
 Eindhoven University of Technology

MASTER

Multi-disciplinary building optimisation

Boonstra, S.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/410961d5-6c51-4337-8e99-f3bc4aa04237

Student information:
Name: S. (Sjonnie) Boonstra

Address: Doctor Joop den Uylstraat 14-A

ZIP-code: 5612 KW Eindhoven

Phone no.: (+31)6-18999503

Student-ID no.: 0874727

Date: 19-04-2016

Graduation committee:
Chairman: dr.ir. H. (Hèrm) Hofmeyer

2nd member: prof.dr.ir. B. (Bauke) de Vries

3rd member: prof.dr.ir. A.S.J. (Akke) Suiker

4th member: dr.ir. A.W.M. (Jos) van Schijndel

M.Sc. thesis

Multi-Disciplinary Building Optimisation

M.Sc. thesis

Project: Multi-Disciplinary Building Optimisation

Document title: M.Sc. thesis

Status: Final

Date: 19-04-2016

Educational institution

University: Eindhoven University of Technology

Department: Built Environment

Master: Structural Design

Place: Eindhoven

Graduation committee

Chairman: dr.ir. H. (Hèrm) Hofmeyer

2nd member prof.dr.ir. B. (Bauke) de Vries

3rd member prof.dr.ir. A.S.J. (Akke) Suiker

4th member dr.ir. A.W.M. (Jos) van Schijndel

Student information

Student: S. (Sjonnie) Boonstra

Address: Doctor Joop den Uylstraat 14-A

ZIP-code: 5612 KW Eindhoven

Phone no.: (+31)6-18999503

Student number: 0874727

E-mail: s.boonstra@student.tue.nl

M.Sc. thesis Eindhoven University of Technology

19-04-2016 5

Foreword

Lectori Salutem,

Before you lies the Master of Science thesis ‘Multi-Disciplinary Building Optimisation’. This thesis is

written as completion to the master Architecture Building and Planning, at the Eindhoven University of
Technology.

The subject of the thesis is the enablement of multi-disciplinary optimisation of early building designs. To
present day, such optimisation is too elaborate to be performed with existing technology and techniques.
However a need for optimal building designs arises due to the impending depletion of natural resources and
the pollution of planet earth. Creating methods to optimise early building designs for multiple disciplines
within the field today will contribute to the environmentally friendly buildings of the future.

Since May 2015 I have conducted research on the topic, I have learned numerous skills and I was allowed
to author and co-author several scientific papers. I am most grateful to all the people who have helped me
with my work. The person who has tutored me throughout my graduation is Hèrm Hofmeyer, I am grateful
for his time, his answers and his advice. I would also like to thank Jos van Schijndel, Koen van der Blom and
Michael Emmerich for tutoring me in their fields of study. A thanks also goes out to all my colleague students,
who have given me moral support when I was working besides them. A special thanks goes out to my family
who have always been supportive of my work and have always inspired me to continue.

Sjonnie Boonstra,

Eindhoven, April 2016

M.Sc. thesis Eindhoven University of Technology

19-04-2016 7

Table of contents

1. Introduction ... 9

 Subject .. 9

 Optimisation in general .. 10

 Optimisation in the built environment .. 12

 Building physics Simulation .. 14

2. Design spaces ... 15

 Design boundary conditions ... 16

 ‘Movable and Sizable’ representation ... 18

 ‘Super Cube’ representation .. 21

 Conversion between design spaces ... 24

 Verification of conversion algorithms .. 30

 Discussion ... 34

3. Building physics analysis .. 37

 Building physics simulation .. 38

 State space approach on a thermal RC-network of a building .. 43

 State space representation of an RC-network in C++ .. 49

 Verification of the C++-program .. 59

4. Extending the toolbox with BP-analysis ... 63

 Conformal building representation .. 64

 Conformation of a building model in C++ .. 69

 Automated building physics analysis of building models .. 78

5. Conclusions and recommendations ... 85

 Summary .. 85

 Conclusions .. 85

 Recommendations ... 85

6. References .. 87

Annexes .. 89

Table of contents Multi-Disciplinary Building Optimisation

8 M.Sc. thesis by: S. (Sjonnie) Boonstra

Annexes:
Annex 1 C++ code for the conversion between the Super Cube and

Movable Sizable representations
Bound in at the back of the report

Annex 2 C++ code of the visualisation of the MovableSizable-class Bound in at the back of the report

Annex 3 C++ code of the visualisation of the SuperCube-class Bound in at the back of the report

Annex 4 C++ code of the classes in the building physics simulation
program

Bound in at the back of the report

Annex 5 Matlab code of the state space wall example Bound in at the back of the report

Annex 6 Input file of the resistance between two states example Bound in at the back of the report

Annex 7 Input file concrete box example Bound in at the back of the report

Annex 8 C++ code of the classes in the conformation program Bound in at the back of the report

M.Sc. thesis Eindhoven University of Technology

19-04-2016 9

1. Introduction

 Subject

This graduation project is inspired by the project: “Excellent buildings via forefront MDO. Lowest energy
use, optimal spatial and structural performance”, which is funded by the Dutch foundation for technology
sciences: STW. The STW-project aims at finding and verifying optimisation techniques that allow spatial
modification of buildings to improve structural performance and building physics (BP) performance. The BP-
performance is for this project limited to the heat balance of a building, in which heat losses and/or gains
need to be minimised. Out of the STW-project two topics are selected for the graduation project, namely the
representation of design spaces (all design variables in an optimisation problem) and the
selection/development of a building physics analysis tool. This section will discuss the preceding and current
research related to the project first, the scope of the graduation project is then discussed and finally the goals
for the graduation project are specified.

Preceding and current research
A related Ph.D.-project has been finished preceding this project, it entailed research in which a toolbox

was developed that can modify a spatial building design in order to improve its structural performance. This
optimisation toolbox can effectively find structurally improved building topologies, however results are one-
sided when also considering performance in other disciplines like building physics. To improve the toolbox a
collaboration with the Leiden Institute of Advanced computer Sciences has been initiated, this collaboration
is committed with professor Michael Emmerich and Ph.D.-student Koen van der Blom. The collaboration aims
at adding more disciplines to the toolbox, starting with building physics, and to improve the optimisation
techniques used by the toolbox. The current optimisation technique uses a super structure free
representation of the design space which is to be defined later, but means that it can search a large
(unlimited) domain of solutions. Techniques using a super structure representation of a design space can only
search a small and limited domain of solutions, which implies there may be better solutions outside of that
domain. The main advantage of techniques that use a super structure representation is that they can employ
advanced search algorithms. Therefore these techniques can guarantee to find the best solutions in the
search domain (or close to it). A super structure free approach cannot employ these advanced optimisation
algorithms, however the search domain is larger and may therefore contain the better solutions. The current
research aims at employing the best of both optimisation techniques by alternately using both techniques on
one design space.

Scope and goals of the graduation project
As stated, the two topics for this graduation project are the design space for spatial building modification

and a building physics analyses tool, more specifically a heat balance calculation. In this report two design
space representations are presented one super structure free and one super structured. Thereafter a
conversion between design spaces is presented and verified, which in the future will enable the employment
of the best of both optimisation techniques by alternately using the different techniques. A discussion is then
held which considers some topics around the design spaces of building optimisation. On the topic of design
spaces a scientific conference paper was written and a conversion program including a visualisation to
convert one design space representation into the other and vice versa was developed. This report will not
consider the building optimisation itself nor any implementation of optimisation techniques, only the
representations of the design space are considered which forms the foundation of all future optimisations.

The topic on the building physics analyses tool entails an investigation about the selection of a BP-
simulation program. This tool should be able to handle the building model in the optimisation toolbox, also
it should be possible that the tool can be integrated into the toolbox. The goal is to select such a tool and
facilitate the means to integrate it into the toolbox.

1. Introduction Multi-Disciplinary Building Optimisation

10 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Optimisation in general

Design space
Some general knowledge is required when discussing design spaces in optimisation, before discussing

optimisation itself it is important to know the definition of a design space in this report. Therefore first design
variables must be defined, design variables are all variables that define the design which is subject to
optimisation. Arbitrary examples of design variables are: temperature (continuous) when designing a
production process, a type of material (discrete) when designing a building’s envelope or a pixel’s on/off-
state (Boolean) when designing pixel art. For design optimisation a selection of design variables is used to
generate solutions, the design space contains all solutions that are possible by combining its design variables.
A design space is thus a virtual multidimensional space of 𝑛-dimensions, where 𝑛 is the number of design
variables. Solutions that are not realistic or even impossible in the real world may be included in design
spaces, such solutions can be excluded from optimisation by means of constraints, which is discussed later.

In optimisation different solutions are assessed, an assessment is often performed on a representation of
the subjected design. This might result in a loss of control over design variables or the variables itself. Here
the design space of a design representation is called a design space representation, this indicates that the
design space might be limited compared to the real world design space.

Optimisation
A small introduction into optimisation in general is given, starting with the notation. All optimisation

problems are generally denoted in mathematical form as in Expression (1). Here 𝑓(𝑥) is called the objective
function, it operates on solution 𝑥 that is obtained from the design space representation. Different solutions
are evaluated by the objective function during optimisation, the solution that returns the smallest value to
the objective function is called the optimum. The design space representation is delimited by constraints, in
the expression 𝑔𝑗(𝑥) are 𝑚 inequality constraints and ℎ𝑘(𝑥) are 𝑛 equality constraints. When a solution 𝑥

returns false for any of the constraints than that solution may not be used in the evaluation of the objective
function.

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒
𝑥

 𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑥) ≤ 0 𝑖 = 1,2, … ,𝑚

 ℎ𝑘(𝑥) = 0 𝑗 = 1,2, … , 𝑛

(1)

An optimisation may be subjected to multiple objective functions, as presented in Expression (2). Here 𝑙
objective values exist, each of them operate on solution 𝑥. Again different solutions are evaluated during
optimisation, now several optima will be found, because one solution is unlikely to be the optimum for all
objective functions. In optimisation this is called trade-off, when a solution is evaluated optimal for one
objective function then another objective function must “trade” some of its optimality.

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒
𝑥

 𝑓𝑖(𝑥) 𝑖 = 1,2,… , 𝑙

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑥) ≤ 0 𝑗 = 1,2, … ,𝑚

 ℎ𝑘(𝑥) = 0 𝑘 = 1,2, … , 𝑛

(2)

Trade-offs between objective functions are often not discrete changes, but are related with changes in
(derivatives of 𝑓(𝑥) related to) one or more design variables. These gradual trade-offs can be investigated
with Pareto fronts, Figure 1-1 illustrates such a front for two different objective functions. A Pareto front is
computed by regarding all non-dominated solutions (red dots in the figure), non-dominated points are
defined on the basis of two criteria: A solution 𝑥∗ is not dominated when there exists no other solution 𝑥
such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥

∗) for 𝑖 ∈ 𝐿{1,2,… , 𝑙} and 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥
∗) for at least one 𝑖 ∈ 𝐿. This means that there

cannot be a solution 𝑥 that results in a smaller evaluation for all of the objective functions, but that there
may be solutions that result in a smaller evaluation for some of the objective functions. In other words a
solution is non-dominated if another solution would worsen the evaluation of any objective function. Pareto
fronts are useful because they hold information about the design process, this information can for example
be interpreted into design rules.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 11

1-1 Evaluation points for objective functions 𝒇𝟏(𝒙) and 𝒇𝟐(𝒙) blue dots are dominated solutions, red
dots are non-dominated solutions. The Pareto front is fitted to the non-dominated solutions.

Optimisation problems are treated in a rather mathematical way, for instance the objective functions and
constraints are expressed as functions. In a real world optimisation problem it is often difficult, if not
impossible, to express all objective functions and constraints in mathematical form. A mathematically
unknown function or constraint is called a black box, which means that the returned value is computed by
either an algorithm, simulation or even a real world measurement. Optima of problems cannot be found
analytically when black boxes are used, specialised search algorithms can then be used. Success of these
algorithms is guaranteed when all solutions are evaluated by the objective function, however time becomes
decisive when there are many possible solutions. Search algorithms are therefore often specialised in
evaluating as few as possible solutions while maintaining a high chance of finding the optimum. The next
paragraphs will discuss in more detail how search algorithms work and how a design space representation
influences a search algorithm.

Optimisation algorithms
Optimisation algorithms aim to minimise the number of solutions to be assessed to limit computation

time. Many different algorithms have been developed over the years, each of which have their own
advantages or improvements over others. The most important property of an optimisation algorithm is the
employed search technique, which purpose is to find optima in the given design space representation. Some
basics of search techniques are discussed first, followed by some examples of distinguished optimisation
techniques.

A search is generally classified to be either global or local depending on how solutions are selected for
assessment. A global search generally selects solutions without considering previous solution assessments
this can be done randomly but also systematically e.g. by defining increments in continues design variables.
In a local search previous solution assessments are used to select new solutions, either by means of heuristic
operations on solutions like steepest descent and known design rules or by genetic operations like cross-over,
mutation, replacement and reproduction. Local searches are prone to finding local optima, which is not the
best solution from the design space representation however a better solution cannot be found without
considering worse solutions first. A global search is not sensitive to local optima, but it is not checked if there
are better solutions near the found optima. Therefore global and local searches are often combined, this way
global searches increase the chance to find the approximate location of the global optimum in the
represented design space while local searches can find the exact location of that optimum.

Another important factor in optimisation algorithms is how the design space is described by the program.
In the simplest case a design is represented with only integers, design solutions are then described by an
integer (non-) linear programming approach. An optimisation problem is linear when the objective function
and constraints are linearly dependant on changes in the solution’s design variables. Design solutions are
described by a mixed integer (non-) linear programming approach when design variables are of a type other
than integer. The choice of programming approach has great influence on the design space representation
(or vice versa) as the chosen approach determines what can and what cannot be described by the design
space representation. A specific approach will become part of the optimisation algorithm as it is used to
define the solutions that are represented by the design space. Moreover the approach has influence on how
global and local searches are performed.

A renowned multi objective genetic optimisation algorithm is NSGA-II (Deb et al. 2002), it is an algorithm
that performs both global and local searches. With NSGA-II first a global selection of solutions is initiated, the
initial (parent) population, these solutions are assessed and then a part of the population is rejected based

1. Introduction Multi-Disciplinary Building Optimisation

12 M.Sc. thesis by: S. (Sjonnie) Boonstra

on the extent to which they are dominated. Accordingly the remaining solutions are used for the creation of
a new population by using evolutionary operations like reproduction, mutation and crossover. The algorithm
is then repeated for a specified number of iterations and leads in most cases to Pareto fronts. Bandaru & Deb
(2015) used the NSGA-II algorithm to derive relationships between design variables, these relationships are
then tracked throughout the optimisation process i.e. their evolution. Relationships give useful information
that may be used in design rules of optimal designs, the evolution of relationships is of interest when
hierarchical relationships exist e.g. a design variable does not contribute until a certain condition is met.

Super structures
The generally used super structured design space representation cannot change during optimisation i.e.

the existence of design variables is invariable. This means for example that in the design of a production
process there are only two temperature states during the whole process or in the design of a façade only one
material type can be used for the entire façade or in the design of pixel art only four hundred pixels can be
used. Operating on the existence of design variables would either increase or decrease the design space’s
size. A profuse amount of design variables could be incorporated in the design space when the number of
design variables is not known beforehand however this dramatically increases the design space’s size. A super
structure free design space representation does not fix its design variables i.e. operations like add, delete and
replace can be used on them. These operations allow the design space representation to vary in size during
optimisation. Design variables can be removed or added when this would have positive effects on the design’s
performance, this offers solutions to problems where the number of design variables should vary or where it
is not known.

The main disadvantage of a super structure free design space representation is that it cannot be handled
by most optimisation algorithms. Mainly because super structure free design spaces are an uncommon
approach and algorithms are not designed for such tasks. But also because it should be defined how the
operators modify the design space with the aim to minimise the objective function, this can be challenging.
Examples of super structure free approaches are found more often in literature even though it is still an
uncommon approach. Emmerich et al. (2001) for example propose to use operators on design variables in
evolutionary design of chemical process networks. Voll et al. (2012) use a super structure free approach by
using replacement operators on design variables in the design of an optimal distribution system for energy
supply. Baldock & Shea (2006) use a super structure free approach to design an optimal layout of trusses in
a structural building frame.

 Optimisation in the built environment

Optimisation has been a topic in the built environment for a long time, it is a task traditionally performed
by designers and engineers in a trial and error fashion. Knowledge and technology have led to major
improvements in building optimisation e.g. math provided an opportunity to analytically optimise structures
and computer technology provided an opportunity to simulate building behaviour prior to its realisation.
Optimisation itself is a matter of mathematics and computations and has no common ground with the built
environment, defining the optimisation problem however requires knowledge about both fields. This si
because optimisation is still limited at the time of writing, a complete building design cannot be handled by
today’s computers as this leads to a too large design space. Designers and engineers are still required in a
design process. With knowledge and experience they can represent a design space with sufficient accuracy
so that it is small enough to be optimised by today’s means and methods. This section discusses some
research on building optimisation and more specifically how the design spaces are represented and how
optimisation results may be interpreted by researchers

Building physics
Optimisation in the built environment is often limited to single disciplines like structural design, building

physics or construction technology most of which also have sub disciplines. Many examples of optimisation
in the built environment can be found, some of which are discussed next. Energy performance of a building
is a popular topic, Tuhus-Dubrow & Krarti (2010) for example minimise both energy cost and monetary cost
by modifying pre-sets of building shape, azimuth, aspect ratios in building shape and properties of several
constructions like walls. The design is represented by a genome, where after a genetic algorithm is used to
search for optima. Conclusions on building shape are made by assessing the optima found for specific

M.Sc. thesis Eindhoven University of Technology

19-04-2016 13

objective functions at each pre-set shape. The optimal shape of a building with respect to minimal energy
costs is a well-known example that can be derived analytically and results in a spherical building. Such
analytical optimisation is also performed for multiple objectives by Marks (1997) who derived the relationship
of a building’s shape with the energy cost and monetary cost. This leads to a system of nonlinear equations
which is then numerically solved directly into the Pareto front belonging to the optimisation problem.
Another effort to find new building shapes with improved energy performance is presented by Yi & Malkawi
(2009), who represent a building’s envelope with agent points. These points’ positions are modified by a
genetic algorithm, an envelope results from the positions of each point in relation to neighbouring points.
This way the building’s shape is pre-encoded without using pre-sets of shapes. This allows to generate more
complex and new insights in optimal building shapes.

Structural design
Structural stiffness is another popular subject for optimisation and research to optimisation dates back to

over 50 years, optimal configurations of trusses for example are already analytically investigated in (Chan,
1960). Optimisation of single structural components like beams, columns and floors can be done by structural
topology optimisation, which considers material placement in order to maximise structural stiffness.
Structural topology optimisation can conveniently use values obtained by Finite Element Analysis (FEA) of
structural components to assess and modify elements. Operations like add, delete and replace or gradient
element densities can be performed on elements to modify a design. This kind of optimisation can generate
optimal designs from which loading and boundary conditions are defined beforehand for example Jang et al.
(2010) use it to generate a new design of a flatbed trailers, Liang et al. (2000) use it to design a bracing system
for a building frame, Hofmeyer & Davila Delgado (2015) use it to find optimal spatial layouts of buildings,
Hammer & Olhoff (2000) use it to optimise structures subjected to pressure loadings, in which it is important
to include effects by changing surfaces. Heuristic searches are most often employed when optimising a finite
element representation of structural components, mainly because the design space is generally too large for
genetic approaches but also because the derivative of strain energy with respect to element densities can be
expressed and used for aimed modifications. Heuristics are however not always available, genetic algorithms
are for example employed when optimising dimensions of structural components. Kang & Kim (2005) employ
a genetic algorithm to modify plate thicknesses in the design of a stiffened plate to minimise weight and
maximise post buckling strength. Iuspa & Ruocco (2008) optimise stiffened plates to either minimum weight
or maximum buckling loads by means of a genetic algorithm that can vary the type of stiffeners and plate
dimensions. Genetic algorithms are also employed when considering the stiffness of a complete building e.g.
by Baldock & Shea (2006) who optimise a bracing system for a building frame by using a super structure free
approach.

Other examples
Other interesting topics in building optimisation have been found as well. Wright et al. (2002) for example

investigate trade-offs between monetary capital and operation costs and user discomfort versus monetary
energy costs. An existing building optimisation toolbox called GENE_ARCH is reviewed by Caldas (2008), which
is a toolbox that uses a genetic algorithm to optimise program defined design space representations that
include for example building and construction dimensions or construction type. Fong et al. (2006) use a
genetic algorithm with evolutionary operators to optimise the energy use of an HVAC-system. A state of the
art of optimisation in structural design is presented by Kicinger et al. (2005), who studied the field of
evolutionary computation in context of structural design. Emmerich et al. (2008) have studied the
applicability of several methodologies for optimisation of building physics performances by use of building
physics simulation.

1. Introduction Multi-Disciplinary Building Optimisation

14 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Building physics Simulation

Building physics is an established field in the built environment, many studies and education aim ate
different topics in the field. One of these topics is computer simulation, in which one or more properties of a
building design are simulated over time. Properties like temperature, ventilation, moisture or insolation can
be simulated.

The topic of building physics simulation is established, several educational books have been written on
the topic, for example the ones by Underwood & Yik (2004), Clarke (2001) or by Hensen & Lamberts (2011).
The mentioned books have been written to give an understanding in the workings of most commonly used
simulation methods. Scientific research on the other hand focus on e.g. benchmarking of simulation
programs, increasing simulation accuracy, increasing simulation speed or the development of new models to
simulate novel constructions or systems.

The focus in this work lies on a little demanding simulation method and/or program, since optimisation
may require a high number of building physics analysis. It is thus of importance that the selected method is
fast and that the selected program does not demand a large amount of building information. When regarding
simulation programs there is some research that focuses on user friendliness of programs. For example Attia
et al. (2009) have made an overview of programs in which they asses how suitable each program is for an
architect’s user intentions. User friendliness is however not a popular topic, as mostly experts work with the
simulation tools. But user friendliness can be of use when regarding multi-disciplinary design, in which non-
experts need to work with simulation tools. Simulation speed and the amount of required data are better
researched, under the title of simplified building physics models. This topic in research found its origins in
times where computational time was expensive, but has gained renewed interest for applications in
optimisation and simulation based design. Van Schijndel & Kramer (2014) have combine three different
modelling techniques, each with different levels of detail. The research concludes that all considered
techniques give comparable results when low spatial resolution is applied, but that the simplified models are
faster. Kramer et al. (2012) give a literature review of simplified thermal and hygric models, clarifying what
approaches are applied and what their (dis) advantages are. The level of detail in a building physics model
can also be changed as is done by Kramer et al. (2013). In their research it is concluded that the simulation
time may be decreased drastically while simulation results remain accurate.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 15

2. Design spaces

This chapter covers the design space representations of building spatial design optimisation. Firstly the
boundary conditions for building design are discussed including considerations and constraints for the
solutions space. Most important is the conclusion that a large design space is desired for multi-disciplinary
building optimisation. Thereafter two representations are presented for use in building optimisation, both
are considered for a super structured and super structure free design space. As will become clear one
representation is best suited for a super structure free approach and the other is more suitable for a super
structured approach. The strengths of both approaches are then proposed to be used in a method to find an
optimum both effectively and thoroughly in a large design space. Therefore algorithms that convert between
both representations are presented. Finally a discussion is held on some considerations for the topics
presented in this chapter.

2. Design spaces Multi-Disciplinary Building Optimisation

16 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Design boundary conditions

Building optimisation can be performed with different design space representations all with different
levels of detail, the desired properties and detail of a representation are established beforehand to secure
optimisation quality. Starting with the requirements of a building model that is to be assessed on structural
and building physics performances. Followed by the preferences and constraints of the design space and
finally design modifications are discussed.

Requirements
The building model should only have to hold spatial information, which means information about a space’s

location, shape and dimensions. This causes lack of information to run performance assessments e.g. a
structural design including loads is required for structural analysis. These deficiencies of the model can be
solved by grammars that generate required building components based on design rules and procedures. A
structural grammar could for example determine whether columns or walls are used based on a space’s
dimensions.

Using grammars thus allows to use a building model with only spatial information, making possible to
investigate the influence of a building’s topology on its performances. It is also imaginable to use different
versions of grammars, different versions of structural grammar could be for example steel structure, wooden
slab structure, concrete core with columns etc. When multiple grammars are available it is possible to
incorporate grammars in the design space to investigate possible trade-offs between e.g. construction type
and topology. A building model for optimisation that contains only spatial information is beneficial as it
decreases the search space for the optimisation and thus it results in a better chance of finding the global
optimum. Grammars may not result in optimal designs, however grammars could in future work be
developed by machine learning on the basis of optimised results for their specific purposes.

Preferences
The goal of every optimisation is to find the global optimum for the problem at hand, global optima are

however rarely found and generally cannot be proven to be global. A global optimum in an optimisation
problem may not be found mainly because of two reasons, namely the optimisation search gets caught at
local optima or the global optimum is not included in the design space representation. The issue with local
optima is largely related to the employed search algorithm, algorithms often have advanced functions to
escape such local minima as efficient as possible but may still only find better optima rather than the global
optimum. The issue in which the design space representation does not include the global optimum is
obviously related to the representation itself. It is thus of interest to define it as such that an as large as
possible design space is represented or to define as such that the global optimum is included in the
representation. As the global optimum is not known a priori it is not possible to purposely include it in the
design space representation, which means the represented design space should be defined as large as
possible. However it becomes harder to search a design space when it becomes larger, as either more
solutions must be evaluated or an optimal solution must be determined with relatively less evaluations. This
problem is also encountered in topology optimisation of building designs, a variation of a few spaces can
already lead to a large number of solutions as several spatial configurations of the spaces are to be combined
with an optimisation of their dimensions.

A large represented design space is preferred for spatial building optimisation to increase the chance of
finding a better or the global optimum, this means that large topology variations are desired. Long
optimisation times should however be avoided, this can be done by constraining the space as will be discussed
in the following section. Another method is to employ an effective search that can quickly move through the
search space based on simple modification rules (heuristics) that increase the design’s performance. This
method is however a local search and thus prone to locking into local optima, therefore a method should be
developed to escape local optima.

Constraints
The search space and thus optimisation time can be reduced by constraining the search space. Constraints

may be obvious like invalid solutions as floating structures and overlaps. Practical constrains can also be
defined e.g. all spaces are cuboid, which simplifies the representation of a building design and also reduces
optimisation time. All constraints that will be applied to the optimisation problem at hand are discussed in
this section.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 17

Overlap
Overlaps are not allowed during the optimisation of a building as an overlap will cause problems in the
design model/process.

Connectedness
Spaces must be linked to all other spaces by a network of connected spaces, separated (groups of) spaces
would introduce new buildings while the model describes one building.

Cuboid
Spaces must be cuboid, this constraint simplifies the representation of a building model. It is practical in
terms of saving optimisation time but also in terms of building use as orthogonal floor plans are generally
accepted. It should however not be considered to be a

Ground connection and aboveground
A building should be connected with the ground with at least one space to ensure access to the building
and to ensure the structural design is founded. Besides that, all spaces must be located above ground to
limit the extensiveness of the BPS- and SD- analyses and grammars.

Constant volume and number of spaces
The building’s volume and number of spaces are defined at the start of the optimisation and must be
maintained during the optimisation process. This allows a building to be designed for a purpose or to meet
client demands

Design variation and modification
Modification or variation of a spatial model that only contains spaces entails that only spaces can be

modified, as such an optimisation’s design space consists out of the used representation of the building’s
spaces. As stated a space is defined by location, dimension and shape, though the shape is constrained to
cuboids and as such only the location and dimension remain to be modified.

The implications of a super structured or super structure free approach should be considered as well when
considering design spaces. In a super structured approach there may not be any operations on the design
variables itself, in other words only the space location and dimensions can be varied. Operators are allowed
in a super structure free approach, thus allowing locations, dimensions or both to be deleted or created.
Doing such operations on only location or dimensions will result in invalid spaces depending on the used
representation, therefore these operators can generally only work on both variables at the same time i.e. the
entire space.

A building optimisation’s design space is defined by the used building representation, generally it is super
structure free when spaces can either be created or deleted. However the volume and number of spaces are
constrained, thus using a super structure free approach does not seem appealing. However when looking at
heuristics for building optimisation it turns out that removal and creation of spaces can be powerful
operations to quickly increase a design’s performance inside a large design space, as is shown by Hofmeyer
& Davila Delgado (2015).

Two representations are presented in the following section, one is suitable for a super structure free
approach the other for a super structured approach. The free approach may thus be suitable for using
heuristics to find optima in a large search space quickly and effectively, at the cost of locking into local optima.
The super structured approach of the design space can result in the best optima found in a small search space,
at the cost of optimisation speed and excluding possible better optima.

2. Design spaces Multi-Disciplinary Building Optimisation

18 M.Sc. thesis by: S. (Sjonnie) Boonstra

 ‘Movable and Sizable’ representation

Building representation
The ‘Movable and Sizable’ representation (MS-representation) is a very direct way of representing spaces,

it uses the bare minimum to specify cuboid spaces. This bare minimum consists out of a sets of coordinates
(𝑥, 𝑦, 𝑧) and a set of dimensions (𝑤, 𝑑, ℎ) width, depth and height respectively. This representation can
formally be stated with the equations in Expression (3).

𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁𝑠𝑝𝑎𝑐𝑒𝑠}

𝑆𝑖 = {𝐶, 𝐷}

𝐶 = {𝑥, 𝑦, 𝑧}

𝐷 = {𝑤, 𝑑, ℎ}

(3)

Coordinates and dimensions of a space should be variable when it is desired to optimise the topology of
a building using the above representation, otherwise either relocation or resizing would not be possible.
Therefore it can be said that the design space consists out of every represented space and thus is represented
by vector 𝑆. An example of a building composed of four spaces in the MS-representation is given in Figure 2-
1.

𝑆1{{𝑥1, 𝑦1, 𝑧1}, {𝑤1, 𝑑1, ℎ1}}

𝑆2{{𝑥2, 𝑦2 , 𝑧2}, {𝑤2, 𝑑2, ℎ2}}

𝑆3{{𝑥3, 𝑦3 , 𝑧3}, {𝑤3, 𝑑3, ℎ3}}

𝑆4{{𝑥4, 𝑦4, 𝑧4}, {𝑤4, 𝑑4, ℎ4}}

2-1 ‘Movable and Sizable’ representation of a building

Super structured approach
The MS-representation is not suitable for a super structured approach, the problem lies within

constraining the design space representation. The representation defines only individual spaces without any
additional information e.g. a space’s relevant position in the considered building is not known nor the
relationships with other spaces. This makes it hard to modify the building design, as every space then needs
constraints in relation to other spaces to prevent overlaps but also gaps in between spaces. To define such
constraints it is required to describe relations between spaces but also their movement paths as is illustrated
in Figure 2-2.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 19

2-2 Arising problems during design modification in the super structured method with the ‘Movable
and Sizable’ building representation

In the depicted example local search is illustrated starting with the assessment of an initial solution, here
given by some arbitrary numbers where high numbers indicate high performance. A new solution could be
obtained by first resizing all spaces according to their performance while keeping the total volume constant
i.e. a space with average score keeps the same size, bad score reduces in size and high score increase in size.
Overlaps and gaps appear immediately after resizing, this needs to be solved by relocating spaces to positons
where such infringements do not occur, which is the stage where the problems appear. For every movement
a space undergoes there are three aspects to be checked:

 Clashes, does the space have overlaps with other spaces?

 Optimal movement, to which direction should the space be relocated?

 Relationships, to what other spaces should the space be related/connected?
Describing this in an algorithm is already challenging, when realising that the movement of every space affects
other spaces it may well be impossible to modify designs via this approach.

Super structure free approach
The super structure free approach gives opportunities to modify buildings that use the MS-representation,

as now spaces may be deleted and new spaces may be defined during the optimisation process. These
operators are used in the existing building optimisation toolbox, as is illustrated in the example in Figure 2-3.

2-3 Design modification in the super structure free method with the ‘Movable and Sizable’ building
representation

Design modification is performed on the basis of the same performance assessment, now one or multiple
spaces are deleted from the design space. The building now has too few spaces and too low volume, therefore
the entire building is scaled up to the initial volume and one (arbitrary) space are divided into two new spaces.
This design modification can formally be represented by Expressions (4) to (7).

2. Design spaces Multi-Disciplinary Building Optimisation

20 M.Sc. thesis by: S. (Sjonnie) Boonstra

Deletion: 𝑆{𝑆1, 𝑆2, 𝑆3, 𝑆4} → 𝑆{𝑆1, 𝑆2, 𝑆4} (4)

Scaling: (
𝑆1{{𝑥, 𝑦}, {𝑤, 𝑑}}, 𝑆2{{𝑥, 𝑦}, {𝑤, 𝑑}},

𝑆4{{𝑥, 𝑦}, {𝑤, 𝑑}}
) ∙ √

𝑉0
𝑉

 (5)

Division: 𝑆1{{𝑥1, 𝑦1, 𝑧1}, {𝑤1, 𝑑1, ℎ1}} →

{

 𝑆5 {{𝑥1, 𝑦1 , 𝑧1}, {

1

2
𝑤1, 𝑑1, ℎ1}} ,

𝑆6 {{𝑥1 +
1

2
𝑤1, 0,0} , {

1

2
𝑤1, 𝑑1, ℎ1}}

 (6)

New Design: 𝑆{𝑆2, 𝑆4, 𝑆5, 𝑆6} (7)

Using this approach, it is not needed to check constraints as no overlaps are created during modification
and relations between spaces are only created where they already existed in the original space. If a building
is therefore correctly entered by the user there is no need to check constraints. Here the super structure free
approach is used, not to vary in number of design variables, but to prevent elaborate constraint checking.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 21

 ‘Super Cube’ representation

Building representation
The ‘Super Cube’ representation (SC-representation), by M.T.M Emmerich (LIACS), uses four vectors to

describe a building: 𝐵(𝑤𝑖⃗⃗⃗⃗⃗, 𝑑𝑗⃗⃗⃗⃗ , ℎ𝑘⃗⃗⃗⃗⃗, 𝑏⃗⃗𝑖,𝑗,𝑘
𝑙), together they represent multiple cells inside a large cuboid that hold

information about the spaces of a building. Expression (8) shows the variables used, here 𝑏𝑖,𝑗,𝑘
𝑙 describes the

existence of a cell with indices 𝑖, 𝑗 and 𝑘 in space 𝑙, where a value “1” means the cell is active and describes
part of space 𝑙 while “0” means the cell is inactive. Following this, 𝑖 is the 𝑥-, 𝑗 the 𝑦- and 𝑘 the 𝑧-index of a
cell, while 𝑙 is the space index. Finally, 𝑤𝑖 , 𝑑𝑗 , ℎ𝑘 describe the continuous dimensioning of the super cube’s

cells. The entire super cube is used to perform design modifications, therefore the complete design space is

described by the vectors 𝑤𝑖⃗⃗⃗⃗⃗, 𝑑𝑗⃗⃗⃗⃗ , ℎ𝑘⃗⃗⃗⃗⃗ and 𝑏⃗⃗𝑖,𝑗,𝑘
𝑙 .

𝑖 ∈ {1,2, … , 𝑁𝑤}  𝑤𝑖 ∈ ℝ ≥ 0

𝑗 ∈ {1,2, … , 𝑁𝑑}  𝑑𝑗 ∈ ℝ ≥ 0

𝑘 ∈ {1,2, … , 𝑁ℎ}  ℎ𝑘 ∈ ℝ ≥ 0

𝑙 ∈ {1,2, … , 𝑁𝑠𝑝𝑎𝑐𝑒𝑠}  𝑏𝑖,𝑗,𝑘
𝑙 = {

1 𝑖𝑓 𝑐𝑒𝑙𝑙 (𝑖, 𝑗, 𝑘) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑠𝑝𝑎𝑐𝑒 𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

The design space consists of all four vectors used in the SC-representation, as these are all needed if a
space’s dimensions and location are to be modified. Figure 2-4 illustrates the SC-representation in which a
building of four spaces is described, each space by one or more cells. It is also possible that cells are not used
in the description of a building, such cells are still part of the super cube but not of the building. The super
cube itself thus does not embody a building but is merely a virtual representation of a building.

𝑤⃗⃗⃗{𝑤1, 𝑤2, 𝑤3, 𝑤4}

𝑑{𝑑1, 𝑑2}

ℎ⃗⃗{ℎ1}

𝑏𝑖,𝑗,𝑘
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{𝑏𝑖,𝑗,𝑘

1 , 𝑏𝑖,𝑗,𝑘
2 , 𝑏𝑖,𝑗,𝑘

3 , 𝑏𝑖,𝑗,𝑘
4 }

 𝑏𝑖,𝑗,𝑘
1 {1,0,0,0,0,0,0,0}

 𝑏𝑖,𝑗,𝑘
2 {0,0,1,0,1,0,0,0}

 𝑏𝑖,𝑗,𝑘
3 {0,1,0,0,0,0,0,0}

 𝑏𝑖,𝑗,𝑘
4 {0,0,0,1,0,1,0,0}

2-4 ‘Super Structured’ representation of a building

Super structured approach
Using a super structured approach of a design space with the SC-representation is more feasible than for

the MS-representation. An advantage of the SC-representation is that the spaces’ locations can be pre-
encoded in the vectors, thus reducing the search space significantly. The main advantage is however that this
notation allows to check constraints by using mathematical equations i.e. conditions that must be met. Mixed
integer non-linear programming (MINLP) techniques can then be used to generate designs that meet
constraints.

In this paragraph the conditions for each of the constraints are presented, the conditions are formulated
by Ph.D.-student Koen van der Blom, who at the time of writing develops the mixed integer non-linear
programming and optimisation techniques for the SC-representation.

Condition 1 – non overlap

Every space is represented by a separate bit mask of the entire super cube (𝑏𝑖,𝑗,𝑘
𝑙), therefore overlap can

occur. The first condition, Equation (9), checks this by summing up the value of a cell in each mask, when the
sum is smaller than or equal to one there does not exist an overlap at the position represented by that cell.

2. Design spaces Multi-Disciplinary Building Optimisation

22 M.Sc. thesis by: S. (Sjonnie) Boonstra

∀ :𝑙 ∀ ∑ 𝑏𝑖,𝑗,𝑘
𝑙

𝑁𝑠𝑝𝑎𝑐𝑒𝑠

𝑙=1

𝑖,𝑗,𝑘 ≤ 1 (9)

Condition 2 – cuboid spaces
This condition checks if all cells that are assigned to a space together form a cuboid. This is done by first

building a layer of “zero” cells around the super cube as is described by equation (10).

∀ :𝑙 ∀ ∈𝑖,𝑗,𝑘 {0, … , 𝑁𝑤 + 1} × {0, … , 𝑁𝑑 + 1} × {0, … , 𝑁ℎ + 1}:

𝑖 = 0 ∨ 𝑗 = 0 ∨ 𝑘 = 0 ∨ 𝑖 = 𝑁𝑤 + 1 ∨ 𝑗 = 𝑁𝑑 + 1 ∨ 𝑘 = 𝑁ℎ + 1 ⇒ 𝑏𝑖,𝑗,𝑘
𝑙 = 0 (10)

Accordingly the super cube is iterated per space for each 𝑖-, 𝑗-, and 𝑘-index in search for changes between
“zero” and “one” cells. For each direction searched, it should hold that when changes do occur then they
should occur at the same indices. Equation (11) shows how this check is performed in the z-direction. Note
that this constraint only accounts for a cuboid shape, and that internal voids may still be present in a cuboid
space. Condition 3 is introduced to account for such voids by checking if a space is orthogonally convex.

Condition 3 – ortho convexity of spaces
This condition checks for each space if there are more than changes from zero to one in the super cube.

If this is true, then there exists a void in the space, the condition is checked by equation (12).

∀ :𝑙

∀ :𝑖,𝑗 ∑(

𝑁ℎ

𝑘=0

1 − 𝑏𝑖,𝑗,𝑘
𝑙)𝑏𝑖,𝑗,𝑘+1

𝑙 ≤ 1 ∀ :𝑖,𝑘 ∑(

𝑁𝑑

𝑗=0

1 − 𝑏𝑖,𝑗,𝑘
𝑙)𝑏𝑖,𝑗+1,𝑘

𝑙 ≤ 1

∀ :𝑗,𝑘 ∑(

𝑁𝑤

𝑖=0

1 − 𝑏𝑖,𝑗,𝑘
𝑙)𝑏𝑖+1,𝑗,𝑘

𝑙 ≤ 1

 (12)

∀𝒍:

∀𝑖1,𝑗1,𝑖2,𝑗2:((∑𝑘(1 − 𝑏𝑖1,𝑗1,𝑘−1
𝑙)𝑏𝑖1,𝑗1,𝑘

𝑙

𝑁ℎ

𝑘=1

) − (∑𝑘(1 − 𝑏𝑖2,𝑗2,𝑘−1
𝑙)𝑏𝑖2,𝑗2,𝑘

𝑙

𝑁ℎ

𝑘=1

)) ∗

 (∑𝑏𝑖1,𝑗1,𝑘
𝑙

𝑁ℎ

𝑘=1

)(∑𝑏𝑖2,𝑗2,𝑘
𝑙

𝑁ℎ

𝑘=1

) = 0

∀𝑖1,𝑗1,𝑖2,𝑗2:((∑𝑘𝑏𝑖1,𝑗1,𝑘
𝑙 (1 − 𝑏𝑖1,𝑗1,𝑘+1

𝑙)

𝑁ℎ

𝑘=1

)

− (∑𝑘𝑏𝑖2,𝑗2,𝑘
𝑙 (1 − 𝑏𝑖2,𝑗2,𝑘+1

𝑙)

𝑁ℎ

𝑘=1

))(∑𝑏𝑖1,𝑗1,𝑘
𝑙

𝑁ℎ

𝑘=1

)(∑𝑏𝑖2,𝑗2,𝑘
𝑙

𝑁ℎ

𝑘=1

) = 0

(11)

M.Sc. thesis Eindhoven University of Technology

19-04-2016 23

Condition 4 – no overhang
This condition is can be used to make sure all spaces are linked to each other, which means all spaces

together form one building rather than a separated clusters of building spaces. This condition can be easily
performed by checking for changes of “zero” cells to “one” cells in positive z-direction in the super cube,
similar to equation (12). Such a change signifies that there is no cell beneath the considered cell, and thus
that there exists an overhang in the building.

Super structure free approach
The super structure free approach is less suitable for the SC-representation, as an operation on a

dimension variable (𝑤𝑖 , 𝑑𝑗 or ℎ𝑘) will have impact on the vector describing the spaces (𝑏𝑖,𝑗,𝑘
𝑙). Operations on

spaces on their turn have consequences for the dimension vectors. These dependencies require to capture
and anticipate the consequences of an operation beforehand, which results in an elaborate implementation
of simple heuristic rules. The MS-representation is better suited for a super structure free approach, because
using the SC-representation would unnecessarily complicate the problem.

2. Design spaces Multi-Disciplinary Building Optimisation

24 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Conversion between design spaces

The two presented representations each have their strengths and weaknesses. The MS-representation
can be used to quickly search more optimal solutions in a large search space, however it may move in only
one direction or it may lock into a local optimum. The SC-representation can be used to thoroughly search
the search space and has a high chance on finding the best optima in that search space. Such optimisation
however requires a large amount of computation time, therefore the search space should be kept small.

An interaction between representations is suggested to get the best of both approaches. The MS-
representation should be used to quickly obtain an improved design after which the SC-representation should
be used to refine that improved design with an advanced search technique that operates on a smaller search
space. To achieve such interaction it is required to convert the MS- into the SC-representation and vice versa,
the algorithms that enable such conversions are presented in this section.

‘Movable and Sizable’ to ‘Super Cube’
This conversion can be divided into two stages, at the first stage the super cube is constructed and at the

second stage each space is assigned its cells. The first stage is easily described by the following four steps:

1. Find all start and end points of each space in every direction. For each direction a vector will

be initiated that is then for each space ‘𝑖’ filled with the following:

 in x-direction: 𝑥𝑖 & 𝑥𝑖 +𝑤𝑖

 in y-direction: 𝑦𝑖 & 𝑦𝑖 + 𝑑𝑖

 in z-direction: 𝑧𝑖 & 𝑧𝑖 + ℎ𝑖

2. Find all unique values. All unique values are removed from each of the three vectors obtained

under step 1.

3. Order values. All values in the three vectors resulting from step 2 are ordered in ascending

order.

4. Determine the 𝒘,𝒅, 𝒉 values for the super cube from the ordered unique 𝒙-, 𝒚,- and 𝒛-value

vectors. The increments between values when moving through the ordered unique and

ordered vectors yield each 𝑤, 𝑑 or ℎ value of the super cube, when maintaining the order in

which they are obtained this results in the vectors 𝑤⃗⃗⃗, 𝑑, ℎ⃗⃗.

The vectors containing the super cube’s dimensions are computed in the first stage, in the second stage

only vector 𝑏𝑖,𝑗,𝑘
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ remains to be determined. This vector holds for each space 𝑙 information whether a cell in

the super cube belongs to the space, therefore each cell has to be checked for each space. Checking whether
a cell 𝑖, 𝑗, 𝑘 belongs to space 𝑙 is done as follows:

1. Obtain the cell’s 𝒙-, 𝒚-, and 𝒛-coordinates. These are obtained from the ordered and unique 𝑥-

, 𝑦- and 𝑧-value vectors from stage one. Each cell’s index corresponds with its coordinate in the

corresponding vector i.e. the 𝑛th element of the 𝑥-vector contains the 𝑥-coordinate of all cells

indexed with 𝑖 = 𝑛.

2. Check cell’s coordinates. Check if the cell’s coordinates are within the corresponding MS-

space’s bounds, e.g. for x direction: 𝑥𝑟𝑜𝑜𝑚 ≤ 𝑥𝑐𝑒𝑙𝑙 < 𝑥𝑟𝑜𝑜𝑚 +𝑤𝑟𝑜𝑜𝑚

3. Assign cell to space. Write a ‘1’ for a cell’s index when that cell is within the MS-space’s bounds

in all direction.

Doing the above steps for all cells for each space will transcribe the building from the MS-representation
to the SC-representation, the algorithm has then successfully completed the conversion.

‘Super Cube’ to ‘Movable and Sizable’
The super cube does not have any coordinates, the corner cell with indices 0 could be chosen to hold the

origin however in a case where cells at the cube bottom are not used this can result in an MS-representation
in which the building is floating, see Figure 2-5. Therefore the MS-origin will be initialized to the lowest indices
which still contain a cell that describes a space.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 25

3 0 0 0 0 0 0 0

2 0 0 1 1 1 1 0

1 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0

 𝑘
 𝑖 0 1 2 3 4 5 6

2-5 Origin of the MS-representation here belongs to cell with index (2,1) and not to (0,0)

The algorithm thus starts by finding the cell that contains the origin, it does this by first assuming the cell
with the largest indices contains the origin. Accordingly the indices of each cell that describes a space are
compared to the assumed origin cell’s indices, an assumed origin index is updated to the value of a considered
index if it is smaller. Doing so for every cell describing a space will result in the three lowest indices which are
used for a cell that describes a space, these three indices describe the cell containing the origin of the MS-
representation.

Each vector 𝑏𝑖,𝑗,𝑘
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ can be transcribed to a space in the MS-representation after the origin has been

computed, this is done in the following two steps:

1. Find the smallest (min) and largest (max) of indices 𝒊,𝒋 and 𝒌 of a space. These indices

describe all of the outmost cells in the space, when assuming spaces are cuboid.

2. Compute the space’s coordinates and dimensions in each direction. These are computed as

follows:

 in x-direction: 𝑥 = ∑ 𝑤𝑖
𝑖=𝑚𝑖𝑛−1
𝑖=𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑤 = ∑ 𝑤𝑖

𝑖=𝑚𝑎𝑥
𝑖=𝑚𝑖𝑛

 in y-direction: 𝑦 = ∑ 𝑑𝑗
𝑗=𝑚𝑖𝑛−1
𝑗=𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑑 = ∑ 𝑑𝑗

𝑗=𝑚𝑎𝑥
𝑗=𝑚𝑖𝑛

 in z-direction: 𝑧 = ∑ ℎ𝑘
𝑘=𝑚𝑖𝑛−1
𝑘=𝑜𝑟𝑖𝑔𝑖𝑛 and ℎ = ∑ ℎ𝑘

𝑘=𝑚𝑎𝑥
𝑘=𝑚𝑖𝑛

Doing the above two steps for each vector 𝑏𝑖,𝑗,𝑘
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ will transcribe an SC-representation to an MS-

representation, the algorithm has then successfully completed the conversion.

Implementation of the algorithms into C++
The above two algorithms have been implemented in object oriented C++-code, see Annex 1. The code

uses a class for each of the representations named ‘MovableSizable’ (MS-class) and ‘SuperCube’ (SC-class),
see Figure 2-6.

2. Design spaces Multi-Disciplinary Building Optimisation

26 M.Sc. thesis by: S. (Sjonnie) Boonstra

2-6 UML class diagram of the representation classes, put() and get() functions have been omitted for
clarity

The conversion from an SC- to an MS- representation is conducted by passing an object of the SC-class as
an argument to the constructor of the MS-class. Conversion from the MS- to the SC-representation is done
via overloading of the conversion operator. This makes it possible to execute each conversion in simple syntax
as demonstrated in Figure 2-7 below.

2-7 Example syntax for the use of the representation classes.

This syntax is easy to understand and remember, it provides the opportunity to convert between the two
classes without calling functions that are easy to forget. Use of two representations can thus be easily
incorporated into the toolbox, as switching between either of the representations is provided. Conversion of
representations thus is now possible and gives the ability to switch between optimisation algorithms.

Conversion can also be convenient when a grammar is available for only one representation. For example
the structural grammar can at the time of writing only generate a structural design for an MS-representation,
conversion prevents writing and maintaining two grammars if the structural performance is desired from an
SC-representation.

Performance of implementation
As stated in the previous section it can be convenient to switch between representations, however this

could be costly in terms of computational time. Therefore the process time of each conversion algorithm for
an increasing number of spaces is measured to investigate the costs in terms of computational time, see
figure 2-8 for the results for the MS- to SC-representation algorithm.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 27

2-8 Computational time of the algorithm plotted against the number of spaces to be converted

These results are obtained by only using one cell to represent a space in the SC-representation, multiple
cells representing one space does however not affect the computing speed as all cells are checked for each
space. It would affect the computation time, when it also affects the number of cells to be created e.g. when
100 spaces do not generate 100 cells but 200 cells. This is investigated as well by measuring the time against
the number of cells per space each time converting one hundred spaces, the results are plotted in the graph
in figure 2-9.

2-9 Computational time of the MS to SC-algorithm plotted against the number of cells per space when
one hundred spaces are converted

The results show that the computation time of the MS- to SC-conversion is more than cubically dependant
on the number of spaces. The computation time is almost cubically dependant on the number of cells per
space that are created. It is however not expected that the dependencies enforce each other as during an
optimisation the number of cells per space is expected to be constant and independent of the number of
spaces, and is at worst expected to show a slight increase when the number of spaces increases.

The conversion algorithm to transcribe the SC- to the MS-representation has been measured in a similar
way. The number of spaces is again each time incremented by a hundred spaces, in which each space is
represented by only one cell, see Figure 2-10 for the results.

y = 3E-08x3.3905

R² = 0.9975

0

90

180

270

360

450

0 200 400 600 800 1000

Ti
m

e
[s

]

Number of spaces [-]

Computation time MS to SC

0

90

180

270

360

450

0 10 20 30 40 50 60 70 80

Ti
m

e
[s

]

number of cells per space [-]

Computation time of 100 spaces from MS to SC

y = 3.46E-6x2.6873

R2 = 0.9961

2. Design spaces Multi-Disciplinary Building Optimisation

28 M.Sc. thesis by: S. (Sjonnie) Boonstra

2-10 Computational speed of the algorithm plotted against number of spaces to be converted with
one space represented by one cell.

From the results it can be concluded that the conversion from SC- to MS-representation is significantly
faster, however again it can be questioned what the influence of multiple cells representing one space may
be. Therefore conversions of one thousand cells representing different numbers of spaces are performed,
the results are shown in Figure 2-11.

2-11 Computational speed of the algorithm plotted against the number of spaces to be converted
with number of cells constant at one thousand.

The results show that the computation time is linearly dependant on the number of spaces to be
converted from SC- to MS-representation. This is however under the assumption that the number of cells
remains constant, if the number of cells increases in ratio to the number of spaces then there is a more than
quadratic dependency on the number of spaces.

The SC-to MS-algorithm is faster than the MS- to SC-algorithm which is convenient when this algorithm is
used for grammars that only operate on MS-representations as stated before. It can be concluded that the
total time of the conversions stays within the order of minutes with the MS- to SC-algorithm and in the order
of seconds with the SC- to MS-representation if no more than a thousand spaces are to be converted.

0

5

10

15

20

25

0 200 400 600 800 1000

Ti
m

e
[m

s]

Number of spaces [-]

Computation time SC to MS

y = 0.0173x1.037

R² = 0.9974

0

5

10

15

20

25

0 200 400 600 800 1000

Ti
m

e
[m

s]

Number of spaces [-]

Computation time of 1000 cells in SC to MS

y = 2.01E-6x2.3535

R2 = 0.9945

M.Sc. thesis Eindhoven University of Technology

19-04-2016 29

Visualisation
A visualisation for each representation is desirable during use of the optimisation toolbox e.g. to check

input or to interpret optimisation results. The visualisation makes it possible to assess the values of a
representation in a short amount of time. A C++-code for visualisation is already available from the existing
toolbox, the code is based on OpenGL with GLUT which can be compiled across platforms. The visualisation
code is built up of 3 modules namely the BSP-module, the model module and the utility module. The utility
module contains all GLUT related syntax and holds all classes for vertexes, lines, polygons, labels and colours.
The model module contains all model related objects, most importantly a general model class from which
specialised model classes are inherited. The general model class holds all information about the model’s
spaces and space types, per space a list is created that contains sets of vertexes (eight per space). Each set of
vertexes is then translated into edges that are then translated into polygons, which are the objects that are
eventually rendered. The BSP-module contains classes that incorporate the Binary Space Modelling technique
to determine drawing orders on the basis of the camera position. This way the spaces of a model will be
rendered in the right order i.e. from the back to the front. The BSP-module also contains the classes that
actually draw and render the model in a window, besides another class that determines the camera position
on basis of clicking and dragging of the mouse.

The visualisation code can be used for the representations at hand, as the representations only contain
cuboid spaces (or cells) that need to be labelled with an identification (or not). For each representation class
(MS and SC) this is done by inheriting a new class from the general visualisation model class and adding a
constructor that requires a representation class as an argument. The constructors of the inherited classes
then translate each space of a representation into the corresponding vertexes. The inherited class also holds
information about used colour, transparency or text. The code of the inherited classes can be found in Annex
2 and Annex 3, an example result of the visualisation classes is given in Figure 2-12.

2-12 Left a visualisation of an MS-representation. Right a visualisation of an SC-representation

2. Design spaces Multi-Disciplinary Building Optimisation

30 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Verification of conversion algorithms

The functionality of the conversion algorithms are verified in this section. It is expected that the
conversions are robust, there should not be any considerations in the creation of a representation in relation
with the conversion.

Structures with overhang
As mentioned, there may be a constraint in SC-representation that disallows overhangs because these

complicate the checking of the connectedness of spaces. It is thus of interest to see what happens when an
overhang does appear in the MS-representation, a T-shaped building consisting of four spaces is therefore
subjected to conversion, see Figure 2-13.

2-13 Conversion of a building with overhanging spaces, from left to right the initial MS-representation
is converted to SC-representation which is then converted back again.

It can be concluded that the conversion algorithms are robust in this aspect, as each building model is
exactly identical. This was expected because there are no explicit functions in the algorithms that prevent
spaces from being transcribed to another model. If this were to be implemented for spaces that create an
overhang it would cause deficiencies in the constrained number of spaces and volume in the building,
therefore transcribing an overhang from one representation to another will be allowed. How this problem
will be addressed is not yet determined and will require some experience with the optimisations, but it can
be considered to switch the connectedness constraints off, which might lead to separate building blocks in
the model.

Structures with overlap
As overlaps are prohibited during optimisation it is of interest how the conversion algorithms handle

overlaps. This is investigated by different types of overlap, the results are shown in Figures 2-14 to 2-17.

2-14 Conversion of a building with partly overlapping spaces, from left to right the initial MS-
representation is converted to SC-representation which is then converted back again.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 31

2-15 Conversion of a building with completely overlapping spaces and some coincident surfaces, from
left to right the initial MS-representation is converted to SC-representation which is then converted
back again.

2-16 Conversion of a building with completely overlapping spaces without coincident surfaces, from
left to right the initial MS-representation is converted to SC-representation which is then converted
back again.

2-17 Conversion of a building with completely overlapping spaces without coincident sides, from left
to right the initial MS-representation is converted to SC-representation which is then converted back
again.

The results show that the conversion algorithms do not prevent overlaps, on the contrary the exact input
is transcribed without any changes. It can be questioned whether such conversions should be allowed, since
there is no check for overlaps in the super structure free MS-representation. However an overlap check can
easily be performed in the SC-representation before or after the conversion, which allows to generate a
warning when an overlap exists or existed during a conversion. Solving overlaps during a conversion could be
implemented, but this will make the conversion algorithms overcomplicated as then constraint checking is
required as well. How overlaps are handled, either by user intervention or by the optimisation algorithms, is
not considered yet here. It is concluded that overlaps do not cause erroneous results in the conversion
algorithms and that overlaps stay in existence through the conversion.

2. Design spaces Multi-Disciplinary Building Optimisation

32 M.Sc. thesis by: S. (Sjonnie) Boonstra

Non-connected spaces
Another constraint of interest are non-connected spaces i.e. multiple building blocks in one building

model, an input of two spaces is created for use in both conversion algorithms. The result is shown in Figure
2-18, it shows that non-connected spaces are converted without any changes. This will not be solved during
the conversion as the algorithms would then require design modification and constraint checking, which
would make the algorithms overcomplicated. It is concluded that non-connected spaces are converted
without error and that the spaces stay unconnected.

2-18 Conversion of a building with separated spaces, from left to right the initial MS-representation is
converted to SC-representation which is then converted back again.

Floating structures
As explained in the previous section there are no coordinates in the SC-representation, conversion to the

MS-representation will find a new origin for coordinates to prevent floating structures. This is tested for one
floating space that is entered as an MS-representation, the conversion results are shown in Figure 2-19. The
result shows the desired result, the coordinates of the MS-space are reset after it is converted to and back
from an SC-representation. Therefore any changes made to the design that would result into a floating MS-
representation have no consequences for the MS-representation. It is concluded that buildings without
ground connectedness will be prevented by the conversion algorithms, this does however still require the
first input to be correctly entered by a user.

𝑆1 {
{3000,3000,3000},
{500,1000,500}

} 𝑤⃗⃗⃗{3000}, 𝑑{3000}, ℎ⃗⃗{3000}

𝑏𝑖,𝑗,𝑘
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{𝑏𝑖,𝑗,𝑘

1 }

 𝑏𝑖,𝑗,𝑘
1 {1}

𝑆1 {
{3000,3000,3000},

{0,0,0}
}

2-19 Conversion of a floating space, from left to right the initial MS-representations is converted to
SC-representation which is then converted back again. Each representation with their used values.

Space identification
Spaces are given an identification number in the MS-representation, however in the SC-representation

such identification is not required as spaces are indexed (𝑙). After conversion the identification of an MS-
space will be reset to the index number of an SC-space, this is illustrated in Figure 2-20. The loss of
identification numbers is unfavourable when it is trying to track the changes of a design throughout an
optimisation. It is however easily resolved by storing the space identification in the SC-representation as well,
while it is not used it is saved to pass on to the following MS-representation. This is not yet implemented as
it does not affect the algorithm’s functionality, it is subject for future implementation when the conversions
are implemented in the optimisation techniques.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 33

2-20 Conversion of an MS-representation with arbitrary space-ID’s, from left to right the initial MS-
representations is converted to SC-representation which is then converted back again.

Truncation in dimension values
Dimension values may vary over a continuous domain, this means that a space may not align perfectly to

another space. It is thus possible that a small offset exists in a wall that runs through multiple spaces, this is
illustrated with Figure 2-21.

2-21 An offset in a wall that runs through multiple spaces

Such an offset may have a very small value, depending on the size of which the dimension values are
truncated in the program. Dimension values are in the program stored by variable of type double, which can
store numbers in exponential with a precision of up to 16 decimals. This is illustrated with the example in
Figure 2-22, in which two spaces with a small gap in between them are converted.

𝑆1 {
{3000,3000,3000},

{0,0,0}
}

𝑆2 {
{3000,3000,3000},

{
3000.000000000002

, 0,0
}
}

𝑤⃗⃗⃗{3000, 1.819𝐸-12, 3000},

𝑑{3000}, ℎ⃗⃗{3000}

𝑏𝑖,𝑗,𝑘
𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{𝑏𝑖,𝑗,𝑘

1 , 𝑏𝑖,𝑗,𝑘
2 }

 𝑏𝑖,𝑗,𝑘
1 {1,0,0}

 𝑏𝑖,𝑗,𝑘
2 {0,0,1}

𝑆1 {
{3000,3000,3000},

{0,0,0}
}

𝑆2 {
{3000,3000,3000},

{0,0,0}
}

2-22 Example conversion of two spaces with a very small gap in between

The example shows how the minimal gap size that can be stored in the program is handled, the gap value
is not stored as 2𝐸-12 but with a double created by arbitrary memory values during subtraction of two
doubles. Besides the strange value for the gap size also the gap does not seem to exist in the MS-
representation anymore after it is converted back, however this is only due to the fact that the program
streams the values of doubles to file with a maximum of 2 decimals.

From the example it also becomes clear that small differences in dimension values may lead to additional
cells in the SC-representation, on a larger scale this may lead to an increase of memory usage and
computation time for both conversion and optimisation. It is clear that high decimal doubles can lead to
strange results that may not be seen in both the visualisation and text based representation. This should be
considered when using the conversions for automatic design, in which dimensions can be assigned values
with any amount of decimals. A possible solution for this problem could be to disregard small values in the
dimension vectors of the SC-representation (𝑤𝑖 , 𝑑𝑗 & ℎ𝑘). For now the problem will only be addressed, a

solution will follow during implementation and validation of the conversions into the optimisation process.

2. Design spaces Multi-Disciplinary Building Optimisation

34 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Discussion

The topics presented in this chapter are selected for multi-disciplinary building optimisation, however
argumentation for the selection of some topics have not been given. This paragraph will discuss the reasoning
behind some of the selected topics. Starting with a comparison between super structure and super structure
free design space representations, they both have been defined but comparisons on different levels may give
a better understanding. Following, the reasons for spatial building optimisation are discussed, there are many
possibilities when considering multi-disciplinary optimisation in building design. Finally the choice for the
presented design space representations is discussed, which are mere suggestions for the intended research
of super structured and super structure free building optimisation.

Super structured versus Super structure free design space representations
From the introduction it is clear that the difference between both representations is defined by whether

the design space’s size can vary or not. The varying size of a super structure free representation can be
advantageous when the required number of design variables is not known a priori or when replacement of
design variables should be possible. These requirements may arise from a desire to generate new and
surprising designs, which is not possible when all solutions are prescribed by a super structure because all
solutions would then be known beforehand. A good reason to use a super structure free design space
representation is that it may lead to optima which are not devised in advance, the biggest disadvantage is
though that searching the design space becomes a difficult task which cannot be handled by existing
optimisation algorithms. The advantage of a super structure is that such algorithms can be used, which means
that the design space can be searched effectively giving a high chance of finding the design space’s optimum.

It can be concluded that in general a super structure free design space is chosen when trying to obtain
new solutions that would otherwise be excluded from consideration. This in the hope that optimisation leads
to new and surprising optima for the design problem. A consequence of choosing a super structure free
approach instead of a super structured approach is that it requires another way of thinking about the
optimisation strategies. A few aspects that are to be considered in the use of super structured and super
structure free design space representations are listed below.

Implementation
Super structures are static, a programmer can use a static data structure for example matrices or arrays

to describe the design space. A super structure free design space representation is dynamic, a programmer
can use a dynamic data structure like a tree model with expanding branches to represent the design space.

Suitable optimisation methods
A super structured approach allows use of general methods like genetic algorithms or gradient based

algorithms. A super structure free approach forces to use a few existing paradigms that are mainly used in
rule based searches i.e. a heuristic search.

Memory
A super structured design space stores many or all possible solutions in memory, while many of these may

not be used and thus do not contribute. In the super structure free design space it is not possible to store all
possible solutions because they are not pre-described, depending on the search technique this means that
only one or a few solutions are stored in memory.

Knowledge integration
The user of a super structured design approach has to prescribe al possible alternatives, which requires a

considerable amount of thought. Only a set of meaningful operators needs to be define in a super structure
free approach. The free approach may lead to unexpected solutions, but this also means that infeasible
solutions might arise. Typically in the structured approach all solutions are prescribed as such that they are
feasible.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 35

Why spatial optimisation?
Multi-disciplinary building optimisation can be performed on many levels of design detail, some examples

on an increasingly detailed level are: a spatial design for structural and building physics performance, a
building frame for structural and daylighting performance, a façade for daylighting and building physics, a
floor for structural and acoustics performance, a connection for structural performance and fire protection.
All of the preceding examples can lead to meaningful results, however the more detailed a design
optimisation becomes the less impact it has on the total building performance. This is generally recognised
in the built environment, for example Hensen (2004) urges that building physics simulation software should
offer users better tools for early design optimisation because even trial and error approaches are too difficult.
Besides the impact of early design there is also the fact that different disciplines become less influent on each
other the more the design progresses.

Multi-disciplinary optimisation for early design is however problematic as large design spaces are
encountered and many disciplines influence each other. Until recently this problem has not been yet
addressed because large design spaces and simulations in different disciplines quickly become expensive in
terms of computer resources. Techniques and technology are however rapidly improving and the need for
better building performances is increasing, therefore it is important to start research that investigates the
problem. This project certainly is an endeavour to develop methods for early design optimisation, as spatial
design is the earliest design decision made in a building design process and it possesses most challenges in
optimisation.

Selected representations
Only two representations have been presented in this report, surely more representations could be

considered. However this is not the case, the presented representations are suggestions each
selected/developed for intended use of a super structure free or super structured optimisation approach.
Therefore it may be possible that better design representations could be found for either the super structure
free or super structured design space. For this project it is however believed that the selected representations
are sufficiently adequate for their intended use, also because they can successfully be mapped to each other.
Other representations may be suggested by the critical reader, it is important for future research that other
representations are considered as well. Here the presented representations are used to investigate multi-
disciplinary spatial building optimisation and design space, they are not particularly subject to research
themselves.

Application
At the time of writing, the conversion algorithm has already been applied in the automated evaluation of

building designs. Blom et al (2016) use it in the optimisation of a building layout that is represented by a super
cube.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 37

3. Building physics analysis

Extending building optimisation with building physics (BP) optimisation requires a program that can
handle the BP-analysis of the building model at hand. Therefore a consideration is made in this chapter for
the simulation method that is to be implemented in the optimisation toolbox. From this consideration it is
concluded that a simple method is the best choice for the toolbox.

A state space representation for the thermal network of a building is selected and implemented in a C++-
program that is developed for the optimisation toolbox. The working of the program is also discussed in this
chapter and accordingly it is verified by means of an existing building physics simulation program.

3. Building physics analysis Multi-Disciplinary Building Optimisation

38 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Building physics simulation

In this section it is tried to gain an understanding of building physics simulations, e.g. what are they used
for and how do they simulate different aspects of a building. Accordingly it is discussed which scope of these
simulations should apply to the optimisation toolbox. Finally some findings of a preliminary study on different
building physics tool are presented.

Envelope of building physics simulations
Building physics (BP) is a wide field of research that, in a nut shell, covers heat, air and moisture in a

building, a BP-simulation computes aspects of one or more of those subjects. Calculations may vary from
simple heat resistance calculations of a wall to complete heating, ventilation and air-conditioning (HVAC)
simulations of a building, including the smallest of details. Typical calculations in a BP-analysis are listed
below, in these calculations a distinction could be made between static and dynamic analysis.

Calculation Static Dynamic

Heat transfer Temperature curve in a construction at
specific ambient temperatures

Temperature development in a
construction over time with varying
ambient temperatures

Mass transfer
(Ventilation)

Summation of all gains and losses of air
content over a normalized time step

Gains and losses of air temperature and
contents are simulated over time

Moisture Condensation in or on a construction at
specific ambient temperatures

Condensation in or on a construction
over time with varying ambient
temperatures and air properties

Solar heating/
irradiation

- Temperature gain by solar radiation on
a construction over time

Daylight Sufficiency of daylight or exceedance of
glare at specific times or with
normalized values

Sufficiency of daylight or exceedance of
glare simulated over time

These calculations may be performed independent from each other, although moisture calculations are
strongly dependant of heating and ventilation analysis. BP-analysis becomes stronger when calculations are
combined, as each calculation has some influence on the other. For example when a heating, ventilation and
moisture analysis are combined it can be determined how much ventilation is needed in a space with cold
walls to prevent condensation problems in the space.

Linking the analyses of spaces or zones makes it possible to analyse an entire building, therewith a large
linked analysis is created that performs all sub analyses over small time steps. The environment of zones and
constructions are then either linked to the analyses of a foregoing time step or to a predefined profile of e.g.
temperature. Normally a resistor and capacitor network (RC-network), see figure 3-1, is used to map relations
between different environments. An RC-network is a web of capacitors - in the case of a building: zones, walls,
floors etc. – and resistors – all what separates capacitors e.g. air and constructions –.

3-1 Example of an RC-network, known from representations of electric circuits

Another approach could be the use of machine learning techniques like neural networks. This approach
lets an algorithm determine a system that can simulate the thermal behaviour of a building. However,
machine learning requires (real world) data, which serves as learning material for the algorithm.

BP-simulations create a time profile of specific properties of a building with which predictions about the
performance of building energy usage, comfort and safety can be determined. These predictions are made
by an abstraction of the real building, e.g. an RC-network. The accuracy of a prediction is determined by the
refinement and detail of the abstraction, for example in how many layers should a wall be divided or how
many layers in the case of neural networks. A detailed model or input of a building is required when accuracy

M.Sc. thesis Eindhoven University of Technology

19-04-2016 39

is desired, vice versa, when accuracy is less important then a more superficial building model can be used. It
generally applies that undetailed building models do not benefit from extensive simulation.

Scope
As stated, the scope of a BP-analysis strongly depends on the level of detail in the building model. In this

research a building is represented only by spaces that are assigned simple properties like a wall, floor or
ceilings by a rule based design. Therefore the model cannot be considered detailed and an extensive analysis
would be superfluous, but now the question remains: to what extent should the analysis be performed?

The data required from the building model should first be considered for each type of analysis in an RC-
network analysis. Table 1 lists the considerations made in the choice of what type of simulation method
should be used in the project.

Table 1 Considerations in the choice of a simulation method

Type of analysis Required data Considerations

Heat transfer Construction details Construction details like material and dimensions
are, up to some extent, already in the model.

 Outside temperature Meteorological data is available, a location has to
be added to the model, which is plausible as a
location is a mandatory choice in the design
process, if not a boundary condition.

 Inside temperature There are 2 options:
- Use a heating plan, coupled to a user profile
- Use a temperature profile
A heating plan based on a user profile, requires
space functions and user data. A temperature
profile as function of time may already give a
good estimate

 Heating/cooling plant A system that controls heating and cooling of the
building should be in place, this can be as easy as
a virtual power source at a capacitance to more
complex heating systems like a central unit
providing the demand throughout the building

 Solar irradiation Meteorological data is available, also see outside
temperature

Ventilation Zone/space details Zone details like dimensions are already in the
model

 Inside/outside temperature See heat transfer above

 Ventilation demand There are two options:
- Use a ventilation plan, coupled to a user profile
- Use a constant ventilation profile
A heating plan based on a user profile, requires
space functions and user data.

 Ventilation installation A system providing the ventilation demand
should be in place, this can be as easy as a mass
flow in air changes per hour to the simulation of a
ventilation unit with heat recovery and
moisturiser

Moisture Construction and zone
details

Details like dimensions or materials are, up to
some extent, already in the model

 Moisture content of air This depends on occupancy, furniture, air
temperature and more. All together this depends
on heating and ventilation of a building and
requires accurate calculations of heating and
ventilation

Daylight Solar irradiation Meteorological data is available, also see outside
temperature

3. Building physics analysis Multi-Disciplinary Building Optimisation

40 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Construction topology The topology of the construction, e.g. layout of
the façade and location of windows may be too
specific, as relationships between different
building elements should be made. However the
information is present, it must be interpreted
first.

 Shading information Parts of the building that create shadows on
other parts require some sort of ray tracing,
which is a relatively extensive computational
process.

General User profile A user profile requires information about the
function of a building, e.g. it an office or a
residential building. This information is
considered too specific for the building model at
hand

From the preceding table it can be concluded that a simulation of heat transfer and ventilation are
possible with the building model at hand. A simulation of moisture requires high accuracy in the heat and
ventilation simulations, thus a moisture simulation will not be included. A daylight calculation is possible,
however it is complicated by shadow effects induced by the building and thus is less suitable. A user profile
could be added to the building model, however the level of detail required for such a profile is not
proportional to the level of detail in the building model at hand. It is decided that a simulation will only include
heat transfer and ventilation, data that needs to be added to the building model are:

 Meteorological data: Data regarding date, time, outside temperature and solar radiation are stored in
files. This file also indirectly determines a location, namely the location at which the measurements
were made.

 Heating and cooling plant: Least detailed method is an idealised source in each space, data like
temperature set points and heating/cooling power are required.

 Ventilation: Least detailed is an infiltration rate in air changes per hour, only data required per space
is the number of air changes per hour.

 Material and construction properties: Although construction types are already in the building model,
these types do not yet hold properties related to the building physics analysis.

 Simulation period: A start and finish date for the simulation period of which meteorological data is
used.

The type of simulation has now been determined, only a selection of a program remains. In a preliminary
study several programs have been tested for their compatibility with the optimisation toolbox. This
preliminary study and its conclusion are shortly discussed hereafter.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 41

Program selection, preliminary study
In the preliminary study, three programs were tested: ESP-r, Energy Plus and HAMBASE. A few simulations

were carried out to test whether programs are suitable for a building model in the “Movable Sizable”
representation. Subsequently, the programs were reviewed on the following topics:

 Platform compatibility, what OS is required, e.g. Windows or a UNIX platform? Preferably the program
works cross platform.

 Program licensing, can the program be used freely for scientific research?

 Program integration, can the program be integrated in the toolbox?

 Required data, what is the minimal required amount of data to carry out a simulation? The more data
is needed, the mode data needs to be added to the building model

All programs considered it was concluded that a fourth option would suit the toolbox best, namely a self-
written simulation program. The considerations per program that led to this conclusion are discussed below,
i.e. the reasons why a program was not suitable or a self-written program would be better suited.

ESP-r
This program is UNIX based, it can be run on Windows by either a native windows installation or by

running a UNIX simulator like Cygwin on Windows. A cross platform integration into the optimisation toolbox
is with two differently compiled programs quite cumbersome. From the test simulations it was also concluded
that creating input for a simple model is elaborate, there are many input parameters of which it is not always
clear whether they should be used or not. In addition, it should be noted that it was not succeeded to match
the ESP-r results with those of the other two programs, which themselves did show similar results. Integration
into the toolbox would take the form of the creation of an input file for the ESP-r program that is then fed to
the program, accordingly an output file must then be read by the toolbox. A free licence for scientific use is
available, however this may have consequences for the use and disclosure of the toolbox. Finally, ESP-r may
be subject to updates, this could have consequences for the continuity of the version used in the toolbox.

It is concluded that ESP-r can be incorporated in the toolbox, however developing a cross platform
incorporation is expected to be too elaborate. Subsequently, ESP-r input has shown to be complicated and
incomprehensive. It is unclear of what data is needed for the input of a simple model and it seems that, in
comparison, too much data must be added to the building model of the toolbox. Integration by means of
input and output files is also not optimal when regarding the fact that optimisation may require many
separate simulations.

Energy Plus
This program is developed for Windows, but a version for Linux is also available. Again two different

compilations of a program may cause problems when integrated in a cross platform toolbox. The input of the
program is clear, however there are still a lot of parameters to be accounted for in the input. The simulation
results showed good comparison with those of HAMBASE in the case of a simple building model. Integration
into the toolbox is possible by generation of an input file, that then must be fed to the simulation program,
subsequently and output file must be read by the toolbox. Energy plus has a free licence for scientific use,
however this may have consequences for the use and disclosure of the toolbox. Finally, Energy Plus may be
subject to updates, which could have consequences for the continuity of the version used in the toolbox.

It is concluded that Energy Plus may very well become a part of the toolbox, although the development
of a cross platform integration can prove troublesome. The input of Energy Plus is comprehensive, however
there are many parameters to account for in the input, which could mean a lot of additional data is needed
in the building model. Integration by means of input and output files is also not optimal when regarding the
fact that optimisation may require many separate simulations.

3. Building physics analysis Multi-Disciplinary Building Optimisation

42 M.Sc. thesis by: S. (Sjonnie) Boonstra

HAMBASE
This program is based on MATLAB code, MATLAB has versions for both windows and UNIX. Integration

via MATLAB could be done by passing arguments to the OS to run a MATLAB code. This would mean that an
input file in the form of a script and an output file in text are required. Another option is to translate the
MATLAB code into the code in which the toolbox has been written, namely C++. Translation into
comprehensible code is however a laborious process, even though an automated C++-code generator is
available in MATLAB. HAMBASE does not need an elaborate input some excessive functions and parameters
for the purpose at hand exist, but these do not complicate the generation of input. HAMBASE is a scientific
work, and thus consequences for use and disclosure of the toolbox may be less than ESP-r and Energy Plus.
However HAMBASE has a dependency on MATLAB, which has a commercial license, this will lead to an
impairment on the use of the toolbox. Although updates may be applied to the code, this does not have
consequences for the toolbox. Since the code itself will become part of the toolbox, there is no dependency
on the availability of older versions of the code when installing the toolbox.

It is concluded that HAMBASE is best suited for the building model at hand, a simple and comprehensive
input is asked. However the program is not suitable for an integration into the toolbox, since either a license
for MATLAB or a laborious translation of the code are required.

A self-written code comes into consideration when regarding the fact that integration of any of the

considered programs into the toolbox is elaborate. The main advantage of a self-written code is that it is
designed solely for its task within the toolbox, it is much more compatible with the model as it is and output
can be extracted as desired. Other advantages are: not sensitive to updates, can be platform independent,
no licences, full control over simulation algorithm and complete insight in the program’s functions and
parameters.

Simulation method
With the choice of writing a simulation program comes the choice in simulation methods. A focus has

been placed on simplified simulation methods. Kramer et al. (2012) present a literature review on simplified
thermal and hygric building modelling. They make a distinction between three types of simulation models:
Neural networks, linear parametric and a resistor capacitor (RC) network models. The first two require real
world data in order to define the simulation model, the model in turn does not have any physical meaning.
An RC-network is built by elements of physical meaning and thus does not need real world data, this makes
an RC-network simulation model suitable for the toolbox. How such a network is used to simulate a building
is elaborated in the next section.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 43

 State space approach on a thermal RC-network of a

building

System of ordinary differential equations
As stated, most building physics simulations use an RC-network to represent the thermal properties of a

building. The state of each element in an RC-network can be expressed by an ordinary differential equation,
the network together thus forms a system of ordinary differential equations.

State space representation of a dynamic problem
A state space representation is a model of a time dependant system that can be described by differential

equations e.g. electrical circuits, physical problems, mechanical problems or heat flow problems. The state
space method discretises time, which is done in the solver, the time variable can therefore often be omitted
in the representation itself. Equations (13) and (14) below are the set of equations that is characteristic for
the state space representation.

𝒙̇(𝑡) = 𝑨 ∙ 𝒙(𝑡) + 𝑩 ∙ 𝒖(𝑡)

𝒚̇(𝑡) = 𝑪 ∙ 𝒙(𝑡) + 𝑫 ∙ 𝒖(𝑡)
𝑂𝑅 𝒙̇ = 𝑨 ∙ 𝒙 + 𝑩 ∙ 𝒖

𝒚̇ = 𝑪 ∙ 𝒙 + 𝑫 ∙ 𝒖

(13)

(14)

The first equation describes the states of a system e.g. voltage, velocity, acceleration or temperature. In
higher order differential equations states can depend on each other, for example velocity and acceleration
can both be a state where the velocity is dependant of the acceleration. The second equation describes the
output of the system i.e. each state that is of interest for the user, this way the represented system is
completely independent from the requested output.

Using the state space method comes down to determining the 𝐀, 𝐁, 𝐂 and 𝐃 matrices, this is done by first
determining all states (𝑥̇1 to 𝑥̇𝑛) in the system including the input (𝑢1 to 𝑢𝑚), followed by the output (𝑦̇1 to
𝑦̇𝑝). 𝐀 is then an 𝑛 by 𝑛 matrix that describes the system dependency on the states, 𝐁 is then an 𝑚 by 𝑛

matrix that describes the system dependency on the input. 𝐂 is a 𝑝 by 𝑛 matrix describing what states are
requested as output and 𝐃 is a 𝑝 by 𝑚 matrix describing which input values are requested as output.

Worked example of a single wall
A small example is solved in this section, the state space method is used to simulate warming up of a

construction (5℃) after it is suddenly exposed to a constant internal temperature (20℃) and a constant
external temperature (-10℃). The construction along with its properties are shown in Figure 3-2 below, the
thicknesses shown are in millimetres, the calculations will be done per square meter of wall surface.

Mineral wool Concrete

Thermal conductivity
λ - [W/(K m)]

0.04 1.8

Specific weight
ρ - [kg/m³]

20 2400

Specific heat
C - [J/(K kg)]

2000 850

3-2 Arbitrary construction of an exterior wall with its thermal properties

The temperatures at the construction during the warm up period are of interest for this problem, i.e. 𝑇1,
 𝑇2 and 𝑇3. The construction is discretised into layers to be able to compute the temperature over the
construction thickness, the construction layers can conveniently be used for this discretisation. The

3. Building physics analysis Multi-Disciplinary Building Optimisation

44 M.Sc. thesis by: S. (Sjonnie) Boonstra

discretised model of the example can be represented by a network of resistors and capacitors, as is done with
electrical circuits in the field of electrical engineering, see Figure 3-3.This problem is not represented by a
closed circuit, however the temperature difference over time between outside and inside is known a priori.
An expression for the heat flux 𝛷𝑞 can thus be composed using the resistances and temperature differences.

3-3 RC-network of the construction

The values of the resistances can be calculated per discrete layer, the capacitance at each point of interest
is a lumped capacitance of the surrounding construction. The lumped capacitance in this example will be
computed proportional to the distances between the measurement points, i.e. from midpoint to midpoint of
each adjacent layer.

𝐶1 = (
1

2
∙ 0.120) ∙ 2000 ∙ 20

= 2400 𝐽/𝐾

𝐶2 = (
1

2
∙ 0.120) ∙ 2000 ∙ 20 + (

1

2
∙ 0.100) ∙ 850 ∙ 2400 = 162.5

= 104400 𝐽/𝐾

𝐶3 = (
1

2
∙ 0.100) ∙ 850 ∙ 2400 = 42.5

= 102000 𝐽/𝐾

𝑅𝑖 = 0.13
= 0.13 𝐾/𝑊

𝑅12 = 0.120/0.04
= 3.00 𝐾/𝑊

𝑅23 = 0.100/1.8
= 0.056 𝐾/𝑊

𝑅𝑖 = 0.04
= 0.04 𝐾/𝑊

Only the state space system remains to be put together, starting with the states at the capacitors.
Equating the flux difference at each capacitor to the difference in flux between the two adjacent resistances
at each measurement point results in Equations (15) to (17).

𝐶1 ∙
𝑑𝑇1
𝑑𝑡

=
𝑇𝑖 − 𝑇1
𝑅𝑖

−
𝑇1 − 𝑇2
𝑅12

(15)

𝐶2 ∙
𝑑𝑇2
𝑑𝑡

=
𝑇1 − 𝑇2
𝑅12

−
𝑇2 − 𝑇3
𝑅23

(16)

𝐶3 ∙
𝑑𝑇3
𝑑𝑡

=
𝑇2 − 𝑇3
𝑅23

−
𝑇3 − 𝑇𝑒
𝑅𝑒

(17)

These equations hold all 3 states in the state space representation, namely the temperatures at each
capacitor. Thus the above equations can be rewritten to the desired representation of the state space
method, resulting in equations (18) to (20).

M.Sc. thesis Eindhoven University of Technology

19-04-2016 45

𝑥̇1 =
𝑑𝑇1
𝑑𝑡

=
𝑇𝑖

𝐶1 ∙ 𝑅𝑖
−

𝑇1
𝐶1 ∙ 𝑅𝑖

−
𝑇1

𝐶1 ∙ 𝑅12
+

𝑇2
𝐶1 ∙ 𝑅12

 (18)

𝑥̇2 =
𝑑𝑇2
𝑑𝑡

=
𝑇1

𝐶2 ∙ 𝑅12
−

𝑇2
𝐶2 ∙ 𝑅12

−
𝑇2

𝐶2 ∙ 𝑅23
+

𝑇3
𝐶2 ∙ 𝑅23

 (19)

𝑥̇3 =
𝑑𝑇3
𝑑𝑡

=
𝑇2

𝐶3 ∙ 𝑅23
−

𝑇3
𝐶3 ∙ 𝑅23

−
𝑇3

𝐶3 ∙ 𝑅𝑒
+

𝑇𝑒
𝐶3 ∙ 𝑅𝑒

 (20)

In these equations 𝑇𝑖 and 𝑇𝑒 do not belong to a state and as mentioned early are known a priori, thus they
belong to the input vector 𝐮. Writing the state equations above into matrix format results in Equations (21)
and (22), which yields the 𝐀 and 𝐁 matrices that are required as input for the state space solver.

1 12 1 12 1

1

2

12 2 12 2 23 2 23 2

3

23 3 23 3 3

1 1 1
0

1 1 1 1

1 1 1

 
 

     
   

              
 

   

i

e

R C R C R C
T

T
R C R C R C R C

T

R C R C R C

A x (21)

1

3

1

0
20

0 0
10

0 1

 
 
   

     
   

 
  

i

e

R C

R C

B u (22)

The dynamic system has successfully been described by the equations above, any desired output
regarding the states or input can now be defined. In the problem statement at the beginning of this section
it is declared that 𝑇1, 𝑇2 and 𝑇3 are of interest, resulting in equations (23) to (25).

𝑦̇1 = 𝑇1 (23)

𝑦̇2 = 𝑇2 (24)

𝑦̇3 = 𝑇3 (25)

Writing the above in matrix format results in Equations (26) and (27), these yield the 𝐂 and 𝐃 matrices
that are required as input for the state space solver

3. Building physics analysis Multi-Disciplinary Building Optimisation

46 M.Sc. thesis by: S. (Sjonnie) Boonstra

1

2

3

1 0 0

0 1 0

0 0 1

   
   

  
   
      

T

T

T

C x (26)

0 0
20

0 0
10

0 0

 
  

         

D u (27)

All ingredients to simulate the system are now available, the derived equations and properties are used
in a MATLAB script that calls a state space solver in Simulink accordingly, see Annex 5. For each measurement
point a graph is plotted over time, see Figure 3-4. The graphs show a quick warm up time for the inside surface
temperature, which is due to the low capacitance of the insulation material. The concrete layers take much
longer to cool down despite the low heat resistance, which is due to the high capacitance.

3-4 Simulation results from MATLAB, simulated warming up of the construction

The above simulation can be checked by calculating each temperature after the warm up time, this can
be done manually since at that time there is no heat flux remaining in the construction. The temperature
increment in each layer is calculated proportional to the resistance of that layer, thus the temperature
increment at layer 𝑗 can be calculated with expression (28).

∆𝑇𝑗 =
𝑅𝑗

∑ 𝑅𝑛
𝑛
𝑗=𝑖

∗ (𝑇𝑒 − 𝑇𝑖) 𝑤𝑖𝑡ℎ 𝑛 ∈ {𝑖, 1, 2, 3, 𝑒}
(28)

Doing so for each layer results in the values given in Table 2, which tabulates per layer the temperature
at the start of that layer - moving from inside to outside - next to temperatures simulated with the state space
approach.

-10

-5

0

5

10

15

20

0 2 4 6 8 10Te
m

p
er

at
u

re
 [

°C
]

Time [h]

Temperatures of construction

T1

T2

T3

M.Sc. thesis Eindhoven University of Technology

19-04-2016 47

Table 2 Temperatures at each measurement point after the construction is fully warmed up

Layer

[-]

Resistance

[𝐾/𝑊]

Temperature

increment

[℃]

Temperature

(t = ∞)

[℃]

Simulated

(t = 24 h)

[℃]

Ri 0.13 -1.21 20 -

Mineral wool 3.00 -27.90 18.79 18.79

Concrete 0.056 -0.52 -9.11 -9.10

Re 0.04 -0.37 -9.63 -9.62

total: 3.226

The results obtained from the hand calculation correspond with the simulated temperatures, this does
however not validate the simulation model. As the capacitances of each layer are discretised there may be a
delay or increase in warm up time, it is not checked here but the effects may be reduced by mesh refinement.

RC-network of a building
The preceding example clarifies how an RC-network can be used to simulate the temperature state of a

wall. A wall is a link of different layers of that wall, connecting an outside temperature states with an inside
temperature state. A building is in the same way a system of links between different temperature states. As
such all the different components that create a temperature state should be identified. A distinction between
two types of states can be made i.e. space/air temperature and construction temperature. A general RC-
building block can be made with this distinction, in which two air or space state are separated by one
construction state, see figure 3-5.

3-5 RC-building blocks, source: Kramer et al. (2013)

3. Building physics analysis Multi-Disciplinary Building Optimisation

48 M.Sc. thesis by: S. (Sjonnie) Boonstra

A complete RC-network is then built by a concatenation of such building blocks, as an example the first
building block from the preceding figure is used to compose an RC-network of a simple floorplan, figure 3-6.
No solar irradiation or heating/cooling irradiation is depicted in the example, however a distinction between
walls with different orientation is made for purposes of solar irradiation.

3-6 RC-network of an arbitrary building layout

From the example it becomes clear that each space has a capacitance, i.e. the air and furniture inside the
space. Each wall has only one capacitance, i.e. all material layers of that wall. The resistances between the
states consist of the resistance by a construction plus an air (transition) resistance. The resistance between a
wall and another state depends on where the temperature of the wall is simulated, usually this point is
midway the thickness of a wall.

Now a general idea of a building physics simulation method has been outlined. The next section discusses
the developed BP-simulation program that composes and simulates an RC-network by means of a state space
approach.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 49

 State space representation of an RC-network in C++

C++ is a programming language for which open source libraries exist. Solutions to programming problems
are often realised by such libraries. ODE solvers are no exception to open source libraries, here the odeint
solver - part of the Boost libraries - is selected for the problem at hand. Boost is a collection of peer reviewed
libraries that are intended for a wide variety of uses in many types of applications. The Odeint solver is
developed to be generic by template metaprogramming, which makes it applicable to nonstandard problems
and by which integration with other data structures and libraries are allowed. Odeint is a numerical solver in
which multiple solver algorithms can be selected for example the Runge Kutta, Rosenbrock or Adams
algorithms are incorporated for solving explicit, implicit or symplectic problems.

The building physics analysis program is written by use of object oriented programming. As such
temperature states are treated as objects, the ODE-system is therefore composed of multiple states/objects.
The ODE-solver is called to solve the composed system. This section treats the features that are currently
supported by the program, and what features are expected to be implemented in the future. Accordingly the
structure of the program is discussed, first the main structure of the program is clarified and then the
composition and solving of the system are clarified.

Features
The developed program’s features are a thermal simulation, a weather profile, constant ventilation and

an idealised heating/cooling system. The RC-network is constructed by the second building block in figure 3-
5, with absence of solar irradiation and addition of heating or cooling radiation at each 𝑇𝑖 .

Input for the program is adduced by an input file, figure 3-7, in which information about the simulation
period, exterior temperatures, materials, constructions and the states are stored. Some of this information,
e.g. simulation period, materials or construction must be defined by a user. However the information about
the states can be obtained from the building model at hand. How this information is obtained will not be
discussed until chapter 4.

3-7 Example of the input file of the simulation program

Features that are not included but are considered for implementation are: solar irradiation and a date/
time tracker to enable possible profiles for heating, cooling or ventilation. These are not yet implemented
because they are not mandatory for optimisation purposes and an implementation of the program into the
toolbox is prioritised.

Main structure of the program
The main structure of the program is depicted in figure 3-8. The figure shows how different temperature

states are inherited from their base classes, and how they eventually compose the system (BP_Simulation).
Inheritance here allows the use of polymorphism, which means that an inherited class can be called upon by
its base class. This is exploited during the composition of the state space matrices and additionally it allows

3. Building physics analysis Multi-Disciplinary Building Optimisation

50 M.Sc. thesis by: S. (Sjonnie) Boonstra

the system to be extended with new types of temperature states. The structure in the figure above also shows
that a thermal RC-system here is an aggregation of multiple dependant states, e.g. walls and spaces, and a
composition of a specific number of independent states, e.g. outside temperature and the ground
temperature. The simulation is eventually carried out by functions of the class that contains the state classes,
which consists of updating the state matrices with state independent data and solving the system
subsequently. The following headings will discuss each class in a more detailed manner, which will clarify the
workings of the program. The actual code of the program has been added to Annex 4

3-8 Main layout of the heat building physics analysis program

BP_State
The first base class is a pure virtual class, meaning its only function is to be a base class to other (derived)

classes. The purpose of this class is therefore to give the derived classes the desired polymorphism properties.
The figure below, figure 3-9, shows the class diagram of the BP_state class.

3-9 Class diagram of the BP_State class

From the diagram it becomes clear that the main function of the BP_State class is the identification of an
object with base class BP_state. Besides identification this class is also used to make the function which maps
relationships with other states virtual. This class does not own any member variables, the only variable they
have in common is temperature. The temperature variable is however held in a matrix in the BP_simulation
class, because the ODE-solver cannot handle dynamically allocated variables in the ODE-function.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 51

BP_Indep_State
The independent state class is a pure virtual class as well, the class’s purpose is to represent states that

belong to the input vector 𝐮 of the state space representation.

3-10 Class diagram of the BP_Indep_State class

Figure 3-10 shows the introduction of member variables, which are intended to index instances of the
class. This index then corresponds to a temperature value in the input vector 𝐮. Some functions from the
base class are overloaded, however a new function is declared as well. The update_sys() function updates
values in the state matrices and vectors where appropriate.

BP_Dep_State
The dependant state class is also a pure virtual class, its purpose is to hold states that belong to the state

vector 𝐱 of the state space representation.

3-11 Class diagram of the BP_Dep_state class

Figure 3-11 again shows member variables that provide the indexing of class instances, now representing
state vector 𝐱. However, variables concerning resistances and capacitances are introduced, which compose
the basis of the state matrices 𝐀 and 𝐁. In the class diagram the capacitance of a state is given by a single
variable, but a vector stores information about adjacent states with the appropriate resistance between
states (also see figure 3-9).

Again, some functions from the base class are overloaded, and here also the update_sys() function is
declared. Another function is declared here as well, init_sys(), this initialises the A and B matrices with the
values of the resistances and capacitance that are assigned to an object of the class at the appropriate indices.

3. Building physics analysis Multi-Disciplinary Building Optimisation

52 M.Sc. thesis by: S. (Sjonnie) Boonstra

BP_Wall
The wall class is inherited from BP_Dep, the class is not virtual, it represents a wall with all the properties

required for a thermal simulation. The defining property of a wall is its construction, for this a special system
of structures is declared.

3-12 Class diagram of the BP_Construction structure and its associated structures

A construction is defined by layers of materials, as such a construction is composition of multiple layer
structures that each are an aggregation of a thickness and the BP_Material structure. The material structure
holds all properties of influence to the thermal simulation. On initialisation of an object of the construction
structure, layers are assigned, accordingly variables like thickness, capacity and resistances can be
determined.

3-13 Class diagram of the BP_wall class

The member variables of the wall class are what is needed to identify the specific wall and to determine
the values for the base class: BP_Dep_State. As such, the heat capacity of a wall is easily calculated, equation
(29), by multiplying the capacitance per area from the BP_Construction structure with the wall’s area.

𝐶 = 𝐶𝑝𝑒𝑟 𝑎𝑟𝑒𝑎 ∙ 𝐴 (29)

In the above expression 𝐶 is the capacitance in [𝐽/𝐾], 𝐶𝑝𝑒𝑟 𝑎𝑟𝑒𝑎 is the capacitance per area in [𝐽/(𝐾 ∙ 𝑚²)]

and 𝐴 the wall’s surface area in [𝑚²]. The resistances to the two adjacent states are determined
consecutively, the starting point are the states that are each assigned to a different side of the wall. For each
side it is first determined whether the adjacent state is a space, ground or outside temperature, for each case
a different transition (air) resistance is summed with the resistance from the BP_Construction structure. The
resistance and with its related adjacent state are accordingly added to the m_connections vector of each
BP_Dep_Class involved (including itself).

M.Sc. thesis Eindhoven University of Technology

19-04-2016 53

BP_Floor
The floor class is identical to the wall class, a distinction has been made as the values of transition

resistances are different for horizontal structures. Additionally there may be future implementations in the
update_sys() function that account for e.g. solar irradiation, which is accounted for differently on walls.

3-14 Class diagram of the BP_floor class

BP_Window
This class is inherited from BP_Dep_State, unlike the wall class it is not defined by a construction. Since

glass is often not composable, but usually is premanufactured and thus comes with standardised values
regarding its thermal properties. These values can be directly stored into the classes member variables.

3-15 Class diagram of the BP_Window class

The member variables of the BP_Window class are intended for identification of specific window objects
and to determine the values of the base class: BP_Dep_State. As such the capacitance is again easily
calculated by equation (29). The heat conduction of a sheet of glass is given by a value called the U-value
[𝑊/(𝐾 ∙ 𝑚²)], the resistance of a sheet of glass towards either side is taken to be half of its total resistance.
The resistance is therefore calculated as follows, see equation(30).

𝑅𝑠𝑖𝑑𝑒 𝑖 =
1

2 ∙ 𝑈 ∙ 𝐴
 (30)

In the equation 𝑅𝑠𝑖𝑑𝑒 𝑖 is the window’s heat resistance to side 𝑖 in [𝐾/𝑊], 𝑈 stands for the U-value in
[𝑊/(𝐾 ∙ 𝑚²)], 𝐴 stands for the window’s area in [𝑚²]. All member variables of the base class can be
determined using the above, thus the window can be part of the state space system. Windows give a building
great sensitivity to solar irradiation, therefore additional member variables like the solar gain factor of a

3. Building physics analysis Multi-Disciplinary Building Optimisation

54 M.Sc. thesis by: S. (Sjonnie) Boonstra

window will be added when solar irradiation will be supported. The update_sys() function, that is currently
empty for this class, will then update the state space matrices with the heat flows due to solar irradiation.

BP_Space
The spaces class is inherited from BP_Dep_State, it represents a space with all properties required for a

thermal simulation. A space is most importantly defined by its volume, its other properties define how and
by what mechanisms the space’s temperature is influenced.

3-16 Class diagram of the BP_Space class

The member variables of the space class are related to heating and cooling control and ventilation. The
capacity and ventilation to the outside temperature depend on the volume of the space. On initialisation of
the class, the capacitance in the base class is calculated according equation (31).

𝐶𝑠𝑝𝑎𝑐𝑒 = 𝑉 ∙ 𝜌𝑎𝑖𝑟 ∙ 𝐶𝑎𝑖𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ∙ 3.0 (31)

In this equation𝐶𝑠𝑝𝑎𝑐𝑒 is the capacitance of the represented space, 𝑉 is volume, 𝜌𝑎𝑖𝑟 is the specific weight

of air and 𝐶𝑎𝑖𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 is the specific heat of air. The factor 3.0 is a rough estimate intended to take into

account the presence of e.g. furniture the space, which would increase the space’s capacity.
The resistances between the space and other states is mostly performed during initialisation of walls,

floors and windows. This is due to the fact that a space can have multiple connected states, where as e.g. a
wall can only have two, i.e. one on each side. However there is initialised one connection to an adjacent state,
namely the weather profile. This connection is made to take into account ventilation, which is expressed in a
resistance between outside temperature and the spaces temperature in equation (34).

𝑄 = 𝑚̇ ∙ 𝐶𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ∙ (𝑇𝑖 − 𝑇𝑒) =
𝑇𝑖 − 𝑇𝑒
𝑅

 (32)

𝑅 =
1

𝑚̇ ∙ 𝐶𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
 (33)

𝑅𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = (𝐶𝑎𝑖𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ∙ (𝜌𝑎𝑖𝑟 ∙ 𝑉 ∙
𝐴𝐶𝐻

3600
))

−1

 (34)

M.Sc. thesis Eindhoven University of Technology

19-04-2016 55

In the above equations 𝑄 stands for heat flux in [𝐽/𝑠𝑒𝑐], 𝑚 for mass flow in [𝑘𝑔/𝑠𝑒𝑐], 𝐶𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 for specific

heat in [𝐽/(𝐾 ∙ 𝑘𝑔)], R for heat resistance in [𝐾/𝑊], 𝜌 for specific weight in [𝑘𝑔/𝑚³], V for volume in [𝑚³]
and 𝐴𝐶𝐻 for the number of air changes per hour. Equation (32) equates the heat flux due to a mass flow with
the flux due to a resistance, solving the two expressions on the right hand side for R gives the expression in
equation (33). Substituting each variable with the space specific properties leads to equation (34).

The only special member function in this class is the update_sys() function, which updates the state space
system with the heating or cooling power present in the space. This power ([𝐽/𝑠𝑒𝑐]) is added to the input
matrix 𝐁 and corresponds to a ‘1’ in the input vector 𝐮, which is a dummy state in the vector. This dummy
state is necessary because there the relation between the heating or cooling power and the state
temperatures is not continuous. This discontinuous relationship is expressed by a so-called P-switch, the
expression for heating is given in equation (35).

𝑄ℎ𝑒𝑎𝑡 =

{

0 𝑖𝑓 𝑇𝑠𝑒𝑡 − 𝑇𝑒 ≤ 0

𝑇𝑠𝑒𝑡 − 𝑇𝑒
5.0

∙ 𝑄ℎ𝑒𝑎𝑡 𝑚𝑎𝑥 𝑖𝑓 0 < 𝑇𝑠𝑒𝑡 − 𝑇𝑒 ≤ 5.0

𝑄ℎ𝑒𝑎𝑡 𝑚𝑎𝑥 𝑖𝑓 5.0 < 𝑇𝑠𝑒𝑡 − 𝑇𝑒

 (35)

In this equation 𝑄ℎ𝑒𝑎𝑡 is the heating power that will be added to the state space system, 𝑄ℎ𝑒𝑎𝑡 𝑚𝑎𝑥 is the
maximum heating power available to a space, 𝑇𝑠𝑒𝑡is the desired temperature in [°𝐶] and 𝑇𝑒 is the outside
temperature in [°𝐶]. The value 5.0 is the temperature difference in which the heating power ramps up to full
power, this value is determined experimentally. The P-switch is intended to keep a space at a constant
temperature without it being sensitive for small temperature changes. The experimentally determined value
of 5.0 ensures the ramp up is steep enough to be able to sufficiently heat a space but is gradual enough to
avoid sensitivities. An example of the P-switch is given in figure 3-17, in which 𝑄ℎ𝑒𝑎𝑡 𝑚𝑎𝑥 is set at 100 𝑘𝑊 and
𝑇𝑠𝑒𝑡 is set at 20 °𝐶.

3-17 Graph of the discontinuous function of the P-switch

0

20

40

60

80

100

120

5 10 15 20 25 30

Q
h

ea
t

[J
/s

ec
]

Te [C°]

3. Building physics analysis Multi-Disciplinary Building Optimisation

56 M.Sc. thesis by: S. (Sjonnie) Boonstra

BP_Ground_Profile
The ground temperature class is inherited from the BP_Indep_State class, its only function is to hold the

value of a constant temperature value. The ground temperature is constant and does not rely on the season
however such a ground temperature profile could be implemented in the future. No particular functions are
introduced in this class, the class diagram of the class is depicted in figure 3-18.

3-18 Class diagram of the BP_Ground_Profile class

BP_Weather_Profile
The outside temperature class is inherited from the BP_Indep_State class, its function is to load the correct

data from weather files. This data concern date, time and outside temperature that are measured at a
location. Currently the data is extracted from files published by the KNMI (royal Dutch meteorology institute),
but the BP_Weather_Profile class is not dependent on this data source. The class diagram of this class,
including classes and structures around it are presented in figure 3-19.

The member variables in the BP_Weather_profile class are intended to keep track of the weather file and
position in that file, to keep track of time steps, to keep track of the date and time and to store a small amount
of weather data for interpolation and a warm up simulation. The BP_Weather_Data structure can be
initialised with a string from a weather file, i.e. one set of meteorological measurements. The constructor of
the structure then extracts the data from that string by means of a tokenizer. Currently temperature, date
and time are the only data extracted from the file, however extraction of additional data e.g. solar radiation,
is easily implemented. The BP_Date_Time class is intended to keep track of the date and the time of the
simulation, this class is used to check whether the date and time match the data that is being read from the
weather file. Another purpose could be to keep track of what day is simulated, this enables the distinction
between e.g. weekdays and weekend to determine occupancy.

Besides overloaded functions from the base class and some getter functions there are functions that
control the weather data, i.e. the next_time_step() and the next_warm_up_step() functions. These stepper
functions either interpolate data or they move to new data. Finally, the update_sys() function updates the
input vector 𝑢 of the state space system with the temperature of the current time step.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 57

3-19 Class diagram of the BP_Weather_Profile class

BP_Simulation
The BP_Simulation class is a composition of multiple BP_Dep_State classes and a few BP_Indep_State

classes. The purpose of the simulation class is to store general building data, simulation data and data
concerning the state space system. There are two important functions to the class firstly, the assemblage of
the RC-network i.e. the state matrix 𝐀, the state vector 𝐱, the input matrix 𝐁, and the input vector 𝐮. Secondly,
another function is to step through the simulation time and subsequently to solve the state space system for
each time step.

The member variables of this class are related to either the state system or to the simulation. Regarding
the state system, this class contains the state matrices and manages all objects of the state classes (held in
vectors).

3. Building physics analysis Multi-Disciplinary Building Optimisation

58 M.Sc. thesis by: S. (Sjonnie) Boonstra

3-20 Class diagram of the BP_Weather_Profile class

The constructor reads the input file and accordingly initialises states, materials and constructions or it
stores some simulation related variables. The matrices and vectors are initialised to their appropriate sizes
after the input file has been read.

The member functions of the simulation class control the simulation, for both the warm up period and
the simulation period there is a stepper function (next_time_step() and next_warm_up_step()) and a
simulation function (sim_period() and sim_warm_up_period()). A stepper function steps through one time
step, while a simulation function steps through subsequent time steps until the last time step has been
reached. The ODE-solver, Odeint, is called in the stepper function by a single line of code. The solver is passed
five arguments, the selected solver, the ODE-function (equation (13)), the time increment, a start time and
end time. Dummy variables are used for the time related arguments because the system is solved for each
time step and no refinement of time steps is required. A refinement of time steps here would mean a division
of a time step into multiple time steps, this is undesirable because the state space system cannot be updated
during the ODE-solver’s operation.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 59

 Verification of the C++-program

Case 1, single resistance between two states
The first test case verifies if the implementation of the RC-network into the C++-program is correct. This

is done by simulating a first order network, i.e. a state depending only on one other state, see figure 3-12.

3-21 First order RC-network

The external temperature 𝑇𝑒 is in the given example a constant (50 °𝐶), the dependant state temperature
𝑇𝑤 starts at 0 °𝐶. The resistance 𝑅 has been set to 4.495 ∙ 10−3 𝐾/𝑊 and the capacitance 𝐶 to 3718 ∙
103 𝐽/𝐾. The first order network can be verified analytically by the following equation, equation (36).

𝑇𝑤 = 𝑇𝑒 ∙ (1 − 𝑒
−(

𝑡
𝑅∙𝐶

)) (36)

The solver that is used for this specific test case is the Euler method, which has a relatively large error but
can with sufficient time steps reach a good approximation. The input file for this problem has been added to
Annex 6. The example has been simulated twice, once with one time step per hour and once with four time
steps per hour, the results are shown in figure 3-22.

3-22 Simulation results of a first order RC-network solved with the Euler method

The results show that the Euler method can already give a good approximation in a first order network
with only one time step an hour. The results show that the program can compose the state space system of
a first order RC-network correctly. How the program handles multiple states, heating, ventilation and a
varying outside temperature will be tested under the following heading.

Case 2, concrete box
The second case is a building consisting out of one space of 3 by 3 by 3 metres. The walls and floors of

the construction are all made of one construction: 100 𝑚𝑚 concrete and 50 𝑚𝑚 insulation. The building is
simulated with an outside temperature that is measured in September 1985 in De Bilt, Holland. The bottom
floor has a constant external temperature of 10 °C, which resembles the ground temperature. The input file
for the simulation is given in Annex 7, a visualisation of the building is depicted in figure 3-22.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Te
m

p
er

at
u

re
 [

°C
]

Time [hours]

Theory

1 step/hour

4 steps/hour

3. Building physics analysis Multi-Disciplinary Building Optimisation

60 M.Sc. thesis by: S. (Sjonnie) Boonstra

3-23 Visualisation of the concrete box example

The simulation results cannot be verified by analytical means anymore, therefore the results will be
verified by the HAMBASE code in MATLAB. First a high order solver is used, namely the runge_kutta_dopri5
solver. This results in accurate results that can be used to verify the functionality of the program. Four
simulations are carried out to test features like outside temperature profile, ventilation and heating in the
simulation program, the results are shown in figures 3-24 to 3-29.

3-24 Space temperature during simulation without ventilation and heating

3-25 Space temperature during simulation with ventilation (1 air change per hour) but without
heating

5

10

15

20

25

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

Te
m

p
er

at
u

re
 [

°C
]

Time [hours]

Outside

C++

HAMBASE

5

10

15

20

25

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3
1

9
0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5
3

5
2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1
5

6
8

5
9

5

6
2

2

6
4

9

6
7

6
7

0
3

Te
m

p
er

at
u

re
 [

°C
]

Time [hours]

Outside

C++

HAMBASE

M.Sc. thesis Eindhoven University of Technology

19-04-2016 61

3-26 Space temperature during simulation without ventilation but with heating

3-27 Heating power during simulation without ventilation but with heating (𝑸𝒎𝒂𝒙 = 100 W/m³;
𝑻𝒔𝒆𝒕 = 𝟐𝟎). Cumulative amount of energy: C++: 𝟏𝟔𝟏 𝒌𝑾𝒉; HAMBASE: 𝟏𝟒𝟒 𝒌𝑾𝒉

3-28 Space temperature during simulation with ventilation (1 air change per hour) and heating
(𝑸𝒎𝒂𝒙 = 100 W/m³; 𝑻𝒔𝒆𝒕 = 𝟐𝟎)

5

10

15

20

25

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

3
1

3

3
3

9

3
6

5

3
9

1

4
1

7

4
4

3

4
6

9

4
9

5

5
2

1

5
4

7

5
7

3

5
9

9

6
2

5

6
5

1

6
7

7

7
0

3

Te
m

p
er

at
u

re
 [

°C
]

Time [hours]

C++

HAMBASE

Outside

0

50

100

150

200

250

300

350

400

5

15

25

35

45

55

1

3
3

6
5

9
7

1
2

9

1
6

1

1
9

3

2
2

5

2
5

7

2
8

9

3
2

1

3
5

3

3
8

5

4
1

7

4
4

9

4
8

1

5
1

3

5
4

5

5
7

7

6
0

9

6
4

1

6
7

3

7
0

5

H
ea

ti
n

g
P

o
w

er
 [

J/
s]

Te
m

p
er

at
u

re
 [

°C
]

Time [hours]

Outside
Temperature

HAMBASE
Heating Power

C++ Heating
Power

5

10

15

20

25

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

3
1

3

3
3

9

3
6

5

3
9

1

4
1

7

4
4

3

4
6

9

4
9

5

5
2

1

5
4

7

5
7

3

5
9

9

6
2

5

6
5

1

6
7

7

7
0

3

Te
m

p
er

at
u

re
 [

°C
]

Time [hours]

C++

HAMBASE

Outside

3. Building physics analysis Multi-Disciplinary Building Optimisation

62 M.Sc. thesis by: S. (Sjonnie) Boonstra

3-29 Heating power during simulation with ventilation (1 air change per hour) and with heating
(𝑸𝒎𝒂𝒙 = 100 W/m³; 𝑻𝒔𝒆𝒕 = 𝟐𝟎). Cumulative amount of energy: C++: 𝟏𝟗𝟑 𝒌𝑾𝒉; HAMBASE: 𝟏𝟖𝟎 𝒌𝑾𝒉

The results of the C++ program show good comparison with the HAMBASE code, the space temperature
in both simulations correspond when heating is absent. It is thus concluded that the RC-network has been
composed correctly by the C++-program.

When comparing the heating of the space there is a difference to be noted, without ventilation C++
simulates a heating demand that is 11.6% higher than that of HAMBASE, with ventilation this difference is
7.1%. The temperature simulated by the C++-program when the space is heated is however lower than
simulated by HAMBASE. The difference in temperature is due to the difference of the used heating switches
in both programs, HAMBASE computes an estimate for the heating demand at each time step while the C++-
program uses a P-switch. Altogether, the differences in heating demand remain proportionally the same
during a simulation. An explanation for the differences has not been found, however the degree of simplicity
of the building model and the size of the error do not lead to reasons to question the functionality of the C++-
program.

Accordingly, now the functionality of the program has been verified, it is of interest to test the influence
of the selected solver. This will be done by carrying out the simulation without heating and ventilation for
different solvers and time steps. From the test it has been found that the solvers were unable to compute
meaningful results depending on the order of the solver and the number of time steps used for the simulation.
The number of time steps required for each solver is presented in Table 3 below.

Table 3 Number of time steps required for each ODE-solver

Solver Order of the solver Minimum number of time steps required

Euler 1 6

runge_kutta4 4 5

runge_kutta_dopri5 5 4

runge_kutta_fehlberg78 8 3

Although the results of the example of a concrete box look promising, this is not yet the simulation of a
full building. Therefore a selection of a solver cannot be made based on preceding examples, as it should also
work for larger buildings. A full building is however not tested in this chapter, but will be in the next chapter.
The next chapter presents a method to use a building model in the optimisation toolbox as input for building
physics simulations.

0

50

100

150

200

250

300

350

400

450

500

5

15

25

35

45

55

1
3

1
6

1
9

1
1

2
1

1
5

1
1

8
1

2
1

1
2

4
1

2
7

1
3

0
1

3
3

1
3

6
1

3
9

1
4

2
1

4
5

1
4

8
1

5
1

1
5

4
1

5
7

1
6

0
1

6
3

1
6

6
1

6
9

1

H
ea

ti
n

g
P

o
w

er
 [

J/
s}

Te
m

p
er

at
u

re
 [

°C
]

Time [hours]

Outside
Temperature

HAMBASE
Heating Power

C++ Heating
Power

M.Sc. thesis Eindhoven University of Technology

19-04-2016 63

4. Extending the toolbox with BP-analysis

A program that is capable to simulate heat transfer in a building has been developed, yet a means to
incorporate the program in the optimisation toolbox is still missing. The program requires an input file in
which the different states, e.g. spaces, walls, floors and windows, must be entered manually.

This chapter presents a method that can make the representation of a building conformal, i.e. spaces are
divided into smaller cubes so that there are no points intersecting anywhere on or in any cube part of that
space. Doing so also splits a space’s surface into parts, these parts make sure that a wall is divided at places
where multiple adjacent spaces join. A C++ code is presented thereafter, this code can make a building
representation conformal and maps relationships neighbouring spaces. Finally an example is given, in which
a building in “Movable and Sizable” representation is made conformal by the C++-code and subsequently an
input for building physics is generated and simulated.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

64 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Conformal building representation

A building that consists of multiple spaces is in its basis a concatenation of multiple adjoint spaces. This
property of a building consequently forms points and lines at locations where more than two spaces adjoin.
Such points and lines are often special lines in computer simulations of buildings like finite element analysis
or building physics analysis. They are special because these are also the locations where components in
different directions of the simulation model either adjoin or stop.

4-1 Example of four surfaces that are made conformal

Figure 4-1 shows on the left the floorplan of a building representation in which points exist where more
than two spaces adjoin. There are however points in the picture (red) that lie on a continuous wall, division
of this wall is necessary so that simulation models can be built properly. A building model in which divisions
for such purposes have been applied is here called a conformal building model. The division points are easily
identified as they intersect the line of an adjacent surface, by simply checking each point for each line. In the
example spaces, rather than walls only, are divided appropriately so that the model is suitable for simulations.
An appropriate division in the case of rectangles and cuboids would occur orthogonally, creating new
rectangles and cuboids as depicted in figures 4-1 and 4-2. The choice to either divide walls or to divide spaces
in a building model is related to the type of simulation model it is intended for.

4-2 Example of a building design (left) and its conformal representation (right)

When making a building conformal, each divisions may create new points of intersection (figure 4-1
middle). This requires a subsequent division that accounts for the newly created intersection, creating a
conformal building is thus recursive. This recursive problem may be solved by iteration, i.e. checking each
point in the representation after divisions have been performed until no more intersections exist. Another
approach would be to directly check a newly created point and accordingly dividing if necessary, the latter
itself is recursive. Solving the problem recursively is likely to be the most efficient approach to tackle the
problem, however recursion is a notorious cause of problems in programming and is often hard to visualise
for a programmer. Section 4.2 will discuss how recursion is used to in the C++ code that has been developed
to make building models conformal.

The need for a conformal building representation arises from the fact that elements like walls and floors
in a building physics model stop at a location where more than two spaces adjoin. This is due to the fact that
a wall acts as a link between the temperature states of the adjoining spaces, this has been visualised in figure
4-3.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 65

4-3 Visualisation of translation from building design to BP-model to RC-network

A simple building design is given in the above picture, although the wall is all one material this is not the
case when considering a building physics model. The building physics model requires information about the
spaces at either side of a wall to be able to build an RC-network. The monolithic concrete wall can be split up
into part that can be handled by a building physics simulation program.

Making a building representation conformal does however not add the information about which spaces
are on either side. This can be done by checking the location of a wall with the location of all spaces in the
model when this information is required. Another approach is to create an integral system of spaces, surfaces
and lines of the model, in which each line is coupled to the spaces it is in and vice versa each space to the
lines it consists of. The latter has been implemented in the C++ code and will be discussed in more detail in
section 4.2.

Methodology
Making a building model conformal requires first of all checks that are used to the identify points that

should divide a part in the building model. In case of an orthogonal building model there are four types of
parts that can be used in a building model a vertex (0D), a line (1D), a rectangle (2D) and a cuboid (3D). Each
higher dimension is a composition of multiple lower order parts, thus a line can be related to a cuboid but a
cuboid must consist of multiple lines, see Table 4.

Table 4 Relation between different parts in an orthogonal building model

Part
Number of parts needed

Vertex Line Rectangle Cuboid

Vertex 1 - - -

Line 2 1 - -

Rectangle 4 4 1 -

Cuboid 8 12 6 1

Each of these parts should be checked for conformity, because of the relations in the above table these
checks can be performed by checking all lines, rectangles and cuboids for intersecting vertexes. The relations
between parts also allow to check for overlaps in which case a line intersects either another line or a
rectangle. The cases that then need to be checked are illustrated in figure 4-4.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

66 M.Sc. thesis by: S. (Sjonnie) Boonstra

4-4 Base cases that need to be checked when making a space conformal

The above cases can be checked by means of vector calculus, vectors are computed by means of the
vertices of which a part consists. A general check for each case has been defined by using simple operations
like point products, cross products and magnitudes of vectors. A point product between two vectors: 𝐯𝟏 ∙ 𝐯𝟐
computes a scalar and can be used to calculate the angle between two vectors, however when the scalar is
zero then the two vectors orthogonal. A cross product between two vectors: 𝐯𝟏 × 𝐯𝟐 computes a vector that
is normal to both vectors, however when cross product results in a zero vector then the two vectors are
parallel. In an orthogonal building model this is all that is required to check the cases, as follows.

Case 1 – Point on a line

4-5 Point on a line

Three vectors are computed, 𝐯𝟏 from AB, 𝐯𝟐 from AC and 𝐯𝟑 from BC, see figure 4-5. Two checks determine
if the point lies on the line, if equation (37) holds then the two vectors are collinear and the point either lies
on line AB or in its extension.

𝐯𝟏 × 𝐯𝟐 = [
0
0
0
] (37)

Accordingly vectors 𝒗𝟐 and 𝒗𝟑 are in 𝑥-, 𝑦- and 𝑧 direction checked whether they have the same direction,
i.e. if the signs of the two vectors in any direction are the same then the point does not lie on the line. If this
check remains false for each direction then the point lies on line AB.

Case 2 – Intersection between two lines

4-6 Intersection point of two lines

Three vectors are computed, 𝐯𝟏 from AB, 𝐯𝟐 from CD and 𝐯𝟑 from AC, see figure 4-6. Three checks
determine whether vectors 𝐯𝟏 and 𝐯𝟐 intersect. First, if equation (37) holds for both 𝐯1 × 𝐯𝟐 and 𝐯1 × 𝐯𝟑 then
it is proven that the two vectors are collinear, and if an intersection then exist this will be found by case 1.
Second, if equation (37) holds for 𝐯2 × 𝐯𝟑 then it is proven that the two vectors are parallel and these exists
no point of intersection. Third, if equation (38) holds then it is proven that the two vectors are skew and thus
not coplanar, there then does not exist a point of intersection

𝐯𝟑 ∙ (𝐯𝟏 × 𝐯𝟐) ≠ 0 (38)

If all of the preceding checks remain false, then there exists a point of intersection. This point is found by
the following equation, equation(39).

M.Sc. thesis Eindhoven University of Technology

19-04-2016 67

𝐸 = 𝐴 + 𝑠 ∙ 𝐯𝟏 (39)

In which 𝑠 is a scalar calculated by equation (40). The scalar 𝑠 is also used to determine whether point E
lies on line AB by checking if it is smaller than 1.

𝑠 =
‖𝐯𝟐 × 𝐯𝟑‖

‖𝐯𝟏 × 𝐯𝟐‖
 (40)

Case 3 – Point on a rectangle

4-7 Point on a rectangle

Five vectors are computed, 𝐯𝟏 from AB, 𝐯𝟐 from AC, 𝐯𝟑 from AD, 𝐯𝟒 from BD and 𝐯𝟓 from CD, see figure 4-
6, where C, D and E are three arbitrary vertices of the rectangle. Two checks are performed, firstly if equation
(41) holds true then the point does not lie on the plane of the rectangle.

𝐯𝟑 ∙ (𝐯𝟏 × 𝐯𝟐) ≠ 0 (41)

If above equation holds false, then it should be determined whether the point lies on the rectangle. This
can be determined by checking vectors 𝐯𝟑, 𝐯𝟒 and 𝐯𝟓 in 𝑥-, 𝑦- and 𝑧 direction if they have the same direction,
i.e. if the signs of the two vectors in any direction are the same for all vectors then the point does not lie on
the rectangle. If this check remains false for each direction then the point does lie on the rectangle.

Case 4 – Intersection of a line on a rectangle

4-8 Intersection point of a line on a rectangle

Four vectors are computed, 𝐯𝟏 from AB, 𝐯𝟐 from AC, 𝐯𝟑 from CD, and 𝐯𝟒 from CE, see figure 4-8. One check
is performed to determine if the line intersects the plane of the rectangle, if equation (42) holds true then
the line is either parallel to the plane or coplanar. When the line is coplanar and intersecting the rectangle
then this will be found by either case 3 or case 2.

𝐯𝟏 ∙ (𝐯𝟑 × 𝐯𝟒) = 0 (42)

If the above equation remains false, then there exists a point on the plane of the rectangle where the
vector 𝐯𝟏 intersects. This point is computed by equation (43)

𝐹 = 𝐴 + 𝑠 ∙ 𝐯𝟏 (43)

In which 𝑠 is a scalar calculated by equation (44). The scalar 𝑠 is also used to determine whether point F
lies on line AB by checking if it is smaller than 1.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

68 M.Sc. thesis by: S. (Sjonnie) Boonstra

𝑠 =
‖𝐯𝟐 × 𝐯𝟑‖

‖𝐯𝟏 × 𝐯𝟐‖
 (44)

If the line intersects the rectangle’s plane at point F, then it should still be checked if the point lies on the
rectangle, this check can be performed as discussed with case 3.

Case 5 – Point inside a cuboid

4-9 Point inside a cuboid

This case is checked by computing five vectors, 𝐯𝟏 from AF, 𝐯𝟐 from BF, 𝐯𝟑 from CF, 𝐯𝟒 from DF and 𝐯𝟓
from EF, see figure 4-9, where A until E are five arbitrary vertices of the cuboid. This case can be determined
by checking if vectors 𝐯𝟏, 𝐯𝟐 𝐯𝟑, 𝐯𝟒 and 𝐯𝟓 have the same direction in either 𝑥-, 𝑦- or 𝑧 direction, i.e. if the
signs of the two vectors in any direction are the same for all vectors then the point does not lie on the
rectangle. If this check remains false for each direction then the point does lie on the rectangle.

An orthogonal building model can be made conformal by identifying the above cases in the model and

dividing either walls or spaces. The next section presents a C++ code in which a class structure is presented
that holds data on the building side e.g. spaces, surfaces and edges and data on the conformal side e.g.
vertices, lines, rectangles and cuboids. The two data sides remain separate from each other but they share
information between them, a rectangle can this way be related to the spaces on both its sides. This makes
the C++ code suitable to translate a building model into a building physics model since relations between
conformal model parts (walls/rectangles) and building parts (spaces) need to be merged in the building
physics model.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 69

 Conformation of a building model in C++

This section clarifies the C++ code that has been written to transform a building model into a conformal
building model. This is done by translating a building model into geometric entities like cuboids, rectangles,
lines and vertices. These geometric entities are split while keeping their relation with the original building
model, e.g. a space can be split into multiple cuboids therefore the space consists out of multiple cuboids and
each of the cuboids is related to the space. The code has been divided into two sides, a building side where
data related to the building are handled and a conformal side where data regarding the geometric entities
are handled.

Main structure of the code
The conformation program has been written in C++ using an object oriented approach, the class diagram

of the main structure of the code is given in figure 4-10.The diagram shows on the left side classes related to
the conformity and on the right side classes related to the building. The Building class is the main interface of
the code, in which an input is read and stored and functions to make a building conformal are implemented.
The Building class also holds the functions related to the generation of simulation output.

4-10 Class diagram, showing the main structure of the C++ code

The diagram above shows general relations between classes, more specific relations are not shown, for
example the relations listed in Table 4 are not shown in the picture. The depicted classes and the more specific
relations to other classes will be discussed in more detail in the remainder of this section. The C++ code has
been added to the annexes in the back of this thesis, Annex 8.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

70 M.Sc. thesis by: S. (Sjonnie) Boonstra

Vertex
The Vertex class will represent all vertices in the conformal building model. The class is in its basis a set of

𝑥- 𝑦 and 𝑧- coordinates, but also holds a relationship with the building side: the Point class. The class diagram
of the Vertex class is given in figure 4-11

4-11 Class diagram of the Vertex class

Point
The Point class will represent all points in the non-conformal building model. It is composed out of one

instance of the Vertex class and is related to the either the space, surfaces or edges it is part of. The member
functions are intended to initialise such relationships to the class. Figure 4-12 shows the class diagram of the
Point class

4-12 Class diagram of the Point class

Line
The Line class represents all lines in the conformal building model, it is defined by two vertices, figure 4-

13. An instance of this class accounts for relationships with the building side by storing pointers instances of
the Edge class. A pointer to the Vertex_Store class has also been added, this enables a line to split into new
lines and subsequently add them to the vertex store. The splitting of a line makes the original line redundant,
therefore a tag for deletion has been added to the Line class. This tag is necessary because there may still be
instances of other classes that point towards the instance of the class that is to be deleted.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 71

4-13 Class diagram of the Line class

The first member functions of the Line class check if an instance affect other lines or vertices. The
overloaded == operator is used in the Vertex_Store to make sure no duplicate lines are added to the store.
The two check functions check for case 1 and case two as described in section 4.1. The split() function splits
a line at the given vertex, accordingly after splitting there are two instances of the Line class added to the
Vertex_Store. When a line has been split, then also the check_associated_members() function is called, this
function will check the vertex that split the line with all the building member associated with the line.

Edge
The Edge class represents all edges in the non-conformal building model, it is in defined by one or more

instances of the Line class, see figure 4-14. An instance of this class is composed of two points and its relations
to the surfaces and spaces of which it is a part are aggregations. All unique vertices of the lines in m_lines are
also stored, to quickly asses if a vertex is already part of an instance of the Edge class.

4-14 Class diagram of the Edge class

The three add functions are used to keep the relations of an instance with instances of other classes up
to date. The delete function is used after a Line instance has been split, a line is split when the check_vertex()
function determines that a Vertex instance lies on the edge but has not been added to the m_vertices vector
yet.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

72 M.Sc. thesis by: S. (Sjonnie) Boonstra

Rectangle
The Rectangle class represents all rectangles in the conformal building model, it is composed out of 4

vertices and 4 lines, see figure 4-15. Relationships with the building side are stored in a vector with pointers
to Surface instances and similar to the Line class a deletion tag and a pointer to the Vertex_Store instance in
which it is stored are here also added for splitting purposes.

4-15 Class diagram of the Rectangle class

The overloaded == operator can compare two instances of the Rectangle class and determine whether
they are coincident. This function is used in the Vertex_Store class to prevent duplicates to be added to an
instance of the store class. The two check function check case 3 and case 4 as discussed in section 4.1. The
split() function splits a rectangle at the given vertex, accordingly after splitting there are multiple new
instances of the Rectangle, Line and Vertex classes added to the Vertex_Store. When a rectangle has been
split, then also the check_associated_members() function is called, this function will check the vertex that
split the rectangle and the new vertices with all the members (spaces, surfaces and edges) associated with
the rectangle.

Surface
The Surface class represents all surfaces in the non-conformal building model, it is defined by one or more

instances of the Rectangle class, see figure 4-16. An instance of this class is composed of four points and four
edges, its relations to the spaces of which it is a part are aggregations. All unique vertices of the rectangles in
m_rectangles are stored to be able to quickly asses if a vertex is already part of an instance of the Surface
class.

The two add functions are used to keep the relations of a Surface instance with instances of other classes
up to date. The delete function is used after a Rectangle instance has been split, a rectangle is split when the
check_vertex() function determines that a Vertex instance lies on the surface but has not been added to the
m_vertices vector yet.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 73

4-16 Class diagram of the Surface class

Cuboid
The Cuboid class represents all cuboids in the conformal building model, it is composed out of six

rectangles, twelve lines and eight vertices, see figure 4-174-15. Relationships with the building side are stored
in a vector with pointers to Space instances and similar to the Line and Rectangle classes a deletion tag and a
pointer to the Vertex_Store instance in which it is stored are here also added for splitting purposes.

4-17 Class diagram of the Cuboid class

The overloaded == operator can compare two instances of the Cuboid class and determine whether they
are coincident. This function is used in the Vertex_Store class to prevent duplicates to be added to an instance
of the store class. The check function checks case 5 and discussed in section 4.1. The split() function splits a
cuboid at the given vertex, accordingly after splitting there are multiple new instances of the Cuboid,
Rectangle, Line and Vertex classes added to the Vertex_Store. When a cuboid has been split, then also the
check_associated_members() function is called, this function will check the vertex that split the cuboid and
the new vertices with all the members (spaces, surfaces and edges) associated with the split cuboid.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

74 M.Sc. thesis by: S. (Sjonnie) Boonstra

Space
The Space class represents all spaces in the non-conformal building model, it is defined by one or more

instances of the Cuboid class, see figure4-18. An instance of this class is composed of eight points, twelve
edges and six surfaces. All unique vertices of the cuboids in m_cuboids are stored to be able to quickly asses
if a vertex is already part of an instance of the Space class.

4-18 Class diagram of the Space class

The add_cuboid() function is used to keep the relations of a Space instance with instances of other classes
up to date. The delete function is used after a Cuboid instance has been split, a cuboid is split when the
check_vertex() function determines that a Vertex instance lies in the space but has not been added to the
m_vertices vector yet.

Vertex_Store
The Vertex_Store is purely a store for all vertices, lines, rectangles and cuboids in the conformal building

model. It is therefore an aggregation of the Vertex, Line, Rectangle and Cuboid classes, see figure 4-19. The
purpose of the class is to store instances of the mentioned classes, to prevent duplicates to be added to the
store and to remove redundant instances. This purpose is fulfilled by the add and delete functions, where an
add function first checks if a class instances is not already in the store before adding it to the store.

4-19 Class diagram of the Vertex_Store class

M.Sc. thesis Eindhoven University of Technology

19-04-2016 75

Building class
The Building class represents the non-conformal building model, i.e. spaces, surfaces of spaces, edges of

spaces have not been divided. The class is an aggregation of Point, Edge, Surface and Space classes, see figure
4-20. The class inherited from the Vertex_Store class, and as such the Building class also stores the conformal
building model. The class’s main purpose is to map relations between the conformal and non-conformal
building model, i.e. a space consists of multiple cuboids and a cuboid is part of a space.

4-20 Class diagram of the Building class

The add functions in the Building class are used in the initialisation of an instance of the class. Initialisation
is done by an input file that uses the “Movable Sizable” representation for the building model. For every space
in the model there are eight Point, twelve Edge, six Surface and one Space instances initialised. Accordingly,
for each of the initialised classes, either a Vertex, Line, Rectangle or Cuboid is added to the base class, which
is the Vertex_Store class. The add functions also make sure that the appropriate information about relations
between the conformal side and building side are added to each added class.

Finally, the make_conformal() function will divide every space, surface and edge into multiple cuboids,
rectangles and lines. The process that this function follows is depicted in the flow chart in figure 4-21, the
function first finds all intersection points of lines with other lines and rectangles and subsequently adds these
points as vertices to the instance of the Vertex_Store class. All building members, i.e. edges, surfaces and
spaces are subsequently checked with all vertices in the vertex store. During the checking of vertices it may
occur that either a line, rectangle or cuboid is split. A splitting invokes a new iteration that checks all building
members (edges, surfaces and spaces) that were associated with the split part, this is recursion.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

76 M.Sc. thesis by: S. (Sjonnie) Boonstra

4-21 Flow chart of the conformation process

Verification
A small test cases was made to verify if the conformation code works correctly. The input and output of

the test case are visualised in figure 4-22 and 4-23 respectively. Another case to test if the program can
correctly handle recursive properties of conformation is presented in figure 4-24. From the presented test
cases it is concluded that the conformation code works correctly.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 77

4-22 Input model of the test case

4-23 Output of the test case, a conformal building model

4-24 Input (left) and output (right)

Building physics input
This section has described how the C++ code (Annex 8) creates a conformal building model. However it

has not yet been clarified how the conformal building is used to generate input for building physics analysis.
This is part of the C++ code, but it will be discussed in the next section.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

78 M.Sc. thesis by: S. (Sjonnie) Boonstra

 Automated building physics analysis of building models

The ultimate goal of the presented building physics program and conformation program is to enable
automated building physics simulation and analysis. So far only separate steps in the automated process have
been illustrated. This section will illustrate the complete process from a “Movable Sizable” representation to
a building physics performance. An overview in the form of a flow chart is depicted in figure 4-25, the
flowchart illustrates how automated building physics analysis will be performed in the toolbox

4-25 Flow chart of the automated building physics analysis

The flowchart shows how building physics performances of a “Movable Sizable” building model can be
determined by running model conformation, a design grammar and a building physics simulation. Accordingly
these performances may be used to modify the building model and iterating the process as such in order to
increase the total building performance. The conformation and building physics simulation steps have been
discussed in this thesis, however the building physics design grammar is yet to be discussed.

Building physics design grammar
The Building class as discussed in section 4.2 has an additional function regarding the building physics

model. Namely a make_BP_input() function, see Annex 8, which translates instances of the Space class and
members of the Rectangle class into building physics input. Spaces are easily added to the building physics
model, since only their ID and volume are extracted from the building model. Adding information of
rectangles to the building physics model is more complicated. Since it should first be determined whether a
rectangle could represent either a wall, or floor, subsequently it should be determined which spaces are
adjacent to the wall. Determining if a rectangle is a wall or floor can be done by checking if the normal of the
rectangle is vertical, if it is then the rectangle represents a floor. Checking the spaces to which a rectangle is
associated allows to determine whether the rectangle should be added to the building physics model, namely
if there are no associated spaces then it should not become a wall or floor. If there is one space associated
with a rectangle then the rectangle is an exterior wall or floor and has a space on one side and a weather

M.Sc. thesis Eindhoven University of Technology

19-04-2016 79

profile on the other side (walls and floors with 𝑧 ≠ 0) or a ground profile on the other side (floors with 𝑧 =
0).

The above only determines the geometric information of a building physics model, properties like
material, construction types, heating and ventilation are still missing from the model. The missing information
is added by design rules, which together form a design grammar. A design grammar defines the properties of
spaces, walls and floors based on design rules, which can be simple like: All rooms have a heating capacity of
100 𝑊. Grammars can however be much more complicated to create more sophisticated or more realistic
building physics models. A building physics design grammar for the toolbox will not be determined in this
thesis, however for demonstration purposes there will be defined some rudimentary design grammars.

The remainder of this section will present several examples in which the automated design process is
performed. Starting with some rudimentary examples that have intuitive solutions and progressively moving
on to more complex building designs.

Performances in the examples will be expressed in the required amounts of energy per volume to cool
and heat a space. These performances will be visualised by means of a colour mapping for spaces, see figure
4-26. The visualisation maps each space with a colour depending on their performance (equation (46))

relative to the maximum (𝑄𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ [𝐽/𝑚³]) and the minimum (𝑄𝑚𝑖𝑛̅̅ ̅̅ ̅̅ [𝐽/𝑚³]) energy performance per space
volume (equation (45)) throughout the building.

𝑄𝑖̅ =
𝑄ℎ𝑒𝑎𝑡,𝑖 + 𝑄𝑐𝑜𝑜𝑙,𝑖

𝑉𝑖
 [𝐽/𝑚³] (45)

𝐸𝑖 =
𝑄𝑖̅ − 𝑄𝑚𝑖𝑛̅̅ ̅̅ ̅̅

𝑄𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ − 𝑄𝑚𝑖𝑛̅̅ ̅̅ ̅̅
 [−] (46)

4-26 Visualisation of building physics performance of spaces. Red (1) requires the most energy,
green(5) the least, intermediate performances are visualised by orange(2), yellow(3) and lime (4).

The examples have all been run with the same building physics settings and two different design
grammars have been defined and used. The simulation period is the complete year of 1988 and the ground
temperature is set to 10 °𝐶. The simulations started with six warm up days and took four time steps an hour,
the runge_kutta_dopri5 solver has proven to be sufficient for the simulations. Two constructions are defined
a wall and a window, the window has a U-value of 1.2 𝑊/(𝑚2 ∙ 𝐾) and a capacitance of 30000 𝐽/(𝑚2 ∙ 𝐾).
The wall construction consists of 50 mm of insulation () and 100 mm of concrete. The constructions are
assigned by two grammars, grammar 1 only assigns the wall construction and grammar 2 sequentially assigns
a wall construction to two successive exterior vertical rectangles and then a window construction to the next
exterior vertical rectangle. Grammar two thus assigns a window to a third of all the exterior rectangles in the
conformal building model.

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

80 M.Sc. thesis by: S. (Sjonnie) Boonstra

Example 1 – Two spaces
The first example is a building that consists of two spaces that are joined together on the ground floor,

see figure 4-27. Grammar 1 is used, the example is symmetric and should thus generate symmetric results.
Figure 4-28 shows the result of the analysis, it proves to be symmetric thus both spaces perform equally bad.

4-27 Visualisation of the building of example 1

4-28 Visualisation of the space performances in the building of example 1

Example 2 – three spaces
A space is now added atop of the building of example 1, see figure 4-29. Grammar 1 is still used and thus

the result is still expected to be symmetric about the separation wall between space one and two. Figure 4-
30 shows the analysis result, it proves to be symmetric spaces one and two perform equally. The space on
top is the worst performing, which can be explained by the fact that it is exposed to the exterior with a rather
large surface area in comparison with the two bottom space.

4-29 Visualisation of the building of example 2, together with its conformal model

M.Sc. thesis Eindhoven University of Technology

19-04-2016 81

4-30 Visualisation of the space performances in the building of example 2

Example 3 – twelve spaces
A cuboid building of twelve spaces, some of which larger than the other is analysed in this example, see

figure 4-31. The simulation has been performed twice, for the first simulation grammar 1 is used to generate
the building physics model and for the second grammar 2.

4-31 Visualisation of the building of example 3

Figure 4-32 depicts the analysis result, it shows that the small spaces on one head end perform the worst
and the larger spaces perform intermediate. This is surprising at first, since the volume of the smaller spaces
is relatively large in proportion with its exposed surface compared to the larger spaces. However when
considering the whole of spaces, 1, 4, 7 and 10 and the whole of space 3, 6, 9 and 12 then these relations
turn around, which explains the result.

4-32 Visualisation of the space performances in the building of example 3 with grammar 1

4. Extending the toolbox with BP-analysis Multi-Disciplinary Building Optimisation

82 M.Sc. thesis by: S. (Sjonnie) Boonstra

Figure 4-33 depicts the result for the design by grammar 2, it shows more differentiation in the
performances throughout the building. The result is however rather meaningless because the relationship
with the presence of windows is not given. However the difference in results do illustrate the influence that
design grammars can have in the automated design of buildings.

4-33 Visualisation of the space performances in the building of example 3 with grammar 2

Example 4 – Arbitrary building design
For this example an arbitrary building design was designed, see figure 4-34. The building physics model

has been generated by grammar 2. The result of the analysis is shown in figure 4-35, again the results are not
meaningful with regard to the building spatial design. However this example is a strong show case of what
the developed tool is capable of.

4-34 Visualisation of the building of example 4

M.Sc. thesis Eindhoven University of Technology

19-04-2016 83

4-35 Visualisation of the space performances in the building of example 4

Example 5 – Apartment building
An apartment building has been defined for the final example, see figure 4-36. The building physics model

is generated by grammar 2. The results are have also been depicted in figure 4-36 and show that spaces in
the middle of the building outperform the spaces on the sides. Additionally it can be concluded that spaces
at the corners generally perform the worst and spaces on the ground floor generally perform worse. The
design grammar did have a large influence on the differentiation in the results, there is only one space which
jumps out performance wise.

4-36 Visualisation of the building of example 5 (left), and the results of the analysis (right)

M.Sc. thesis Eindhoven University of Technology

19-04-2016 85

5. Conclusions and recommendations
 Summary

This thesis presents two methods and three tools that have been developed for use in multi-disciplinary
building optimisation. The first method aims to increase the variation in building designs in an optimisation
task by considering a super structure free and a super structured design space at the same time during one
optimisation process. Two different building representations were defined, each suitable for one of the two
considered design spaces. A tool has been developed to convert each building representation into the other
and vice versa, this tool is envisioned to enable both design space types to be used during one optimisation
task.

The second method aims to automatically asses building designs on their performance with respect to
building physics, i.e. required energy for climate control in a building. This automated process uses a
simulation program to determine performances of spaces in the building model. A simulation tool was
developed to simulate the heat balance of a building and the heating and cooling of spaces. The simulated
energy required for heating and cooling of spaces is used to assess the performance of spaces with the respect
to the building. A 3D-conformation tool that is computationally fast was developed to make the
representation of a building design compatible with the building physics simulation tool.

 Conclusions

Two building representations have been defined, a “Movable and Sizable” representation that is suitable
for super structure free design spaces and a “Super Cube” representation that is suitable for super structured
design spaces. Algorithms have been developed to transform each representation into one and other, and
these algorithms have been verified for successful operation for overlaps in spaces, non-connected spaces,
truncation errors, alterations in space identification, and fragmented spaces.

From a research on building physics simulation programs it was concluded that the development of a
simulation tool would be the best approach to analyse the defined building representations. Accordingly a
tool using a thermal resistor-capacitor network model was developed, this tool computes a state space
system that is solved for each time step in the simulation.

A tool to conform a building model to be compatible to the building physics too has been developed. This
conformation tool has been used to run the automated building physics analysis on several test cases.

 Recommendations

The presented methods and tools for multi-disciplinary building optimisation have been tested and
verified individually. However their application to optimisation itself has not yet been tested, the next stage
for multi-disciplinary building optimisation is therefore to incorporate the methods and tools in the
optimisation toolbox. The work presented in this thesis is in continuation of an existing toolbox for spatial
building design optimisation for optimal structural design performance and thus the tools will be
implemented in this toolbox.

Topics for the toolbox and multi-disciplinary optimisation that still need research are as follows.
Grammars for both building physics and structural design need to be defined in order to generate realistic
building designs. Modification rules for spatial modification should be researched, current modification
cannot evolve building designs into a building with more floors.

Optimisation using the super structured and super structure free design space approaches should be
combined as proposed in this thesis. Case studies should be performed using the super-structure free
approach, the super structured approach and the combined approach to research multi-disciplinary optimal
spatial building design. Accordingly the results of the case studies will be used to find design relations in the
form of design rules. Applications for the found design rules should be developed for early building spatial
design.

M.Sc. thesis Eindhoven University of Technology

19-04-2016 87

6. References

Attia, S., Beltrán, L., Herde, A. De, & Hensen, J. (n.d.). “ Architect Friendly ”: a Comparison of Ten
Different Building Performance Simulation Tools. In Proceedings of Building Simulation (pp.
204–211). Glasgow, Scotland.

Baldock, R., & Shea, K. (2006). Structural Topology Optimization of Braced Steel Frameworks
Using Genetic Programming. In Intelligent Computing in Engineering and Architecture, 13th
{EG}-{ICE} Workshop (pp. 54–61). http://doi.org/doi:10.1007/11888598

Bandaru, S., & Deb, K. (2015). Temporal Innovization: Evolution of Design Principles Using Multi-
objective Optimization. In 8th International Conference of Evolutionary Multi-Criterion
Optimization (pp. 79–93). http://doi.org/10.1007/978-3-319-15934-8

Blom, K. Van Der, Boonstra, S., Hofmeyer, H., & Emmerich, M. T. M. (n.d.). A Super-Structure
Based Approach for Building Spatial Designs. In submitted for EC-COMAS 2016 (p. -). Crete,
Greece.

Caldas, L. (2008). Generation of energy-efficient architecture solutions applying GENE_ARCH: An
evolution-based generative design system. Advanced Engineering Informatics, 22(1), 59–70.
http://doi.org/10.1016/j.aei.2007.08.012

Chan, A. S. L. (1960). The Design of Michell Optimum Structures. The college of aeronautics (Vol.
142). Cranfield.

Clarke, J. a. (2001). Energy simulation in building design (2nd ed.). Butterworth-Heinemann.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
http://doi.org/10.1109/4235.996017

Emmerich, M., Grötzner, M., & Schütz, M. (2001). Design of Graph-Based Evolutionary Algorithms:
A Case Study for Chemical Process Networks. Evolutionary Computation, 9(3), 329–354.
http://doi.org/10.1162/106365601750406028

Emmerich, M. T. M., Hopfe, C. J., Marijt, R., Hensen, J. L. M., Struck, C., & Stoelinga, P. A. L. (2008).
Evaluating optimization methodologies for future integration in building performance tools.
In Proceedings of the 8th international conference on Adaptive Computing in Design and
Manufacture (ACDM) (Vol. 1, pp. 1–7).

Fong, K. F., Hanby, V. I., & Chow, T. T. (2006). HVAC system optimization for energy management
by evolutionary programming. Energy and Buildings, 38(3), 220–231.
http://doi.org/10.1016/j.enbuild.2005.05.008

Hammer, V. B., & Olhoff, N. (2000). Topology optimization of continuum structures subjected to
pressure loading. Structural and Multidisciplinary Optimization, 19, 85–92.
http://doi.org/10.1007/s001580050088

Hensen, J. L. M. (n.d.). Towards more effective use of building performance simulation in design.
In Proceedings of the 7th international Conference on Design & decision support systems in
architecture and urban planning (pp. 1–16). Eindhoven, the Netherlands.

Hensen, J. L. M., & Lamberts, R. (2011). Building Performance Simulation for Design and
Operation. (J. L. M. Hensen & L. Lamberto, Eds.). Spon Press.

Hofmeyer, H., & Davila Delgado, J. M. (2015). Co-evolutionary and Genetic Algorithm Based

6. References Multi-Disciplinary Building Optimisation

88 M.Sc. thesis by: S. (Sjonnie) Boonstra

Building Spatial and Structural Design. AIEDAM - Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 29, 351–370. http://doi.org/10.1017/S0890060415000384

Iuspa, L., & Ruocco, E. (2008). Optimum topological design of simply supported composite
stiffened panels via genetic algorithms. Computers and Structures, 86, 1718–1737.
http://doi.org/10.1016/j.compstruc.2008.02.001

Jang, G. W., Yoon, M. S., & Park, J. H. (2010). Lightweight flatbed trailer design by using topology
and thickness optimization. Structural and Multidisciplinary Optimization, 41, 295–307.
http://doi.org/10.1007/s00158-009-0409-x

Kang, J. H., & Kim, C. G. (2005). Minimum-weight design of compressively loaded composite plates
and stiffened panels for postbuckling strength by Genetic Algorithm. Composite Structures,
69, 239–246. http://doi.org/10.1016/j.compstruct.2004.07.001

Kicinger, R., Arciszewski, T., & De Jong, K. (2005). Evolutionary computation and structural design:
A survey of the state-of-the-art. Computers and Structures, 83(23-24), 1943–1978.
http://doi.org/10.1016/j.compstruc.2005.03.002

Kramer, R., Schijndel, J. Van, & Schellen, H. (2012). Simplified thermal and hygric building models:
A literature review. Frontiers of Architectural Research, 1(4), 318–325.
http://doi.org/10.1016/j.foar.2012.09.001

Kramer, R., van Schijndel, J., & Schellen, H. (2013). Inverse modeling of simplified hygrothermal
building models to predict and characterize indoor climates. Building and Environment, 68,
87–99. http://doi.org/10.1016/j.buildenv.2013.06.001

Liang, Qing Quan; Xie, Yi Min; Steven, G. P. (2000). Optimal topology design of bracing systems for
multistory steel frames. Structural Engineering, 126(7), 823–829.

Marks, W. (1997). Multicriteria optimisation of shape of energy-saving buildings. Building and
Environment, 32(4), 331–339. http://doi.org/10.1016/S0360-1323(96)00065-0

Tuhus-Dubrow, D., & Krarti, M. (2010). Genetic-algorithm based approach to optimize building
envelope design for residential buildings. Building and Environment, 45(7), 1574–1581.
http://doi.org/10.1016/j.buildenv.2010.01.005

Underwood, C. P., & Yik, F. W. H. (2004). Modelling Methods for Energy in Buildings (1st ed.).
Blackwell Publishing Ltd.

van Schijndel, J., & Kramer, R. (2014). Combining Three Main Modeling Methodologies for
Building Physics. In Proceedings of the 10th Nordic Symposium on Building Physics (NSB
2014). Lund, Sweden (pp. 558–565). Retrieved from http://www.nsb2014.se/wordpress/wp-
content/uploads/2014/07/Complete_fullpapers.pdf

Voll, P., Lampe, M., Wrobel, G., & Bardow, A. (2012). Superstructure-free synthesis and
optimization of distributed industrial energy supply systems. Energy, 45, 424–435.
http://doi.org/10.1016/j.energy.2012.01.041

Wright, J. A., Loosemore, H. A., & Farmani, R. (2002). Optimization of building thermal design and
control by multi-criterion genetic algorithm. Energy and Buildings, 34(9), 959–972.
http://doi.org/10.1016/S0378-7788(02)00071-3

Yi, Y. K., & Malkawi, A. M. (2009). Optimizing building form for energy performance based on
hierarchical geometry relation. Automation in Construction, 18(6), 825–833.
http://doi.org/10.1016/j.autcon.2009.03.006

M.Sc. thesis Eindhoven University of Technology

19-04-2016 89

Annexes

Annex 1 C++ code for the conversion between the Super Cube and
Movable Sizable representations

Bound in at the back of the report

Annex 2 C++ code of the visualisation of the MovableSizable-class Bound in at the back of the report

Annex 3 C++ code of the visualisation of the SuperCube-class Bound in at the back of the report

Annex 4 C++ code of the classes in the building physics simulation
program

Bound in at the back of the report

Annex 5 Matlab code of the state space wall example Bound in at the back of the report

Annex 6 Input file of the resistance between two states example Bound in at the back of the report

Annex 7 Input file concrete box example Bound in at the back of the report

Annex 8 C++ code of the classes in the conformation program Bound in at the back of the report

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 1

C++ code for the conversion between the Super

Cube and Movable Sizable representations

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 2

C++ code of the visualisation of the

MovableSizable-class

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 3

C++ code of the visualisation of the SuperCube-

class

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 4

C++ code of the classes in the building physics

simulation program

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 5

Matlab code of the state space wall example

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 6

Input file of the resistance between two states

example

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 7

Input file concrete box example

M.Sc. thesis Eindhoven University of Technology

19-04-2016

Annex 8

C++ code of the classes in the conformation

	1. Introduction
	1.1. Subject
	1.2. Optimisation in general
	1.3. Optimisation in the built environment
	1.4. Building physics Simulation

	2. Design spaces
	2.1. Design boundary conditions
	2.2. ‘Movable and Sizable’ representation
	2.3. ‘Super Cube’ representation
	2.4. Conversion between design spaces
	2.5. Verification of conversion algorithms
	2.6. Discussion

	3. Building physics analysis
	3.1. Building physics simulation
	3.2. State space approach on a thermal RC-network of a building
	3.3. State space representation of an RC-network in C++
	3.4. Verification of the C++-program

	4. Extending the toolbox with BP-analysis
	4.1. Conformal building representation
	4.2. Conformation of a building model in C++
	4.3. Automated building physics analysis of building models

	5. Conclusions and recommendations
	5.1. Summary
	5.2. Conclusions
	5.3. Recommendations

	6. References
	Annexes
	Annex 1
	Annex 2
	Annex 3
	Annex 4
	Annex 5
	Annex 6
	Annex 7
	Annex 8

