
 Eindhoven University of Technology

MASTER

Pattern specification and application in meta-models in Ecore

Zhang, J.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2b7e1211-0820-43e5-adee-9fc1377b09d4

Master Thesis

Pattern Specification and
Application in

meta-models in Ecore

Jia Zhang

Department of Mathematics and Computer Science
Software Engineering and Technology Group

Graduation Committee: prof. dr. Mark van den Brand (Supervisor)
ir. Marc Hamilton (Altran)
dr. Natalia Sidorova
Ana-Maria Sutii

Eindhoven, April 2016

Abstract

Design patterns are used pervasively in object-oriented software development. They describe
general solutions for recurring problems in software design. In most cases, design patterns are
applied at the model level. The popularity of Model-Driven (Software) Engineering has increased
the development of meta-models for Domain Specific Languages, even at the meta-model level,
design patterns can and are used. For instance, the company Altran has discovered some design
patterns in meta-models as well as in associated syntax, and transformation artifacts of their
domain specific languages. Unfortunately, the discovered patterns can not be easily (re)used
because of the lack of mechanisms to specify and apply design patterns in the existing language
engineering workbenches.

This thesis aims at exploring mechanisms for pattern specification and application in meta-
models in Ecore. In order to do so, we first analyzed and summarized the state-of-the-art ap-
proaches and tooling for specifying and/or applying design patterns. Then, we extended an exist-
ing tool, DSL-tao, to assist the development of DSLs in Altran.

Pattern Specification and Application in meta-models in Ecore iii

Acknowledgments

I have been studying in Software Engineering and Technology (SET) group for a long time. Start-
ing from the courses Generic Language Technology and Software Evolution to the SET Seminar
and Capita Selecta, and finally my graduation project, I own many thanks to a lot of people.

My deepest gratitude goes first and foremost to Prof. Mark van den Brand, my supervisor,
for providing me the opportunities to work on interesting topics during the Capita Selecta as
well as this graduation project and for his insightful guidance, deep discussions and constant
encouragement, especially for his understanding and advise during my difficult times.

I would like to express my heartfelt thanks to my tutor ir. Marc Hamilton, an experienced
engineer from Altran, for the patient explanation of industry problems and his practical guidance.
Special thanks to Ulyana Tikhonova and Marc Hamilton for arranging this external project in
Altran. Without their help, I could not get the chance to work in Altran. Thanks to the colleagues
in Altran for a nice working environment and relaxed conversations during lunch time.

I am also very grateful to Ana-Maria Sutii, the PhD candidate who gave me detailed advise
and feedback through my graduation project. Furthermore, I would like to thank Yaping Luo
(Luna Luo) and Zhuoao Li (Luna Li), who sit in the same room with me, for helping me solve
problems encountered in this project and for the happiness and comfort they gave to me. Special
thanks to the group secretary Margje Mommers-Lenders for arranging weekly meetings and my
defense. Besides, I would like to thank my examination committee members: Prof. Mark van den
Brand, ir. Marc Hamilton, dr. Natalia Sidorova and Ana-Maria Sutii for reviewing and evaluating
my work.

Finally, my thanks would go to my beloved family for their teachings, supports and encourage-
ment, especially from my mother and my grandma. Last but not the least, my sincere thanks go to
my boyfriend, for his supports and criticism during the time I have been living in the Netherlands.

Pattern Specification and Application in meta-models in Ecore v

Contents

Contents vii

List of Figures ix

List of Tables xi

Abbreviation xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Project goal . 2
1.3 Thesis outline . 3

2 Preliminaries 5
2.1 Model-Driven Engineering . 5
2.2 Eclipse Modeling Framework . 5
2.3 Domain Specific Languages . 6
2.4 Design Patterns . 7
2.5 A Motivating Example . 7

3 State of the Art 13
3.1 Approaches for pattern specification . 13

3.1.1 Literal approaches . 13
3.1.2 Logic approaches . 13
3.1.3 DSML approaches . 15

3.2 Role-binding approach for pattern application . 17
3.3 Conclusions . 18

4 Tool Exploration 19
4.1 Pattern application tools . 19
4.2 EMF DiffMerge/Patterns . 20
4.3 DSL-tao . 24
4.4 Conclusions . 27

5 Extensions of DSL-tao 29
5.1 Approach for pattern specification . 29
5.2 Approach for pattern application . 30
5.3 Tool support . 31

5.3.1 Extension 1 . 31
5.3.2 Extension 2 - Problem statement . 33
5.3.3 Extension 2 - The merge function . 36

5.4 Conclusions . 39

Pattern Specification and Application in meta-models in Ecore vii

CONTENTS

6 Conclusions and Future Work 41
6.1 Conclusions . 41
6.2 Future work . 42

6.2.1 Validation of the extensions . 42
6.2.2 Validation of Altran’s patterns . 42
6.2.3 Further extension for pattern application 42
6.2.4 Pattern variants . 43
6.2.5 Blueprint of an advanced language workbench 43

Bibliography 45

Appendix 49

A EMF DiffMerge/Patterns Guide 49

B DSL-tao Guide 57

viii Pattern Specification and Application in meta-models in Ecore

List of Figures

2.1 The four-layer MOF architecture . 6
2.2 A model of a real world workplace . 8
2.3 The example meta-model of workplace modeling language 9
2.4 The Declaration pattern . 10
2.5 The instance of Declaration pattern in Workplace meta-model 10

3.1 An example pattern specification of literal approaches [30] 14
3.2 An example pattern specification of logic approaches [8] 15
3.3 An example pattern specification of DSML approaches [1] 15
3.4 An example pattern query specification in IQPL [9] 16
3.5 An illustration of Collaboration in UML [1] . 17
3.6 An illustration of CollaborationUse in UML [2] . 17
3.7 Meta-model excerpt of VPML for pattern specification 18

4.1 Setting of “Properties” tab in the creation wizard 21
4.2 Setting of “Content” tab in the creation wizard . 22
4.3 Setting of an application wizard . 22
4.4 The meta-model after the pattern is being applied 23
4.5 Excerpt of the meta-model of DSL-tao/dslpatterns language [29] 24
4.6 The roles of the Declaration pattern defined in the repository 24
4.7 The structure of the pattern repository . 25
4.8 The add and delete function in an application wizard 25
4.9 The instance of Declaration pattern in a application wizard 26
4.10 The pattern instance in diagram . 27

5.1 Conformance between MOF and Epattern specifications [16] 30
5.2 Patterns in MOF architecture . 30
5.3 Excerpt of the extended meta-model of DSL-tao 32
5.4 The Declaration pattern in the repository . 32
5.5 An example of extension 1 . 33
5.6 The functions provided in DSL-tao to modify instances of a pattern element 34
5.7 Two possible instances of the Declaration pattern 35
5.8 The merge function in DSL-tao . 38
5.9 The result instance after using merge function . 39

A.1 DiffMerge/Patterns menu . 49
A.2 The Declaration pattern in UML . 50
A.3 Setting of “Properties” tab . 50
A.4 Set the multiplicity and roles of pattern elements 51
A.5 Setting of “Content” tab . 52
A.6 The original meta-model . 52
A.7 Select a pattern . 53

Pattern Specification and Application in meta-models in Ecore ix

LIST OF FIGURES

A.8 Map roles to elements . 54
A.9 The layout of the pattern instance . 54
A.10 The meta-model after the pattern is being applied 55
A.11 The final meta-model . 56

B.1 New a DSL-tao project and design diagram. 57
B.2 The pre-defined patterns. 58
B.3 The structure of the pattern repository . 58
B.4 The structure of Declaration pattern in the repository 59
B.5 The finial tree view of the instance of Declaration pattern 59
B.6 The pattern instance in diagram . 60

x Pattern Specification and Application in meta-models in Ecore

List of Tables

5.1 Cardinalities of elements in Declaration pattern . 33
5.2 The effects of add and delete functions . 34
5.3 The auxiliary functions in the merging function . 38

Pattern Specification and Application in meta-models in Ecore xi

Abbreviation

BPMN Business Process Model and Notation
DSL Domain Specific Language
DSML Domain Specific Modeling Language
EMF Eclipse Modeling Framework
GPL General Purpose Language
HTML HyperText Markup Language
MDE Model-Driven Engineering
MDD Model-Driven Developing
MDA Model-Driven Architecture
MOF Meta Object Facility
OCL Object Constraint Language
OMG Object Management Group
QVT Query/View/Transformation
UML Unified Modeling Language
XML EXtensible Markup Language

Pattern Specification and Application in meta-models in Ecore xiii

Chapter 1

Introduction

This chapter presents the background knowledge and the purpose of this project. Also the struc-
ture of this thesis is outlined.

1.1 Motivation

Model-Driven Engineering (MDE) is a promising software development methodology, which em-
ploys models as the essential artifacts to raise the level of abstraction in software development.
Designing and analyzing models instead of code in MDE brings many advantages. To be more
specific, models used in MDE can be transformed into other models via model transformations, or
into executable code via code generation or model interpretation, thus accelerating the develop-
ment process and reducing development costs. Moreover, as models are enforced in MDE, errors
can be detected in early stage [32] via model validation, model checking and model-based testing.

Domain Specific Languages (DSLs) is a frequent term used in the context of MDE. DSLs are
an important technology that is used to model a variety of domains. As stated in [32], MDE
technologies are the combination of Domain Specific Modeling Languages (DSMLs, i.e. DSLs for
modeling) and transformation engines as well as generators. Moreover, the development of DSLs
follows the MDE methodology. Generally, the abstract syntax of a DSL is defined in meta-models,
from which a corresponding implementation can be generated automatically by means of code
generators.

Driving the model-driven software development, DSLs are essential but hard to create. Lan-
guage developers have to communicate extensively with domain experts to understand the relevant
domain concept and the problems to be solved, then translate requirements into meta-models, as-
sociated syntaxes, transformations and tooling. Because of the specificity - every DSL addresses
the needs in a given domain, meta-models that define abstract syntax of DSLs are also specific and
have to be created from scratch. This leads to a time-consuming development process and a need
for experienced developers to guarantee the quality of a DSL. Moreover, DSLs are becoming more
complex and harder to create and maintain with the increasing complexity of the applied domain-
s/systems. This increases the investment in time and money that is consumed in the development
of languages to support the model-driven software development.

A promising way to alleviate the current situation is to use design patterns in the design and
development of DSLs. “Re-usability is one of the great promises of object-oriented technology” [3].
Up to date, we have seen many successful examples of object-oriented reuse, for example, software
libraries are the most commonly reusable code in software development, and design patterns
provide reusable common solutions for some recurring problems.

In the context of DSLs’ development, design patterns can be used in the meta-models of a DSL
to model the solutions for some recurring problems that the DSL is required to solve. A design
pattern is not a finished design like a model fragment. It is an abstraction of a model fragment
that can be instantiated into various model fragments in different situations. The flexibility makes

Pattern Specification and Application in meta-models in Ecore 1

CHAPTER 1. INTRODUCTION

design patterns more appropriate to be reused than model fragments; however, because of the
flexibility, design patterns are harder to be applied than model fragments. A model fragment can
be copied from one model to another without any modifications if the fragment suits the situation.
To apply a design pattern to a specific situation, we have to consider to what extent such pattern
can be instantiated. The simplest case is to use a design pattern as is, namely, instantiate the
pattern structure without any modifications. But this is not always the case. In many situations,
the structure of an instance of a design pattern is different from that of the design pattern itself.
In other words, the structure of an instance needs to be adapted for the specific needs of the DSL
under development. For example, a meta-class in a design pattern may require specific relations
or can be shared across multiple instantiations of patterns.

1.2 Project goal

This project is initiated by Altran1, a global innovation and engineering consulting firm. The
engineers of Altran have developed many DSLs for their clients, and the underlying meta-models
were created from scratch every time. The engineers have found some recurring solutions in
their languages that can be used as design patterns in the development of DSLs. These design
patterns exist not only in the meta-models of DSLs, but also in the associated language engineering
artifacts like associated syntax, transformation and constraints. Interestingly, the patterns in the
associated artifacts are correlative with the patterns in meta-models. Therefore, if the patterns
in meta-models can be reused and the associated artifacts can be reused (semi-)automatically
based on the meta-models (e.g. the associated artifacts can be instantiated simultaneously when
a pattern is being instantiated), the development of DSLs can be improved significantly.

However, because of the lacking of tool support, the patterns discovered from Altran’s DSLs
can not be applied directly to their new DSLs. The meta-models have to be created from scratch
and the associated artifacts have to be defined manually every time. Meta-models are at the heart
of language development, hence applying patterns in meta-models is a good starting point to solve
Altran’s problems and to develop more advanced tool chains for language development. In this
project, we focus on the starting point and formulate Altran’s assignment as follows:

Altran’s assignment: we are seeking approaches for pattern specification and applic-
ation in meta-models in Ecore, and we need tool support to apply our patterns in the
development of DSLs.

The goal of this project is to explore mechanisms for applying patterns in meta-models as well
as to provide tool support for pattern application in meta-models. Because Altran mainly uses
Ecore as the meta-modeling language, this project focuses on the meta-models defined in Ecore
rather than other meta-modeling languages.

As the design patterns proposed by Gang of Four (i.e. GoF) are famous, we use “design
patterns” and “patterns” to avoid confusion between the famous GoF design patterns and the
other patterns discovered by individuals and/or companies. In the rest of the thesis, “design
patterns” refers to the patterns proposed by GoF, and “patterns” refers to the patterns proposed
by individuals or companies. Essentially, Altran’s patterns are very similar to the design patterns,
both of them provide general solutions for recurring problems.

We restrict our research to the meta-models in Ecore, which are popular when developing
DSLs. Furthermore, we only focus on pattern specification and application, other applications
like pattern discovery, pattern detection and so forth are not considered in this project.

To achieve the goal, the first research question we answer is as follows:

RQ1. What approaches and tooling are being used to specify and apply design pat-
terns/patterns in meta-models in Ecore and in UML models?

1http://www.altran.com/

2 Pattern Specification and Application in meta-models in Ecore

CHAPTER 1. INTRODUCTION

Although that our research is limited to the meta-models defined in Ecore, we explore ap-
proaches for UML models in this question as well. As UML package Classes::Kernel is merged
into MOF, and Ecore can be treated as an implementation of MOF, the UML Classes package is
quite similar to the meta-model of Ecore. Therefore, the approaches for the meta-models defined
in Ecore can be learned from that for UML models and design pattern application tools that are
suited for UML class diagrams may be applicable to Ecore class diagrams as well.

There are two aspects in this work: one is pattern specification and another is pattern ap-
plication. Specification of a pattern is a prerequisite for pattern application. First of all, a
pattern specification should be understandable to users, otherwise it can not be used appropri-
ately. Secondly, a pattern specification should be processable by machines, otherwise it can not
be supported by tooling. Hence, we consider two requirements of a pattern specification in this
project:

Req1 Understandability. A pattern specification should be easy to understand by users.

Req2 Processability. A pattern specification should be processable by machines.

Regarding pattern application in meta-models, the questions are to what extent a pattern can
be instantiated and how to instantiate it. In other words, it is necessary to study what kind of
modifications can be made to the structure of a pattern in order to create the needed structure in
our meta-models and how to implement these modifications. This is a broad topic that is related to
pattern variants, and it is not easy to get answers without extensive experiences and experiments.
Because of time and resource limitation, we narrow the modifications to addition and deletion of
pattern elements (i.e. classes, references and attributes), which means that a pattern element can
be instantiated to zero or many instance(s) when a pattern is being applied. Thus, the second
research question we answer is as follows:

RQ2. How to control the occurrences of pattern elements when a pattern is being
instantiated and what functions should be provided by tooling to support the control?

The second research question can be reformulated into two sub-questions:

RQ2-1. What approaches are being used to control the occurrences of elements of a
pattern when the pattern is being applied?

RQ2-2. What functionality should be provided by tooling to support the control of the
occurrences of pattern elements?

To answer these research questions, the following activities should be performed:

A1. Study literature on approaches for pattern specification and application in meta-models
defined in Ecore and in UML models to answer RQ1 and RQ2-1.

A2. Investigate tool implementations that support pattern specification and application to answer
RQ1 and RQ2-1. Then propose a list of potential tools that can be adapted to solve RQ2-2.

A3. Modify a potential tool to answer RQ2-2. To this end, a pattern should be able ot be
specified and applied to meta-models with tool support.

1.3 Thesis outline

The remainder of this thesis is structured as follows.

• Chapter 2 Preliminaries. This chapter introduces the basic terminology that is related to
this project. Moreover, a motivating example for this work is described.

Pattern Specification and Application in meta-models in Ecore 3

CHAPTER 1. INTRODUCTION

• Chapter 3 State of the art. This chapter lists the existing approaches used to specify and to
apply patterns in meta-models defined in Ecore and in UML models.

• Chapter 4 Tool exploration. This chapter presents a large collection of related tools. Fur-
thermore, two potential applicable tools are discussed in detail.

• Chapter 5 Extensions of DSL-tao. This chapter first explains our methodology to specify
and apply patterns. Then the design and implementation of two extensions of DSL-tao are
elaborated with the demonstration of a pattern application using the motivating example.

• Chapter 6 Conclusions and future work. We draw conclusions in this chapter and list some
future works.

4 Pattern Specification and Application in meta-models in Ecore

Chapter 2

Preliminaries

This chapter introduces the basic background knowledge that is related to this project. Addition-
ally, we describe a motivating example illustrating pattern application in meta-models in Ecore at
the end of his chapter.

2.1 Model-Driven Engineering

Model-Driven Engineering is a paradigm of software engineering, in which models play a central
role. As a software engineering methodology, MDE covers studies and applications on design, de-
velopment, implementation and maintenance of software in a model-based way. In MDE, models
are used as the abstraction of system components, from which code can be automatically gener-
ated by means of tools. Also, models can be used as documentation of the system being built.
These documents are important for designers and developers to understand and maintain a sys-
tem. Therefore, MDE can improve productivity and communication in the software engineering
processes.

When mentioning MDE, it is important to distinguish it from Model-Driven Development
(MDD) and Model-Driven Architecture (MDA). Model-Driven Development is, as the name im-
plies, a model-based paradigm for software development. It can be considered as a subset of MDE
that concentrates on software development rather than design and other activities when developing
software. In MDD, code can be automatically generated from models and any changes in models
can be propagated to code, namely, models and code are always consistent [33].

Model-Driven Architecture, initiated by Object Management Group (OMG), is a particular
version of MDD [27]. It defines many standards for software development like UML, MOF, XMI
and CWM. The principle of MDA is “everything is a model” [10].

2.2 Eclipse Modeling Framework

The previous section introduces Model-Driven Architecture, which relies on several standards like
UML and MOF. MOF is short for OMG’s Meta-Object Facility that defines a four-layer meta-
modeling architecture. As seen from Figure 2.1, the top layer M3 provides a meta-metamodel,
which defines meta-models at the layer M2. The meta-models at the M2 layer are used to describe
models at the M1 layer, and the models can be instantiated at the layer M0 by objects of a real
system. An example of the four-layer architecture is illustrated on the right side of Figure 2.1. To
model a real world object at the M0 layer, UML models at the model layer (M1) are employed,
which is defined by UML meta-models at the M2 layer. UML meta-models are also models, the
concepts and relations of which are specified by the meta-metamodel MOF at the M3 layer.

Eclipse Modeling Framework (EMF) is another popular meta-modeling framework, which can
be considered as an implementation of the MOF architecture [21]. The core component of EMF is
a meta-model named Ecore. Ecore can be put at the M3 layer in the MOF architecture in the case

Pattern Specification and Application in meta-models in Ecore 5

CHAPTER 2. PRELIMINARIES

Figure 2.1: The four-layer MOF architecture

that the models that Ecore describes, are meta-models. But this is not always the case. Ecore can
also be used to define models at the M1 layer, in which cases Ecore is considered as a meta-model
at the M2 layer.

Generally, the meta-model of Ecore language (at the M3 layer) defined in EMF is called the
Ecore meta-model. The meta-models at the M2 layer described in Ecore language are known as
Ecore models. In practice, engineers sometimes use Ecore meta-models to refer to the meta-models
defined in Ecore to facilitate communication with each others. In order to simplify, we also use
“Ecore meta-models” to refer to the meta-models defined in Ecore and use “Ecore models” to
refer to the instances (i.e. models) of the meta-models define in Ecore in the rest of this thesis.

Except the modeling language Ecore, EMF provides code generation facility for creating tools
and software applications. By means of code generators in EMF, models can be automatically
generated to Java code and any changes of models can be automatically updated in code. Hence,
“EMF has successfully bridged the gap between modelers and Java programmers” [34].

2.3 Domain Specific Languages

In contrast to General Purpose Languages (GPLs) like Java and C++ that are complex and
applicable in many domains, a Domain Specific Language (DSL) is a language tailored to solving
problems in a particular domain. DSLs are relatively small and only include features for a target
domain, thus they are easy to learn and to understand for engineers and domain experts.

A DSL can be categorized by its form: external or internal [17]. An external DSL, like Cas-
cading Style Sheets (CSS), has its own syntax, and a parser has to be developed to interpret or
translate this language, which means this kind of languages is independent of another language
(i.e. its host language). On the contrary, an internal DSL relies on a host language. Specifically, it
takes advantage of some features of the host language and it is made like a customized language
for addressing domain problems.

Another categorization method is based on a DSL’s purpose, including Domain Specific Makeup
Languages, Domain Specific Modeling Languages (DSMLs) and Domain Specific Programming
Languages [39]. For instance, HTML is considered as a domain specific makeup language for web

6 Pattern Specification and Application in meta-models in Ecore

CHAPTER 2. PRELIMINARIES

page development; whereas BPMN is a domain specific modeling language for modeling business
processes.

Domain Specific Modeling Languages, as the DSLs for modeling, are important in the MDE
world. As described in [31], MDE technologies combine domain-specific modeling languages and
transformation engines as well as generators. DSMLs are used to model the structure and behaviors
of applications in different domains. Then, model transformation engines and generators are used
to analyze models as well as to synthesize artifacts like source code and XML descriptions such
that the consistency between models and application implementations remains.

There are some commonly used DSLs in model-driven software development. For example, Ob-
ject Constraint Language (OCL) is a language for declaring rules of models with assertions. QVT
(Query/View/Transformation) defines a set of domain specific model transformation languages
including QVT-Operational, QVT-Relations and QVT-Core.

2.4 Design Patterns

In 1994, the book Design Patterns: Elements of Reusable Object-Oriented Software was published,
and since then design patterns have been popular in software design for decades. A design pattern
describes a general solution for a recurring problem in a specific context. Design patterns are
considered as reusable good practices in software design.

“Each design pattern systematically names, explains, and evaluates an important and recurring
design in object-oriented systems” [20]. The essential elements of each design pattern defined in
this book include pattern name, problem, solution and consequence. Pattern name summarizes
a pattern in one or two word(s). Problem describes the problem solved by a pattern, namely,
in what context the pattern can be applied. Solution describes a pattern itself that includes
elements, relations, collaborations and constrains of a design. Consequence describes the results
after applying a pattern.

A design pattern is a general solution instead of a particular concrete design, which has to be
adapted in different situations. Design patterns are like templates of problem solutions and need
to be customized to fit into particular situations.

Design patterns have different implementations as they are used in various object-oriented
languages. In the book, the examples of design pattern implementations are shown in C++ and
Smalltalk. This work focuses on patterns in UML and Ecore.

2.5 A Motivating Example

The focus of this project is how to define and apply patterns in Ecore meta-models. From the
theoretical perspective, we will present several approaches for this purpose in Chapter 3; and from
the practical perspective, we will compare the related tools that can define and/or apply patterns
in different models in Chapter 4. Before that, a motivating example is introduced in this section.

In this example, we define a DSL for modeling a workplace. Looking around a real world
workplace, it is common that every employee has a fixed office with an assigned table, chair
and computer. Also the employees that are in the same position usually have the same working
environment (e.g. every manager has an individual small office while six engineers share a big
office).

Figure 2.2 shows a model of a company’s workplace. This model includes two kinds of
equipments: desks and computers. There are five equipments described in this model: regular

desk, meeting table, dining table, normal computer and engineer computer. The equip-
ment regular desk contains an adjustable element that indicates its height. For the engineer

computer or the normal computer, a registration item is attached to record information about
the computer. Every workplace definition is bound with specific equipments and employee’s roles
(which are described by properties of a workplace definition and they are not shown in Figure 2.2).
In this model, an engineer workplace definition is defined for software engineers and includes

Pattern Specification and Application in meta-models in Ecore 7

CHAPTER 2. PRELIMINARIES

an engineer computer and a regular desk. A manager workplace definition is defined for
top managers and includes a normal computer and a regular desk. Two instances of these two
workplaces are assigned to two employees Tom and Ben respectively. Tom is a software engineer
who has an engineer workplace with a 75-height regular desk and an engineer computer whose
serial number is C02PMRLHG8WN. Ben is a top manager who has a manager workplace with a
65-height regular desk and a normal computer whose OS is Windows 10.

Figure 2.2: A model of a real world workplace

The language used to describe this model is defined using Ecore, by the meta-model in Fig-
ure 2.3. The root element of this meta-model is WorkspaceModel. The WorkspaceModel contains
one Equipment container and zero to many WorkspaceDefinition(s) as well as zero to many
Employee(s). An employee plays one or more roles (defined by a data type Role) in an organiza-
tion and is assigned to one or more workspaces based on her role(s). Comparing this meta-model
with the model in Figure 2.2, we can see that a Workspace (e.g. the workplace of Tom) is defined
by a WorkspaceDefinition (e.g. the engineer workplace definition) that is specific for one or more
role(s). Every WorkspaceDefinition is related to a Desk (e.g. the regular desk) as well as a
Computer (e.g. the engineer computer), and it can be extended by another WorkspaceDefinition.
Each Desk has zero or more AdjustableItem(s) (e.g. height of a desk). Each Computer has zero
or more RegistrationItem(s) (e.g. serial number of a computer). These items are specified by
Adjustment (e.g. 75 cm) and Registration (e.g. Windows 10) when a Workspace is being created.
The values of instances of adjustable items and registration items are EString type.

Besides, Desk and Computer inherit from the abstract classes EquipmentItem and NamedElement.
The NamedElement is also inherited by classes Employee and WorkspaceDefinition.

8 Pattern Specification and Application in meta-models in Ecore

CHAPTER 2. PRELIMINARIES

F
ig

u
re

2.
3:

T
h

e
ex

a
m

p
le

m
et

a
-m

o
d

el
o
f

w
o
rk

p
la

ce
m

o
d

el
in

g
la

n
g
u

a
g
e

Pattern Specification and Application in meta-models in Ecore 9

CHAPTER 2. PRELIMINARIES

The highlighted (colored) elements in the meta-model (shown in Figure 2.3) is shown in Fig-
ure 2.5, which indicates an instance of the Declaration pattern shown in Figure 2.4. A colored
element in the pattern is instantiated by the elements in the same color in the meta-model. For
example, the Container in the pattern is instantiated by classes Desk and Computer in the meta-
model.

Figure 2.4: The Declaration pattern

Figure 2.5: The instance of Declaration pattern in Workplace meta-model

An important feature of the example meta-model is that it allows users to specify a form of
types of desks or computers, with some variation of properties like adjustment item or registration
items. The allocation to an employee via the workspace thus requires specifying the values for the
user defined properties (i.e. instantiation of the members of the type), depending on the types of
desk or computer associated with the workspace. This feature is implemented by the Declaration
pattern, which provides the mechanism to declare instances defined by a specific type. Using this
pattern, we can easily create a meta-model of a DSL that contains the mechanism to define a type
and to declare instances of this type. This example (in Figure 2.5) is a particular case that the
Type and InstanceSpecification are instantiated (to WorkspaceDefinition and Workspace

respectively) only once. The Container is added in this pattern to discriminate between types.

10 Pattern Specification and Application in meta-models in Ecore

CHAPTER 2. PRELIMINARIES

In other variants, the Container may be omitted when the type can be directly instantiated.

Pattern Specification and Application in meta-models in Ecore 11

Chapter 3

State of the Art

In the previous chapters, we detailed the research domain and introduced the general knowledge
for this work. In this chapter we aim to investigate the state-of-the-art approaches for specifying
and applying patterns (i.e. conduct the activity A1 stated in Section 1.2). To this end, a study on
relevant tool support is conducted in order to find potential solutions for the research questions.

3.1 Approaches for pattern specification

In order to be applied in models, a pattern has to be specified in a understandable way to users
and be processable by machines. This section aims to describe existing approaches for specifying
design patterns/patterns. We categorize these approaches, give a representative example from
each category and argue why these approaches do not fully satisfy the requirements stated in
Section 1.2.

3.1.1 Literal approaches

As popularized by the book Design Patterns: Elements of Reusable Object-Oriented Software [20],
design patterns have been commonly used to create models that are used in software development.
The design patterns introduced in this book are specified in terms of thirteen aspects: pattern
name and classification, intent, also know as, motivation, structure, participants, collaborations,
consequences, implementation, sample code, known uses and related patterns. Except for struc-
ture (represented in graphical notation) and sample code, other aspects are explained in natural
language (e.g. English), which can be understood directly by users.

Such a specification is also used in [30]. Figure 3.1 shows an example pattern specification
presented in [30]. Obviously, seven aspects of this pattern are described in English, except a
graphical structure. The paper [30] provides a pattern-based development for DSL, in which
patterns are specified in English and are applied by their Pattern Application Algorithm.

We call this kind of approaches literal approaches because patterns in these approaches are spe-
cified in natural languages. Even though these approaches combine graphical structure with literal
description, which makes patterns easier to understand by users/readers, they lack a machine-
processable mechanism for the subsequent activities like detection, query and verification.

3.1.2 Logic approaches

As natural languages are inaccurate and vague in terms of machine analysis [5], researchers have
proposed to use logic-based formalisms to specify, detect and verify patterns.

The formalisms used as basis of these approaches are first order logic, temporal logic, temporal
logic of action, process calculus, and Prolog [36]. For instance, Mikkonen [28] proposed a pattern
specification method DisCo, the formal basis of which is Temporal Logic of Actions, and Eden [12]
proposed a visual language LePUS based on the higher order monadic logic, while Bayley and

Pattern Specification and Application in meta-models in Ecore 13

CHAPTER 3. STATE OF THE ART

Figure 3.1: An example pattern specification of literal approaches [30]

Zhu [6, 7, 8, 41] focused on specifying design patterns and their variants using first order predicate
logic. Additionally, some papers separated the structural aspect and the behavioral aspect of a
pattern, and specified the two aspects using First Order Logic and Temporal Logic of Actions
respectively [11, 22, 37]. An example of a logic approach is shown in Figure 3.2. The pattern
specification Factory Method is specified in predicate logic, which includes Components, Static
conditions and Dynamic conditions.

Logic approaches are more formal, more precise and less ambiguous than literal approaches.
Because of the mathematical basis underlying these approaches, they can be easily processed
by machines for detection and verification of patterns and their variants. On the other hand, the
mathematical notations makes these approaches hard to apply. First of all, it is likely that pattern
users are not familiar with the mathematical knowledge used in logical approaches, and learning
such knowledge is difficult as well as time-consuming. Secondly, the logic-based pattern specific-
ation can not be used directly on graphical models. In order to apply logic-specified patterns,
graphical models have to be transformed into a logical form that is consistent with the logic used
for pattern specification. In this case, logic-based specification approaches are inconvenient and
time-consuming.

14 Pattern Specification and Application in meta-models in Ecore

CHAPTER 3. STATE OF THE ART

Figure 3.2: An example pattern specification of logic approaches [8]

3.1.3 DSML approaches

Domain Specific Modeling Languages (DSMLs) are languages for modeling in a specific domain.
A lot of work have been done on developing DSMLs for different pattern application purposes.

UML has provided a mechanism to specify and apply design patterns using Collaboration and
CollaborationUse respectively. Figure 3.3 illustrates an example of a Collaboration [1], which is
shown in a dashed eclipse shape. A collaboration includes a name, roles, role types and connectors.
A role and its type is depicted in a rectangle, while a connector is depicted as a line. A colon in
a rectangle is used to concatenate the role name and its type.

Figure 3.3: An example pattern specification of DSML approaches [1]

Maplesden, Hosking and Grundy [24, 25] proposed a visual language Design Pattern Modeling
Language (DPML) for modeling design patterns and their instances in UML models. In this
approach, design patterns are specified in Specification Diagrams that show the structure of a
pattern, and the instances of design patterns are depicted using Instantiation Diagrams, which
indicate binding relations between pattern specification and realization in UML models.

Similarly, Kim et al. [18, 19] presented a Role-Based Modeling Language (RBML) for specifying
and applying patterns in UML models. Design patterns in this approach are specified using Static
Pattern Specifications that conform to UML class diagrams, and the interactions between pattern
participants (i.e. classifiers in a pattern model) are defined using Interaction Pattern Specifications
that conform to UML sequence diagrams. Also, this approach provides State Machine Pattern
Specifications to specify state-based behaviors of patterns, which conform to UML state machine
diagrams.

With the extensive use of model-driven software development approaches and EMF, DSMLs

Pattern Specification and Application in meta-models in Ecore 15

CHAPTER 3. STATE OF THE ART

for modeling patterns are not restricted to UML models.

Elaasar [13, 14, 16] extended EMF with Pattern Modeling Framework (PMF) and introduced
an extension of Ecore called Epattern to specify patterns on MOF-compliant modeling languages.
In addition, they provided a well-defined iterative specification process for specifying patterns in
Epattern language. Recently, a revised work [15] has been published, in which an evolved language
Visual Pattern Modeling Language (VPML) is introduced. This language handles not only pattern
specifications, but also pattern variants and parameterized patterns. For the purpose of detection,
the specifications in VPML are mapped to QVT-Relations (QVTR) transformations that can be
used to execute pattern detection.

The other specification approach for querying patterns is proposed by Bergmann et al. [9]. They
created a declarative language called IncQuery Graph Pattern Language (IQPL), which is used
to specify patterns and pattern queries. This language is specific for querying patterns in EMF
models. Figure 3.4 illustrates an example query over an Ecore meta-model. The specification starts
with a keyword “pattern” followed by a pattern name. Line 4 to 8 describe a pattern structure,
while line 10 to 16 describe queries for this pattern. In this way, it provides an approach to specify
patterns, namely, describe pattern structure in IQPL. Although this language is suitable for EMF
models, it can only be used to query patterns rather than applying patterns.

Figure 3.4: An example pattern query specification in IQPL [9]

In 2015, a new DSL called DSL-tao was proposed for facilitating pattern usage in Ecore meta-
models [29]. Different from other DSMLs, every pattern specified in DSL-tao is bound to an
Ecore meta-model that represents the structure of a pattern. The language itself is used to model
a pattern repository and specify pattern roles in a pattern, namely, every element (i.e. classes,
attributes and references) in an Ecore pattern model is described with corresponding pattern role
(e.g. ClassRole and AttributeRole) in DSL-tao.

These DSML approaches allow to specify patterns directly on MOF-based models, hence avoid-
ing the costs of upfront conversion. Moreover, every DSML can be tailored to achieve specific aims
precisely and effectively. For example, IQPL is created for querying patterns, whereas VPML is
made for detecting patterns.

However, every coin has two sides. First of all, a DSML is always developed for a specific
purpose like pattern detection or pattern application, resulting in a limited usage of patterns in
the development chain. To be more specific, the pattern specification defined to apply patterns
at the design phase can not be used to detect patterns at the maintenance phase, because such
specification can not be recognized and processed as the input of a detection tool. For example,
RBML is only used to apply patterns while VPML is used to detect patterns. Hence, to detect
a RBML-specified pattern using VPML, the RBML specification would require translation to
its equivalent VPML specification because the VPML implementation can only detect VPML-
specified patterns, but this translation is not trivial. Secondly, some DSMLs stated above are not
tested by a large amount of cases. This means the applicability, efficiency and accuracy can not be

16 Pattern Specification and Application in meta-models in Ecore

CHAPTER 3. STATE OF THE ART

guaranteed when using such DSMLs. Last but not least, compared to literal approaches, DSML-
specified patterns are not easy to understand for pattern users (rather than pattern creators).

3.2 Role-binding approach for pattern application

Applying patterns in model-driven software development is important and useful because patterns
provide proven common solutions for recurring problems during development. UML, as the most
prominent modeling language, has already provided mechanisms for pattern application. In UML,
design patterns are specified using Collaborations, while pattern instances are represented using
CollaborationUse.

Figure 3.5 illustrates an example of a Collaboration [1] that is shown in a dashed eclipse shape.
This pattern Visit describes the cooperation between doctor and patient in order to achieve the
given task Visit. The two roles doctor and patient are participants of this pattern, which will
be played by instances (described in CollaborationUses) when they are applied. The relationships
related to the task are specified in connector, while the types of roles are specified in role

types that define all required properties of the instances playing specific roles.

Figure 3.5: An illustration of Collaboration in UML [1]

Figure 3.6 illustrates an example of a CollaborationUse [2] named childVisit, which describes
an instance of the Visit collaboration in the context of children medical treatment. Under this
specific context, role doctor is played by Pediatrician, while patient is played by Infant. The
connector between doctor and patient in Collaboration is instantiated by the relation between
Pediatrician and Infant. By indicating role bindings in CollaborationUses, a pattern is
applied to an instance in a specific context. In this way, UML provides mechanisms for pattern
specification and application.

Figure 3.6: An illustration of CollaborationUse in UML [2]

Pattern Specification and Application in meta-models in Ecore 17

CHAPTER 3. STATE OF THE ART

Similar to the approach provided in UML, in [24, 25], patterns are specified in DPML using
Specification Diagrams, which are similar to Collaboration in UML, and instances are described
in Instantiation Diagrams, which are similar to CollaborationUse in UML.

Not surprisingly, DSMLs for specifying patterns provide similar role-binding approaches to
describe how a pattern is applied in a specific context [4]. In RBML, patterns are specified in
Structural Pattern Specifications while instances of patterns are defined in UML class diagrams.
Hence, every element in a pattern has a specific role whose base is a UML meta-class, e.g. Asso-
ciation role and Class role. Pattern application is implemented by establishing bindings between
model elements to pattern roles.

This approach has been adapted to Ecore meta-models. The DSL-tao language is created
for pattern usage in Ecore meta-models. It declares roles in patterns and roleInstances in
patternInstances. The roleInstances pointing to Eobjects is bound with roles pointing to
Ecore meta-classes like EClass and EReference.

Moreover, the role-binding approach has also been propagated to other MOF-based models in
[13, 14, 15, 16]. The language Epattern and the revised language VPML are proposed to facilitate
the usage of patterns in MOF-based models. For example, in VPML, a Role contained in a
Pattern is played by an instance defined in PatternUse via RoleBinding (see Figure 3.7).

Figure 3.7: Meta-model excerpt of VPML for pattern specification

We only found the role-binding approach for pattern specification in the literature we studied.

3.3 Conclusions

In this chapter, we have shown the results of literature study. Section 3.1 introduced three categor-
ies of pattern specification approaches, namely, literal approaches, logic approaches and DSML
approaches. Section 3.2 introduced approaches for pattern application. In fact, we found only one
application approach - the role-biding approach. In next chapter, the results of tool exploration
will be shown by introducing a collection of pattern application tools.

18 Pattern Specification and Application in meta-models in Ecore

Chapter 4

Tool Exploration

From the practical perspective, we explore the related tool support that can define and/or apply
patterns in models/meta-models (i.e. conduct the activity A2 stated in Section 1.2).

In this chapter, we first analyze a large collection of related tools in Section 4.1. Then, in
Section 4.2 and 4.3, two tools that are useful for this project are discussed in more detail. These
two tools are considered as potential tooling that can be extended for our case. The features
of these two tools are introduced by creating the example meta-model using the Declaration

pattern.

4.1 Pattern application tools

There is a large collection of tools that are considered related to pattern definition and/or applica-
tion. These tools can be applied to Ecore, UML and other MOF-compliant models. Some of them
are open-source tools while others are commercial tools. Below are the details of the investigated
tools.

UMLAUT1 is a tool and framework used for UML models. As introduced in Section 2.4, the
official mechanism to define design patterns in UML is to use the collaboration construct, which
includes the parameterized collaborations to define design patterns and the collaboration usage
to apply design patterns for specific situations. Instead of using parameterized collaborations,
UMLAUT provides mechanisms to more precisely define design patterns by means of collaboration
and constrains at the meta-level, which is proposed in [22, 23, 35]. This tool is still available but
only for an obsolete execution environment (i.e. JDK 1.3) and UML version (i.e. UML 1.3). With
the evolution of UML, this tool evolved to a new generation called UMLAUT NG2, which is
an extendible tool and framework for model transformation. It enables the application of design
patterns in UML by using advanced model transformations [38]. Nowadays, this tool has been
replaced by Kermeta3 and its MDKs (Model Development Kits). Kermeta not only provides
MDKs to play with UML models but also to play with Ecore, Java5 and other meta-models4.
However, the MDK for Ecore is not available, so we will not consider any of these tools in the rest
of our work.

DPTool is a prototype tool that supports defining and applying design patterns in UML mod-
els using Design Pattern Modeling Language (DPML) [26]. This language can be used standalone
to define patterns, or it can be used together with UML to represent design pattern instances.
Besides, this tool includes features to automatically instantiate design patterns and check con-
sistency between design patterns and their instances. MaramaDPTool5 is the latest version of

1http://www.irisa.fr/UMLAUT/
2http://raweb.inria.fr/rapportsactivite/RA2006/triskell/uid54.html
3http://www.kermeta.org/
4For more information: http://raweb.inria.fr/rapportsactivite/RA2006/triskell/uid46.html
5https://wiki.auckland.ac.nz/display/csidst/MaramaDPTool

Pattern Specification and Application in meta-models in Ecore 19

CHAPTER 4. TOOL EXPLORATION

DPTool [25]. Unfortunately, it has been terminated in 2012, so it will not be considered in the
following work.

IBM Rational Software Architect6 (RSA) is a commercial software that supports com-
prehensive design, modeling and development. It is built in the Eclipse framework and it provides
multiple functions to address model-driven development (MDD) problems. This tool contains a
pattern framework to manipulate design patterns in UML models. For example, a design pattern
instance can be dragged to an UML diagram as well as be bound by UML elements when being
applied [40]. Although this tool provides a lot of support for pattern application, we can not easily
extend it because it is not an open source software.

Epattern is a graphical pattern specification language that is defined in Pattern Modeling
Framework (PMF). The meta-model used to define Epattern extends the meta-model of Ecore [14].
This means that the language is an extension of Ecore language, and it is able to define patterns
in Ecore meta-models. The implementation of this language provides an editor for Eclipse to
specify Ecore patterns in Epattern language. However, this implementation is not available now.
As time went on, a revised work [15] came out. In this revised version, a new domain specific
language Visual Pattern Modeling Language (VPML) and its implementation was designed
and developed. The VPML tooling provides an editor in Eclipse for defining and detecting patterns
of MOF-based models using VPML. Unfortunately, the VPML tooling cannot be easily accessed
either nowadays.

EMF-IncQuery7 is designed as a declarative domain specific language and an incremental
graph query engine to process queries on EMF models (e.g. BPMN and Ecore) [9]. Before pro-
cessing a query, a graph pattern that will be queried has to be defined in the language EMF-
IncQuery. In this way the tool implements an approach to define model patterns, namely, defining
model patterns in EMF-IncQuery language.

EMF DiffMerge/Patterns8 provides supports for pattern applications in modeling. Aiming
at improving the productivity and quality of models in MDE, the focuses of this tool are creation,
application, as well as management of modeling patterns. It can be customized for a specific
modeling language or workbench, hence being integrated into any EMF-based environment. Such
customization has been implemented in the modeling environment Capella9 and UML Designer10.

DSL-tao11 is an emerging Eclipse plug-in for rapidly and easily developing DSL meta-models
using patterns. This tool includes an editor to create Ecore-like meta-models and features to apply
patterns during development [29]. Moreover, this tool contains some commonly-used patterns that
are discovered from the public meta-model repository ATL meta-model zoo12. These predefined
patterns are categorized into several domains and can be directly used by users.

Although all tools listed above are relevant to pattern usage, some of them are not available
or out of date like VPML and RSA. EMF-IncQuery is easy to use, but it aims at querying
patterns instead of applying patterns. The two left tools EMF DiffMerge/Patterns and DSL-tao
are considered as potential tools. In the following two sections, we will introduce these two tools
in detail.

4.2 EMF DiffMerge/Patterns

One of the potential tools is the EMF DiffMerge/Patterns tool, which was implemented in 2014.
This tool is developed based on the EMF DiffMerge engine that was designed to prevent data loss
as well as model inconsistency while merging models. The project EMF Diff/Merge13 including the
engine and the DiffMerge/Patterns tool, is part of Eclipse Modeling Framework. The DiffMerge

6http://www-03.ibm.com/software/products/en/ratisoftarch
7https://www.eclipse.org/incquery/
8https://wiki.eclipse.org/EMF DiffMerge/Patterns
9http://www.polarsys.org/capella/

10http://www.umldesigner.org/
11http://jdelara.github.io/DSL-tao/
12http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos
13https://www.eclipse.org/diffmerge/

20 Pattern Specification and Application in meta-models in Ecore

CHAPTER 4. TOOL EXPLORATION

engine is used to compare and merge models in a way that model consistency is enforced. The
DiffMerge/Patterns is designed to handle pattern-based activities in software development.

This tool is relatively mature and it supports the creation, application, evolution and man-
agement of patterns in modeling process. The aim of this tool is to support the share of design
patterns and other user-defined patterns, thus improving productivity and quality in model-based
software development.

Figure 4.1: Setting of “Properties” tab in the creation wizard

The DiffMerge/Patterns tool provides functions that fulfill the requirements we want. Firstly,
a pattern can be created easily. As shown in Figure 4.1, the creation wizard provides an interface
to users to specify several aspects (e.g. Name and Version) of a pattern, and shows the structure
of the pattern being created. The tool not only stores the information and structure of a pattern,
but also optionally stores the layout and style of a pattern.

Secondly, this tool provides a mechanism to control occurrences of instances of every pattern
element using the flag “Unique”. In the “Context” tab (shown in Figure 4.2), a user can tick the
“Unique” flag of a pattern element to set the element unique, namely, the element can only be
instantiated once in a pattern instance, or an element can be set to non-unique by un-checking
the “Unique” flag. This means the pattern element can be instantiated multiple times in an
instance. When applying a pattern, all non-unique elements can be instantiated into multiple
instances via the function “Multiplicity per instance”. In this example, we set elements Type,
InstanceSpecification and ValueSpecification to unique.

This tool uses role-binding pattern application approach, and in the “Context” tab the role of
a pattern element can also be modified.

When applying a pattern, application wizards are used to help users to easily apply a pattern.
Figure 4.3 shows a wizard to create pattern instances. The roles of all pattern elements are listed
and the role-bound elements can be set to be merged with an existing element in your model or to
be added in your model. A user can set the instance number of a pattern and also the occurrences
of each pattern element (i.e. “Multiplicity per instance” in the Figure 4.3). Coincidentally, in the
motivating example, every non-unique element of the Declaration pattern has two instances in
the example meta-model, so we set the number of instances of this pattern is 1 and the number

Pattern Specification and Application in meta-models in Ecore 21

CHAPTER 4. TOOL EXPLORATION

Figure 4.2: Setting of “Content” tab in the creation wizard

Figure 4.3: Setting of an application wizard

of instances of every non-unique pattern element is 2 (see Figure 4.3). Using this setting we can

22 Pattern Specification and Application in meta-models in Ecore

CHAPTER 4. TOOL EXPLORATION

create the same structure as that of the highlighted part of the example meta-model by applying
the pattern once, which is shown in Figure 4.4.

Figure 4.4: The meta-model after the pattern is being applied

The other functions provided by DiffMerge/Patterns are detailed in Appendix A.

Although this tool satisfies the requirements we need, it can only be integrated in UML De-
signer14. This means it can not be used in Ecore meta-models. As stated by the tool developers, the
DiffMerge/Patterns technology can be integrated into any EMF-based modeling environment with
an appropriated customization. For example, the technology has been integrated into Capella15,
a modeling workbench built based on EMF. However, until now there is not an official released
customization for Ecore meta-models. Besides, the functionality to control the occurrences of
pattern elements is not flexible. In this example, it is a coincidence that all non-unique elements
have the same number of instances. If non-unique elements have different number of instances,
the function “Multiplicity per instance” will not be able to create these instances by applying the
pattern once.

If we use this tool in this case, we have to migrate this tool from UML Designer to EcoreTools16

and make a customization for EcoreTools. Unlike UML model elements, however, Ecore meta-
model elements do not have unique identifiers. Consequently, the tricky technical work of making
a customization is to provide a way to identify elements uniquely, which is not trivial.

14http://www.umldesigner.org/
15http://www.polarsys.org/capella/
16https://www.eclipse.org/ecoretools/

Pattern Specification and Application in meta-models in Ecore 23

CHAPTER 4. TOOL EXPLORATION

4.3 DSL-tao

Another potential tool is DSL-tao, which was implemented in 2015. This tool was proposed to
demonstrate the feasibility of the assisted construction of DSMLs proposed in [29]. In this paper,
authors proposed to use patterns to assist the development of DSMLs and provided a taxonomy
of patterns in the context of DSMLs.

This tool is created based on EMF, which focuses on Ecore meta-models. In this tool, the
structure of a pattern is specified using an Ecore meta-model and its elements (i.e. pattern roles).
The meta-model that contains the structure of a pattern is stored in Ecore. The pattern roles are
specified using another modeling language called dslpatterns. The meta-model of this language is
the core of this tool. This language is also used to define the structure of a repository that stores
all patterns. Figure 4.5 shows an excerpt of the meta-model of DSL-tao. It is also the meta-model
of the dslpatterns language.

Figure 4.5: Excerpt of the meta-model of DSL-tao/dslpatterns language [29]

Figure 4.6: The roles of the Declaration pattern defined in the repository

The repository to store patterns is defined in the file repository.dslpatterns. When creating
a pattern using this tool, the file has to be modified to add pattern roles of the new pattern.

24 Pattern Specification and Application in meta-models in Ecore

CHAPTER 4. TOOL EXPLORATION

Figure 4.6 shows the roles of the Declaration pattern in the repository. We can see that pattern
elements are defined in three pattern roles: Class Interface, Feature Type and Reference

Interface.

According to the meta-model of DSL-tao and patterns in the repository file, we summarize the
structure of the repository in Figure 4.7. It is clear that a pattern is created under a category in
the repository. A pattern must have features that contain the structures of pattern variants. All
pattern variants (including the pattern itself) have to be specified by means of binding pattern roles
in the repository with the corresponding objects in Ecore meta-models. A pattern variant may be
associated with secondary patterns (i.e. instances of other patterns) that define complementary
aspects. A secondary pattern can be applied automatically when the associated pattern is being
applied. Also, a pattern may have services providing functionality to the environment generated
for a DSL.

Figure 4.7: The structure of the pattern repository

Figure 4.8: The add and delete function in an application wizard

Pattern Specification and Application in meta-models in Ecore 25

CHAPTER 4. TOOL EXPLORATION

DSL-tao sets max- and min-cardinalities for every pattern element to control the occurrences
of instances of pattern elements. When creating a pattern, the cardinalities have to be specified
in the repository file. The max- and min-cardinality of a pattern element is similar to the lower
and upper bound of a model element in EMF. The max-cardinality is set to -1 means that the
element can have multiple instances in an instance of the pattern.

When applying a pattern, the tool also provides application wizards to guide pattern ap-
plication. Figure 4.8 shows the functions add and delete provided by DSL-tao to control the
occurrences of pattern elements. Using these functions, we can manipulate instances of each
single pattern element. Figure 4.9 demonstrates an instance of the Declaration pattern, in which,
for example, the class InstantiableMember is instantiated three times while the relation related

is instantiated twice.

Figure 4.9: The instance of Declaration pattern in a application wizard

Although this tool provides mechanisms to control the occurrences of instances of pattern
elements, we can not get the exact number of instances of a pattern element in the motivating
example. The red circles in Figure 4.10 indicate the problem we encountered. What we want
to create is the partial structure (shown in Figure 2.5) of the example meta-model. However,
using the functions provided by DSL-tao, the highlighted part can not be created directly by
applying the Declaration pattern once. We get a duplication of class InstantiableMember and
Valuespecification.

The duplication of class Valuespecification does not cause a big problem, although it in-
troduces redundancy in the meta-model. One of the duplicated Valuespecification can be
removed, but if it remains, the meta-model is still correct. On the other hand, the duplication
of class InstantiableMember may cause more problems. It not only introduces redundancy, but
also causes an error in the meta-model. One of the instances of InstantiableMember has to
be removed and the linked relations has to be changed correspondingly. In the example, for
instance, the InstantiableMember2 can be removed and the end point of the linked relation
definingmember has to be changed to InstantiableMember1. This is another drawback of this
tool, namely, modelers have to do extra work to modify pattern instance. When meta-model
instances become bigger, making the correction manually would involve even more work, which
makes this problem more serious. At the same time, when InstantiableMember2 is removed and
the end point of the linked relation definingmember is changed to InstantiableMember1, the
traceability of the new definingmember relation between the pattern and the instance is lost.
This means any associated ingredients of a pattern like model transformations can not be applied
to the new relation because it is not traceable and it is not an instance of a pattern element any

26 Pattern Specification and Application in meta-models in Ecore

CHAPTER 4. TOOL EXPLORATION

Figure 4.10: The pattern instance in diagram

more.
Apart from this problem, this tool has other drawbacks. Since it is a brand new tool released

in the middle of this project, it contains bugs that need to be fixed and there is few guides/tutorial
related to this tool.

Yet we decide to extend this tool because it can be directly used for Ecore meta-models and
it has much potential to solve Altran’s problem. For example, the occurrence control function
provided by this tool is more flexible than DiffMerge/Patterns. Furthermore, this tool is a spin-
off of pattern-based development research [29], which has proven its practicability. To extend
DSL-tao, the first step is to create Altran’s patterns using this tool. Then, in order to enrich
the pattern application functionality of this tool and to address the problem stated above, we
propose a merging function that can merge classes in a pattern instance before it being created.
The implementation of the merge function is explained in Section 5.3.2.

4.4 Conclusions

In this chapter, we first summarized the investigated tools that are relevant to pattern application.
Then we discussed two potential tools: EMF DiffMerge/Patterns and DSL-tao. Through the
discussions, we see that DSL-tao is more applicable in our case. It not only can be used in
Ecore meta-models, but also provides a flexible functionality to control the occurrences of pattern
elements. However, DSL-tao needs to be extended to solve the problems we encountered. In next
chapter, we will explain the design and implementation of two extensions of DSL-tao.

Pattern Specification and Application in meta-models in Ecore 27

Chapter 5

Extensions of DSL-tao

In the previous chapter, we explain two potential tools DiffMerge/Patterns and DSL-tao in details.
This chapter first explains our approaches for pattern specification and application, then describes
the design and implementation of two extensions of DSL-tao (i.e. conduct the activity A3 stated
in Section 1.2).

5.1 Approach for pattern specification

As stated in Chapter 3, the approaches for specifying patterns are categorized into three categories:
literal approaches, logic approaches and DSML approaches. Generally, literal approaches are easy
to understand, and it is a good way to use natural language to explain design patterns for the
sake of understandability. However, a natural language can not be easily processed by machines,
and such specification can not be directly applied to the target models like UML models and
Ecore meta-models. Moreover, using a natural language makes pattern specification inaccurate
and vague [5], thus inadequate for pattern application.

By contrast, logic approaches are more formal and precise, which provide rigorous and unam-
biguous specification of design patterns. As these approaches are based on mathematical notations
and theories, which can be translated to machine-processable forms, they are good for the following
activities such as pattern detection and pattern verification. The drawbacks of these approaches
are that the mathematical knowledge is hard to understand, and pattern users have to know the
mathematical knowledge before they can specify patterns.

DSML approaches are also formal approaches to specify design patterns. A DSML always
focuses on a specific purpose. For example, the IncQuery Graph Pattern Language (IQPL) is
designed for querying patterns in graphical models; whereas the Role-Based Modeling Language
(RBML) is created for applying patterns in UML models. DSML approaches are good for pattern
usage (i.e. various applications of patterns), yet they are not enough to explain a pattern clearly.

In Chapter XI of the book Design Pattern Formalization Techniques [36], the authors proposed
a specification approach that combines literal specification and logic specification of a pattern.
They defined a logic-based language to specify the structure of a pattern and an extension to
describe other aspects of a pattern (e.g. intent, applicability, and collaboration).

In this work, we follow this idea to combine the literal specification and the DSML specification.
We use the approach provided by DSL-tao to specify patterns, namely, using Ecore to model
the structure of a pattern and specifying pattern roles in the DSML provided by DSL-tao. In
addition, we provide an extension to describe other aspects of a pattern like problem, solution and
consequence.

Pattern Specification and Application in meta-models in Ecore 29

CHAPTER 5. EXTENSIONS OF DSL-TAO

5.2 Approach for pattern application

Normally, applying a pattern in a model means adding instances of the pattern in a model; in other
words, a pattern is instantiated when being applied. When it comes to instantiation in terms of
meta-modeling, it is better to clarify the MOF architecture and the layers on which instantiation
occurs.

Meta-Object Facility (MOF) defines a four-layer architecture for meta-modeling. In most cases,
patterns are specified at the meta-model level and instantiated at the model level. For example,
Figure 5.1 shows the conformance between MOF architecture and Epattern specifications. The
Language Epattern is defined at the M3 layer as a language to model patterns. The patterns
specified in Epattern language are considered at the meta-model level, hence their instances lie at
the model layer. This means patterns are applied in the model level instead of in the meta-model
level in many cases.

Figure 5.1: Conformance between MOF and Epattern specifications [16]

Figure 5.2: Patterns in MOF architecture

In this work, we focus on patterns applied in meta-models (at the M2 layer). In other words,

30 Pattern Specification and Application in meta-models in Ecore

CHAPTER 5. EXTENSIONS OF DSL-TAO

the instances of a pattern exist in meta-models. In DSL-tao, a pattern is specified using an Ecore
meta-model and its pattern roles, hence we consider the specification also at the M2 layer. Put
it simply, both patterns and their instances are at the meta-model layer. This is illustrated in
Figure 5.2.

5.3 Tool support

Previous chapter introduces two potential tools: EMF DiffMerge/Patterns and DSL-tao. As
analyzed in Chapter 4, we decided to extend DSL-tao in this work as the tool support for pattern
specification and application for Ecore meta-models. The first step is to create our patterns
in DSL-tao, but as DSL-tao mainly focuses on demonstrating the predefined patterns and their
applications, pattern creation is missing from the tool and user guide. We had to figure out how
to add our patterns as predefined patterns, for what we contacted the authors and studied their
papers. The main steps are as follows:

1. Model a pattern structure in Ecore.

2. Create a figure to show the structure of the pattern and the cardinality of every pattern
element.

3. Add the pattern to the repository.

4. Re-run DSL-tao.

The details about how to create a pattern in DSL-tao is explained in more detail in Section 4.3
and Appendix B.

Then we design two extensions to adapt DSL-tao for our case.

Extension 1. Add literal specification.

This is an extension for pattern specification. DSL-tao specifies patterns using Ecore meta-
models and pattern roles (specified in the dslpatterns DSML), we modify the meta-model
of DSL-tao to provide literal specification of a pattern such that other aspects of a pattern
can be specified along with pattern roles.

Extension 2. Add a function to control occurrences of instances of pattern elements.

This is an extension for pattern application. DSL-tao uses min- and max-cardinality to set
an interval to limit the possible number of instance(s) of a pattern element. Also it provides
functions add and delete to duplicate and remove an instance of a pattern element. However,
these functions are not enough to control the occurrences (see details in Section 4.3). To
address this problem, we design an merge function to merge classes before an instance of
patterns being created in a meta-model as the second extension.

5.3.1 Extension 1

This extension is designed to provide literal specifications in DSL-tao. When creating a pattern
in DSL-tao, the structure of a pattern is specified in an Ecore meta-model and pattern roles are
specified in the language dslpatterns. Hence we extend the meta-model of dslpatterns such that
the other aspects of a pattern can also be specified in dslpatterns as well.

Figure 5.3 shows the extended part (excluding class Pattern) of the meta-model of DSL-tao
(i.e. the meta-model of dslpatterns). The Pattern class is extended with zero or one Explanation,
which may contain Problem, Solution, Consequence, Version, Date as well as Author. All these
aspects inherit from the class Aspects. The aspects problem, solution and consequence are
added because they are the essential aspects of design patterns [20] (another essential aspects

Pattern Specification and Application in meta-models in Ecore 31

CHAPTER 5. EXTENSIONS OF DSL-TAO

Figure 5.3: Excerpt of the extended meta-model of DSL-tao

Name have already defined in the original meta-model). The aspects version, date and author

are added for the sake of software maintenance and evolution. In this way, a pattern can have not
only a structure, but also an explanation.

As DSL-tao does not provide any user-friendly interface (e.g. wizards and menus) to create a
pattern, we just follow their method to add literal specification, namely, create a pattern meta-
model and add it to the repository file. When adding a pattern in the repository file, we also
specify the aspects of a pattern if needed. Figure 5.4 shows the Declaration pattern specification
with the extended explanation in the repository.

Figure 5.4: The Declaration pattern in the repository

In order to show the aspects of a pattern when a pattern is being applied, we also extend the
application wizard that shows the structure of a pattern in DSL-tao. When applying a pattern, the
aspects of a pattern will be shown in the application wizard if they are specified. Figure 5.5 shows

32 Pattern Specification and Application in meta-models in Ecore

CHAPTER 5. EXTENSIONS OF DSL-TAO

Figure 5.5: An example of extension 1

an application wizard that presents the aspects of the Declaration pattern specified in DSL-tao.

5.3.2 Extension 2 - Problem statement

In DSL-tao, every pattern element has a max- and min-cardinality that specify a lower bound and
an upper bound to control the occurrences of instances of pattern elements in a pattern instance.
Table 5.1 indicates the cardinalities of elements in the Declaration pattern.

Table 5.1: Cardinalities of elements in Declaration pattern

Element Name Min-cardinality Max-cardinality

Class

Type 1 1
Container 1 -1
InstanceSpecification 1 1
InstantiatedMember 1 -1
InstantiableMember 1 -1
ValueSpecification 1 -1

Reference

type: Type 1 1
instantiatedmember: InstantiatedMember 1 -1
value: ValueSpecification 1 -1
related: Container 1 -1
definingMembers: InstantiableMember 1 -1
contains: InstantiableMember 1 -1

Feature value: Estring 1 -1

The value -1 represents multiple instances. In the Declaration pattern, class InstanceSpeci-
fication, Type and reference type can only occur once in a pattern instance, other elements can
have one or multiple instance(s) in a pattern instance.

When applying a pattern, DSL-tao provides two functions add and delete to duplicate or
remove instances of a pattern element (see Figure 5.6). The effects of these two functions are
listed in Table 5.2. When deleting a class, an error always occurs. This is because the delete
class function is made to delete a class and its (directly and indirectly) linked elements, but the
incoming references of the deleted class will not be deleted. Hence, if a class is deleted, its incoming
references will point to an non-existing element, which is illegal in a meta-model.

Pattern Specification and Application in meta-models in Ecore 33

CHAPTER 5. EXTENSIONS OF DSL-TAO

Figure 5.6: The functions provided in DSL-tao to modify instances of a pattern element

Table 5.2: The effects of add and delete functions

functions classifiers effects

add
Class add a class
Attribute add an attribute
Reference add a reference, the linked Class A and all the following elements

that are (directly or indirectly) linked to Class A

delete
Class error function
Attribute delete an attribute
Reference delete a reference

In DSL-tao, it is impossible to directly create the highlighted structure (shown in Figure 2.5) in
the example meta-model by applying the Declaration pattern once. Figure 5.7 shows two possible
instances we created using DSL-tao when applying the Declaration pattern once. To create the
highlighted part of the example meta-model, the first steps are to duplicate the references related
and instantiatedmember. The result of the duplications of these two references is shown in Fig-
ure 5.7a. We can see that when duplicating the related reference, the add function creates a new
related reference and its following elements (i.e. the class Container, InstantableMember and
the reference contains). Similarly, when duplicating reference instantiatedmember, the class
InstantiatedMember1, ValueSpecification1, InstantiableMember1 and the linked references
value, definingMember and instantablemember are created. As indicated in the red circle in
Figure 5.7a, there are two duplicated InstantiableMember classes, which should be merged into
one to get the highlighted structure in the example meta-model.

Indeed, we can use the delete function to remove redundant elements. It is impossible to
delete one of the duplicated InstantiableMember classes because the “delete class” function
causes an error, so we have to delete a reference. For example, Figure 5.7b shows the result
of deleting reference contains between Container1 and InstantiableMember2. The delete

function removes not only the reference contains, but also the linked class InstantiableMember2.
However, comparing to the highlighted part in the example meta-model, we lost the reference
contains between Contianer1 and InstantiableMember1 (indicated by the red circle).

34 Pattern Specification and Application in meta-models in Ecore

CHAPTER 5. EXTENSIONS OF DSL-TAO

(a) Instance 1

(b) Instance 2

Figure 5.7: Two possible instances of the Declaration pattern

There are three possible ways to address the problems stated above. The most simplest way
is to modify the meta-model after a pattern is being applied. For example, we can directly add a
reference from Containers1 to InstantiableMember1 in Figure 5.7b to get the needed structure.
If we do so, the added reference will not be considered as an instance of the pattern element, so the
traceability between this element and the corresponding pattern elements will not be maintained.

Pattern Specification and Application in meta-models in Ecore 35

CHAPTER 5. EXTENSIONS OF DSL-TAO

Also it is possible to apply a pattern multiple times to get the needed structure. For example,
we can apply the Declaration pattern again (total twice) to the meta-model in Figure 5.7b to
get the highlighted part in the example meta-model. However, how many times a pattern has to
be applied to create a needed structure is unknown and many redundant traces between pattern
elements and their instances will be introduced in this way.

The third way to deal with the problems encountered is to provide more flexible tooling to
support this feature in development. Thus we propose to add a merge function to complement
the add and delete function, the implementation of which is introduced in next section.

5.3.3 Extension 2 - The merge function

In this section, we introduce the design and implementation of the second extension - the merge

function. Before implementing this function, we analyze the requirements of this function based
on three classifiers: attribute, reference, class.

• Merge attributes. Now attributes can be add or delete (if the delete function works well)
in DSL-tao, and normally there is no need to merge two attributes in development, so we
do not consider merging attributes separately.

• Merge references. Regarding the merging of two references, a user has to consider how to
deal with the linked classes of these two references, namely, whether the linked classes need
to be merged or not. In fact, it boils down to merge classes.

• Merge class. Merging classes is a commonly needed operation when applying a pattern.
The prerequisite of merging two class is that the classes are derived from the same pattern
element, such that they should have the same attributes and references (with same name but
different name suffix). It is meaningless to merge any two different classes. The principle of
merging two classes is simple: keep all references that connected with these two classes and
delete one class with its attributes.

We conclude that the requirement of the merge function is to merge classes rather than attrib-
utes and references. Hence we enable the merge function only when two classes that have the same
name are selected in pattern application. In other words, if two non-class elements are selected
when applying a pattern, the merge function will not be enabled. To implement it, we make a
new drop-down menu for the merge function. When any two elements are selected in the Pattern
Wizard, the merge function menu will appear (see Figure 5.8), but the function is enabled only
when the selected elements are two classes that have the same name. The original add and delete

function menu will appear (see Figure 5.6) when only one pattern element is selected.
The idea behind the merge function is shown in Algorithm 1. The input of this function are

the instanceDiagram that includes all the elements in an instance and two classes class1 and
class2 that need to be merged. Before starting to merge two classes, the attributes number and
the creation order (i.e. the suffix number of a class) of the classes are compared. The principle is
that if the number of their attributes are different, the class who has more attributes will remain;
if the number of their attributes are the same, the class who has the smaller order number (i.e.
who is created first) will remain. This is shown from line 2 to line 16 in Algorithm 1. After
that, the real merging starts. The aim is to remove class2 and change all references connected
to class2 to class1. First, we change the end point of all incoming references of class2 to
class1, which is indicated from line 18 to 23 in Algorithm 1. Secondly, we change the parent of
all outgoing references of class2 to class1 and add these outgoing references to the child list of
class1, which is indicated from line 25 to 32. Finally, we remove all the attributes of class2 and
the class itself from line 34 to 40.

Now you may wonder how the number of attributes of two classes that are derived from the
same pattern element can be different. This is because a user can use add/delete function to
duplicate/remove an attribute of a class in some cases. No matter the number of attributes of
two classes are the same or not, the attributes of the class that has less attributes are covered by

36 Pattern Specification and Application in meta-models in Ecore

CHAPTER 5. EXTENSIONS OF DSL-TAO

Algorithm 1 The merge function

1: function MergeFunction(instanceDiagram, class1, class2)
2: attrNum1← getAtrributeNum(instanceDiagram, class1)
3: attrNum2← getAtrributeNum(instanceDiagram, class2)
4: if attrNum2 > attrNum1 then
5: class← class1
6: class1← class2
7: class2← class1
8: else
9: if attrNum2 = attrNum1 then

10: if class1.order > class2.order then
11: class← class1
12: class1← class2
13: class2← class1
14: end if
15: end if
16: end if
17:

18: incomeRefList← getIncomeRefs(instanceDiagram, class2)
19: if incomeRefList 6= NIL then
20: for each ref in incomeRefList do
21: ref.orderPointer ← class1.order
22: end for
23: end if
24:

25: refChildrenList1←getRefChildren(instanceDiagram, class1)
26: refChildrenList2←getRefChildren(instanceDiagram, class2)
27: if refChildrenList2 6= NIL then
28: for each child in refChildrenList2 do
29: refChildrenList1← refChildrenList1 + child
30: child.parent← class1
31: end for
32: end if
33:

34: attrChildrenList←getAttrChildren(instanceDiagram, class2)
35: if attrChildrenList 6= NIL then
36: for each achild in attrChildrenList do
37: deleteAttribute(instanceDiagram, achild.index)
38: end for
39: end if
40: remove(instanceDiagram, class2)
41:

42: end function

Pattern Specification and Application in meta-models in Ecore 37

CHAPTER 5. EXTENSIONS OF DSL-TAO

the attributes of the class that has more attributes. Therefore, we keep the class that has more
attributes in the merging function.

In Algorithm 1, there are some auxiliary functions used to assist the merging function, which
are listed in Table 5.3.

Table 5.3: The auxiliary functions in the merging function

Name Parameters Function
getAttributeNum instanceDiagram, class calculate the number of attributes of a class
getIncomeRefs instanceDiagram, class return a list of all incoming references of a class
getRefChildren instanceDiagram, class return a list of all outgoing references of a class
getAttrChildren instanceDiagram, class return a list of all attributes of a class
deleteAttribute instanceDiagram, attribute delete an attribute from the instance diagram
remove instanceDiagram, class delete a class from the instance diagram

We have made several examples to test this function, the correct test results give confidence
in the correctness of the merge function.

Using this function, we can merge the InstantiableMember1 and InstantiableMember2 in
Figure 5.7a before creating the instance. As shown in Figure 5.8, we have already duplicated
the two references and get the same structure in Figure 5.7a. Then we chose the duplicated
InstantiableMember classes to merge them. To get the needed structure, we also merged the
classes ValueSpecification and ValueSpecification1. The result (i.e. a pattern instance) we
get is shown in Figure 5.9, the structure of which is the same as that of the highlighted part in
the example meta-model. To this end, we can create the need structure using DSL-tao.

Figure 5.8: The merge function in DSL-tao

38 Pattern Specification and Application in meta-models in Ecore

CHAPTER 5. EXTENSIONS OF DSL-TAO

Figure 5.9: The result instance after using merge function

5.4 Conclusions

This chapter explains the design and implementations of two extension of DSL-tao. The Extension
1 is designed to enrich the pattern specification approach provided by DSL-tao. After adding the
literal specification, a user can record information of a pattern for better understanding of a
pattern and for its maintenance in the future.

The Extension 2 is implemented to complement the functions provided by DSL-tao to control
the occurrences of instances of pattern elements. Using this extension, we can create the example
meta-model by applying the Declaration pattern once. These two extensions are made based
on the results of literature study and tool exploration, and they are useful for solving research
questions and accomplishing Altran’s assignment. In next chapter, we will draw conclusions for
this project and describe possible work in the future.

Pattern Specification and Application in meta-models in Ecore 39

Chapter 6

Conclusions and Future Work

In the previous chapter, we explained the design and implementation of two extensions of DSL-
tao. The aim of the extensions is to provide better tool support for pattern specification and
application in meta-models. In this chapter, we draw conclusions and state the possibilities of
future work.

6.1 Conclusions

In this section, we draw conclusions by answering the research questions and summarizing the other
chapters of this thesis. At the beginning of this work, we have proposed two research questions
that needed to be solved.

RQ1. What approaches and tooling are being used to specify and apply design patterns
in meta-models in Ecore and UML?

RQ2. How to control the occurrences of structure elements of a pattern when the
pattern is being instantiated and what functions should be provided by tooling to support
the control method?

To answer RQ1, we have studied literature and tools that are relevant to pattern specification
and application in meta-models. Chapter 3 summarized three categories of pattern specification
approaches - the literal approaches, logic approaches and DSL approaches used in meta-models
in Ecore and/or in UML models to specify patterns, and analyzed suitability of each category
approaches by matching their cons and pros to our requirements. Furthermore, we explained the
role-based pattern application approach and its application in UML models in Chapter 3. The
existing tools that are used for pattern application are summarized in Chapter 4. We first briefly
introduced a collection of relevant tools, then elaborated two potential tools that are useful in our
case by discussing their functionality and possible extensions.

The second research question RQ2 can be divided to two subquestions.

RQ2-1. What approaches are being used to control the occurrences of elements of a
pattern when the pattern is being applied?

RQ2-2. What functionality should be provided by tooling to support the control the
occurrences of elements of a pattern?

The question RQ2-1 has been answered in Chapter 4. The EMF DiffMerge/Patterns tool uses
a boolean value named Unique to control the occurrences of a pattern element in an instance. If
the Unique value is true, a pattern element can only occur once in a pattern instance. While if
the value is false, an element can occur multiple times in an instance. The tool DSL-tao sets an

Pattern Specification and Application in meta-models in Ecore 41

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

interval value (i.e. cardinalities) to control the occurrences of a pattern element. The min- and
max-cardinality indicate the lower and upper bound of the interval. The min-cardinality limits the
minimal number of instances that a pattern element can have, while the max-cardinality restricts
the maximal number of instances of a pattern element.

The question RQ2-2 was answered in Chapter 4 and 5. The EMF DiffMerge/Patterns tool
provides functionality to specify how many instances of all “non-Unique” pattern elements should
be created when applying a pattern. However, this function is not flexible enough because it
can not process pattern elements individually. The tool DSL-tao provides two functions add and
delete to handle the occurrences of pattern elements. But still we encountered problems when
instantiating a pattern. In Chapter 5, we extended this tool with a merge function to complement
the functions in DSL-tao. Now we consider that at least the add, delete and merge functions
should be provided to handle the occurrences of pattern elements.

To this end, we consider that the research questions are answered.
Also, at the beginning of this project, Altran’s assignment is formulated as follows:

Altran’s assignment: we are seeking approaches for pattern specification and ap-
plication in Ecore meta-models, and we need tool support to apply our patterns in the
development of DSLs.

We have summarized many approaches for pattern specification and application in Ecore meta-
models and provided a list of tools for applying patterns. The DSL-tao tool with the extensions
makes it possible to use Altran’s patterns in software development. Hence, we consider that we
have accomplished the Altran’s assignment.

6.2 Future work

In this section, we discuss the possible research directions in the future.

6.2.1 Validation of the extensions

We have made two extensions to complement the functions in DSL-tao to support pattern specific-
ation and application. The extensions work well in the motivating example, which proves that the
extensions are necessary. However, the extensions have not been validated in the real world. This
can be done by applying the extensions in the development of DSLs in Altran. As the validation
work takes more time, we formulate it as future work.

6.2.2 Validation of Altran’s patterns

In this project, we use the Declaration pattern created in Altran as a motivating example to
illustrate the functions of tools and the extensions. Besides the Declaration pattern, there are also
some other patterns created in Altran. Although these patterns are abstracted from many DSLs,
the correctness and practicability are not validated. In the future, these pattern can be validated
by being applied to new meta-models of DSLs.

6.2.3 Further extension for pattern application

A pattern is an abstraction of model fragments, so when applying/instantiating it, the structure
of a pattern has to be modified in order to create the needed instances. In this work, we limit
the modification to addition and deletion of pattern element, but in the real-world application,
the modifications are more complex. For example, a normal class element in a pattern may need
to be instantiated to an abstract class; in addition, a relation element in a pattern may need to
be instantiated to a class with multiple relations in an instance. Hence, the pattern application
tool like DSL-tao has to be improved to provide more advanced functions to manipulate pattern
elements before an instance is created.

42 Pattern Specification and Application in meta-models in Ecore

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

On the other hand, it is possible to modify pattern specification approaches to make the
application more flexible. For example, OCL constrains can be added to a pattern specification to
limit the the instance number of a pattern element. Indeed, new pattern specification approaches
can be developed for the sake of flexible pattern application.

6.2.4 Pattern variants

As stated in Section 6.2.3, a pattern is an abstraction of model fragments. Therefore, the structure
of a pattern is not always the structure needed in meta-models. This is a reason why we need
to study how to apply patterns in meta-models. One way to solve the “near-match” problem
between a pattern and its instance is to provide tool support to modify patterns before being
applied. Another way is to make pattern variants for different application situation. Through
extensive study and analysis of meta-model zoo, we may find more variants of a pattern. However,
what kinds of modifications for a pattern should be defined in a pattern variant and what kinds
of modifications should be supported by tooling is unclear.

6.2.5 Blueprint of an advanced language workbench

In the development of a DSL tool chain, a meta-model is an important starting point: other
contributions to the tool chain like representation options, constraints or queries, transformation
units etc. depend heavily on the developed meta-models. It is important to capture the experience
(i.e. the good- and bad-practices) and be able to reuse good practices in new developments. Design
patterns capture good practices and provide proven solutions to the recurring language problems.
Therefore, the first step is to apply design patterns in meta-models. This is exactly what we did
in this work. In the future, other contributions like notation rules, model transformations and
constraints in the development of DSL should be considered.

To make an advanced modeling workbench that supports pattern application, the first require-
ment is that the workbench has to provide mechanisms to specify and apply patterns. Secondary,
associated contributions in the further development of the tool chain can be automated based on
the application of a pattern. This requires the pattern and its application to be traceable through-
out the development of the tool chain. The ultimate goal is to make a language workbench that
allows for adding markers (e.g. properties or keywords) to meta-models of DSLs such that the
associated contributions can be derived automatically using the markers. The actual meta-model
with the applied patterns would then only be an intermediate (derived) artifact in the development
process.

Pattern Specification and Application in meta-models in Ecore 43

Bibliography

[1] UML Collaboration. http://www.uml-diagrams.org/collaboration-diagrams/

collaboration.html.

[2] UML CollaborationUse. http://www.uml-diagrams.org/collaboration-diagrams/

collaboration-use.html.

[3] Scott Ambler. A Realistic Look at Object-Oriented Reuse. January 1, 1998. http://www.
drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594.

[4] Mira Balaban, Azzam Maraee, Arnon Sturm, and Pavel Jelnov. A pattern-based approach
for improving model quality. Software and System Modeling, 14(4):1527–1555, 2015.

[5] Aline Lúcia Baroni, Yann-Gal Guëhénéuc, and Hervé Albin-Amiot. Design patterns formaliz-
ation. Technical report, Ecole Nationale Supérieure des Techniques Industrielles et des Mines
de Nantes, June 2003. Technical Report 03/3/INFO.

[6] Ian Bayley and Hong Zhu. Formalising design patterns in predicate logic. In 5th IEEE
International Conference on Software Engineering and Formal Methods (SEFM 2007), 10-14
September 2007, London, England, UK, pages 25–36, 2007.

[7] Ian Bayley and Hong Zhu. Specifying behavioural features of design patterns in first order
logic. In Proceedings of the 32nd Annual IEEE International Computer Software and Applica-
tions Conference, COMPSAC 2008, 28 July - 1 August 2008, Turku, Finland, pages 203–210,
2008.

[8] Ian Bayley and Hong Zhu. Formal specification of the variants and behavioural features of
design patterns. Journal of Systems and Software, 83(2):209–221, 2010.

[9] Gábor Bergmann, Zoltán Ujhelyi, István Ráth, and Dániel Varró. A graph query language
for EMF models. In Theory and Practice of Model Transformations - 4th International Con-
ference, ICMT 2011, Zurich, Switzerland, June 27-28, 2011. Proceedings, pages 167–182,
2011.

[10] Jean Bézivin. On the unification power of models. Software and System Modeling, 4(2):171–
188, 2005.

[11] Jing Dong, Paulo S. C. Alencar, and Donald D. Cowan. Ensuring structure and behavior
correctness in design composition. In 7th IEEE International Symposium on Engineering of
Computer-Based Systems (ECBS 2000), 3-7 April 2000, Edinburgh, Scotland, UK, page 279,
2000.

[12] Amnon H. Eden, Yoram Hirshfeld, and Amiram Yehudai. Lepus - a declarative pattern
specification language. Technical report, 1998.

[13] Maged Elaasar. Computer method and system for pattern specification using meta-model of
a target domain. Patent. US 20080127049A1. May 29, 2006.

Pattern Specification and Application in meta-models in Ecore 45

http://www.uml-diagrams.org/collaboration-diagrams/collaboration.html
http://www.uml-diagrams.org/collaboration-diagrams/collaboration.html
http://www.uml-diagrams.org/collaboration-diagrams/collaboration-use.html
http://www.uml-diagrams.org/collaboration-diagrams/collaboration-use.html
http://www.drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594
http://www.drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594

BIBLIOGRAPHY

[14] Maged Elaasar, Lionel C. Briand, and Yvan Labiche. A metamodeling approach to pattern
specification and detection. In Model Driven Engineering Languages and Systems, 9th Inter-
national Conference, MoDELS 2006, Genova, Italy, October 1-6, 2006, Proceedings, pages
484–498, 2006.

[15] Maged Elaasar, Lionel C. Briand, and Yvan Labiche. VPML: an approach to detect design
patterns of mof-based modeling languages. Software and System Modeling, 14(2):735–764,
2015.

[16] Maged Elaasar, Lionel C. Briand, and Yvan Labiche. A metamodeling approach to pattern
specification and detection. Technical report, Carleton University, March 2006. Technical
Report SCE-06-068.

[17] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.

[18] Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A uml-based metamod-
eling language to specify design patterns. In WiSME, 2003.

[19] Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A uml-based pattern
specification technique. volume 30, pages 193–206, 2004.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[21] Abel Gómez and Isidro Ramos. Automatic tool support for cardinality-based feature modeling
with model constraints for information systems development. In Information Systems De-
velopment, Business Systems and Services: Modeling and Development [Proceedings of ISD
2010, Charles University in Prague, Czech Republic, August 25-27, 2010], pages 271–284,
2010.

[22] Alain Le Guennec, Gerson Sunyé, and Jean-Marc Jézéquel. Precise modeling of design pat-
terns. In �UML� 2000 - The Unified Modeling Language, Advancing the Standard, Third
International Conference, York, UK, October 2-6, 2000. Proceedings, pages 482–496, 2000.

[23] Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac’h. UMLAUT:
an extendible UML transformation framework. In The 14th IEEE International Conference
on Automated Software Engineering, ASE 1999, Cocoa Beach, Florida, USA, 12-15 October
1999, pages 275–278, 1999.

[24] David Mapelsden, John Hosking, and John Grundy. Design pattern modelling and in-
stantiation using dpml. In Proceedings of the Fortieth International Conference on Tools
Pacific: Objects for Internet, Mobile and Embedded Applications, CRPIT ’02, pages 3–11,
Darlinghurst, Australia, Australia, 2002. Australian Computer Society, Inc.

[25] David Maplesden, John G. Hosking, and John C. Grundy. A visual language for design
pattern modelling and instantiation. In 2002 IEEE CS International Symposium on Human-
Centric Computing Languages and Environments (HCC 2001), September 5-7, 2001, Stresa,
Italy, pages 338–339, 2001.

[26] David Maplesden, John G. Hosking, and John C. Grundy. Design Pattern Modelling and
Instantiation using DPML. Proceedings of the 40th International Conference on Tools Pacific:
Objects for internet, mobile and embedded applications (CRPIT ’02), February 18-21, 2002,
Sydney, Australia, 10:3–11, 2002.

[27] Jean marie Favre. Towards a basic theory to model model driven engineering. In Proceedings
of the UML2004 Int. Workshop on Software Model Engineering, 2004.

46 Pattern Specification and Application in meta-models in Ecore

BIBLIOGRAPHY

[28] Tommi Mikkonen. Formalizing design patterns. In Forging New Links, Proceedings of the
1998 International Conference on Software Engineering, ICSE 98, Kyoto, Japan, April 19-25,
1998., pages 115–124, 1998.

[29] Ana Pescador, Antonio Garmendia, Esther Guerra, Jesús Sánchez Cuadrado, and Juan
de Lara. Pattern-based development of domain-specific modelling languages. In 18th
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems,
MoDELS 2015, Ottawa, Canada, September 30 - October 2, 2015, pages 166–175, 2015.

[30] Christian Schäfer, Thomas Kuhn, and Mario Trapp. A pattern-based approach to DSL devel-
opment. In Conference on Systems, Programming, and Applications: Software for Humanity,
SPLASH ’11, Proceedings of the compilation of the co-located workshops, DSM’11, TMC’11,
AGERE!’11, AOOPES’11, NEAT’11, and VMIL’11, Portland, OR, USA, October 22 - 27,
2011, pages 39–46, 2011.

[31] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE Computer,
39(2):25–31, 2006.

[32] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006.

[33] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley & Sons, 2006.

[34] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Mod-
eling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[35] Gerson Sunyé, Alain Le Guennec, and Jean-Marc Jézéquel. Design Patterns Application in
UML. In ECOOP 2000 - Object-Oriented Programming, 14th European Conference, Sophia
Antipolis and Cannes, France, June 12-16, 2000, Proceedings, pages 44–62, 2000.

[36] Toufik Taibi. Design Pattern Formalization Techniques. IGI Global, Hershey, PA, USA, 2007.

[37] Toufik Taibi and David Ngo Chek Ling. Formal specification of design patterns - A balanced
approach. Journal of Object Technology, 2(4):127–140, 2003.

[38] Didier Vojtisek and Jean-Marc Jézéquel. MTL and Umlaut NG - Engine and Framework for
Model Transformation. ERCIM News 58, 58, 2004.

[39] Wikipedia. Domain-specific language. https://en.wikipedia.org/wiki/

Domain-specific_language.

[40] Colin Yu. Model-driven and pattern-based development using rational software architect:
Part 2. model-driven development tooling support in ibm rational software architect. http:

//www.ibm.com/developerworks/rational/library/07/0116_yu/.

[41] Hong Zhu, Ian Bayley, Lijun Shan, and Richard Amphlett. Tool support for design pattern
recognition at model level. In Proceedings of the 33rd Annual IEEE International Computer
Software and Applications Conference, COMPSAC 2009, Seattle, Washington, USA, July
20-24, 2009. Volume 1, pages 228–233, 2009.

Pattern Specification and Application in meta-models in Ecore 47

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
http://www.ibm.com/developerworks/rational/library/07/0116_yu/
http://www.ibm.com/developerworks/rational/library/07/0116_yu/

Appendix A

EMF DiffMerge/Patterns Guide

This appendix demonstrates how the DiffMerge/Patterns tool works in UML Designer step by
step by using the Declaration pattern to create the motivating example meta-model. After UML
Designer and DiffMerge/Patterns are being installed, a “Patterns” item will be added to the pop-
up menu when you right click on a diagram (see Figure A.1). Now we start to create the example
meta-model.

Figure A.1: DiffMerge/Patterns menu

Step1: create the example pattern.

(a) First, we model the Declaration pattern in UML (shown in Figure A.2, which is exactly
the same as the example pattern).

(b) Then, select all elements in the UML pattern model, right-click and select Patterns

-> Create Pattern...to create a pattern. The creation wizard (see Figure A.3) will
pop up.

(c) The DiffMerge/Patterns tool stores patterns in “catalogs” files whose names end with
.patterns. In the “Properties” tab, we create a catalog using the“New” button. Also,

Pattern Specification and Application in meta-models in Ecore 49

APPENDIX A. EMF DIFFMERGE/PATTERNS GUIDE

Figure A.2: The Declaration pattern in UML

Figure A.3: Setting of “Properties” tab

we specify the information related to this pattern (e.g. name, author and description)
in this tab. As shown in Figure A.3, the layout and style of this pattern will also be
stored as we tick the “Include layout and style” box.

(d) In the “Content” tab (shown in Figure A.4), all elements of a pattern and their roles
are listed. Now we need to add dependencies to the pattern using button “Include all
dependencies...” in the lower left corner. In this case, the dependencies of this pattern
is EString data type defined in UML.

(e) Now we add roles for pattern elements. The default role of all elements is “Classifiers”.
In this case, we create new roles for every class object in the pattern. The name of

50 Pattern Specification and Application in meta-models in Ecore

APPENDIX A. EMF DIFFMERGE/PATTERNS GUIDE

Figure A.4: Set the multiplicity and roles of pattern elements

each role is the same as that of the related class. Other elements’ roles keep the default
setting.

(f) The DiffMerge/Patterns tool uses “Unique” flag to control the number of occurrences
of pattern elements. If the “Unique” label of a element is marked, this element can
only occur once in a pattern instance. Otherwise, it can appear multiple times. The
default setting of all element is unique. In this case, we set class objects “Type”,
“InstanceSpecification” as well as “ValueSpecification” and association object “type”
as unique, other objects are not unique. The final setting of “Content” tab is shown in
Figure A.5. The elements with a [*] label are not unique.

(g) In the “Advanced” tab, the related OCL constraints can be added. In this case, there
is no constraints to be added.

Step 2: apply the example pattern to a meta-model diagram.

(a) In order to demonstrate how to bind pattern elements with existing model elements, we
first create a diagram with one class object named “WorkspaceDefinition”. Figure A.6
indicates the original meta-model.

(b) Then we apply the instantiation pattern to this meta-model to create new elements.
Right-click and select Patterns -> Apply Pattern... to initiate the application wiz-
ards.

(c) In the “Select a pattern” wizard, we choose “instantiation” catalog. The information
of the pattern stored in this catalog are automatically loaded (see Figure A.7). The
click Next.

(d) In the “Map roles to elements” wizard, we first map the “Type” role to the existing
class WorkspaceDefinition. Right-click “Type” role and select Merge with.... Then
another window of all existing model elements will pop up. Choose the class Workspa-
ceDefinition to finish this mapping. When the pattern applied, other elements in this
pattern will be added to the diagram except class Type, which will be replace by class
WorkspaceDefinition.

Pattern Specification and Application in meta-models in Ecore 51

APPENDIX A. EMF DIFFMERGE/PATTERNS GUIDE

Figure A.5: Setting of “Content” tab

Figure A.6: The original meta-model

(e) Also, in this wizard, we set “Number of instances” to 1, which means there is one
instance of this pattern will be applied. The “Multiplicity per instance” is set to 2.
This means all the non-unique elements will occur twice in the instance. In other word,
two model objects will be created for each non-unique element in a pattern.

(f) As we reuse layout and style of the pattern (see Figure A.8 ticked boxes), we get the
same layout and style of the pattern in my instance. It is clear that the layout in
Figure A.9 is exactly same as the layout in Figure A.2.

(g) Now we unfold the instance to get the full structure of this instance. Indeed, all non-
unique elements in the pattern have two instances in this pattern instance.

Step 3: finish the example DSL meta-model. The last step is to change the names of
elements in this instance and add other objects according to the example DSL meta-model

52 Pattern Specification and Application in meta-models in Ecore

APPENDIX A. EMF DIFFMERGE/PATTERNS GUIDE

Figure A.7: Select a pattern

to finish this diagram. The finial meta-model is shown in Figure A.11, which is same as the
example meta-model.

Pattern Specification and Application in meta-models in Ecore 53

APPENDIX A. EMF DIFFMERGE/PATTERNS GUIDE

Figure A.8: Map roles to elements

Figure A.9: The layout of the pattern instance

54 Pattern Specification and Application in meta-models in Ecore

APPENDIX A. EMF DIFFMERGE/PATTERNS GUIDE

Figure A.10: The meta-model after the pattern is being applied

Pattern Specification and Application in meta-models in Ecore 55

APPENDIX A. EMF DIFFMERGE/PATTERNS GUIDE

Figure A.11: The final meta-model

56 Pattern Specification and Application in meta-models in Ecore

Appendix B

DSL-tao Guide

Similar to Appendix A, we introduce another tool, DSL-tao in this appendix by means of applying
the Declaration pattern to create the example meta-model. Assume Eclipse and DSL-tao have
been downloaded and installed, now let us follow these steps to create the example meta-model.

Step1: create the example pattern.

(a) Before creating a pattern in DSL-tao, we have to model the pattern in Ecore. The
Ecore meta-model should be the same as that in Figure 2.4.

(b) Then we create a new DSL-tao project and add a new DSL-tao design diagram (see
Figure B.1).

Figure B.1: New a DSL-tao project and design diagram.

(c) In this case, we name the project and the diagram “example”. Under the example

project, we can see (in Figure B.2) a folder named patterns, which includes all the files
that are used to define and apply patterns. The structure of the predefined patterns are
modeled in Ecore and stored in the patterns folder. This folder also includes a manage-
ment file named repository.dslpatterns. The management file models the structure
of a pattern repository provided by DSL-tao. In addition, every predefined pattern has
a corresponding .gif file stored in the icons folder to show its structure and cardinal-
ities of every element when being applied. Therefore, to create our own patterns, three

Pattern Specification and Application in meta-models in Ecore 57

APPENDIX B. DSL-TAO GUIDE

things have to be done: add the pattern Ecore file, add a .gif file for the pattern and
add the pattern into repository, namely, modify the repository.dslpatterns file.

Figure B.2: The pre-defined patterns.

(d) To create the example pattern in DSL-tao, we first put the pattern Ecore file (i.e.
“instantiation.ecore” in this case) to the pattern folder under the example project.

(e) Secondly, the repository.dslpatterns file need to be modified to add this new pat-
tern. The structure of the “repository” is shown in Figure B.3.

Figure B.3: The structure of the pattern repository

(f) Hence, we add a pattern category Altran and a pattern Declaration. The structure
of this pattern is shown in Figure B.4.

58 Pattern Specification and Application in meta-models in Ecore

APPENDIX B. DSL-TAO GUIDE

Figure B.4: The structure of Declaration pattern in the repository

Step2: apply the example pattern to a meta-model digram.

(a) To apply the Declaration pattern, open the empty“example” diagram and find the
pattern in Patterns View under Altran folder. Then follow wizards to apply this
pattern after double click it.

(b) In the first wizard, we set the pattern name as “Declaration”.

(c) In the second wizard, the pattern variant and secondary pattern to be applied are
selected. In this case, we only have a default pattern, no variants and secondary pattern
can be selected.

(d) In the last wizard, a tree view of the original pattern instance is shown at right side.
To create the example DSL meta-model, we add a new instantiatedmembers relation
under class InstanceSpecificationand a new related relation under class Type. The
finial tree view of the instance we will apply is shown in Figure B.5.

Figure B.5: The finial tree view of the instance of Declaration pattern

(e) Click finish, the pattern instance will be added to the empty diagram. As see from
Figure B.6, the structure of this instance is not the same as the fragment in example
DSL meta-model (see the parts highlighted in red circle). Unlike DiffMerge/Patterns,
DSL-tao can not create an instance with the structure we want to model.

Step3: finish the example DSL meta-model. According to the example DSL meta-
model in Figure 2.3, we can modify the diagram to create a meta-model with the same

Pattern Specification and Application in meta-models in Ecore 59

APPENDIX B. DSL-TAO GUIDE

Figure B.6: The pattern instance in diagram

structure of meta-model in Figure 2.3.

60 Pattern Specification and Application in meta-models in Ecore

	Contents
	List of Figures
	List of Tables
	Abbreviation
	Introduction
	Motivation
	Project goal
	Thesis outline

	Preliminaries
	Model-Driven Engineering
	Eclipse Modeling Framework
	Domain Specific Languages
	Design Patterns
	A Motivating Example

	State of the Art
	Approaches for pattern specification
	Literal approaches
	Logic approaches
	DSML approaches

	Role-binding approach for pattern application
	Conclusions

	Tool Exploration
	Pattern application tools
	EMF DiffMerge/Patterns
	DSL-tao
	Conclusions

	Extensions of DSL-tao
	Approach for pattern specification
	Approach for pattern application
	Tool support
	Extension 1
	Extension 2 - Problem statement
	Extension 2 - The merge function

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future work
	Validation of the extensions
	Validation of Altran's patterns
	Further extension for pattern application
	Pattern variants
	Blueprint of an advanced language workbench

	Bibliography
	Appendix
	EMF DiffMerge/Patterns Guide
	DSL-tao Guide

