
 Eindhoven University of Technology

MASTER

Compositional pareto-algebraic heuristic for packing problems

Montoya Aguirre, M.I.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0060d165-408a-4926-9615-b5523a6c42ec

Eindhoven University of Technology

Department of Mathematics and Computer
Science

Compositional Pareto-algebraic
Heuristic for Packing Problems

M.I. Montoya Aguirre

supervised at TU/e by

Marc Geilen
Joost van Pinxten

supervised at Vanderlande Industries by

Gaston Weijenberg
Kostas Alogariastos

May 23, 2016

Abstract

This study investigates the applicability of Compositional Pareto-algebraic Heuris-
tic (CPH) to packing problems at Vanderlande. The two problems under study
are Luggage Batch Selection (LBS) and Orderline Allocation (OA). These prob-
lems belong to the domain of multi-objective combinatorial optimization and
are currently solved using Meta-heuristics such as Simulated Annealing and Ge-
netic Algorithms. We show that these problems are compatible with CPH and
explain the required modifications to the heuristic for each of the problems.
Two individual CPH frameworks are presented, one for each of the case studies.
The implementations of the CPH frameworks obtained valid solutions for both
problems with solution quality comparable to the meta-heuristic methods used
by Vanderlande. As other heuristics, CPH can be adjusted to favor solution
quality or execution time. For Orderline Allocation (OA), the CPH framework
allows a reduction of the execution time of two orders of magnitude by compro-
mising on average 2% in solution quality. Even when adjusting CPH to aim for
solution quality, the solutions provided for both problems were inferior to those
obtained by meta-heuristics.

1

Dedication

To my family, for their unconditional support, love and encouragement.

2

Preface

This thesis is the result of my graduation project at Vanderlande Industries. It
builds on work done by Hamid Shojaei, Marc Geilen, Twan Basten and Joost
van Pinxten on Pareto Algebra, multi-objective optimization and Compositional
Pareto-algebraic Heuristic (CPH). The graduation project was conducted under
the supervision and guidance of Gaston Weijenberg and Kostas Alogariastos at
Vanderlande and mentored by Marc Geilen and Joost van Pinxten at TU/e.

3

Contents

1 Introduction 6
1.1 Problem descriptions . 6

1.1.1 Luggage Batch Selection 6
1.1.2 Orderline Allocation for Load Forming Logic 7

1.2 Combinatorial optimization problems 8
1.2.1 Knapsack problem . 8
1.2.2 Bin packing problem . 8
1.2.3 Computational complexity 9

1.3 Multi-objective Optimization and Pareto Algebra 9

2 Related work 11
2.1 Approximation Algorithms . 11
2.2 Exact Algorithms . 11
2.3 Compositional Pareto-algebraic Heuristics 12
2.4 Bin Packing Problem Under Multiple Objectives: a Heuristic Ap-

proximation Approach . 12

3 Formalization 13
3.1 Luggage Batch Selection . 13
3.2 Orderline Allocation for Load Forming Logic 15

4 CPH for Packing Problems 17
4.1 The CPH Framework . 17
4.2 CPH for Luggage Batch Selection 18

4.2.1 Pre-processing and creation of configuration sets 19
4.2.2 Combining configurations 20
4.2.3 CPH Algorithm . 21

4.3 CPH for Orderline Allocation . 22
4.3.1 Pre-processing and creation of configuration sets 23
4.3.2 Combining configurations 24
4.3.3 CPH algorithm . 24

5 Performance evaluation 27
5.1 Luggage Batch Selection . 27

5.1.1 Test Environment . 27
5.1.2 Data . 27
5.1.3 Execution time and number of bags in the Ebs 28

4

5.1.4 Solution quality sensitivity when processing bags in dif-
ferent order . 29

5.1.5 Solution quality with multiple CPH runs for a single batch 31
5.1.6 Comparison of CPH and Simulated Annealing 31

5.2 Load Forming Logic . 32
5.2.1 Test Environment . 32
5.2.2 Data . 32
5.2.3 Execution time sensitivity to order size 32
5.2.4 Execution time sensitivity to partial solution set size . . . 33
5.2.5 Solution quality sensitivity to sequential variation of or-

derlines . 33
5.2.6 Solution quality sensitivity to partial solution set size . . 34
5.2.7 Comparison of CPH and OLAA 34

6 Conclusions & Future work 37
6.1 Luggage Batch Selection . 37
6.2 Load Forming Logic: Orderline Allocation 37

5

Chapter 1

Introduction

This thesis presents efforts to adapt and develop heuristics for combinatorial
optimization problems. These are practical problems whithin real processes in
key areas of Vanderlande. The analysis contains problem descriptions and for-
malization. A literature review was conducted in order to find feasible methods
for solving these problems. A short summary of the different methods is pre-
sented. The method chosen for these problems, Compositional Pareto-algebraic
Heuristic (CPH), is explained in a more detailed fashion. Consequently, CPH
is adapted to tackle both of these problems. Lastly the applicability of this
method is evaluated for each of the problems.

1.1 Problem descriptions

In this section, we will discuss the practical problems under study. These prob-
lems are from two different areas: luggage handling and warehouse automation.
Both problems are combinatorial optimization problems with similar character-
istics. In particular, both problems require selection and packing of items in
containers of finite size.

1.1.1 Luggage Batch Selection

The first case study is set in the context of baggage handling. The case focuses
on improving the loading process in large commercial airplanes. In this type
of aircraft, luggage items are loaded into containers. Then these containers are
loaded into the plane. During this process it is important to reduce the packing
time and maximize the usage of these containers. Thus, the objective is having
full containers that are easy to pack.

The automated airport baggage system is in charge of selecting the luggage
items for each container. The luggage items are received in a streaming fashion
(as groups of bags are checked-in by passengers). The system first evaluates the
dimensions and weight of luggage items as they enter the system. Then, when

6

enough items are available, the system selects a subset of items in order to fill
a container. The main objective when selecting these items is to use most of
the container’s capacity. Once the items are selected, they are sent out of the
system to pack the container. The process continues by repeating the previous
steps until all the luggage of a flight is packed.

While the main objective is to maximize container utilization, there are other
secondary objectives. It is desirable to pack all items of a passenger in a single
container. For security reasons, if a passenger misses his flight, all luggage items
from this passenger are removed from the plane. If the luggage of that passenger
was loaded in different containers, more than one container would have to be
removed from the plane. Thus, it is better to avoid this situation by ensuring
that only one container will be removed in case of a passenger absence.

The other secondary objective is balancing the proportion of small and big
luggage items within a container. Usually when packing a container, the big
items are stacked first to form a stable foundation for the smaller items. There
are other reasons for balancing the size distribution of bags in the container. For
instance, having a container with mostly large items may render the packing
task more difficult since there are no small items to pack in the tight spots
between large items. On the other hand, packing a container full of small items
may take longer due to the large number of luggage items. Finally, large bags
are handled with machines and workers handle small items by themselves. If
the containers have mainly one type of items, the result is having the unwanted
scenario of idling workers or idling machines.

1.1.2 Orderline Allocation for Load Forming Logic

The second problem of this assignment is set in the context of warehousing for
retail. Warehousing handles the fulfillment of store items. During this process,
large product lots are received from the manufacturers or producers. Then these
lots are unpacked and stored. Afterwards, some of these products are used to
fulfill individual store orders. The challenge is to fulfill orders using as few
carriers (containers) as possible while packing the items in a store-friendly way.
A store friendly carrier will contain mostly order lines (products and quantities)
that share the same shelf or are located closely. When the carriers are received
by the store, the employees re-stock the shelves with these products. It is easier
for workers if the carriers contain items whose locations are close to each other
and which belong to the same item families.

Because of store policies, there are some items that should never share a carrier.
For example, fruits and cleaning products should not be packed in the same
carrier. It is also detrimental to split an order line between carriers. However,
sometimes the order line exceeds the carrier capacity. In this case, the only way
to pack the order line is to fill one carrier with as many of those items as possible
and pack the remaining items in another carrier. As a result, that order line
will be split in multiple carriers.

This is a Bin Packing Problem because we must pack all items from a set in
as few containers as possible. The full set of items is known before any of the
packing is done. Once the bin configurations are calculated, a second test is

7

required. This test checks if the selected configuration is stackable in 3D space.
In some cases, configurations that comply with volume and weight constraints
can’t be arranged in a way that fits the carrier. In this case a new configuration
must be selected. When the selected configuration passes the stacking test, the
order is fulfilled by the automated warehouse system.

1.2 Combinatorial optimization problems

Many combinatorial optimization problems have been widely studied in the
available literature. Some of these problems share many characteristics with the
ones tackled in this project. The literature problems with similarities include
the knapsack problem and the bin packing problem. Thus, it is beneficial to
evaluate the approaches used in the literature when solving these problems.
From this review, some methods and approaches for solving packing problems
will be selected for further evaluations and eventually matching them to the
problems under study in this project.

1.2.1 Knapsack problem

The knapsack problem is about selecting a group of items and packing them into
a knapsack. Each item has a value and a weight. The knapsack has a maximum
capacity. The objective is to select the items that maximize the knapsack value
without exceeding the weight capacity.

It is formally defined, given:

• A knapsack with capacity W ∈ N

• A set of items I = {i1, . . . , in} available for packing in the knapsack

• Each item ik has a weight wk, and a value vk

xk =

{
1, if item ik is packed

0, if item ik is NOT packed

maximize
∑
ik∈I

vkxk (1.1)

such that:
n∑

ik∈I

wkxk ≤W (1.2)

1.2.2 Bin packing problem

The bin packing problem is about packing a group of items into a series of
bins. Items have a weight and bins have a maximum capacity. The objective
is to minimize the number of bins used. It is required to pack all items. The
capacities of the bins cannot be exceeded.

8

Given:

• A set of items I = {i1...in} must be packed into a set of bins B = {b1...bk}

• Each item has a weight wi

• Each bin has a capacity cb

minimize

k∑
b=1

yb (1.3)

yb =

{
1, if

∑k
b=1 xib > 0

0, if
∑k

b=1 xib = 0

xib =

{
1, if item i is assigned to bin b

0, if item i is NOT assigned to bin b

n∑
i=1

wixib ≤ cb (1.4)

The weight of the items cannot exceed the capacity of the bin.

1.2.3 Computational complexity

It is important to emphasize that most combinatorial optimization problems
become too computationally expensive as they scale. Increasing the number of
items in a bin packing problems generates millions of possible combinations. The
knapsack and bin packing problems (Optimization) are of NP-Hard Complex-
ity [4]. Performing exhaustive search on all combinations becomes unfeasible as
the problem scale in a context with limited computational or timing budgets [7].
There are some clever approaches that manage to obtain optimal solutions for
similar optimization problems of small and medium size. The problems under
investigation have multiple optimization objectives. This particularity turns
them into more difficult problems. There are no efficient algorithms for opti-
mally computing large scale multi-objective combinatorial problems. Most of
the approaches that produce good results in acceptable execution times make
use of some sort of heuristics.

1.3 Multi-objective Optimization and Pareto Al-
gebra

In section 1.2, combinatorial optimization problems were introduced. The case
studies are similar to those problems but are more complex because multiple
criteria are optimized. In other words, the problems under study are multi-
objective combinatorial optimization problems. The interesting aspect of these
problems is that objectives for optimization are potentially dependent on each
other and of conflicting nature. In this case judging the quality of the solutions

9

is not as trivial as having the greater or lower scalar value for maximization and
minimization problems respectively.

For this type of problems, the concept of Pareto optimality is used to determine
which solutions are better than others. Ideally, in multi-objective optimization
problems the goal is to obtain a set of solutions that are better than the rest
and represent the trade-offs between objectives. A solution dominates another
solution when it is better in at least one of the objectives and at least equal
in the rest of the objectives. The solutions that are not dominated form a set
called the Pareto front. Heuristics for multi-objective combinatorial problems
aim to find a set of solutions that approximates the Pareto front.

10

Chapter 2

Related work

2.1 Approximation Algorithms

Several algorithms have been explored to approximate a solution for the bin
packing problem. Approximation algorithms focus on providing a solution in
linear or log-linear time. There are many popular algorithms like “Best fit”,
“First fit”, “Best fit decreasing” and “First fit decreasing”. “First fit” places
items in the first bin that can allocate the item. When there are many bins that
could allocate the item, “Best fit” place the item in the bin that will become
the tightest after item insertion. That is, the bin will be the one with the least
available space when compared to the other options. There are variations on
these algorithms that re-arrange the items in decreasing order according to their
weights.

The ordering algorithms produce, in the worst case scenario, a 11
9 OPT solution

in at most O(n logn). The non-sorting versions produces, in the worst case
scenario, 17

10OPT solution in at most O(n) operations.[6]

2.2 Exact Algorithms

Many exact algorithms for packing problems take advantage of upper and lower
bounds computations to steer the heuristics into the right direction and discard
partial solutions that will not lead to optimal solutions[3]. A key part of this
methodology is the use of Linear programming to solve a relaxation of the prob-
lem. Then using this solution to construct a feasible solution for the problem.
This process is called rounding. After rounding, the process continues with
heuristics that explore the new reduced solution space.This process is followed
by pruning of the solution space tree. This method was designed for solving the
cutting stock and knapsack problems.

11

2.3 Compositional Pareto-algebraic Heuristics

Compositional Pareto-algebraic Heuristic (CPH) provides a fast and scalable
method of solving combinatorial optimization problems [9][10] It is based on
Pareto algebra principles. It was originally designed to solve instances of the
Multi-dimensional multi-objective knapsack problem. CPH computes solutions
in incremental fashion while getting rid of partial solutions that will not lead to
optimal solutions.
The key elements of CPH are the configurations. Items of the knapsack problem
are converted into configurations. These configurations are composed of value
dimensions and resource dimensions. These configurations are then combined
to create new configurations. The combining process is called Product Sum.
This process is what takes most of the heuristic time, therefore, it is desirable
to have configurations that are inexpensive to merge. This process will produce
more configurations each time. In a large problem, the number of configura-
tions might grow too large, making it too computationally expensive to find a
solution. CPH deals with this problem by using Pareto minimization, a simple
technique to eliminate inferior configurations. By removing inferior configura-
tions, Pareto algebra shows that the optimal solutions are never removed and
that configurations that cannot lead to Pareto-optimal solutions are removed as
early as possible.

2.4 Bin Packing Problem Under Multiple Ob-
jectives: a Heuristic Approximation Approach

This section introduces a heuristic approximation approach to the Bin Packing
Problem (BPP) under multiple objectives.[5] It deals with at least two conflict-
ing objectives such as minimizing the number of bins used and minimizing bin
heterogeneity. It produces a solution space that shows the trade-off between
these objectives. The algorithm is based on the “best fit” approximation algo-
rithm with the addition of a method for controlling the secondary objective (bin
heterogeneity). A variable called Umax set the maximum heterogeneity allowed
for bins. The algorithm is run several times while increasing Umax, and the best
results, considering a single objective optimization, are saved and aggregated.
Finally the set of results is minimized using Pareto minimization.

12

Chapter 3

Formalization

In previous chapters we defined the case studies. We also introduced litera-
ture problems similar to the ones in the case studies. This chapters makes the
connection between the practical problems and the formalization necessary to
define the case studies as multi-objective combinatorial optimization problems.

3.1 Luggage Batch Selection

In the Luggage Batch Selection scenario we start with a set of bags. We must
select a subset of these bags for packing in a container of a fixed size. This
container is easier to pack if the corresponding batch is composed by bags that
comprise the whole range of weights and volumes. It is acceptable to have bags
of similar characteristics but overall, weights and volumes should vary. Besides
optimizing the container utilization, it is important that the batch of bags has
similar statistic indicators as the ones from the initial bag set. The purpose of
having a similar distribution is to have subsequent batches of quality comparable
to the batch currently being created.

In other words, we have a knapsack problem with weight and volume restrictions.
However, the items don’t have an intrinsic value. Instead, the value of the items
in the knapsack is determined by characteristics that are affected by the rest of
the items of the knapsack. The value is determined by the total volume of the
knapsack and how similar are the bag distributions of the knapsack and the set
of remaining bags (the ones that were not selected to be in the Knapsack).

Given:

• A knapsack with capacities W ∈ N for weight and V ∈ N for volume.

• A set Ebs containing items {i1...in} available for packing the knapsack

• Each item i has a weight wi, and a volume vi. Each item represents a
group of 1 or more bags. Normally it represents all bags from a passenger.
Note: this group is treated as a single knapsack item to turn one of the

13

objectives into a hard constraint (It is preferred that all the bags from a
passenger go in the same knapsack).

As defined before, the objective is to maximize the knapsack value while meet-
ing the capacity constraints.

The weight of the knapsack cannot exceed its capacity:

n∑
i=1

wixi ≤W (3.1)

The total volume cannot exceed the volume capacity of the knapsack:

n∑
i=1

vixi ≤ V (3.2)

The LBS problem has the goals of maximizing the similarity between statistical
properties of the group of items in the knapsack and the items in the Ebs, and
maximizing the knapsack utilization. To achieve these goals, the knapsack value
is composed by 4 value dimensions. At the beginning of the batch, target values
for these dimensions are calculated from the characteristics of the Ebs, such as
standard deviation, average volume and estimated number of bags per batch.
Additionally, the target volume is set as the maximum volume of the knapsack.
The value dimensions are defined as the distance between the target quantities
and the current knapsack quantities on:

• Number of bags contained in the selected items. 3.3

• Average weight of the bags contained in the selected items. 3.4

• Volume of the items in the knapsack. 3.5

• Standard deviation on volume of the bags contained in the selected items.
3.6

xi =

{
0, if item i is NOT in the knapsack

1, if item i is in the knapsack

Number of bags =

n∑
i=1

xi (3.3)

Average weight in the knapsack =

∑n
i=1 wixi

Numberofbags
(3.4)

Volume of the items in the knapsack =

n∑
i=1

vixi (3.5)

Standard Deviation on Volume =

√√√√ n∑
i=1

(vixi − µ)
2
, µ =

∑n
i=1 vixi
n

(3.6)

14

Since the actual value is in the comparison of these values with the goal values
(obtained from the Ebs set), a difference and absolute value computation is in
order.

Value = |Knapsack Property−Goal Property| (3.7)

3.2 Orderline Allocation for Load Forming Logic

The Orderline allocation problem is a version of BPP. For this reason, mapping
it to CPH requires more creativity than the batch selection problem. Instances
of CPH must have a fixed solution space, this is, the space shouldn’t be infinite.
For this reason we restrict the number of carriers/bins at the start of CPH.When
mapping LFL into CPH, some of the objectives are transformed into monotonic
properties.

Given:

• A set of items I = {i1, . . . , in} available for packing in a set of bins J =
{j1, . . . , jm}.

• Each item ik has a weight wk ∈ Z+ and belongs to a partitioning(group)
qk ∈ Q = {q1, . . . , qr}

• Each item has a volume vk ∈ Z+

• Each bin has a fixed capacity c ∈ Z+. All bins have equal capacity.

The objectives of the optimization problem are the following:

Maximize: Volume Utilization =
Theoretical Minimum Volume

Actual Volume
(3.8)

For the case study, all bins have equal capacity. Therefore this would be the
same as minimizing the number of bins in use.

Theoretical Minimum Volume =

⌈∑n
1 vk
c

⌉
c

It is theoretical because items are seen as fluids and exactly fit bins without
wasting additional volume. Theoretical Minimum Volume is only achievable in
some cases.

Actual Volume =

n∑
k=1

ykc

yk =

{
0, if bin jk is NOT used

1, if bin jk is used

Maximize: partitioning score =

∑
qk∈Q Volume Utilization of partitioning qk

N
(3.9)

15

Constraints of the problem:

n∑
1

wixij ≤ cjyj (3.10)

The weight of the items cannot exceed the capacity of the bin.

xkl =

{
0, if item ik is NOT assigned to bin jl

1, if item ik is assigned to bin jl

∀ik

[
ik ∈ I :

m∑
1

xkl = 1

]
(3.11)

Every item must be packed in a bin. An item cannot be packed in more than
one bin.

16

Chapter 4

CPH for Packing Problems

Compositional Pareto algebraic heuristics provides a fast and scalable method
of solving combinatorial optimization problems. The problems under study are
currently solved by using meta-heuristics such as genetic algorithms and simu-
lated annealing. In both cases there are time and scale constraints that make it
unfeasible to compute an optimal solution. Thus, a good enough approximation
is the only option. It is worth investigating whether CPH is a better approach
in terms of computational complexity, solution quality or both. Additionally,
there are some particularities within the problems that could benefit from the
compositionality of CPH.

4.1 The CPH Framework

The CPH framework consists of several steps used to formulate an optimization
problem and find solutions. The first step is to convert an optimization prob-
lem into a CPH representation, called CPH instance. Configurations are the
atomic units of CPH. They are very flexible because they can be used to repre-
sent single items, partial solutions and complete solutions of the CPH instance.
Configurations hold information about the resources used by the solution and
the corresponding value.

The options available in the problem, whether it is choosing items for the knap-
sack or the bin to allocate an item, are used to create a set of configurations
which will then be used by CPH to search the solution space. This search is done
using the Product-sum, bound, minimize operations. These three operations are
the core of CPH.

The product-sum operation is used to combine sets of configurations. This is
how we explore the solution space in an incremental fashion, by combining small
parts of the problem rather than using complete solutions. The bound operation
checks whether the solutions available violate any of the resource constrains. If
they do, then those configurations are discarded by the operation. The mini-
mize operation uses Pareto algebra and the dominance relations defined in the
CPH instance to discard configurations that are dominated by others. Pareto

17

minimization works great in problems that are monotonic because configura-
tions that are dominated will never reach Pareto-optimal solutions. Both case
studies lack monotonicity, this will be an interesting challenge for CPH.

The key part of applying the framework to an optimization problem is con-
structing an appropriate CPH model that captures enough information about
the choices and combines configurations in a efficient way. The model should
be accurate enough so that a CPH solution is easily mapped back to a problem
solution. The model must contain all the key elements that are evaluated in a
problem solution. And lastly, the model should be small and light enough so
that the operations such as Product-sum and Pareto minimization are efficient.

4.2 CPH for Luggage Batch Selection

Mapping the Luggage Batch Selection (LBS) problem to CPH appears to be
a straight forward task because of the similarity with the knapsack problem.
However there are some characteristics of the batch selection problem that re-
quire extra caution. The non-monotonic objectives and the fact that volume
increases value and resource usage reduce the effectiveness of CPH. Using objec-
tives that are non-monotonic will increase the chances of discarding too many
partial solutions, early in the process. Despite those complications, the problem
has multiple value and resources dimensions. This characteristic will reduce the
chances of discarding promising configurations.

The configurations from this problem will contain four value dimensions:

• Distance to maximum volume: Less is better.

• Distance to average weight: Less is better.

• Distance to standard deviation on volume: Less is better.

• Distance to the preferred Number of bags: Less is better.

Besides the value dimensions, resource dimensions will keep track of the al-
lowance of weight and volume in the containers:

• Volume.

• Weight.

Configurations should be as small and lightweight as possible in order to achieve
efficient computation of partial solutions. They contain data for value dimen-
sions, resource dimensions and special attributes to keep track of the state of
the solution. For example to know which groups of bags have been selected for
one of the final solutions.

• Number of bags in the knapsack.

• Average weight in the knapsack.

• Standard deviation on volume of the knapsack.

18

• Configurations (Groups of bags) used to produce the current configuration.

4.2.1 Pre-processing and creation of configuration sets

Pre-processing is required to transform a list of luggage into a CPH instance. In
this process, two types of configurations are produced. These types are single
bag configuration and multiple bag configurations. This distinction is done
because in some cases, passengers travel with multiple bags. The only difference
between these types of bags is that the single bags items have a default standard
deviation on volume of zero. All the bags from a single passenger are grouped
into a CPH configuration.

Table 4.1: Initial bag list

PassengerID Volume [L] Weight [kg]
1 83.30 9.50
1 68.10 9.50
2 113.60 22.00
3 36.10 6.00
3 81.00 16.50
3 104.60 19.00

To create those configurations, the value and resource dimensions must be filled
using the characteristics of the bags in the configurations. Utilization, volume
and weight are very straight forward because they are set by the sum of volumes
and weights of the bags in the configurations and the size of the containers.
However, for the rest of the value dimensions, we need target quantities. These
quantities are calculated from the set of items available in the electronic bag
storage at the moment of start of the batch creation process. These calculations
include standard deviation, average weight and the preferred number of bags in
the knapsack.

Table 4.2: Goals obtained from Table 4.1 using maximum container Volume
250l

STDEV(V) AVG(W) Bags
27.59 13.75 3.08

Once these quantities are known, they are then compared to the corresponding
statistics in the configurations. For single bag configurations, the standard
deviation on volume is zero, so instead of combining them directly, they are
calculated using the other attributes of the new configuration.

19

Table 4.3: CPH configuration list

PassengerID Bags Volume Weight σ(v) AVG(w) ∆ σ(v) ∆AVG(w) ∆Bags
1 2 151.40 19.00 10.75 9.50 16.85 4.25 1
2 1 113.60 22.00 0.00 22.00 27.59 8.25 2
3 3 221.70 41.50 34.80 13.83 7.20 0.08 0

4.2.2 Combining configurations

Combining configurations is the core process of the product sum operation. The
process of combining two configurations should be computationally inexpensive,
otherwise the benefits of CPH are diluted. In the context of luggage batch
selection, combining configurations represents the action of adding a bag or set
of bags to the container. It is important to emphasize that a configuration is
an entity by itself and not a list of bags. It is this distinction that makes it
efficient to compute the characteristics (value dimensions, resource dimensions
and auxiliary dimensions) of a resulting con figuration.

Continuing with the example shown in section 4.2.1, we illustrate how the pro-
cess of combining configurations works. From now on, we will identify configu-
rations from 4.3 by their PassengerID column. When combining configurations
1 and 3, the outcome will be a new configuration with the characteristics ob-
tained from the union of bags contained in configuration 1 and configuration 3.
However, characteristics of individual bags are not available in a configuration,
they were lost when we transformed the bag list into a configuration list. Thus,
the only way of computing a new configuration is using the data available in
configurations 1 and 3. For some dimensions, such as volume, bags and weight,
it is as simple as adding the volume of configurations 1 and 3. For some other
dimensions the process is not as simple but remains computationally inexpen-
sive. This is the case for the calculation of average weight which is shown in
equation 4.1

AV G(w)C3 =
WeightC1 +WeightC2

BagsC1 +BagsC2
(4.1)

While most of the dimensions are very simple and inexpensive to compute,
standard deviation is not as efficient because it requires the computation of
square roots of real numbers. Another difficulty is that the formula for standard
deviation requires the values for all elements in a sample. In this case those
values would be the volumes of all bags in the configuration. Values, which
are not available anymore. However, it is possible to calculate the standard
deviation of a new group when the mean, number of elements and standard
deviation of its partitions are know.

σ =
√
E[(X − µ)2] (4.2)

Standard Deviation

20

µ1:n =
1

n

n∑
i=1

xi (4.3)

Mean

σ2 =
1

n

n∑
i=1

(xi − µ1:n)2 =
n− 1

n

(
1

n− 1

n∑
i=1

(xi − µ1:n)2

)
(4.4)

Variance

(m+ n)(σ2
1:n+m + µ2

1:m+n) =

n+m∑
i=1

x2i

=

n∑
i=1

x2i +

n+m∑
i=1+n

x2i

= n(σ2
1:n + µ2

1:n) +m(σ2
1+n:m+n + µ2

1+n:m+n)

σ2
1:m+n =

n(σ2
1:n + µ2

1:n) +m(σ2
1+n:m+n + µ2

1+n:m+n)

m+ n
− µ2

1:m+n (4.5)

STDEV (v)2C3
=
BagsC2

(
STDEV (v)2C2

+ (
V olumeC2

BagsC2
)2
)

+BagsC1

(
STDEV (v)2C1

+ (
V olumeC1

BagsC1
)2
)

BagsC1
+BagsC2

−µ2
C3

(4.6)

µC3
=
V olumeC1

+ V olumeC2

BagsC1
+BagsC2

(4.7)

With this formulation for the standard deviation, all the data required is avail-
able within the two configurations to be combined.

4.2.3 CPH Algorithm

The CPH algorithm uses as input the configuration set created from the flight
bag list. As other heuristics, the purpose of the algorithm is to do a search of
the solution space in a way that it finds close to optimal solutions while avoid-
ing the sections of the solution space that do not provide valuable solutions.
CPH maintains a set of partial solutions. The set grows as new configura-
tions (from the configuration set) are combined with the ones in the Partial
solution set. The algorithm takes one configuration from the initial configu-
ration set and combines it with all the configurations that at that moment
reside in the partial solution set. In this way, CPH explores the solution space.

21

Algorithm 1: CPH for LBS

Input : S a set of configurations, Rb resource bounds
Output: Result, a configuration set, of which any configuration is a valid LBS

solution
Step 1 : Initialize set of partial solutions Sp and the set of configurations S
Step 2 : Perform incremental computations
forall the Si ∈ S do

//Combine a configuration from the configuration set with the one in the
partial solution set.
Sp = ProductSum(Sp, Si);
//Discard the dominated configurations
Sp = Pareto-minimize(Sp);

Step 3 : Return results: Sp

After each Product-sum operation (Combining a new configuration with all the
partial solution set elements), there is a bound check. The algorithm discards
all configurations that violate resource constrains. For example, exceeding the
maximum volume of the container. So far we have a way of exploring the so-
lution space. However, that search space is not reduced in any way. To reduce
the search space and guide the solution creation towards superior configurations,
Pareto Minimization is used. The value dimensions enumerated in section 4.2
are used to evaluate the dominance relations between configurations. The con-
figurations that are strongly dominated by other configurations are discarded.

After all the configurations of the configuration set are combined, the partial so-
lution set becomes a solution set. All the configurations in the set now represent
a solution for the luggage batch selection problem.

4.3 CPH for Orderline Allocation

We present the modifications required in order to map the problem under study
to CPH. CPH performs better when the decision variables have a monotonic
effect on the results. To ensure that this is the case, utilization and partitioning
will be redefined.

Minimize: Utilization Volume =

n∑
i=1

yjc (4.8)

yj =

{
0, if bin j does NOT contain items

1, if bin j contains items

Minimize: Partitioning Volume =

N∑
k=1

n∑
j=1

xkjc (4.9)

22

xkj =

{
0, if category k is NOT assigned to bin j

1, if category k is assigned to bin j

With these new definitions of utilization and partitioning, adding items to the
bins can only increase those values. Thus there are no instances in which uti-
lization or partitioning can shift abruptly.

The configurations from this problem will contain three value dimensions:

• Utilization volume: Less is better

• Partitioning volume: Less is better

• Heterogeneity: Less is better.

Configurations will also have special attributes to keep track of the state of the
solution. For example, to know how full the carriers are, which groups of items
are in which bin and to provide a complete orderline allocation as a result of
the CPH algorithm.

• Weight and Volume used in each bin.

• Bins where item groups(partitionings) are present.

• Heterogeniety of bins.

• Identifiers of configurations used when building the current configuration.

4.3.1 Pre-processing and creation of configuration sets

The data for the Load forming logic problem is derived from orders. The orders
contain a list of Order lines. The Order is evaluated to estimate the lower bounds
on utilization and partitioning. These estimations are used to assess the solution
quality. In addition to evaluation the solutions, the bound on utilization is used
to determine the number of carriers available for CPH. The number of carriers
is calculated by adding an extra 25% of carriers to the number of carriers in the
lower bound. This percentage was chosen because utilization bellow 75% is not
within the accepted performance metrics.

An additional pre-processing step is to remove those order lines that exceed
carrier capacity. Entire carriers are filled with a portion of these order lines and
removed from the problem context. The remaining portion of the order line
remains in the problem context. For example, a hypothetical order line has a
weight of 500kg and the allowed weight per carrier is 400kg. Then 400kg (Or
as close to 400kg as the box weights allow) will be removed from that order
line (and packaged in a carrier out of the scope of the current optimization
problem). The remaining part of the order line (100kg) will still be part of the
optimization problem.

After those steps are completed, the order is transformed into a CPH instance.
The decision variables in the problem indicate the location of the order lines.
In other words, which order lines go in which carriers. Each order line will be
represented by a set of CPH configurations. The number of configurations will

23

depend on the number of carriers designated for the bin packing problem. This
number, as previously explained, is determined by the volume and weight of the
entire order.

In addition to the previous steps, the index of the order lines are added to the
configurations so that at the end of the CPH process a Load Forming Logic
solution is generated from the CPH result.

4.3.2 Combining configurations

Combining configurations is the core process of the product sum operation. The
process of combining two configurations should be computationally inexpensive
and straight forward. In the context of Load Forming Logic, the weight and
volume of the resulting configuration are the sum of the weights and volumes
of the configurations being combined. Two data structures (dictionaries) are
used to keep track of partitioning and heterogeneity. A dictionary contains the
information of which bins contain a certain category. The dictionaries are cross-
referenced and updated in the new configuration using the data from its parent
configurations. It is the same case with another dictionary which holds the
information necessary to compute the heterogeneity of the carriers. Updating
the utilization volume consists of checking which carriers are used. This check is
positive if the volume of a carrier is greater than zero in any of the configurations
being combined.

4.3.3 CPH algorithm

The CPH algorithm uses as input the configuration sets created from the Order.
Besides the configuration set, a partial solution set is created. This set is ini-
tially empty. The algorithm is composed by the product-sum operation, bound
checking, pareto minimization and a reduction of the partial solution set. Each
of these steps is performed every time a configuration set is processed.

The product-sum operation is used to explore the solution space. It combines
configurations from two different configuration sets. In the case of Load Forming
Logic (LFL), this operation is performed on the set partial solutions with a set
of configurations from the configuration sets.

24

Algorithm 2: CPH for LFL Orderline Allocation

Input : S a set of configurations sets, Rb resource bounds, max number k of
configurations in the partial solution set

Output: Result, a configuration set, of which any configuration is a valid OA
solution

Step 1 : Initialize set of partial solutions Sp and the set of configurations S
Step 2 : Perform incremental computations
forall the sets CS ∈ S do

forall the configurations c ∈ CS do
//Reduce the number of intermediate configurations
Sp = Reduce(Sp, k);
//Combine the configuration from the configuration set with the ones
in the partial solution set.
Sp = ProductSum(Sp, c);
//Discard the dominated configurations
Sp = Pareto-minimize(Sp);

Step 3 : Return results: Sp

The set of partial solutions grows as a result of performing the product sum
operation. This could also be visualized as a tree growing with the addition of
nodes representing a placement for new order lines.

The next step in the algorithm is the Bounding process. The process inspects
all the configurations in the partial solution set. It uses the resource bounds
defined with the problem. The bounding process checks the volume and weight
of all the bins in each configuration. If a configuration contains bins which
weight or volume exceed the bounds, the configuration is removed from the
partial solution set.

In the previous steps, CPH is exploring the space and removing invalid configu-
rations. The following step is to guide the search towards the better results by
discarding the least promising configurations. This is done by means of Pareto
Minimization of the partial solution set. CPH evaluates the configuration’s
value dimensions: Partitioning Volume, Utilization Volume and Heterogeneity.
Configurations in the partial solution set are discarded if they are dominated
by other configurations in the set.

For LFL, strong dominance was used to determine which configurations would
be discarded. This decision was based on the fact that LFL configurations may
have the same values for utilization volume, partitioning volume and heterogene-
ity but represent a completely different orderline distribution that may lead to
very different solutions. Weak dominance would discard a large portion of the
configurations in the partial solution set, this will limit the search at an extreme
extent and render the algorithm ineffective. While strong dominance makes it
possible to reach a wider range of solutions, the partial solution set grows very
large very fast. In most of our experiments, during CPH, the partial solution
set grew to tens of thousands of configurations. At this point, the Pareto min-
imization step becomes too computationally expensive. For this reason, with
each CPH step, the partial solution set is reduced to an arbitrary number of
configurations.This number, the maximum number of configurations in the par-

25

tial solution set, is defined before starting CPH, and remains constant through
the entire process.

Restricting the number of configurations that the set of partial solutions can
hold is necessary for CPH in the LFL context. The selection is done by a
geometric selection algorithm that uses the 2-d value-aggregate resource usage
of the configurations[1], in this case utilization volume and partitioning volume
to simplify the selection of configurations. This algorithm selects solutions that
represent the trade-off between Partitioning volume and Utilization Volume by
using the ratio between those objectives in the configurations. The maximum
number of configurations is seen as a parameter to manage the trade-offs between
solution quality and delay of the heuristic. As shown in [9] the larger the number
of configurations allowed, the better solutions CPH will produce at the cost of
larger delay.

26

Chapter 5

Performance evaluation

This chapter presents an analysis of the performance of both CPH implementa-
tions. A detailed description of the experiments is included. These experiments
were conducted in order to measure the execution time and solution quality of
CPH when processing real problems in LFL and LBS context. A short compari-
son of CPH and the current methods methods is provided at the end of sections
5.1 and 5.2.

5.1 Luggage Batch Selection

In this section we present a series of experiments conducted using CPH and
the current solution for the LBS problem. We explain the flight data used
for testing, experiments, and the methods using for judging the quality of the
solutions provided by each approach.

5.1.1 Test Environment

The tests were conducted using a personal computer running Windows 7 Pro-
fessional Edition (64 Bits). The system contained an i5-3340M CPU with two
cores, each operating at 2.7GHz, and 12GB of RAM. CPH was implemented
using C# and Visual Studio 2013. The current solution was implemented using
Microsoft Visual Basic.

5.1.2 Data

The data used to experiment with the different aspects of CPH originated at one
of the airports under Vanderlande commission. Three real data sets from actual
flights were used in the experiments. Some preliminary tests were conducted
using an artificial set of data that was obtained by merging information from
two different flights and randomly assigning passenger IDs to some of the bags
in the list.

27

5.1.3 Execution time and number of bags in the Ebs

The execution time and solution quality determine the effectiveness of an ap-
proach for solving an optimization problem. In the case of LBS the problem size
scales with the number of bags available in the electronic bag storage. Usually
the number of bags ranges between 20 and 450. When converted to CPH con-
figurations we obtained at most 300 configurations for any of the flights in the
flight data-set. With a larger problem, the number of options available increases
and the execution time for the heuristic increases as well.

To test the ratio at which the execution time increases compared to the number
of items processed, we ran 1000 instances of CPH a fixed number of randomly
selected configurations. We conducted this experiment using 50, 100, 200 and
300 configurations. Table 5.1 shows the average execution time, the duration of
the longest and shortest runs and the standard deviation on execution time. The
baseline, at 50 configurations, had an average running time of 16 milliseconds.
The number of configurations were double in each of the two following columns.
The increase in execution time was only 12.5% and 11.1% respectively. This
would indicate that the execution time increases by at a much lower rate, almost
by an order of magnitude, than the problem size. The exception is the the last
column at 300 configurations where we get an increase of 40% in execution time
with a 50% increase of problem size.

Table 5.1: Execution times of CPH for problems containing 50, 100, 200 and
300 configurations. Statistics of 1000 runs at each number of configurations
with shuffled input.

Configurations 50 100 200 300
AVG [ms] 16 18 20 28
MAX [ms] 622 849 671 988
MIN [ms] <1 <1 <1 1

STDEV [ms] 51 65 55 65

The fact that average execution time grows at slower rate than the problem
size is a desirable quality. The problem with CPH is the high variability of the
execution time. The slowest runs took between 33 and 47 times the average
time. Since the average execution time is skewed because of the high variation
and disproportionately large outliers, a deeper look into execution time is shown
in figure 5.2. The column on the left shows the probability for CPH to finish in
each time interval and the column on the right shows the cumulative distribution
function of the probability of completion over time. In most cases, CPH will
complete before the average running time.

28

0 10 20 30 40
Milliseconds

0

0.1

0.2

0.3
Pr
ob
ab
ilit
y

050items.txt

0 10 20 30 40
Milliseconds

0

0.1

0.2

0.3

Pr
ob
ab
ilit
y

100items.txt

0 10 20 30 40
Milliseconds

0

0.1

0.2

0.3

Pr
ob
ab
ilit
y

200items.txt

0 10 20 30 40
Milliseconds

0

0.1

0.2

0.3

Pr
ob
ab
ilit
y

300items.txt

0 20 40 60 80 100
Milliseconds

0

0.2

0.4

0.6

0.8

1

F(
x)

Empirical CDF

0 20 40 60 80 100
Milliseconds

0

0.2

0.4

0.6

0.8

1

F(
x)

Empirical CDF

0 20 40 60 80 100
Milliseconds

0

0.2

0.4

0.6

0.8

1

F(
x)

Empirical CDF

0 20 40 60 80 100
Milliseconds

0

0.2

0.4

0.6

0.8

1

F(
x)

Empirical CDF

Figure 5.1: Left: Probability distribution, on the y axis, for CPH completion
for a given time-frame in milliseconds shown on the x axis. Right: CDF of CPH
completion before time x.

5.1.4 Solution quality sensitivity when processing bags in
different order

As stated in previous sections, measuring the quality of solutions in multi-
objective optimization is not a trivial mater. For the LBS problem, we decided
to use the Hyper-volume indicator when measuring solution quality. It has
proven to be a meaningful indicator [13] for these types of problems and it’s

29

relatively efficient to compute [11].

LBS is a non monotonic problem. In other words, dominated configurations
could lead to better solutions than the dominating configurations. For this rea-
son, the set of final solutions depends on the order in which the configurations
are processed by CPH. Figure 5.2 shows two runs of CPH using the same con-
figurations as input but in different order. These instances evolve differently,
produce very different solutions and have different execution times.

0	

100	

200	

300	

400	

500	

600	

700	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	 49	 51	 53	 55	 57	 59	 61	 63	 65	 67	 69	 71	 73	 75	

N
um

be
r	o

f	C
on

fig
ur
a/

on
s	

Step	

Par/al	Solu/on	Set	Size	

Run	A	 Run	B	

Figure 5.2: The evolution of the number of configurations in the partial solution
set. Two separate runs are illustrated.

The Hyper-volume indicator shows the quality of the solution set produced by
CPH.The indicator requires a reference point in the multi-dimensional space for
the calculations. In this case we set the reference to 5% of the target in all
dimensions. In other words, the Hyper-volume ranges from 0, for a solution set
that does not dominate a single point located 5% off of targets in all dimensions,
and 1, for a set that dominates the whole solution space. The Hyper-volume
score will be expressed as a percentage between 0% and 100%. Table 5.2 that
there is a huge variation on solution quality, given the parameters set for the
Hyper-volume calculation. While it is likely to obtain solutions within 5% of the
targets in all objective dimensions, it is also very likely to obtain solutions that
miss the 5% tolerance in at least one dimension. Another interesting observation
is that CPH finds better solution sets when it has more configurations to work
with.

Table 5.2: Hyper-volume indicator values. Statistic from 10 runs for each prob-
lem size.

Configurations 50 100 200 300
AVG 30% 37% 43% 45%
MAX 98% 96% 99% 94%
MIN 0% 0% 0% 0%

30

5.1.5 Solution quality with multiple CPH runs for a single
batch

In previous sections, results show that it is common that CPH instances fail to
provide consistent solution quality. Also, some instances may run for hundreds
of milliseconds more than the average case. An implementation of CPH with
uniformity in solution quality and execution time would be much more useful.
In this section, we try an approach that runs multiple instances of CPH for the
same problem while shuffling the input configurations and limiting the running
time for each run.

Table 5.3: Results for multiple runs of CPH per problem, each limited to 2ms.

Runs 5 7 10
AVG Hyper-volume 76% 83% 89%

AVG [ms] 10.82 15.08 21.45
MAX [ms] 11.08 15.62 23.08
MIN [ms] 10.54 14.54 20.46

Results from table 5.3 show that this implementation generates solutions with
much better average Hyper-volume and more uniform running times. With 5
runs, only 1.5% of the solutions have 0% Hyper-volume. With 7 runs, that
percentage decreases to 0.76% and with 10 runs there were no solutions with
Hyper-volume of 0%.

5.1.6 Comparison of CPH and Simulated Annealing

The current solution for LBS at Vanderlande uses Simulated Annealing. To
investigate the relative effectiveness of CPH, we compared solution quality and
execution time of both methods. An experiment was conducted using the sam-
ple flight data. Results shown on table 5.4 indicate that in average, Simulated
Annealing finds solutions with higher Hyper-volume than CPH at similar exe-
cution times. The only version of CPH that obtained better solutions, CPH10,
had considerably higher running time than Simulated annealing.

Table 5.4: Comparison of CPH and SA for the sample bag flight data. Averages
over 20 runs

Method CPH 5 CPH 7 CPH 10 SA
Hypervolume (5% ref) 76.17% 82.94% 89.41% 84.36%

Solutions with objectives
outside 1% target front

32.02% 22.30% 15.00% 20.87%

Solutions with objectives
outside 5% target front

1.53% 0.76% 0.00% 2.19%

Average running time 140ms 196ms 278ms 216ms
Min running time 137ms 189ms 266ms 156ms

Maximum running time 144ms 203ms 300ms 265ms

31

5.2 Load Forming Logic

In this section we show the results of several experiments conducted on CPH for
the Orderline Allocation (OA) problem. The data used for the experiments is
presented. The experiments were designed to evaluate the execution time and
solution quality of CPH.

5.2.1 Test Environment

The tests were conducted using a personal computer running Windows 7 Pro-
fessional Edition (64 Bits). The system contained an i5-3340M CPU with two
cores, each operating at 2.7GHz, and 12GB of RAM. Both CPH and the current
solution were implemented using C# and Visual Studio 2013.

5.2.2 Data

Vanderlande provided several data-sets containing real orders from their main
clients. These orders belong to representative sets that according to Vander-
lande depict the challenges of Load Forming Logic (LFL) and OA. The data-set
contains orders that are representative of the normal characteristics of orders
such as size, items distribution and variability.

5.2.3 Execution time sensitivity to order size

The execution time of a CPH instance depends on two factors: The size of the
order and the number of partial solutions allowed in the partial solution set.
The size is an important factor because the number of CPH configuration sets
is equal to the number of orderlines in the order. Additional the size of these
configuration sets is directly related to the number of carriers required by the
order. Usually larger orders require more carriers.

Table 5.5: Comparison of the smallest and largest orders in the Data-set.

Order # 8653 5840
Volume 18.4 m3 1 m3

Weight 7,866 kg 367 kg
Orderlines 702 40

Carriers 22 2
CPH time 10.953s 0.015s

The extreme comparison of order sizes is shown in table 5.5. For order 8653
configurations are 10 times larger, because of the number of carriers, and it
contains 17 times the orderlines of order 5840. As result, the execution time of
order 8653 is almost three orders of magnitude greater than order 5840.

32

5.2.4 Execution time sensitivity to partial solution set size

The other factor that affects execution time of CPH is the maximum number of
configurations allowed in the partial solution set. Figure 5.3 shows the relation
between

0	

2	

4	

6	

8	

10	

12	

20	 40	 80	 160	 320	

Ti
m
e	
in
	m

in
ut
es
	

Configura0ons	

Figure 5.3: Relation between execution time and the maximum number of con-
figurations allowed in the partial solution set. Total running time for a subset
of 24 orders from the “Detailed Design” data-set

Time increases linearly when increasing the maximum number of configurations
allowed in the partial solution set. This is expected considering that scalability
is one of the design principles of CPH.

5.2.5 Solution quality sensitivity to sequential variation of
orderlines

Solution quality for Orderline Allocation (OA) is measured with the indicators
set by Vanderlande: Utilization and Partitioning. For OA, the order in which
CPH processes items is vital. After trying different sequences of items, we
found that the most beneficial way to process the orderlines is to group the
orderlines by partitioning. Then within these partitions, orderlines are ordered
by decreasing volume. Yet, the order in which the partitionings are processed
had very particular results for each order. Thus, we couldn’t find an order
that would overall benefit solution quality across the range of orders from the
order-set used for experimenting.

33

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0.8889	 0.8959	 0.9028	 0.9063	 0.9167	

Fr
eq

ue
nc
y	

Score	

(a) Order 1061

0	

2	

4	

6	

8	

10	

12	

0.8
24
65
	

0.8
27
7	

0.8
31
5	

0.8
32
25
	

0.8
39
75
	

0.8
40
9	

0.8
43
55
	

0.8
44
65
	

0.8
48
5	

0.8
53
9	

0.8
54
95
	

0.8
59
1	

0.8
62
5	

0.8
63
65
	

0.8
66
35
	

0.8
70
1	

0.8
71
2	

0.8
74
2	

0.8
77
65
	

0.8
78
75
	

0.8
84
15
	

0.8
89
35
	

0.8
96
6	

Fr
eq

ue
nc
y	

Score	

(b) Order 8515

Figure 5.4: Frequency on the y axis, and solution score on the x axis for 100
runs of CPH when shuffling the order in which partitionings are processed.

To illustrate that shuffling the partitionings has a more significant effect larger
orders, 5.4 compares a smaller order, sub-figure b, to a larger order on the right.
The solutions with the highest scores were saved for 100 runs with shuffled
partitionings. Solution quality on the smaller order varies 2.2% and the highest
scoring solution has a larger frequency than the others, at 86% frequency vs
8%. On the larger order, sub-figure b, not not only do we have more solutions
but their frequency is distributed more uniformly than in the other order. Also,
in the large order there is a higher difference in the scores for best and worst
solutions provided at 7%.

5.2.6 Solution quality sensitivity to partial solution set
size

Increasing the number of configurations allowed in the partial solution set pa-
rameter increases the solution quality. Table 5.6 shows how the solution score is
affected by doubling the Ps capacity, and consequently doubling the execution
time. In most cases we observe an increment in solution score but it grows much
slower than the execution time, for example when increasing capacity from 80
to 160, execution time grows by 100% (as explained in reftimeps) but solution
score increases only by 0.11%.

Table 5.6: Solution quality score at different partial solution set capacities

Ps max size 20 40 80 160 320 640
Score 89.85% 90.58% 90.15% 90.26% 90.28% 90.33%

5.2.7 Comparison of CPH and OLAA

The Orderline Allocation Algorithm (OLAA) is the name of the current solu-
tion that Vanderlande uses in LFL. It is a genetic algorithm that optimizes the

34

Utilization and Partitioning of the Orders. The implementation details of this
algorithm are beyond the scope of this project. The relevant part about OLAA
is how it compares to CPH in terms of solution quality and execution time.
CPH, even when using a large capacity partial solution set, is much faster than
OLAA single thread implementation. It is important to point out that in prac-
tice, OLAA is partially parallel and pipelined with other processes within LFL.
For this reason, a multi-threaded run of OLAA was included. Figure 5.5 shows
that there is a difference of almost two orders of magnitude between OLAA and
CPH execution times.

0	

20	

40	

60	

80	

100	

120	

20	 40	 80	 160	 320	 OLAA	1T	 OLAA	4T	

Ti
m
e	
in
	m

in
ut
es
	

Figure 5.5: Execution time for CPH at different Ps capacities and OLAA using
1 and 4 threads.

When comparing solution quality OLAA has the upper hand. Although CPH
provides comparable results, in average with 1.8% lower score than OLAA,
OLAA solutions usually dominate the solution set from CPH. Table 5.7 shows
detailed results, broken down by order.

35

Table 5.7: Utilization and Partitioning scores of OLAA and CPH using 24 orders
from the “AH40Trendsets” data-set.

OLAA Benchmark 160 CPH maxConfigs=40 CPH - OLAA
Order U P U P U P

8659.dat 86.67% 98.33% 81.25% 97.92% -5.42% -0.41%
1329.dat 90.91% 100.00% 90.91% 95.45% 0.00% -4.55%
1232.dat 88.24% 90.19% 78.95% 95.83% -9.29% 5.64%
1288.dat 87.50% 97.73% 77.78% 97.73% -9.72% 0.00%
1067.dat 90.00% 95.45% 81.82% 95.45% -8.18% 0.00%
8635.dat 93.33% 90.12% 87.50% 92.36% -5.83% 2.24%
8592.dat 88.90% 98.18% 80.00% 100.00% -8.90% 1.82%
1006.dat 100.00% 100.00% 100.00% 96.43% 0.00% -3.57%
1467.dat 90.91% 95.67% 83.33% 96.97% -7.58% 1.30%
1135.dat 90.00% 89.20% 81.82% 94.55% -8.18% 5.35%
1117.dat 84.62% 96.03% 84.62% 96.03% 0.00% 0.00%
8501.dat 90.00% 86.97% 85.71% 89.31% -4.29% 2.34%
1434.dat 86.67% 83.43% 81.25% 84.50% -5.42% 1.07%
8694.dat 81.82% 98.70% 81.82% 97.73% 0.00% -0.97%
1061.dat 87.50% 95.83% 87.50% 95.83% 0.00% 0.00%
5864.dat 100.00% 100.00% 100.00% 100.00% 0.00% 0.00%
5840.dat 100.00% 100.00% 100.00% 100.00% 0.00% 0.00%
1395.dat 100.00% 100.00% 100.00% 95.83% 0.00% -4.17%
1133.dat 87.50% 98.15% 82.35% 95.83% -5.15% -2.32%
5609.dat 66.67% 100.00% 66.67% 100.00% 0.00% 0.00%
1105.dat 88.89% 98.33% 80.00% 100.00% -8.89% 1.67%
8653.dat 88.00% 88.27% 81.48% 95.45% -6.52% 7.18%
8515.dat 91.67% 89.18% 84.62% 89.39% -7.05% 0.21%
1567.dat 85.71% 100.00% 85.71% 100.00% 0.00% 0.00%
Average 89.40% 95.41% 85.21% 95.94% -4.18% 0.53%

Weighted Score 92.40% 90.58% -1.82%

36

Chapter 6

Conclusions & Future work

CPH frameworks for the case studies were presented in this report. In both
cases, CPH produced solutions of comparable quality and execution time with
the current solutions. The lack of monotonicity in these problems was the main
obstacle for the presented heuristics. In the area of packing problems CPH
con be positioned as an alternative between Meta-heuristics and approximation
algorithms because out experiments it provided solutions of inferior quality th
Meta-heuristics but with much lower execution times.

6.1 Luggage Batch Selection

The current solution, Simulated Annealing, outperformed CPH in both execu-
tion time and solution quality metrics. The only cases in which CPH provided
better batches was when processing the last batches of a flight. This due to
the flexibility to optimize in multiple dimensions, including the number of bags
per batch. Despite advantage, we believe CPH is not the right direction for
improving the LBS process.

6.2 Load Forming Logic: Orderline Allocation

From the results of chapter 5 CPH seems like an interesting alternative for
solving multi-objective bin packing problems, specially in processes where solu-
tions are required in swiftly. The reduction in execution time from using CPH
compared to the current methods would be of at least an order of magnitude.
Nevertheless the LFL process cannot justify decreasing solution quality. The
only way for CPH to be part of the Vanderlande process would be to match
the solution quality of the current method. We believe it would be worth in-
vestigating further CPH for the OA problem. Specifically balancing weight
and volume usage in the carriers and implementing greedy optimization on the
partial solution set between CPH steps.

37

Bibliography

[1] Md Mostofa Akbar, M Sohel Rahman, Mohammad Kaykobad, Eric G Man-
ning, and Gholamali C Shoja. Solving the multidimensional multiple-choice
knapsack problem by constructing convex hulls. Computers & operations
research, 33(5):1259–1273, 2006.

[2] G Belov and G Scheithauer. A branch-and-cut-and-price algorithm for
one-and two-dimensional two-staged cutting (stock) problems. 2003.

[3] Maxence Delorme, Manuel Iori, and Silvano Martello. Bin packing and
cutting stock problems: Mathematical models and exact algorithms. In
Decision models for smarter cities, 2014.

[4] Emanuel Falkenauer. Genetic Algorithms and Grouping Problems. John
Wiley & Sons, Inc., New York, NY, USA, 1998.

[5] Martin Josef Geiger. Bin packing under multiple objectives - a heuristic
approximation approach. 2008.

[6] David S. Johnson, Alan Demers, Jeffrey D. Ullman, Michael R Garey,
and Ronald L. Graham. Worst-case performance bounds for simple one-
dimensional packing algorithms. SIAM Journal on Computing, 3(4):299–
325, 1974.

[7] Richard E Korf. A new algorithm for optimal bin packing. In AAAI/IAAI,
pages 731–736, 2002.

[8] Mark W Krentel. The complexity of optimization problems. In Proceedings
of the eighteenth annual ACM symposium on Theory of computing, pages
69–76. ACM, 1986.

[9] Hamid Shojaei, Twan Basten, Marc Geilen, and Azadeh Davoodi. A fast
and scalable multidimensional multiple-choice knapsack heuristic. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
18(4):51, 2013.

[10] J. van Pinxten, M.C.W. Geilen, T. Basten, U. Waqas, and L. Somers. On-
line heuristic for the multi-objective generalized traveling salesman prob-
lem. In In Design, Automation and Test in Europe, DATE 2016. EEDA,
March 2016.

38

[11] Lyndon While, Phil Hingston, Luigi Barone, and Simon Huband. A faster
algorithm for calculating hypervolume. Evolutionary Computation, IEEE
Transactions on, 10(1):29–38, 2006.

[12] Zhenyu Yan, Linghai Zhang, Lishan Kang, and Guangming Lin. A new
moea for multi-objective tsp and its convergence property analysis. In
Evolutionary Multi-criterion Optimization, pages 342–354. Springer, 2003.

[13] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The hypervolume indi-
cator revisited: On the design of pareto-compliant indicators via weighted
integration. In Evolutionary multi-criterion optimization, pages 862–876.
Springer, 2007.

39

Acronyms

BPP Bin Packing Problem. 12

CPH Compositional Pareto-algebraic Heuristic. 1, 3, 6, 12, 17, 18, 20, 22,
24–37

LBS Luggage Batch Selection. 1, 4, 6, 14, 18, 27–31

LFL Load Forming Logic. 4, 7, 24–27, 32, 34, 35, 37

OA Orderline Allocation. 1, 4, 7, 15, 22, 32, 33, 37

OLAA Orderline Allocation Algorithm. 5, 34–36

40

