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Abstract

We present an evaluation of the TIOBE Quality Indicator (TQI), a
methodology by the company TIOBE that aims to measure software qual-
ity. The TQI is based on software metrics, a popular means to assessing
various properties of software. These metrics are code-based metrics (e.g.,
cyclomatic complexity, code coverage, and fan-out) that can be computed
automatically from a single version of the software under assessment. The
role of the TQI is to compose these metrics to form a straightforward in-
dicator of software quality.

We combine scientific literature and documentation from TIOBE to
arrive at a detailed understanding of how the TQI score for an entire
project is computed. We do this by presenting the theory behind each
metric and describing how the metrics are aggregated and composed to
form a single value. These insights result in an analysis of the weaknesses
of the TQI and proposals on how to improve these aspects.

We evaluate the effectiveness of the TQI as a metric of software quality
by examining how the various metrics respond to bug fixes in the software.
In this study, bugs are a proxy for software quality, specifically reliability.
We obtain historical information on bugs by mining software repositories.
In particular, we combine information from the bug tracking system and
version control system to obtain both the characteristics of each bug and
the changes that were made to fix the software. We present the strengths
and weaknesses of this method. Additionally, we reflect on the potential
to use this setup on a larger scale to obtain a larger body of empirical
evidence.

We used a survey to find projects of TIOBE customers for which we
judged the data to be most reliable. The software repositories of these
projects were analyzed to find the changes for each bug in the bug track-
ing system. We found that even when using high-quality data, extracting
relevant information required considerable manual effort. From the lim-
ited analysis we were able to perform, we concluded that while metrics
seem to respond to bug fixes at the project level, we found no evidence
that the TQI, as a composed metric, does the same.
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Chapter 1

Introduction

Software quality is a popular topic of research [1–8]. It is one of the major
research areas in the field of software engineering [3, p. 1]. The topic is also
relevant from a business perspective; a sufficient level of quality is a requirement
for any industrial software project to succeed [4].

Software quality is not directly observable. The quality of a software product
will typically manifest itself through defects that are revealed after shipping it
to the end user. Arguably, the most significant challenge in software engineering
is to ensure software works properly [9, p. 261], especially as society increasingly
depends on this software [10, p. 33]. Defects in the field are especially important
compared to defects that are found during the development process, since they
impact end users and the cost of fixing them at this stage is relatively high [11].
Since end users are impacted, the brand image of the company and their fu-
ture sales performance may be negatively impacted as well. This suggests that
monitoring quality in earlier stages of development is desirable. This would give
some indication of the maturity and quality of a project before it is released as
an end-product.

1.1 Measuring software quality
In order to measure quality, a clear definition is necessary [4]. Unfortunately,
there is no consensus on how quality should be defined [8]. Garvin [12] describes
five approaches to defining product quality1:

• The transcendent view describes quality as an absolute but immeasurable
trait. While quality is recognizable, it cannot be defined or measured
precisely. Instead, quality is a property that one can learn to recognize
only through experience2.

• The product-based view instead views quality as a precise and measurable
attribute of a product. This means that differences in quality need to

1 While Garvin did not speak about software products specifically, his work has been applied
to software quality by Kitchenham and Pfleeger [4].

2 In this sense, the transcendent view on quality can be compared to Plato’s view on
beauty: we can learn to appreciate beauty by having experiences we consider beautiful, but
we never observe the abstract notion of ‘beauty’ directly. As such, Plato considers beauty to
be objective, but undefinable.
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somehow be reflected by quantitative changes of some property of the
product.

• The user-based view views quality as a subjective quality. High quality
then results from fitness to purpose of the customer.

• The manufacturing-based view is similar to the user-based view in that it
views quality as subjective, but it focuses on the producer rather than the
consumer. High quality results from the adherence to the requirements
for the product.

• Finally, the value-based view is primarily economic. It is comparable to the
manufacturing-based view, but when the price of the product increases,
the quality necessarily decreases.

Depending on the approach to defining quality, the measurement method
may be drastically different. Additionally, each of the views presented above
share a degree of vagueness and imprecision [12]. This prompts critics of any
measurement method to dismiss software quality measurement for its lack of
precision. A rebuttal to this comment is offered in the form of Gilb’s law [13,
pp. 112–113], which has been formulated as “anything you need to quantify can
be measured in some way that is superior to not measuring it at all” [14, p. 59].

1.2 TIOBE
TIOBE is a company that takes Gilb’s advice to heart. Their goal is to estimate
software quality using software metrics. Their framework automatically per-
forms measurements on over 300 million Lines Of Code (LOC) every day [15].
This information is then aggregated to form a singular indicator of software
quality: the TIOBE Quality Indicator (TQI) [16].

TIOBE adopts the manufacturing-based view to quality. They concede that
quality is not something inherently objective [16]; any company or user can
propose their own definition of quality, and there is no way of deciding which is
better. While objective measurement as proposed by the product-based view is
too ambitious, the TQI does strive to make the measurement of quality more
objective. By being held to an industry standard, companies can meaningfully
evaluate the quality of their product.

Measurements are extracted from a variety of tools [17], including (but not
limited to) Coverity, Klocwork, Visual Studio, GCC, PMD, CheckStyle, and
Pylint. These tools together support a variety of programming languages, in-
cluding (but not limited to) C, C++, C#, Java, JavaScript, and Python.

The customers of TIOBE include ASML, Philips, TomTom, and many other
companies [18]. These companies mostly, but not exclusively, focus on embedded
software. The size of these companies and their projects is also diverse; the LOC
for projects varies from less than 1000 lines of code to more than a million lines
of code [19].

While TIOBE has achieved success in industry, it is not clear to what ex-
tent their measurement and aggregation methods are scientifically justifiable.
For instance, it is not clear to what extent each metric correlates to software
defects [16]. In general, metrics should not be blindly trusted, but be evaluated
on a true defect history [8].
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1.3 Empirical methods in software engineering
research

There are multiple methods that can be used to perform empirical software
engineering research [20]. Each of these methods has its own strengths and
weaknesses.

The first method is the controlled experiment. In a controlled experiment,
we control all the relevant variables. This means that we can show the existence
of causal relationships. For example, we could set up an experiment in which we
show that the use of an abstract interpretation tool results in a lower number
of bugs in the end product. A controlled study can be costly to perform, which
causes many researchers to save costs by using cheap (but non-representative)
workers, such as students [21]. Another downside is that the context in which
software is usually developed is not taken into account.

In a case study, we study data resulting from real software development in
their original context [22]. We do not control these processes in any way. In
particular, we do not know to what extent the context is important. When we
want to apply our results in a different context, it is hard to determine whether
they are valid. Case studies are also more prone to interpreter bias, meaning the
expected results may influence the interpretation of the final results we obtain.

Case studies do not rely on random sampling, but instead choose particular
instances that are interesting. This means they can aim unique or extreme cases,
or instead examine a typical case. Using multiple cases can result in more valid
results.

A third method is the survey. In a survey, respondents fill in a list of ques-
tions. This can help to gain insight from the respondents, but the results may
be misleading as a result of sampling biases (i.e., the group of respondents not
being the same as the group of people we intend to study) and social desirabil-
ity biases (i.e., respondents answering questions in a way they think is desirable
rather than truthfully).

We opt to use a mixed-methods approach. The first method we use is a
survey. While a survey typically consists of an anonymous questionnaire, we
record the identity of respondents in order to be able to contact them for a
follow-up study. The survey is intended to reveal some identifying properties
for each project, as well as assess the reliability of the data that is collected in
the software repositories.

Based on the results of the survey, we can select projects which are most
suitable to analyze. We analyze these in a case study. The reason is for this
is that the TQI is intended as a pragmatic way to measure software quality.
While exploring it in a controlled setting would be interesting, it is preferable
to leverage the large volumes of measurements that have been collected to see
how the TQI behaves in practice. This case study can be seen as exploratory,
since we want to explore the limitations we face in practice when conducting
research that involves TIOBE customers.

1.4 The ISO 25010 quality model
The manufacturing-based view of quality concedes that quality is subjective.
This means we can view quality as a collection of different attributes: quality

3



factors. There is a variety of models that specify different quality factors [23].
An example of such a model is the Systems and software Quality Requirements
and Evaluation (SQuaRE) model for software quality (ISO 25010 [24]). The
model considers software quality to be the “degree to which a software product
satisfies stated and implied needs when used under specified conditions” [24,
p. 17]. It specifies the following factors of product quality [24, pp. 3–4]:

• Functional suitability : “degree to which a product or system provides func-
tions that meet stated and implied needs when used under specified con-
ditions” [24, p. 10];

• Compatibility : “degree to which a product, system or component can ex-
change information with other products, systems or components, and/or
perform its required functions, while sharing the same hardware or soft-
ware environment” [24, p. 11];

• Performance efficiency : “performance relative to the amount of resources
used under stated conditions” [24, p. 11];

• Usability : “degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfac-
tion in a specified context of use” [24, p. 12];

• Reliability : “degree to which a system, product or component performs
specified functions under specified conditions for a specified period of
time” [24, p. 13];

• Security : “degree to which a product or system protects information and
data so that persons or other products or systems have the degree of data
access appropriate to their types and levels of authorization” [24, p. 13];

• Maintainability : “degree of effectiveness and efficiency with which a prod-
uct or system can be modified by the intended maintainers” [24, p. 14];

• Portability : “degree of effectiveness and efficiency with which a system,
product or component can be transferred from one hardware, software or
other operational or usage environment to another” [24, p. 15].

A limitation of this model, is that it leaves the way to measure these factors
open to interpretation. One way to solve this is to map the various factors to
software quality metrics. In the case of TIOBE, these metrics are the following:

• Code coverage: the percentage of code that is tested through (automatic)
unit tests;

• Abstract interpretation: a semantic analysis that can help developers to
identify potential defects;

• Cyclomatic complexity : a measure for the complexity of a method based
on the number of independent paths through a program;

• Compiler warnings: warnings by the compiler that indicate something is
potentially wrong with the program;

• Coding standards: the degree to which code adheres to coding standards;

4



Code Coverage Functional Suitability

Reliability

Compiler Warnings Portability

Fan-out

Maintainability

Abstract Interpretation

Dead Code

Code duplication

Coding Standards Security

Performance Efficiency

Cyclomatic Complexity

Figure 1.1: A mapping of quality metrics to quality attributes as proposed by
TIOBE [16].

• Code duplication: the percentage of code that appears to be identical to
another piece of code (100 identical consecutive tokens);

• Fan-out : the number of imports per module;

• Dead code: the percentage of code in LOC that is not reachable via any
program execution.

TIOBE has constructed a mapping from SQuaRE quality factors to quality
metrics [16]. This mapping is shown in Figure 1.1. It demonstrates how the
quality metrics (on the left) can help assess software quality, as characterized
by the factors on the right. It should be noted that this is not necessarily the
only possible mapping; it is not entirely clear to what extent it is valid. Two
of the factors defined in the ISO 25010 standard are missing: usability and
compatibility. These are not covered by the TIOBE metrics.

TIOBE intends to validate this mapping. One way to validate metrics is by
establishing a relation between the factors and metrics using statistical meth-
ods [7]. However, this requires values for each of the quality attributes. This
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leads us back to the original problem of not being able to measure quality fac-
tors3.

Instead of relating to quality factors, we can choose to relate to another
metric for software quality. An interesting example of such a metric is the
number of bugs. The number of bugs in a given software product is generally
unknown, simply because not all bugs are known. For historical versions of the
software, however, we can get information on bugs by inspecting information in
a bug tracking system, which stores information on bugs that have been found in
the software. We can therefore see these bugs as a stepping stone between the
metrics TIOBE measures and the quality factors from the ISO 25010 quality
model.

For this thesis, we use bugs as a proxy for software quality. Bugs are pri-
marily a metric for the reliability of a program.We use the explicit assumption
that software faults relate to software quality. The goal of the analyses are to
show a relation between bugs and the various software quality metrics.

1.5 Research questions
This thesis serves both as a road map to empirical validation of the effectiveness
of TQI at measuring software quality and a critical evaluation of the TQI and
the metrics it is based on. This means that relevant topics include the software
metrics the TQI is based on and the definition of the TQI, but also the context
TIOBE operates in, specifically the software that is under analysis, the tools
that are used during development, and the way the software is developed and
maintained.

The main question we intend to answer is: Is there a relation between the
metrics TIOBE collects and bugs?

We address the main question by investigating the following research ques-
tions:

1. How suitable is the information TIOBE and their customers collect for an
evaluation of the TQI?

2. What steps are necessary to obtain information about bug fixes in soft-
ware?

3. Do the measurements on software that the TQI aggregates respond to bug
fixes in this software?

4. Can TIOBE or their customers take steps to improve the quality of this
analysis?

1.6 Outline
The remainder of this thesis is structured as follows.

Chapter 2 gives an overview of software metrics, including the metrics that
are used in the TQI definition. We define each of the metrics and describe what
they measure and how they have been used in industry and scientific literature.
We need this context to be able to understand how the TQI works.

3 For validation purposes, experts could determine values for the quality attributes.
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Software
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Chapter 4
Metrics

Chapters 2, 3

Relation?
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Figure 1.2: A graphical representation of the overall structure of this thesis.

Chapter 3 contains the definition of the TQI, as well as the software tools
and formulas that are used to compute the TQI from “raw” measurements. We
also discuss the design decisions behind the TQI and what alternative decisions
could have been taken.

We discuss how we can establish a relation between metrics and bugs in
Chapter 4. We do this by considering methodology from previous research and
compare their strengths and weaknesses.

In Chapter 5, we describe a survey we have conducted targeting the cus-
tomers of TIOBE. These customers are important, since they show what devel-
opment processes are used at these companies. This information is also relevant
since it allows us to get an indication of the quality of the data in the version
control systems and bug tracking systems at these companies. This data can
then be used to perform validation of the TQI.

Finally, we discuss a case study on some customers of TIOBE in Chapter 6
in which we examine the empirical evidence for a relation between the TQI and
bugs based on historic defect data.

Figure 1.2 gives a graphical overview of the structure of this thesis. The
center represents the software under analysis. We consider two different quality
indicators based on this software: metrics (including the TQI and the metrics
it composes) and the number of bugs. The metrics and the way these metrics
are applied to the software are covered in Chapters 2 and 3. The way we find
information about the bugs in the software is covered in Chapter 4. Finally, we
explore the relation in the top of the figure in Chapters 5 and 6.
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Chapter 2

Software metrics

The core business of TIOBE revolves around measuring software quality. Mea-
surement is “the empirical, objective assignment of numbers, according to a
rule derived from a model or theory, to attributes of objects or events with the
intent of describing them” [25]. Metrics are mappings from the (components
of) software to a value that represents a certain property, such as quality or
complexity [25]. A wide variety of metrics have been proposed [26–31].

This chapter gives an overview of the different types of metrics and discuss
some metrics in-depth. These include the metrics that are included in the TQI
(see Section 1.4), as well as other metrics from literature. A classification of
software metrics is presented in Section 2.1, followed by a discussion of various
metrics in Sections 2.2 to 2.6. Finally, we discuss the aggregation of metrics in
Section 2.7

Note Some of the metrics are regarded by some to fall outside of the def-
inition of a metric. In particular, violations that are produced by abstract
interpretation tools, coding standard checking tools and compilers (in the form
of warnings) can be argued to be outputs of a tool rather than metrics.

However, according to the definition presented above, these would qualify as
metrics. After all, these violations can be counted and are objectively assigned
based on some theory explaining their rationale. We therefore include these
metrics in this chapter, but do criticize their fitness for the purpose of measuring
software quality.

Similarly, metrics may be excluded from the definition if they are compo-
sitions of other metrics. Non-composed metrics are sometimes referred to as
“direct” metrics [32]. However, the usefulness of this distinction has been ques-
tioned [25], particularly since there may exist direct metrics that measure the
same property as a composed metric.

2.1 Metric classifications

Software metrics can be classified into categories. There is no universally ac-
cepted classification; different classifications have been used by Kan [3], Sad-
owski et al. [33], Hata, Mizuno, and Kikuno [34], Shihab [35], Rahman and
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Devanbu [36], and Nagappan, Ball, and Zeller [37]. Confusingly, different au-
thors use the same words to refer to different concepts or use different words for
the same concepts.

We consider the following categories:

• Product metrics [3, 32, 35]: metrics that relate to characteristics of the
product.

Product metrics are further subdivided into:

– Code-based metrics1 [33, 36, 37]: metrics that can be evaluated based
on a single version of the software; and

– Historical metrics2 [34]: metrics that are evaluated over multiple
versions of the software.

• Process metrics [3, 32]: metrics that are based on the development process.

• Project metrics3 [3]: metrics that are based on properties of the project.

As indicated by Kan [3], some metrics belong to multiple categories. For exam-
ple, the productivity of programmers can be considered to be a process metric
or a characteristic of the programmers and therefore a project metric.

The metrics TIOBE measures are all code-based metrics [16]. This means
that all metrics can be evaluated on an isolated version of the software without
the need for measurements on or access to earlier versions. This has some prac-
tical advantages. It means that the metrics are all independent of the evolution
of the software. Only the end product, regardless of how it was constructed, can
influence the metrics and the TQI. At the same time, it means the TQI cannot
use the added insight of historical, process and project metrics. These metrics
have proven to be effective in the field of bug prediction [36] and could conceiv-
ably be used in the TQI to more accurately measure software quality. TIOBE
measures some of these metrics and presents them to the customer without
integrating them in the TQI.

2.2 Product metrics

Product metrics are metrics that relate to characteristics of the product; i.e.,
the software itself. This includes both metrics that can be evaluated on a single
version of the code (e.g., LOC, cyclomatic complexity), as well as metrics that
apply to multiple versions of the code (various metrics for the amount of change
over a project’s evolution). It excludes metrics that relate to the process of
developing software and the project itself. Product metrics can be evaluated
on the product in isolation, without considering the social or business processes
surrounding it.

Code-based metrics are discussed in more detail in Section 2.3. Historical
metrics are discussed in more detail in Section 2.4.

1 Referred to as “product metrics” by Shihab [35].
2 Referred to as “repository-based” by Sadowski et al. [33] and “process metrics” by Shihab

[35] and Rahman and Devanbu [36].
3 Referred to as “organizational metrics” by Hata, Mizuno, and Kikuno [34] and “process

metrics” by Rahman and Devanbu [36].
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2.3 Code-based metrics
The code-based metrics we discuss in this section could be classified in the
following way:

• Size metrics:

– Lines of code (Section 2.3.1)

• Complexity:

– McCabe complexity (Section 2.3.2)
– Halstead complexity measures (Section 2.3.3)

• Quality of structural design:

– Code duplication (Section 2.3.4)
– Dead/unreachable code (Section 2.3.5)
– Cohesion and coupling (Section 2.3.6)
– Chidamber and Kemerer metrics (Section 2.3.7)

• Test suite quality:

– Code coverage (Section 2.3.8)
– Mutation coverage (Section 2.3.9)

• Violations:

– Abstract interpretation violations (Section 2.3.10)
– Compiler warnings (Section 2.3.11)
– Adherence to coding standard (Section 2.3.12)

2.3.1 Lines of code
The number of lines of code (LOC, also known as source lines of code or SLOC)
is a widely used software metric [33, 34, 38–46]. LOC is a language-independent
metric for the number of lines in the files that make up the source code. It can
be used on any granularity level; we can compute LOC over a function, file,
package, or project.

While LOC is intended to be a metric for size, it has also been used for effort
estimation [47, p. 660] and bug prediction [38, 40, 42, 43, 48]. This is reasonably
effective simply due to the trivial fact that producing code takes time and has
the potential to introduce faults. This means that LOC is not only useful as
a metric for software size, but also as a baseline for any model using metrics.
Metrics that do not add anything to a model when LOC is already included or
highly correlate with LOC are unlikely to represent anything other than size.
This approach has been used to argue the redundancy of other metrics [39].
It should be noted that aggregation can play a major role in the correlation
between LOC and other metrics [43]. A metric may be redundant when using a
specific aggregation technique (such as the sum), but it may be useful when using
other aggregation techniques or using measurements at a different granularity
level.
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Listing 2.1: Code to illustrate LOC metric.

1 for (int i = 0; i < N; i++)
2 {
3 // print the current number
4 System.out.println(i);
5 }

Listing 2.2: Shorter version of the code in Listing 2.1.

1 for (int i = 0; i < N; i++) {System.out.println(i);}

One weakness of LOC as a metric for size is that semantically equivalent
pieces of code may have a different number of lines of code. Compare, for
instance, the two pieces of code shown in Listing 2.1 and Listing 2.2.

These examples have the exact same meaning, but Listing 2.2 is written on
a single line while Listing 2.1 is spread over five lines. We can alleviate this by
removing comments and counting the number of statements instead of physical
lines. Similarly, empty lines can be removed. Note that these solutions are
language-specific, meaning we need knowledge about the language of code to
determine its size.

2.3.2 McCabe complexity

Cyclomatic complexity [26] (also known as McCabe complexity) is a complexity
metric for imperative methods. It is computed by representing the possible
paths of execution of the program in a graph and computing its cyclomatic
number (i.e., the number of regions in a planar embedding of the graph). The
idea is that methods with a lot of conditional statements or loops are more
complex. This means maintainability of the program is hurt, since it is hard
to understand for new developers working on it. It also means testing the
code properly is harder, since it is harder to reach a sufficient level of coverage.
TIOBE uses cyclomatic complexity as one of the components of the TQI [16].

We consider the simple program below (Listing 2.3) as an example. Fig-
ure 2.1 shows a graph representation of this program. Each statement in the
code is represented by a vertex4 in the graph. The edges represent paths that
can be executed. The graph shows both loops (the cycle between 4 and 5) and
branch statements (the two outgoing edges from vertex 8, depending on the
boolean value of the condition).

From the control flow graph, we can compute the cyclomatic complexity of
the program by counting the number of regions the graph divides the plane in.
This includes the outer region, as well as the areas enclosed by branches and
loops. In this case, there are three regions, meaning the cyclomatic complexity
of the program is 3.

Cyclomatic complexity is a metric that is defined for a single method; there

4 Strictly speaking, the vertices in a control flow graph represent “basic blocks” as opposed
to statements, but we abstract from this detail for simplicity.
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Listing 2.3: Example of relatively simple program.

1 int foo(int n, int m) {
2 int sum = 0;
3
4 for (int i = 0; i < n; i++) {
5 sum += i;
6 }
7
8 if (sum > m) {
9 sum = m;
10 }
11
12 return sum;
13 }

2

c

4 8

5
a

12b

9

Figure 2.1: Graph representation of program in Listing 2.3. The vertices repre-
sent statements in the program. The edges represent control flow. The letters
represent regions in the plane. In this case, there are three regions: one enclosed
by vertices 4 and 5 (a); another enclosed by vertices 8, 9, and 12 (b); and finally
the space around the graph (c).
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is no notion of multiple methods or objects. Therefore, computing cyclomatic
complexity for a program consisting of multiple methods and/or objects requires
aggregation. The simplest aggregation technique is taking the sum of all mea-
surements. This results in cyclomatic complexity becoming a proxy for the size
of the program [39]. However, this effect is caused by the aggregation, not the
metric itself [43]. Aggregation techniques for metrics are covered in Section 2.7.

2.3.3 Halstead complexity measures

Halstead complexity measures are a series of metrics aimed at measuring soft-
ware size and complexity and effort estimation [49]. These metrics are all defined
on a certain “problem”, i.e., a set of functional requirements for a single method.
The Halstead metrics are not included in the TQI, but are an interesting alter-
native, especially since they provide an estimate for the number of bugs in the
implementation.

The following numbers are at the base to the Halstead metrics:

• η1: number of distinct operators;

• η2: number of distinct operands;

• N1: number of occurrences of operators; and

• N2: number of occurrences of operands.

Based on these numbers, Halstead defines a number of metrics [49], includ-
ing:

• The length of a program:

N = N1 +N2 (2.1)

• The vocabulary of a program:

η = η1 + η2 (2.2)

• The volume of a program:

V = N × log2 η (2.3)

• The difficulty of a program:

D =
η1
2
× N2

η2
(2.4)

• Programming effort :
E = D × V (2.5)

• The time required to implement the program:

T =
E

18
(2.6)
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• The estimated number of delivered bugs in the implementation:

B =
E

2
3

3000
(2.7)

Equations 2.1 to 2.3 are different size metrics. Equation 2.4 is a complexity met-
ric. Equation 2.5 and Equation 2.6 are effort estimation metrics. Equation 2.7
is a software reliability estimate.

An issue with these metrics is that the constants seem arbitrarily chosen and
have no intuitive meaning. Another problem is that the terms operators and
operands are not clearly defined, leaving their meaning open to interpretation.
The values for these metrics are also language-dependent, meaning the results
may vary simply as a result of the choice of programming language. Another
limitation is that the metrics are not defined with structured or object-oriented
language in mind. Especially for larger projects, it becomes impractical to use
these metrics. Finally, the Halstead metrics highly correlate with LOC [39, 50],
which suggests they measure nothing more than software size.

2.3.4 Code duplication
Code duplication is the process of copying code to re-use it in a new context [51].
The amount of code duplicated code can be used as a metric for the proportion
of redundant code in a project. Redundant code is syntactically or semanti-
cally equivalent to some other part of the code. Code duplication is one of the
components of the TQI [16].

As a software project grows, programmers may make copies of code to adjust
its functionality. While this is an easy and simple way to replicate functionality,
it results in a higher volume of code that may contain duplicates of bugs. Large
software system contain a considerable amount (5–10%) of duplicate code [51].
Large amounts of code duplication result in a system that is harder to main-
tain [52].

We can distinguish between four types of code duplication [53]:

1. Complete copies that only differ in terms of whitespace, layout, and com-
ments;

2. Clones that may differ in terms of whitespace, layout, comments, and
replacement of identifiers, literals, and types;

3. Clones in which some statements are added, removed, or replaced;

4. Different implementations of the same functionality.

Note that types 1 to 3 are related to syntactic equivalence, while type 4 de-
scribes semantic equivalence. Type-1 clones are the easiest to detect, with each
consecutive type being harder to detect.

Generally, clones are only counted if they are sufficiently large. This is
because when a clone is small, for instance a single statement or token, it does
not pose a threat to maintainability. After all, all code is built from the same
atomic tokens, so the existence of very small code clones is meaningless.

Obviously, the type of clones that are counted and the minimum length for
a clone influence the measurements that are obtained as a result.
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Listing 2.4: Program containing dead code.

1 int a;
2 a = 0;
3 a = 1;

Listing 2.5: Program containing unreachable code.

1 int n = 42;
2 n = n % 10;
3 if (n > 10) {
4 n = 0;
5 }

2.3.5 Dead/unreachable code

Dead code is code for which the result will never be used [54, p. 350]. A result
could be a change in the state of the program in the broadest sense, includ-
ing potential exception resulting from an otherwise semantically meaningless
operation [54, p. 360].

Dead code is closely related to the notion of unreachable code, which is code
that can never be executed [55]. While these concepts are different, the terms
“dead” and “unreachable” code are sometimes used interchangeably. An example
of the confusion of these terms is the document defining the TQI [16]. TIOBE
only measures unreachable code, not dead code5.

An example of dead code is shown in Listing 2.4. Clearly, since the state-
ments are executed sequentially at all times, the assignment of 0 to a will have
no effect on the remainder of the program. Line 2 can therefore be considered
dead code, but not unreachable code.

The automatic detection of dead code is a challenging task, since the outcome
of a statement cannot easily be predicted from a static analysis, i.e., without
executing the code. As an alternative, tools can aim to identify unreachable
code.

An example of unreachable code is shown in Listing 2.5. Since the modulo
operator is used on n, it can never exceed 10. Therefore, the body of the if-
statement is never executed.

While the notion of unreachable code is fairly intuitive, its detection is all
but trivial—in fact, undecidable [54, p. 212]. One reason for this is the undecid-
ability of the Halting problem. Since we cannot decide whether a given method
terminates, we cannot determine with full certainty that the code towards the
end of the method is ever reached. We can, however, find an over-approximation
of the total body of unreachable code, for instance by checking whether a vari-
able or method is textually referenced outside of its declaration. Tools such as
ReSharper6 and DCD7 use this approach. Abstract interpretation can also be

5 In fact, dead code may result in some abstract interpretation violations, which are taken
into account in the TQI. However, these do not affect the “dead code” component.

6 https://www.jetbrains.com/resharper/
7 https://java.net/projects/dcd/
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used to find dead code. While dead code detection can potentially be useful
in the development process, the output of these tools may contain some false
positives. Some methods may only be accessed through methods like reflection.
Removing those methods would alter the functionality of the program.

2.3.6 Cohesion and coupling
An important part of programming is the division of tasks into smaller sub-tasks
to deal with complexity. This type of design achieves the highest quality when
it achieves low coupling and high cohesion [56]. High cohesion refers to a large
degree of interdependency of components within a module. Low coupling refers
to a low degree of interdependency of components outside of a module.

Henry and Kafura [29] refer to this interdependency as fan-in and fan-out.
Fan-in is the number of external modules using functions in a module. Fan-out
is the number of modules from which functions are imported. These numbers
can be used as metrics, either directly or in a formula. Henry and Kafura use
the following formula:

hk = sloc · (fan_in + fan_out)2 (2.8)

Fan-out may be more suitable as a metric for structural complexity than
fan-in [57]. The reason for this is that high fan-out is indicative of a module
that provides functionality that is unrelated to the rest of the contents of the
module. This is a “code smell”, since this functionality should typically be
divided over different modules. Fan-in, on the other hand, is an indication that
the functionality is applied in a variety of contexts. A typical example of a
module that achieves a high fan-in is a module that provides commonly used
mathematical functions.

Another downside of the fan-in metric compared to fan-out is that it is
not actionable. A module that imports too much external functionality can be
“improved” by somehow reducing the number of imports (typically by splitting
up a module into multiple modules). Reducing fan-in requires investigating the
different contexts in which the functionality is used and assessing whether this
is correct.

Martin [58] used the terms afferent coupling to refer to the fan-in and efferent
coupling to refer to the fan-out of a package [58, p. 262]. He uses this to compute
the positional instability of a package using Equation 2.9.

I =
Ce

Ca + Ce
(2.9)

Ce is the number of classes outside of the package that are used and Ca is the
number of classes that use classes within the package.

These metrics are all metrics for quality of structural design on a module
level. TIOBE uses fan-out in their TQI definition [16].

2.3.7 Chidamber and Kemerer metrics
The Chidamber and Kemerer metrics suite for object-oriented design consists
of metrics that aim to measure the quality of the design of object-oriented
programs [27]. These metrics are not included in the TQI. Nevertheless, they
are interesting, since they focus specifically on object-oriented programs.
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Figure 2.2: An illustration of the Depth of Inheritance Tree metric (reproduced
from Chidamber and Kemerer [27]). In an inheritance tree, vertices represent
classes; an edge from a class C to C ′ indicates that C ′ extends the functionality
of C, i.e., C ′ is a subclass of C. The DIT for class A is 0; the DIT for classes P
and Q is 1; the DIT for classes C, D, E and F is 2.

These metrics include the following:

• Weighted Methods per Class (WMC), a size metric for a class:

WMC =
∑
m∈C

complexity(m) (2.10)

where m is a method in class C and complexity is a metric for the com-
plexity of a method, such as cyclomatic complexity. We can also define
complexity(m) = 1 for all m, in which case WMC is simply a metric for
the number of methods in a class.

• Depth of Inheritance Tree (DIT), a metric for the number of ancestor
classes that can influence a class. It measures the maximum path to the
root of the inheritance tree. The behavior of deeper classes is harder to
predict, since the behavior may originate from more different places. The
DIT metric is illustrated in Figure 2.2.

• Number of Children (NOC), a metric for the scope of properties. This gives
an indication of the amount of reuse, but can also be a sign of potential
misuse of subclasses. It measures the number of direct children of a class
in the inheritance tree. In the inheritance tree shown in Figure 2.2, the
number of children of classes A, P and Q is 2; the number of children for
classes C, D, E and F is 0.

• Coupling between object classes (CBO), a metric for coupling (see Sec-
tion 2.3.6).

• Response For a Class (RFC), a metric for the potential communication
between a class and other classes. This can be seen a a metric for com-
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plexity. The definition of RFC is based on the response set RS .

RFC = |RS | (2.11)

RS =

( ⋃
m∈C

Rm

)
∪ C (2.12)

In Equation 2.12, C is the set of methods in the class, m is a single method
in the class and Rm is the set of methods called by method m.

• Lack of Cohesion in Methods (LCOM), a metric for cohesion (see Sec-
tion 2.3.6). It measures the number of pairs of methods that share no
instance variables compared to the number of methods that share some
instance variable. The instance variables used by a method m are denoted
as Im.

P = {(Im, Im′) | m,m′ ∈ C, Im ∩ Im′ = ∅} (2.13)
Q = {(Im, Im′) | m,m′ ∈ C, Im ∩ Im′ 6= ∅} (2.14)

LCOM =

{
|P | − |Q| if |P | > |Q|
0 otherwise (2.15)

A higher LCOM value means there is a higher number of method pairs
that do not share instance variables than the number of pairs that do share
instance variables. High values indicates that the class could be split up
in more cohesive parts.

The LCOM metric has been criticized [59] for its inability to differentiate
between constructed examples that seem different in terms of cohesion.
Another weakness is that any negative values are adjusted to zero, which
can result in a lot of zero values. Henderson-Sellers [60, pp. 142-147] pro-
posed an alternative definition of LCOM that normalizes for the number
of methods in a class.

The metrics’ focus on object-oriented software is one of the aspects that dis-
tinguishes them from metrics like McCabe complexity and Halstead complexity
measures. The metrics are defined based on a formal theoretical basis and have
been validated empirically [27].

2.3.8 Code coverage
Code coverage is a metric of test suite quality. Intuitively, it is the percentage of
code that is covered by (automated) unit tests. These tests can automatically
invoke parts of the software and evaluate whether their results are correct. Since
automatic tests are much more reliable and cheaper to perform than manual
tests, this enables software developers to test their code often, which could
help to maintain high-quality software. Code coverage is a metric that can be
evaluated on a low level (a single file or method), but it is usually computed over
an entire project. The TQI includes code coverage as one of its components.

There are different types of coverage [61, pp. 43–49], which vary in terms
of granularity and precision. The simplest form of code coverage is statement
coverage (also known as line coverage). This is a metric for the percentage of
statements that are executed by a unit test.
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Listing 2.6: Example of relatively simple program.

1 int foo(int a, int b) {
2 int c = b;
3
4 if (a > 3 && b > 0) {
5 c = a;
6 }
7
8 return c * a;
9 }

Listing 2.6 shows an example of a method that can be tested using unit
tests. A unit tests consists of an input (such as foo(0,0) or foo(4,2)) and an
expected result for each test case (0 and 16 respectively for the given examples).
This program has a total of 4 statements (two assignments, an if statement and
a return statement). The test case foo(0,0) covers 3 of these statements (75%
coverage), while the test case foo(4,2) covers all statements (100% coverage).

While statement coverage can give an indication of the quality of a test suite,
it may be too easy to achieve. For example, if we only use the second test, we
achieve a perfect coverage of 100%. However, it could be that for cases where
the condition of the if statement evaluates to false, the result is incorrect. The
notion of decision coverage (also known as branch coverage) alleviates this issue.
It requires every branch of every conditional or loop (including if, case, while,
and for statements) to be tested at least once. This means that to achieve 100%
decision coverage, we need a test for which a > 3 ∧ b > 0 and one for which
a ≤ 3∨ b ≤ 0. The previously presented examples are an example of a test suite
with 100% decision coverage for this method.

As decisions get more complex, decision coverage may be insufficient as a
metric as well. After all, we only have one test case for each branch. Since a
conditional may be composed of an arbitrary number of boolean variables (con-
ditions) through conjunctions and disjunctions, there are many paths through
the code that can end up untested even when 100% decision coverage is achieved.
A third type of coverage, condition coverage, requires a test case for each of the
composed conditions. That means that in our example, we need at least a case
for a > 3 and ¬(a > 3) as well as cases for b > 0 and ¬(b > 0). Again, the
provided test cases satisfy this.

Finally, an even stricter form of coverage is path coverage. This requires
every possible path to be executed [62]. This means that every permutation of
boolean values that can be assigned to the conditions in each decision should
be tested. In this case, this would require a test cases for a > 3 ∧ b > 0,
a > 3 ∧ b ≤ 0, a ≤ 3 ∧ b > 0 and a ≤ 3 ∧ b ≤ 0. In general, achieving 100%
path coverage is impractical, since the number of paths increases exponentially
as the number of boolean variables increases linearly.

Other types of code coverage include function coverage [63] (the proportion
of methods that is covered by unit tests), condition/decision coverage [64, p. 9]
(a combination of condition and decision coverage) and an even stronger type of
coverage known as Modified Condition/Decision Coverage (MC/DC) [64, p. 9],
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Decision coverage
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Condition/Decision coverage

Figure 2.3: Overview of the relations between various types of code cover-
age. Complete path coverage implies complete decision and statement coverage.
Both complete decision coverage and complete condition coverage imply com-
plete statement coverage. However, complete condition coverage does not imply
complete decision coverage or vice versa.

which we will not discuss in detail. MC/DC is applied in avionics and other
critical systems domains, but it is highly sensitive to simple syntactical modifi-
cations that have no semantic meaning [65].

Note that complete condition coverage does not imply complete decision
coverage or vice versa. For example, the test suite {foo(7,-1), foo(2,2)}
covers all conditions, but only one decision. Similarly, {foo(7,-1), foo(7,1)}
covers all decisions, but not all conditions. An overview of the relations between
the various types of coverage is presented in Figure 2.3.

2.3.9 Mutation coverage

Mutation coverage is, like code coverage, a metric of test suite quality. It is de-
signed to overcome a weakness of code coverage that is inherent to its definition
and therefore independent of the number of paths that are covered. Mutation
testing is one of the best predictors of test suite quality [62]. Despite this, it
is barely used in industry, possibly due to its complexity and computational
cost [62].

Recall that code coverage measures the proportion of the code (either in
terms of statements, decisions, conditions, or another criterion) that is tested
through unit tests. This essentially validates whether the developer thought to
write tests for all functionality. However, code coverage is independent of the
quality of these tests. For this reason, code coverage is not strongly correlated
to the effectiveness of a test suite at detecting faults [66].

For instance, we could construct test inputs for a method simply by providing
an input for each of its branches and achieve a reasonably high code coverage.
Still, particular edge cases (such as boundary cases) may still be untested. This
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Listing 2.7: Example of program for which mutants may still be correct.

1 int min(int a, int b) {
2 if (a < b) {
3 return a;
4 } else {
5 return b;
6 }
7 }

means that bugs could go undetected even with a relatively high coverage. The
idea behind mutation coverage is that the quality of a test case is its ability to
detect errors in implementation. That is, when a small mistake is present, one
of its test cases should fail.

The process of mutation testing [67] involves creating mutants, modified
versions of the software that is under analysis that potentially contain bugs.
Since test cases are expected to fail when bugs cause the implementation to
be incorrect, better test suites generally fail for a larger proportion of mutants.
Mutation coverage is the percentage of mutants for which a test suite fails.

One way of generating mutants is by substituting operators by different
operators. In many cases, this results in a program with different functionality
that should therefore fail the test case. Note that this is not necessarily always
the case. For example, consider the method in Listing 2.7. The intention of this
program is to return the minimum of the supplied arguments. We can generate
a mutant by replacing the < operator by the ≤ operator. This is an example
of a mutant that does not influence the correctness of the code; after all, it
only impacts the trivial case where parameters a and b are equal for which
either branch results in the correct result. Therefore, the goal of achieving
100% mutation coverage is meaningless. That said, mutants are generally good
substitutes for real faults in software [68].

2.3.10 Abstract interpretation violations

Abstract interpretation is a technique in which the computations of a program
are evaluated on abstract objects, with the goal of deriving results without exe-
cuting the program [69, 70]. This is typically implemented by translating source
code to a model instead of an executable program. This model is then examined
for patterns that reveal potential errors. Abstract interpretation abstracts from
the explicit value of a variable, and instead considers all the possible values it
can have mapped to some abstract domain [71]. TIOBE uses the output of
abstract interpretation tools for the TQI [16].

Consider Listing 2.8 as an example. One problem abstract interpretation
may detect in this example is that the obj variable may have the value null even
after line 2. This would cause a null dereference in the final line, which results
in an error and potentially the termination of the program. A human program-
mer could very well overlook this fact; they will likely assume the getObject()
method returns an actual object rather than a null value. An abstract inter-
pretation tool would detect that null is one of the potential values of obj and
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Listing 2.8: Example of a potentially faulty program for which abstract inter-
pretation analysis may help uncover a bug.

1 if (obj == null) {
2 obj = getObject ();
3 }
4 obj.method ();

Listing 2.9: Example of a potentially faulty program which will trigger a com-
piler warning.

1 if (var = 0) {
2 var ++;
3 }

flag a warning.
Abstract interpretation works by considering the range of possible values a

variable can take and restricting this range based on statements in the program.
This means an abstract interpretation tool may be able to deduce that obj can
never take a null value. If one of the values it could take is null, something is
wrong with the program.

While this example illustrates the usefulness of abstract interpretation, the
analysis can result in false positives [72]. In this example, this could be the
case if the getObject() method indeed guarantees that no null object will be
returned in some way that cannot be modeled through abstract interpretation,
such as reflection.

One metric we can derive from abstract interpretation is the number of
violations produced by the tools. Alternatively, we can assign a weight to each
type of violation to distinguish between important and less important violations.
These are metrics for the number of potential bugs in the software.

2.3.11 Compiler warnings

Compiler warnings are potential errors in the source code that are discovered
during compilation. These include syntactic errors for which the semantics are
easily misinterpreted, portability issues and type errors. They can therefore be
seen as a metric for the quantity and impact of potential bugs. TIOBE uses
compiler warnings in the TQI [16].

An example of code that yields a compiler warning is shown in Listing 2.9.
Most languages use the = operator for assignment and expect a boolean

condition, e.g., var == 0. Note that in this case, var = 0 is not a boolean
expression for the equality of var and 0, but an assignment of 0 to var. This
assignment is executed, followed by the execution of the code in the body. A
compiler will recognize that this is likely unintended and warns the programmer.

Other warnings could relate to arithmetic operations that are inconsistent
across systems with different bitness8. This hurts the portability of the code.

8 bitness refers to the distinction between 32- and 64-bit processor architectures
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While the process of removing compiler warnings has not been shown to
improve maintainability, it results in an improvement in portability [73].

2.3.12 Adherence to coding standard
Coding standards provide rules for software developers to follow while writing
code. The most important reason for coding standards is maintainability; a
clear set of rules makes it easier for programmers to understand the meaning of
code [74]. A subset of coding standards can be used as predictor for finding fault-
related lines of code [75]. The TQI also includes a metric for coding standard
adherence [16].

Examples of coding standards include naming conventions (e.g., using lower
case for variable names and capitals for class names), rules for indentation (e.g.,
use of spaces instead of tabs, indenting the body following an if-statement) and
the exclusion of language features (e.g., disallowing use of goto statements).

To measure adherence to coding standard automatically, rules can be pro-
grammed into a tool that automatically identifies violations of the standard.
This requires rules to be sufficiently precise. A meaningful metric for adherence
to coding standard depends on the quality of the coding standard and a suitable
classification of the weight of each of its rules.

2.4 Historical metrics
This section covers the following historical metrics:

• Number of changes (Section 2.4.1)

• Code churn (Section 2.4.2)

None of these metrics are part of the TQI. Nevertheless, we discuss them, since
their effectiveness is promising [36].

2.4.1 Number of changes
The number of changes is a metric for the amount of change of an artifact. It
is simply a count of the number of times a piece of code was changed. This can
indicate which parts of software are changed most often. Code that changes
often is less stable in the sense that its functionality or performance changes
often. Additionally, since it is changed often, there are also more opportunities
for the introduction of bugs. This means the number of changes can be used as
a predictor for the number of faults.

A downside of the metric is that it likely will not reveal information that is
surprising to developers; after all, they knowingly make changes to files. The
metric can be improved for bug prediction by only counting changes in which
a bug was fixed. Additionally, not all files that are often changed need to
necessarily contain bugs. For example, a file containing references to unit tests
or a list of error messages is likely to be changed with a bug fix (because a unit
test or error message is added), but naturally is not the cause of the bug.

The number of changes can be used, like LOC, to test whether metrics add
anything beyond a naive and simple count metric. This has been done in the
past to evaluate the performance of FixCache [76].
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2.4.2 Code churn

Code churn is another metric for the amount of change. Rather than simply
counting the number of changes, it refers to the number of lines that were added,
removed or, changed9. This means code churn can be computed for a certain
changeset10.

Nagappan and Ball [28] differentiate between absolute and relative code
churn. Absolute code churn is simply a count of added, removed, and modified
lines; relative code churn divides this number by the total size of the files that
are changed. In a case study on Windows Server 2003, relative churn was a
better predictor for defects than absolute churn [28].

Code churn has been shown to correlate with program quality [8, 77]. In
fact, churn metrics correlate much stronger than code-based metrics [40, 44].
While this shows the potential of historical metrics in addition to code-based
metrics [40], these metrics may be less useful since they are not actionable [78,
79]. Like with LOC, even if we can show an increase in code churn causes bugs,
we cannot decrease code churn since this would imply making less changes and
therefore not maintaining the software. In that sense, code churn is a trivial
and relatively uninteresting metric.

2.5 Process metrics

The metrics in Section 2.2 all relate to the characteristics of the product. That
is, the can be evaluated only on the (historical archive of) the end product:
software. Process metrics evaluate software quality from another perspective,
namely the development process of the software. Product management is a
critical factor of software development [14], so it seems fitting to evaluate quality
using these metrics.

Some examples of process metrics:

• Effectiveness of defect removal : a metric for the effectiveness (e.g., in terms
of speed) in which defects are removed. This is particularly relevant for
clients using the software. If a fault is encountered in software, it has less
impact if it can quickly be resolved.

• Quality of management : management can play a decisive role in the pro-
ductivity of software engineers. Good managers are able to supervise a
software project more effectively, which results in a more effective devel-
opment process.

• Productivity : the productivity of a team of developers can be considered
to be a part of software quality as well.

TIOBE aims to measure code quality [16]. For this reason, they do not
consider process metrics.

9 The notion of a changed line of code is tricky, since any changed line can be considered
to be a removal of the old line (without the change) and an introduction of the new line
(containing the change).

10 A set of changes to files that is committed to a version control system.
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2.6 Project metrics

Not only the development process and the characteristics of the product, but
also the properties of the project can provide insight into the quality of soft-
ware. Software engineering projects are team-based efforts that depend on the
strengths of the individual software developers as well as the extent to which
these strengths are utilized. These factors influence productivity and software
quality [80].

Example of project metrics include:

• Number of developers: a metric for development team size. The size of a
development team can give information about the structure of the devel-
opment process. Larger teams require more coordination, which impacts
their central development tasks.

• Developer experience: a metric for the extent to which developers are
familiar with the technology they are using. Prior experience provides a
great advantage in terms of productivity [81].

• Team diversity : the diversity of the team with respect to gender, cul-
tural background and others factors. More diverse teams tend to be more
productive [82].

• Team familiarity : the degree to which the team members know each other.
Developers generally prefer to join teams consisting of people they know.
They are also more productive within these familiar teams [81].

• Geographical distribution: the relative locations of the members of the
team. Physical distance between team members, difference in languages,
cultural and organizational differences, and time zones all potentially im-
pact the team’s ability to communicate and therefore to achieve the goal
of high-quality software [83, 84]. There is some evidence that when teams
take the effort to take these limitations into account, software quality does
not necessarily decrease [84].

• Ownership: the degree to which parts of the software have an “owner”, i.e.,
someone who invented or most frequently maintains the code. Software
development methodologies like Extreme Programming advocate collec-
tive code ownership [85, p. 66]. There is some evidence that a lack of any
ownership, individual or otherwise, leads to lower-quality software [86].

TIOBE does not take these factors into account, since they focus on code
quality [16].

2.7 Metric aggregation

Another relevant topic is metric aggregation. This refers to the process of com-
bining multiple measurements into a single value. A good aggregation allows
one to draw conclusions without having to examine the many separate measure-
ments it aggregates separately.
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The term “aggregation” is often used to refer to two different concepts [5]:
composition and aggregation. These procedures are the same in the mathemat-
ical sense; they are simply functions from a set of measurements to a single
value. Instead, the distinction between these concepts is in their goal.

Aggregation combines values from multiple low-level measurements (for in-
stance, measurements on methods, classes, or files) into a single value that is
intended to represent the same metric at a higher level (for instance, a package
or project). For instance, cyclomatic complexity is defined on the method level.
An aggregation for cyclomatic complexity would represent the same abstract
notion of program complexity on a file or project level.

Composition combines values from different metrics into a single value that
is intended to represent a combination of the semantics of these metrics. For
instance, we can combine cyclomatic complexity and coverage to arrive at a
composed metric that represents the extent to which more complex methods
are tested more.

Composition and aggregation can be done in either order, but it is more
meaningful to compose before aggregating in order to preserve the semantics of
the composition [5].

Aggregation techniques

There are many aggregation techniques, each with their own strengths and
weaknesses. We will discuss a few of them here. We use M to denote the set of
measurements for each of the formulas. We assume the measurements are num-
bers, although this does not strictly need to be the case for all measurements.

The sum (Equation 2.16) is a very simple aggregation technique that simply
adds up all metric values.

sum(M) =
∑
m∈M

m (2.16)

If the metrics have different weights (for example, the sizes of the various com-
ponents), we can generalize the definition to the weighted sum (Equation 2.17).

wsum(M) =
∑
m∈M

weight(m) ·m (2.17)

The biggest strength of these techniques is that they are very easy to under-
stand and implement. One big drawback is that in practice, many metrics will
correlate very strongly with the size, i.e., the total of all weights. For instance,
the total cyclomatic complexity aggregated over a whole project correlates very
highly with its size in LOC [39].

To alleviate this issue, we can instead use the mean (Equation 2.18) or
weighted mean (Equation 2.19).

mean(M) =

∑
m∈M m

|M |
(2.18)

wmean(M) =

∑
m∈M weight(m) ·m

|M |
(2.19)

However, the mean also has some problems. First, it “smoothes out” re-
sults [87, 88], meaning any interesting details (like specific parts of the project
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or specific metrics in a composition having deviating values) are lost. In fact,
the mean is suitable only for symmetrical distributions [89]. The distributions
for metrics in the field of software engineering are usually skewed [90], meaning
the mean is not appropriate.

To demonstrate how the mean can be problematic, consider cyclomatic com-
plexity measurements on two software projects. Suppose that the first project
consists of 1000 files of cyclomatic complexity 3. The mean cyclomatic complex-
ity is then also 3. Suppose the second project also consists of 1000 files. The
majority of these methods are similarly complex (cyclomatic complexity of 3),
but 10 methods have a cyclomatic complexity of 10. This finding may be rele-
vant; it seems like a few methods are extremely complex, which could threaten
the reliability of the entire system. However, the mean cyclomatic complexity
will be close ( 10·10+990·3

1000 = 3.07) to the mean cyclomatic complexity of the first
system.

For this reason, alternative aggregation techniques that originate from the
field of econometrics have been applied in a software engineering context [90].
Examples of these include the Theil index, Gini index and Atkinson index.
These aggregation techniques are used to compute economic inequality based
on very similar distributions as the ones that are common for software metrics.

2.8 Conclusions
In this chapter, we have seen the definitions of the software metrics TIOBE
uses.

TIOBE metrics are exclusively code-based product metrics. This means that
only a single version is evaluated at a time. While this is simple and convenient
in terms of implementation and interpreting results, the inclusion of historical
metrics could be useful for defect prediction. While integrating these metrics
in the TQI may not be desirable simply because historical data is not always
available, support for these metrics in TICS could be useful for customers.

From the code-based metrics we discussed, three are not integrated into
the TQI: the Halstead complexity measures and Mutation coverage. Halstead
complexity measures can be a replacement for cyclomatic (McCabe) complex-
ity. Adding them in addition to cyclomatic complexity is not wise, since both
are complexity measures and they highly correlate [39, 50]. Mutation testing
would be a great addition to the TQI, since it is a good predictor of test suite
quality [62]. Unfortunately, mutation testing is very computationally expen-
sive, meaning it is infeasible for large code bases. Even normal code coverage
tools take so long to run that their execution is limited to weekly or monthly
runs for large projects. Mutation testing requires, by nature, multiple runs of
the test suite. Mutation testing could be a nice addition to TICS for smaller
projects. Finally, the Chidamber and Kemerer metrics are interesting since
they are specifically aimed at object-oriented software. Almost all software that
the TQI is used on uses the object-oriented paradigm, but the metrics in the
TQI are predominantly defined at the method (cyclomatic complexity, abstract
interpretation) or line (compiler warnings, coding standards) level.

The TQI is discussed in more detail in Chapter 3. It includes a discussion of
how the metrics from this chapter are combined to result in a metric for overall
project quality.
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Chapter 3

The TIOBE Quality Indicator

In order to assess the validity of the TQI, we need to have a clear understanding
of how it works. We opt for a top-down approach. The description of the TQI
in this chapter summarizes a few documents written by TIOBE describing the
TQI in detail [16, 91].

We start by introducing the TQI in terms of its goal and presentation in Sec-
tion 3.1. We discuss the compliance factor, an aggregation method specifically
aimed at metrics for violations (such as coding standard violations or compiler
warnings) in Section 3.2. Section 3.3 describes how the metrics are integrated
and composed to form the TQI. Next, we describe the TQI in detail and consider
the design decisions and their ramifications in Section 3.4. Finally, Section 3.5
describes the evolution of the TQI definition over time.

3.1 Introduction to TQI

TIOBE customers are interested in an assessment of the quality of their soft-
ware. The tool TICS can perform such an assessment automatically. A TICS
assessment of a software product results in a grade between A and F. This grade
is based on the TQI score, which is a number on a scale of 0 to 100. This scale
is divided into categories, forming a mapping from a TQI score to the corre-
sponding grade. The categories with their corresponding names and TQI score
ranges are displayed in Figure 3.1.

The reduction from scores to grades is primarily aimed at managers. A single
grade is a very simple representation of quality. This is attractive from a mar-
keting perspective; it enables managers to acquire some indication of software
quality without needing to understand intricate details.

0 40 50 70 80 90 100

Poor Weak Moderate

Fairly good

Good

Outstanding

F E D C B A

Figure 3.1: Distribution of categories on TQI score.
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Note that the distribution of categories over TQI scores (Figure 3.1) is not
uniform. Instead, some categories have been enlarged to create what TIOBE
describes as “a Gaussian-like distribution” [16]. Also note that the reduction
from a number to category causes the results to be less actionable, which is
undesirable [78]. Another undesirable aspect is that the reduction of a number
to categories causes a “staircase effect”. This means that meaningful fluctuations
in the TQI score may not result in a different category, while tiny fluctuations
that are less meaningful may result in a sudden change of category. This means
that this category should be seen as an addition, not a replacement, of the TQI
score.

3.1.1 Metric inclusion criteria

A subset of the metrics that were presented in Chapter 2 are included in the
TQI. In deciding which metrics are included into the TQI, TIOBE used three
criteria:

1. Automatically calculable: for a metric to be included in the TQI,
it should be possible to compute its value using software tools without
human intervention for individual measurements;

2. Based on a single version: the calculation of a metric should not require
older versions of the software;

3. Standardizable: it should be possible to decide which values for metric
are considered “good” and which are considered “bad”.

The first requirement means that any manual measurement (such as rating a
system manually or separately activating tools) is not acceptable. This results
in the exclusion of process and project metrics. This requirement is necessary
because, the goal of the TIOBE is to automatically measure software quality [15].

The second requirement results in the exclusion of historical metrics. This
is because all historical metricss are an indicator of changes in the software. As
such, they are based on an comparison of at least two versions of the software.
This requirement is included because it enables the assessment of software qual-
ity based on a single version, instead of producing a result only after multiple
version have been analyzed.

For the final requirement, we should be able to establish a direction and a
threshold for a metric. In this context, the term “direction” refers to the direction
of a correlation coefficient. For example, cyclomatic complexity increases as
the complexity of a project increases. Since complexity is considered bad, the
direction of this metric is negative. A higher code coverage, on the other hand,
implies a larger portion of the code is tested, which is considered good. Note
that these directions are established by TIOBE based on face validity; empirical
results may invalidate the directions for some metrics.

Thresholds are values that establish a demarcation between “good” and “bad”
values for a metric. For example, McCabe [26] suggests an upper bound of 10 for
the cyclomatic complexity of a method. TIOBE considers average cyclomatic
complexity values under 3 to be good and values above 5 to be very bad [16].
Like most thresholds, these thresholds are based on experience or a viewpoint
on which metric values are acceptable [92].
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Table 3.1: Weights for the metrics the TQI composes.

Metric Weight
Code Coverage 20%
Abstract Interpretation 20%
Cyclomatic Complexity 15%
Compiler Warnings 15%
Coding Standards 10%
Code Duplication 10%
Fan-out 5%
Dead Code 5%

An alternative to this is to take a more statistical approach [93], in which
thresholds are derived that can differentiate between commonly found values
and the remaining, uncommon values. While this method can give additional
insight, it cannot serve as a replacement for evaluation by an expert. One reason
for this is that common practices are not necessarily good practices. In addition
to this, the results of the analysis depend on the sample that was used.

3.1.2 Composition

The TQI score is composed of aggregates that represent the following 8 at-
tributes:

1. Code coverage

2. Abstract interpretation

3. Cyclomatic complexity

4. Compiler warnings

5. Coding standards

6. Code duplication

7. Fan-out

8. Dead code

Each of these attributes is assigned a number on the same scale as the TQI, i.e.,
0 to 100. Each attribute also corresponds to a category (A to F) in the same
way as the TQI. This means that raw data is first aggregated to form a variety
of scores that are then composed into a single quality indicator. This differs
from the approach by Mordal-Manet et al. [5]; they advice to first compose
(i.e., combine code coverage, abstract interpretation and other attributes) and
then aggregate afterwards (i.e., combine different attributes to form a single
indicator of quality). The goal of this is for attributes at lower level to “retain
the intended semantic of the composition” [5].

Attributes are composed using a weighted mean. The weights for the metrics
that the TQI is composed of are presented in Table 3.1. In some cases, some
components may be missing. One reason for this is the absence of a license for
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tools. Abstract interpretation is done through tools that are relatively expensive
and therefore are not purchased by all companies. Similarly, some languages,
such as JavaScript, are typically interpreted instead of compiled. This means
there are no compiler warnings available in a typical use case. In the case of
JavaScript, TIOBE uses the Closure Compiler1 to obtain compiler warnings.
The TQI is defined to be conservative in this case. That is, absent metrics are
assigned a value of zero. The rationale behind this is that the TQI should never
give a false sense of security. This means that a lack of measurements in one of
the categories can never result in a higher TQI score.

The mapping from a raw metric to its equivalent value in the [0, 100] range
is different for each metric. Some metrics, such as code coverage, undergo a
linear transformation for their inclusion in the TQI. For other metrics, such as
abstract interpretation, the so-called compliance factor is computed based on
the number and severity of the various violations, which is then adjusted for
inclusion in the TQI.

The TQI and the metrics it is based on are presented to the customer in a
label resembling an energy label. An energy label is a familiar concept, which
makes it easy to understand. It allows management to base their decisions
on a broad impression, while engineers can use the more detailed information.
Figure 3.2 contains an example of such a label.

3.2 TIOBE compliance factor

The compliance factor [91] is an invention by TIOBE that is used to compute
a single number based on a set of violations of various types. It was originally
defined for use with coding standard violations under the name “static confidence
factor” [91], but has subsequently been renamed to “compliance factor” and is
now used for abstract interpretation, coding standard violations and compiler
warnings [16].

3.2.1 Static defect count

The compliance factor is based on the notion of a coding standard, weights for
each of the coding standard rules and the number of violations for every rule.
A coding standard C is defined as a set of rules. Every rule R ∈ C is assigned a
defect probability DP(R), which is the probability that the violation of the rule
corresponds to a real software defect.

We denote the number of violations of a ruleR within a program π as VR(π).
Using a weighted sum, TIOBE computes the static defect count for a program
using Equation 3.1.

SDCC(π) =
∑
R∈C

(DP(R) · VR(π)) (3.1)

The static defect count is the estimated number of bugs in the program based
on the violations of the coding standard.

1 https://developers.google.com/closure/compiler/
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Figure 3.2: An example of a label produced by TICS. It includes a TQI score
and an A–F grade for each of the metrics.
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3.2.2 Estimating defect probability from severity levels

The static defect count is based on the notion of defect probability. While the
mathematical definition is unambiguous, the defect probability of a rule is hard
to establish. In practice, experts assign a severity level to each rule. This is a
strictly positive natural number that indicates how serious a violation of this
rule is. Lower values indicate more serious violations. Given a severity level SL
for a rule R, TIOBE estimates the defect probability using Equation 3.2.

DP(R) = 4−SL(R) (3.2)

Note that the choice for a base of 4—and even the choice for an exponential
growth—is somewhat arbitrary.

3.2.3 Controlling for size and coverage

The following aspects of static defect count are problematic:

• Dependence on the number of rules;

• Dependence on the size of the code;

• The absence of data due to failing tools.

The compliance factor is an attempt to mitigate the impact of these weaknesses.
The dependence on the number of rules is referred to as the “coding standard

extension paradox” [91]. The paradox lies in the fact that adding more rules to
the coding standard (which makes it more useful) results in an apparent decrease
in code quality. This is because the static defect count can only increase as a
result of the addition of more rules. This is accounted for by dividing by the
number of rules of the same severity level. This results in adjusted definitions
for defect probability (Equation 3.3) and static defect count (Equation 3.4).

DP∗(R) = 4−SL(R)

|{R′|SL(R) = SL(R′)}|
(3.3)

SDC ∗C(π) =
∑
R∈C

(DP∗(R) · VR(π)) (3.4)

Similarly, larger codebases will typically result in a larger amount of defects.
This is simply a result of the aggregation technique and results in the metric to
become a proxy for size2. For this reason, the static defect count is also divided
by the size of the code in LOC.

Finally, if a tool crashes, this results in a lower static defect count. To prevent
the compliance factor from giving a false sense of security, the violation coverage
VCC(π) is taken into account. The violation coverage is the proportion of the
program in LOC that could be checked for violations, i.e., for which the tool
did not crash. This way, if only 80% of the program is checked, the maximum
score becomes 80% and the score is scaled to the range [0, 80] instead of [0, 100].

2 This is discussed in more detail in Section 2.7.
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3.2.4 Mapping to [0, 100] scale

Finally, the static confidence factor (or compliance factor) is a mapping of the
static defect count to a scale of 0 to 100, normalized by the number of lines of
code (Equation 3.5).

SCC(π) = 100 ·VCC(π) ·
KLOC (π)

SDC ∗C(π)
(3.5)

This formula matches the intuition that software with a higher volume (KLOC,
1000 lines of code) and a lower estimated defect count (SDCC) gets a higher
score. If only a limited amount of the code can be checked, the score is decreased
through the violation coverage VCC .

3.3 Metric integration into TQI

Each of the metrics is integrated into the TQI using a formula that maps it to
a value in the interval [0, 100]. We introduce the following notations in order to
write down these formulas in a concise way:

• We distinguish between metrics by using subscript abbreviations in capital
letters, namely tc (test coverage), ai (abstract interpretation), cc (cyclo-
matic complexity), cw (compiler warnings), cs (coding standard viola-
tions), cd (code duplication), fo (fan-out) and, dc (dead code);

• The raw metric value (e.g., the average cyclomatic complexity or abstract
interpretation violations): mx;

• The compliance factor for a metric: SC (mx);

• The TQI value (i.e., the value that has been mapped to the interval
[0, 100]) for a metric x: TQI x.

The formulas for all TQI metrics are presented in Equations 3.6 to 3.13.

TQI tc = min(0.75 ·mtc + 32.5, 100) (3.6)
TQI ai = max(SC (mai) · 2− 100, 0) (3.7)
TQI cc = min(max(140− 20 ·mcc, 0), 100) (3.8)
TQI cw = max(100− 50 · log10(101− SC (mcw)), 0) (3.9)
TQI cs = SC (mcs) (3.10)
TQI cd = min(−30 · log10(mcd) + 60, 100) (3.11)
TQI fo = min(max(120− 5 ·mfo, 0), 100) (3.12)
TQI dc = max((100− 2 ·mdc), 0) (3.13)

Note that TQIcs is equal to the compliance (confidence) factor based on coding
standards. Since this value is already in the range [0, 100], no modifications to
this value are necessary. Although both TQIai and TQIcw are already in the
range [0, 100] as well, these are transformed to achieve a more even spread across
categories.
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Finally, the TQI of the composed metrics is defined as follows (Equation 3.14):

TQI =
∑

x∈{tc,ai,cc,cw,cs,cd,fo,dc}

weight(x) · TQI x

= 20% · TQI tc

+ 20% · TQI ai

+ 15% · TQI cc

+ 15% · TQI cw

+ 10% · TQI cs

+ 10% · TQI cd

+ 5% · TQI fo

+ 5% · TQI dc (3.14)

The weights in Equation 3.14 are established by TIOBE based on their per-
ception of the importance of each of these metrics. At this time, there is no
reasoning provided for these weights and no evidence showing their appropri-
ateness for quality assessment.

3.4 Implementation

Even with the definitions of the metrics the TQI is composed of (from Chapter 2)
and the way raw metrics are integrated in the TQI, we have abstracted from
some of the details in the implementation of the TQI. We will now discuss some
of these details and critically evaluate some of the choices that have been made
for the aggregation of metrics into the TQI.

We use clear labels to indicate where we discuss a shortcoming of the TQI.
The remaining text is simply a description of how the metrics are computed.

3.4.1 Constants

The constants in the TQI formulas (Equations 3.6 to 3.13) and the weights for
the weighted average (Equation 3.14) are somewhat arbitrary. That is, constants
like 0.75, 32.5, 140, and other numbers that appear in these equations have not
been derived from theory, but are instead chosen to create a desirable distri-
bution for the metrics [16]. These distributions are desirable in the sense that
projects are distributed over the categories, as opposed to most projects ending
up in the same category. In addition, it ensures a grade of A is hard to achieve,
since only a very small subset of projects end up in this category. TIOBE aims
to base the weights for the metrics on statistical data in the future [16], but for
now the weights are established from industry experience.

Shortcoming 1 The constants in the TQI formulas lack a strong theo-
retical or statistical basis.
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Table 3.2: Overview of code coverage tools and the types of coverage they
support. These are all tools that are supported by the TICS framework [17].
The supported types of coverage were taken from the official web pages [94–104]
for each tool.
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BullseyeCoverage (Bullseye) [94] 3 3 3 3
Squish Coco (FrogLogic) [95] 3 3 3
CTC (Testwell) [96] 3 3 3 3 3 3
gcov/lcov (SourceForge) [97] 3 3 3
PureCoverage (IBM) [98] 3 3
C++Test (Parasoft) [99] 3 3 3 3 3
VectorCAST (Vector Software) [100] 3 3 3
NCover (NCover) [101] 3 3 3
OpenCover (open source) [102] 3 3 3
Jacoco (open source) [103] 3 3 3
Cobertura (open source) [104] 3 3

3.4.2 Type of code coverage

As we discussed in Section 2.3.8, there are various types of code coverage, with
the most popular being statement coverage, decision coverage and condition
coverage. Measuring code coverage involves running the tests while the imple-
mentation code is instrumented3. As such, it is highly specific to the language
and framework. This means coverage for different software projects is typically
collected by different tools.

An overview of tool support for various types of code coverage is shown in
Table 3.2. All of these tools are supported by TICS [17]. Almost all tools support
statement coverage. Decision coverage is also almost universally supported.
However, there is no type of coverage that is supported by all tools. This makes
it difficult to decide which type of coverage to include in the TQI. For this reason,
the average of statement, decision and condition coverage is taken (if available).
For example, a project with 100% statement coverage, 90% decision coverage
and an unknown condition coverage results in a TQI coverage of 100%+90%

2 =
95%.

The reason why the straightforward statement coverage is not supported
by all tools is that Bullseye, the developer of BullseyeCoverage, chooses not to
provide this metric [105]. This is because they think statement coverage should
only be used if no other coverage metric is available [105]. The underlying
reason is that it is particularly sensitive to computational statements instead of
decisions [63], which are arguably more important to test.

This design decision is problematic, since it means that the coverage score is
3 Instrumentation is the process of inserting instructions into source or binary code with

the goal of collecting data about the execution.
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highly dependent on the tool that is used to measure the coverage. Decision and
condition coverage are typically lower than statement coverage4. This means
that any given project scores better using a tool that only supports statement
coverage, since it will reach a higher coverage relatively easily. A high score is
much more difficult to obtain when using a tool that only supports decision and
condition coverage. This is particularly unfortunate, since the different types
of coverage correlate so highly that we can conclude they measure the same
thing [66].

Shortcoming 2 The TQI code coverage score is highly dependent on
the coverage types supported by the tool.

This suggests an alternative approach of choosing a particular type of cover-
age and approximating it using a statistical method like linear regression when
it is not available. While imperfect, this method does not have the drawbacks
discussed earlier. A downside of this method is that the semantics of approx-
imated metrics are not as clear. For example, developers can understand that
a low statement coverage is caused by tests not executing all lines. To improve
coverage, they can look at the parts of code that are not covered and write tests
for them. However, if we estimate statement coverage from any of the other
coverage types, the estimated coverage may not increase when more statements
are covered.

3.4.3 Abstract interpretation tools
Abstract interpretation is inherently language-specific, so it is accomplished
with a different tool [17] depending on the project.

Shortcoming 3 The differences between tools, particularly the severity
levels for violations and the overall volume of violations, could strongly
impact the resulting compliance factor and TQI score.

Abstract interpretation tools are typically not free. This has resulted in one5
TIOBE customer opting to disable abstract interpretation in order to save costs
on license fees. This choice results in a potential 20% decrease in the overall
TQI due to its high weight (see Table 3.1).

Shortcoming 4 A lack of an expensive license can negatively affect a
company’s TQI score.

3.4.4 Interpretation of cyclomatic complexity values
TIOBE considers average cyclomatic complexity values under 3 to be good and
over 5 to be very bad. Equation 3.8 maps the interval [3, 5] of average cyclomatic

4 For an intuition of why this is, refer to Section 2.3.8. The average coverage measurements
observed in software TIOBE monitors are 31.10%, 27.53% and 21.93% for statement, decision
and condition coverage respectively.

5 at the time of writing
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complexity linearly to TQI scores [40, 80]. This corresponds to categories B to
E. The remaining two categories (A and F) are reserved for the cyclomatic
complexities under 3 or above 5.

Since TICS stores measurements per file, there is no functionality in place
to store the cyclomatic complexity per method. To still be able to compute a
sensible average cyclomatic complexity, TIOBE stores both the total cyclomatic
complexity of a file (the sum of cyclomatic complexity measurements) and the
number of methods in a file. To compute the average cyclomatic complexity on
any granularity level, the total cyclomatic complexity is simply divided by the
total number of methods.

Note that an average cyclomatic complexity of 7 results in a score of 0;
higher complexity is ignored. Similarly, an average complexity of 2 is sufficient
to reach the maximum score of 100.

Shortcoming 5 The TQI cyclomatic complexity score represents a lim-
ited range only.

3.4.5 Compiler verbosity settings
Compilers may suppress a subset of the warnings they generate. The reasoning
behind this is that too many unimportant warnings may overwhelm the user,
obscuring important warnings in the process. When assessing the quality of
the product, hiding warnings is undesirable. For this reason, TIOBE uses the
highest possible warning level for all compilers.

Note that this does not solve the problem of different compilers being stricter
or less strict than others. While the compliance factor has been designed to deal
with these differences, it is not clear to what extent it is effective.

Shortcoming 6 The compliance factor lacks empirical validation.

Another issue with compiler warnings is that they are not necessarily inde-
pendent. Therefore, a single problem may result in many compiler warnings,
meaning the volume of compiler warnings may be relatively meaningless.

Shortcoming 7 The number of warnings may be meaningless if warnings
are dependent.

3.4.6 Coding standard adherence
Coding standards are evaluated through the TIOBE compliance factor [91] (see
Section 3.2). This allows one to compare projects in terms of coding standard
adherence.

Companies choose their own coding standard; TIOBE simply measures their
adherence to this standard and includes this in the TQI. This means that a
company could easily “trick the system” by choosing a lenient coding standard,
or a coding standard with a lot of rules that have little chance of occurring in
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practice. In that sense, the current policy is closer to a self-assessment than
an objective measure for quality. This means adherence to coding standards
measures a company’s success at achieving its goals, not the quality of the
software it produces. At the very least, adherence to coding standards can only
be compared meaningfully if the coding standards are equivalent. It should be
noted that most companies do use the default coding standard TIOBE provides,
with only some larger companies making adjustments by adding their own rules.

Shortcoming 8 The ability of companies to choose their own coding
standard enables companies to artificially inflate their TQI score.

More importantly, there may be legacy code in the system that does not ad-
here to coding standards. A programmer seeking to improve quality is therefore
motivated to change this code to adhere to the standard. Considering that every
change has a (possibly small, but non-zero) chance of introducing a fault [106],
enforcing a strict adherence to a coding standard and encouraging developers
to make changes to adhere to it may decrease the reliability of the software [75].

Shortcoming 9 The negative effect of legacy code on the TQI coding
standard score may prompt developers to introduce bugs during the process
of resolving violations.

3.4.7 Duplicated code

TIOBE uses an implementation of the Rabin-Karp algorithm [107] to detect
code clones. This algorithm is restricted to detecting syntactic equivalence. In
particular, it can detect type-1 and possibly type-2 clones. The ability to detect
type-2 clones depends on the tokenizer, which extracts tokens from source code.
TIOBE uses a tokenizer to allow the detection of type-2 clones for C, C++, C#,
Objective-C, PL/SQL, Python, Scala, and VB.NET, but the clone detection
for other languages (such as Java and JavaScript) is restricted to type-1 clones.
This distinction is implicit; there is no indication within TICS which type of
clones are detected.

Shortcoming 10 The type of code clones that are used for duplicated
code are unknown.

Since small code clones are less interesting, TIOBE only considers clones
consisting of at least 100 consecutive tokens. The degree of code duplication is
then measured by counting the number of lines of code that contain a clone and
dividing it by the total number of lines of code in the system.

If two (or more) pieces of code are considered a clone, both (or all) of the
code contributes to the percentage of duplicated code. The rationale behind
this is that when a single piece of code is cloned multiple times, this should
increase the percentage of duplicated code.
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Listing 3.1: Illustration of different import mechanisms in Java.

1 import java.util.List;
2 import java.util.ArrayList;
3 import java.util.LinkedList;
4
5 import java.util .*;

3.4.8 Measurement of fan-out

TIOBE defines fan-out as “the average number of imports per module” [16].
Identifying imports is highly language-dependent, since languages use differ-
ent concepts and keywords to facilitate importing modules. For C and C++,
the number of include statements is used; for Java the number of import
statements is used. For C#, instead of counting using statements, a more com-
plicated analysis is used. This has prompted the introduction of a separate tool
under the name TICSCil (which is discussed later in this section).

While the choice of imports as a proxy for fan-out seems to make sense, it
should be noted that in some languages, a class can rely on other components
without explicitly importing them. Java is an example of this. While it is
customary to import a class before using it (i.e., import java.util.List;
before declaring List list;), this is not necessary (we can instead directly
declare java.util.List list;).

Shortcoming 11 Some languages may allow the use of external modules
without requiring import statements.

It could be argued that these examples, while theoretically valid, are not
common in practice. It is highly unusual to use classes without explicitly im-
porting them. Using wildcards in import statements is generally discouraged as
well [108].

We discuss some language-specific challenges to counting imports in the para-
graphs below.

Wildcards

A problem with counting a number of statements is that the same imports can
be achieved in different ways. One example of this is illustrated in the Java
code in Listing 3.1. The import statements in lines 1 to 3 can be replaced by
the single statement in line 5. In fact, this can be done for an arbitrary number
of imports. This “trick” is dependent on the structure of the modules that are
imported.

To deal with this issue, TIOBE uses a heuristic to estimate the number of
imports for a wildcard statement. The current estimate is 5 [16]. This estimate
was previously used for all languages for which fan-out is measured. With the
introduction of TICSCil, it is no longer used for C#. The remaining languages,
including Java, still use this heuristic.
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Dynamic imports

Counting imports is even trickier in dynamic languages, like Python. The ap-
proach by TIOBE fails for the following reasons:

• A high-level import of a module gives access to the entire module, includ-
ing all of the submodules it contains. For example, consider a module X
which contains modules A, B, and C. We can import these modules using
three statements import X.A; import X.B; import X.C. However, we
can accomplish the exact same result by using import X.

• Extending on the previous example: we can use from X import A, B, C
to achieve the same result. A statement like this would actually also be
counted as three imports.

• Artificially decreasing fan-out can be accomplished by placing all imports
for an entire software system in a single file, and importing that file in
every other file. This achieves the minimal amount of imports without
compromising functionality.

This can be done because imports are transitive, i.e., importing X also
gives access to all modules that are imported by X. For example, if X con-
tains a line import Y, we can access Y without importing it by importing
X and referring to X.Y.

This is just an example of “cheating the system”; a design like this is
actually bad in terms of maintainability and execution speed and can
therefore not be recommended.

Shortcoming 12 Counting imports to measure fan-out is problematic
in dynamic languages.

Namespaces

C# is an example of a language that uses an import system based on namespaces.
This means that all imports are comparable to imports using wildcards in Java,
in that the entire namespace is imported instead of the portion inside of it that
is used. Namespaces can consist of hundreds of classes, but typically very few
are actually used. This means the heuristic of 5 imports per using statement
is especially imprecise, resulting in inaccurate measurements.

For this reason, TIOBE introduced a separate tool under the name TICSCil.
This tool uses the .NET framework to accurately determine how many external
classes are used in each file. Since this tool is language-specific, the remaining
languages still use the same heuristic of 5 imports per wildcard.

The introduction of TICSCil has had a massive influence on measurements,
as can be seen in Figure 6.8 (page 72).

3.4.9 Dead code

As we pointed out earlier (Section 2.3.5), the concept referred to by TIOBE
as “dead code” is actually “unreachable code”. The dead code component is
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included in the TQI in the form of the percentage of lines of code that are
unreachable. A higher percentage results in a lower score.

When measuring unreachable code, TIOBE does not consider any unused
variables or similar unused code, but restricts to unused files and methods. Dead
code is measured in terms of LOC. This means that an unreachable method or
file is counted more heavily when it is larger. It could be argued that the number
of separate occurrences of unreachable code is a more reasonable metric, since
each of these occurrences signals that some method or file is no longer used.

Dead code can be detected through abstract interpretation. If this results in
a violation, it is taken into account for the abstract interpretation component
of the TQI.

3.4.10 Order of aggregation, composition and TQI inte-
gration

A raw metric value undergoes at least three processes before it impacts the TQI
of the entire project. These are:

1. Aggregation: the process of aggregating the measurements on multiple
files to obtain a value representing the metric over the entire project;

2. TQI integration: the process of applying one of the formulas in Section 3.3
to obtain a TQI component with a value in the domain [0, 100];

3. Composition: the process of combining metrics into a single TQI value
using a weighted average.

These processes are executed in the order they are listed above. This order has
an influence on the TQI values.

Mordal-Manet et al. [5] suggest to compose the metrics before aggregating
them. Their reason for this choice is that this will “retain the intended semantic
of the composition” [5]. This is reasonable, since the aggregation over files has
unintended side effects, such as hiding details by smoothing them out [87, 88].
On the other hand, it removes the possibility of using a different aggregation
for different metrics. This is a challenge, since not all metrics are evaluated on
the same granularity level. For instance, cyclomatic complexity is computed per
method, while fan-out is computed per class.

Shortcoming 13 The order of aggregation and composition used for the
TQI is discouraged by literature.

TIOBE does offer composed measurements on lower levels (e.g., file level
and package level). For these cases, the aggregation is simply restricted to the
requested level. The formulas mapping the measurements to the [0, 100] domain
are applied here as well.

This does have some unintended side effects. In some cases, the overall TQI
value for a project is higher or lower than all of its top-level packages. This
means that a project consisting of two packages P and Q could have an overall
TQI value in the B range, while P and Q are both assigned values that result
in an A score. This is an artifact resulting from the order of these steps that
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can be confusing to end users, who may expect the value to result from some
kind of weighted average.

Shortcoming 14 The integration of a metric into the TQI may lead to
confusing side-effects.

3.5 Evolution of TQI definition

So far, we have discussed a single version of the TQI. However, the TQI definition
is updated periodically. In this section, we consider the consequences of these
changes.

An important property of any metric, including the TQI, is the consistency
of its values over time [24, p. 11]. This allows one to compare the current value
to historical values of the TQI. Fortunately, the consistency of these values is
enforced by TICS. The TQI is computed dynamically from the raw metrics at
all times.

This dynamic recomputation also has a negative side. When the TQI def-
inition changes, historical values also change, i.e., a more recent definition of
the TQI is retrospectively applied. This may be confusing to the end user. We
should note that these changes only occur when the version of TICS is upgraded,
meaning the TQI does not change as long as the client stays on the same version.

At the start of this graduation project (September 2015), the extent to which
TIOBE used versioning for TICS and the TQI was limited. While each version
of the TQI was assigned a version number, there was no changelog comparing
historical versions. TICS did refer to a specific version of the document, but
only the latest version of the TQI document was available on TIOBE’s website.
This means that when a user was using an old version of TICS and read the
TQI definition, they were presented with a version that was possibly inconsistent
with the implementation. Only a manual comparison of the version numbers
could reveal this inconsistency.

A recommendation resulting from this project was to start maintaining a ver-
sion history and present historical versions of the TQI document online. TIOBE
has already decided to adhere to this recommendation; version history is now
presented on the TIOBE website [109]. Additionally, previous versions of the
TQI document are available. This is an important improvement, since it allows
anyone to investigate how the TQI definition changed over time. Figure 3.3
contains the current changelog for the TQI.

3.6 Conclusions

In this chapter, we have seen how the TQI is computed based on raw metrics.
Using this information, we can propose some recommendations to improve the
TQI.

First, the constants in the various TQI integration formulas (Equations 3.6
to 3.14) seem arbitrarily chosen. They result from the metric data that has been
collected in the past, but are periodically updated. A better way of establishing
these constants would be to base them on empirical evidence. One way to do this
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3.7 Relaxed TQI for code duplication a bit.

3.6 Added multiple compiler constraint to TQI.

3.5 Made a distinction between internal and external fan out.

3.4 Updated the average cyclomatic complexity.

3.3 Excluded header files from metric "Code Duplication".

3.2 Updated TQI document for improved Code Duplication calculation.

3.1 Updated TQI document for new C# fan out calculation.

3.0 Factored out metric coverage in TQI definition.

2.2 Added percentages to the TQI scores.

2.1 Adjusted TQI metric boundaries.

2.0 Improved the TQI definition for compiler warnings.

1.2 Added recommended TQI levels.

1.1 Improved the TQI energy label.

Figure 3.3: Changelog for the TQI (reproduced from the TIOBE website [109]).
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would be to apply regression and use the resulting coefficients as an indication
of the importance of each metric.

As we discussed in Section 3.5, TIOBE recently started maintaining a change-
log on their website [109]. Another improvement in terms of traceability could
be made by giving insight in the origin of metrics. For instance, when a user
sees a change in the TQI score, TICS could show which metric(s) and file(s)
caused this change. This would be even more useful if changes in versions of
tools are also recorded. Due to its dependency on external tools, it is inevitable
that the historic measurements recorded by TICS sometimes change purely as a
result of changing (the version of) a tool, such as an abstract interpretation tool
or compiler. These tools are typically updated by the TIOBE service team. If
they would store information about these upgrades in the TICS database, this
could help users to understand the cause of changes in measurements.

The next change is related to code coverage. Currently, the average of the
available coverage metrics is taken, depending on the tool that is being used.
A better alternative is to simply use a widely supported type of code coverage
(statement or decision coverage) directly. This is justifiable, since aggregated
code coverage measurements correlate strongly. The other coverage metrics can
be offered within the TICS interface, but do not need to be part of the TQI
definition.

Another change is to only support standardized coding standards for inclu-
sion in the TQI. While some customers may find it attractive to add more rules
in order to comply to some alternative coding standard, no company should be
allowed to add or modify rules that could influence their TQI score.

The problems we found with the computation of fan-out can mostly be
addressed by developing tools that inspect imports more closely.

Finally, TIOBE can consider to change the order of aggregation and com-
position after the advice of Mordal-Manet et al. [5]. This could prevent some of
the confusing effects we discussed in Section 3.4.10.
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Chapter 4

Establishing the relation
between metrics and bugs

Since the topics of software quality and software metrics are popular among
researchers and relevant for industry, there exists a large body of literature
related to this thesis.

The most important goal of this chapter is to present the various approaches
to empirical validation of software metrics. We discuss how repository mining
can be used to obtain data on defects in Section 4.1. One particularly relevant
example of this field, bug prediction, is covered in Section 4.2. Bug prediction
is relevant because research in this area uses techniques to examine historical
occurrence of faults, which can also be applied to validate software metrics.
We discuss some details of the Git version control system that become relevant
when applying bug prediction in Section 4.3. We discuss the distinctions we
can make between various kinds of bugs in Section 4.4. The generalizability
of results obtained from bug prediction is covered in Section 4.5. Finally, we
consider some previous research on the TQI in Section 4.6.

4.1 Repository mining

As explained in Chapter 1, we want to use bugs as a proxy for software quality
to validate the TQI metrics. Unfortunately, establishing the number of bugs in
a piece of software is no trivial task. Bugs can only be counted if they have
been found in the first place.

However, most companies do keep a historical record of faults that have
been encountered in their software project. By automatically mining software
archives, we can find big volumes of data that can be used as evidence to test
a hypothesis [110]. This is attractive from a statistical point of view, since a
large sample size can provide evidence for our hypotheses. It is also a relatively
inexpensive way to conduct research. If we grant that faults in the history of
the project are similar to faults that will appear in the future, we can evaluate
metrics on historical data to assess their validity.

Examples of software archives include version control systems and bug track-
ing systems, but also the source code of the software itself and documentation.
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4.1.1 Data reliability
While repository mining results in a large amount of data, this data is generally
noisy and incomplete [110]. The quality of this data is of vital concern, since
noisy data can lead to incorrect conclusions [111–113].

An example of a problem that impacts the validity of data originating from a
bug tracking system is that some bugs may be reported multiple times. This is
the case, for example, when multiple people independently find an issue without
realizing it is induced by the same root cause [114–116]. The reverse is also
possible. The fix for a problem could be distributed over multiple commits. This
is particularly relevant when the task of fixing bugs and testing the software is
not assigned to the same person. A developer may attempt to fix a bug and
commit it. A tester then tests the fix, and finds a flaw. The bug is then
reopened, and the developer commits a second fix.

It has been suggested that industrial projects may be subject to stricter
regulations [112], which could result in higher-quality data compared to data
originating from open-source projects. TIOBE customers in particular are often
subject to Food and Drugs Administration (FDA) regulations [117].

4.1.2 Version control systems
Version control systems are a major source for repository mining. A Version
Control System (VCS) is a system that keeps track of different revisions of (the
source code of) software. Additionally, it contains documentation in the form
of commit messages, which explain why a change was made and may refer to
other documentation.

A version control system stores revisions (versions) of software or other files
in a structured way. Users commit changes to a version control system to store
them. Each commit results in a unique version, which is typically an integer that
is incremented for every new commit.1 Some VCSs, such as CVS, record change
information per file. Most modern VCSs instead use a notion of changeset to
refer to the contents of a commit over multiple files, and therefore use a single
version number for all files that are tracked by the system.

Most VCSs provide branching functionality. This means that multiple slightly
different versions of the software are tracked at once. These branches can later
be merged (either manually, automatically, or through a combination of the
two), such that the changes that were committed to the separate branches are
combined. A popular application of branches is to use a stable and unstable
branch, which provides the distinction between the version of the software that
is deployed to customers and a version with newer (possibly unfinished or buggy)
features. Another possibility is to use feature branches, each of which contains
a single version that is later merged with some “main” branch. The underlying
structure of a version control system is a Directed Acyclic Graph (DAG).

In general, a version control system provides functionality to easily retrieve
older versions of the files it tracks and functionality to compare (diff) ver-
sions. Another feature that is often provided is annotation (popularly known as
blame), which shows the origin (i.e., the last modification) of each line in a file.

We can distinguish between centralized and distributed version control sys-
tems. A centralized VCS consists of a server that keeps track of the history of

1 Git is an exception to this rule; it uses SHA-1 hashes.
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revisions. A distributed VCS is locally stored by each user. This means the
entire history, including all previous changes, can be accessed without commu-
nicating with an external server.

Examples of centralized version control systems include CVS and Subversion.
Examples of distributed version control systems include Mercurial and Git.

In the context of repository mining, a distributed VCS is different from a
centralized one. Distributed systems are preferable since they can generally
be accessed in their entirety. Local changes that could not be recovered when
using a centralized system can be investigated. However, this extra data also
introduces more chances to misinterpret the version history [118].

4.1.3 Bug tracking systems
Bug tracking systems are another important source for information for reposi-
tory mining. A bug tracking system is an application that maintains a record
of faults that have been encountered in a software project.

The following fields that are typically stored for each entry in a bug tracking
system:

• Submitter: the person who reported the bug to the bug tracking system.

• Assignee: the developer who has been chosen to handle the ticket.

• Class: a field that is used to make the distinction between change requests
and bugs. A change request is a generic request to change some aspect of
the program; a bug is an implementation error that should be fixed. These
are sometimes referred to as Problem Report (PR) and Change Request
(CR) respectively.

• Priority: an indication of how quickly the ticket should be handled.

• Severity: the extent to which the defect can affect the software. This
is not necessarily the same as priority; a bug may result in great damage
(i.e., be very severe) but not given a high priority because it is extremely
rare.

• Status: the status of the ticket. Possibly values may include “open”,
“closed” and “won’t fix”.

• Date/time: the moment the ticket was introduced. Usually, the moment
of closing the ticket is also registered.

This information can be used to acquire real-time data on defects in the
project history, the time it takes to handle a ticket and the effect of priority or
severity on the way tickets are handled. All of these are potentially interesting
for software engineering research.

Some bug tracking systems are integrated with one or more version control
systems. This allows users to easily retrieve a commit that belongs to a bug
ticket and vice versa. Alternatively, commit messages may be used to refer to a
ticket identifier [119]. This concept is discussed in more detail in Section 4.2.1.

The data from a bug tracking system may be of low quality. One issue
could be that not all bugs are reported in the system, which could cause a
potential bias [120]. Another is that the commit through which a bug is fixed
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is not always documented [121]. Finally, bugs may be assigned the wrong class
label [122] (e.g., a ticket may be labeled as a bug while it is actually a change
request). Some authors claim these imperfections are relatively harmless [121],
while others point out they have likely led to wrong conclusions in previous
research [112, 120].

4.2 Bug prediction

Bug prediction is an example of a field in which repository mining is applied.
Bug prediction is the process of estimating the likelihood of software defects in
software. The underlying assumption is that the occurrence of bugs (both their
time of introduction and their location in the source code) resembles historical
occurrences of bugs that have been documented in the bug tracking system.

Bug prediction has been applied successfully to predict the time of occur-
rence [123, 124] and location [37, 125] of bugs.

In the remainder of this section, we describe how the data from various
software repositories can be combined in order to estimate the time and location
of bug introductions and fixes.

4.2.1 Linkage

Linkage refers to the process of linking the tickets from the bug tracking system
to the information in the version control system. This allows us to determine
when a bug was fixed and which files were changed to accomplish this fix.

The linkage process is illustrated in Figure 4.1. We establish a link between
the bug tracking system and version control system by examining the commit
message for a commit in the version control system. If this message contains
a reference to a bug ticket (such as “#394”), we can consider the commit to
be bug-fixing. In order for this process to succeed, we need to rely only on the
accuracy of the references from commit messages to bug tickets. Of course, a
number can also refer to something other than a bug ticket. If commit messages
follow a stricter structure, we can ensure a higher quality of linkage by searching
for this structure instead of any integer.

When we establish linkage, this means that we have linked all documentation
about the bug from the bug tracking system to the changes that resolved the
bug.

While bug-fixing commits are interesting, the introduction of a bug is even
more interesting. After all, it is not the fixes for bugs we want to predict, but
the existence of non-reported bugs. Even for bugs that have been fixed, their
moment and location of introduction is not well-documented.

However, a combination of information from the version control system and
heuristics can help us to trace back through the project history to estimate
the introduction of a bug. We accomplish this using the blame- or annotate-
functionality of the version control system to find the commit in which the
relevant line was changed last before the bug fix. We then consider this commit
to be bug-inducing.

One well-known way of automatically identifying commits that fix a reported
bug is the SZZ algorithm [126, 127]. It uses a mixture of keyword analysis and
heuristics to link a bug report to a commit. A machine-learning alternative that
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Figure 4.1: An illustration of linkage between tickets in a bug tracking system
and commits in a version control system.

performs slightly better is ReLink [128]. We should emphasize that the reliabil-
ity and effectiveness of all of these methods has been severely questioned [41,
78, 79, 112, 113, 129, 130]. This is partly due to the unreliability of the data.
Another important factor is the challenges in validation of bug prediction mod-
els.

4.2.2 Data analysis
Once we obtain the relevant data, we can use statistical analysis to infer relations
between quality measures and bug counts. There are different approaches to
this.

Regression

A variety of papers [38, 131–133] have proposed regression models for bug pre-
diction, specifically negative binomial regression. Using such a model, we try to
predict the number of bugs using one or more metrics. This allows us to check
whether the metrics significantly predict the number of bugs. This is a good
indication that these metrics predict quality.

A regression model produces a coefficient for each independent variable. This
is similar to the way the TQI is computed, suggesting that these coefficients
could provide weights that more accurately predict the number of bugs. Care
needs to be taken with this, since the coefficients do not necessarily add up
to 100 and some forms of regression (like negative binomial regression) do not
predict the number of bugs directly, but the log of the number of bugs instead.

A variation of the negative binomial regression that is applicable to bug
count data is zero-inflated negative binomial regression. In most cases, the
majority of observations (files, commits, software versions or some other unit
to which a bug count can be assigned) will have 0 bugs. Zero-inflated models
deal with this by considering the existence of a bug (zero or non-zero) and the
number of bugs as separate variables [134].

When using regression, it is important to make sure the distribution of the
data matches the theoretical distribution the regression expects.

The usage of regression for bug prediction has been criticized for its inabil-
ity to discover relations of cause and effect [30]. Unless all variables that could
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influence the dependent variable are present, regression models only show cor-
relation. This somewhat limits the practical application of regression models.

Classification

Bug prediction can also be considered a classification problem [76, 78, 79, 125].
This problem can be phrased as: “does a component (file, class, sub-project)
contain a bug or not?” In some cases, the approach is simply to list the files
that are most likely to contain bugs.

These bug prediction methods are often able to identify the buggiest files
in a project, but they are often simply a proxy for code churn. That is, listing
the files that have been modified most often is as effective as more complicated
classification models [76]. This limits their usefulness, since developers are often
aware which files change often and are aware that they are defect-prone [78].

Classification in the context of bug prediction can be challenging because
most commits do not cause bugs. This results in imbalanced data [79]. Tech-
niques like resampling can improve the results [79].

Alternative technique for TQI validation

Both regression analyses and machine learning techniques are techniques to
build a model that can predict the occurrence of bugs. Both techniques attempt
to find the original location of bugs through heuristics. The SZZ algorithm [126]
is a well-known example of this. The algorithm was later improved to remove
some shortcomings that were present in the original version [127, 135], but since
there is no ground truth it is hard to know whether acceptable levels of accuracy
are achieved.

To avoid this threat to validity, we could simply investigate bug-fixing instead
of bug-inducing commits. That is, we consider all links between a commit c and
bug ticket b. We then find the parent c′ of c. We can then consider the difference
in TQI (or any other metric) between c′ and c. Since the number of bugs is
lower in c, we would expect c to have a higher quality than c′.

There are a couple of problems with this approach. First, we need to restrict
the metrics we use or adapt their definitions. Some metrics, like duplicate code,
have a different meaning in the context of a limited subset of files. Another
issue is that the difference in quality between these revisions may be almost
non-existent. In fact, some metrics may indicate quality has decreased after
a bug has been fixed. For example, consider a bug that is fixed by adding
a missing if-statement. This statement will cause an increase in cyclomatic
complexity. Therefore, we may be tempted to conclude cyclomatic complexity
is not a positive predictor of the number of bugs, because we only look at this
isolated change. The absolute cyclomatic complexity of the function (before
and after) may be much more worthwhile. Finally, the TQI is meant as a
general indication of quality over an entire project. Even if we find that the
metrics it is composed of are very effective at predicting the number of bugs,
this arguably provides little evidence for the notion that the aggregated TQI is
a good predictor of bug density.
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4.3 Git internals

The version control system we deal with primarily for the context of this project
is Git2. This is because this is the VCS we encountered in the case study. Git is
an example of a distributed VCS. While the use of Git is similar to other VCSs
for end users, its inner workings become relevant when investigating the history
of a project. Note that while our general methodology works on all VCSs, we
can only fully understand the context of development by taking a close look at
the specific technology that is being used.

This section is intended to be a primer to the internals of Git. Many of the
concepts in Git are shared by other version control systems, but some of the
details are different. Since these details are relevant for the methodology of our
case study (Chapter 6), we present them here.

Files At its core, Git is a simple key-value store. The values it stores are files;
the keys are the SHA-1 hashes of the files. Note that Git tracks the contents of
a file, not its location in the file system or file name. At this level, there is also
no notion of a revision of a file; we simply provide file contents to Git and get
a hash so we can retrieve the contents later using this hash.

Trees A tree is essentially Git’s version of directories or folders. This enables
grouping files together in a hierarchical structure and provide names for files.
Trees are implemented as files following a certain structure. This structure
resembles a textual table specifying for each child of the tree (a) whether it is
a file (blob) or tree; (b) its SHA-1 hash; and (c) its name. Trees allow us to
store directory structures containing named files and sub-directories. Using the
concepts we have seen so far, we can provide a directory structure to Git and
later retrieve it using the provided hash. Recall that a tree is implemented as a
file, so we can compute its SHA-1 hash just like we can with any other file.

Commits A commit object provides a way to track versions of trees. Like
trees, commits are implemented through files. This file contains (a) the SHA-1
hash of parent3 commit(s); (b) the name, email, and date of the author; and
(c) the name, email, and date of the committer. The distinction between an
author and committer is subtle. The author of a commit is intended to be the
person who produced its contents. The committer is the person that added the
changes to the VCS. In many cases, these are the same person. An example
where this is not the case is if the author is someone who does not have access
to the VCS. This author can then offer changes for review to someone who is
more intimately involved with the project and can act as committer. A commit
object again results in a SHA-1 hash that identifies it. All commits form a DAG.
This DAG is not necessarily connected; if there are multiple root commits they
can each form a separate connected component.

References Finally, Git uses references to provide names to specific commits
in the DAG structure. A reference is essentially a name that points to a certain

2 http://git-scm.com
3 A root commit has no parents; a “normal” commit has one parent; a merge commit has

two (or theoretically more) parents.
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Figure 4.2: Illustration of an explicit merge. The circles denote commits; the
yellow rectangles denote branch references; the arrows denote parent-child re-
lations. When we merge the dev branch into the master branch, a new merge
commit is constructed and the master branch is updated to refer to this commit.
Images generated using Explain Git with D3 [136] and used with permission.

commit (through its hash). References include various kinds of tags as well as
branches. A tag is used to provide a name for a specific revision. This allows a
user to easily reference a certain version of the software. For instance, a stable
version 1.0 may be given the tag 1.0 to allow developers to easily access the
revision without having to remember a hash. A branch is similar, in that it
simply points to the most recent commit in a branch. Whenever changes are
committed to this branch, a new commit object is created and the branch is
updated to refer to the new commit.

Using these concepts, we can consider what happens internally when executing
some operations on the Git VCS.

Explicit merge An explicit merge is the standard way of merging two branches.
Consider a branch master that refers to commit a and a branch dev that refers
to commit b. Merging the changes of branch dev into branch master involves
creating a merge commit c and updating master so that it refers to c. This
process is illustrated in Figure 4.2.

Fast-forward merge Consider a branch dev that refers to commit a and
a branch ff that refers to commit b. When both branch dev and ff change
before the two are merged together, a merge commit is necessary to integrate
the two changesets. However, there are situations where this merge commit is
unnecessary. For example, dev may be a feature branch that is merged back
before any changes are made in ff. In this case, we can omit the merge commit
and simply update ff to make it refer to a. This is called a fast-forward merge.
Fast-forward merges remove unnecessary clutter from version history, which can
help developers. However, it also obscures the details of the history in terms of
branches and merges. This process is illustrated in Figure 4.3.

Rebase A rebase is another way of integrating changes from one branch into
another. Again, consider a branch master that refers to commit a and a branch
dev that refers to commit b. Suppose branch master contains changes to some
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Figure 4.3: Illustration of a fast-forward merge. The circles denote commits;
the yellow rectangles denote branch references; the arrows denote parent-child
relations. When we merge the dev branch into the ff branch, we simply move
the pointer of the ff branch. We can do this because ff contains no commits
that dev does not contain. Images generated using Explain Git with D3 [136] and used
with permission.

files, with branch dev containing changes to other files. Since the intersection of
these files is empty, the merge commit again contains no changes. However, we
cannot simply update either branch to refer to the latest commit of the other
branch, since this would result in lost changes.

Instead of merging, a developer can opt to rebase changes. This means that
the changes from branch dev are applied one by one starting from commit a.
This means that the commits in branch dev are replaced by new commits, which
have a different parent, a modified tree and (because of this) different hashes.

This process is sometimes referred to as rewriting history, since the original
version history of branch dev is modified to make it seem like the changes were
applied directly to branch master. While the term has a negative connotation
(since a VCS is supposed to store history), this approach has the advantage of
removing clutter from version history.

Rebasing can also be used to rewrite different aspects of history. For exam-
ple, commits can be squashed together to appear like a single commit, or commit
messages, authors and committers can be edited. All of these changes result in
a new hash for the commit that is being edited. All subsequent commits are
then also updated, since their reference to the parent commit must be updated.
This process is illustrated in Figure 4.4.

Cherry-picking Cherry-picking is the process of moving one or more commits
from one location in the DAG to another. It is a special case of rebasing. Cherry-
picking may be useful in a situation where change that is made in one branch
is useful in another, but merging the two branches together is impractical.

Advantages and disadvantages

The Git structure poses the following challenges for repository mining [118]:
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Figure 4.4: Illustration of a rebase. The circles denote commits; the yellow
rectangles denote branch references; the arrows denote parent-child relations.
When we rebase the dev branch into the master branch, we construct a new
commit for each commit in the dev branch that contains the same changes, and
apply it on the master branch. Note that the hashes of the rebased commits
(blue circles) have changed! Images generated using Explain Git with D3 [136] and used
with permission.

• There is no explicit mainline. Most centralized VCSs have a notion of one
branch that is considered to be default (e.g., trunk in Subversion). Most
Git repositories contain a master with the same meaning, but there is no
need for such a branch (or even any branch at all) to exist.

• There is no explicit indication of the branch a commit was committed on.
Instead, we know which commit is currently at the top of a branch and
we can find its parents. However, we cannot always ascertain the name of
the branch a commit was originally committed to. (Note that a commit
strictly speaking does not even need to be committed “to a branch”; it
can simply be added anywhere in the DAG without updating any branch
pointers.)

• Implicit merges, particularly fast-forward merges, make it difficult to find
out to which branch a change was applied after merges have occurred.

• Before changes are pushed, they can be rewritten locally. This can be
done to “simplify” the structure of the history. The downside of this is
that the real, unmodified history is lost.

It does provide the following benefits:

• Distributed version control systems store the entire history locally. This
means that we can obtain a complete history simply by cloning (i.e., check-
ing out) the repository. This local copy can be accessed without any net-
work latency.

• Since the history is stored locally, we can also collect data without inter-
vening with the work of developers using the VCS. When working with a
centralized VCS, executing expensive operations may overload the server
and impact the availability of the service for other users.

• When attempting to trace back the origin of a change in a version control
system, it may be hard to find an atomic commit. This is particularly
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true for big projects that go multiple iterations of integrating merges into
a mainline [137].

4.4 Differences between bugs

Until now, we have made no distinction between different bugs. This is an over-
simplification; in reality, bugs are not all equivalent in terms of impact, cost to
fix and overall importance.

A major distinction is the difference between pre- and post-release bugs.
Pre-release bugs occur during the development of the software before it is used
by end users. Post-release bugs are those that are discovered after the initial
release of the software. Typically, these are discovered “in the field” by cus-
tomers. Post-release bugs are arguably more important, since fixing them is
much more expensive [11]. Camilo, Meneely, and Nagappan [45] found a weak
correlation between pre- and post-release bugs, but these classes of bugs are not
equivalent [30]. While some studies explicitly take both pre- and post-release
bugs into account [138], many more primarily target post-release bugs [1, 28,
37, 40, 45, 48, 84, 139].

TIOBE claims software quality is determined by the number of defects found
after release, the severity of these effects, and the effort required to solve the
defects [16]. This means that we can represent quality better if we also take
severity and fix time into account. Severity is a field in most bug tracking
systems, meaning we can extract it. The time to fix a bug could be determined
from the time difference between the bug report and the bug-fixing commit, but
this only tells us how much time passed between reporting and fixing the bug,
not how much time was spent on fixing it.

In some bug tracking systems, some reported bugs are actually feature re-
quests, meaning they are not related to defects. This bias may cause a bug
prediction model to predict changes instead of bugs [112].

4.5 Generalizability concerns

Since this approach of counting bugs is technology-specific, we need to decide
which companies and/or projects deserve our focus. Ideally, we would like a
large and diverse sample. This is because literature typically focuses on one [38,
140] or few (under five) [132] companies for practical reasons. This affects the
generalizability of these studies; their conclusions may not be valid for other
companies [141]. This is especially true since measurements may be impacted
by company-specific policies [87]. The wealth of data TIOBE has access to can
limit the problem of generalizability; even if we can only study a limited sample,
careful selection can greatly improve generalizability [142].

Generalizability is a big challenge in the field of bug prediction. A large
majority of bug prediction models does not work when applied on a different
project [129]. We should therefore be very careful not to overestimate the rele-
vance of results from a case study.
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4.6 Previous TQI research
In order to validate the TQI, TomTom has examined the correlation between
the number of bugs per file and the TQI of the file [133]. The metrics this study
compares are the number of bugs (extracted from the version control system
and bug tracking system), the TQI, LOC and all of the metrics the TQI is
based on. Each of the metrics correlates significantly with the number of bugs,
except for code coverage and fan-out. Note that this analysis does not take other
metrics into account! This means that a metric like LOC may be a confound : an
extraneous variable that correlates with some metrics (independent variables)
and the number of bugs (dependent variable). When we adapt our statistical
model to include it, the correlations may no longer be significant. Additionally,
the strength of the correlations is weak (between 0.3 and 0.4), with the TQI
itself even reaching a correlation under 0.2.

The research also consists of a negative binomial regression model with the
number of bugs as dependent variable and the total and average cyclomatic
complexity as independent variables. Both of these metrics turned out to be
significant. It should be noted that the total cyclomatic complexity likely acted
as a proxy for the size of the files. The average cyclomatic complexity does seem
to be a predictor of the number of bugs.

Since the measurements are performed per file, effects of the aggregation did
not influence this study.

As we discussed in Section 4.5, we should be careful not to generalize these
results to other projects. To validate these findings, we can repeat the set-up
on other projects.

4.7 Conclusions
In this chapter, we explored scientific literature that is relevant to our goal of
validating the TQI. We have seen that while repository mining can be used to
acquire large amounts of data, this data may be noisy and contain complicated
structures. The internals of Git in particular are relevant. While we can cheaply
access this data, the lack of explicit indications of the branch a changeset was
committed to and the option to rewrite history are problematic.

When we combine the data from a version control system with bug tickets
in a bug tracking system, we can find bug-fixing commits. This gives us access
to the time and location of a bug fix. We can track down bug-inducing commits
as well, but this is highly dependent on heuristics that may be invalid.

To analyze the resulting information, we can apply regression or classifi-
cation. In addition, we propose an alternative technique in which we simply
compare measurements before and after a bug fix. While this technique has its
own challenges, it does not rely on heuristics to find bug-inducing commits.

We also need to be aware of biases in the data and generalizability concerns.
Naturally, the set of bugs we consider in an analysis influences the results we
obtain. We also need to be aware that drawing general conclusions from these
results is problematic.

Finally, we discussed some previous research that specifically focused on the
TQI. While this study yielded some preliminary results, more research is needed
to assess the validity of the TQI.
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Chapter 5

Survey

TIOBE collects data for a large set of companies. This sample is very attractive
from a research perspective, since it allows us to apply bug prediction in a larger
setting than usually is the case. At the same time, applying bug prediction on
all projects is not feasible for this project. Instead, we should select a set of
projects that we can extract the most valuable results from.

In order to do this, we propose a survey that reveals similarities and differ-
ences between projects and companies. In addition, this survey also intends to
reveal more practical matters. For example, we will be using the bug tracking
system for each project to obtain information about bugs in the system. For
this reason, it is useful to know which bug tracking system(s) are being used.
From a practical point of view, we may select projects that use the same bug
tracking software. This allows us to extract all information through a common
interface. We need to be careful to not introduce a bias; some bug tracking
systems may be harder to use than others, resulting in bug under-reporting.

We start this chapter by considering which information we should ask for in
Section 5.1. This leads to a set of questions, which we present in Section 5.2.
Finally, we discuss the results of the survey in Section 5.3.

5.1 Relevant questions
For practical reasons, we should ask about the following:

• which bug tracking systems are being used;

• whether bugs are reported only within the development team, only from
outside sources (i.e., customers complaining about problems in the field)
or both;

• the reliability and completeness of information in the bug tracking system
(e.g., are some bugs not reported, what happens to incorrect tickets, and
how likely is wrong information in the bug tracking system);

• the extent to which the bug tracking system is linked to the version control
system (e.g., a prescribed format for commit messages that includes a bug
ticket reference, a requirement to include the reference at least somewhere,
or hooks to prevent commits that do not adhere to this standard);
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• policies related to bug reporting.

We do not ask about version control systems. Although these could be relevant,
TIOBE already has access to this information.

Hall et al. [41] discuss context criteria that determine the practical applica-
bility of research to a specific setting. These criteria are as follows:

• source of data;

• maturity of the system;

• size in KLOC;

• application domain;

• programming language.

TIOBE has this data for all projects, so we do not need to ask these questions
in a survey.

Petersen and Wohlin [143] present a more exhaustive list of criteria. They
do not just consider context of the product, but also the following other context
facets:

• processes (activities, documentation);

• practices, tools, techniques (usage of CASE tools, usage of development
techniques such as agile);

• people (roles, experience, number of developers);

• organization (hierarchical or other model, certification, geological distri-
bution);

• market (number of customers, market segments, strategy, constraints).

Information on these criteria is harder to obtain through survey questions and
also more sensitive. Recall that we save identifiable information for each survey
participant. For this reason, process facets are disregarded for the initial survey.

5.2 Survey contents
The introductory text is located in Figure 5.1. The email that will be sent to
participants is located in Figure 5.2.

The questions in the survey are as follows:

1. Which bug tracking system(s) do you use? (JIRA, IBM Rational, Man-
tisBT, Serena TeamTrack, Bugzilla, Trac, other)

2. If you use multiple bug tracking systems, are these used by specific users
(e.g., developers vs. users), sub-projects or phases of the project (e.g.,
internal development vs. deployed software)?

3. If you use multiple bug tracking systems, are these separate systems con-
nected in any way? (open question)
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Welcome to our survey on software projects.
In this study, we aim at getting an overview of projects that are using TIOBE
TICS. We are looking for a limited set of projects that we can use in a case
study on bug prediction. In this case study, we assess the ability of the TIOBE
TQI to predict the number of bugs in a system.
Your participation is voluntary and confidential. We do not guarantee
anonymity, since we would like to identify the projects that are most useful
to our study and contact you. Results will be anonymized if they are pub-
lished. If you are hesitant to share information or would like more details about
how this information will be used, feel free to contact us. All questions can be
skipped by leaving the field empty or choosing “no answer”.
This survey is being carried out by Maikel Steneker
<m.p.j.steneker@student.tue.nl> (Eindhoven University of Technology) in
collaboration with TIOBE.
We thank you in advance for your participation in this study. If you have any
questions or further remarks, feel free to contact us.

Figure 5.1: Introductory text to survey.

Dear FIRSTNAME,
My name is Maikel Steneker. I am a computer science student and I am currently
working on my graduation project at TIOBE. The goal of this project is to apply
bug prediction in an industrial setting.
In order to select projects that are most suitable for this for a case study, we
are conducting a survey about the use of bug tracking systems for your software
project. I would be very grateful if you could fill in this information. This will
take approximately ten minutes of your time.
The survey can be found at <SURVEYURL>. Thank you in advance for your
help! Feel free to contact me for any questions or remarks.
Kind regards,
Maikel Steneker <m.p.j.steneker@student.tue.nl>

Figure 5.2: Email that was sent to survey participants.

4. What percentage of bugs that are found would you estimate end up in the
bug tracking system(s)? Note that we are looking for an estimate; we do
not expect you to give a very precise indication of this. (open question)

5. Which of the following information is typically part of commit messages
in the version control system of your project?

• A short description of the change;

• A longer, more detailed description of the change;

• A reference to a ticket in the bug tracking system;

• An explanation of why the change was made (e.g., to fix a bug or
add a feature).

6. Is there a prescribed format for commit messages, which dictates where in-
formation is located within a commit message? For example: each commit
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starts with a reference to a ticket in the bug tracking system, followed by a
short textual description of at most 80 characters and a longer description
on the next line.

7. If there is a prescribed format for commit messages: if developers violate
this prescribed format, what kind of system (automatic or manual) is used
(if any) to handle this violation? Please elaborate. (open question)

8. If there is a system in place to handle commits that violate this prescribed
format, does this system check for any of the following mistakes?

• referring to a ticket that is not yet assigned;
• referring to a ticket that is assigned to another developer.

9. Developers may sometimes postpone committing their changes and then
commit a set of unrelated changes at once. To what extent would you
estimate this practice takes place within your project?

10. Developers may also commit their work early even if it is not finished,
(e.g., before a lunch break or at the end of a working day). To what
extent would you estimate this practice takes place within your project?

5.3 Results
We invited a total of 30 TIOBE customers to fill in the survey. Over a course
of two weeks, we received 16 complete responses (a 53% response rate). The
participants were the contact persons that each customer provides to TIOBE.
The job description of these people varies between team lead, software architect
and software developer. Generally, these are people with a thorough under-
standing of the project they work for. They are aware of the systems that are
used during the development process. It should be noted that since these people
may have a higher position than most other developers in their team, they may
have an inaccurate view of the extent to which undesirable practices take place
within their project. After all, developers may hide some of their actions from
superiors if they expect a negative reaction to them.

The customers of TIOBE are a variety of companies that are mostly active
within the embedded space. The size of these companies varies; some use TICS
for a single project, while others have more than 300 different projects. Often,
these projects are strongly related. For example, a single, large platform could
consist of dozens of sub-projects. These sub-projects may be developed by a
different group of people, but typically share a lot of characteristics: the same
bug tracking and version control systems as well as the same development prac-
tices. To distinguish between projects that are closely related and independent
projects, we used the expertise of the managing director. He also provided the
contact information for each of the active projects.

Projects were considered active if there was at least one status report since
January 1, 2015. A status report is an email that is automatically sent by TICS
to report metric values. This is typically done daily or weekly. The choice of our
cut-off date of January 1 is somewhat arbitrary. The period of time since this
date is short enough to find most inactive projects, but long enough to allow
projects that are only occasionally checked. This is primarily the case for very
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large projects for which extracting metrics such as code coverage takes a lot of
time.

We should stress that these results are based on a very small sample (N = 16)
with a bias towards a few companies in which the response rate was higher.
Therefore, these results are not generalizable and serve little other purpose than
the selection of projects for our case study and potential follow-up studies.

5.3.1 Bug tracking systems

In our limited sample, IBM Rational was the most popular bug tracking system,
with 6 out of 16 (38%) of projects using it. Another three projects used JIRA.
The remaining projects used Team Foundation Server, ClearQuest (a precursor
to IBM Rational), Mantis, Trac, or an in-house developed bug tracking system.

Two projects combine multiple bug tracking systems. In one case, one bug
tracking system was used by developers, while another was intended for all other
users. Bug tickets in the system used by developers were required to refer to
tickets in the other to enable traceability. In the other case, developers used
either one of the systems exclusively, or a combination of the two. From the
answer given in the survey, there seem to be no rules that indicate when to use
which system. This seems problematic not only for the context of this research,
but also in general; a combination of two systems that have no dedicated task
or intended user base may impede finding relevant information.

5.3.2 Proportion of tracked bugs

A bug tracking system only provides information about bugs that have been
added to its database. The estimated proportion of the bugs that end up in
the database gives an indication of the completeness of this information. The
survey respondents reported a wide variety of estimations. Most projects seem
to track almost all bugs, with answers in the range of 90% to 100%. However,
there were also some projects that score noticeably lower, around 50% or 60%.
In some instances, only 10% or 20% of bugs is estimated to end up in the bug
tracking system.

It should be noted that not all respondents may have interpreted this ques-
tion in the same way. An important distinction between bugs is whether they
appear pre- or post-release. Pre-release bugs are arguably less important, since
they are fixed during development and therefore do not hurt the quality of the
final product. Post-release bugs are more expensive to fix and negatively im-
pact end users. At the same time, disregarding pre-release bugs entirely is also
problematic. Fixing bugs during development also takes time, meaning high
amounts of pre-release bugs could be costly and even prevent the product from
releasing at all.

The respondents that indicated 100% of their bugs were in the bug tracking
system all noted the caveat that they only counted post-release bugs.

5.3.3 Contents of commit messages

We asked participants which components were typically part of a commit mes-
sage. All participants indicated a commit message should include a description
of the change that was made in the commit. Most participants indicated this
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description should be short. A fifth (20%) of participants expect an explanation
of why a change was made. Finally, the part of a commit message that we were
most interested in is a reference to a bug tracking system. Most participants
(80%) indicated that this reference is part of the message.

The primary goal of this question was to assess to what extent linkage be-
tween a version control system and bug tracking system is possible. This linkage
is easiest to achieve if there is a prescribed format for commit messages. Half of
the projects use a prescribed format for commit messages. All but one include a
field for a reference to a bug ticket, but the use of this format is not enforced in
most companies. That said, some companies do fill in this default template for
each commit message or validate that all information is present in code review.

5.3.4 Piggybacking
Finally, we asked whether piggybacking was an issue within the software projects
of the participants. Piggybacking refers to the process of adding unrelated
changes to a commit instead of committing them separately. There are several
motivations to do this. One motivation is the cost of a commit. A large amount
of commits may clutter the log. Another aspect of this cost is that continuous
integration platforms may run all tests for each commit. Doing this for small
changes may be considered a waste. Finally, programmers may want to make
changes that are not part of any ticket. For example, a bug tracking system may
be focused on bugs and functional feature requests, while a developer wants to
refactor some code for clarity. If a system is in place to prevent these commits
from being integrated, developers may resort to tactics like piggybacking.

Another related phenomenon is committing changes early. Developers may
commit their (unfinished) work at certain times (e.g., before lunch or at the
end of the day) even though their work is not yet done. This can be seen as
the reverse of piggybacking; instead of adding unrelated changes to a commit,
relevant changes are not a part of the final commit.

Participants indicated that neither of these practices were common in their
projects and happened only in very specific circumstances. Participants univer-
sally agreed that it was desirable to include all relevant changes in a commit.

5.4 Conclusions
In this chapter, we presented a survey aimed at TIOBE clients. The most im-
portant conclusion is that the amount of traceability offered by the information
from bug tracking systems and version control systems varies widely. Some com-
panies claim to track almost all bugs, while others expect to have information
only on a small subset. Most participants do expect a reference to a bug ticket
in commit messages.

Since the sample size is very small, these findings cannot be generalized to
a larger group of companies. However, we can use the information we collected
to assess the suitability of projects for a case study based on data from software
repositories.
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Chapter 6

Case study

To evaluate the TQI, we perform a case study on select TIOBE customers.
These were selected based on the results of the survey and data from the TICS
Enterprise Dashboard (TED) database [19].

We consider two different TIOBE customers for this case study, which we
refer to as “Company A” and “Company B”. These customers were selected for a
case study based on their reports of high data quality in the survey. These com-
panies then made data from their version control system, bug tracking system,
and TICS installation available for this study. We give a general overview of this
data in Section 6.1. In Section 6.2, we consider the shape of the distributions
of the TQI and other metrics. We discuss the findings based on the data from
Company A in Section 6.3. In Section 6.4, we do the same for Company B. We
discuss the applicability of SZZ based on the data in Section 6.5. Section 6.6
contains a qualitative analysis for the data we extracted from software reposi-
tories, which reveals the practical difficulties we encountered when finding the
files that were changed for each bug fix. Finally, we present an analysis of the
extent to which the TQI responds to bug fixes in Section 6.7.

6.1 Data overview

We have access to the following data:

TED database This consists of reports that result from each TICS run. Re-
ports provide a global overview of a project. This overview consists of metrics
which have been aggregated over all files in the project. This means that the
TED database cannot be used to inspect projects at a more granular level (e.g.,
at file level). This database is maintained centrally by TIOBE.

Bug tickets This is a table that consists of a list of tickets, including the class
(i.e., bug or change request), severity, status (i.e., resolved, open, or some other
status) and date/time (at least of initial introduction, possibly of closing) for
each ticket. The history of a ticket (i.e., changes to it over time, such as how
the ticket status changed over time) is not included.
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TICS database This is a database that is located on a server at the customer.
TIOBE does not necessarily have access to this database, but for the purpose
of this project, we were provided a copy. The TICS database contains a history
of all measurements that were performed by TIOBE on the file level. From this
data, we can derive a value for any metric at any granularity level.

SZZ output This is the output that our implementation of SZZ produces.
This consists of a list of commits, including their revision number/hash, date
and time, and message. We store an optional reference to a ticket in the bug
tracking system, which has been extracted from the commit message. We do not
consider multiple references to tickets. We did not expect multiple references
to be common based on the results of the survey, and indeed did not find any
messages in which multiple tickets were referenced. Finally, there is a list of
candidates that has been constructed using the traceback functionality of SZZ.
These are commits that potentially caused the bug that the ticket describes.
This entry contains a reference to all these candidates, as well as the file from
which this was traced back.

6.2 Metric distributions

The data from the TED database provides an interesting insight into the various
metrics TIOBE collects. In this section, we discuss the shape of the distributions
for the metrics it contains.

In general, software metrics have skewed distributions [90, 92, 144]. One
of the goals for the TQI is to approach a Gaussian (normal) distribution [16].
An example of a normal distribution is shown in Figure 6.1. Note that this
distribution is symmetrical, with most observations appearing around the mean
and values that are further away from the mean being rarer. A Gaussian dis-
tribution has some desirable properties when used for the TQI. Extreme scores
are relatively rare, while average scores are more common. This is very much
a subjective design decision. Additionally, the distribution should spread over
the entire range of 0 to 100 in order to make it easier to distinguish low- and
high-quality projects.

Figure 6.2 contains a plot for the TQI distribution over the more than a
thousand projects that are using TICS. While it does not resemble a normal
distribution, the resulting distribution is not especially skewed (skewness: 0.096;
kurtosis: 2.137). One obvious observation is that the plot contains two peaks:
one around 35, and another (albeit smaller) around 75. We hypothesize this
is because some of the values the TQI is composed of are “cut off” when they
are outside of the [0, 100] range. When a sufficient number of measurements is
negative or exceeds 100, this will result in a peak at 0 and 100 in the probability
density plot. Since the TQI is simply a weighted mean of multiple of these
values, we can imagine these peaks ending up in the probability density plot for
the TQI as well.

An example of one of the metrics that is integrated into the TQI is duplicated
code (Figure 6.3). This is an example of a metric that shows a radically different
distribution compared to its raw counterpart. While Figure 6.3a shows a very
skewed distribution (skewness: 3.620; kurtosis: 22.845), Figure 6.3b shows a
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Figure 6.1: An example of a normal distribution (µ = 0, σ2 = 1).
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Figure 6.2: The distribution of the TQI values of all projects using TICS.
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(b) transformed for TQI integration

Figure 6.3: Probability density plots for duplicate code. The plot on the left rep-
resents the “raw” metric, which is a percentage. The plot on the right represents
the TQI component that is included in the TQI.
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Figure 6.4: Probability density plots for dead code. The plot on the left repre-
sents the “raw” metric, which is a percentage. The plot on the right represents
the TQI component that is included in the TQI.

largely symmetrical distribution that is much more evenly spread out over the
full range of admitted values (skewness: 0.954; kurtosis: 2.882).

The dead code metric (Figure 6.4) is very different from the duplicated
code metric. Again, the distribution is very skewed (skewness: 2.497; kurtosis:
7.922). However, the results in another (reversed) skewed distribution (skew-
ness: −1.949; kurtosis: 5.284), instead of a more evenly spread one.

From this analysis, we can conclude that the TQI follows a distribution
which, unlike many other software metrics, is not skewed. However, it also does
not closely resemble a Gaussian distribution. A possible reason for this is the
variation in the distributions of the metrics it is based on.

Taking the formulas into account, this difference is hardly surprising. The
duplicate code formula uses a logarithm, which results in its range of values
being spread out over a much larger range. Conversely, the dead code formula
simply scales the values linearly and cuts off values that exceed the maximum
value of 100.

Plots for all metrics are included in Appendix B.

6.3 Company A

This section contains a discussion of the data specific to Company A. We dis-
cuss the measurements from the TICS database in Section 6.3.1. We discuss
the data obtained from the version control system and bug tracking system in
Section 6.3.2.

6.3.1 High-level description of TICS database

This section contains a high-level description of the results. The focus is on
some interesting patterns that can be observed in the data.
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Figure 6.5: TQI level over time.

The project was measured in the period from July 2013 to February 2014. At
this point, the license for TICS was temporarily discontinued, meaning data was
no longer collected. After renewal of the license, measurements were performed
from November 2014 to October 2015.

Figure 6.5 shows the TQI over this period of time. A few things stand out
from this plot. First of all, there is a straight line close to the center of the figure
caused by the absent measurements described earlier. Adjacent measurements
are connected by a straight line. Since the TQI level in October was lower than
the TQI level in March, a decreasing line is shown for the months in which no
measurements occurred. Second, there is a lot of variation in the TQI. While
some variation in quality is to be expected for software during its development,
the peaks are not. For example, on October 11, the TQI is 63.56% in the
morning, but only 32.82% in the evening. Days later, on October 14, the TQI
has increased to 71.03%. This poses the question whether the data is reliable
enough in its current state.

To examine what causes these effects, we look at the individual metrics the
TQI is composed of. Since the TQI is a (weighted) average, a big variation
in a single metric could very well be the cause of drops in TQI such as the
ones we observe. One such metric is the abstract interpretation component of
the TQI. Recall that this is a value that depends on the amount and types
of violations found by an abstract interpretation tool and maps to a domain
between 0 and 100. Figure 6.6 shows that this value indeed has an influence
on the TQI and may partly cause the peaks we observe. It is very common for
the abstract interpretation component to jump from a value close to 100 to a
value of 0. Closer inspection of the underlying database reveals that in some
cases, the abstract interpretation tool does not run for a variety of reasons (e.g.,
a missing license, a parsing error). Such a failed run typically results in a value
of 0. Unfortunately, we have no guarantee on the value for failed runs of tools.
This is because a tool could fail halfway through its run and result in a value
that is based on a limited number of files within the project. Dealing with this
incomplete data is a challenge both for this project and TICS in general.

6.3.2 SZZ data
The number of commits in the Subversion repository is 7876. We successfully
linked 2333 (29.62%) of these to tickets. Extracting references to tickets was
done using the prescribed format indicated in the survey. This format included
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Figure 6.6: TQI level (blue) compared to abstract interpretation (red).

a specific position in which a reference is located. These were extracted using
a regular expression. In practice, commit messages slightly deviated from this
format in a significant number of cases. Had we opted to enforce this format less
strictly, we should be able to link 3674 (46.65%) commits to their bug tickets.
In this case, we would simply use the first number that occurs in the commit
message. This means the chance of misinterpreting some numbers as ticket
references increases, but we do obtain a better linkage. Note that in both cases,
we do not need to rely on heuristics, as was done in the original paper [126].

An interesting observation is that many tickets are referred to by multiple
commits. These are likely partial fixes, i.e., a work-in-progress solution for the
ticket it refers to. One difficulty when dealing with partial fixes is the distinction
between a partial and a full fix. If we find a single revision that refers to a ticket,
it may be a full fix. However, it may also be a partial fix that has not been
followed up by subsequent other partial fixes yet. Therefore, it is important to
check whether a fix refers to a ticket that has been closed. Note that even if a
ticket has been closed, it may be re-opened later. We assume this is something
that does not happen often. Instead, we would expect a ticket to be set to an
intermediate state (e.g., implemented) before being verified and being closed or
re-opened. The number of commits per ticket varies widely, ranging from 1 to
79 with a median of 2 (M = 5.52,SD = 9.46). Some of the tickets with a large
number of commits are large refactorings that are divided into more atomic
changesets. However, for some of the other outliers, we could not derive from
the data why this particular ticket took so much effort to implement.

Using SZZ, we can only trace back changes that included a deleted or mod-
ified line. Therefore, changes that do not modify any files or only add new
lines to files will be excluded from the analysis. This is important, since we
are introducing a potential bias by excluding these changes. We also exclude
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commits for which the size of the diff1 exceeds a certain threshold, which was
in this case set to 10000 characters. The reason for the existence for such a
threshold is two-fold. First, very large patches tend to modify a lot of lines.
Each of these line potentially originated from a different revision. Since we aim
to find a single origin, any result we obtain is meaningless. There is also a more
practical reason to exclude large commits. Since the running time of the anno-
tate command for the version control system is dependent on number and size
of the files, processing large commits typically takes a lot of time. It is therefore
infeasible to process the largest commits.

We encountered a total of 964 commits that were too large to process, as
well as 446 commits that did not include any modifications that can be used to
trace back. This leaves only 923 commits (39.56% of the linked commits) that
can be processed.

6.4 Company B

This section contains a discussion of the data specific to Company B. We dis-
cuss the measurements from the TICS database in Section 6.4.1. We discuss
the data obtained from the version control system and bug tracking system in
Section 6.4.2.

6.4.1 High-level description of TICS database

In this section, we describe interesting patterns we can observe in the data.
This company has divided their code into 10 separate projects. These

projects are all evaluated separately. However, we can also view an aggrega-
tion of the measurements over all projects. This aggregation is shown in Fig-
ure 6.7. It should be noted that one of the TQI components, namely abstract
interpretation, has been disabled for all of these projects. The reason for this
is that the tool for abstract interpretation requires a specific license which has
not been purchased by Company B. This not only means that we cannot eval-
uate abstract interpretation, but also that the aggregated TQI score for this
project is lower simply because 20% of the TQI gets the minimal score of 0
by default. Excluding the abstract interpretation component could potentially
result in a TQI score above 80, resulting in a B label (good) instead of a D label
(moderate).

Again, we see the TQI is typically stable, but at times peaks or suddenly
jumps to another height. Figure 6.8 shows how one such peaks is caused by
the fan-out component. Over the course of a single day, the average fan-out
decreased from 31.88 to 12.26. This decrease in fan-out improves the TQI by
3.21%.

Looking at this issue in more detail reveals a new version of TICS was in-
stalled two weeks prior. This new version introduced TICSCil, a tool that was
specifically developed to improve the computation of fan-out for C# projects.
Originally, fan-out was approximated by counting the number of using state-
ments and assuming (as a heuristic) that each of these namespaces provides

1 We use the noun “diff” as a term meaning the output of a diff command. Variants of
this command are embedded in most version control systems, such as Git and Subversion.
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Figure 6.7: TQI level over time (aggregation over all company B projects).

Figure 6.8: TQI level (blue) compared to the TQI fan-out component (red) and
average fan-out (green).
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5 classes2. The new version instead counts the number of classes that are used
from the imported namespaces.

Even more surprising than sudden changes in values are the peaks, in which
the TQI value first drops, and then increases to a different value from the
one before the peak. This is most clearly seen around the beginning of May
2014 and July 2014. We found these peaks corresponded to peaks in the TQI
component for compiler warnings. This value is normalized for the size of the
project (i.e., LOC). We found that these peaks as well as other sudden jumps
correspond to changes of 5000 to 20000 lines of code. This suggests that, even
if it is not entirely clear yet what caused these changes exactly, they were a
result of major changes in the codebase as opposed to imperfections of TICS or
the underlying tools. Further investigation is needed to confirm whether these
changes represent a meaningful change in quality.

Changes like these are particularly hard to deal with, since it is not easy to
detect which version of TICS is responsible for a metric value. A straightfor-
ward look at the version of TICS at the time of the run is not sufficient, since
unmodified files may still report values measured by an earlier version.

6.4.2 SZZ data

The data to facilitate analysis through the SZZ algorithm was obtained in a
slightly different way than the data for Company A. There are multiple reasons
for this. There are multiple subtle but relevant changes that were made for a
variety of reasons.

The first change is the way tickets were linked. For Company A, we chose to
only consider a commit linked if it adhered exactly to the specified format for
commit messages. That is, if the format was of the shape “Ticket #999: fixed
bug”, a commit message omitting the number sign (#) will be considered to be
unlinked. This choice was made to ensure a high precision at the cost of recall.
This helps ensure a high quality of the data and saves valuable computation
time that should only be spent on commits that are, in fact, intended to be
linked to a bug report. In hindsight, we found that violations of the standard
format were more common than anticipated, while numbers that did not refer
to tickets are sufficiently rare. Therefore, we opted for a relaxed approach in
which we consider any number to be a reference to a ticket.

Other changes are related to the speed at which we could process the data of
Company B. Since we were able to work with a copy of a repository on a USB
drive as opposed to a remote server, the data collection script could process
each of the commits much faster. This allowed us to extract SZZ data for all
commits (as opposed to just linked commits) and increase the maximum value of
a diff to 100000; a ten-fold increase. Still, the data extraction was significantly
faster (around 40 minutes instead of around 15 hours for a comparable number
of commits).

Due to these changes, we ended up with data that is much more complete.
We collected data from two separate repositories, both containing a different set
of sub-projects. The first of these repositories consists of 7017 commits, from
which 2192 were excluded for a missing or wrong linkage. Note that most of

2 Note that this approach is still used for Java, where the use of wildcard imports is less
common. The superior approach of TICSCil may be adopted for Java in the future.
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these are relatively old commits from a time where referring to a ticket was not
the norm. If we consider the commits for the past year, we find 1192 out of 1216
commits (98.02%) are linked. The second repository consists of 1647 commits,
with 1621 (98.42%) of them being linked. This repository is more recent, which
explains the consistently high quality of linkage.

As we saw in the dataset for Company A, most bugs are not fixed in a single
commit. A clear difference is that changes are typically made in so-called feature
branches. A feature branch is created to isolated the change for a single feature
that is added or changed in the system. Note that a feature is not necessarily
new functionality in this context. Instead, it can be any change that is made
to the product in response to a ticket. This suggests that we can consider the
commits in such a branch to form a transaction together which changes the code
in the desired way.

As mentioned earlier, some commits were excluded because their changes
were too large to process in a reasonable amount of time. For Company B,
this was the case for 108 of the commits in the first dataset and 32 commits in
the second database. Note that this low number is partly caused by the higher
threshold we set during data collection. We attempted to qualitatively analyze
some of the commits that exceeded even this higher threshold by manually
reading their commit messages and the information in the associated ticket. It
turns out that almost all of these commits can be identified as large refactors.
For example, many of these commits simply moved files within the projects.
While this change is not very meaningful, especially in the context of a bug fix,
it causes the diff output to grow very large. This is because each file that is
part of the directory structure is listed separately in this file, and there may be
many references in other files that need to be changed to import from the correct
location. Other refactorings added copyright notices to all source files in the
project or changed the line endings of all files to use the same standard. Some
other big changes included the addition of a WDSL (Web Services Description
Language) file and the addition of a suite of unit tests, both of which can be
large in size and are therefore not comparable to most changes.

6.5 Applicability of SZZ

SZZ, the algorithm that can be used to identify bug-inducing changes by tracing
back through version history from bug-fixing changes, has some known limita-
tions. Before analyzing the data in-depth, we can consider how important these
changes are. We will use the larger dataset from Company B for this, since it
is sufficiently large and complete.

Recall that this dataset contains 7017 commits in total. A small subset of
382 commits is linked to a bug ticket (i.e., a ticket that has been classified in
the bug tracking system as “bug” as opposed to “change” or other category).
These relate to 81 bug tickets. We found that 337 out of 1004 of the changes to
a single file within these commits were either additions to a file or addition or
removal of a complete file. This means that SZZ disregards more than a third
of changes in the bug-fixing commits in this dataset. This affects 96 (25.13%)
of the bug-fixing commits, with 85 (22.25%) consisting entirely of changes that
SZZ cannot analyze. While this does not discount the results of SZZ entirely,
we introduce a potential bias on top of the imperfect heuristics that SZZ uses.
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Figure 6.9: An example of a feature branch. The two commits at the top are
contained in a separate branch, which contains all relevant changes for a feature
or bug fix.

6.6 Using linkage to find changes for bug fixes
As we discussed in Chapter 4, we use data from software repositories to find out
which changes were made for each bug fix. We do this by finding the identifiers
for bug tickets in the bug tracking system, linking them to commits in the version
control system, and inspecting which files were changed by these commits. In
this section, we discuss some observations we made during the execution of this
process on the dataset from Company B.

6.6.1 Theoretical ideal case

In the most simple case, each bug ticket corresponds to a single commit, which
contains all relevant changes for the fix. In practice, there are often multiple
commits. In the particular project we are studying, the developers have adopted
a feature branch model. This means that a new branch is created for each bug
ticket. In a brief conversation, a developer working on the project indicated
that he was not aware of any cases in which developers would deviate from this
workflow. This means that we can simply isolate the changes for a ticket by
finding where the branch was created and where it was merged back. All com-
mits in between these two must then be part of the bug fix. This is illustrated
in Figure 6.9.

6.6.2 Practical

Unfortunately, we discovered this workflow is often not perfectly matched. We
discuss some of the reasons for this here.

Fast-forward merges As we discussed in Chapter 4, Git automatically per-
forms fast-forward merges to simplify project history. We discovered this hap-
pened in multiple instances. Fortunately, we could rely on the strong linkage for
this project, meaning individual commits each contained a reference to a ticket.
Without this, it would be extremely challenging to decide which changes belong
to each ticket.

The project would be easier to analyze automatically if all changes were
explicitly merged. Developers can achieve this by disabling fast-forward changes.
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At the same time, this makes the history harder to interpret for developers
themselves.

Rebases Despite the suggestions by the development team, we did find some
evidence of rebases occurring in the project. These rebases were rare and did
not affect the data we used in our analysis.

We found two different reasons for rebases. The first was cherry-picking.
In the rare instances where this occurred, we found a clear indication of this
in the commit message. This makes it possible to manually include or exclude
these changes. It does impact the scalability of an analysis like this; when
investigating a larger project, it will likely not be possible to deal with a large
number of rebases. The second was that some commit messages were edited
before they were merged back to the main branch. The reason for this was that
they did not contain a reference to any ticket. By rebasing the commits, the
developers were able to keep the history of the project as fully documented as
possible.

Commits to main branch In some rare cases, changes were committed
directly to the main branch. These changes usually did not correspond to any
bug ticket, and were tagged to relate to TICS. From the commit messages, we
can deduce developers made these changes as a response to results within TICS.
These changes included fixes of warnings, changes to adhere closer to the coding
standard, and refactorings to reduce cyclomatic complexity or fan-out.

We can view some of these changes as treating metrics as goals, which is
undesirable [145]. However, in general, these changes seem reasonable improve-
ments of quality, meaning the TICS system is used exactly as intended. The
only improvement to this practice would be to create tickets for these changes
to improve traceability.

6.7 Responsiveness of metrics
Due to the limitations of SZZ, particularly its reliance on heuristics, we instead
examine whether the TQI metrics react to a bug fix.

6.7.1 Expectations

The goal of the TQI is to give an indication of software quality. One attribute
of software quality is reliability, which relates to the number of bugs in the
software. Therefore, when a bug is fixed, the quality of the software should
increase. This means the TQI should increase.

Each of the TQI components has a positive or negative influence on the TQI.
Therefore, for the TQI to increase, at least some of these components should
change in the direction that indicates higher quality. These expected directions
are included in Table 6.1.

Note that these hypotheses are purely based on the way the TQI is defined.
We would not expect these to universally apply to all commits. For example, it
is very reasonable to expect that some bugs are caused by a missing check, which
can be fixed by an if-statement. This would increase cyclomatic complexity
against our expectations.
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Table 6.1: Expected direction for TQI components.

Metric Expected direction Rationale
TQI + The TQI is meant to be an

indicator of software qual-
ity. The reliability of soft-
ware increases when bugs
are fixed.

Code Coverage + A higher code coverage
means a larger portion of
the code is tested.

Abstract Interpretation* + A higher AI compliance
means there are less po-
tential issues.

Cyclomatic Complexity − Lower complexity means
the software is easier to
understand and maintain.

Compiler Warnings* + A higher compiler warn-
ings compliance means
there are less compiler
warnings.

Coding Standards* + A higher coding stan-
dards compliance means
the code adheres better to
coding standards.

Code Duplication − A lower amount of code
duplication means the
software is smaller and
changes need to be made
only once.

Fan-out − A lower fan-out means
there are less external de-
pendencies.

Dead Code − A lower percentage of
dead code means there is
less unnecessary code in
the project.

* These metrics all use the TIOBE compliance factor, meaning they are
mapped to the interval [0, 100]. For all of these metrics, a higher compli-
ance factor indicates a higher quality, which corresponds to a lower number
of violations.
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Measurements

Bug fix

?

Figure 6.10: Illustration of time line of measurements with some bugs. The
measurement before the bug fix is performed on a version of the software that
definitely contains the bug. Assuming the fix was successful, the measurement
after the bug fix was performed on a version of the software that definitely does
not contain the bug. Any earlier measurements may or may not contain the
bug, so we need heuristics if we want to consider them.

Another caveat is that bug fixes may, in reality, slightly decrease the quality
of the software due to technical debt [6, 146]. A developer may decide to fix
a bug in a somewhat crude manner to get the product to a correctly working
state as quickly as possible. This temporary decrease in quality could later be
resolved, but this would not be visible in this analysis.

6.7.2 Methodology

For this analysis, we consider two measurement timestamps for each bug: one
right before the bug fix, and one right afterwards (see Figure 6.10). At these
times, we obtain the value for all TQI metrics. Our goal is to find out whether
the metrics significantly changed from the time before the bug was changed to
afterwards. These metrics are aggregated over the whole project; we do not
consider the values for a single file.

Since these measurements are paired (i.e., each measurement before the bug
fix forms a pair with the measurement after the bug fix), the most obvious
test is a paired t-test. This test assumes that the distributions we compare
should both be normally distributed. Unfortunately, software metrics are often
skewed [5, 144], which means this assumption is violated. A Shapiro-Wilk test
for normality3 [147] confirms this is the case for all of our metrics both before
and after the bug fix.

For this reason, we use a non-parametric alternative for the t-test, which does
not have the normality assumption. We use a Wilcoxon signed-rank test4 [148]

3 The null hypothesis for a Shapiro-Wilk test is that the data is normally distributed. We
use a standard significance threshold of α = 0.05. Since the p-value is below this threshold,
we reject the null hypothesis and conclude the distribution is non-normal.

4 The null hypothesis for the Wilcoxon signed-rank test is that both variables come from
the same distribution. In our case, this means that there is no significant difference between
the measurements before and after the bug fix.
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on each of the metrics separately.
Since we know an expected direction for each test, we could use a one-tailed

test instead of a two-tailed test. A one-tailed test is more powerful, meaning it
is more likely to find an effect if it exists. This comes at the cost of only testing
for one direction of the effect. Any effect in the opposite direction of what we
expect would go undetected. Since our expectations are based on imperfect
simplifications, we instead opt for the more conservative two-tailed test.

6.7.3 Results

The results of these tests are shown in Table 6.2.
First, these results do not include all metrics as they were specified earlier.

Abstract interpretation is missing since this specific company does not have a
license for the required tool. We performed two more tests for fan-out. The
reason for this is that the way fan-out is estimated was changed at the intro-
duction of TICSCil. For this reason, we also consider the fan-out measurements
that occurred before and after this introduction in separate tests. It turns out
that neither of these tests have a significant result.

The first column of interest is the significance (p-value) of each of the tests.
This denotes the probability we can observe data like this under the assumption
that the null hypothesis (measurements before and after being the same) is
correct. If this probability is sufficiently low, we can reject the null hypothesis
and conclude that there is a significant difference between the measurements
before and after the bug fix. A significance level of α = 0.05 is commonly
used [149; 150, pp. 889–891].

It should be noted that the significance levels cannot be meaningfully or-
dered. That is, we cannot say the metric for coding standard violations per
KLOC with p = 0.137 is “more significant” than the metric for duplicated code
with p = 0.138. Instead, we compare both to α and conclude that neither is
significant at α = 0.05. We can, however, use multiple α levels (for instance:
0.05, 0.01, 0.001) to distinguish highly significant and less significant metrics.

Another note is that due to the number of tests we perform (16; one for each
metric and two extra for the fan-out metric), the Type I error rises above the
specified α level. If the probability of not making a Type I error in a single test
is 1−α, the error increases to (1−α)n when performing n tests. We can adjust
for this in various ways. One is the so-called Bonferroni correction, which simply
reduces the α level to α

n . A more sophisticated method has been presented by
Benjamini and Hochberg [151]. We did not apply either correction, but consider
this potential problem when interpreting the results.

Since significance only reveals the existence of an effect and not its mag-
nitude, we also look at the effect size using Cliff’s delta. This effect size is
negligible for all metrics. This means that the differences between measure-
ments before and after a bug fix are so small that the difference has limited
practical applicability.

6.7.4 Discussion

We can now compare the findings from Table 6.2 to the expectations as formu-
lated in Table 6.1.
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Table 6.2: Results of the responsiveness tests.

Metric p Direction Sample size
TQI 0.671 − 63
Average Cyclomatic Complexity 0.006 − 63
Coding Standard Compliance 0.001 + 63
Coding Standard Violations < .001 + 63
Coding Standard Violations per KLOC 0.137 + 63
Compiler Warnings per KLOC < .001 − 63
Duplicated Code 0.138 − 41
Fan-out 0.406 − 49
Lines of Code < .001 + 63
Unit Test Coverage: Branches 0.017 − 42
Unit Test Coverage: Functions 0.126 − 42
Fan-out (before TICSCil) 0.222 + 30
Fan-out (after TICSCil) 0.195 − 18
Compiler Warnings Compliance < .001 + 25
Dead Code < .001 − 62
Unit Test Coverage: Statements 0.66 − 37

As we would expect, the average cyclomatic complexity and compiler warn-
ings per KLOC decrease. Similarly, coding standard compliance increases. How-
ever, we also find unexpected results in the opposite direction: branch coverage
decreases and coding standard violations increase. The significance of the de-
crease in branch coverage may be a result of multiple hypothesis testing; this test
is no longer significant when using a stricter α value of 0.01. This is not the case
for coding standard violations. The tests suggest that coding standard compli-
ance and coding standard violations, which should move in opposite directions,
move in the same direction. This remarkable result requires more attention to
find out what causes this effect.

We find that the number of lines of code increases. The p-value for this test
reveals it to be highly significant. In fact, it is possible that some of the other
metrics are influenced by this increase as well. We cannot detect this difference
using the current experiment set-up; using techniques such as regression we
could find relationships among the metrics.

Finally, the difference in TQI is highly insignificant (p = 0.671). This means
that the TQI does not react to a bug fix. This is most likely caused by the
aggregation over multiple metrics using the mean. Any small effects are easily
compensated by other changes in other metric values. This results in an effect
that is almost certainly insignificant, unless all metrics represent the same ab-
stract concept. Software quality clearly consists of multiple attributes, which
explains the results we found.

6.7.5 Threats to validity

The validity conclusions we draw may be jeopardized by a few limitations. Perry,
Porter, and Votta [152] make the distinction between construct validity, internal
validity, and external validity.
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Construct validity

Construct validity is the extent to which the variables we use for the test accu-
rately represent the abstract hypothesis we want to test. Construct validity is
impacted in a variety of ways.

First and foremost, validity is impacted by the data we use. Not only may
there be implementation errors in TICS, which is responsible for collecting and
storing the measurements; the scripts that were used to extract data via the API
may be imperfect due to misunderstandings about how it should be used. We
believe this risk is relatively minor, since the API is relatively simple in terms of
use, we had direct contact with its developers and we found no inconsistencies
between the data as presented in TICS and the data that was extracted from
the API.

Our statistical methods form some other threats to validity. First of all, the
meaning of the tests is not entirely intuitive. Each test tests for a significant
difference between metric values before and after each bug fix respectively. The
presence of such a difference does not mean that the metric has a predictive
value for the number or presence of bugs.

Another limitation is that the test examines the absolute difference caused
by a bug fix, but it does not compare this to the difference caused by any other
change of the software. When repeating the tests for non-bug commits, we
obtain a result that is very similar: the direction of the changes remains the
same, with the p-value of most tests decreasing. The decrease in p-value is likely
caused by the increased population size. This suggests that the changes in the
metrics may be a result not of a bug fix, but of any change to the software in
general. This is a problem that some bug prediction models have also suffered
from [112].

Finally, we violate some of the assumptions of the Wilcoxon test. One as-
sumption is statistical independence of observations. This assumption univer-
sally applies to almost all tests, but is often violated when dealing with real
data [153]. The Wilcoxon test in particular is conservative when limited de-
pendency between samples is introduced [154], meaning the power of the test is
weakened and we are less likely to find a result if it is there. Another assumption
is the absence of ties in the pairs of observations. This is not an assumption
per se, but in real-world data, ties are very uncommon. This is because as long
as the measurements are sufficiently accurate, we would not expect any two
measurements to be exactly the same if only because of noise in the measure-
ments. In computer science, and our measurements in particular, ties are no
impossibility, since the tools are deterministic and may result in the exact same
value even after a change.

Internal validity

Internal validity is the extent to which changes in dependent variables can be
attributed to independent variables. This notion is particularly relevant when
using a more complicated model, such as regression. In that case, the absence
of control variables is an important threat to internal validity. In this case,
the tests do not take control variables into account at all. This means that
we cannot tell whether, for instance, the increase in compiler warnings can be
directly attributed to an increase of the size of the project.
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External validity

External validity is the extent to which the study’s results generalize to other
settings outside of this particular case study. We emphasize that this case
study is just a single example of a software project within a single company.
This means that the results cannot be applied to other projects. In order to do
this, we would need to repeat the study to other projects.

6.8 Conclusions
In this chapter, we have described the majority of the empirical research that
was conducted for this project.

First, we examined data from the TED database TIOBE maintains to ex-
amine the shapes of the distributions of the various metrics. We found that
these distributions vary widely. Since the TQI composes these metrics using a
weighted mean, this diversity makes it hard to interpret the distribution of the
TQI itself. This suggests that this an area where the TQI can be improved.

We collected data from two companies, which we refer to as Company A and
Company B. We worked with these companies to obtain a historical record of
measurements on their projects that are stored in the TICS database. Addition-
ally, we applied the technique of linkage, as proposed by the SZZ algorithm [126],
to obtain information on the commits that contain the changes to fix bugs in
older versions of the software.

Extracting relevant information from the software repositories proved to be
very challenging. Even with relatively small projects that we selected for their
suitability, it was difficult to correctly attribute changes to a bug fix. This means
that validating the TQI through the investigation of real industry projects is a
bigger undertaking than one might expect; one that is problematic even in the
most advantageous of circumstances.

The historical measurements for the projects we examined revealed some
interesting patterns. We saw that in a real database, the TQI can drastically
change in a short amount of time. This raises some concerns about the reliabil-
ity of the data that is collected, but it also reveals an area in which TICS, the
software that is used to present the data to the end user, can be improved: the
addition of a type of root cause analysis that can be used to investigate which
files, metrics, and/or projects are the cause of a change in a higher granular-
ity level. Another pattern that was clearly observable was the introduction of
TICSCil, which resulted in a big drop in fan-out in the project of Company B.

Finally, we investigated how each of the metrics respond to a bug fix. We
found that while some metrics showed a statistically significant increase or de-
crease after a bug fix had occurred, the changes were negligible in effect size.
The most likely reason for this is that the aggregation of measurements causes
differences in a small subset of files to result in very minor TQI fluctuations.
When the metrics are composed to form the TQI, we do not find a signifi-
cant difference in the change in TQI score. Similarly, this is likely caused by
composition. Unfortunately, we cannot draw any other conclusions about the
effectiveness of the TQI and the metrics it is based on. We believe this is a topic
for future research.
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Chapter 7

Conclusions

In this chapter, we reflect on the research questions that we presented at the
start of this thesis and use the findings we presented in previous chapters to
answer them. We also propose some possibilities for future work.

The main question we posed is: Is there a relation between the metrics
TIOBE collects and bugs?

In addition, we presented the following research questions:

1. How suitable is the information TIOBE and their customers collect for an
evaluation of the TQI?

2. What steps are necessary to obtain information about bug fixes in soft-
ware?

3. Do the measurements on software that the TQI aggregates respond to bug
fixes in this software?

4. Can TIOBE or their customers take steps to improve the quality of this
analysis?

We discuss research questions 1 through 4 in Sections 7.1 to 7.4. We address
the main question in Section 7.5. Finally, we discuss future work in Section 7.6.

7.1 Suitability of data for TQI validation
The first aspect we wanted to investigate was the extent to which the data
TIOBE and their customers collect can be used to empirically validate the
TQI. We used a survey (discussed in Chapter 5) to obtain an impression of the
customers of TIOBE. Partly as a result of the suggestion in literature that the
more regulated nature of industrial projects could result in a higher data quality
in software repositories, we expected to find very usable information. While
some projects were reported to maintain a very well-documented history of
encountered defects, there was a lot of variation amongst the different projects.
From this, we conclude that while the quality of the data stored in the software
repositories of some projects is certainly high enough to acquire linkage, this is
not the case for all projects.

We found that even when we pre-selected the projects for which we expected
the analysis to be most successful, there were significant practical difficulties in
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interpreting the data correctly for the case study (see Chapter 6). For version
control systems, it was difficult to decide exactly which changes contributed to
a bug fix. For the historical metric data, it was difficult to find out what caused
a change in a measurement.

7.2 Steps to take for data acquisition

The second aspect we investigated is how we can empirically validate the TQI.
In Chapter 4 we discussed how we can mine software repositories, including bug
tracking systems and version control systems, to obtain the data which we can
use to analyze the effectiveness of the TQI.

We found that to obtain information about the bugs in the history of the
project, we needed a thorough understanding of the internals of a version control
system. These internals are important for the interpretation of the structure
and contents of the commits. We found that distributed version control systems
pose their own set of advantages and disadvantages. These are important to take
into account when mining software repositories.

Even with the large body of research in the field of bug prediction, we found
the current state of the art techniques still relied on a heuristics-based algorithm
(SZZ), the validity of which is questioned. While we can use linkage to find the
commit and changeset which were used to fix a bug, finding the commit which
introduced the bug is a far more challenging operation. Due to the problems
with this methodology, we did not end up using SZZ for our analysis.

7.3 Responsiveness of metrics to bug fixes

To investigate the effectiveness of the metrics for which we have measurements,
we compared the values before and after a bug fix. We covered this in Chap-
ter 6. Based on the definition of the TQI, we proposed an expected direction for
each of the metrics. We then examined whether each of the metrics increased
or decreased. We found our intuitions were correct for metrics like average cy-
clomatic complexity and the number of compiler warnings, but the compliance
factor based on this metric moved in the opposite direction. Finally, the TQI
itself did not significantly change after a bug fix, most likely because it is a
composition of other metrics. For each of the metrics, we found that the ef-
fect size was negligible. This is most likely due to aggregation, since relatively
small changes become almost negligible when aggregating to a higher level and
including a lot of unchanged files.

These results are too preliminary to draw a strong conclusion. Further re-
search is needed to determine what the relation between these metrics and bug
fixes is.

7.4 Improvement of the analysis process

From our limited experience with the investigation of software repositories, we
can make some recommendations to improve the quality of these information
sources.
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We found that a major challenge in the interpretation of the data was a
result of the use of certain operations in the version control system, particu-
larly rebasing and fast-forward merging. These issues impact the scalability of
empirical methods that use software repositories, since their resolution requires
a fair amount of manual effort. A straightforward recommendation to improve
on this situation is to replace the use of these operations by normal (explicit)
merges, which have a similar result.

However, we should stress that this recommendation should not be applied
without vigilance. While explicit merges simplify the automatic analysis of
software repositories, they may become harder to understand for humans. Since
a version control system is used daily by humans, this trade-off may not be worth
the investment.

7.5 Relation between TQI and bugs
In conclusion, we have not been able to establish the validity of the TQI as an
indicator of software quality.

While this study has revealed some interesting insights that can be used
to improve the TQI, such as the distributions of the measurements and the
theoretical basis behind the various metrics and aggregation techniques, we
encountered some difficulties in the collection and interpretation of our data that
proved to be difficult to overcome within the time-frame set for the project. We
hope that the insights of this work can be used for a more thorough assessment
of the validity of the TQI.

7.6 Future work
We propose a few directions of future work.

The first subject that can be researched in more detail is the way the TQI
is composed. We gave an overview of how the different metrics are combined
into the TQI and offered some criticism and potential improvements, but there
is more work to be done here. In particular, it would be useful to collect a set of
mathematical properties the TQI should satisfy, and adjust its definition based
on this.

In order to empirically assess to what extent these adjustments form an
improvement compared to the current definition, a statistical bug prediction
model could be built. Such a model can directly be compared and its strengths
can be incorporated into the TQI definition.

In addition to this, the current approach we used for validation (based on
differences before and after a bug fix) could be improved upon by investigating
the results at various granularity levels. We would expect lower levels of aggre-
gation to be more responsive to changes, which should result in a larger effect
size.

Finally, generalizing the results of any case study is difficult. In order to
understand the effectiveness of the TQI better, we need a much larger and more
diverse set of projects. By performing a set of case studies, we can attempt to
collect sufficient data to deduce findings that apply to a larger subset of TIOBE
customers.
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Appendix A

TED Data collection

An important data source for the project is the TED database [19]. TED is
an abbreviation of “TICS Enterprise Dashboard”. This dashboard provides an
overview of all projects the user has access to, including all metric values as well
as historical values.

The TICS Enterprise Dashboard connects to a database in which all metric
data is stored. Historically, TICS has sent reports by email to customers con-
taining the latest metric data. For each run, TICS sends an email. TED has
been built on top of this system. When the need arose to collect all data in a
central database, the choice was made to send these emails to a central email
address. The TED database simply collects each of these emails and stores the
gzipped email in the database as a Binary Large OBject (BLOB).

TICS reports have had various formats over the years. Naturally, an email
can contain any text. Initially, reports were textually formatted tables. Later,
the choice was made to switch to reports in JSON format. A strength of the
JSON format is that it is easy to parse automatically while still being human-
readable. It can also be extended with new fields easily.

The data collection consists of two broad steps:

1. querying the database;

2. parsing the email messages to extract metric data.

A.1 Database query
We combine the Owner, Project and Report tables to find the name of the
company, name of the project and all reports. For each project, we select the
latest report that was successful. The query to do this is included below.

1 WITH successful AS (
2 SELECT o."Name" "Owner", p."Name" "Project",

"Site", r."Text" "Email", r."Time" "Time"
3 FROM "Owner" o
4 INNER JOIN "Project" p
5 ON o."Id" = p."OwnerId"
6 INNER JOIN "Report" r
7 ON r."ProjectId" = p."Id"
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8 WHERE r."Success" = 1 AND r."Text" IS NOT NULL
9 ), latest AS (
10 SELECT "Project", MAX("Time") "Time"
11 FROM successful
12 GROUP BY "Project"
13 )
14 SELECT successful."Owner", successful."Project",

successful."Site", MIN("Email") "Email",
successful."Time"

15 FROM successful
16 INNER JOIN latest ON latest."Project" =

successful."Project"
17 WHERE latest."Time" = successful."Time"
18 GROUP BY successful."Owner", successful."Project",

successful."Site", successful."Time"

A.2 Parsing email
The data that results from the database query is processed by a Python script.
This script takes the BLOB that contains the email for each report, decom-
presses it, extracts the body of the message, attempts to find a JSON structure
within this body and finally extracts all metrics from this structure.

The entire script is included below.

1 #!/usr/bin/env python
2 import csv
3 import fdb
4 import email
5 import json
6 import zlib
7 from operator import itemgetter
8 from pprint import pprint
9
10 def strip(s):
11 lines = s.split('\n')
12 try:
13 start = s.split('\n').index('[') # start of

JSON object (first occurrence of line
containing only '[')

14 result = ''.join(lines[start :])
15 except ValueError:
16 result = s
17 start = result.index('[')
18 end = result.rindex(']') + 1 # end of JSON object

(last occurrence of ']')
19 result = result[start:end]
20 result = result.replace("'", '"') # replace any

single quotes by double quotes to support
invalid JSON
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21 return result
22
23 def make_pretty(dictionary):
24 '''Transforms a dictionary to a prettier format.
25
26 >>> pprint(make_pretty ([{'key1 ': 'val1 '},

{'key2 ': 'val2 '}]))
27 {'key1 ': 'val1 ', 'key2 ': 'val2 '}
28 >>> pprint(make_pretty ([{'dict ': [{'key1 ':

'val1 '}, {'key2 ': 'val2 '}]}]))
29 {'dict ': {'key1 ': 'val1 ', 'key2 ': 'val2 '}}
30 '''
31 if isinstance(dictionary , list) and

len(dictionary) > 0 and
isinstance(dictionary [0], dict):

32 # merge all dicts in the list
33 result = {}
34 for d in dictionary:
35 if isinstance(d, dict):
36 for key in d:
37 val = make_pretty(d[key])
38 result.update ({key: val})
39 return result
40 elif isinstance(dictionary , list) and

len(dictionary) > 0 and
isinstance(dictionary [0], list):

41 result = []
42 l = dictionary
43 for elt in l:
44 result.append(make_pretty(elt))
45 return result
46 else:
47 return dictionary
48
49 def parse_email(mail):
50 mail_dec = zlib.decompress(mail ,

16+ zlib.MAX_WBITS)
51 message = email.message_from_string(mail_dec)
52 json_obj = message.get_payload ()
53 try:
54 result = json.loads(strip(json_obj))
55 return result
56 except ValueError:
57 # ignore silently XXX
58 return None
59
60 def get_main_language(loc):
61 '''
62 Derive main language from loc metric.
63 '''
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64 languages = {elt['Language ']: elt['Value'] for
elt in loc.get('Values ', {}) if
elt['Language '] != 'All'}

65 try:
66 return max(languages.iteritems (),

key=itemgetter (1))[0]
67 except ValueError:
68 return None
69
70 def find(structure , key , val):
71 '''
72 Finds a key , value pair in `structure ` with

structure[key] == val
73 '''
74 if not structure:
75 return {}
76 for d in structure:
77 if d[key] == val:
78 return d
79 return {}
80
81 if __name__ == "__main__":
82 import doctest
83 doctest.testmod ()
84
85 import pickle
86 with open('./ recent_dump.dmp') as f: cur =

pickle.load(f)
87
88 all_metrics = set()
89 for (owner , project , site , mail , time) in cur:
90 structure = make_pretty(parse_email(mail))
91 if structure:
92 enabled_metrics =

structure.get('Header ').get('Enabled
metrics ')

93 if enabled_metrics:
94 all_metrics.update(enabled_metrics)
95 all_metrics = sorted(all_metrics)
96
97 ms = ('DUPLICATEDCODE ',
98 'ABSTRACTINTERPRETATION/VIOLATIONSPERLEVEL ',
99 'ABSTRACTINTERPRETATION/SUPPRESSIONSPERLEVEL ',
100 'UNITSTATEMENTCOVERAGE ',
101 'UNITBRANCHCOVERAGE ',
102 'UNITFUNCTIONCOVERAGE ',
103 'UNITDECISIONCOVERAGE ',
104 'DEADCODE ',)
105 cols = ['Owner', 'Project ', 'Site', 'Time', 'Main

language ', 'Number of files', 'LOC'] +
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all_metrics
106 with open('recent_metrics.csv', 'w') as csv_file:
107 csv_writer = csv.writer(csv_file ,

delimiter=',', quotechar='"',
quoting=csv.QUOTE_MINIMAL)

108 csv_writer.writerow(cols)
109 for (owner , project , site , mail , time) in cur:
110 mail = make_pretty(parse_email(mail))
111 if not mail: mail = {}
112 metrics = mail.get('Metrics ')
113 loc = find(metrics , 'Metric name', 'LOC')
114 main_language = get_main_language(loc)
115 loc = find(loc.get('Values '), 'Language ',

'All').get('Value')
116 num_files = max(find(metrics , 'Metric

name', m).get('Analyzed ',
{}).get('Total') for m in ms)

117 metrics = [find(find(metrics , 'Metric
name', m).get('Values '), 'Language ',
'All').get('Value') for m in
all_metrics]

118 row = [owner , project , site , time ,
main_language , num_files , loc] +
metrics

119 csv_writer.writerow(row)
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Appendix B

Probability density plots

This chapter contains some plots of the distributions of the various metrics that
TIOBE uses. These are generated using the R script below.

1 #!/usr/bin/Rscript
2 require(moments) # install.packages('moments ')
3 ted <- read.csv("../ted/ted.csv")
4 dir.create('output ', showWarnings = FALSE)
5
6 pdf('output/tqi.pdf')
7 plot(density(ted$TQI.Score , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

8 dev.off()
9 skewness(ted$TQI.Score)
10 kurtosis(ted$TQI.Score)
11
12 TQI.AbstrInt <- ted$AbstrInt*2-100
13 TQI.AbstrInt[TQI.AbstrInt < 0] <- 0
14 pdf('output/ai_raw.pdf')
15 par(cex =2)
16 plot(density(ted$AbstrInt , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

17 dev.off()
18 pdf('output/ai_tqi.pdf')
19 par(cex =2)
20 plot(density(TQI.AbstrInt , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

21 dev.off()
22
23 TQI.Cyclox <- 140 - 20 * ted$Cyclox
24 TQI.Cyclox[TQI.Cyclox < 0] <- 0
25 TQI.Cyclox[TQI.Cyclox > 100] <- 100
26 pdf('output/cc_raw.pdf')

95



27 par(cex =2)
28 plot(density(ted$Cyclox , na.rm = TRUE , kernel =

"epanechnikov", from = 0), main="", xlab="")
29 dev.off()
30 pdf('output/cc_tqi.pdf')
31 par(cex =2)
32 plot(density(TQI.Cyclox , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

33 dev.off()
34
35 TQI.CompWarn <- 100 - 50 * log10 (101-ted$CompWarn)
36 TQI.CompWarn[TQI.CompWarn < 0] <- 0
37 pdf('output/cw_raw.pdf')
38 par(cex =2)
39 plot(density(ted$CompWarn , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

40 dev.off()
41 pdf('output/cw_tqi.pdf')
42 par(cex =2)
43 plot(density(TQI.CompWarn , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

44 dev.off()
45
46 TQI.DupCode <- -30 * log10(ted$DupCode) + 70
47 TQI.DupCode[TQI.DupCode > 100] <- 100
48 pdf('output/dup_raw.pdf')
49 par(cex =2)
50 plot(density(ted$DupCode , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

51 dev.off()
52 pdf('output/dup_tqi.pdf')
53 par(cex =2)
54 plot(density(TQI.DupCode , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

55 dev.off()
56 skewness(ted$DupCode , na.rm = TRUE)
57 kurtosis(ted$DupCode , na.rm = TRUE)
58 skewness(TQI.DupCode , na.rm = TRUE)
59 kurtosis(TQI.DupCode , na.rm = TRUE)
60
61 TQI.FanOut <- 120 - (5 * ted$FanOut)
62 TQI.FanOut[TQI.FanOut < 0] <- 0
63 TQI.FanOut[TQI.FanOut > 100] <- 100
64 pdf('output/fanout_raw.pdf')
65 par(cex =2)
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66 plot(density(ted$FanOut , na.rm = TRUE , kernel =
"epanechnikov", from = 0), main="", xlab="")

67 dev.off()
68 pdf('output/fanout_tqi.pdf')
69 par(cex =2)
70 plot(density(TQI.FanOut , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

71 dev.off()
72
73 TQI.DeadCode <- 100 - (2 * ted$DeadCode)
74 TQI.DeadCode[TQI.DeadCode < 0] <- 0
75 pdf('output/dead_raw.pdf')
76 par(cex =2)
77 plot(density(ted$DeadCode , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

78 dev.off()
79 pdf('output/dead_tqi.pdf')
80 par(cex =2)
81 plot(density(TQI.DeadCode , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

82 dev.off()
83 skewness(ted$DeadCode , na.rm = TRUE)
84 kurtosis(ted$DeadCode , na.rm = TRUE)
85 skewness(TQI.DeadCode , na.rm = TRUE)
86 kurtosis(TQI.DeadCode , na.rm = TRUE)
87
88 TQI.unitSCov <- (0.75 * ted$unitSCov) + 32.5
89 TQI.unitSCov[TQI.unitSCov > 100] <- 100
90 pdf('output/coverage_raw.pdf')
91 par(cex =2)
92 plot(density(ted$unitSCov , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

93 dev.off()
94 pdf('output/coverage_tqi.pdf')
95 par(cex =2)
96 plot(density(TQI.unitSCov , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

97 dev.off()
98
99 TQI.CodingStd <- ted$CodingStd

100 pdf('output/cs_raw.pdf')
101 plot(density(ted$unitSCov , na.rm = TRUE , kernel =

"epanechnikov", from = 0, to = 100), main="",
xlab="")

102 dev.off()
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Figure B.1: Density plot for the TQI.
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104 pdf('output/normal.pdf')
105 curve(dnorm , type="l", xlab="", ylab="Density", xlim

= c( -3.5 ,3.5))
106 dev.off()
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Figure B.2: Density plots for abstract interpretation.
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Figure B.3: Density plots for cyclomatic complexity.
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Figure B.4: Density plots for code coverage.
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Figure B.5: Density plots for coding standards.
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Figure B.6: Density plots for compiler warnings.
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Figure B.7: Density plots for duplicate code.
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Figure B.8: Density plots for dead code.
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Figure B.9: Density plots for fan-out.
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Glossary

abstract interpretation “A method for designing approximate semantics of
programs which can be used to gather information about programs in
order to provide sound answers to questions about their run-time be-
haviours” [70]. See Section 2.3.10. pp. 4, 22, 23, 28, 31, 32, 35, 38,
43, 46, 69–71, 79

aggregation The process of combining the measurements on multiple low-level
components (e.g., methods, files) to obtain a value representing the same
metric on a higher level (e.g., the entire project) [5]. The term “aggrega-
tion” is sometimes used to refer to composition. pp. 2, 6, 9, 14, 26–29,
31, 34, 36, 43, 46, 52, 58, 65, 71, 72, 78, 80, 82–85

branch coverage pp. 20, 80, see decision coverage

bug A fault. pp. 6, 7, 14, 15, 22–25, 32, 40, 47–52, 57, 59, 61, 63, 64, 74,
76–78, 81, 83, 103

bug prediction The process of estimating the likelihood of software defects in
software [48]. pp. 10, 11, 24, 47, 50–52, 57, 59, 61

bug report pp. 50, 60, 73, see bug ticket

bug ticket A report about a bug that has been found in a software project.
Bug tickets are submitted to a bug tracking system. pp. 49, 50, 52, 58,
59, 63, 64, 70, 74

bug tracking system “A software application that helps in tracking and doc-
umenting the reported software bugs” [155]. pp. 6, 7, 47–51, 57–66, 68,
71, 74, 75, 84, 103, 106

bug-fixing commit Commit that fixes a bug in the software. pp. 50, 52, 57,
74

bug-inducing commit Commit that introduces a bug into the software [156].
pp. 50, 52, 58, 74, 107

changeset A set of changes to files that is committed to a version control
system. pp. 25, 48, 58, 104

Chidamber and Kemerer metrics A suite of metrics that aim to measure
the quality of the design of object-oriented programs [27]. See Section 2.3.7.
pp. 17, 28
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code churn Metric for the amount of change in source code, expressed in the
number of lines that were added, removed, or changed [28]. See Sec-
tion 2.4.2. pp. 25, 52

code coverage A metric of test suite quality [66]. See Section 2.3.8. pp. 4,
12, 19–21, 28, 31, 32, 37, 38, 46, 58, 63, 77, 104–107

code duplication The process of copying code to re-use it in a new con-
text [51]. The amount of code duplicated code can be used as a metric for
the proportion of redundant code in a project. See Section 2.3.4. pp. 5,
15, 31, 35, 40, 77

coding standard A set of rules for software developers to follow while writing
code [108]. See Section 2.3.12. pp. 4, 9, 24, 28, 29, 31, 32, 34, 35, 39, 40,
46, 76, 77, 79, 80, 107

cohesion The degree of interdependency of components within a module [56].
See Section 2.3.6. pp. 17, 19

commit The act of providing changes to a version control system for storage.
The word “commit” is often used as a noun to refer to the changes them-
selves (changeset). pp. 25, 48, 50–52, 59, 62–64, 66, 69–71, 73, 74, 76,
81, 103

commit message A textual message that may be used to describe the inten-
tion of a commit. Commit messages are intended to be human-readable,
but may also be used to include machine-readable information, such as a
reference to documentation. pp. 48–50, 55, 59, 61–64, 66, 70, 73, 74

commit parent The “predecessor” of a commit. That is, the commit for which
the contents were modified to arrive at the current version. Parents are
particularly relevant in a distributed VCS, where the parent of a commit
is stored explicitly. pp. 52, 53, 55, 56

compiler warnings Potential errors in the source code that are discovered
during compilation. See Section 2.3.11. pp. 4, 23, 24, 28, 29, 31, 32, 35,
39, 73, 77, 80, 81, 84

compliance factor A method to compute a single number based on a set of
violations of various types [91] (see Section 3.2). pp. 29, 32, 34, 35, 38,
39, 77, 107

composition The process of combining different metrics into a single value that
is intended to represent a combination of the semantics of these metrics [5].
pp. 9, 27–29, 31, 36, 43, 46, 52, 69, 82, 103, 107

condition coverage Code coverage metric based on the proportion of condi-
tions in each decision being covered [61, pp. 45–46]. A condition is a single
boolean value that a decision can be based on. See Section 2.3.8. pp. 20,
21, 37, 38

condition/decision coverage A combination of condition and decision cov-
erage [61, pp. 46–47]. pp. 20, 37
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coupling The degree of interdependency of components outside of a mod-
ule [56]. See Section 2.3.6. pp. 17, 18

cyclomatic complexity pp. 4, 10, 12, 14, 18, 27, 28, 30, 31, 35, 38, 39, 43,
52, 58, 76, 80, 84, see McCabe complexity

dead code Code for which the result will never be used [54, p. 350]. See
Section 2.3.5. pp. 5, 16, 31, 35, 43, 77

decision coverage Code coverage metric based on the proportion of decision
branches covered by unit tests [61, pp. 44–45]. See Section 2.3.8. pp. 20,
21, 37, 38, 46, 104

defect A problem which, if not corrected, could cause an application to either
fail or to produce incorrect results [157]. Often used as a synonym for
“fault”. pp. 1, 2, 4, 7, 25, 32, 34, 47, 50, 57, 103

defect prediction pp. 28, see bug prediction

diff A tool to compare files line by line [158]. The term “diff” can be used both
to refer to the command itself (typeset as diff in this document) and the
output that the tool produces, i.e., a list of added, removed, or modified
lines along with information about their location in the file. The diff
command is not only available as a stand-alone application, but is also
integrated in version control systems such as Subversion and Git. pp. 48,
71, 74

external validity The extent to which a study’s results generalize to other
settings outside of the study [152]. pp. 80, 82

fan-out The number of modules from which functions are imported. See Sec-
tion 2.3.6. pp. 5, 17, 31, 35, 41–43, 46, 58, 71, 72, 76, 77, 79, 82, 107

fault A manifestation of an error in software [157]. pp. 6, 11, 21, 22, 24, 25,
40, 47, 49, 103, 105

function coverage Code coverage metric based on the proportion of functions
(methods) in a class, module, or program that is invoked by a unit test.
pp. 20, 37

functional suitability “Degree to which a product or system provides func-
tions that meet stated and implied needs when used under specified con-
ditions” [24, p. 10]. pp. 4, 106

Halstead complexity measures A series of metrics aimed at measuring soft-
ware size and complexity and effort estimation [49]. See Section 2.3.3.
pp. 14, 28

import A statement that declares the usage of some other class or package.
It is known as import (Java, Python), using (C#) and require (PHP,
Node.js). pp. 5, 17, 41, 42, 46
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lines of code Metric for software size. See Section 2.3.1. pp. 2, 11, 12, 35,
40, 43, 73, 80

linkage The process of linking the tickets from a bug tracking system to the
information in a version control system [120]. pp. 50, 51, 64, 70, 73, 74

maintainability “Degree of effectiveness and efficiency with which a product
or system can be modified by the intended maintainers” [24, p. 14];. pp. 4,
24, 106

measurement “The empirical, objective assignment of numbers, according to
a rule derived from a model or theory, to attributes of objects or events
with the intent of describing them” [25]. pp. 2, 3, 7, 9, 10, 14, 15, 26–28,
32, 39, 42, 43, 46, 58, 66, 68, 69, 71, 78, 79, 81, 82, 84, 85, 103

metric pp. 10, 11, 15, 29, 46, 47, 58, 66, 82, 84, 95, 103–107, see software
metric

Modified Condition/Decision Coverage Type of code coverage that is ap-
plied in avionics and other critical system domains [65]. pp. 20, 109

mutation coverage A metric for test suite quality that is designed to over-
come a weakness of code coverage [67]. See Section 2.3.9. pp. 21, 22

normal distribution A continuous probability distribution that forms the ba-
sis of many statistical tests. pp. 66, 78

path coverage Code coverage metric based on the proportion of execution
paths through a method that are covered [62]. See Section 2.3.8. pp. 20,
21, 37

quality factor A characteristic of software quality [23]. Examples include:
reliability, functional suitability, and maintainability. pp. 3–6

quality metric Metric for software quality. pp. 4–6, 107

reliability “Degree to which a system, product or component performs specified
functions under specified conditions for a specified period of time” [24,
p. 13]. pp. 4, 106

repository mining The process of extracting data from software archives [110].
pp. 47–50, 58

software archive Data which is generated during the software development
process [110]. Examples of software archives include version control sys-
tems and bug tracking systems, but also the source code of the software
itself and documentation. pp. 47, 106

software metric Mapping from the (components of) software to a value that
represents a certain property, such as quality or complexity [25]. Metrics
are covered in Chapter 2. pp. 2, 6, 9, 28, 47, 66, 78, 106, 107
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software quality The quality of software. For a discussion of the various def-
initions of this concept, refer to Chapter 1. pp. 1, 2, 4–6, 9, 10, 25, 26,
29, 30, 47, 57, 76, 77, 80, 85, 106, 107

statement The smallest stand-alone unit of an imperative programming lan-
guage that describes some action that the program should execute. While
a statement is not necessary equivalent to a line (multiple statements could
appear on a single line and vice versa), this distinction is not always made.
pp. 12, 13, 15, 16, 19–21, 37, 41, 42, 52, 71, 76, 105, 107

statement coverage Code coverage metric based on the proportion of state-
ments covered by unit tests [61, p. 44]. See Section 2.3.8. pp. 19–21, 37,
38, 46

static defect count The estimated number of bugs in a program based on
violations of the coding standard [91]. This concept is used to define
the compliance factor. Static defect count is presented in Section 3.2.1.
pp. 32, 34, 35

statistical test A test that uses statistical methods to infer whether some null
hypothesis can be rejected. The null hypothesis is typically the default
position that there is no interesting effect to be observed. The test can be
used to determine whether this null hypothesis can be rejected, providing
evidence for the alternative test that there is an interesting effect [150,
p. 1020]. pp. 78–81, 106

SZZ Algorithm to find bug-inducing commits using heuristics that are applied
on information from the version control system. Named after the authors:
Śliwerski, Zimmermann, and Zeller [126]. pp. 50, 52, 65, 66, 70, 73, 74,
76, 82, 84

test coverage pp. 35, 80, see code coverage

TICS The primary product by TIOBE. TICS periodically runs a variety of
tools to obtain measurements and stores these in a database. pp. 28, 29,
33, 37, 39, 40, 44, 46, 62, 65–69, 71, 73, 76, 81, 82, 89

TICS Enterprise Dashboard An application developed by TIOBE that pro-
vides an overview of all projects the user has access to, including all current
metric values as well as historical values. pp. 65, 89, 109

TICSCil A tool to compute fan-out for C# projects, developed internally by
TIOBE. pp. 41, 42, 71, 73, 79, 80, 82

TIOBE The company where this research was carried out. TIOBE measures
software quality using software metrics and has created the TQI. pp. 2–7,
9, 10, 12, 16, 17, 22, 23, 25, 26, 28–30, 32, 34, 36, 38–46, 48, 57, 59, 60,
62, 64–66, 82, 83, 85, 95, 107

TIOBE Quality Indicator A composition of quality metrics that forms a
metric for software quality by TIOBE [16]. pp. 2, 109

107



TQI integration The process of applying one of the formulas in Section 3.3
to obtain a TQI component with a value in the domain [0, 100]. pp. 28,
29, 35, 36, 43, 44, 66–68, 99–102

unreachable code Code that can never be executed [55]. See Section 2.3.5.
pp. 16, 42, 43

version control system System that keeps track of different revisions of (the
source code of) software [159]. pp. 7, 25, 47–51, 53, 56, 58, 60–62, 64,
65, 68, 71, 75, 84, 85, 103–106, 109

108



Acronyms

BLOB Binary Large OBject pp. 89, 90

DAG Directed Acyclic Graph pp. 48, 53, 55, 56

KLOC Kilo (1000) Lines Of Code pp. 35, 60, 80

LOC Lines Of Code pp. 2, 5, 10–12, 15, 24, 25, 27, 34, 43, 58, 73

MC/DC Modified Condition/Decision Coverage pp. 20, 21, 37

SHA-1 Secure Hashing Algorithm 1 pp. 48, 53

SLOC Source Lines Of Code pp. 11, 17

SQuaRE Systems and software Quality Requirements and Evaluation pp. 4,
5

TED TICS Enterprise Dashboard pp. 65, 66, 82, 89

TQI TIOBE Quality Indicator pp. 2, 3, 6, 7, 9, 10, 12, 14–17, 19, 22–24,
28–33, 35–40, 43–47, 51, 52, 58, 65–73, 76–78, 80, 82–85, 98, 107, 108

VCS Version Control System pp. 48, 49, 53–56, 104
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