Overview

As we can see in Figure 4.1, the Sequence Diagram of the implementation closely matches

the protocol design described in the previous chapter.

However, there are some small differences that are worth describing.

First of all, we can see that the client KDC returns a not found error at the begining of

the diagram. Ideally, the client would receive a TGS-REP message containing the cross-over

principal when the protocol finishes its work. However, as we will explain later, including

this in our proof-of-concept requires a lot of modifications to the KDC, and we leave it for

future work. Instead, our proof-of-concept implementation will return the not found error

to the client and it will execute the whole protocol in the background. Finally, when the client

sends a second TGS-REQ message, the cross-over principal will already be in the Kerberos

Database, and the TGS-REP with the correct cross-over information will be sent to the client.

The latency of our proof-of-concept implementation is slightly higher than the Kerberos usual

Kerberos Realm Crossover 27

CHAPTER 4. IMPLEMENTATION

execution times. This means that making the KDC wait until KXOVER has finished could

cause timeouts on the clients. A way of improving the latency of our proof-of-concept would

be to precompute a pool of different Diffie-Hellman public keys, and consume one each time

a request comes. This would reduce the latency of our implementation while still keeping the

forward secrecy provided by Diffie-Hellman.

28 Kerberos Realm Crossover

CHAPTER 4. IMPLEMENTATION

Figure 4.1: KXOVER Protocol Sequence Diagram

Kerberos Realm Crossover 29

CHAPTER 4. IMPLEMENTATION

4.2 Challenges

There have been several challenges in the implementation process of this protocol.

These challenges needed to be addressed since they were main parts of the protocol, and

needed to be added to the proof of concept.

The main challenge encountered in the development process was the difficulty of adapting

the message encoders and decoders.

The encoding and decoding functions used by the Kerberos MIT implementation are gen-

erated rather than explicitly defined, and adapting them to the needs of our protocol was

not considered feasible. For that reason, functions to encode and decode the authentication

exchange messages had to be created. A new function had to be created for each process and

for each message. Even though the messages are really similar and the functions are basically

doing the same process, the different specification of the request and reply messages did not

allow the creation of a more general function.

In order to create the functions to encode and decode both the AS-REQ and AS-REP, an

ASN.1 library was used, called GNU Libtasn1[12]. This library was used to encode and decode

the messages directly. However, the library is not really flexible, and does not implement

all of the features of the ASN.1 standard. For exampe, the library does not recognize the

optional keyword, and requires all elements of the specification to be present in the ASN.1

structure before encoding it. This fact hindered the implementation process, which affected

the duration of the whole project.

The problems regarding the ASN.1 library triggered the development of a more suitable

library for our purposes. The library was developed by Rick van Rein and it is called Quick

DER[19]. There are plans to replace the Libtasn1 library by the Quick DER one, since it is

more suited to the needs of the project. However, due to the time constraints of the thesis,

this replacement is kept as future work.

4.3 Remote Key Distribution Center Authentication

Due to a lack of time, and the fact that we were building a prototype and not a final product,

one of the main features of the protocol was not implemented. That feature is the signing

of messages and the verification of the signature and the KDC’s certificate. These two steps

compose the Authentication process for remote KDCs. Since it is an integral part of the

KXOVER protocol, we will explain below how this has to be implemented. On Section 5.2

we will discuss why this method is good enough to provide authentication over the Internet.

As we have seen before in Listing 3.5, KXOVER uses the SignedData content type. Both

the AS-REQ and AS-REP messages being sent by KXOVER use the same content type,

which means that the process of signing and checking will be the same on both sides of the

protocol. On top of that, the certificates being used in this step are the same ones that have

to be setup in a TLSA record on DNS.

30 Kerberos Realm Crossover

CHAPTER 4. IMPLEMENTATION

4.3.1 Signing

The signing process is the following.

1. The initiator computes a message digest over the data being sent. In our case, the data

being signed is the AuthPack element.

2. The message digest is digitally signed using the private key of the signer.

3. The signature value is added to the SignerInfo element, as well as the signer’s certificate

identifier and other signer-specific information.

4. The digest algorithm identifier and the SignerInfo value are collected into the Signed-

Data value, as well as the content itself (AuthPack). The KDC’s certificate is added to

the certificates field, along with any certificates needed to validate it under DANE.

4.3.2 Checking

The checking process is the following.

1. The receiver of the message extracts the signature from the SignerInfo value, and the

certificate from the certificates field.

2. The receiver computes the message digest from the received AuthPack.

3. The receiver verifies the signature using the certificate and the computed message digest.

4. The receiver verifies the certificate or certificate chain by checking it against the certifi-

cate obtained with the TLSA look-up.

4.4 Key Distribution Center Modifications

Kerberos Version 5 was released many years ago, and it has been updated through the years.

This means that the source code is extensive and difficult to follow at first. Understanding

the code at a deep enough level to modify it was a challenge in itself.

However, the changes that had to be done to the source code were few, and small. This

fact made it easier to finish, and no major problems were found. No new dependencies

were introduced, which means that the Makefile did not need to be updated, making the

compilation process a lot easier.

The implemented changes are the ones that were planned in the design process. A total of

three files were modified, dispatch.c, do tgs req.c and do as req.c,

• When the KDC receives a TGS-REQ, it checks whether the server being requested is

from its realm or not. If the server is from a different realm than the client, the KDC

searches for a cross-over principal on the database. If the cross-over principal is found

in the database, the Kerberos execution continues. Otherwise, if the principal is not

found in the database, we connect to the UNIX Domain Socket, and send the request

Kerberos Realm Crossover 31

CHAPTER 4. IMPLEMENTATION

from the client through it. After it, the normal execution of Kerberos continues, which

means that the KDC sends an error to the client, stating that the requested principal

was not found.

• When the KDC receives an AS-REQ, it checks whether the client requesting the authen-

tication is in the database or not. If the client is found, the normal execution of Kerberos

continues. Otherwise, if the client is not found in the database, we check whether the

request is a KXOVER request or not. To do that, we check the padata element intro-

duced to identify all KXOVER messages. If the message is indeed KXOVER-related,

we connect to the UNIX Domain Socket, and send the request through it. After that,

the KDC continues with its normal execution, and reports the principal not found error.

• When the KDC receives an AS-REP, it usually discards it, reporting an error on the

message type. Instead of reporting the error, we connect to the UNIX Domain Socket

and we send the reply through it.

As can be seen from the modifications to the KDC, we still report the original errors at

the end of our additions to the code. In order to provide the correct ticket, the client has to

ask for it again. This is an intentional choice, since the prototype is just a proof-of-concept

of the protocol. In order to offer a complete implementation of our protocol, new error types

and messages would need to be introduced into Kerberos. This would need to be done with

the acceptance of the Kerberos community.

Another aspect to note is that we are not checking whether the AS-REP belongs to

KXOVER. This happens because the messages we use are custom-made, and slightly different

from the originals. The problem with using custom-made messages is that the KDC’s decoder

cannot decode our messages. This means that we cannot access the message from the KDC,

and have to do all the checking in the daemon instead. This problem could be solved with

the introduction of our custom messages as new message types, which will be discussed on

Section 7.3.

4.5 Dependencies

We managed to modify the Kerberos code without introducing any new dependencies, which

means that the compilation process was not modified at all. This simplified the process greatly,

since introducing dependencies in a project of this size can generate a lot of problems.

Regarding the daemon, we have introduced three major dependencies. These dependencies

are inherent to the protocol, and need to be resolved in order to implement it. However, the

implementation of the daemon is done in such a way that the libraries used could be easily

changed by different ones providing the same functionalities.

• DNSSEC. The KXOVER protocol requires DNS lookups using DNSSEC. This means

that the implementation of the protocol needs a library able to issue DNS lookups, and

with the ability of requiring DNSSEC. Concretely, the three DNS lookups described

earlier have to be implemented, requiring DNSSEC in each of them. In the prototype

32 Kerberos Realm Crossover

CHAPTER 4. IMPLEMENTATION

that we developed, the library used to issue this lookups is getdns[22]. Getdns is a

modern asynchronous DNS API. It offers a modern and flexible way to access DNS

security (DNSSEC). The open source implementation is developed and maintained by

NLnet Labs, Verisign Labs and No Mountain Software.

• ASN.1. Kerberos uses ASN.1 to specify its messages. If we want to craft our own

messages, or access the requests and replies redirected by the KDC, an ASN.1 library is

needed. The library used for the prototype is GNU Libtasn1 [12]. It is the library used

by GnuTLS, GNU Shishi and some other packages. It was written by Fabio Fiorina,

but is currently maintained by Simon Josefsson and Nikos Mavrogiannopoulos. Even

though this is the library used in the prototype, it is likely to change in the future.

• TLS/SSL. The KXOVER protocol needs a cryptographic library to deal with its main

parts. It needs a library capable of performing an Elliptic Curve Diffie-Hellman ex-

change, and it needs a library capable of signing messages, and checking a certificate

against a hash of it. In our prototype, we have used the same library for these two

cases. The library we have used is OpenSSL[14]. It is not necessary to use the same

library for both tasks, but doing so reduces the number of dependencies of the project.

As we have said before, all these dependencies introduced in the prototype can be easily

changed thanks to the prototype’s design. Changing one of the libraries we have used for a

different one offering the same functionality is an easy task, and no modifications to the code

need to be done besides the ones regarding the libraries themselves.

Kerberos Realm Crossover 33

Chapter 5

Security Analysis

In this Chapter we will discuss about some security aspects of the KXOVER protocol and

the proof-of-concept implementation that we have developed.

The addition of KXOVER to the Kerberos protocol does not modify any of the existing

message exchanges. This means that the core features of Kerberos are not modified at all. On

top of that, thanks to our design, the clients or the services residing in the realm do not need

any modifications either. This means that the cross-over communication between a client and

a remote server is not modified by KXOVER, and the current cross-over process is executed

as-is.

Since the core features of Kerberos are not modified, the security of the message exchanges

is not compromised at all by the introduction of KXOVER. This means that an exhaustive

security analysis is not needed for Kerberos after the application of the KXOVER protocol.

There are, however, some issues that need to be addressed regarding security, and even

though we are not providing an exhaustive security analysis to Kerberos, we have to analyse

the KXOVER exchange, the authentication process for remote KDCs, and some potential

attacks to KXOVER.

After that, we will also analyse our proof-of-concept implementation because it has some

issues that need to be addressed.

5.1 KXOVER Exchange Analysis

The AS-REQ/AS-REP exchange between the two KDCs is the only non-standard exchange

that KXOVER is adding to Kerberos. The main goal of these messages is performing an El-

liptic Curve Diffie-Hellman key exchange between two identified and authenticated KDCs. In

order to do so, the authentication process needs to happen separately from the Diffie-Hellman

key exchange, since Diffie-Hellman does not provide authentication at all. In order to perform

authentication, the TLSA record provided by the DNS lookups will be used together with

the certificate, or chain of certificates, provided in the PKINIT plugin. The authentication

method will be analysed in the next Section.

One of the main benefits of using a Diffie-Hellman key exchange is that, if the public

keys used by the exchange are not reused, the exchange provides perfect forward secrecy.

Kerberos Realm Crossover 35

CHAPTER 5. SECURITY ANALYSIS

We benefit from this fact, and KXOVER has to generate new keys each time an exchange

happens. This way, we provide perfect forward secrecy to the two parts involved on the

exchange.

During the KXOVER exchange the Diffie-Hellman shared key is not included in any way

in the messages, which means that no information about the key can be leaked. On top of

that, the shared key is not used to encrypt anything, it is only stored in a local protected

database. This fact is relevant, because there is no way for an attacker to obtain a message

encrypted using that key and perform an offline brute-force attack on it.

The only sensitive bit of information being sent during the exchange are the public keys of

both KDCs, which do not expose any information about the private keys or the shared secret

key generated afterwards.

As said before, KXOVER uses the Elliptic Curve cryptography. A benefit of using Elliptic

Curve Diffie-Hellman is that key sizes can be smaller than modular Diffie-Hellman, providing

the same security. For example, to achieve the same security as a 112-bit symmetric key, at

least a 2048-bit Diffie-Hellman key is needed. On the other side, only a key of around 224

bits is needed if Elliptic Curve is used [3]. This fact reduces the sizes of the messages being

exchanged, and potentially reduces the execution times of the shared key generation.

5.2 Certificate Validation

The main part of the KXOVER protocol is the KDC-to-KDC authentication process. As we

have said before, we are using a modified PKINIT plugin, which allows the KDCs to exchange

a secret key. However, since the PKINIT plugin was designed to authenticate clients to KDCs,

it offers functionalities that are useful for our authentication process.

When a client authenticates to its KDC using PKI, the KDC already has information

about that client, and can use that information to verify the client with the PKINIT exchange.

In our scenario, a KDC does not previously know the other KDC that is trying to authenticate

itself, which means that we need another way of obtaining information about that KDC. Our

way of obtaining information about a KDC is through DNS. If an administrator can modify

DNS records of a domain, it is safe to assume that he has some degree of control over that

domain. This fact authenticates that administrator as a legitimate one. KXOVER assumes

that only a legitimate administrator of a KDC or the domain hosting it, will be able to

modify its DNS records. This assumption requires the DNS records to be validated through

DNSSEC.

In order to verify the authenticity of a KDC, we will be using the certificate or its hash

provided in the TLSA record, and the certificate and signature provided in the KXOVER

message.

First thing the KDC needs to do is verify that the signature sent on the AS-REQ or AS-REP

is a valid one. To do so, the certificate of the KDC is also sent in the message. Since only

the KDC should be able to sign using that certificate, verifying the signature authenticates

that the message comes from the KDC.

Then, to check that the KDC from which the signature comes is the correct one, the certificate

36 Kerberos Realm Crossover

CHAPTER 5. SECURITY ANALYSIS

included in the AS-REQ has to be validated against the certificate or its hash obtained as

the TLSA record.

If both checks are passed, and under the assumption that only a legitimate administrator

can edit DNS records, the KDC is authenticated as the legitimate one.

5.3 Access Control

Authorization in Kerberos is done in the services themselves. However, Kerberos helps by

providing a common naming of clients to the whole realm, and only authenticating clients

introduced by a Kerberos administrator. This makes access control easier for the services,

and it may even be the case where access control is centralized somewhere inside the realm,

instead of each service doing its own.

In KXOVER, we have replicated the Kerberos certificate-based authentication process

with the goal of authenticating a KDC to another one. With the current design of the

protocol, any Kerberos realm with the correct certificates would be able to authenticate itself

to another one. In theory, this is not a problem, because as we just mentioned, Kerberos

helps with access control, and services need to check whether they know the client trying to

access them, even if it comes from a remote realm.

However, the process of setting up a shared secret between two KDCs is time consuming, and

limiting it would be desirable.

Creating a traditional access control for KXOVER, where only known realms are allowed,

would not be really useful, since the ultimate goal was to avoid the administrators having to

contact each other. It would also conflict with the main objective of KXOVER for the ARPA2

project. Instead of the traditional access control, what could be applied is a blacklisting

system. In a blacklisting system, the administrator could specify realms, or realms belonging

to certain domains, that are not allowed to perform the authentication process with the local

KDC.

When a KXOVER request arrives, the first things done by the daemon are looking up

the remote realm name and the domain name of the remote KDC. This information would

be enough to check whether the KXOVER process can continue or not. The blacklisting of

realms could be done in several ways.

• Blocking realms by realm name. A single realm could be blocked, by whatever reason,

by blacklisting its realm name.

• Blocking domain names. A single realm, or a realm hierarchy could be blocked, by

blacklisting a domain name. In this case, you could block the top domain name and all

its sub-domains.

• Blocking by certification path. If a certificate provided by a KDC is not a self-signed

certificate, a certification path to a trusted root certificate must be available. In this

case, an administrator would be able to block certificates that have a certain untrusted

CA in its certification path.

Kerberos Realm Crossover 37

CHAPTER 5. SECURITY ANALYSIS

5.4 DNSSEC Analysis

We have repeated several times that all the DNS lookups done in KXOVER have to be

done with DNSSEC. We have argued that it is necessary, since it is part of the authentication

process used by KXOVER. Now we will show the risks of not using it, by explaining a possible

attack to our system in a case where DNSSEC is not enforced.

Let’s imagine a scenario where you want to contact a remote KDC using KXOVER. In

this scenario, we are assuming that you do not enforce DNSSEC on the DNS lookups. If

you don’t enforce DNSSEC, you cannot verify that the records were generated by the remote

KDC’s administrator. In this concrete case, you could be a victim to a DNS spoofing attack.

In a DNS spoofing attack, the attacker has modified the DNS records that you access in order

to point you to a different location than the one you were expecting. Usually these different

locations are malicious, and controlled by the attacker.

In a DNS spoofing attack using KXOVER, an attacker could pair your KDC with a mali-

cious KDC, replicating the original remote KDC that you were trying to contact. Once the

KXOVER connection with the malicious KDC has been finished, all your clients will contact

the malicious KDC thinking that it is the original one. The attacker could set up replicas of

the services that the original remote realm was offering, and use them to steal information

from your users.

Another attack that the attacker could do is to set a Man In The Middle (MITM) attack, by

contacting the original remote KDC, setting up a cross-over connection with it, and redirect-

ing your clients to the original remote KDC’s services. In this case, the attacker would be

able to listen on all the communication between your users and the remote services.

There are some differences in the effects of spoofing each DNS record that KXOVER

uses. The previous case assumes that all three records have been spoofed. However, spoofing

individual records could also lead to problems. These three cases show what would happen

if an attacker would spoof a single DNS record type.

• TXT. The TXT records hold the realm name of the services that are being looked

up. In the case that an attacker spoofs the TXT records, the attacker could point the

initiating KDC to a realm name different than the intended one. In this case, when

issuing the second lookup, the initiating KDC would request the location of a different

KDC, which could be controlled by the attacker.

• SRV. The SRV record holds the domain name and the port of the KDC. If an attacker

spoofs an SRV record, he could redirect the initiating KDC to another KDC under its

control.

• TLSA. The TLSA record holds the certificate of the KDC. If an attacker spoofs this

record, the certificate on the TLSA record would not match the one being sent by the

KDC, and KXOVER would not authenticate the remote KDC.

As we just discussed, attacking only one of the DNS records can already cause some major

trouble. Spoofing the two first records would help create a MITM attack, and spoofing the

third one would block the protocol from pairing the two KDCs. With the enforcement of

38 Kerberos Realm Crossover

CHAPTER 5. SECURITY ANALYSIS

DNSSEC in all the lookups performed by the protocol, we are negating these kinds of attacks

altogether.

5.5 Implementation Analysis

We have created a prototype that shows that the designed protocol works. Even though the

realms are not verifying each other, we have described how the checks have to be done, and

it could be easily implemented in the future.

Even though our goal has been accomplished, there are certain things that need to be an-

alyzed. We are introducing new functionalities to a well-known security protocol, and this

could affect its stability. We could also be introducing a potential entry point for attackers

to exploit.

One of the main assumptions of our prototype is that the machine hosting the KDC is

secured. This is an important assumption, because it gives us a foundation to base a security

model on. Our prototype sends the messages between the KDC and the Daemon on the same

host in plaintext, without using any encryption mechanisms. Thanks to the assumption we

are making, this is not a problem. If the machine hosting the KDC gets compromised by an

attacker, the entire Kerberos setup is compromised, and the fact that the KXOVER messages

are sent as cleartext is not an issue anymore.

A potential problem of our prototype is the fact that the KDC is not checking the KX-

OVER messages it receives. In the case of a KXOVER AS-REQ, we redirect the message as

soon as the KDC detects it is not in the database. In this case, the KDC has only checked

the message type of the message, and whether the client and server fields of the request are

null or not. After that, the KDC checks the database and if the client is not found, we check

whether the message is KXOVER related or not.

In the case of the KXOVER AS-REP, the KDC does not even have a handling function for

this message type, so no checks whatsoever are done by the KDC. Since we cannot check if

the message is KXOVER related in the KDC, we directly send it to the daemon.

Another potential problem of the prototype is its vulnerability to Denial of Service (DoS)

attacks. The prototype is not multi-threaded, and the whole process takes a significant

amount of time to finish, if compared to the normal Kerberos execution times. This means

that the daemon itself is a potential target for these kind of attacks.

However, the most successful DoS attack that the daemon could suffer, would need to come

from inside of the realm itself. The KXOVER process can only be started by a client of the

realm, and most of the workflow of the prototol is done in the initiating side. On top of

that, the attacker would be a known client, which means that the KDC would not discard

the requests, and would send all of them to the Daemon.

In order to perform an internal DoS attack, a rogue user of the realm would need to request

cross-realm tickets continuously, which would saturate the daemon and effectively deny ser-

vice to all other users of the system. However, in a real-world Kerberos environment, the

administrator of the realm would be able to detect this uncommon behaviour of one of the

realm users and deal with it, limiting the potential damage.

Kerberos Realm Crossover 39

CHAPTER 5. SECURITY ANALYSIS

A DoS attack from a remote client would need to be done from a customized rogue KDC.

There could be several options for this attack.

• Sending multiple copies of a correct AS-REQ message. This attack could try to force the

KDC to perform the DNS look-ups over and over. However, if the messages are correct,

the first exchange will succeed in creating a cross-over principal. In our prototype, this

situation is not checked, but it would be easily avoidable by just checking whether the

cross-over principal already exists or not, and sending a message to the initiating KDC

directly, without issuing any DNS look-ups.

• Sending multiple copies of incorrect AS-REQ messages. This attack would be a re-

finement of the previous one, forcing the KDC to perform the DNS look-ups and not

allowing it to create a cross-over principal in the database. This attack would be a bit

more complex to detect, but keeping track of the requests and limiting them when they

come from the same realm would avoid most of the damage of this attack.

• Sending several different AS-REQ messages. This would be the equivalent of a Dis-

tributed Denial of Service attack. This would require the attacker to control a network

of KDCs. In this case, our prototype would be completely vulnerable. A mitigation to

this problem would be upgrading the daemon to a multi-threaded implementation. An-

other security mechanism to prevent this would be the master-slave mechanism available

in Kerberos. When setting up Kerberos in a real-world environment, it is recommended

to set up several slave KDCs, to ensure the availability of the system. In our case, the

KXOVER daemon would also need to be replicated in the slave KDCs. However, this

solution is not inherent to the daemon itself.

40 Kerberos Realm Crossover

Chapter 6

Related Work

In this chapter we will talk about some projects that are related to our thesis, but that are

not directly influencing it.

6.1 TLS-KDH

TLS-KDH is another sub-project of ARPA2[2]. It is currently being developed by a Kerckhoffs

Institute student, and even though it is orthogonal to KXOVER, both projects enhance each

other’s potential enormously..

As the name points out, this project is separated into two different parts, KDH and TLS.

First, KDH aims to pair Perfect Forward Secrecy with Kerberos. It does that by adding

Diffie-Hellman to Kerberos. This is interesting because Kerberos provides authentication

without providing Perfect Forward Secrecy, whereas Diffie-Hellman provides an attractive

encryption solution without authentication properties. In order to do that, it adds a Diffie-

Hellman key exchange to the AP-REQ and AP-REP messages. From that moment onward,

instead of using the session key provided by the KDC, the two parts communicating will use

the shared key generated through the Diffie-Hellman exchange. This way, not even the KDC

could intercept the messages being shared between the two parties, and the DH exchanges

provides Perfect Forward Secrecy.

As we said before, Kerberos is a widely used protocol. However, integration of Kerberos

with some Internet protocols, like HTTP, is not really good. On top of that, the security of

Kerberos over HTTP is especially weak. This is where the second part of the project comes in.

It intends to integrate KDH into TLS. One of the options to do that could be to do Kerberos

over TLS directly. However, it fails to provide Perfect Forward Secrecy. Specifically, once a

user’s credential would be guessed, all his past TLS interactions would be at risk of decrypting.

TLS-KDH aims at incorporating the KDH idea directly into the TLS implementation.

The main goal of this project is to provide the benefits of Kerberos authentication over

HTTPS, which is an Internet protocol. This could be achieved inside the same realm with

the current implementation of Kerberos. However, it gets interesting when a client wants to

access an HTTPS server that resides outside of his realm. Here comes in play the KXOVER

protocol that we have designed, since it would allow automatic authentication to remote

Kerberos Realm Crossover 41

CHAPTER 6. RELATED WORK

realms.

6.2 PKCROSS

PKCROSS[13] is a draft proposed in 2014 that also aims at performing automatic realm

crossover. However, the starting point of PKCROSS differs from KXOVER.

The idea behind PKCROSS is that the clients have to perform the cross-over authentica-

tion themselves. In order to do so, PKCROSS uses a kx509 service that has to run inside the

client realm that generates certificates that identify the user. After obtaining this certificate,

the client asks the remote TGS directly, using a PKINIT exchange and the client certificate

that it just obtained.

The main difference between PKCROSS and KXOVER is that in PKCROSS, each user

needs to support client-driven PKCROSS, and the exchange with the remote realm happens

each time a clients needs a TGT. With KXOVER, the exchange happens only once, between

the two KDCs, which means that the clients do not need any modifications, and multiple

clients can reuse the crossover principal once it is created.

6.3 Pseudonimity Support for Kerberos

KXOVER allows to connect to previously unencountered remote realms. It might happen

that the client does not trust those realms regarding their privacy, or the client simply does

not want to give away its login information to a remote party. In this case, Kerberos offers

anonymity[11], which completely conceals the client’s principal name and possibly also its

realm. However, that might not always be the best option.

In an Internet-Draft presented by Rick van Rein [18], the concept of pseudonymity is

introduced. With pseudonymity, instead of completely concealing the principal name of a

user, a pseudonym is used. Using a pseudonym would conceal the real identity of the client,

and it would allow the remote realm to distinguish return visits. The remote realm would

treat the pseudonym as a normal client identity, but that identity would not match with the

login name of the client. On the other hand, the client might use specific pseudonyms for

each remote realm, or set up online identities for certain types or groups of remote realms.

Another advantage of using pseudonyms instead of the client’s login identity is the ability

to act in behalf of another entity for which the user has been authorised. This can be done

by replacing the client’s identity by that of a group or role. This would be helpful to remote

realms because they would not need to know which users are allowed to do a certain task,

they would only need to recognize a certain role.

As an example, a realm might use an online pseudonym for everyone working in a certain

department. In this case, the remote realm would know they are contacting with the correct

department, but not know the specific person they are communicating with.

42 Kerberos Realm Crossover

Chapter 7

Future Work

7.1 Implementation Improvements

As we mentioned in Chapter 4, the implementation of KXOVER made during this thesis is

merely a proof-of-concept to show that the protocol works as it is intended to. Being a proof-

of-concept piece of software, it lacks several parts that need to be added to the implementation

in order to adhere to the protocol completely.

This improvements are left as future work, but an explanation for each of them is provided.

• KDC validation. As said in Section 4.3, the signing and validating of remote KDCs

was not implemented for the proof-of-concept. This is a core concept of KXOVER and

has to be the first addition as future work.

• Client response. The current implementation of KXOVER, with the current modifica-

tions to the KDC, does not reply to the client directly with a positive answer, instead,

it replies with a negative answer and expects the client to request again in order to

obtain the positive reply. The implementation needs to be changed in order to reply

positively to the first client request. This will require more modification to the KDC

and a speed-up of the KXOVER Daemon.

• Multi-threading. An important modification to the Daemon would be the introduc-

tion of multithreading. This allow to scale the Daemon to bigger realms with more

users. It would also provide some slight DoS protection.

• Concurrency. Ordering the actions taken by the Daemon differently would allow for

a speedup on the whole process, limiting the appearance of timeouts.

• Exception handling. The proof-of-concept implementation shows that the protocol

works by responding to the normal execution of KXOVER. It needs to be expanded

with special cases, error cases, and a correct handling of errors and exceptions.

• Timeouts. The Daemon needs to be able to react to timeouts, since the clients re-

questing the cross-over TGT have a timeout of around 1 second. The whole process

Kerberos Realm Crossover 43

CHAPTER 7. FUTURE WORK

could take more than 1 second to finish due to the DNS queries, which means that the

clients should be notified about it.

• Key Management. The cross-over keys established by KXOVER have a limited

lifetime. After that lifetime has finished, they cannot be used anymore and the key has

to be re-established. This re-establishment of keys affects all the clients and services

that were using them, and needs to be dealt with properly. On top of that, keys could

be revoked by one of the KDCs, which would disallow all communications with the

other realm.

7.2 Request for Comments

In order to present a new Internet protocol to the community, it first needs to be completely

laid out and specified in an Internet Draft. Internet Drafts are documents published by

the Internet Engineering Task Force (IETF) containing preliminary technical specifications,

results of networking-related research, or other technical information.

Internet Drafts are considered as work in progress documents, and their goal is to be published

as Request for Comments (RFC). An RFC can eventually become an Internet Standard.

In order to publish an RFC, a draft has to be published first. Internet Drafts can be

published either by IETF working groups or by individuals. An Internet Draft has a validity

of six months, after which they have to be updated, or published as an RFC.

The KXOVER protocol will be written into an Internet Draft, and it will be submitted

to the Kitten WG of the IETF in order to be reviewed. This Working Group deals with new

authentication technology, including Kerberos. One of the goals of this thesis is to show that

the protocol works, and it helpin the writing of the next iteration of the draft itself.

After the draft is published, if it generates enough interest in a IETF working group, an RFC

will be written and published.

7.3 New message type

As mentioned in Section 3.2.1, the messages being sent by KXOVER are custom-made modifi-

cations of the AS-REQ and AS-REP messages, both having custom-made PKINIT extensions.

We also mentioned that the official encoders and decoders provided by the MIT implementa-

tion of Kerberos do not work with our messages.

This facts started the idea of creating new message types for KXOVER, separate from the

current Kerberos messages.

Relying on plugins that were not designed for the purpose we are giving them is usually

not a good idea. Since those protocols were not specifically designed for the usage we are

giving them, problems may arise in the future. Creating a new message type would allow a

finer control over the protocol. The messages would only contain the data necessary to per-

form the authentication between KDCs, instead of hacking the messages aimed at client-KDC

authentication.

44 Kerberos Realm Crossover

CHAPTER 7. FUTURE WORK

Furthermore, the PKINIT exchange was specifically designed to allow client-KDC authen-

tication, and creating the new message type would benefit KXOVER by only having the

options related to KDC-to-KDC authentication. So, we believe that creating new message

types to allow KDC-to-KDC authentication would make Cross-Realm authentication easier

to implement and more robust.

However, Kerberos is a well-known and established protocol, and adding a message type

to it is not an easy task. First of all, the protocol would need to be perfectly defined, and

accepted by the Kerberos community. Then, all different implementations of Kerberos would

need to build their own version of the KXOVER protocol, following the accepted protocol

specification.

This future goal is not only beyond the scope of this thesis, but it is also a goal that has

to be achieved with the help and acceptance of all the Kerberos community.

Kerberos Realm Crossover 45

Chapter 8

Conclusions

In this thesis we have developed a protocol that allows Kerberos to setup realm crossover

automatically. Thanks to this protocol, the administrator’s interaction is no longer needed.

The protocol, which we called Kerberos Realm Crossover (KXOVER), uses DANE to authen-

ticate an Elliptic Curve Diffie-Hellman key exchange in order to authenticate the KDCs to

each other and to create a shared realm cross-over key between them.

The mechanics of the protocol have been shown to work in a proof-of-concept solution. Our

solution works with the MIT Kerberos implementation, which has been modified to suit our

needs. We have created a separate daemon that handles the protocol itself, and it is capable

of creating a cross-over principal on both sides of the exchange.

With our prototype we have shown that our protocol works, and that it could be added to

Kerberos.

In order to add our protocol to Kerberos, it first has to be completely specified, and a

draft has to be written about it. Then this draft will be presented to the Kerberos community

in order to discuss its benefits and weaknesses, and maybe to discuss its implementation as a

protocol extension.

Since Kerberos is a widely-used and well-known protocol, the relevance of this thesis could

increase significantly if our design is accepted as a Kerberos extension. However, this could

take some time, since the Kerberos community first has to discuss it.

One of the direct implications of our thesis is the fact that the ARPA2 project relies

heavily on the work described in it. This means that the KXOVER protocol will be further

improved and detailed, and care will be put on it to make it perfectly secure and usable. In

order to add our design to the ARPA2 project, a proper implementation would need to be

done, since our prototype is merely a proof-of-concept and it does not include all the features

necessary to be used in a real system.

Kerberos Realm Crossover 47

Bibliography

[1] ARPA2. ARPA2 Project website. https://arpa2.net/. Accessed: 03-03-2016.

[2] ARPA2. TLS-KDH project website. http://tls-kdh.arpa2.net/. Accessed: 21-04-

2016.

[3] BlueKrypt. Cryptographic Key Length Recommendation. https://www.keylength.

com/en/compare/. Accessed: 12-05-2016.

[4] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authentication

Service (V5). RFC 4120, MIT, July 2005.

[5] Heimdal. Heimdal Kerberos webpage. https://www.h5l.org/index.html. Accessed:

29-04-2016.

[6] IANA. List of Pre-authentication and Typed Data. http://www.iana.nl/assignments/

kerberos-parameters/kerberos-parameters.xhtml#pre-authentication. Ac-

cessed: 29-03-2016.

[7] ITU. ASN.1 Project website. http://www.itu.int/en/ITU-T/asn1/Pages/asn1_

project.aspx. Accessed: 31-03-2016.

[8] ITU. ITU ASN.1 Introduction. http://www.itu.int/en/ITU-T/asn1/Pages/

introduction.aspx. Accessed: 05-04-2016.

[9] L. Zhu, and B. Tung. Public Key Cryptography for Initial Authentication in Kerberos

(PKINIT). RFC 4556, Microsoft Corporation, June 2006.

[10] L. Zhu, K. Jaganathan, and K. Lauter. Elliptic Curve Cryptography (ECC) Support for

Public Key Cryptography for Initial Authentication in Kerberos (PKINIT). RFC 5349,

Microsoft Corporation, September 2008.

[11] L. Zhu, P. Leach, and S. Hartman. Anonymity Support for Kerberos. RFC 6112, Mi-

crosoft Corporation, Painless Security, April 2011.

[12] Libtasn1. GNU Libtasn1 library website. https://www.gnu.org/software/libtasn1/.

Accessed: 31-03-2016.

Kerberos Realm Crossover 49

https://arpa2.net/
http://tls-kdh.arpa2.net/
https://www.keylength.com/en/compare/
https://www.keylength.com/en/compare/
https://www.h5l.org/index.html
http://www.iana.nl/assignments/kerberos-parameters/kerberos-parameters.xhtml#pre-authentication
http://www.iana.nl/assignments/kerberos-parameters/kerberos-parameters.xhtml#pre-authentication
http://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx
http://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx
http://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
http://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.gnu.org/software/libtasn1/

BIBLIOGRAPHY

[13] N. Williams. Public Key-Based Kerberos Cross Realm Path Traversal Protocol Using

Kerberized Certification Authorities (kx509) and PKINIT. draft, Cryptoconector, Oc-

tober 2014.

[14] OpenSSL. OpenSSL project webpage. https://www.openssl.org/. Accessed: 06-04-

2016.

[15] P. Hoffman, and J. Schlyter. The DNS-Based Authentication of Named Entities (DANE)

Transport Layer Security (TLS) protocol: TLSA. RFC 6698, VPN Consortium and Kirei

AB, August 2012.

[16] R. Housley. Cryptographic Message Syntax (CMS). RFC 3852, Vigil Security, July 2004.

[17] R. Van Rein. Declaring Kerberos Realm Names in DNS (kerberos TXT). I-D,

ARPA2.net, March 2016.

[18] R. Van Rein. Pseudonymity Support for Kerberos. I-D, ARPA2.net, April 2016.

[19] R. Van Rein. Quick DER Library Github website. https://github.com/vanrein/

quick-der. Accessed: 31-03-2016.

[20] S. Hartman, and L. Zhu. A generalized Framework for Kerberos Pre-Authentication.

RFC 6113, Painless Security, Microsoft Corporation, April 2011.

[21] GNU Shishi. Shishi Kerberos webpage. http://www.gnu.org/software/shishi/. Ac-

cessed: 29-04-2016.

[22] Unbound Security. Getdns API webpage. https://getdnsapi.net/. Accessed: 06-04-

2016.

50 Kerberos Realm Crossover

https://www.openssl.org/
https://github.com/vanrein/quick-der
https://github.com/vanrein/quick-der
http://www.gnu.org/software/shishi/
https://getdnsapi.net/

	Contents
	List of Figures
	Listings
	Introduction
	Goal
	Motivation

	Background
	Kerberos
	Authentication Service Exchange
	Ticket-Granting Service Exchange
	Client/Server Authentication Exchange
	Special Message Exchanges

	Realm Crossover
	Pre-authentication
	ASN.1
	DNSSEC + DANE

	Design
	Setup
	KXOVER Protocol
	Message Specification
	Diffie-Hellman Exchange

	Daemon
	Design

	Daemon communication
	Key Distribution Center Modifications

	Implementation
	Overview
	Challenges
	Remote Key Distribution Center Authentication
	Signing
	Checking

	Key Distribution Center Modifications
	Dependencies

	Security Analysis
	KXOVER Exchange Analysis
	Certificate Validation
	Access Control
	DNSSEC Analysis
	Implementation Analysis

	Related Work
	TLS-KDH
	PKCROSS
	Pseudonimity Support for Kerberos

	Future Work
	Implementation Improvements
	Request for Comments
	New message type

	Conclusions
	Bibliography

