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Abstract 

In this master thesis, the maintenance modelling for the maritime sector is addressed. The maritime 

sector is characterized by the cost difference between operational states. E.g., when the ship leaves the 

harbour, performing maintenance becomes more expensive and time consuming. With the existence 

of operational state cost differences, the cost factor becomes time dependent. The traditional 

maintenance models do not support this. This project proposes a model that incorporates the 

operational state cost differences, dependencies between components and the integration of an age-

based maintenance model with a condition-based maintenance model. A heuristic to perform the 

clustering of the age-based maintenance model is constructed. For the condition-based maintenance 

model, a dynamic programming model is constructed. The age-based maintenance and condition-

based maintenance models both have a single-component and a multi-component variant. The 

clustering benefit of the multi-component model is evaluated in a case study; the maintenance 

planning of the Marlin weapon system owned by the Royal Netherlands Navy. A sensitivity analysis 

is performed to get insights in the influence of the input variables on the maintenance planning.  
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Executive summary 

This project is performed as part of the MaSeLMa project. It serves as the final requirement to fulfil 

the master course Operations Management and Logistics. The project is conducted at the Royal 

Netherlands Navy. 

This project focusses on the maintenance planning in a maritime setting. The maritime setting is 

characterized by having different operational states. The RNLN distinguishes four operational states: 

harbour, transit, mission, and in-dock overhaul. These operational states differ from a maintenance 

perspective, because the maintenance costs differ among them. Typically, the ships leave the harbour 

frequently during the between in dock overhauls. The difference in maintenance cost can be caused by 

the geographical distance between the ships and the harbour, by the mission abandonment that might 

be caused by component failure, or by the unavailability of equipment and tools at some of the 

operational states. The large cost difference between the operational states asks for a sophisticated 

maintenance planning. The classical maintenance models assume that the maintenance cost are 

stationary and therefore time-independent (Nahmias, 2009). This project proposes a model that 

incorporates the operational states in the maintenance planning. 

The maritime sector typically uses sophisticated systems that are very costly. The spare parts, 

maintenance tasks and labour can be very expensive. In addition, the system architecture is often 

complex. To be able to perform maintenance tasks, the system needs to be dismantled and the tasks 

need to be prepared first. The time and costs that are incurred to do this can be referred to as a 

structural dependency. To prevent superfluous effort and costs on the maintenance tasks, it might be 

interesting to cluster multiple maintenance tasks. When the planning of multiple maintenance tasks is 

done at once, the structural dependencies between components can be included in the decision-

making. This project proposes multi-component models to incorporate the structural dependencies 

between components. 

An upcoming trend in the maritime sector is condition measurement and condition-based 

maintenance. More and more sensors are installed in the equipment and research is done into physics 

of failure. This way, the maintenance planning can be based on the actual condition or degradation of 

the system. However, condition-measurement can be too costly or might be unreliable for some 

components. It is unreasonable to assume that condition-based maintenance will be applied on all 

components within the foreseeable future. Hence, age-based maintenance models and condition-based 

maintenance models are expected to be used alongside. This project will propose a way to integrate 

the maintenance planning of components that are managed according to an age-based policy and 

components that are managed according to a condition-based policy. The proposed condition-based 

model can also be used for usage-based maintained components. 
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The research question of this project is formulated as: 

“How can a multi-component policy be used to integrate a condition-based maintenance policy 

with a static maintenance planning in a setting with operational states?” 

To answer this question, multiple maintenance models are constructed. First, the single-component 

age-based maintenance problem is modelled such that it incorporates the operational states. This 

model uses a heuristic to find cost efficient maintenance dates. Then, a multi-component age-based 

maintenance model is constructed. This model quantifies the cost that is incurred when a maintenance 

task is advanced or postponed with respect to the single-component optimal date. When maintenance 

is advanced, the expectation is that more preventive maintenance will be performed. When 

maintenance is postponed, the expectation is that more corrective maintenance is performed. If the 

cost for rescheduling the maintenance task is lower than the set-up cost that can be saved by 

clustering, it is beneficial to cluster the maintenance tasks. A heuristic is proposed to perform the 

clustering of the maintenance tasks in a relatively fast and close to optimal manner. The optimality of 

the heuristic is 97.2% on average.  

A condition-based maintenance model is constructed. A dynamic programming approach is used to do 

this. The model decides whether it is beneficial to perform maintenance now or to postpone the 

maintenance. The expected cost of both options is expressed to quantify the consequences of the 

decision. A single-component and a multi-component variant are built. The multi-component variant 

incorporates the structural dependencies between the condition-based maintained components and the 

age-based maintained components. This way the planning of both types of components is integrated.  

The performance of the proposed models is evaluated in the case study. The Marlin weapon system of 

the RNLN is used. The performance of the proposed models is compared with a classical age-based 

maintenance model. In addition, the multi-component models are compared to the single-component 

models to evaluate the clustering benefit. The proposed age-based maintenance models perform much 

better than the classical maintenance model. A 76% lower maintenance cost is obtained by the 

proposed models for the reference parameter settings. The classical maintenance model does not 

avoid maintenance during the high cost operational states and is thereby an inappropriate model for 

the maritime setting. The clustering benefit of the proposed models depends on the parameter settings. 

In the parameter setting that is used as a reference, the clustering benefit of the multi-component 

models is low. This is caused by the highly clustered nature of the parameter setting. The high cost 

difference between operational states in combination with a low corrective maintenance penalty and a 

mission planning with a low amount of state changes will cause the single-component planning to be 

highly clustered even without including the dependencies between components in the decision-

making.  
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In the sensitivity analysis, a strong interrelation between the effects of the variables on the clustering 

benefit is found. For example, when the corrective penalty (cost difference between preventive and 

corrective maintenance) becomes higher, the single-component maintenance planning becomes less 

clustered. In that case, small differences in the maintenance cost between components are enlarged 

and will spread out the single-component optimal maintenance dates. This increases the potential 

clustering benefit. The operational state cost difference makes the maintenance planning focus on the 

end of the harbour periods and has the opposite effect as the corrective penalty. Due to the operational 

states and their cost difference, most of the maintenance decisions are mostly about maintaining the 

component just before one mission or just before the other. When parameters change, one might not 

observe big differences in the maintenance planning until the change in parameter values becomes 

high enough to shift the maintenance date to the harbour state before a preceding or succeeding 

mission. This can be a large difference in timing, hence a sudden change in the maintenance timing 

and resulting maintenance cost and availability might occur.  

In a nutshell, the clustering benefit is higher (compared to the reference setting) for higher set-up cost 

levels, when more components can be clustered, when the operational state cost difference is lower, 

when the corrective penalty is higher, when the failure parameters of the components are less similar 

and when the mission schedule has shorter operational states and more state changes. In these cases, 

the clustering benefit ranges from to 0-20% of the total expected maintenance cost that is obtained by 

the single-component model. This is a noteworthy cost-saving. 

Besides the potential cost savings, the model should be used for the insights it gives into the penalty 

cost for rescheduling and the influence of the dependencies between components on the maintenance 

planning. The sensitivity analysis can be consulted to get insight in the clustering benefit in different 

parameter settings. In this project, a tool is created that can be used to do numerical tests and 

evaluations and to optimize the maintenance planning. 
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1 Introduction 

In this chapter, the research problem is introduced. The approach and the scope of this project are 

described and the relevance of the project is explained.  

1.1 Research environment 

This research is conducted as part of the MaSelMa project. MaSelMa is an abbreviation of Integrated 

Maintenance and Service Logistics Concepts for Maritime Assets. The project aims to reduce the total 

maintenance cost and to increase the availability of the assets in the maritime sector. In the maritime 

sector, maintenance cost is a significant part of the exploitation cost of the assets. The assets that are 

used in the maritime sector are typically complex and expensive. In addition, the sector has to deal 

with high availability targets. Therefore, a proper maintenance organization is crucial.  

This project is conducted at the RNLN. The Royal Netherland Navy (RNLN) is the oldest service of 

the Dutch armed force. It provides safety at sea, operating single-handed or together with other armed 

forces or with its allies. It performs crisis management, humanitarian assistance and disaster relief for 

the Netherlands and abroad. It has a wide variation of ships, containing state of the art equipment. The 

Directorate Material Sustainment (DMI) is in charge of maintaining the ships and the equipment and 

is ensuring a high availability of the fleet. The DMI owns a repair-shop with advanced equipment in 

which the components are repaired. It also owns a warehouse containing the spare parts inventory.  

1.2 Research problem 

The assets in the maritime sector face a wide variety of environmental conditions as they travel 

around the world. The use of the assets does vary over time, as the ships are used in different 

operational states. In these operational states the degradation behaviour of the assets might be 

different, as the intensity of the use of the asset differs among them. Also the cost and effort for 

performing maintenance is likely to be different among the operational state. 

Due to the complexity of the assets, dependencies between the components with respect to the 

maintenance activities are likely to be present. Under the existence of dependencies, cost savings can 

be made by combining or clustering maintenance activities.  

A simple example of a dependency is set-up cost that is incurred when the system is maintained. Cost 

can be saved by combining maintenance activities so the set-up costs are only incurred once. When a 

part needs maintenance action, the entire system must be shut down in most situations. As availability 

is crucial for the RNLN, downtime can be saved when maintenance tasks are combined.  

This project addresses the maintenance planning for setting in which the asset owner must deal with 

operational states and dependencies between the components. 
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1.3 Background of the problem 

The problem is based on the maintenance organization at the RNLN. In this section, the current 

maintenance organization is explained. Preceding research is performed in the MaSelMa project; this 

project is the third project in line and should complement the preceding research, which is also 

explained in this section.  

1.3.1 Maintenance organization at the RNLN 
At the RNLN, an approach called Integrated Logistic Support (ILS) is used. This approach is highly 

structured; having distinct phases, predefined documentation, standards and tests. The DMI 

(Directorate Material Sustainment) is responsible for most of the process. The lifetime of the system 

is depicted in Figure 1. 

Three phases can be distinguished: purchase, exploitation, decommissioning. The focus of this project 

will be on the exploitation phase.  

In the first phase, purchase, the possibility to buy the new system is investigated. The system that 

fulfils the requirements best is selected. Because the RNLN deals with complex systems, the 

engineers from the DMI are trained and educated about the specifics of the system. Then, the 

engineers from the DMI construct the maintenance program and negotiate about the documentation 

and the standards concerning the use and maintenance of the ships, because it should fit the way the 

DMI works. The operational practices are highly captured by standards and protocols. 

During the exploitation phase, the system is in operation. Regarding the maintenance during this 

phase, three levels can be distinguished: operational level maintenance (OLM), intermediate level 

maintenance (ILM), and depot level maintenance (DLM). The OLM concerns the regular tasks the 

ship operators have to do to maintain the ship. Again, this is captured in the documentation and 

protocols to a large extent, this can be preventive maintenance and corrective maintenance (if not too 

complicated). Often, there is no time for extensive investigation of the problems, as the mission plans 

cannot be delayed too much. 

The ILM is performed by engineers of the DMI. ILM typically concerns tasks or tests that require 

complex skills or equipment. This can be preventive and corrective. The ILM can be done a couple 

times a year when the ship is in the harbour. These periods are scheduled for maintenance and cannot 

be changed, because the mission plans are binding.  

The DLM concerns a major overhaul while the ship is docked for a long period. This happens once 

per 4 years. This large overhaul contains a standard maintenance list of tasks that are always 

performed (SOL) and tasks that are identified in the inspection before maintenance (ASOL). The 
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systems are dismantled from the ship. When the system is in the repair-shop, it will be disassembled 

into subcomponents. 

The decommissioning phase is the last phase of the system’s lifetime at the RNLN. First, the system 

undergoes maintenance, to restore it to the state as prescribed by the standards. Then the system is 

sold or the usable parts are disassembled and stored. When the system is sold, the buyer will be 

educated about the system and its documentation. 

The responsibilities of the maintenance management are allocated per system. The decision-makers in 

the maintenance management are different per system. There is of course some feedback between the 

actors of different systems, but this is not done in a structured manner. Therefore, cross-system 

maintenance planning is hard in the current organizational structure. 
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Figure 1 – Lifetime of a system from the point of view of the DMI 
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1.3.2 Preceding research 
In the MaSeLMa project, the possibilities to use condition-based maintenance are evaluated. The first 

step to do this is getting insight into the part degradation. Politis (2015) has performed a project that 

aims to predict the part degradation of radar systems, based on the physics of failure. His model will 

predict the remaining useful life estimation of the part, and probability that it fails earlier. The 

research of Eruguz (2015) uses the degradation predictions to optimize a condition based maintenance 

strategy in a single component setting. It takes into account: different operational states, different 

mission severities, different component criticality per mission, and different repair quality for the 

operational states. Four thresholds that trigger maintenance action are introduced and optimized: 

- Preventive replacement threshold; when degradation reaches threshold while the ship is in 

the harbour, preventive replacement is triggered. 

- Dock replacement threshold; when degradation reaches threshold while the ship is in major 

overhaul, preventive replacement is triggered. 

- Spare part ordering threshold; when degradation reaches threshold, a spare part is ordered at 

the central warehouse. 

- Spare part allocation threshold; before the ship leaves the harbour, put a spare part on board 

if the degradation is above a certain level and the component is critical for the next mission. 

A proper implementation of a new model or strategy is very important for practitioners, otherwise the 

advantage of the proposed strategy will not be obtained. The method that is currently used by the 

RNLN is highly structured, using predefined documentation, standards and tests. This makes the 

maintenance planning to a large extent static. The maintenance management would profit from a solid 

analytic model to base the decision-making on. As explained above, the possibility to use dynamic 

approaches such as condition based maintenance is investigated. However, it is unrealistic to expect 

the proposed condition-based maintenance (CBM) to be used for all components. It is interesting to 

investigate the interaction between the static ABM and the dynamic CBM approach, as the two are 

expected to be used alongside.   
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1.4 Research questions 

The currently used and previously investigated maintenance strategies consider a single component at 

the time. Currently, there is no structural way to incorporate the planning of multiple components at 

once. In contrast, this project investigates the dependency between components, as they are expected 

to have a significant influence on the optimality of the strategy. Up-time and availability are very 

important for the RNLN. This makes clustering maintenance activities attractive. In this project a 

multi-component model and a heuristic solutions method are proposed. The research question of this 

project is: 

How can a multi-component policy be used to integrate a condition-based maintenance policy with 

a static maintenance planning in a setting with operational states? 

This research question requires multiple issues to be investigated. To give insight in the steps to be 

taken in this project, the research question is divided into sub questions:  

1. How can the two policies (ABM and CBM) be modelled such that they incorporate the 

operational states? 

2. How can the interaction between the two policies (ABM and CBM), in terms of structural 

dependencies between components, be modelled? 

3. How can the two policies be integrated, to optimize the maintenance planning in terms of 

costs? 

Figure 2 shows the contribution of this project (in italics) with respect to the previous research in the 

MaSelMa project. The research questions are formulated such that they will cover the highlighted area 

in the maintenance problem.  

Chapter 3.1 presents the ABM-model incorporating the operational states, and chapter 3.2 contains 

the CBM-model incorporation the operational states. In these chapters the first research is answered. 

The dependencies between components are elaborated in chapter 2.1, answering the second research 

question. The third research question is answered in chapter 3.3; here the integration of the ABM and 

the CBM models is discussed.  
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Figure 2 - Representation of the maintenance problem and the contribution of this project 

1.5 Scope and boundary 

This project focusses on the planning aspect of the maintenance management. The problem is 

investigated in a multi-component setting, because dependencies between components are expected to 

have a significant influence on the total maintenance cost. The model will incorporate the structural 

dependencies between components. In chapter 2.1 is elaborated on the dependencies between 

components.  

The multi-component maintenance planning considering the operational states is complicated, so the 

other aspects of the maintenance management, such as spare parts management and the goods flow in 

the repair shop, is not in the scope of this project. 

This project proposes a strategy that incorporates the planning of age-based components with the 

planning of condition-based components. The model can also be applied to usage-based components 

instead of condition-based components. In the case-study, the usage-based variant is used. 

In this thesis, a case study is performed. The case that is investigated is the Marlin weapon system that 

is used on the fleet of the RNLN. This system is rather new to the RNLN, and the maintenance 

organization is more flexible than other systems that are in use. There are relatively many tasks 

categorized as ILM. Dependencies between components are expected to have a significant impact on 

the total maintenance cost. Therefore this system is a suitable candidate for this research. 
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1.6 Methodology 

This section elaborates on the methodology of this project. First, the structure of the research is 

explained and the different stages are shown. Then, the approach of this project is explained. In this 

project different models are built. The relation between these models is explained here.  

1.6.1 Research structure 
To structure this project the research framework of Mitroff, Betz, Pondy, and Sagasti (1974) is used. 

This framework accommodates for problem solving in which the system under investigation is 

regarded as a whole, in contrast to only considering a subsection. This framework distinguishes four 

parts in the methodology: 

1. Conceptualization 

2. Modelling 

3. Model solving 

4. Implementation 

This is visualized in Figure 3. The conceptualization phase focusses on conceptualizing the problem. 

In this phase the system characteristics are evaluated. The variables that influence the problem are 

explained and decisions are made on which variables will be included in the model. The scope and the 

boundaries of the project are discussed. In the modelling phase, the problem and its dynamics are 

captured in a quantitative model. Here, the mathematical model is built and explained. In the model 

solving phase, the model is used to solve the actual problem. Also a sensitivity analysis is performed 

in this stage. The last stage covers the implementation of the proposed model. Here is discussed how 

the new strategy can be implemented and what issues can be encountered. During the project, a lot of 

feedback loops are in place. Issues that are encountered in one phase can change the decisions made 

in previous phases. During the process, one should make sure that the decisions made in all phases are 

aligned.  

  

Figure 3 - Research framework introduced by Mitroff, et al. (1974) 
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In chapter 1.9 is explained in which section of this report the different stages are covered. 

1.6.2 Approach 

To solve the research problem and evaluate its dynamics, four mathematical models are created. The 

goal of the project is to incorporate multi-component effects in the maintenance management, as well 

as to integrate an age-based maintenance approach with a condition- or usage-based maintenance 

approach. Due to the difference in operational states that occurs in the maritime sector, the traditional 

models do not apply. 

The single-component age-based maintenance model is created first. The resulting maintenance cost 

from this model is used in the next model; the multi-component age-based maintenance model. 

Solving this model is complicated, hence a heuristic is used to optimize the maintenance planning. 

The resulting maintenance schedule of the age-based maintenance model is used as input for the 

condition- or usage-based maintenance model. For the condition-based model, both a single- and a 

multi-component model are created. 

This project investigates the impact of structural dependencies between components and evaluates the 

benefit of a multi-component approach over a single-component approach. To evaluate the advantage 

of the multi-component approach in terms of cost, the single-component models are created.  

1.7 Deliverables 

This project investigates and proposes new way of optimizing the maintenance management. First, 

insight is given into the dependencies between components and their impact on the maintenance 

planning. Currently at the DMI, there is no structural way to incorporate these dependencies in the 

decision-making. 

Second, a method is constructed to incorporate the operational states in the maintenance planning and 

their impact on the maintenance management. To the best of our knowledge, such a model is not 

present in the maintenance literature, so the model itself is an important deliverable of this project.  

Third, a clustering algorithm is proposed that can be used to optimize the maintenance planning of the 

ABM- components in terms of cost.  

Fourth, a condition-based model is created that incorporates the operational states. This model has a 

single-component and a multi-component variant that allows for maintenance clustering. This model 

can also be applied in a usage-based setting. The multi-component model does also consider 

clustering opportunities with ABM-components. 
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Fifth, the models are translated into a planning tool in VBA/Excel that can be used by the 

maintenance engineers to evaluate and optimize the maintenance planning. This can be used to 

compare the performance of the different models.  

At last, a case study is performed on the Marlin weapon system. The maintenance planning of this 

system is evaluated and optimized in terms of cost. The case study incorporates a sensitivity analysis 

that gives insight in the influence of the input parameters on the performance of the models.  

1.8 Relevance 

In the literature, multiple multi-component maintenance models are presented. In these models, the 

components are assigned to a group of components that are maintained at a fixed interval. These types 

of policies can be referred to as block-policies. (Wildeman, Dekker, & Smit, 1997) (van Dijkhuizen & 

van Harten, 1997). Using grouping algorithms is an alternative approach. Here, the single-component 

optimal maintenance dates are determined first. Then, cost of grouping is expressed using penalty 

functions. After that, problem reduction principles are used to simplify the optimization (Vu, Do Van, 

Barros, & Berenguer, 2012) (Wildeman, Dekker, & Smit, 1997). This approach is more similar to the 

approach used in this project. However, the above described approaches rely heavily on the 

assumption that the cost structure of the problem is stationary. An optimal maintenance interval can 

be used permanently, because the maintenance cost are not time-dependent. In the maritime setting, 

this is not the case. This research is a relevant addition to the current literature on multi-component 

maintenance modelling as it introduces incorporating the operational states into the maintenance 

planning. In addition, the ability to incorporate the structural dependencies between components is 

granted. To the best of our knowledge, such a model is not available in the current literature. A new 

dynamic programming model is created to optimize the maintenance planning for condition-based or 

usage-based components. This model also incorporates the operational state cost difference. The 

traditional CBM-models use a preventive replacement threshold to trigger preventive maintenance. 

(Wang, Chu, & Mao, 2008) This threshold is optimized, such that the sum of the expected preventive 

and corrective maintenance cost is minimal. When the maintenance costs are time-dependent, a static 

maintenance threshold will not be appropriate. The decision-making should not only be made based 

on the current degradation threshold, but should also incorporate the asset’s operational schedule. 

Therefore, a dynamic programming model is constructed to optimize the maintenance planning. In 

addition, this project proposes a way to integrate the maintenance planning of ABM-components and 

CBM-components 

The RNLN currently does not use such a detailed quantitative method for their maintenance 

management. Clustering maintenance tasks is done based on the insight in the cost structure and 

experience of the installation managers rather than using a structured analytical method. This project 

proposes a new policy that can be used for the maintenance planning of the weapon system on which 
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the model is tested, but also for other systems. The model in itself is general, so it can be used for 

other systems where an operational state cost difference exists. The maritime sector is not the only 

sector that would profit from a model that incorporates operational states. An organisation that has to 

deal with deviating corrective and preventive cost due to changing operational states can use this 

model for their maintenance management.  
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1.9 Report outline 

This section gives an outline of the contents of each chapter. The chapters are linked to a phase of the 

research framework of Mitroff, et al. (1974). This is shown in Table 1.  

Table 1 – The outline of the report and the research phases of Mitroff, et al. (1974) 

Chapter Contents Research phase 

1 Introduction Conceptualization 

2.1 Dependencies between components Conceptualization & modelling 

2.2 Operational states Conceptualization 

2.3 Component criticality Conceptualization 

3.1 Age-based maintenance Modelling 

3.1.1 Single-component model Modelling 

3.1.2 Multi-component model Modelling 

3.1.3 ABM clustering algorithm Model solving 

3.2 Condition-based maintenance Modelling & model solving 

3.3 Integration ABM and CBM Modelling & model solving 

4 Case study Model solving 

4.2 Reference results Model solving 

4.3 Sensitivity analysis Model solving 

5 Conclusions Implementation 

The next chapters contain the conceptualization phase. The dependencies between components and 

how they can be modelled is discussed in chapter 2.1. The operational states are conceptualized in 

chapter 2.2. The conceptualization of the component criticality is discussed in chapter 2.3. In the next 

part, the modelling is discussed. First, the age-based models are presented. Chapter 3.1.1 contains the 

single-component age-based maintenance model. Then, the multi-component model is presented. 

Chapter 3.1.2.1 contains the penalty functions that are used in the model. The clustering algorithms 

are discussed in chapter 3.1.3. Then the clustering algorithms are evaluated on their performance, this 

is done in chapter 3.1.4. Thereafter, the condition-based model is presented in chapter 3.2. The 

integration of the ABM and CBM models is discussed in chapter 3.3. After that, the case study is 

introduced. The assumptions and parameter settings are explained in chapters 4.1 and chapter 4.2 

contains the results of the models with the reference parameter settings as input. Chapter 4.3 presents 

a sensitivity analysis. At last, the conclusions that can be drawn from this project are presented. 

Chapter 5.1 explains how the research question is answered. The limitations of this project are 

presented in chapter 5.2. The implementation is discussed in chapter 5.3 and recommendations are 

given in this chapter. Then, future research directions are suggested in chapter 5.4.  
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2 Conceptualization 

In this chapter, the factors that influence the decision-making are explained and conceptualized.  

2.1 Dependencies between components 

To optimize the multi-component maintenance problem, the dependencies between components must 

be investigated. The literature distinguishes three types of dependencies: economic, structural and 

stochastic dependencies. 

2.1.1 Economic dependency 
Economic dependency refers to the costs caused by unavailability of the system. In a production line 

setting, the entire production line is stopped during maintenance of a component. This makes 

maintaining multiple systems attractive, because the tasks can be done in parallel or time-savings can 

be made. In the case of the RNLN, there is no such thing as production loss. However, for many tasks, 

the ship need to be at the home harbour, during the harbour periods the system is unavailable for use. 

This can be seen as some sort of economical dependency. However, it is hard to quantify the cost for 

system unavailability. In addition, when the amount of maintenance instances can be reduced, the 

planning will most likely not have less home harbour instances, as the ship also visits the harbour for 

other purposes than maintenance. This does not mean that economic dependencies do not occur in the 

case of the RNLN, but they are rather ambiguous and hard to quantify. Therefore they will not be 

included in the case study. The models could include economical dependency as long as it can be 

quantified. 

2.1.2 Stochastic dependency 

Another type of dependency is stochastic dependency. This can be seen as the dependence between 

the failure behaviour of the components in a system. Failure or high degradation of a component can 

cause a higher failure or degradation rate among the other components. This type of dependency is 

hard to model. Most maintenance models assume that failure behaviour or degradation of the 

components is independent of the failure behaviour or degradation of the other components. 

Incorporating this kind of dependency would create a very complex model. For the RNLN, there 

might be some stochastic dependency between components. However, the size of this effect is 

unknown. In this project is assumed that there are no stochastic dependencies between components 

because of the reasons mentioned above. 

2.1.3 Structural dependency 
A structural dependency refers to the dependencies that arise due to the physical lay-out of the system. 

In complicated systems, maintaining a part often requires other components to be dismantled as well. 

The time and effort this takes can be seen as set-up cost that can be shared. For the RNLN the main 

part of the structural dependencies between components are time related. The set-up time that can be 

avoided can be translated to cost using the wage of the engineers.   
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The model will consider structural dependencies. The structural dependencies between components 

are modelled as a set-up cost. The set-up cost can be modelled in different ways.  

A simple form of a set-up configuration is a common set-up cost for all components. In that case, the 

set-up cost that is avoided is equal to (𝑚 − 1) ∙ 𝑆, where m is the amount of components that are 

clustered on a specific date. This is depicted in Figure 4a. Often, there are different groups of 

components that share a common set-up. These groups can be optimized separately, as the 

dependencies only exist within the groups. 

Some companies have to deal with a more complicated set-up configuration. To determine which 

setups can be avoided, one must first divide the setups into parts that can be shared and component 

specific parts. Van Dijkhuizen & Van Harten (1997) use such a set-up configuration. They transform 

a production system into a maintenance tree. This is illustrated by Figure 4b. Here, setup i is related to 

component/task i. The cost of the setup part is notated on the arcs. The total setup cost of a 

maintenance task is found when going back into the tree. Hence, the components with setups at the 

end of the tree have larger setups than the ones at the beginning of the tree.  

 

Figure 4 - Example of Van Dijkhuizen & Van Harten (1997), (a) set-up configuration with common set-ups. (b) 

Maintenance tree set-up configuration.  

To determine the setup costs that are saved by rescheduling the maintenance on component i to a 

certain period, one can check whether the setups that are needed for component i are already 

performed that period. The saved set-up cost for a rescheduling option is referred to as 𝑆𝑆𝑖
𝜏𝑖
∗+𝑘

. Note 

that the saved set-up cost can change each time a component is rescheduled. 

The model can incorporate all these types of set-up configurations. It only takes some extra modelling 

effort to determine which set-up costs are saved with a certain clustering option, in case of the 
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maintenance tree configuration. The tool developed in this project includes the possibility to use each 

of these set-up configurations.  

2.2 Operational states 

In the maritime sector, the assets are typically used in different operational states. The existence of 

operational states asks for a different kind of maintenance model. In contrast with a production line 

setting, it raises some specific dynamics to the maintenance planning. The opportunity to perform 

maintenance can be absent in some of the operational states, or it exists but with a high cost attached 

to it. Another issue with respect to the existence of operational states is that the failure or the 

degradation behaviour can be different per operational state. The assets are usually used more 

intensely in some of the operational states and less in others. This makes the decision making in the 

maintenance management more complicated and requires a more sophisticated mathematical model. 

For the RNLN, four states can be distinguished: 

1. Transit 

2. Mission 

3. Home harbour 

4. In-dock overhaul 

These states are different from a maintenance perspective for the following reasons. When the ship is 

in state 3 and 4 are it is in the home harbour, which includes an advanced repair shop. This means that 

the advanced equipment and tools can be used in these states. In addition, specialized engineers will 

perform the maintenance tasks. This is not the case when a ship is in operational state 1 and 2. 

Military engineers are on board when a ship leaves the harbour, but these are generalists with a broad 

set of skills, unable to perform the complex tasks that can arise for the sophisticated systems. Also, 

only basic equipment can be carried on a mission. For this reason, the complex maintenance tasks can 

only be performed when the ship is in states 3 and 4. In state 4 the ship undergoes major overhaul, this 

happens once in four years. This corresponds to the depot level maintenance described in chapter 

1.3.1. Operational state 1 and 2 are expected to differ from a maintenance perspective, as for some 

systems the systems are used more intensely during missions. This results in a different failure 

behaviour among states 1 and 2. Also, the consequences of system failure during mission are more 

severe as the mission might be abandoned when the system breaks down. The mission schedule is 

often known for the upcoming years.  

2.3 Component criticality 

It can be very costly to perform corrective maintenance in some operational states. However, not 

every component is critical all the time. For some components, it is allowed to postpone corrective 

maintenance until the asset enters an operational state with low maintenance cost. This influences the 

decision-making for non-critical components and hence it should be included in the model. This is 
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also the case for the RNLN. Some missions do not require all systems to be functioning. In that case, 

the maintenance on the component will be postponed until the ship visits the harbour and the 

component can be repaired at low cost. When the criticality of the components during the upcoming 

missions is known, it can be incorporated in the maintenance planning. This can be done for the 

condition-based maintenance model, see chapter 3.2. However, for the age-based maintenance model 

this is much harder, because a static model is used, see chapter 3.1. In a static model, it is much harder 

to model the behaviour of the system in case of failure of a non-critical component. Due to the time-

limit of this project, the criticality of the components is only incorporated in the CBM-model.  
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3 Mathematical model 

The mathematical modelling consists of two main parts; the age-based maintenance part and the 

condition-based maintenance part. For the ABM part, the model first addresses the single-component 

optimization problem as visualized in Figure 2. Based on the optimal replacement date of each 

component, the penalty cost for deviating from this date are determined. This is used as input for the 

clustering algorithm. Two methods to solve the clustering problem are presented, the performance of 

these methods is evaluated with a scenario analysis. For the condition-based/usage-based components 

a dynamic programming model is used. 

3.1 Age-based maintenance 

3.1.1 Single component model 

The first step in the optimization procedure is to find the optimal maintenance date in a single-

component setting. Here the dependencies between components are ignored.  

One can argue that it is reasonable to assume that the degradation rate is dependent on the use of the 

system. In the maritime sector, the assets are used in different operational states. Therefore, 

distinguishing between degradation behaviours in the operational states of the asset is interesting.  

When the degradation rate is dependent on the operational state, the failure probabilities become more 

difficult. This is shown in Appendix B. The probability functions contain many convolution terms. 

This is hard to model and will result in an high computation time. In addition, the degradation rate for 

the different operational state is unknown. 

Assuming an equal degradation rate for the operational states might be reasonable for many systems 

in the maritime sector. At the RNLN, the different degradation rates for the operational states are 

unknown, and in the MaSeLMa project this seems to be the same for other companies in the maritime 

sector. For this reason and for the ease of modelling the failure rate is assumed to be equal across the 

operational states. 

In the classical renewal theory, the average maintenance cost is expressed as the following function 

(Nahmias, 2009): 

𝐶𝑖(𝜏𝑖) =
𝐸𝐶𝐶(𝜏𝑖)

𝐸𝐶𝐿(𝜏𝑖)
 

𝑤𝑖𝑡ℎ;  

𝐸𝐶𝐶(∙)  =  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑠𝑡; 

𝐸𝐶𝐿(∙) =  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ; 

𝜏𝑖 = 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖; 

Here, the maintenance costs are time-independent. Hence, the optimal maintenance date is time-

independent and remains optimal permanently. In this project the maintenance costs are time-
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dependent, so an adjustment is needed. The average maintenance cost of component i, 𝐶𝑖(𝜏𝑖), can be 

modelled as a variation on the classical function. The numerator contains the expected maintenance 

cost per time unit of the upcoming life of the component.   

The corrective maintenance cost differs per operational state, so the expected corrective cost is 

summated over the lifetime of the component until 𝜏 − 1. Here, 𝑐𝑖,𝑡
corr and 𝑐𝑖,𝑡

prev
 represent the cost of 

performing corrective and, respectively, preventive maintenance for component i during the 

operational state at time t. 𝑆𝑖 represents the set-up cost of component i. 𝐹𝑖(𝑡) represents the 

cumulative probability of failure unto time t. The average maintenance cost is expressed by the 

following function: 

𝐶𝑖(𝜏𝑖) =
∑ (𝑐𝑖,𝑡

corr+𝑆𝑖) ∙ (𝐹𝑖(𝑡) − 𝐹𝑖 (𝑡 − 1))
𝜏𝑖−1
𝑡=1 + (𝑐𝑖, 𝜏𝑖

prev
+𝑆𝑖) ∙ (1− 𝐹𝑖(𝜏𝑖 −1))

∫ 𝑡 ∙ 𝑓𝑖(𝑡)𝑑𝑡
𝜏𝑖−1

𝑡=1 + 𝜏𝑖 ∙ (1− 𝐹𝑖(𝜏𝑖 −1))
 

When a failure occurs at the period for which preventive maintenance is planned, it is assumed that 

the system can still be maintained at the preventive maintenance cost, as the tasks are already planned 

for that period. When the function is used to find all maintenance dates within the horizon, the time 

should not be set to zero, but the current time should be subtracted in the failure probability terms, this 

is shown in the algorithm in the clustering algorithm in chapter 3.1.3. For simplicity, this is left out in 

the function above. 

The maintenance planning and the ship schedule are done on a discrete scale, therefore a summation 

is used to calculate the expected corrective cost. The lifetime of the components is expected to be 

continuously distributed, because the age of a component is measured on a continuous scale. For more 

information on the lifetime distributions, see Appendix A.  

When the function presented above is minimized, the optimal maintenance date of that life of the 

component is found. The optimal value is not found by setting the derivative to zero, because the cost 

function might not be unimodal. The optimal value can be found by calculating the cost resulting from 

all maintenance times until the horizon and selecting the optimal maintenance time. In software 

packages as Excel/VBA this can be done quickly.  

This is a myopic policy, because only the upcoming maintenance date is optimized, instead of the all 

maintenance occurrences until the scheduling horizon. This policy is an approximate approach and it 

is rather easy to model. To be able to optimize all the maintenance decisions until the horizon a 

dynamic programming model would be needed, which is more complicated. The myopic issue is 

discussed in more detail in chapter 3.1.3.3. 

Due to the state dependent corrective cost, the function is not necessarily unimodal as said before. For 

an Erlang distributed time to failure, and some arbitrary failure and cost parameters, the average 

maintenance cost per time unit is shown in Figure 5. The operational schedule of the asset is shown in 
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Table 2, with: 3=harbour state (low preventive and corrective maintenance costs), 1=transit state 

(intermediate preventive and corrective maintenance costs), 2= mission state (high preventive and 

corrective cost). 

 

Figure 5 - Example of the average cost function depending on the maintenance timing 

Table 2 - Operational schedule of the asset of Figure 5 

Time  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Oper. 
state 

3 3 1 1 2 2 2 1 1 3 3 1 1 2 2 2 1 1 3 3 1 1 2 2 1 1 3 3 

 

                                   

                                    

3.1.2 Multi-component model 
The multi-component optimization part constitutes from two parts. First, the cost of rescheduling is 

modelled by means of a penalty function. Second, the clustering algorithm explains how the cost of 

rescheduling and the set-up cost can be used to optimize the maintenance planning.  

 Penalty functions 3.1.2.1

Due to the time-dependent maintenance cost and the non-stationary asset schedule, using maintenance 

policies that involve fixed intervals such as block policies or grouping algorithms, are not appropriate 

for this setting. Each maintenance occurrence must be optimized to evaluate the clustering 

possibilities. To do this, penalty functions can be used. The penalty function expresses the cost of 

deviating from the single-component optimal maintenance date. This cost can be compared with the 

cost saving that can be attained by clustering to evaluate the clustering decision.  

Most of the clustering models for age-based maintained components presented in the literature, use 

penalty functions such as: ℎ𝑖(𝜏𝑖
∗+𝑘) = 𝐶𝑖(𝜏𝑖

∗+𝑘) − 𝐶𝑖(𝜏𝑖
∗)− 𝑘𝐶𝑖(𝜏𝑖

∗) ( (Wildeman, Dekker, & 

Smit, 1997); (Vu, Do Van, Barros, & Berenguer, 2012)). Here, ℎ𝑖(𝜏𝑖
∗+𝑘) represents the penalty cost 

with  𝜏𝑖
∗ as the single-component optimal maintenance date, and k  as the size of the deviation from the 

single-component optimal date. Ci(x) are the long term costs of performing maintenance at time x. 
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Such a function gives no insight in the underlying costs that constitute the penalty for rescheduling 

and hence it is hard to adjust such a function to incorporate different maintenance cost per operational 

state. Therefore, a more explicit penalty function is used to incorporate the operational state cost 

difference. Because the mission plans are known for the upcoming period, it is possible to incorporate 

this in the model. 

The penalty function is based on the difference in the expected corrective cost between the optional 

date and the single-component optimal date. Additionally, the expected difference in the preventive 

cost between the optional date and the single-component optimal date must be included. The expected 

corrective and preventive cost are modelled the same as in the average maintenance cost function.  

The penalty that is incurred for advancing or postponing maintenance contains another factor. A cost 

factor is included that represents the expected penalty that is incurred by advancing or the expected 

saving that is acquired by postponing the maintenance date. In the function from the literature, this is 

included by the factor −𝑘𝐶𝑖(𝜏𝑖
∗). However, this is a simplistic representation. For large values of k , 

the potential postponement gain is high, but the probability that the component survives until the 

maintenance date is low, so the potential postponement gain is multiplied by the probability of 

survival. When the component fails before the maintenance date a partial postponement gain is 

acquired, again this is multiplied by the probability of failure at that time.  

The penalty function for a postponement can be expressed as: 

𝐹𝑜𝑟 𝑘 > 0: 

ℎ𝑖(𝜏𝑖
∗+𝑘) = ∑ 𝑐𝑖,𝑡

corr ∙ (𝐹𝑖(𝑡) − 𝐹𝑖(𝑡 − 1))

𝜏𝑖
∗+𝑘−1

𝑡=1

+ 𝑐
𝑖,𝜏𝑖
∗+𝑘

prev
∙ (1− 𝐹𝑖(𝜏𝑖

∗+𝑘))

−

(

 ∑𝑐𝑖,𝑡
corr ∙ (𝐹𝑖(𝑡) − 𝐹𝑖(𝑡 − 1))

𝜏𝑖
∗

𝑡=1

+ 𝑐
𝑖,𝜏𝑖
∗

prev
∙ (1− 𝐹𝑖(𝜏𝑖

∗))

)

 

−𝑘 ∙ 𝐶𝑖(𝜏𝑖
∗)(1− 𝐹𝑖(𝜏𝑖

∗ +𝑘)) −∑ 𝑙 ∙ 𝐶𝑖(𝜏𝑖
∗)

𝑘−1

𝑙=1

(𝐹𝑖(𝜏𝑖
∗+ 𝑙) − 𝐹𝑖(𝜏𝑖

∗ + 𝑙 − 1)) 

The two expected corrective cost summations can be subtracted from each other. Then, the corrective 

cost summations can be notated in a similar way as the postponement gain summation. The penalty 

function can be simplified to: 

𝐹𝑜𝑟 𝑘 > 0: 
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ℎ𝑖(𝜏𝑖
∗+𝑘) =∑𝑐𝑖,𝜏𝑖

∗+𝑙
corr ∙ (𝐹𝑖(𝜏𝑖

∗+ 𝑙) − 𝐹𝑖(𝜏𝑖
∗ + 𝑙 − 1))

𝑘−1

𝑙=0

+ 𝑐
𝑖,𝜏𝑖
∗+𝑘

prev
∙ (1 − 𝐹𝑖(𝜏𝑖

∗ +𝑘 −1))

− 𝑐
𝑖,𝜏𝑖
∗

prev
∙ (1− 𝐹𝑖(𝜏𝑖

∗ −1)) − 𝑘 ∙ 𝐶𝑖(𝜏𝑖
∗)(1− 𝐹𝑖(𝜏𝑖

∗ +𝑘 −1))

−∑ 𝑙 ∙ 𝐶𝑖(𝜏𝑖
∗)

𝑘−1

𝑙=1

(𝐹𝑖(𝜏𝑖
∗+ 𝑙) − 𝐹𝑖(𝜏𝑖

∗ + 𝑙 − 1)) 

For a maintenance advancement, the penalty function can be expressed as: 

𝐹𝑜𝑟 𝑘 < 0: 

ℎ𝑖(𝜏𝑖
𝑛∗+𝑘) = −∑𝑐𝑖,𝑙

corr ∙ (𝐹𝑖(𝜏𝑖
∗+ 𝑙) − 𝐹𝑖(𝜏𝑖

∗ + 𝑙 − 1))

−1

𝑙=𝑘

+ 𝑐
𝑖,𝜏𝑖
∗+𝑘

prev
∙ (1− 𝐹𝑖(𝜏𝑖

∗ +𝑘 − 1))

− 𝑐
𝑖,𝜏𝑖
∗

prev
∙ (1 − 𝐹𝑖(𝜏𝑖

∗ −1)) − 𝑘 ∙ 𝐶𝑖(𝜏𝑖
∗)(1− 𝐹𝑖(𝜏𝑖

∗ −1))

− ∑ (𝑘− 𝑙) ∙ 𝐶𝑖(𝜏𝑖
∗)

−1

𝑙=𝑘+1

(𝐹𝑖(𝜏𝑖
∗ + 𝑙) − 𝐹𝑖(𝜏𝑖

∗+ 𝑙 − 1)) 

Due to the cost difference between the operational states, the penalty functions are not unimodal. 

When there is no cost difference between the operational states, the function simplifies to a unimodal 

function. 

Figure 6 shows the penalty cost function depending on the maintenance timing. In this example the 

same data is used as in the average maintenance cost graph in Figure 5. The penalty cost is zero at the 

optimal maintenance time in terms of average maintenance cost. The order of magnitude is different 

because the average maintenance cost is per time unit whereas the penalty cost is not. In the penalty 

function, the postponement gain is incorporated explicitly. A similar pattern is notable in the penalty 

cost figure and in the average maintenance cost figure, but in the penalty cost, the operational state 

cost difference is more pronounced. From this picture, the relevance of incorporating the operational 

states is clear. If one would use averages for the maintenance cost during the horizon, a totally 

different cost figure would be created. A deviation from the single component optimal date will result 

in a very high penalty cost if the maintenance is planned in the high cost operational state, but the cost 

for rescheduling to the preceding and subsequent low cost operational state are relatively low. 
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Figure 6 - Example of the penalty cost function depending on the maintenance timing 
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3.1.3 Clustering algorithm  
Solving the clustering problem can be done in multiple ways. A basic way is to perform a full 

enumeration of the possibilities and select the option with the lowest cost. However, this is time 

consuming and intractable for long horizons and many components. Wildeman, Dekker, & Smit 

(1997) propose a method to reduce the solution space of the clustering problem. They introduce rules 

that must be satisfied by the optimal solution. However, their problem reduction approach assumes 

that the penalty function is convex. This is not true for this model, so the problem reduction method 

does not apply. However, the problem is reduced to some extend by only considering the dates of 

which the penalty cost are lower than the set-up cost of the component. For long horizons, this 

prevents the algorithm to evaluate dates in the future that are clearly not beneficial.  

In the literature, clustering algorithms that are proposed often assume fixed maintenance frequencies 

or frequency constraints, instead of including the probability of failure in the model (Budai, Huisman, 

& Dekker, 2006) (van Dijkhuizen & van Harten, 1997). This allows for a strong problem reduction 

and thereby a less complex solution space. However, the introduction of operational states does not 

allow for such a model, as the maintenance frequency constraints are based on a stationary system. 

The maintenance costs are non-stationary over time in this model. Because of the complexity of the 

problem and the flexibility of this approach, a greedy type model is built. To the best of our 

knowledge, greedy heuristics are not often used for maintenance clustering, but they have been shown 

to perform well. (van Dijkhuizen & van Harten, 1997)  

 Greedy heuristic 3.1.3.1

The greedy algorithm finds a local optimum very fast, but it does not guaranty a globally optimal 

solution. The optimality gap of the greedy heuristic will be evaluated on a small instance, to give 

insights in the strength of the heuristic and the influence of the input parameters on the solution 

quality. The algorithm includes the iteration through time to plan all maintenance task occurrences 

within the horizon. A rolling horizon approach is used. The implications of this are explained in 

chapter 3.1.3.3. A variable for the CurrentTime is introduced in the calculations to be able to iterate 

through time.  

1. Greedy heuristic: 

1.1. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 = 1, 𝐴𝑔𝑒(𝑖) = 0 𝑓𝑜𝑟 ∀𝑖. 

1.2. Fill set 𝑁 with all components: 𝑁 = {1, …, 𝑛}. 

1.3. Optimize the single-component model for each component in the set 𝑁. 

 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 |𝑁|  

𝐼𝑓 𝐴𝑔𝑒(𝑖) = 0, 𝑇ℎ𝑒𝑛;  

Calculate 𝐶𝑖(𝜏𝑖):  

𝐹𝑜𝑟 𝜏𝑖 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 𝑡𝑜 ℎ𝑜𝑟𝑖𝑧𝑜𝑛  
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𝐶𝑖(𝜏𝑖) =
∑ (𝑐𝑖,𝑡

corr +𝑆𝑖) ∙ (𝐹𝑖(𝑡− 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒+ 1)− 𝐹𝑖(𝑡 −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒))
𝜏𝑖−1

𝑡=𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒
+(𝑐

𝑖, 𝜏𝑖

prev
+𝑆𝑖) ∙ (1− 𝐹𝑖(𝜏𝑖 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒))

∫ 𝑡 ∙ 𝑓𝑖(𝑡)𝑑𝑡
𝜏𝑖−1

𝑡=𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒
+𝜏𝑖 ∙ (1 −𝐹𝑖(𝜏𝑖 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒))

 

𝑁𝑒𝑥𝑡 𝜏𝑖  

Find 𝜏𝑖
∗ for which 𝐶𝑖(𝜏𝑖

∗) is minimal. 

 

Determine the penalty cost ℎ𝑖(𝜏𝑖
∗+𝑘): 

𝐹𝑜𝑟 𝑘 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒− 𝜏𝑖
∗ 𝑡𝑜 ℎ𝑜𝑟𝑖𝑧𝑜𝑛− 𝜏𝑖

∗ 

𝐼𝑓 𝑘 > 0, 𝑇ℎ𝑒𝑛; 

ℎ𝑖(𝜏𝑖
∗ + 𝑘) =∑𝑐𝑖,𝜏𝑖∗+𝑙

corr ∙ (𝐹𝑖(𝜏𝑖
∗ + 𝑙 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒+ 1)− 𝐹𝑖(𝜏𝑖

∗ + 𝑙 −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒))

𝑘−1

𝑙=0

+𝑐
𝑖,𝜏𝑖
∗+𝑘

prev
∙ (1− 𝐹𝑖(𝜏𝑖

∗ + 𝑘− 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒)) − 𝑐
𝑖,𝜏𝑖
∗

prev
∙ (1 −𝐹𝑖(𝜏𝑖

∗ −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒))

−𝑘 ∙ 𝐶𝑖(𝜏𝑖
∗)(1− 𝐹𝑖(𝜏𝑖

∗ +𝑘− 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒)) −∑𝑙 ∙ 𝐶𝑖(𝜏𝑖
∗)

𝑘−1

𝑙=1

(𝐹𝑖(𝜏𝑖
∗ + 𝑙 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒+ 1)− 𝐹𝑖(𝜏𝑖

∗ + 𝑙 −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒)) 

𝐼𝑓 𝑘 < 0, 𝑇ℎ𝑒𝑛; 

ℎ𝑖(𝜏𝑖
𝑛∗ + 𝑘) = −∑𝑐𝑖,𝑙

corr ∙ (𝐹𝑖(𝜏𝑖
∗ + 𝑙 −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒 +1) −𝐹𝑖(𝜏𝑖

∗ + 𝑙 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒))

−1

𝑙=𝑘

+𝑐
𝑖,𝜏𝑖
∗+𝑘

prev
∙ (1− 𝐹𝑖(𝜏𝑖

∗ + 𝑘− 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒)) − 𝑐
𝑖,𝜏𝑖
∗

prev
∙ (1 −𝐹𝑖(𝜏𝑖

∗ −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒))

−𝑘 ∙ 𝐶𝑖(𝜏𝑖
∗)(1− 𝐹𝑖(𝜏𝑖

∗ −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒)) − ∑ (𝑘− 𝑙) ∙ 𝐶𝑖(𝜏𝑖
∗)

−1

𝑙=𝑘+1

(𝐹𝑖(𝜏𝑖
∗ + 𝑙 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒+ 1)− 𝐹𝑖(𝜏𝑖

∗ + 𝑙 −𝐶𝑢𝑟𝑟𝑒𝑛𝑇𝑖𝑚𝑒)) 

𝐸𝑛𝑑 𝑖𝑓 

𝑁𝑒𝑥𝑡 𝑘 

𝐼𝑓 𝐴𝑔𝑒(𝑖) > 0,𝑇ℎ𝑒𝑛; 

Use 𝐶𝑖(𝜏𝑖
∗) and ℎ𝑖(𝜏𝑖

∗+𝑘), 𝑓𝑜𝑟 𝑘 = {𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒− 𝜏𝑖
∗,… , ℎ𝑜𝑟𝑖𝑧𝑜𝑛− 𝜏𝑖

∗} 

as calculated in the previous time iteration.  

𝐸𝑛𝑑 𝑖𝑓 

𝑁𝑒𝑥𝑡 𝑖 

1.4. Based on the asset schedule, calculate the clustering benefit for each period until the horizon, 

using the penalty cost and the saved setup cost. The saved setup cost 𝑆𝑆𝑖
𝜏𝑖
∗+𝑘

 can change each 

time a component is scheduled and should be updated each iteration.  

𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 

𝐹𝑜𝑟 𝑘 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒− 𝜏𝑖
∗𝑡𝑜  ℎ𝑜𝑟𝑖𝑧𝑜𝑛− 𝜏𝑖

∗ 

 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑖, 𝑘) = 𝑆𝑆𝑖
𝜏𝑖
∗+𝑘

−ℎ𝑖(𝜏𝑖
∗+ 𝑘) 

𝑁𝑒𝑥𝑡 𝑘 

𝑁𝑒𝑥𝑡 𝑖 

1.5. Solve the clustering problem using the greedy heuristic logic: 

1.5.1. Start with a blank schedule. 
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1.5.2. Select the largest 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑖, 𝑘) of all values of k and of all components in the set N and 

schedule this component on date 𝜏𝑖
∗+𝑘, by adding the new maintenance occurrence to 

the planning matrix: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖,𝑚) = 𝜏𝑖
∗ +𝑘. Where m is the amount of 

maintenance occurrences, including the newly planned occurrence.   

1.5.3.  Remove component i from the set 𝑁. If 𝑁 ≠ {∅} ; go back to step 1.4. Else; continue 

with 2.1. 

2. Improvement heuristic: 

2.1. Set the improvement indicator 𝑥 to 𝑥 = 0. Start with the first component, 𝑖 = 1.  

2.2. Store the latest planning in a vector: 𝐿𝑎𝑡𝑒𝑠𝑡𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖, 𝑙𝑎𝑡𝑒𝑠𝑡 ). 

Remove the maintenance date of the last maintenance occurrence of component i from the 

schedule: set 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖,𝑚) = ∅. 

2.3. Reconsider the latest planning of component i, knowing the maintenance planning of the 

other components. Update the possible set-up saving, 𝑆𝑆𝑖
𝜏𝑖
∗+𝑘

. Schedule the maintenance of 

component 𝑖 to the date, 𝜏𝑖
∗ +𝑘, with the largest clustering benefit: 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑖, 𝑘) =

𝑆𝑆𝑖
𝜏𝑖
∗+𝑘

−ℎ𝑖(𝜏𝑖
∗+ 𝑘) 𝑓𝑜𝑟 𝑘 = {𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒, … ,ℎ𝑜𝑟𝑖𝑧𝑜𝑛}. 

2.4. 𝐼𝑓 𝜏𝑖
∗ +𝑘 ≠ 𝐿𝑎𝑡𝑒𝑠𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖), set the improvement indicator to 𝑥 = 𝑥 + 1. 

2.5. Next component, 𝑖 = 𝑖 + 1.  

𝐼𝑓 𝑖 ≤ 𝑛,𝑇ℎ𝑒𝑛;  𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 2.2,𝐸𝑙𝑠𝑒; 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑎𝑡 𝑠𝑡𝑒𝑝 6.2. 

2.6. When all components are reconsidered, 𝑖 = 𝑛 + 1, check if any improvements were made. 

𝐼𝑓 𝑥 ≥ 1,𝑇ℎ𝑒𝑛;𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 2.1, 𝐸𝑙𝑠𝑒; 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑎𝑡 𝑠𝑡𝑒𝑝 3.1.  

3. Iteration through time: 

3.1. Determine the step in time that can be made. First, retrieve the latest maintenance occurrence 

of each component: 𝐿𝑎𝑡𝑒𝑠𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖, 𝑙𝑎𝑡𝑒𝑠𝑡) 𝑓𝑜𝑟 ∀𝑖. 

3.2. Update the age of the components. 

𝐹𝑜𝑟 ∀𝑖, 𝐼𝑓 𝐿𝑎𝑡𝑒𝑠𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑖) = 𝑀𝑖𝑛(𝑁𝑒𝑤𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔),𝑇ℎ𝑒𝑛; 

 𝐴𝑔𝑒(𝑖) = 0 

 𝐸𝑙𝑠𝑒;  𝐴𝑔𝑒(𝑖) = 𝐴𝑔𝑒(𝑖) +  𝑀𝑖𝑛(𝐿𝑎𝑡𝑒𝑠𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔)− 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒. 

3.3. Make the step in time. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 = 𝑀𝑖𝑛(𝐿𝑎𝑡𝑒𝑠𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔)+ 1. 

3.4. 𝐼𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 ≤ ℎ𝑜𝑟𝑖𝑧𝑜𝑛,𝑇ℎ𝑒𝑛;𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 1.2, 

𝐸𝑙𝑠𝑒;𝑓𝑖𝑛𝑖𝑠ℎ. 

The first heuristic considers the planning of each task occurrence once, starting with a blank schedule. 

It is possible that the heuristic selects a date for the first component that has a high benefit or no 

penalty cost for that component only. When the schedule of the other components is known, it might 

be beneficial to reschedule that component to another date with a slightly higher penalty cost, but with 

a higher set-up saving. To adjust for this effect, an improvement heuristic is proposed. This heuristic 
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re-evaluates the maintenance schedule of each component, knowing the schedule of the other 

components.  The improvement heuristic can does only reconsider the maintenance date of one 

component at the time. When the planning of a component of a group will cause the remainder of the 

group to be clustered at its maintenance date, the improvement heuristic will not correct this. 

 Enumeration 3.1.3.2

The enumeration approach finds the optimal solution guaranteed. However, it is a very non-

sophisticated method. The enumeration algorithm is used to evaluate the performance of the Greedy 

heuristic. The algorithm only includes the optimization of the decision-making at one certain point in 

time, instead of iterating throughout the horizon. The enumeration method is presented below: 

1. Enumeration algorithm 

1.1. Determine the optimal maintenance date for each component 𝑖 ∈ 𝑁,𝑤𝑖𝑡ℎ 𝑁 = {1, … , 𝑛}, as 

explained in chapter 3.1.1.  

1.2. Based on the asset schedule, calculate the penalty cost for deviating from the optimal 

maintenance date over the scheduling horizon for each component, as explained in chapter 

3.1.2.1. 

1.3. Determine which clustering options are available for the components 𝑖 ∈ 𝑁: 

Only consider a rescheduling date for component i if the penalty cost at that date are lower 

than its setup cost: 𝑆𝑖− ℎ𝑖(𝜏𝑖
∗+𝑘𝑖) > 0 

1.4. Complete enumeration: 

1.4.1.  Determine for each combination of clustering options of all components the total 

clustering benefit: ∑ 𝑆𝑆𝑖
𝜏𝑖
∗+𝑘𝑖 −ℎ𝑖(𝜏𝑖

∗+𝑘𝑖)
𝑛
𝑖=1  𝑓𝑜𝑟 𝑘1,… , 𝑘𝑛 ∈ {1,… ,ℎ𝑜𝑟𝑖𝑧𝑜𝑛}. 

1.4.2.  Select the scheduling combination with the highest total benefit. 

 Myopic decisions and rolling horizon 3.1.3.3

A system can often have a wide variety of maintenance tasks. These maintenance tasks can have 

dissimilar time intervals; some tasks are performed multiple times a year, while others are only 

performed once in a couple years. Therefore there are reciprocal effects between the occurrences of 

the maintenance tasks. Clustering the two tasks with very dissimilar time intervals becomes viable 

when the task with the short interval is already performed a couple times. The planning of the short 

interval component at this moment is influenced by the timing of the preceding times the task is 

performed. However, the decision-making is myopic; the timing of the succeeding maintenance 

occurrences is not incorporated in the decision-making. This way, the model might plan the first 

couple maintenance occurrences of the short interval component such that when clustering with long 

interval tasks becomes viable, the short interval component has a very inconvenient timing for 

clustering. 
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Another effect of the myopic decision-making is caused by the non-stationary asset schedule. The 

asset schedule at the time of the succeeding task occurrences can be different from the asset schedule 

at the time of the current task occurrence. The timing of a certain task occurrence influences the 

timing of the succeeding task occurrences; when a task is postponed at its first occurrence, the 

succeeding occurrences logically shift along. A postponement of the maintenance early in the horizon 

might cause the timing of the maintenance occurrences later in the horizon to be unfortunate. This 

effect is apparent in both the single-component as the multi-component ABM-model.  

These myopic decision effects are not included in this model, as it would make the model much more 

complex. Future research can be done into reciprocal effects and in how to optimize all maintenance 

occurrences within a model. 

To incorporate multiple occurrences of a maintenance task within a horizon, a rolling horizon 

approach can be used. This is shown in the greedy algorithm. The planning of reciprocal tasks is done 

by optimizing the maintenance planning each time a maintenance task is performed preventively or 

correctively. To iterate through time, the model will make a step in time towards the first upcoming 

preventive maintenance task that is planned. The penalty costs of the components that have no 

planned or unplanned maintenance do not have to be recalculated as the cost terms are unchanged. 

However, maintenance planning of these components can be changed, because new opportunities to 

save set-up cost arise each time another component is (re)scheduled.   
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3.1.4 Evaluation of the optimization methods 
In this section the optimality of the greedy heuristic is evaluated.  

 Scenario analysis configuration 3.1.4.1

The results of the greedy heuristic are compared with the results of the enumeration algorithm in a 

setting with a few components. In this evaluation 6 components are used. A horizon of 20 time units 

is used. The asset schedule that is used for this evaluation is shown in Table 3. In this case, 3 is the 

low cost operational state and 1 and 2 are the medium and high cost operational states respectively. 

The set-up configuration that is used is one general set-up for all components. The set-up costs are 

used as a variable in the scenario analysis, as explained later on.  

Table 3 – Asset schedule used for the evaluation 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

O perational 

state 

3 3 1 1 2 2 2 1 1 3 3 1 1 2 2 2 1 1 3 3 

 

A scenario analysis is performed, so the performance of the optimization methods in different settings 

can be compared. The scenarios are composed with four variables with each three or four levels. The 

failure behaviour is an important factor in the maintenance planning. Therefore, the level of the failure 

distribution parameters is one of the variables. The failure distribution parameters are chosen such that 

the three levels represent the equality of the failure behaviour of the components. One level consists 

of similar failure parameters, another level consist of failure parameters with an intermediate 

deviation, and the third level consist of strongly deviating failure parameters.  

The Erlang distribution is used for this analysis. The variable representing the failure behaviour is the 

mean time to failure (MTTF). When the scale parameter 𝜇𝑖 is kept fixed at 8, the rate parameter can 

be determined by: 

 𝜆𝑖
𝑙 = 𝜇𝑖 𝑀𝑇𝑇𝐹𝑖

𝑙⁄ . The three levels (𝑙) are: 

𝑀𝑇𝑇𝐹𝑖
𝑙 = {

𝑈(8; 12)     𝑓𝑜𝑟 𝑙 = 1
𝑈(5; 15)     𝑓𝑜𝑟 𝑙 = 2

𝑈(0; 20)     𝑓𝑜𝑟 𝑙 = 3
 

Here, 𝑈(𝑎;𝑏) represents the uniform distribution with lower a and upper bound b. 

The second variable involves the set-up cost. When there are high set-up costs, clustering 

maintenance activities is clearly more attractive. More clustering options are available when the set-

up costs are high, hence the clustering is more complex. Four levels of set-up cost are considered. The 

variable representing the set-up costs is modelled such that it is dependent on the preventive 

maintenance cost of the first component in the low cost operational state. This done because the ratio 

between the set-up cost and the other maintenance costs is what determines the attractiveness of 

clustering. Here, 𝐶1,𝑝𝑟𝑒𝑣(3) represents the preventive maintenance cost of the first component in the 
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low cost operational state. 

𝑆𝑖
𝑙 =

{
 
 

 
 
1
2⁄ ∙ 𝐶1,𝑝𝑟𝑒𝑣(3)    𝑓𝑜𝑟 𝑙 = 1

1 ∙ 𝐶1,𝑝𝑟𝑒𝑣(3)        𝑓𝑜𝑟 𝑙 = 2

2 ∙ 𝐶1,𝑝𝑟𝑒𝑣(3)        𝑓𝑜𝑟 𝑙 = 3

10 ∙ 𝐶1,𝑝𝑟𝑒𝑣(3)      𝑓𝑜𝑟 𝑙 = 4

 

The third variable is the difference in cost between the operational states. When the difference in cost 

is large, the maintenance planning will be more focused on the low cost operational state. When the 

difference in operational states is less, more clustering options are available. Again, three levels of 

cost difference are considered. The operational state cost difference is modelled as a state penalty. The 

preventive maintenance cost at the low cost state is multiplied with the state penalty to get the 

preventive maintenance cost of the other operational states. 

𝑆𝑡𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑂𝑝.𝑆𝑡.
𝑙 = {

𝑂𝑝.𝑆𝑡. 1 2
𝑓𝑜𝑟 𝑙 = 1 𝑈(1; 1.5) 𝑈(1.5; 2)
𝑓𝑜𝑟 𝑙 = 2 𝑈(1.5; 3) 𝑈(3;6)
𝑓𝑜𝑟 𝑙 = 3 𝑈(3;6) 𝑈(6;12)

 

The fourth variable is the difference in cost between corrective and preventive maintenance. This 

determines the attractiveness of preventive maintenance. This also influences whether the model tends 

to risk failure of components in order to cluster maintenance. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑙 = {

1.25 𝑓𝑜𝑟 𝑙 = 1
2       𝑓𝑜𝑟 𝑙 = 2
3       𝑓𝑜𝑟 𝑙 = 3

10     𝑓𝑜𝑟 𝑙 = 4

 

The preventive and corrective maintenance cost will be based on the value of the preventive 

maintenance cost in the low cost operational state (state 3 in this case) and on the state penalty and the 

corrective penalty: 

Operational 
 state 

1 2 3 

Preventive 

maintenance 
𝐶𝑖,𝑝𝑟𝑒𝑣(3) ∗ 𝑆𝑡𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1

𝑙 𝐶𝑖,𝑝𝑟𝑒𝑣(3) ∗ 𝑆𝑡𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2
𝑙 𝐶𝑖,𝑝𝑟𝑒𝑣(3) = 𝑈(50;300) 

Corrective 
maintenance 

𝐶𝑖,𝑝𝑟𝑒𝑣(3) ∗ 𝑆𝑡𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1
𝑙

∗ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑙 

𝐶𝑖,𝑝𝑟𝑒𝑣(3) ∗ 𝑆𝑡𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2
𝑙

∗ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑙 

𝐶𝑖,𝑝𝑟𝑒𝑣(3)

∗ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑙 
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  Scenario analysis results3.1.4.2

The heuristic is evaluated on its optimality. The optimality modelled as the profit that is obtained by 

the heuristic compared to the profit obtained by the enumeration procedure: 
𝑝𝑟𝑜𝑓𝑖𝑡ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝑝𝑟𝑜𝑓𝑖𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙
.  

The results are shown in Appendix C. The greedy heuristic that is proposed performs well. The mean 

optimality is 97.2%. It finds the optimal solution in more than 70% of the experiments. When the 

heuristic does not find the optimal solution, the optimality is still above 70% for all experiments. 

When the results are evaluated in more detail, the variables that influence the optimality of the greedy 

heuristic can be distinguished. Each variable is evaluated on its influence on the amount of non-

optimal solutions found and on the optimality directly. It is important to test whether the Greedy 

heuristic finds the optimal solution, but it is also interesting to evaluate whether the solutions found 

are close to optimal. When the heuristic finds a solution that is non-optimal, but the difference in 

profit is close to zero, the use of the Greedy heuristic can be justified. Therefore both indicators are 

used to evaluate the performance of the optimization method.  

The equality of the MTTF’s across the components has a positive effect on the optimality of the 

proposed Greedy heuristic. Table 4 shows the percentage of times the heuristic did not find the 

optimal solution and the average optimality per scenario level. The MTTF and the maintenance cost 

values are randomly generated, hence it must be tested if the effect is significant or caused by 

randomness. This is done by an ANOVA analysis. The Greedy heuristic finds the optimal solution 

less often when the failure behaviour becomes more unequal. Also the optimality decreases with an 

increasing MTTF inequality. ANOVA shows that this effect is significant, see Appendix C - Table 13. 

When the failure behaviour of the components is unequal, there are more local optima. Therefore the 

Greedy heuristic is more likely to find non-optimal solutions. This explains the decreasing optimality 

when the failure behaviour becomes less equal. 

Table 4 – Scenario analysis of the effect of the similarity of the failure behaviour 

MTTF level 𝑙 1 2 3 
% Non-optimal  18,750 31,250 39,583 

Average optimality 0,9900 0,9673 0,9600 

 

The set-up cost does not seem to affect the optimality of the Greedy heuristic, see Table 5. Only the 

lowest value for the set-up cost seems to have a slightly higher optimality and lower amount of non-

optimal solutions found. However, the effect of the set-up cost on the optimality is not significant, see 

Appendix C - Table 14. The optimality of the Greedy heuristic is not affected because the size of the 

set-up cost only influences the attractiveness of clustering, but it does not change the structure of the 

solution. The heuristic is not expected to have a higher probability to end up in a local optima when 

the set-up cost are higher, because all (instead of some) clustering options become more attractive. 
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Table 5 - Scenario analysis of the effect of the set-up cost size 

Set-up cost 0,5 1 2 10 

% Non-optimal  16,667 36,111 33,333 33,333 
Average optimality 0,9815 0,9663 0,9727 0,9692 

The variable representing the difference in maintenance cost between the operational states shows a 

remarkable influence on the optimality, see Table 6. It seems that for the intermediate operational 

state difference the Greedy heuristic performs worse than for the low and high differences. ANOVA 

shows that the difference in optimality between the state penalty levels is significant, see Appendix C 

- Table 15. When the operational states have a low cost difference, the penalty cost function will be 

(close to) unimodal. This way, the Greedy heuristic is less likely to come up with a local optimum. 

For large cost differences among the operational states the penalty cost will be multimodal, but the 

amount of local optima will be small, as the maintenance possibilities will be limited to the low cost 

operational state. Therefore, the Greedy is more likely to result in the optimal solution. However, for 

intermediate cost difference among the operational states, the penalty cost will be multimodal, but 

there will be relatively many maintenance probabilities. 

Table 6 - Scenario analysis of the effect of operational state cost difference  

State penalty level 𝑙 1 2 3 
% Non-optimal  20,833 50,000 18,750 

Average optimality 0,9869 0,9467 0,9836 

 

The effect of the difference in corrective and preventive maintenance cost shows a similar pattern as 

the effect of the state penalty, in terms of the percentage of non-optimal solutions. However this 

pattern is not noticeable in the optimality of the solution, see Table 7. The optimality seems positively 

influenced by the corrective penalty. However, ANOVA shows that this effect is not significant, see 

Appendix C - Table 16. The optimality of the heuristic at level 10 is significantly higher than the other 

levels together, see Appendix C - Table 17. The difference between corrective and preventive 

maintenance influences the benefit of preventive maintenance rather than that it influences clustering 

benefit. This explains the insensitivity of the optimality to this variable at the first three levels. The 

positive effect on the optimality for the extreme value is caused by the tendency to plan very 

conservative to avoid corrective maintenance. The penalty cost will be high. For such high values for 

the corrective penalty, there are very few clustering options available, which makes the clustering 

problem much less complex and hence the Greedy heuristic finds the optimal solution with a high 

probability. 

Table 7 - Scenario analysis of the effect of cost difference in corrective and preventive maintenance  

Corrective penalty 1,25 2 3 10 

% Non-optimal  33,333 38,889 33,333 13,889 
Average optimality 0,9617 0,9662 0,9713 0,9904 

 

As said before, the greedy heuristic is much faster than the enumeration procedure. For an instance of 

10 components and a horizon of 38 time units, the greedy heuristic finds its solution in around 2.5 
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seconds, whereas the enumeration procedure takes 27 seconds to find a solution. This difference will 

become polynomially larger when the instance size increases.   
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3.2 Condition-based maintenance 

In this chapter, the condition-based maintenance model is presented. First, the general model is 

explained. Thereafter, the criticality aspect is introduced in the model. At last, insight is given into the 

structure of the solution.  

3.2.1 Dynamic programming model 
When there is information about the condition of the components available, the maintenance planning 

can be done dynamically. This information can be in the form of condition measurements or in 

component usage. The model that will be proposed can be used for condition-based maintenance 

components and for usage-based maintenance components. From now on, the model is regarded to be 

condition-based in its notations. The model can easily be translated to a usage-based problem by 

assuming a degradation probability density function that represents the usage behaviour of the asset.  

The condition-based maintenance problem will be solved in a different manner than the age-based 

maintenance planning. For the condition-based problem real-time information is available. A dynamic 

programming problem is used. This means that the decision-making at a certain time period depends 

on the decision-making at the later time periods. E.g., at each state is decided whether the component 

is maintained during that time period, or if the maintenance is postponed. It is assumed that the 

preventive maintenance tasks are performed at the end of a time period. When preventive 

maintenance is performed, the component starts with zero degradation at the next time period. When 

preventive maintenance is planned for a certain time period and the component fails during that time 

period, preventive instead of corrective maintenance cost are incurred because the maintenance is 

already planned.  

When the component is maintained at a certain state, the cost for preventively maintaining the 

component at that date and, depending on the planning of the other (ABM and CBM) components, 

set-up cost are incurred. In addition, the future expected maintenance cost starting at zero degradation 

for the next period is incurred. The cost for the postponement option depends on the failure 

probability and the decision at the succeeding states. The value function of component i at time t is 

represented by 𝑉𝑖,𝑡(𝑢). 𝑉𝑖,𝑡(𝑢) is the maintenance cost depending on the maintenance decision a and 

the current degradation u. The discrete value function is expressed as: 

𝑉𝑖,𝑡(𝑢) = 𝑀𝑖𝑛𝑎∈{0,1} {𝑎 ∙ [𝑆𝑖,𝑡 +𝐶𝑖,𝑡 
prev

+𝑉𝑖 ,𝑡+1(0)] + (1 − 𝑎)

∙ [ ∑ 𝑃𝑖,𝑡(𝑥) ∗ 𝑉𝑖 ,𝑡+1(𝑢 + 𝑥)

𝐹−1−𝑢

𝑥=0

+ ∑ 𝑃𝑖,𝑡(𝑥) ∙ (𝑆𝑖,𝑡 +𝐶𝑖,𝑡 
corr+ 𝑉𝑖,𝑡+1(0))

∞

𝑥=𝐹−𝑢

]} 
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Here, a represents the decision whether to replace the component at the current state. 𝑎 = 1 means 

that the component is maintained at this period, 𝑎 = 0 means that the maintenance is postponed. F is 

the degradation threshold. 𝑃𝑖,𝑡(𝑥) is the probability of incurring a degradation of size x at period t for 

component i. 𝑆𝑖,𝑡 represents the possible set-up cost that is incurred. The set-up cost is dependent on 

the planning of the other components; when another component with a shared set-up is planned on 

that period, no set-up cost is incurred. 𝐶𝑖,𝑡 
prev

 and 𝐶𝑖,𝑡 
corr represent the preventive, and respectively, the 

corrective maintenance cost of component i at the operational state during period t. 

The degradation distribution is assumed to be discrete in the function above. It is possible to use a 

continuous degradation distribution mathematically, but the model will become intractable in software 

packages as Excel/VBA.  

To make a decision at a certain point in time, the value function 𝑉𝑖,𝑡(𝑢) will incorporate all decisions 

at the succeeding time point until the horizon. Hence, the computational size becomes large for long 

horizons. However, the value function at a certain time with a certain degradation level can be reused 

after they are calculated for the first decision. The first decision incorporates 𝑉𝑖 ,𝑡+1(0) and 

∑ 𝑉𝑖 ,𝑡+1(𝑢+ 𝑥)
𝐹−1
𝑥=𝑢 . These terms cover all terms that are needed for the decisions at the upcoming 

times. 

To optimize this problem, it is convenient to build a value matrix containing all the future value’s that 

are needed for the decision-making. This matrix will be two dimensional and ranging from 𝑢 =

0 𝑡𝑜 𝐹 − 1, 𝑡 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒+ 1 𝑡𝑜 ℎ𝑜𝑟𝑖𝑧𝑜𝑛. First the values at the last column are determined: 

𝑡 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛  for 𝑢 = 0 𝑡𝑜 𝐹 − 1. At 𝑡 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛 the value function simplifies to: 𝑉𝑖,ℎ𝑜𝑟𝑖𝑧𝑜𝑛(𝑢) =

𝑀𝑖𝑛𝑎∈{0,1}{𝑎 ∙ [𝑆𝑖,ℎ𝑜𝑟𝑖𝑧𝑜𝑛+𝐶𝑖,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 
prev ]+ (1− 𝑎) ∙ [∑ 𝑃𝑖,ℎ𝑜𝑟𝑖𝑧𝑜𝑛(𝑥) ∙ (𝑆𝑖,𝑡+ 𝐶𝑖,ℎ𝑜𝑟𝑖𝑧𝑜𝑛

corr )∞
𝑥=𝐹−𝑢 ]}. The 

value to insert into the matrix will already incorporate the decision on a, given that the accumulated 

degradation at period t is u. The values at the last column can be used to determine the values at the 

second last column and so on. When all values in the value matrix are determined, the actual decision-

making can be done. This is done by calculating the value function term at the current time and the 

current degradation level and calculating what decision results in the minimal expected maintenance 

cost. If the value function is minimal for 𝑎 = 1, the maintenance will be performed this period. 

Otherwise the maintenance is postponed. During the next period, the decision is made again. As said 

before, the value matrix can be reused to make this decision.  

3.2.2 Criticality 
In chapter 2.3 component criticality is introduced. This can be included in the dynamic programming 

problem. When a non-critical component fails, the maintenance of this component is postponed to the 

first occasion that the asset enters the low-cost operational state. This can be modelled using a binary 

variable representing the criticality of a component during the states in the planning: 𝑐𝑟𝑖 ,𝑡. It makes 
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sense to have a criticality variable for the whole system, instead for the components separately, 

because the system will not work (properly) when a component has failed, but the criticality can be 

modelled either way. The value function is extended with a term representing what happens in case of 

the failure of a non-critical component. In that case, no direct cost factor is incurred. The usage in the 

next period will remain at the same level or increase. 

𝑉𝑖,𝑡(𝑢) = 𝑀𝑖𝑛𝑎∈{0,1} {𝑎 ∙ [𝑆𝑖,𝑡 +𝐶𝑖,𝑡 
prev

+𝑉𝑖,𝑡+1(0)] + (1 − 𝑎) ∙ 𝑐𝑟𝑖,𝑡

∙ [ ∑ 𝑃𝑖,𝑡(𝑥) ∗ 𝑉𝑖 ,𝑡+1(𝑢 + 𝑥)

𝐹−1−𝑢

𝑥=0

+ ∑ 𝑃𝑖,𝑡(𝑥) ∙ (𝑆𝑖,𝑡 +𝐶𝑖,𝑡 
corr+𝑉𝑖 ,𝑡+1(0))

∞

𝑥=𝐹−𝑢

]

+ (1 − 𝑎) ∙ (1− 𝑐𝑟𝑖 ,𝑡) ∙ [∑𝑃𝑖,𝑡(𝑥) ∙ 𝑉𝑖,𝑡+1(𝑢 + 𝑥)

∞

𝑥=0

]} 

To model the behaviour of the system in case the maintenance on a non-critical failed component is 

postponed, an additional row to the value function matrix is added for 𝑉𝑖 ,𝑡(𝐹): 

𝑉𝑖 ,𝑡(𝐹) = 𝑐𝑟𝑖 ,𝑡 ∙ [𝑆𝑖,𝑡+𝐶𝑖,𝑡 
corr+𝑉𝑖,𝑡+1(0)] + (1− 𝑐𝑟𝑖 ,𝑡) ∙ [𝑉𝑖,𝑡+1(𝑢 + 𝑥)] 

There is no decision-making involved in this function, because the system is maintained the first time 

the system becomes critical. The criticality of the components can be added to the asset schedule. 

When a system is non-critical, the criticality variable 𝑐𝑟𝑖 ,𝑡 will be 0 until the asset enters the low cost 

operational state. Setting the criticality variable to 1 for all low cost operational states will force the 

model to repair the component the first time the asset enters the low cost operational state. 

3.2.3 Value function solution structure 

To illustrate the structure of the value function, the expected maintenance cost resulting from the 

decision making at a certain moment in time are plotted for different degradation levels. The multi-

component model is used. Here, the data from the case study is used. For simplicity, the system is 

assumed to be critical all the time. Note that the graphs do not represent the decision-making for a 

component during the entire horizon. They represent the decision-making at a point in time, if the 

degradation is the specified amount at that time. In reality, the degradation will increase over time 

depending on the mission schedule and the decision-making; this is not incorporated in the graphs. In 

Figure 7, the value function structure for a degradation of 0 is shown. The expected cost for 

postponing the maintenance are always less than the expected cost for maintaining, because 

maintaining the component makes no sense in these cases. The four high cost operational states are 

clearly visible in the cost resulting from maintaining; see Table 9 for the asset schedule that is used. 

The three local minima in the graph for maintaining at time 67 and 124 are caused by clustering 

possibilities. 
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Figure 8 shows the value function structure for a degradation of 8, the degradation threshold is 17 for 

this component. Note that the cost resulting from maintaining is equal for the three graphs. The cost 

resulting from the decision to maintain is not dependent on the current degradation level, as can be 

seen in the value function expression. The expected cost for postponing is higher than in the graph 

where the degradation is zero, because the failure risk for postponing is higher. Figure 8 shows that 

the model would decide to maintain, when the component has a degradation of 8, at times 14, 67 and 

124.  

Figure 9 shows the value function structure for a degradation level just below the failure threshold. In 

this case, postponing the maintenance is risky. The peaks in the postponement cost are during the 

moments the degradation is expected (for simplicity, the expected degradation is set to be incurred at 

the end of each mission, this will result in the same decision-making as when the degradation is 

incurred throughout the mission state). At these moments, it is better to maintain the component 

preventively during missions, than to let the component fail. However, in the graph is also visible that 

when the degradation is just below the failure threshold during the low cost operational state before 

the missions, the model will decide to maintain the component. Note that the model will decide to 

postpone at the start of the low cost operational states, because it knows that the component will not 

fail until the end of this state and that will be deciding to maintain the component then.  

 

Figure 7 – The structure of the value function throughout the horizon, for a degradation level of 0 
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Figure 8 - The structure of the value function throughout the horizon, for a degradation level of 8 

 

Figure 9 - The structure of the value function throughout the horizon, for a degradation level of F-1 

3.3 Integration ABM and CBM  

The multi-component condition-based model incorporates the structural dependencies between 

components. When the maintenance planning of the age-based components is optimized, the decision-

making for the CBM-components can be done including clustering possibilities with age-based 

components. This way, the planning of age-based and condition-based components can be integrated. 

The planning of the condition-based components is not used in the decision-making in the age-based 

components planning, because the condition-based problem is dynamic. The decision-making 

considers whether to perform maintenance now or to postpone, instead of deciding upon the 

maintenance date directly. Of course, the model can be run iteratively to retrieve the maintenance 

date, but the decision-making is reconsidered each time a condition-update is received. This makes 

the maintenance date too volatile to base the maintenance planning of the ABM-components on. 
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Optimizing the ABM-model by clustering among ABM-components only and thereafter optimizing 

the CBM-model, makes more sense.  

When there are many ABM-components and few CBM-components, the order of scheduling the 

CBM-components is not expected to have a significant influence on the outcomes. However, when 

there are relatively many CBM-components, the dependencies between these components will 

influence the decision-making. It will be intractable to optimize the scheduling of all CBM-

components at once. Therefore, the order of the optimization of the components should be chosen 

wisely. An easy way to do this is to plan the components in order of their expected maintenance 

frequency. The components with the lowest maintenance frequencies are planned first, because these 

components are expected to have the lowest clustering flexibility for the following reasons. These 

components typically have low condition thresholds or fast degradation. Postponing these components 

will cause a relatively high expected corrective cost. Because these components are maintained 

frequently, the planning of the other components can benefit from a lot of possible set-up savings 

when the high frequency components are planned first.  
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4 Case study 

The model is applied and tested on the maintenance management of the Marlin weapon system. This 

Marlin weapon system is an anti-material gun with a 30 mm calibre. The system is manufactured by 

OTO Melara. The system is installed on Joint Support Ships (also known as the ‘Karel Doorman 

class’) and on Oceangoing Patrol Vessels (also known as the ‘Holland class’). In total, the RNLN has 

six Marlin systems in use. The Marlin gun is a highly accurate system that is mainly used to target 

smaller fast moving vessels. The system contains its own electro-optical aiming devices and can 

remotely be controlled via the ship’s command management system.  

 

Figure 10 - Picture of the Marlin weapon system 

The Marlin weapon system is relatively new to the DMI and hence its maintenance organization is not 

as settled as it is for the older systems. Whereas for most systems the maintenance is organized such 

that most tasks are clustered in the major overhaul, the Marlin weapon system still has a lot of ILM 

tasks. Applying the model proposed in this thesis on these ILM tasks might be interesting.  

Unfortunately, not all the inputs for the model are available for the case study. In addition, the 

available data has proven to be unreliable in reality. Therefore, the results of this case study will be 

presented in the form of a sensibility analysis.  This way, the influence of each input parameter is 

evaluated. When more accurate data becomes available, the output of the sensitivity analysis can be 

consulted for the expected benefit of the proposed model.  
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4.1 Data and assumptions 

The dataset contains 16 tasks that can be clustered. Three of these components have usage-based 

lifetimes. The degradation of these components is assumed to be determined by the amount of rounds 

fired.  

The dependency between components is a structural dependency; the set-up time that is incurred for 

dismantling components and preparing the tasks. This is expressed in costs by multiplying the time 

with the hourly wage of the maintenance engineers. An hourly cost of €64,- can be used. The tasks for 

which the set-up can be shared are shown in the ‘shared set-up combination nr.’ column in Table 8.  

The lifetime of the components of the Marlin is highly dependent on the way the system is used and 

maintained. After firing the gun, the barrel must be cleaned properly, otherwise failure is most likely 

to occur. There are multiple cleaning and inspection tasks that must be performed properly by the 

crew on board, otherwise the time to failure will decrease drastically. Human errors are not 

incorporated in this model, they are neglected. 

Unfortunately, there is a lot of data missing for the case study and some of the available data is 

unreliable. Therefore, a reference parameter setting is created. Based on this parameter setting, the 

sensitivity analysis can be performed. The reference parameter settings are explained below. Table 8 

shows the theoretic and the reference parameter settings.  

Table 8 – Components used in the case study and their parameters 

Task PROCEDURE 

Observed 

maintenance 
frequency 

(per year) 

Theoretic 

ABM 
MTTF 

(weeks) 

Theoretic 

UBM 
threshold 

(rounds) 

Reference  
MTTF 

(weeks) 

Reference 

failure 
threshold  

(rounds) 

Reference 

coefficient 
of 

variance 

Shared     

set-up 
combination  

nr. 

Set-up 

time  
saved 

(hours) 

Preventive 
maintenance 

costs for the 
harbour 

state 

1 

Feeder assembly 
inspection and 
maintenance 1 2799,39 

 

90 

 

0.408 6 4 3367,3 

2 

Receiver assembly 
inspection and 
maintenance 1 2799,39 

 

90 

 

0.408 6 4 2781,89 

3 

Lubrication roller 

path bearing (T-
bearing Maint) 1 5042,17 

 

120 

 

0.408 4 1 530,5 

4 

Training toothed 

sector lubr. check 
(T-bearing Maint) 1 5042,17 

 
120 

 

0.408 4 1 1035,92 

5 

Replace Elevation 
shock absorbers 

bellows 0,2 492,63 
 

492,63 

 

0.408 5 0,5 502,47 

6 

TN reduction 
gearbox oil level 

check 2 133,65 
 

70 

 

0.408 2 1 81,49 

7 

Train reduction 
gearbox 

maintenance 0,5 534,58 
 

230 

 

0.408 3 1 375,9 

8 

EL reduction 
gearbox oil level 
check 2 133,65 

 

80 

 

0.408 2 1 151,9 

9 

Elevation 

reduction gearbox 
maintenance 0,5 534,58 

 

230 

 

0.408 3 1 375,9 

10 
Inside washing IR 
camera 1 125,75 

 

125,75 

 

0.408 1 0.5 906,55 
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11 

Inside Washing of 
the Daylight 
Camera Optics 1 125,75 

 

125,75 

 

0.408 1 0,5 546,41 

12 
Inside Wash laser 
Rangefinder 1 125,75 

 

125,75 

 

0.408 1 0,5 546,41 

13 
Replace chute 
protection sleeves 0,2 262,20 

 

350 

 

0.408 5 0,5 740,1 

14 

Firing pin 

protrusion 
inspection 0,70 

 

1000 

 

1700 

 

6 4 134,01 

15 
Barrel assembly 
inspection 0,35 

 
2000 

 

2400 

 

6 4 805,52 

16 

Receiver assy: 

breech assembly 
inspection 1 

 
25000 

 

25000 

 

6 4 327,6 

 

It is assumed that after each maintenance task the component is restored to an as good as new state. In 

the data, there are multiple tasks on one component in some cases. These tasks concern parts within 

the component. There is only a MTTF measure available for the entire component. The MTTF 

measure of the parts will be determined by allocating the MTTF of the component using the weight of 

the frequency of the part in the current planning, such that the MTTF measures follow the equation 

1

𝑀𝑇𝑇𝐹𝑠𝑦𝑠𝑡𝑒𝑚
=

1

𝑀𝑇𝑇𝐹1
+

1

𝑀𝑇𝑇𝐹2
+⋯. Here, the 𝑀𝑇𝑇𝐹𝑖′𝑠 are the MTTF’s of the components to be 

determined, and 𝑀𝑇𝑇𝐹𝑠𝑦𝑠𝑡𝑒𝑚 is the known MTTF of the system. When the relations between the 

maintenance frequencies are known, the equation can be solved. 

As shown in Table 8, the theoretical MTTF measures contradict the maintenance frequencies that are 

observed in practice. The DMI identifies various reasons that might explain this difference. Therefore 

it is reasonable to adjust the MTTF measures to create a maintenance planning that reflects reality. 

This is done by iteratively changing the MTTF values and determining the single-components optimal 

maintenance date. The single-component maintenance date is determined at different moments in the 

mission schedule to decrease the influence of the mission schedule. Also, the relation between the 

lifetime distribution parameters and the maintenance date, as described in the next paragraph, is 

evaluated. The MTTF measures are adjusted until the resulting single-component optimal 

maintenance dates match the observed maintenance frequency. 

From this MTTF value, the distribution parameters are derived. An Erlang distribution is used, hence 

the shape and the scale parameter have to be estimated. Only the ratio between the two parameters is 

known as only the first moment is available. The relation between the two parameters and the MTTF 

is: 𝑀𝑇𝑇𝐹(𝑋) =
𝜇

𝜆
. The variation equals: 𝑉𝑎𝑟(𝑋) =

𝜇

𝜆2
. 𝜆 influences the variance in a quadratic way 

and the MTTF in a linear way. Therefore, choosing high values for 𝜇 and 𝜆 while keeping the MTTF 

as fixed, results in a low variation. When low values for both parameters are chosen while keeping the 

MTTF as fixed, the variation is relatively high. The variance in the lifetime distribution is expected to 

be large, hence relatively low values for the parameters can be chosen. The coefficient of variance 
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(𝑐𝑣𝑖) is only dependent on 𝜇𝑖 in case of the Erlang distribution: 𝑐𝑣𝑖 =
√𝑉𝑎𝑟(𝑋)

𝜇𝑖
=

1

√𝜇𝑖
. To have an 

equal coefficient of variance across all components, 𝜇𝑖 is chosen to be equal for all (ABM-) 

components. However, guessing the right parameter values remains doubtful. In the sensitivity 

analysis, the influence of both parameters is investigated. The parameter values chosen for the 

reference parameter setting are shown in Table 8. 

The usage-based components can be incorporated using the expected operating hours or the expected 

rounds fired per mission. Currently, only general expectations are available to base the planning on. 

The rounds fired during an upcoming mission are assumed to be random and uniformly distributed. 

The usage-based components have a usage threshold. Currently the components are preventively 

maintained when this threshold is reached. The same threshold is used for the usage-based model. 

Here is assumed that failure occurs when the threshold is used, while in reality the thresholds are just 

the recommendations of the usage before maintenance. A failure threshold is expected to be higher 

than a preventive maintenance threshold. Therefore, a range of threshold values is taken in the 

sensitivity analysis. 

Performing maintenance while in transit or mission is costly. Failure of a critical component during a 

mission might cause the abortion of the mission. In addition, it might be necessary to fly in an 

engineer and spare parts. Unfortunately, the exact maintenance cost per component in the transit and 

mission state are not at hand. Therefore, the maintenance cost of the transit and mission state will be 

based on the maintenance cost of the harbour state and raised with a certain increment. As the value of 

this increment is unknown, various values will be included in the sensitivity analysis. Based on expert 

opinion from the MaSeLMa participants the following estimates are available: a cost increment of 

€10000 for both the mission and the transit state. This is used as reference value.  

The engineers at the DMI claim that there is no cost difference in cost between corrective and 

preventive maintenance other than the operational state cost difference. However, while there may not 

be a difference in the cost of the tangible maintenance tasks whether it is performed preventively or 

correctively, there will be a disadvantage in unexpected maintenance. As corrective maintenance 

cannot be planned, unwanted downtime is likely to occur in case of failure. Due to the high 

operational availability needs of the RNLN, failure must be penalized within the system. Also, 

preventive maintenance is much easier to manage and prepare. This makes it reasonable to include a 

corrective penalty. For the reference parameter setting a value of 2 is chosen as corrective penalty. 

This means that corrective maintenance is 2 times as expensive as preventive maintenance.  

A realistic mission schedule is created for the case study, see Table 9. This schedule is based on the 

mission schedules that are observed at the Navy. The real mission schedules are confidential, but the 

following mission schedule provides a realistic example. The mission schedule covers the 
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maintenance cycle of 4 years. Each four years the system enters major overhaul (DLM). This project 

focusses on ILM so the horizon of the planning will be the cycle of the system between two major 

overhauls, which is 178 weeks. The lengths of the operational states are presented in chronological 

order. Here, operational state 1 represents the transit state, operational state 2 represents the mission 

state and operational state 3 represents the home harbour state. The first state in the schedule is a 

transit state. In reality, just after the ship leaves major overhaul, it enters a phase where the ship is 

built up and restored to be ready for missions. In this phase the systems are tested and the crew is 

trained. The ship is relatively close to the harbour. The transit periods after missions are regarded as 

non-critical as it is reasonable to assume that the weapon system is not used on the transit back to the 

home harbour.  

The criticality of the system is also included in the schedule. The criticality is incorporated in the 

UBM model. Based on expert opinion is assumed that the system is non-critical in 10% of the 

missions. During the transit states after missions, it is reasonable to assume that the system is non-

critical. When the system fails on the transit back to the harbour, the maintenance can be postponed 

until the harbour is reached. The reference parameter setting is shown in Table 9. 

For the UBM-components, the failure threshold is unknown. As explained before, only the usage 

replacement threshold that is proposed by the OEM is available. The failure threshold is expected to 

be higher, as the usage replacement threshold is a preventive replacement trigger. To determine a 

realistic failure threshold value for the reference parameter setting, the system usage during the 

missions should be determined first. For the UBM-components of the Marlin weapon system, the 

amount of rounds fired during a mission is used as the degradation mode. On average, the amount of 

rounds fired per mission is 700. The exact usage is not known on beforehand. To simulate the 

uncertainty in the usage, the amount of rounds fired on a mission is assumed to follow a uniform 

distribution. The range of the uniform distribution is assumed to be {0.5 ∙ 𝐸[𝑢𝑡];1.5 ∙ 𝐸[𝑢𝑡]}, where 

𝐸[𝑢𝑡] represents the expected usage at time t. The expected usage during the missions is shown in 

Table 9. During the first transit period, in which the ship is restored to an operational condition, only a 

small amount of rounds will be fired. 

Table 9 – Mission schedule for the reference parameter setting 

Based on the mission schedule, the usage failure thresholds for the reference parameter setting are 

determined. This is done by changing the failure threshold until the single-component UBM 

optimization results in a maintenance frequency that matches the maintenance frequency that is 

observed in practice. The reference parameter setting for the failure threshold is shown in Table 8. 

Operational state 1 3 1 2 1 3 1 2 1 3 1 2 1 3 

Length 12 2 2 19 2 30 2 21 2 32 2 21 2 29 

Criticality 1 1 1 1 0 1 0 0 0 1 1 1 0 1 
Expected 
usage 𝐸[𝑢𝑡] 300   700    700    700   
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To evaluate the benefit of the proposed model, the resulting maintenance cost is compared with the 

maintenance cost that would be incurred without clustering. The single-component model can 

‘accidently’ result in shared set-ups. Note that, in Table 8, the components with shareable set-ups also 

have comparable failure parameters. Therefore, the actual benefit of the proposed ABM-model must 

be compensated for the set-ups that are shared within the results of the single-component model. To 

determine this, the single-component optimal maintenance date is chosen as the maintenance date. 

Then, the total expected maintenance cost is calculated while compensating for the set-ups that are 

saved in case tasks are maintained at the same date.  

The single-component CBM-model maintenance cost can be determined by using the model without 

dependencies between components. The decision-making in case the dependencies between 

components are neglected is used to determine the (actual) expected maintenance cost with 

‘accidental’ set-up cost savings. 

This project focusses on the planning of the ILM-level tasks. Hence, a planning horizon will be the 

period between two major overhauls or DLM periods. Because major overhaul is performed after this 

horizon, it makes little sense to maintain the component just before the end of the horizon. Therefore, 

at time ℎ𝑜𝑟𝑖𝑧𝑜𝑛+ 1 no set-up cost will be incurred. This will cause the model to postpone the 

maintenance towards the DLM period when the expected corrective cost do not exceed the cost of 

performing maintenance before the major overhaul. 

The suggested ABM-models incorporate the operational state cost difference and are expected to 

perform well. Therefore, the results will be compared with a less sophisticated model in addition. This 

model uses the classical renewal theory function 𝐶𝑖(𝜏𝑖) =
𝐸𝐶𝐶(𝜏𝑖)

𝐸𝐶𝐿(𝜏𝑖)
. This model will not distinguish 

between operational states and use a weighted average of the operational state cost to determine the 

preventive and corrective maintenance cost. Here, the operational state costs are weighted by the 

amount weeks a certain state occurs in the mission schedule. 

Two types of availability are considered; overall availability and mission availability. Overall 

availability includes all downtime as a result of performing maintenance. Mission availability only 

considers downtime as a result of maintenance during missions. This distinction is made because the 

RNLN might value availability during missions in particular and does not mind if increasing mission 

availability leads to additional downtime during the harbour periods. The expected duration of a task 

is known and used for the downtime. Additionally, the set-up time for each task is known, this is 

incurred as downtime when the maintenance task could not be clustered.  When the ship is in the 

transit and mission state, an additional downtime of one week is assumed to be incurred. This can be 

seen as the time that is needed to ship the spare part and the engineer and to prepare the tasks. The 

availability measure will be based on the expected downtime of all components combined. Here is not 
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compensated for the possibility that two components are down at the same time. In that case, the 

components are down in parallel and in reality the system would only incur the downtime once. 

However, for simplicity, this is not incorporated in the availability calculations. The results are 

primarily used to compare the performance of the models. Whether or not this aspect is included is 

not expected to give one model a significant advantage over the others, so the comparison is not 

expected to be biased by this assumption. 

For the ABM-models, the downtime is calculated by multiplying the downtime for preventive 

maintenance by the probability of survival until the maintenance date  +  the probability of failure at a 

certain period multiplied by downtime for corrective maintenance during this period depending on the 

operational state. The total expected downtime of all components is added up. Then, the total 

expected downtime of all components together is divided by the horizon length to obtain the overall 

availability. The mission availability is obtained by only including the downtime during missions. 

For the UBM-models, the availability can be determined using a similar dynamic programming model 

as for the maintenance planning. Instead of including the consequences of a decision in terms of cost, 

this function includes the consequences in terms of downtime. The following function shows this 

availability function. Here, 𝐷𝑖,𝑡 and 𝑆𝑖,𝑡 represent the task duration and setup time of component 𝑖 

during period 𝑡 respectively. The task duration is dependent on the operational state as explained 

earlier. The setup time is only incurred when the maintenance of this task is not clustered. 

𝐴𝑣𝑖,𝑡(𝑢) = {𝑎 ∙ [𝑆𝑖,𝑡 +𝐷𝑖,𝑡+ 𝐴𝑣𝑖,𝑡+1(0)]

+ (1− 𝑎) ∙ [ ∑ 𝑃𝑖,𝑡(𝑥) ∗ 𝐴𝑣𝑖,𝑡+1(𝑢+ 𝑥)

𝐹−1−𝑢

𝑥=0

+ ∑ 𝑃𝑖,𝑡(𝑥) ∙ (𝑆𝑖,𝑡+𝐷𝑖,𝑡 +𝐴𝑣𝑖,𝑡+1(0))

∞

𝑥=𝐹−𝑢

]} 

To determine the mission availability, the same formula is used, but the downtime is only incurred 

when the ship is in a mission. The decision-making of the regular UBM-models used as input in the 

availability model to determine the resulting availability. 

4.2 Reference results  

This chapter discusses the results of the models when the reference parameter settings are used as 

input. As mentioned before, the reference parameter setting serves primarily as a basis for the 

sensitivity analysis. Although the reference parameter setting is ought to be as realistic as possible, 

guessing the right values was doubtful in some cases. Therefore, these results should not be viewed as 

directly applicable to the case of the Navy, or other cases. The sensitivity analysis can be consulted to 

get insight in the performance of the model for a specific parameter setting. The model itself can be 

used to find the planning that is proposed with this model. The reference results are presented in Table 

10 and the resulting planning from the single-component models is shown in Table 11. The costs 
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shown in Table 10 are the expected cost for the entire horizon. The set-up combinations that can be 

made are shown in Table 8.  

The models that incorporate the operational state cost difference perform much better than the basic 

policy. The proposed ABM models result in a 76,6% cost saving compared with the basic policy. In 

addition, the proposed models obtain an 8% mission availability improvement. This shows the 

importance of incorporating the operational state difference in the maintenance modelling. The 

maritime environment asks for a tailored maintenance model, which makes the traditional 

maintenance models very unsuitable and suboptimal. The basic policy does not pay attention to the 

mission schedule in any way. Hence, it will schedule preventive maintenance at very unfortunate 

times.  

For the ABM-components the multi-component approach does not show an advantage over the single-

component approach and results in the same planning. All the set-ups that are saved in the multi-

component solution where already saved in the single-component solution. The reason behind this is 

the equality of the failure parameters of the components that have dependencies between them. This is 

reinforced by the high cost difference between operational states. It is suboptimal to schedule 

maintenance somewhere halfway a harbour operational state, as waiting to the end of this state does 

not increase the expected corrective cost that much. Therefore, the maintenance planning will already 

be grouped on the end of the operational states. Additionally, the mission planning contains only a 

few quite long operational states. There are only four harbour periods, and hence there are only four 

practical maintenance dates. This increases the probability of ‘accidentally’ saved set-ups with the 

single-component model, which leaves little room for additional clustering. In the sensitivity analysis 

various levels for the corrective penalty, the cost difference between operational states and different 

mission schedules are chosen to further investigate this effect.  

For the UBM-components, the multi-component approach has a slight advantage over the single-

component approach. The multi-component approach yields a cost saving of 0.8%. Note that the 

single-component UBM-model does not preventively maintain component 14 before the second 

mission. This mission is non-critical in the reference planning, hence the model chooses to risk a 

probable failure. The corrective maintenance can be postponed until the ship arrives in the harbour at 

week 93. The multi-component chooses to preventively maintain the component, because a set-up can 

be saved at week 67. This causes the slight advantage of the multi-component model. The overall 

clustering benefit is low because of the highly clustered nature of the ABM single-component solution 

and its focus on the end of the operational states. For the UBM-components, there is no reason to 

schedule the maintenance halfway the harbour period, because the system is not used during harbour 

periods. As both the solutions of the ABM- and the UBM-components are already clustered on the 
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end of the operational states for this parameter setting, a multi-component approach does not have a 

big advantage over a single-component approach.  

Table 10 – The results from the different models using the reference parameter setting 

 

Single-
component 
ABM model 

Multi-
component 
ABM model 

Basic policy 
ABM model 

Single-
component 
UBM model 

Multi-
component 
UBM model 

Total expected 
maintenance cost 46046,86 46046,86 196367,36 32693,25 32423,25 

Overall availability 0,9882 0,9882 0,9643 0,9887 0,9879 

Mission availability 0,9959 0,9959 0,9223 0,9933 0,9926 
 

Table 11 – Maintenance planning resulting from the single-component models 

 

  

Task/ 
Comp. 

Planned maintenance 
times (weeks) 

1  67 124 179 

2  67 124 179 

3  67 124 179 

4  67 124 179 

5 
  

124 179 

6 14 67 124 179 

7  67 124 179 

8 14 67 124 179 

9  67 124 179 

10  67 124 179 

11  67 124 179 

12  67 124 179 

13  
 

124 179 

14 
 

93 
 

179 

15 
  

124 179 

16 
   

179 
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4.3 Sensitivity analysis 

To be able to draw conclusions that are not strictly depending on the reliability of the data, a 

sensitivity analysis is performed. The influence of several input parameters on the behaviour of the 

model is evaluated. The results are evaluated on the clustering benefit. The clustering benefit is 

calculated as the cost difference between the multi-component and the single-component model, as a 

percentage of the single-component expected maintenance cost.  

First, the performance of the models in terms of availability is evaluated. The proposed models focus 

on cost primarily. While availability is an important factor in the maintenance management, it can 

only be incorporated indirectly in the models. Chapter 4.3.1 gives insights in the relation between 

total maintenance cost and availability and the performance of the models on these factors.  

Then, the benefit of maintenance clustering is evaluated by comparing the results of single-component 

models with the multi-component models. Seven parameters are investigated in this sensitivity 

analysis; the failure behaviour, the difference in maintenance cost between the operational states, the 

difference in maintenance cost between corrective maintenance and preventive maintenance, the size 

of the structural dependencies between components, the failure threshold for the UBM-components, 

the variance in the usage during missions, and the criticality of the system for the UBM-components.  

The variables are evaluated on their primary effects on the behaviour of the model. However, from the 

reference results is seen that the multi-component benefit is hampered due to multiple effects at once. 

Therefore, a scenario analysis of the combinations of the variable levels that seem to be interrelated is 

performed. The MTTF inequality, corrective penalty, operational state cost difference, the set-up cost 

and the mission planning are incorporated in this scenario analysis. These variables determine the 

‘accidentally’ clustered nature of the single-component solution. Chapter 4.3.2 explores scenarios that 

have less of a clustered nature in itself and thereby a higher clustering potential, and how these 

scenarios are formed. To limit the size of the experiment, the other variables are investigated 

separately.  

4.3.1 Availability versus cost 

The models predominantly focus on saving cost. However, optimizing system availability can be an 

important goal in the maintenance planning. The model incorporates the availability indirectly via the 

corrective penalty and the operational state cost difference. One can penalize downtime or 

unavailability during missions by choosing high values for the operational state cost difference. This 

section evaluates the performance of the models in terms of availability. An ‘efficient frontier’ can be 

drawn to compare the trade-off between availability and cost of the difference models. The focus on 

availability is increased by increasing the operational state cost difference. The following operational 

state cost difference values are used: {5000, 7500, 10000, 12500, 15000,17500}. 
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The efficient frontiers between availability and maintenance cost of the proposed ABM models are 

presented in Figure 11. The efficient frontiers show a stepwise shape. When the operational state cost 

difference increases, the model decides is it should keep maintaining a component after a certain 

mission or to advance the maintenance to before this mission. The mission states are long, so this 

decision involves big difference in timing. Hence, the maintenance planning is expected to remain the 

same for small deviations of the operational state cost difference. When the operational state cost 

difference becomes high enough, the maintenance planning suddenly shifts towards a more 

conservative mission and results in a higher availability. Note that the efficient frontier of the multi-

component model obtains a small decrease in maintenance cost at the fourth operational state cost 

difference level. The solution at the third level is suboptimal due to the heuristic optimization 

approach. The increase in operational state cost difference changes the solution structure in such a 

way that the model obtains the additional clustering benefit. 

The multi-component models obtain at least equal availability levels and maintenance cost.  For most 

of the operational state cost difference levels, the multi-component model obtains an availability 

increase and a cost decrease. In these cases, maintenance clustering is done by advancing maintenance 

tasks, resulting in saved set-up cost and lower expected downtime. The multi-component model could 

decide to postpone maintenance and result in a cost saving at a slightly lower availability level, but 

due to the high operational state difference, the penalty cost for postponing are high. This way, the 

availability is indirectly assured and will not be suffered much to obtain clustering benefits in terms of 

cost.  

The efficient frontiers between availability and maintenance cost of the proposed UBM models are 

presented in Figure 12. The availability of the multi-component solution is not increased by the 

increasing operational state cost difference. This can be explained by the low amount missions in the 

mission planning. The multi-component model obtains a low risk and high availability solution at the 

lower operational state differences. The multi-component model has already advanced the 

maintenance timing to cluster the tasks, so the higher operational state cost difference will not make 

the maintenance planning more conservative. 

Figure 13 shows the efficient frontier of the multi-component model compared to the basic policy. 

Clearly, the proposed multi-component model is superior to the basic policy on both availability and 

cost. The proposed single-component model is left out for the sake of visibility, but as shown in the 

other graphs, it will have a similar advantage over the basic policy. This comparison shows the 

importance of incorporating the operational state cost difference in the maintenance modelling. The 

basic policy does not avoid maintenance during missions in any way. Depending on the operational 

state cost difference level, the maintenance will be accidentally planned during harbour periods or 

during transit and mission periods. This explains the S-shape in the basic policy frontier. 
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The benefit of the multi-component model over the single-component model is rather small. This is 

caused by the highly clustered nature of the single-component solution, as said before. The next 

sections will focus on the clustering benefit and the parameter settings that influence this. 

 

Figure 11 – The efficient frontier between both the availability measures and maintenance cost for the ABM models 

 

Figure 12 – The efficient frontier both the availability measures and maintenance cost for the UBM models 
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Figure 13 – The efficient frontier between the two availability measures and maintenance cost for the proposed multi-

component model and the basic policy 

4.3.2 Parameter settings with high clustering potential 

The scenario analysis is constructed as follows. For the difference in maintenance cost between the 

operational states, three different levels are used: {0,5000, 10000}. These are the cost increments for 

both the mission and the transit state. The value of 0 is included to evaluate the behaviour of the 

system around the boundaries of the parameters. This setting removes the operational state aspect of 

the problem. 

For the corrective penalty, three levels are used: {2, 5,10}. As the corrective penalty used for the 

reference setting is relatively low, more extreme values are evaluated. Other companies might observe 

much higher corrective penalties, so it is interesting to evaluate the effects of higher values on the 

performance of the models. 

The failure behaviour in the reference parameter setting is very similar among components with 

dependencies between them. To evaluate the performance of a multi-component model, a less similar 

scenario is evaluated. To do this, the MTTF values of the components that have dependencies 

between them are pulled apart. When two components share set-ups, the MTTF of the first component 

is lowered by 25%, and the other component is increased with 25%. When three components share 

set-ups, the MTTF’s of the first and the third component are decreased and increased with 25% 

respectively, while the MTTF of the second component is left as it is. 

The set-up costs in the reference parameter setting are low compared to the other maintenance cost. 

The model is expected to perform better at higher levels of set-up cost. Therefore, a high set-up cost 

scenario is created by multiplying the set-up cost by 10. 

The mission schedule in the reference parameter setting has a large influence on the results. The 

maintenance planning is highly focussed on the end of the harbour periods. There are a few long 
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harbour periods in the mission schedule, this leads to a few ‘viable’ maintenance possibilities. To 

increase the amount of maintenance possibilities and to make the maintenance planning more 

interesting, an alternative mission schedule is made. In this alternative schedule, the harbour periods 

in the reference mission schedule are split up into three parts; two harbour periods with a transit 

period in between. This might also be a realistic scenario for the RNLN, as the harbour periods can 

also be used for training and testing purposes. 

To limit the runtime of the scenario analysis, the last UBM-component is left out. The high 

replacement threshold makes the solution space of the dynamic problem very large, and the planning 

of this component is not interesting because it will survive during the entire horizon, despite the 

changes in the variables. 

 Operational state cost difference 4.3.2.1

The results of the entire scenario analysis are shown in Appendix E. For this analysis the advantage of 

the multi-component ABM-model over the basic policy is added. As expected, the proposed ABM-

models do not have an advantage when there is no operational state difference. There is only a 

clustering benefit of 1.087% with respect to the single-component ABM-models. The benefit of the 

proposed ABM-models with respect to the basic policy quickly increases when the operational state 

difference increases. The advantage increases up to 70% at the reference operational state cost 

difference level. This advantage is mainly dependent on the operational state cost difference. The next 

parts of the sensitivity analysis focus on the clustering benefit of the multi-component models with 

respect to the single-component models. 

For the usage-based components the clustering benefit goes up to 21%. The clustering benefit is 

higher for the lower operational state cost differences, as shown in Figure 14. Here the reference 

corrective penalty, the reference mission schedule and the high set-up cost are used. When the 

operational state cost difference is lower, the penalty cost is lower, which makes clustering less costly.  

The ABM-model seems unaffected by the operational state cost difference for these parameter 

settings. The effect of the operational state cost difference is moderated by the other variables as well. 

This is shown in the next sections. 
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Figure 14 – The ABM and UBM clustering benefit and the advantage of the multi-component ABM-model over the 

basic policy as a function of the operational state cost difference 

 MTTF equality 4.3.2.2

The single-component replacement times can become less equal by changing various variables. One 

way to do this is changing the MTTF values. This makes the single-component planning less clustered 

and increases the clustering potential of the multi-component model. However, this effect is mediated 

by the operational state cost difference. This is shown in Figure 15, here the set-up cost is high and the 

other parameters are as in the reference setting. A high operational state cost difference will increase 

the penalty cost for rescheduling maintenance tasks, so clustering will be more expensive. That 

explains the lower clustering benefit at higher operational state cost difference.  

The scenario without operational state cost differences shows a strange result. This happens because 

lack of operational state cost difference and the low corrective maintenance cost will weaken the need 

for preventive maintenance and lower the penalty cost. This makes the likelihood for the myopic 

algorithm to end up in a suboptimal solution high. However, when a longer horizon is chosen this 

effect diminishes. When the horizon is four times as long with the same parameter setting, the 

clustering disadvantage decreases to 1.1% 

The relation between the MTTF inequality and the operational state cost difference is moderated by 

the corrective penalty. This is shown in Figure 16. In this figure, the high set-up costs are used, and 

the other parameters are as in the reference setting. Clearly, the MTTF inequality only has a positive 

effect at the low corrective penalty level. At the higher corrective penalty level, unequal MTTF 

settings will result in a lower clustering benefit. For a high corrective penalty, the penalty costs will be 

higher. This makes the unequal MTTF measures disadvantageous.  



62 

 

Figure 15 – The relation between the MTTF inequality and the operational state cost difference in terms of clustering 

benefit 

 

Figure 16 – The relation between the MTTF equality and the corrective penalty in terms of clustering benefit  

 Corrective penalty 4.3.2.3

The clustered nature of the single-component solution is dependent on the corrective penalty. A high 

corrective penalty makes the difference in maintenance cost between components extra influential in 

terms of the maintenance planning. A slight difference in preventive maintenance cost between 

components is enforced strongly by a high corrective penalty, which will spread out the (single-

component) maintenance planning of the components. Figure 17 shows the clustering benefit for the 

different corrective penalty levels, here the set-up cost are high and the other parameters are as in the 

reference setting. The clustering benefit graphs of the low and high operational state cost difference 

show a stepwise behaviour when the corrective penalty increases. This has a similar reason as what 

caused the stepwise shape in the efficient frontier between availability and cost in Figure 11. A small 

increase in corrective penalty is not expected to change the maintenance planning much because the 

maintenance planning is strongly dependent on the mission schedule. When the corrective penalty 

increases enough to spread out the single-component solution such that it enables new clustering 
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benefits, a clustering benefit is obtained. When the corrective penalty does not increase enough to 

spread out the single-component solution such that it enables new clustering possibilities, it will only 

increase the penalty cost for rescheduling and decrease the clustering benefit. This causes an 

oscillation effect. This effect is mediated by the operational state cost difference; the high operational 

state cost difference requires larger corrective penalty increases to show the same behaviour. 

The graphs show an increasing tendency in the clustering benefit, partly because the corrective 

penalty spreads out the single-component solution, but it also increases the maintenance frequency to 

cope with the increased maintenance cost in case of failure. The latter will increase the amount of 

clustering possibilities. The increasing tendency will diminish when the corrective penalty increases 

as can be seen in the graph of no operational state cost difference. 

 

Figure 17 – The effect of the corrective penalty on the clustering benefit, at no operational state cost difference  

 Mission schedule 4.3.2.4

As said before, the mission schedule enlarges the highly clustered nature of the single-component 

solution. In the alternative schedule, the harbour periods are split up to increase the diversity in the 

planning. This increases the clustering benefit, as shown in Figure 18. Here, the high set-up cost and 

the reference settings for the other parameters are used. For the scenario without operational state cost 

differences the mission planning is irrelevant. AS expected, the clustering benefit is higher for the 

alternative planning. For the alternative planning, some of the components are maintained before the 

additional transit periods and others are maintained after the additional transit period in the single-

component solution. For most of the components, the multi-component model introduces new 

maintenance occurrences such that the component is maintained both before and after the additional 

transit state. This will decrease the expected corrective cost and this can be done without incurring 

additional set-up cost, because the additional tasks can be clustered. 

The clustering benefit is higher for the high operational state difference than for the lower operational 

state difference, because the expected corrective cost that are decreased by the additional maintenance 

occurrences is higher when the operational state differences are high. 
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Figure 18 – The difference in clustering benefit as a function of the mission schedule, for the low and high operational 

state cost difference scenario 

 Dependencies between components 4.3.2.5

The dependencies between components are an important part of this project. Clearly, the clustering 

benefit is larger for higher set-up cost values. The reference set-up costs for the case study are quite 

low. In addition, the components have dependencies with at most 2 other components. When all 

maintenance tasks can be combined to save set-ups, clustering becomes more attractive. When the 

operational state cost difference is 5000, the set-up cost are high, the alternative mission schedule is 

used, and the other inputs are set to the reference setting, a clustering benefit of 19.8% is obtained for 

the ABM components and a clustering benefit of 14.8% for the UBM components. This corresponds 

with a total expected cost saving of more than €21000 for the 4 years maintenance cycle. 

4.3.3 Lifetime variance  
The available data about the failure behaviour of the components is very poor. As said before, the lack 

of knowledge about the lifetime variance makes it hard to draw solid conclusions about the failure 

behaviour. Therefore, the influence of the lifetime variance is evaluated.  

This is done by changing the variance, while keeping the MTTF equal.  The following coefficients of 

variation are investigated: {0.408, 0.500, 0.707}. Lower variance levels do not change the results for 

this parameter setting. Figure 19 shows the clustering benefit of the ABM-model for different 

operational state cost differences, here the high set-up cost are used and the other parameters are as in 

the reference setting. For the high operational state cost difference, a higher variance leads to a higher 

maintenance cost in general, due to the increased uncertainty. More interestingly, at the higher 

variance levels, the multi-component ABM-model obtains a small clustering benefit, which is not 

obtained at the lower coefficient of variation levels. This is caused by the additional clustering 

opportunities that occur due to the more conservative planning. This effect is not apparent at the lower 

operational state differences. At the lower operational state cost differences the need for preventive 

maintenance is lower. When the variance increases, scheduling maintenance earlier does not decrease 
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the risk of failure enough to make additional maintenance beneficial, hence the maintenance planning 

becomes less conservative. This decreases the amount of clustering opportunities and thereby the 

clustering benefit. The influence of the variance on the clustering benefit is small, choosing different 

levels for the coefficient of variation among components does not make a substantial difference.  

 

Figure 19 - The expected UBM clustering benefit at different lifetime variance levels 

4.3.4 Usage degradation thresholds 

The failure thresholds are varied as well, because they are not available for this project. Only the 

current usage replacement thresholds are available. As said before, these might not be equal to the 

underlying failure thresholds. Therefore, a range of values is used to multiply the reference failure 

threshold with; {0.5,1,1.5}. Higher values are not relevant, as no maintenance for the UBM-

components will be planned during the horizon. The resulting clustering benefits are shown in Figure 

20, here the high set-up costs are used, and for the other parameters the reference parameter settings 

are used. As expected, the expected maintenance cost for the UBM-components decreases when the 

failure threshold increases. The clustering benefit of the multi-component UBM-model decreases 

when the failure thresholds decrease, because the additional maintenance could not be clustered. For 

the high failure threshold scenario, the amount of maintenance occurrences needed decreases, hence 

the clustering benefit diminishes.  
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Figure 20 - The expected UBM clustering benefit at different failure threshold levels for different operational state 

differences 

4.3.5 Usage variance 

When the maintenance of the components is planned, expectations of the usage during the upcoming 

missions are known. In the reference setting, the actual usage during the missions is assumed to be 

uniformly distributed within {0.5 − 1.5} times the expected usage. This is a rough assumption. To 

give insight in the outcomes of the model at other variation levels, three variation scenarios are 

compared: {0.75− 1.25, 0.5 − 1.5,0.25 − 1.75}. These are referred to as low, reference, high usage 

variance respectively. The resulting clustering benefit for the UBM-model is shown in Figure 21, here 

the high set-up cost are used and the reference parameter setting for the other parameters. The effect 

of changing the usage variance is surprising. The total expected maintenance cost for the UBM-

models seems to decrease when the variance increases, while one would expect the opposite. This is 

caused by the low amount of missions and the criticality of the system.  In the reference setting, the 

system is non-critical during the second mission. This makes the model inclined to postpone the 

maintenance on beforehand of this mission. When this is done, and the usage variance is large, the 

probability that the usage does not exceed the threshold will be larger than when the usage variance is 

low. When the usage level just before the second mission is such that incurring the expected usage of 

the second mission will make the usage level to exceed the failure threshold, having a high usage 

variance increases the probability of survival. The clustering benefit is increasing when the usage 

variance level increases. At low variance levels, advancing or postponing maintenance tasks is very 

expensive as the usage during the upcoming missions is certain. It will be easy to see whether the 

system will fail during the postponed or advanced periods. When the system is certainly going to fail 

in case of a postponement or certainly not going to fail in case of an advancement, the penalty cost 

will be high. This explains the increasing clustering benefit for higher levels of variance.  
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Figure 21 – The expected UBM clustering benefit at different usage variance levels for different operational state 

differences 

4.3.6 Criticality 

The proposed UBM-model can incorporate criticality, as shown in chapter 3.2. Three scenarios are 

created to evaluate the influence of the criticality of the system: the system is critical during all of the 

missions, the system is critical most of the missions like in the reference setting, the system is non-

critical during all of the missions. These are referred to as low, intermediate and high criticality. The 

resulting clustering benefit at different operational state cost differences is shown in Figure 22, here 

the high set-up cost are used, the other parameters are as in the reference setting. As expected, the 

system criticality has a strong influence on the expected maintenance cost of the UBM-components. 

When the system is non-critical during the missions, the consequences of failure during missions are 

much less severe. Hence, the penalty cost for rescheduling are much lower, which partially explains 

the higher clustering benefit at the low criticality levels. However, the high clustering benefit is also 

caused by the much lower total maintenance costs. As the clustering benefit is relative to the single-

component maintenance cost, a small cluster saving will result in high clustering benefit. For the low 

operational state cost difference, the effect is the same. However, the clustering benefit remains at a 

higher level, because of the lower penalty cost for rescheduling. When there are no operational state 

cost differences, the criticality issue is not relevant. The clustering benefit is unaffected in that case. 
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Figure 22 - The expected UBM clustering benefit depending on the system criticality level for different operational 

state cost difference levels  
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5 Conclusions  

In this section, the conclusions that can be drawn from this project are elaborated. First, the main 

research question is addressed. Next, the limitations of this project and the proposed models are 

evaluated. Thereafter, the implementation is addressed and recommendations to the RNLN are given. 

At last, suggestions for future research are given to complement the research in this field. 

5.1 Research question 

Throughout this report, the research question and its sub-questions are answered. To give a clear 

answer to the research question, this section will summarize how the research question is answered. 

The research question is formulated as: 

How can a multi-component approach be used to integrate a condition-based maintenance policy 

with a static maintenance planning in a setting with operational states? 

This research question contains three important elements, which might be worth distinguishing: 1. the 

use of a multi-component approach to cluster the maintenance tasks, 2. the integration of a condition-

based policy and a static maintenance planning, and 3. the incorporation of the operational states in 

the model. To be able to answer this research question, four models are built. The second element 

requires modelling both a condition-based maintenance model and an age-based maintenance model 

(which is the static maintenance model). These models incorporate the operational states that 

characterize the maritime setting, to satisfy the third element. To satisfy the first element, both a 

single-component variant and a multi-component variant of the models are built. The single-

component models serve as a basis for the multi-component models and are used to compare the 

performance of the multi-components with. The condition-based maintenance model can be integrated 

with the age-based maintenance model by considering the dependencies between components of both 

approaches. First, the (static) multi-component age-based maintenance model is solved to find a (close 

to) optimal maintenance planning for the ABM-components, and then the (dynamic) condition-based 

maintenance planning is scheduled based on the ABM-schedule. In the case study, the model is tested 

on the maintenance management of the Marlin weapon system. The proposed models perform much 

better than a basic ABM model that does not incorporate the operational state cost difference. A 76% 

cost reduction and an 8% mission availability increase is obtained by the proposed ABM-models in 

the reference parameter setting. From the case study and the sensitivity analysis can be concluded that 

the benefit of a multi-component model with respect to a single-component model strongly depends 

on the parameter settings. The clustering benefit ranges from 0%-10% of the total expected 

maintenance cost with peaks of 20%. Certainly, one cannot conclude that the multi-component model 

is superior to the single-component model invariably. The single-component models that are proposed 

in this project incorporate the operational states, so the performance of these models can be good for 



70 

the maintenance planning in a maritime setting. However, the clustering benefits that are obtained by 

the model can be noteworthy. The sensitivity analysis can be consulted to get insight in the clustering 

benefit at certain settings. Independent of the parameter setting, the model should be used for the 

insights it gives into the penalty costs and the effects of the dependencies between components. 

5.2 Limitations 

One of the limitations of this project is the lack of reliable data to test the proposed models on. 

Unfortunately, the available data in this project is very minor. This makes it hard to draw strong and 

reliable conclusions about the performance of the model. Knowledge about the failure behaviour of 

the components must be gained and the lifetime distribution that is used must be validated. Also, more 

detailed cost factors for preventive and corrective maintenance during the different operational states 

should be gathered, to perform a proper planning optimization. 

The results of the multi-component model are compared to the results of the single-component model 

and to a basic policy, because no current practice data is available for this project. The advantage over 

the basic policy is big as it is an inappropriate model for the maritime sector. However, it would be 

interesting to compare the performance of the proposed models with more pragmatic approaches. The 

comparisons in the sensitivity analysis give insight into the benefit of clustering predominantly, 

leaving the performance of the model compared with the current practice unevaluated.  

The proposed age-based models use a myopic approach; they only consider the optimization of one 

maintenance occurrence at the time. However, most tasks are maintained multiple times during the 

horizon. The model does not take the future decision-making into account, like the dynamic 

programming approach that is used for the CBM-model does. This can sometimes lead to a 

suboptimal maintenance planning. This is also seen in the results of the sensitivity analysis. 

Sometimes the multi-component model performs worse than the single-component model.  

The multi-component age-based model is quite complex and is therefore solved using a greedy 

heuristic. The performance of this heuristic is quite high, as described in chapter 3.1.4. However, due 

to the time-limits of this project, no other optimization methods are evaluated. Other heuristics might 

result in a higher optimality score.  

This project considers the structural dependencies between components. Economic dependencies and 

stochastic dependencies are not incorporated in the model. To be able to capture all multi-component 

dynamics in the model, the economic and stochastic dependencies should be researched and 

incorporated in the model. Due to time limits, this is outside the scope of this project. 
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5.3 Implementation and recommendations 

A successful implementation of a new strategy or approach requires proper attention for the 

implementation phase. This section will elaborate on the issues that should be dealt with to implement 

the results of this project properly.  

A first implementation issue is the lack of reliable data. As said before, data availability is a problem 

in this project. The results of the model are quite sensible towards changes of the input variables as 

seen in the sensitivity analysis. When the data remains missing or unreliable, the model should be 

used with cause. The tool can be used to perform analyses and get insight the consequences of 

changes in the inputs on the maintenance management. The data that should be collected is: reliable 

failure parameters and fitting a failure distribution for the ABM-components, the preventive and 

corrective maintenance cost for all operational states per component and per mission, the set-up cost 

and the set-up configuration, the system criticality during the missions, the failure thresholds of the 

UBM-components and the expected usage during missions and a fitting probability distribution.  

When more accurate data is acquired, one should evaluate if the model represents the cost factors in 

an accurate way. One should think about the differences between the operational states and if the 

division into three operational states is sufficient. This might differ per system or component. The 

model can be extended for a larger amount of components, a longer horizon and more operational 

states. In addition, one should evaluate if the Erlang distribution that is used in this project is 

representative for the failure behaviour of the components. Other distributions can be used, as long as 

one can model its probability density function as described in Appendix A. The same holds if the 

model is to be applied on other systems. The model is formulated in a general manner, so it can be 

applied to other systems. However, one should check if the assumptions that are made in the 

modelling, are reasonable for that particular system. 

To be able to acquire reliable data, a closer cooperation with the OEM might be needed. Effort to 

acquire reliable data and better insights in the failure behaviour might enable a big improvement for 

the maintenance and reliability management within the RNLN. Condition measurement technology 

becomes more accurate and applicable in a lot of fields these days. The newest trends like ‘the 

internet of things’ might offer big opportunities for the maintenance management of the RNLN. Even 

if these developments might not be rewarding on the short run, it might be very valuable to invest in 

these technologies.  

The tool that is constructed in this project can be used to find a (close to) optimal maintenance 

planning that incorporates the multi-component effects and the operational states. But when one is not 

certain about the reliability of the input parameters, or one wants to evaluate different planning 

options for reasons outside the scope of the model; the penalty functions can be used to evaluate the 
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effects of deviating from the single-component optimal date for the ABM-components in terms of 

cost.  

This model only incorporates the maintenance planning on system level. Dependencies between 

different systems on the ships or between ships are not incorporated, so if they are expected to have a 

significant influence on the maintenance planning, one should interpret the results of this model with 

the knowledge about these dependencies. The dependencies between systems and ships can occur 

because the capacity of the workshop might be shared for the maintenance of other systems and ships.  

The proposed model is not a substitute for the ILS program that is used. The model can be used as 

part or analytical tool within the ILS program, as the ILS program is more like a comprehensive 

maintenance management technique. The model can be used to do evaluations and tests of different 

scenarios and solutions and to come up with detailed analytics. When the model is used to base the 

maintenance planning on, the other aspects within the ILS program must be aligned to have a 

comprehensive maintenance strategy. For example, the inventory management must be aligned to fit 

the maintenance planning. The maintenance managers should evaluate the influence of the new 

planning on the capacity of the repair shop as well as on the workflow within the repair shop. The 

model does not take these aspects into account, hence these should be managed such that the 

maintenance management as a whole is efficient. When the new planning approach changes the 

goods- and workflow within the repair shop drastically, additional research might be needed to 

streamline the entire maintenance operation. 

The tool is modelled in VBA, so an Excel package is needed to use it. This software package is 

already available at the DMI. The tool is designed to be used by people that do not have coding 

experience. Currently, the tool supports the planning of 16 ABM-tasks and 8 CBM/UBM-tasks. This 

can be extended, but small changes are needed in the code and in the lay-out of the sheet. This is also 

the case when the amount of operational states changes. A tutorial will be given at the DMI to explain 

how the tool works and how these aspects can be adjusted.  
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5.4 Future research 

This section will suggest future research directions that complement the research in this field. As said 

before, this project optimizes the maintenance planning on a system level. Hence, dependencies with 

other systems on the ships or with other ships are not incorporated. Future research must be done to 

evaluate if these types of dependencies are interesting to incorporate.  

The model can easily be extended to incorporate more structural dependencies. However, 

incorporating economic and stochastic dependencies requires more effort. Hence, an interesting 

research direction is the research on other types of dependencies and how to incorporate them. To 

incorporate economic dependencies, one could add a term that represents the cost in case of downtime 

to the cost functions. This term should be dependent on the planning of the other components. When 

one component is already maintained, the tasks can be done in parallel and the downtime cost is 

incurred only once. 

Incorporating stochastic dependencies is complicated because the proposed models assume that the 

failure behaviour of a component is independent of the failure behaviour of the other components. In 

the traditional maintenance literature this assumption is also made. More theoretical research into 

mathematics and statistics is needed to incorporate this type of dependency. 

In this project a greedy type heuristic is used to solve the ABM multi-component problem. This 

approach is quick and performs rather well, but it might be interesting to investigate other 

optimization methods. Other methods might perform better or more consistent. In addition, in the 

limitations section is discussed that the ABM-models are myopic in nature. They only consider one 

maintenance occurrence of a task at once, instead of optimizing all maintenance occurrences within 

the horizon. This can lead to a suboptimal maintenance planning. Future research can be done into 

approaches that optimize all maintenance decisions within the horizon. To do this, a dynamic 

programming model can be used. An expression must be found for the remaining lifetime 

distributions, which will appear in the value function. 

This project incorporates the differences between operational states only in terms of maintenance cost. 

However, it might be reasonable to assume that the degradation rate of a component is also state-

dependent. Due to the mathematical complexity of such a model and the time limits of this project, the 

state-dependent degradation behaviour is not incorporated. Incorporating this would make an 

interesting future research project.   
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7 Appendix A 

An appropriate probability distribution has to be chosen to describe the time to failure. When failure 

data is available, failure probabilities can be fitted on it to find an appropriate one. For this model, a 

continuous-time lifetime distribution is assumed. This seems the most reasonable, as there is no 

reason to assume the components degrade only on a discrete basis.  

For this model, different distribution functions can be used. When the data shows that the failure rate 

is increasing over time (IFR), preventive maintenance is interesting. Probability distributions that 

allow parameter settings such that the failure rate is increasing can be used for this model. 

For complex probability distributions it can be hard to derive the expected cycle length of the 

maintenance cycle (the denominator of the average maintenance cost). For example, for the Weibull 

distribution ∫ 𝑡 ∙ 𝑓𝑖(𝑡)𝑑𝑡
𝜏𝑖−1

𝑡=1  cannot be solved analytically. The function must be solved numerically, 

which is intractable in the accessible software packages as Excel. 

Less complicated distributions as the Erlang distribution are more suitable for this model, because the 

expected cycle length function can be solved analytically, this is shown below. 

Derivation of the failure part of the expected cycle length for an Erlang distribution: 

∫ 𝑡 ∙ 𝑓(𝑡)𝑑𝑡

𝜏

𝑡=0

= ∫
(𝜆𝑡)𝜇

(𝜇 − 1)!
𝑒−𝜆𝑡  𝑑𝑡

𝜏

𝑡=0

 

= [−
(𝜆𝑡)𝜇

(𝜇 − 1)!

1

𝜆
𝑒−𝜆𝑡]

𝑡=0

𝜏

− ∫ −
𝜇 ∙ 𝜆𝜇𝑡𝜇−1

(𝜇 − 1)!

𝜏

𝑡=0

1

𝜆
𝑒−𝜆𝑡𝑑𝑡 

= −
(𝜆𝜏)𝜇

(𝜇 − 1)!

1

𝜆
𝑒−𝜆𝜏 +

𝜇

𝜆
∙ 𝐹(𝜏) 
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8 Appendix B 

The failure probabilities can be modelled as follows. The probability of failure at a certain time t can 

be written as the probability that the degradation in the previous states is less then the failure 

threshold, multiplied by the probability that the degradation exceeds the failure threshold at time t. 

Convolution terms are needed to determine the survival probability at the previous states. Let L 

denote the failure threshold for the degradation. Let 𝑓𝑛𝑡(𝑙𝑡) denote the probability density function of 

incurring 𝑙𝑡 degradation in state 𝑛𝑡. 

The probability of failure at time t equals: 

𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑡)

= ∫ 𝑓𝑛1(𝑙1) ∙ ∫ 𝑓𝑛2(𝑙2)

𝐿−𝑙1

𝑙2=0

∙ ……∙ ∫ 𝑓𝑛𝑡−1(𝑙𝑡−1)

𝐿−∑ 𝑙𝑢
𝑡−2
𝑢=1

𝑙𝑡−1=0

𝐿

𝑙1=0

∙ ∫ 𝑓𝑛𝑡(𝑙𝑡)𝑑𝑙𝑡

∞

𝑙𝑡=𝐿−∑ 𝑙𝑢
𝑡−1
𝑢=1

𝑑𝑙𝑡−1…𝑑𝑙2𝑑𝑙1 

This can be generalized to: 

𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑡 𝑡) =∏[ ∫ 𝑓𝑛𝑧(𝑙𝑧)

𝐿−∑ 𝑙𝑢
𝑧−1
𝑢=1

𝑙𝑧=0

𝑑𝑙𝑧]

𝑡−1

𝑧=1

∙ ∫ 𝑓𝑛𝑡(𝑙𝑡)𝑑𝑙𝑡

∞

𝑙𝑡=𝐿−∑ 𝑙𝑢
𝑡−1
𝑢=1
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9 Appendix C 

Table 12 - Results of the optimization method evaluation 

Experiment 

MTTF 

level 

Corrective 

penalty 

State 

penalty level 

Set-up size 

scenario Enumeration Greedy 

Greedy + 

improvements 

Improvement 

iterations 

Greedy 

optimality 

1 1 1,25 1 0,5 407,50 407,50 407,50 0 1 
2 1 1,25 1 1 815,00 815,00 815,00 0 1 

3 1 1,25 1 2 1630,00 1630,00 1630,00 0 1 
4 1 1,25 1 10 8150,00 8150,00 8150,00 0 1 
5 2 1,25 1 0,5 407,50 407,50 407,50 0 1 

6 2 1,25 1 1 815,00 815,00 815,00 0 1 
7 2 1,25 1 2 1630,00 1630,00 1630,00 0 1 

8 2 1,25 1 10 8150,00 8150,00 8150,00 0 1 
9 3 1,25 1 0,5 407,50 407,50 407,50 0 1 

10 3 1,25 1 1 815,00 815,00 815,00 0 1 

11 3 1,25 1 2 1630,00 1630,00 1630,00 0 1 
12 3 1,25 1 10 8150,00 8150,00 8150,00 0 1 
13 1 2 1 0,5 448,44 448,44 448,44 0 1 

14 1 2 1 1 846,66 846,66 846,66 0 1 
15 1 2 1 2 1674,93 1674,93 1674,93 0 1 

16 1 2 1 10 8151,54 8151,54 8151,54 0 1 
17 2 2 1 0,5 471,66 471,66 471,66 0 1 
18 2 2 1 1 871,31 871,31 871,31 0 1 

19 2 2 1 2 1632,26 1413,43 1413,43 0 0,8659 
20 2 2 1 10 8151,03 8151,03 8151,03 0 1 

21 3 2 1 0,5 410,03 410,03 410,03 0 1 
22 3 2 1 1 822,91 822,91 822,91 0 1 
23 3 2 1 2 1636,36 1576,28 1576,28 0 0,9633 

24 3 2 1 10 8153,64 8111,01 8111,01 0 0,9948 
25 1 3 1 0,5 458,32 458,32 458,32 0 1 

26 1 3 1 1 869,35 869,35 869,35 0 1 
27 1 3 1 2 1737,96 1737,96 1737,96 0 1 
28 1 3 1 10 8152,38 8103,19 8103,19 0 0,994 

29 2 3 1 0,5 446,71 446,71 446,71 0 1 
30 2 3 1 1 874,32 874,32 874,32 0 1 

31 2 3 1 2 1362,85 1198,57 1198,57 0 0,8795 
32 2 3 1 10 7647,37 7477,36 7477,36 0 0,9778 
33 3 3 1 0,5 306,15 306,15 306,15 0 1 

34 3 3 1 1 611,82 534,35 534,35 0 0,8734 
35 3 3 1 2 1642,19 1642,19 1642,19 0 1 

36 3 3 1 10 7353,50 7345,04 7345,04 0 0,9988 
37 1 10 1 0,5 407,50 407,50 407,50 0 1 
38 1 10 1 1 815,00 815,00 815,00 0 1 

39 1 10 1 2 1630,00 1630,00 1630,00 0 1 
40 1 10 1 10 8150,00 8150,00 8150,00 0 1 
41 2 10 1 0,5 354,75 354,75 354,75 0 1 

42 2 10 1 1 656,57 656,57 656,57 0 1 
43 2 10 1 2 1561,51 1561,51 1561,51 0 1 

44 2 10 1 10 8061,19 8061,19 8061,19 0 1 
45 3 10 1 0,5 235,22 207,06 207,06 0 0,8803 
46 3 10 1 1 535,02 432,54 505,63 1 0,9451 

47 3 10 1 2 1407,97 1407,97 1407,97 0 1 
48 3 10 1 10 8116,79 8116,79 8116,79 0 1 

49 1 1,25 2 0,5 415,48 415,48 415,48 0 1 

50 1 1,25 2 1 815,00 655,67 655,67 0 0,8045 
51 1 1,25 2 2 1650,59 1650,59 1650,59 0 1 
52 1 1,25 2 10 8150,00 8150,00 8150,00 0 1 

53 2 1,25 2 0,5 396,09 168,23 305,98 1 0,7725 
54 2 1,25 2 1 815,00 695,07 695,07 0 0,8528 

55 2 1,25 2 2 1630,00 1495,49 1495,49 0 0,9175 
56 2 1,25 2 10 8176,43 8176,43 8176,43 0 1 
57 3 1,25 2 0,5 407,50 288,52 288,52 0 0,708 

58 3 1,25 2 1 815,00 782,91 782,91 0 0,9606 
59 3 1,25 2 2 1630,00 1575,22 1575,22 0 0,9664 

60 3 1,25 2 10 7541,36 7441,59 7441,59 0 0,9868 
61 1 2 2 0,5 601,22 601,22 601,22 0 1 
62 1 2 2 1 850,53 727,67 727,67 0 0,8555 

63 1 2 2 2 1630,00 1544,77 1544,77 0 0,9477 
64 1 2 2 10 8339,04 8339,04 8339,04 0 1 

65 2 2 2 0,5 587,95 525,44 587,95 1 1 
66 2 2 2 1 508,12 489,00 489,00 0 0,9624 
67 2 2 2 2 1478,96 1164,49 1478,96 1 1 

68 2 2 2 10 7304,87 6756,00 6756,00 0 0,9249 
69 3 2 2 0,5 244,50 163,00 244,50 1 1 

70 3 2 2 1 594,62 594,62 594,62 0 1 
71 3 2 2 2 1291,58 976,99 1278,04 1 0,9895 
72 3 2 2 10 7409,35 5344,78 5344,78 0 0,7214 

73 1 3 2 0,5 471,22 468,34 468,34 0 0,9939 
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74 1 3 2 1 691,91 691,91 691,91 0 1 
75 1 3 2 2 1390,77 1390,77 1390,77 0 1 

76 1 3 2 10 7610,57 7547,30 7547,30 0 0,9917 
77 2 3 2 0,5 280,32 280,32 280,32 0 1 

78 2 3 2 1 642,06 622,78 622,78 0 0,97 
79 2 3 2 2 1382,34 812,46 1077,56 1 0,7795 
80 2 3 2 10 8044,28 3009,55 8044,28 2 1 

81 3 3 2 0,5 279,88 275,60 275,60 0 0,9847 
82 3 3 2 1 652,00 528,34 528,34 0 0,8103 

83 3 3 2 2 1304,00 1304,00 1304,00 0 1 
84 3 3 2 10 7918,83 5650,11 5650,11 0 0,7135 
85 1 10 2 0,5 407,50 407,50 407,50 0 1 

86 1 10 2 1 815,00 815,00 815,00 0 1 
87 1 10 2 2 1630,00 1630,00 1630,00 0 1 

88 1 10 2 10 8150,00 8150,00 8150,00 0 1 
89 2 10 2 0,5 407,50 407,50 407,50 0 1 
90 2 10 2 1 696,09 580,91 652,00 1 0,9367 

91 2 10 2 2 1630,00 1630,00 1630,00 0 1 
92 2 10 2 10 8150,00 8150,00 8150,00 0 1 
93 3 10 2 0,5 326,00 198,81 326,00 1 1 

94 3 10 2 1 695,60 554,27 652,00 1 0,9373 
95 3 10 2 2 1304,00 1245,28 1245,28 0 0,955 

96 3 10 2 10 8078,96 8078,96 8078,96 0 1 

97 1 1,25 3 0,5 422,29 419,87 419,87 0 0,9943 
98 1 1,25 3 1 715,50 715,50 715,50 0 1 
99 1 1,25 3 2 1844,82 1743,96 1743,96 0 0,9453 

100 1 1,25 3 10 7372,61 7372,61 7372,61 0 1 
101 2 1,25 3 0,5 336,39 336,39 336,39 0 1 

102 2 1,25 3 1 576,80 547,23 547,23 0 0,9487 
103 2 1,25 3 2 1640,18 1640,18 1640,18 0 1 
104 2 1,25 3 10 7753,02 5929,81 5929,81 0 0,7648 

105 3 1,25 3 0,5 320,59 320,59 320,59 0 1 
106 3 1,25 3 1 815,00 815,00 815,00 0 1 

107 3 1,25 3 2 1304,00 1304,00 1304,00 0 1 
108 3 1,25 3 10 6753,81 6753,81 6753,81 0 1 
109 1 2 3 0,5 326,00 326,00 326,00 0 1 

110 1 2 3 1 652,00 652,00 652,00 0 1 
111 1 2 3 2 1311,73 1191,46 1304,00 1 0,9941 

112 1 2 3 10 7609,14 7609,14 7609,14 0 1 
113 2 2 3 0,5 326,00 326,00 326,00 0 1 
114 2 2 3 1 652,00 604,98 604,98 0 0,9279 

115 2 2 3 2 1408,57 1408,57 1408,57 0 1 
116 2 2 3 10 7044,97 6686,59 6686,59 0 0,9491 

117 3 2 3 0,5 326,00 326,00 326,00 0 1 
118 3 2 3 1 670,18 670,18 670,18 0 1 
119 3 2 3 2 1304,00 1063,10 1063,10 0 0,8153 

120 3 2 3 10 7598,96 6635,51 6635,51 0 0,8732 
121 1 3 3 0,5 407,50 407,50 407,50 0 1 

122 1 3 3 1 815,00 815,00 815,00 0 1 
123 1 3 3 2 1630,00 1630,00 1630,00 0 1 
124 1 3 3 10 8150,00 8150,00 8150,00 0 1 

125 2 3 3 0,5 326,00 326,00 326,00 0 1 
126 2 3 3 1 748,18 748,18 748,18 0 1 

127 2 3 3 2 1515,26 1515,26 1515,26 0 1 
128 2 3 3 10 8150,00 8150,00 8150,00 0 1 
129 3 3 3 0,5 303,04 110,41 303,04 2 1 

130 3 3 3 1 706,70 652,00 706,70 2 1 
131 3 3 3 2 1499,26 1499,26 1499,26 0 1 
132 3 3 3 10 7896,48 7896,48 7896,48 0 1 

133 1 10 3 0,5 407,50 407,50 407,50 0 1 
134 1 10 3 1 815,00 815,00 815,00 0 1 

135 1 10 3 2 1630,00 1630,00 1630,00 0 1 
136 1 10 3 10 8150,00 8150,00 8150,00 0 1 
137 2 10 3 0,5 407,50 407,50 407,50 0 1 

138 2 10 3 1 815,00 815,00 815,00 0 1 
139 2 10 3 2 1630,00 1630,00 1630,00 0 1 

140 2 10 3 10 8150,00 8150,00 8150,00 0 1 
141 3 10 3 0,5 326,00 326,00 326,00 0 1 
142 3 10 3 1 769,96 493,31 769,96 1 1 

143 3 10 3 2 1368,76 1368,76 1368,76 0 1 
144 3 10 3 10 8150,00 8150,00 8150,00 0 1 
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10 Appendix D 

 
Table 13 – ANOVA of the effect of dissimilar failure behaviour on the optimality of the Greedy heuristic 

ANOVA 

Greedy optimality   

 Sum of Squares df Mean Square F Sig. 

Between Groups ,024 2 ,012 3,044 ,051 

Within Groups ,546 141 ,004   

Total ,570 143    

 

 
Table 14 – ANOVA of the effect of the set-up size on the optimality of the Greedy heuristic 

ANOVA 

Greedy optimality   

 Sum of Squares df Mean Square F Sig. 

Between Groups ,005 3 ,002 ,389 ,761 

Within Groups ,565 140 ,004   

Total ,570 143    

 

 
Table 15 - ANOVA of the effect of the cost difference between operational states on the optimality of the Greedy 

heuristic 

ANOVA 

Greedy optimality   

 Sum of Squares df Mean Square F Sig. 

Between Groups ,048 2 ,024 6,450 ,002 

Within Groups ,522 141 ,004   

Total ,570 143    

 

 
Table 16 - ANOVA of the effect of the cost difference between operational states on the optimality of the Greedy 

heuristic 

ANOVA 

Greedy optimality   

 Sum of Squares df Mean Square F Sig. 

Between Groups ,017 3 ,006 1,448 ,231 

Within Groups ,553 140 ,004   

Total ,570 143    
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Table 17 - ANOVA of the effect of the cost difference between operational states on the optimality of the Greedy 

heuristic comparing variable level 10 with levels {1,25; 2; 3} together 

ANOVA 

Greedy optimality   

 Sum of Squares df Mean Square F Sig. 

Between Groups ,016 1 ,016 3,971 ,048 

Within Groups ,555 142 ,004   

Total ,570 143    
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11 Appendix E 

Table 18 – The results of the scenario analysis of the sensitivity analysis 

Exp. 

Operational 
state cost 
difference 

MTTF 
inequality 

Corrective 
penalty 

Setup 
size 

Asset 
schedule 

ABM - 
Single 
component 

ABM - 
Multi-
component 

UBM - 
Single-
component 

UBM - 
Multi-
component 

ABM 
clustering 
benefit in 
% 

UBM 
clustering 
benefit in 
% 

1 0 ref. 2 low ref. 32436,39 32216,71 1887,50 1790,97 0,677 5,114 
2 5000 ref. 2 low ref. 42992,44 42570,14 12123,75 11853,75 0,982 2,227 
3 10000 ref. 2 low ref. 46046,86 46046,86 22123,75 21853,75 0,000 1,220 
4 0 unequal 2 low ref. 36201,96 35756,26 1887,50 1768,44 1,231 6,308 
5 5000 unequal 2 low ref. 47257,24 47257,24 12123,75 11853,75 0,000 2,227 
6 10000 unequal 2 low ref. 52949,49 52624,23 22123,75 21853,75 0,614 1,220 
7 0 ref. 5 low ref. 52618,15 52344,48 3549,58 3453,82 0,520 2,698 
8 5000 ref. 5 low ref. 70158,37 69588,77 26388,65 25888,08 0,812 1,897 
9 10000 ref. 5 low ref. 80312,38 80360,67 48888,65 48388,08 -0,060 1,024 
10 0 unequal 5 low ref. 58342,10 57899,69 3549,58 3346,32 0,758 5,726 
11 5000 unequal 5 low ref. 76172,08 73942,08 26388,65 25888,08 2,928 1,897 
12 10000 unequal 5 low ref. 84823,10 86635,25 48888,65 48388,08 -2,136 1,024 
13 0 ref. 10 low ref. 65628,35 65310,73 5319,13 5027,37 0,484 5,485 
14 5000 ref. 10 low ref. 90864,62 90141,22 35593,00 34825,00 0,796 2,158 
15 10000 ref. 10 low ref. 104586,96 103146,57 65593,00 64825,00 1,377 1,171 
16 0 unequal 10 low ref. 72530,56 74405,72 5319,13 5027,37 -2,585 5,485 
17 5000 unequal 10 low ref. 100574,23 98194,87 35593,00 34825,00 2,366 2,158 
18 10000 unequal 10 low ref. 121959,26 116351,44 65593,00 64825,00 4,598 1,171 
19 0 ref. 2 high ref. 38141,05 37726,53 6286,06 5045,33 1,087 19,738 
20 5000 ref. 2 high ref. 54613,22 54613,22 17290,16 14733,94 0,000 14,784 
21 10000 ref. 2 high ref. 59610,10 59610,10 27440,18 24733,94 0,000 9,862 

22 0 unequal 2 high ref. 38632,56 40570,98 6286,06 4938,20 -5,018 21,442 
23 5000 unequal 2 high ref. 60791,23 58383,81 17290,16 14733,94 3,960 14,784 
24 10000 unequal 2 high ref. 65773,13 64597,78 27440,18 24733,94 1,787 9,862 
25 0 ref. 5 high ref. 70784,61 64945,42 8258,69 6495,56 8,249 21,349 
26 5000 ref. 5 high ref. 80722,20 75584,51 34284,77 31495,56 6,365 8,135 
27 10000 ref. 5 high ref. 86593,32 83391,26 57312,65 52420,08 3,698 8,537 
28 0 unequal 5 high ref. 76231,43 70905,58 8258,69 6495,56 6,986 21,349 
29 5000 unequal 5 high ref. 95304,08 94800,30 34284,77 31495,56 0,529 8,135 
30 10000 unequal 5 high ref. 115980,55 111634,70 57312,65 52420,08 3,747 8,537 
31 0 ref. 10 high ref. 90301,10 80464,28 11243,46 9431,59 10,893 16,115 
32 5000 ref. 10 high ref. 114798,31 108520,49 47481,34 44179,06 5,469 6,955 
33 10000 ref. 10 high ref. 141642,94 127877,99 79993,00 72313,00 9,718 9,601 
34 0 unequal 10 high ref. 99462,66 92519,09 11243,46 9431,59 6,981 16,115 
35 5000 unequal 10 high ref. 132369,97 127157,59 47481,34 44179,06 3,938 6,955 
36 10000 unequal 10 high ref. 148724,72 145219,64 79993,00 72313,00 2,357 9,601 
37 0 ref. 2 low alt. 32436,39 32216,71 1887,50 1790,97 0,677 5,114 

38 5000 ref. 2 low alt. 55403,05 54105,27 12123,75 11853,75 2,342 2,227 
39 10000 ref. 2 low alt. 66613,47 66613,47 22123,75 21853,75 0,000 1,220 
40 0 unequal 2 low alt. 36201,96 35756,26 1887,50 1768,44 1,231 6,308 
41 5000 unequal 2 low alt. 61547,10 61305,23 12123,75 11853,75 0,393 2,227 
42 10000 unequal 2 low alt. 72197,65 73897,48 22123,75 21853,75 -2,354 1,220 
43 0 ref. 5 low alt. 52618,15 52344,48 3549,58 3453,82 0,520 2,698 
44 5000 ref. 5 low alt. 81050,92 80685,47 26388,65 25888,08 0,451 1,897 
45 10000 ref. 5 low alt. 87986,68 87434,07 48888,65 48388,08 0,628 1,024 
46 0 unequal 5 low alt. 58342,10 57899,69 3549,58 3346,32 0,758 5,726 
47 5000 unequal 5 low alt. 85224,94 84940,91 26388,65 25888,08 0,333 1,897 
48 10000 unequal 5 low alt. 96536,65 96536,65 48888,65 48388,08 0,000 1,024 
49 0 ref. 10 low alt. 65628,35 65310,73 5319,13 5027,37 0,484 5,485 
50 5000 ref. 10 low alt. 92326,49 91288,74 35593,00 34825,00 1,124 2,158 
51 10000 ref. 10 low alt. 107746,25 107358,62 65593,00 64825,00 0,360 1,171 
52 0 unequal 10 low alt. 72530,56 74405,72 5319,13 5027,37 -2,585 5,485 
53 5000 unequal 10 low alt. 102812,72 102096,34 35593,00 34825,00 0,697 2,158 
54 10000 unequal 10 low alt. 124008,43 122752,71 65593,00 64825,00 1,013 1,171 
55 0 ref. 2 high alt. 38141,05 37726,53 6286,06 5045,33 1,087 19,738 
56 5000 ref. 2 high alt. 66368,98 64545,48 17290,16 14733,94 2,748 14,784 
57 10000 ref. 2 high alt. 84192,61 76851,78 27440,18 24733,94 8,719 9,862 
58 0 unequal 2 high alt. 38632,56 40570,98 6286,06 4938,20 -5,018 21,442 
59 5000 unequal 2 high alt. 81992,54 76094,58 17290,16 14733,94 7,193 14,784 
60 10000 unequal 2 high alt. 98346,99 93485,45 27440,18 24733,94 4,943 9,862 
61 0 ref. 5 high alt. 70784,61 64945,42 8258,69 6495,56 8,249 21,349 
62 5000 ref. 5 high alt. 97971,60 96858,74 34284,77 31495,56 1,136 8,135 
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63 10000 ref. 5 high alt. 116995,57 116876,62 57312,65 52420,08 0,102 8,537 
64 0 unequal 5 high alt. 76231,43 70905,58 8258,69 6495,56 6,986 21,349 
65 5000 unequal 5 high alt. 106686,36 109538,94 34284,77 31495,56 -2,674 8,135 
66 10000 unequal 5 high alt. 125696,94 124828,05 57312,65 52420,08 0,691 8,537 
67 0 ref. 10 high alt. 90301,10 80464,28 11243,46 9431,59 10,893 16,115 
68 5000 ref. 10 high alt. 124601,67 122976,71 47481,34 44179,06 1,304 6,955 
69 10000 ref. 10 high alt. 128363,30 128536,30 79993,00 72313,00 -0,135 9,601 
70 0 unequal 10 high alt. 99462,66 92519,09 11243,46 9431,59 6,981 16,115 
71 5000 unequal 10 high alt. 143344,90 131761,96 47481,34 44179,06 8,080 6,955 
72 10000 unequal 10 high alt. 156174,32 148812,73 79993,00 72313,00 4,714 9,601 

  


