
 Eindhoven University of Technology

MASTER

Extending EMF for modularity

van Schuylenburg, S.B.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c6d02d99-b1ee-4a9f-9f61-51eee870807d

Extending EMF for Modularity

Stef van Schuylenburg

February 18, 2016

Abstract

The Eclipse Modeling Framework (EMF) is a modeling framework and code
generation facility for building tools, based on data models. Using EMF, de-
velopers can create a model specification and EMF can generate software tools
from this model. Those tools allow other developers to create and work with the
models in various ways. Unfortunately, the models can become very complex
and difficult to maintain.

In this thesis we present a solution to handle complex models. With our
solution we extend any type of model with modularity. Modularity is achieved
by introducing a facility to support the use of parameterized functions, where
the functions return model fragments. Each function defines a parameterized
module; they contain a definition and can be called from within a model. The
models with functions can be transformed to models without functions, such
that the meaning of the model is preserved. Using this solution we expect to
improve the maintainability of complex models that are created using EMF.

Contents

1 Introduction 3
1.1 Research Goals . 3

2 Model Driven Engineering 5
2.1 Models . 5
2.2 Metamodels . 5
2.3 Model Transformations . 7

3 Overview of Our Approach 9

4 Extending Metamodels 11
4.1 Introducing the Metamodel . 11
4.2 Extending the Metamodel . 11
4.3 Transforming the Models . 13
4.4 Conclusion . 14

4.4.1 Workflow . 14

5 Defining Functions on the Model Level 16
5.1 Updating the Metamodel . 16
5.2 Transforming the Models . 17
5.3 Conclusion . 18

5.3.1 Workflow . 19

6 Automating the Procedure 21
6.1 Generating the Metamodel . 21

6.1.1 The Original Classes . 22
6.1.2 The Additional Classes 22
6.1.3 The FunctionApply Classes 22
6.1.4 The Param Classes . 23

6.2 Generating the Model Transformation 23
6.2.1 The Original Classes . 23
6.2.2 The FunctionApply Classes 24
6.2.3 The Param Classes . 24
6.2.4 The Complete Model . 24

6.3 Streamlining the Procedure . 24
6.4 Workflow . 26

1

7 Use Case: POOSL 27
7.1 Extending the Grammar . 27
7.2 Future Work . 28

8 Related Work 30

9 Conclusion and Future Work 32
9.1 Conclusion . 32
9.2 Research Goals Revisited . 32

9.2.1 Changeability . 33
9.2.2 Comprehensibility . 33
9.2.3 Reusability . 33

9.3 Future Work . 33
9.4 Acknowledgments . 34

A Transformation: Extending the Metamodel 36

B Transformation: Generating the Model Transformation 40

2

Chapter 1

Introduction

Model Driven Engineering (MDE) is a software engineering approach that uses
models to assist in the creation of a software product. It gives developers the
ability to decribe parts of the software product in models and to create resources
that become part of the end product.

The Eclipse Modeling Framework (EMF) is a framework that supports the
MDE approach. It allows developers to create domain-specific languages by
generating building tools. With those building tools, developers can create
models that belong to the created domain-specific language. Furthermore the
models can also be used to generate code or to generate other models.

EMF does, however, not provide developers with a way to achieve modu-
larity in the models. It is up to the creator of the domain-specific language
to introduce modularity for the models, by introducing modularity concepts in
the metamodel. Modularity does have many advantages. The advantages are
among others [1]:

1. Changeability: The ability to change one part of the model and affecting
the other parts as little as possible.

2. Independent development: The ability to work on different parts of the
model at the same time by different developers.

3. Comprehensibility: The ability to understand a part of the model without
having to understand the complete model first.

This thesis is structured as follows: In the next chapter we will look at MDE
in more detail. In Chapter 3 we will give an overview of our solution and in
Chapters 4 through 6 we will explain our solution. In Chapter 7 we will show
and motivate a use case for our solution. In Chapter 8 we will look at the related
work concerning modularity when working with MDE and EMF. In the final
chapter we will give a conclusion and discuss the possible future work. But first
we will start with introducing our research goals.

1.1 Research Goals

In this paper we present a solution to introduce the advantages of modularity
to models, with the solution being exemplified on EMF models. In order to
measure whether modularity is achieved, we use the following research goals:

3

1. Improve changeability of model parts.

2. Improve comprehensibility of the models.

3. Add reusability of models.

We will compare how creating models with our solution will satisfy those
goals compared to creating models without our solution.

Besides being a theoretical solution, we also implement our solution. The
implementation will serve both as a proof of concept and as a tool that can be
used in building models.

4

Chapter 2

Model Driven Engineering

In this chapter we will look at MDE in more detail and we will explain the terms
used in this paper. More information about the terms introduced in this chapter
can be found in the Meta Object Facility specifications [2] that introduces these
terms in a more formal way.

2.1 Models

MDE makes heavy use of models. Models are used to describe data, processes
and other resources. In MDE, the term model is used in an abstract way.
A model can be a piece of code, a diagram or any other kind of structured
data. The model is used as an abstract representation. A model consists of
model elements with relationships. Model elements are the objects that live in
a model. In MDE, model elements often have a certain type. Model elements
can have relationships to other model elements. Those relationships indicate
that the model elements are related in a certain way. How they are related
is indicated by the type of the relationship. Furthermore, model elements can
have attributes. Attributes are properties of model elements that are represented
in a primitive type, or another type that is defined as a data type within the
metamodel. For example a model element can have properties with a number
value or a string value.

An example of a model can be found in Figure 2.1. In this model we find four
model elements. One of the model elements is of type Book and the others are of
type Chapter. The Book element has relationships to the Chapter elements, for
this example the relationships indicate that the Book consists of those Chapters.
Furthermore the Book element has two attributes: one authors attribute and
one title attribute. In this case, the attributes have a string value. This figure
is just one way of representing the model; the model could for example also be
represented as text or using a different graphical notation.

2.2 Metamodels

To define how the models are structured, metamodels are used. Metamodels are
also models. A metamodels defines a language to which the models must adhere.
Models that adhere to a metamodel, are called instances of that metamodel. To

5

Figure 2.1: An example of a model describing a book

define the language, the metamodel specifies a number of classes. Those classes
specify the types that are used by model elements within the instances of the
metamodel. They specify the relationships and the attributes that the model
elements of that type have. A language defined by a metamodel is called a
Domain-Specific Language (DSL).

Figure 2.2: An example metamodel of the traffic signs.

To explain metamodels in more detail, we will look at an example. For this
example we will look at a real world model, that is often encountered: The
traffic signs. Traffic signs are models that describe the rules for the road they
are located at. There are many types of traffic signs: some specify the maximum
speed that is allowed on the road, others prohibit certain vehicle types to enter
the road and there are traffic signs that indicate that a previous traffic signs no
longer applies. The traffic signs can be seen as a type of models, which can be
described by a metamodel. A small metamodel covering the traffic signs can
be seen in Figure 2.2. This metamodel only covers the traffic signs which we
mentioned above. In the metamodel we find one element named Traffic Sign.
The other elements are classes that extend the Traffic Sign class. Two of those
classes contain an attribute; Max Speed has a max attribute and Prohibition
has a type attribute. The End Sign has a relationship to Traffic Sign, in this
case the relationship indicates that the Traffic Sign no longer applies. Using this

6

Figure 2.3: Traffic sign models

metamodel we can describe traffic signs. For example, when we have a model
instance that represents a maximum speed limit of 50, then our model consists
of a model element of type Max Speed, with an attribute max with a value of
50. When we have a model that indicates the end of a maximum speed limit
of 50, then our model consists of a model element of type End Sign, with a
relationship to a model element of type Max Speed.

Based on this metamodel, the traffic signs found in Figure 2.3 are model
instances. This figure uses the representation of traffic signs as they are found
in Europe.

2.3 Model Transformations

Model transformations are used within MDE to generate resources based on
models. Model transformations can be created as an automated process. As
input they take model instances of a certain metamodel and they can generate ei-
ther other models, or text-based files. The model transformations that generate
models are called model-to-model transformations. The model transformations
that generate text-based files are called model-to-text transformations.

Model-to-text transformations are often used to generate code based on a
model. For example, EMF generates model editors based on a metamodel. To
generate the editor they created a model transformation. This model transfor-
mation takes as input a metamodel (which is a model itself) and generates the
code that is used to implement the model editor.

As an example for the model-to-model transformation, we could have a trans-
formation based on the traffic signs metamodel from Figure 2.2. Suppose we
want a transformation that transforms signs into end signs and end signs into
normal signs. To solve this, we could create a model transformation that looks
at whether the model consists of an End Sign model element or not. If it is
not an End Sign, a new model is generated consisting of an End Sign model
element, with a relationship to root element of the given model. If it is an End
Sign, a different model is generated consisting of the model element to which
the End Sign has a relationship. Figure 2.4 shows an example of transforming
a traffic sign model.

7

Figure 2.4: A model transformation applied to a traffic sign

8

Chapter 3

Overview of Our Approach

In this chapter we give an overview of our solution. First we explain how our
solution is used; we explain the process of using the new concepts in models.
Then we look at how we achieve our solution.

For our solution, we introduce function structures to models. A function
acts as a model part, which can be used in other models and which supports the
use of parameters. To use a function in a model, you need a function application
within your model. A function application is a model element that indicates
that we want to use the model part that belongs to the function. The function
application contains a reference to the function and it may contain arguments
which are used to apply the function. The function itself defines a model part.
Within the model part, the function can refer to the parameters of the function,
to indicate that an argument will be used there.

Our functions are placed in one or more model files separated from our main
model. The functions are bundled in Library models which contain multiple
Function elements. The functions are defined by a reference to the model el-
ements that represent the model part. The elements of the model part are
elements coming from the metamodel, or can be references to other functions
themself. Furthermore we also allow Param elements. Those elements indicate
that the element refers to the argument that is given at the function applica-
tion. Those Param elements provide the function structure for our submodels.
To create a function application, the FunctionApply elements are used. These
elements contain a reference to the Function element. The FunctionApply el-
ements can also contain a reference to another element which they will use as
argument for the Function element. Using this structure we can use a single
function at multiple locations within our models, but still allows varation within
the model parts we want to use.

To use the new types of elements in a model combined with the elements
from an already existing metamodel we extend the metamodel. We create a
new metamodel that contains the classes from a given metamodel in addition
with new classes to define and to use the functions. The extended metamodel
is created with a model transformation. Now EMF can generate tools for us to
create and edit models that satisfy the extended metamodel. The downside of
this approach is that the new models can not be used by tools that are based on
the already existing metamodel. To solve this we also supply a transformation
to transform models with functions to model without functions. The transfor-

9

Metamodel
Extended
Metamodel

Model InstanceModel Instance

Metamodel
Transformation

Model
Transformation

Instance of Instance of

Figure 3.1: An overview of our process to introduce modularity to models.

mation is created such that the generated models without functions preserves
the same meaning as the models with functions; when we apply a function in
a model, the function application will be replaced by the submodel defined by
the function. An overview of this process with the extended metamodel can be
found in Figure 3.1. In this figure we find the transformations that are required
for our solution.

Our solution works for models based on any EMF metamodel. We will
start however with introducing our solution based on only one metamodel in
Chapter 4 and Chapter 5. Then we introduce a way to apply our solution to
any metamodel in Chapter 6.

10

Chapter 4

Extending Metamodels

In Figure 3.1 we presented the extended metamodel. This extended metamodel
is based on an arbitrary metamodel and adds the concept of functions to it.
We have chosen to create a new metamodel, such that we can use the code
generation facility of EMF to generate the building tools to work with the
extended metamodel. The building tools generated by EMF allow us to use
the EMF-based model structures, which is supported by many tools that are
created for EMF.

In this chapter we will show a first step to the extended metamodel. We
introduce an example metamodel which we extend with the notion of functions.
In this chapter our function system is metamodel dependent; the two trans-
formations from Figure 3.1 are defined specifically for this specific metamodel.
Using this example we introduce and motivate the concepts that are used for
our solution.

4.1 Introducing the Metamodel

For the metamodel to extend we choose a metamodel which defines a modeling
language for working with binary trees. A representation of this metamodel can
be found in Figure 4.1. Here we find a recursive definition of a tree. Tree is
an abstract class in our metamodel that can either be a Node or a Leaf. The
Node class has two children: a left Tree and a right Tree. The Leaf class only
contains one value attribute.

Using this metamodel we can create Tree models. An example of such a
model can be found in Figure 4.2. This figure contains a graphical representation
of a Tree model using the Node and Leaf classes.

4.2 Extending the Metamodel

Now we want to extend this metamodel with concepts to use functions. The
functions will be model elements on the model level that take another model el-
ement as an argument. Those functions have a return type, which is represented
by having a super type relation in the metamodel. In this example the functions
return Tree elements, so the function classes have a super type relation to Tree.
Functions are represented as normal model elements: they are just a class with

11

Figure 4.1: The basic Tree metamodel

Figure 4.2: An example of a Tree model

a reference and a super type relation. The functions become special when we
are transforming our instances of the extended metamodel to instances of the
original metamodel. During the model transformation the function elements
will be replaced by a model element. This model element may use the argument
given to the function element as one of his descendants.

For this example we will create two functions. The first function is called
LeftTree. LeftTree takes as argument a Tree and will be transformed to a new
Node where the given tree is placed as the left child. The right child will be a
simple Leaf model element containing value 0. We model this in our metamodel
as a new class LeftTree, with a reference to a Tree and Tree as super type.

The second function is called Duplicate. Duplicate takes as argument a Tree
and will be transformed to a Node where the children are both the given Tree.
So the left child will be a copy of the right child. We model this in exactly
the same way as the LeftTree. Except for the name of the classes, those two
functions are modeled in exactly the same way in our new metamodel. The
extended version of the metamodel can be found in Figure 4.3.

Using this extended metamodel we can create models using the Duplicate
and the LeftTree functions. An example of such a model can be found in Fig-
ure 4.4. This model uses the Duplicate function, by using a model element of the

12

Figure 4.3: The extended Tree metamodel, containing the function classes.

type Duplicate. The Duplicate element used in this model, represents a subtree
consisting of a Node with two children, which both are the Leaf 2 element as
referenced to by the Duplicate element. This Tree model with functions repre-
sents the Tree model without functions from Figure 4.2. In the next section we
look at how we can transform such a model with functions to a model without
functions.

Figure 4.4: An example of a Tree model with functions

4.3 Transforming the Models

Now we want to transform instances of the extended metamodel to instances
of the basic metamodel. For the transformations we use the tool QVT Opera-
tional1. QVT Operational is a tool that supports model-to-model transforma-
tion on the models created with EMF. For this, QVT Operational uses a DSL
where the transformations are defined by mappings. Those mappings behave
like functions that can be applied on model elements to transform them to new
model elements.

1https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

13

The transformation of LeftTree elements is defined by creating a new Node
element for our target model. The right child of the Node element is a basic Leaf
element. The left child is the Tree that is given as argument for the LeftTree
element. To make sure that this argument satisfies the basic metamodel, we
have to transform the argument to an element of the basic metamodel. It may
be the case that this argument contains a LeftTree or a Duplicate element itself,
so we use the same transformation for the argument as we did for the complete
model.

The transformation of Duplicate elements is defined similar to the transfor-
mation for the LeftTree elements. The difference for the Duplicate function is
that instead of using a basic Leaf element for the right child, we will be using the
same model element as we used for the left child. For this we take a copy of the
element created by transforming the argument of the Duplicate element. We
use a copy, because it may be the case that metamodels are using containement
relations, which forbid referencing to a single model element more than once.

We also have to transform the Node and Leaf elements from the source
model to Node and Leaf elements in the target model. These transformations
are trivial: we copy all the arguments into the new Node and Leaf elements.

We have chosen for QVT Operational as language for our model-to-model
transformation, because with other modeling languages we faced limitations
which prevented us from using it for our solution. Especially regarding the
instantiation of model elements more than once we encountered limitations, be-
cause other modeling transformation languages are more declaritive than QVT
Operational. Furthermore for QVT Operational we could find more documenta-
tion about using the language than many of the other transformation languages.

4.4 Conclusion

Now we can use functions in our models to achieve higher modularity and to
be able to reuse structures. However using this approach it is required for the
developers to modify the metamodel to introduce new functions. Often we do
not want to change the metamodel, because there are multiple parts that depend
on the metamodel. For this we want to find a more general solution, which does
not require the developer to modify the metamodel in order to introduce new
functions.

4.4.1 Workflow

Now we will look at a summary of the workflow that is required for the solution
presented in this section. In this workflow, we will look at what is required
to set up an environment to work with models with functions. As starting
point the workflow uses a metamodel, namely the original metamodel. For this
metamodel we want to use a number of functions during the creation of model
instances. The workflow is as follows:

1. Create a new metamodel, containing the classes of the original metamodel.

2. To the new metamodel add one new class for each function we want to
introduce.

14

3. Use EMF to generate an editor for this new metamodel.

4. Create a new model transformation, to transform model instances of the
original metamodel to model instances of the new metamodel.

5. For each class of the original metamodel, add a mapping that copies the
model elements of that class.

6. For each of the classes created for the functions, create a mapping based
on how the function should behave.

Now model developers can use the generated editor to create models with
functions and use the transformation to transform models with functions to
model instances of the original metamodel.

15

Chapter 5

Defining Functions on the
Model Level

Having the type of function defined by the metamodel forces us to change the
metamodel if we want to add or remove a function. Having to frequently update
the metamodel has multiple disadvantages, because many parts of the tools
depend on the metamodel. For example we have to recreate the editor (often
this can be done automatically), the transformation may have to be updated
and all the models using the metamodel may have to be updated.

By allowing the developers to add or remove functions on the model level,
we expect to achieve a solution that is more flexible and that requires less effort
to keep all the parts consistent.

5.1 Updating the Metamodel

To define the functions on the model we need new classes in our metamodel
that support this. For this we use the classes which are already mentioned in
Chapter 3. This gives us the following classes:

• FunctionApply

• Function

• Library

• Param

The FunctionApply class is introduced such that we no longer need classes in
our metamodel that only cover one function, but such that we can have one class
to refer to any function. The FunctionApply class represents the application of
a function, where we use a reference to a Function definition to indicate what
function should be applied. In our new metamodel FunctionApply replaces
the LeftTree and Duplicate classes. In our example the FunctionApply has a
supertype relation to Tree, such that we can use FunctionApply elements as
children of Node elements. For other metamodels other supertype relations
would be required.

16

Next we have the Function class. This class is the definition of a function
on our model level. To define a function we use a normal model element. The
idea is that when we apply the function using a FunctionApply element, that the
FunctionApply element actually will be this model element. This model element
that defines the function is referred to as the body of a Function element. To
let the Function elements behave like we expect from functions we are using the
Param class, which we explain later on in this chapter.

Our approach is to keep the Function elements in a model file, separated
from the model we want to transform. This allows us to reuse the defined
functions in other models. To support this we use the Library class. A Library
element holds multiple Function elements and acts as the root element for the
model holding the Function elements. We want them to hold multiple Function
elements, because otherwise we would need a separate model for each function,
which could quickly require a large amount of models. By using one model
file for multiple Function elements we expect that we are able to keep a better
overview of all our models.

Finally we have the Param class to allow the usage of parameters in the
function definitions. For the function definitions we want to be able to use the
parameter within the body of a Function. So we should be able to express
that we want to place the model element belonging to the given argument at a
certain location. This could be the body itself, but it should also be possible
to use it as a descendant of our body. Otherwise it would only be possible to
create identity functions. The Param elements represent the model elemenst
which will be replaced by the argument given to the FunctionApply element.
To be able to use the Param elements everywhere in our body, we make them
a subtype of Tree.

The new updated version of the metamodel can be found in Figure 5.1.
We can now create models using this metamodel. An example of the model

where we are using and creating the duplicate function can be found in Fig-
ure 5.2. Here we find on the left the Tree model defined using the new version
of the metamodel. On the right we find a Library model defining a function
used in the Tree model. This model expands to the model from Figure 4.2.

5.2 Transforming the Models

As explained in the previous section we now use multiple models as input. The
main model is similar to the model we used as input in Chapter 4, where we
have a tree that may contain FunctionApply elements. The other models should
have a Library element as root. These models define all the functions we are
allowed to use in the main model. The model that is generated is based on
the main model, but uses the other models to define how the functions behave.
The transformation only needs the main model as input model; the Function
elements we are using can be derived from the FunctionApply elements that
refer to them.

When we transform our input model we keep the same approach as in Chap-
ter 4: We take the Node and Leaf elements and transform those in a trivial
manner and we take the FunctionApply and transform those in a structure that
belongs to the Function.
The difference is that we use the Function elements defined in the other models

17

Figure 5.1: The updated metamodel, containing the more generic functions.

to transform the FunctionApply elements.
To transform the FunctionApply elements we take the body of the Function

element to replace the FunctionApply. We also have to consider the arguments
of the FunctionApply elements. This argument replaces the Param elements
from the body of the Function element, but only for the transformation of
the current FunctionApply element. We decided to achieve this by adding a
parameter to the mappings of the transformation. This is a mechanism allowed
by QVT Operational to execute the mappings with a parameter. When we
encounter a FunctionApply element it will transform the body of the Function
element with the argument of the FunctionApply element as parameter. And
when we encounter a Param element we replace it by the parameter. For the
other elements we pass the parameter to all the transformations of the children
of the elements. We use a parameter for the transformation, because it allows
us to mimic the behavior of the model in our transformation. This makes it
easier to reason about it and it makes it easier to get the desired behavior.
Instead of using parameters we could also use global variables. But using global
variables becomes more complicated when you have a FunctionApply element
within the body of a Function element. To support those you would have to
create a stack-like mechanism to keep track of which argument is the current
parameter.

5.3 Conclusion

Now we can edit, add and remove function definitions completely on the model
level. We only have to edit the metamodel once to add the new classes in-

18

Figure 5.2: A Tree model using a function from a Library model.

troduced in this chapter. Our solution is however created specifically for our
example metamodel containing Tree elements. If we want to use this approach
for other metamodels we would have to edit the metamodel manually and we
have to create the transformation manually. To make our solution more valuable
it would be better if the new metamodel and transformation could be gener-
ated automatically. This would make our solution applicable for any kind of
metamodel.

5.3.1 Workflow

Now we will look at the workflow for using the solution as presented in this
chapter. We start with the original metamodel and for this metamodel we are
going to set up an envorinment to work with models with functions.

1. Create a new metamodel, containing the classes of the original metamodel.

2. Add to this new metamodel a Function and a Library class.

3. For each class in the original metamodel with a reference to it, add a
FunctionApply and a Param class.

4. Add to the FunctionApply and Param classes supertype relations to the
class of the original metamodel, for which the classes are created.

5. Use EMF to generate an editor for this new metamodel.

6. Create a new model transformation, to transform model instances of the
original metamodel to model instances of the new metamodel.

7. For each class of the original metamodel, add a mapping that copies the
model elements of that class.

19

8. Add a mapping for the FunctionApply elements, that generates an element
based on the body of the Function element, to which the FunctionApply
element is referring.

9. Add a mapping for the Param class that uses the parameters that are
passed through within the transformation.

And now we use the generated editor to create Library models, containing
the functions we want to use in our models. Using the transformation we can
take models with functions and transform them to model instances of the orginal
metamodel.

20

Chapter 6

Automating the Procedure

Now that we can use functions in the Tree domain to achieve modularity, we
like to extend this to any domain. Our current approach of extending the
metamodels gives us a solution that only works for one metamodel. Extending
this to another domain would require us to repeat all the steps of Chapter 5 for
each metamodel. If we can automate this process, we can apply our approach
to any domain with minimal effort. In Chapter 5 our solution used two files.
The first file is the extension of the original metamodel, containing the function
classes and the other classes to support the functions. The second file is the
model transformation that takes an instance of the extended metamodel and
results in an instance of the original metamodel. In this chapter we show how
those files can be generated and how the generation procedure can be automated.

6.1 Generating the Metamodel

First we generate the metamodel containing the new function classes. The
generated metamodel is based on an arbitrary metamodel, lets call this arbitrary
metamodel the original metamodel. This new metamodel will be similar to the
extended metamodel we created in Chapter 5 (the metamodel can be found in
Figure 5.1). However, instead of using the classes Tree, Node and Leaf we use the
classes of the original metamodel. The classes Param and FunctionApply do not
contain a supertype relation to Tree, but to classes of the original metamodel.

To create the model to model transformation we decided to use QVT Op-
erational. We choose QVT Operational, for the same reasons as explained in
Section 4.3. In the model transformation we take the root of the original meta-
model, which is an EPackage containing the classifiers of the metamodel. Using
this EPackage, we create a new EPackage which becomes the root for our gen-
erated metamodel.

The classes we want for our generated metamodel can be divided into four
categories: The original classes, the FunctionApply classes, the Param classes
and two additional classes. Similar classes are also found in our approach for
the Tree metamodel in Chapter 5. Some of the classes however are modified and
some variations of the classes are introduced to be able to handle any arbitrary
metamodel. We now look at the four categories and motivate why they are
changed compared to the solution proposed in the previous chapter.

21

The complete QVT Operational transformation can be found in Appendix A.

6.1.1 The Original Classes

The original classes denote the classes that are found in the original metamodel.
All the original classes must also be included in the extended metamodel, be-
cause they define the domain we want to extent.

We have two options to include for the original classes: we can refer to
the classes in the original metamodel from our generated metamodel or we can
copy the classes of the original metamodel into the generated metamodel. The
first solution would keep the generated metamodel smaller and keep the original
classes separated from the classes belonging to our extension. However referring
from one metamodel to another is not that well supported by the tools. For
example QVT Operational does not allow a mapping consisting of a disjunct
between classes of different modeltypes. For our proposed transformation in
Section 6.2 we use the disjuncts feature quite often, so we decided to copy the
original classes into the generated metamodel, instead of referring to them.

6.1.2 The Additional Classes

The additional classes are two classes that are not based on the original meta-
model. Those classes are used to structure the instances of the generated meta-
model and to achieve the modularity we want. We already saw the additional
classes in Section 5.1: Library and Function. Library will remain unchanged
for our generated metamodels. Function does however has a reference to Tree.
Since we can no longer assume that Tree is part of our domain, we can not keep
this reference. Now we could make a version of Function for each class in the
original metamodel. This would make our generated metamodel a lot bigger, so
we decided to let Function have a reference to EObject instead of to Tree. Then
during the model transformation we cast the EObjects to the required type.

6.1.3 The FunctionApply Classes

The FunctionApply class is quite similar to the FunctionApply of Figure 5.1.
We have a FunctionApply class, that is a subtype of one of the original classes,
takes a reference to another class and refers to a function using the function
name. For an arbitrary metamodel we have often references to multiple different
classes. With our extension we want to make it possible to use functions were
we normally would use the original classes. So for each class that is used in a
reference we need a FunctionApply that can be used for that class. We face
this problem by collecting from the original metamodel all the classes for which
there is a reference going to them. Then we generate for each of these classes
a FunctionApply class. Each FunctionApply class gets a supertype relation to
the original class.

Next we need a way to let the FunctionApply elements refer to the argu-
ment. This argument can be an element of any of the classes. We cover this in
the same way as we did for Function class: the argument reference is of type
EObject, allowing any class of model elements to be given and let the model
transformation handle the problem of casting it to the right type.

22

In addition we also add to our FunctionApply classes a reference to the
Function class and we give them an annotation to indicate that they are a
FunctionApply class, such that they can be recognised as a function application
during the model transformation.

6.1.4 The Param Classes

Similar to the FunctionApply elements, it must also be possible for the Param
elements to be placed in our models when we require a reference. So to generate
the Param classes we use the same approach as for the FunctionApply classes.
For each class that has a reference to it in the original metamodel we create a
Param class, such that each Param class has a supertype relation to the class of
the original metamodel. To complete the Param classes we add an additional
supertype relation to the original class and we add an annotation to indicate
that they are Param classes.

6.2 Generating the Model Transformation

Now that we can generate the extended metamodel containing the function
classes for any arbitrary metamodel, we also need to generate the model trans-
formation to transform instances of the extended metamodel to instances of
the original metamodel. Those model transformations are based on the model
transformation as shown in Section 5.2. To generate those we take the ex-
tended metamodel and generate the model transformation. The file containing
the model transformation is a QVT Operational file, containing text. So a
model-to-text transformation is required for this.

There are three main model-to-text tools for EMF: JET, Acceleo and Xpand.
We decided to use Acceleo, because from those three tools Acceleo is the most
active one. The documentation for Acceleo also seems to be more complete
and easier to access compared to the other two tools. A disadvantage of using
Acceleo, is that Acceleo only accepts one model as input model and we need
both the original metamodel and the extended metamodel to generate the model
transformation. To overcome this we create a small container model, which
contains references to both the original metamodel and the extended metamodel.

For our model transformation we have to generate mappings such that any
element from the source model (an instance of the extended metamodel) is
mapped to the target model (an instance of the original metamodel). Our gen-
erated model transformation will become similar to our model transformation
described in Section 5.2, but now we want to generate the model transforma-
tion for any given metamodel as the original metamodel. We will start with the
original classes.

The complete Acceleo transformation can be found in Appendix B.

6.2.1 The Original Classes

The original classes will again be transformed in a trivial manner: all the at-
tributes and the references of the element in the source model are added to the
element in the target model.

23

6.2.2 The FunctionApply Classes

The following step is the transformation of FunctionApply elements. When we
defined the mapping for the FunctionApply elements in Section 5.2, we used a
parameter in the mappings that takes the role of the parameter for when we are
applying a function. For example when we have a FunctionApply element in our
model, then it needs a reference to an element. Now when we were transforming
the FunctionApply element, we used the element we refered to as the parameter
for the transformation of the function we want to apply. So we execute the
mapping of the function with as parameter this element. In the transformation
for the Tree metamodel, the type of the parameter would always be Tree. Now
we want to generate the transformation for any given metamodel, so it must be
possible to use other types for the parameters.

To solve this we decide to allow any type for the parameters. Then when
we have to transform we look at the type of the parameter and transform the
parameter using the transformation belonging to the type. We implemented this
transformation using a query in our model transformation. This query looks at
the type of the element and then transform the element using the mapping that
handles that type. Now that we can transform the parameter to any type we
can easily implement the mapping for the FunctionApply classes.

6.2.3 The Param Classes

Our mapping for the Param classes is even more straight forward. For this we
take the same approach as in Section 5.2. But instead of using the Tree type,
we cast the parameter to the type the Param class belongs to.

6.2.4 The Complete Model

Now that we can transform all the elements of the source model to the target
model, we can take the root of the source model and transform this to the root
for our target model. In order to do so we use the query which we also used for
the FunctionApply classes. This query looks at the type of the root element to
execute the required mapping.

6.3 Streamlining the Procedure

We now have two steps in our procedure: one to generate the extended meta-
model and one to generate the model transformation. Those steps are imple-
mented in separated Eclipse projects and to execute the transformations they
have to be called manually. Executing the transformation is now quite cumber-
some, because you have to find the transformation files in the projects and you
have to configure them to use your metamodel as the original metamodel. We
want to streamline this procedure such that anyone can use it without requiring
knowledge about the project and the transformation tools.

One way to combine the transformations would be to create a script that
executes them after each other. QVT Operational has built-in support for ANT,
where they generate an ANT script for you which executes multiple transforma-
tions after each other. However Acceleo has no such thing for ANT and calling
the java code from an ANT script gives problems when you are calling it from

24

Figure 6.1: The commands added for ecore files

outside the plug-in environment.
When we try to execute the transformations from Java code the same problem
arised. Using the tools from a stand-alone environment gives problems with the
dependencies which are only satisfied inside the plug-in environment.

Because of those difficulties we decided to create an Eclipse plugin that will
use both transformations. Creating a plug-in also gives the advantage that we
can add extensions to Eclipse. Using the extensions we can add options to all
kinds of menus to execute the transformations. A disadvantage of creating a
plug-in could be that it only works for one IDE. This is however not a problem
for us, as we are extending EMF which is targetting the Eclipse IDE.

The plugin depends on two other plugins that contain the Acceleo transfor-
mation and the container model containing the two EPackages (the container
model is briefly introduced in Section 6.2). The QVT Operational transforma-
tions are located in the main plugin. We add two commands to the popup menu
that appears when you right-click an ecore file. One to generate the extended
metamodel and one to generate the model transformation. The commands are
added using the extensions and extension points system supplied by Eclipse. An
example of how this popup menu appears in the IDE can be found in Figure 6.1.

The commands are handled by java code inside the main plugin. For the
generation of the extended metamodel we take the metamodel found at the
selected file and use QVT to execute the transformation which we introduced
in Section 6.1. This gives us the extended metamodel which we save in the
directory of the selected file.

The generation of the model transformation requires an additional step.
First we have to generate the container model, which will contain both the
original model and the extended metamodel. For this step we assume that the
extended metamodel is located where it would be placed after executing the
generation of the extended metamodel. If this is not the case we execute the
command of generating the extended metamodel, such that it will be placed
there. Now we generate the container model. The container model is generated
with a QVT Operational transformation, so we handle this similar to the gen-
eration of the extended metamodel. Instead of saving this container model in
the directory, we keep the container model in memory, such that we can use the
container model for the next step without having to save it on the file system.
The second step is to execute the Acceleo transformation which we introduced
in Section 6.2. To call the Acceleo transformation we use the plugin containing
the Acceleo transformation. This plugin also contains code that is generated

25

from the Acceleo transformation. By calling this code we can generate the
required model transformation. Finally we save this model transformation in
the directory of the selected file. Now the user can use the generated model
transformation to transform models of the extended metamodel to models of
the original metamodel.

The source code for this plugin can be found on Github1.

6.4 Workflow

Now that the procedure has been automated, the workflow can be executed
with much less manual effort. To use the workflow, we assume that the Eclipse
plugin has been installed and we start with a metamodel, which we use as the
original metamodel.

1. Generate the extended metamodel, by using the command that has been
added to the popup menu by the plugin.

2. Use EMF to generate and editor for the extended metamodel.

3. Generate the model transformation, for which there also has been a com-
mand added to the popup menu.

Now we can use the generated editor to create Library models. And when we
have created a model using the functions of the library, we can use the transfor-
mation to transform the model to a model instance of the original metamodel.

1https://github.com/StefvanSchuylenburg/functional-ecore

26

Chapter 7

Use Case: POOSL

POOSL1 is a project that offers a method to describe and simulate system ar-
chitectures. POOSL is mostly used for embedded systems. It offers the POOSL
language in which you can describe processes. For this use case we want to
extend the POOSL language with modularity over the elements that are found
in the language. There are already some ways to achieve modularity in POOSL
by using the method, system and import elements of the language. However,
with our approach we aim to support modularity over the instances of the lan-
guage in a more general way. We want to allow users to reuse elements of the
language which they could not reuse before. With this addition we hope to
make the language more pleasant to work with.

The POOSL language is implemented using Xtext2. In our approach we have
not targeted Xtext yet, so for this use case we will extend the Xtext grammar
manually. To extend the POOSL language with modularity we first take the
metamodel of the POOSL and we generate the extended metamodel for it. Then
we extend the Xtext grammar. In the next section we will look at the classes
that we have added to the metamodel and how we adapted the language to use
those classes.

7.1 Extending the Grammar

When extending the grammar, we could not give the grammar the same freedom
as was possible in the metamodel however. In our solution the FunctionApply
class has an argument which can be of any type. To apply this to the POOSL
grammar is not directly possible, because it breaks the LL-parsing by allowing
multiple language elements which the LL-parser can not tell apart. There are
multiple ways to solve this. We could for example request a certain token before
the argument such that the users can indicate what language element they are
using. This is not feasible however, because the user of the language may not be
aware of what language element they are using. Some language elements may
look very similar to the user (for example Statement and Expression), but are
different for the grammar. We worked around this by limiting our solution to
only a few elements of the language for this use case. We only added support

1http://poosl.esi.nl/
2https://eclipse.org/Xtext/

27

for the Statement and Expression classes, as it was not possible to use those
as a parameter in POOSL yet and for the users of the language it was desir-
able to use those elements in a more free way. The Statement and Expression
classes are used to describe the actions a process can do and to manipulate the
data. We also limited the FunctionApply classes, such that they only extend
the Statement and Expression classes. Furthermore we limited the Statement
FunctionApply elements to only accept Statement elements as arguments and
the Expression FunctionApply elements to only accept Expression elements as
arguments. In the Xtext grammar the Statement and Expression definition are
modified to allow the FunctionApply class as an alternative.

Next we must also add the Function, Library and the Param classes to the
grammar. For the Function class we encounter the same problem as for the
FunctionApply classes, because the body of a Function can be of any type.
However, this time it is not possible to see whether a Function element is used
as a Statement or as an Expression, because the Function elements are all placed
in the Library without additional context. So instead of deriving the class of the
body from the context, we have to let the creator of the function to explicitly
state whether he is defining a Statement function or an Expression function. We
expect that this is not a problem for the developers of the functions, because
developing those functions already require a basic knowledge of how the language
is constructed and what elements you are using.

Next we have the Library class, which is simply a collection of functions.
For our solution we intended to be able to create a stand-alone file containing
the Library, just like we did for the models. To achieve this, it must be possible
to use the Library as a root of the POOSL language extension. We achieved
this by editing the metamodel, such that the root class of the POOSL extension
also contains a reference to the Library class. Editing the metamodel for this
has a disadvantage, because the metamodel is generated. So each time when we
generate the metamodel again, we also have to edit the metamodel file again.
A second disadvantage is that the root class is one of the original classes. So if
we want to use a reference to the original metamodel instead of copying all the
classes of the original metamodel, then this approach would not be possible.

The Param classes are implemented in the grammar in exactly the same
way as the FunctionApply classes. For the Param classes we could again use
the context, because you only use ParamStatement elements where Statement
elements are required and you only use ParamExpression elements where Ex-
pression elements are required.

7.2 Future Work

This use case is still limited and requires a number of adaptations to make
it work. A next step would be to automate the adaptations of the original
grammar for the extended metamodel. For example it could be possible to
generate the grammar definition for the new classes and to adapt the original
grammar definitions to include the new classes. Automating this process would
make it easier to update the grammar when changes have been made to the
original grammar or to the metamodel.

Furthermore, it would be interesting to find a way to overcome the limita-
tions of using the classes, such that we could indeed use any element as argument

28

for the FunctionApply elements. Possible solutions for this are to let the creator
of the Function elements define what the types of the parameters are or to cre-
ate languages where all the elements of the language are recognised as different
by the LL-parser.

Finally it would also be better if we could adapt the grammar without having
to edit the original classes as we did for the Library class.

29

Chapter 8

Related Work

Other researches have already looked at how modularity can be introduced into
EMF and to MDE in general. Kolovos et al. [3] have stressed the importance
of modularity. In their paper they claim that the scalability of MDE is heavily
limited; they claim that when models become large and complex, they become
difficult to work with. They compare how domain-specific languages are con-
structed to how Java and the Java Development Tools are constructed and how
modularity is achieved for Java. The authors show two aspects related to mod-
ularity in modeling, to show the mistakes that are often made by designers of
domain-specific languages. The paper does however not give an explicit solution
to the problem of achieving modularity in modeling.

Kelsen et al. tackle the modularity problem in their paper [4] by introducing
a mathematical approach to decompose a model into submodels. In the paper
the authors provide definitions for metamodels, models and submodels. Using
those definitions they propose an algorithm to decompose a model into submod-
els. Based on the algorithm they provide a plugin for EMF that can decompose
models created with the EMF framework.

Heidenreich et al. [5] propose two ways of extending modelling languages for
modularity. The first involves extending the metamodel of the language to add
new element types to the model, which act as interfaces between submodels.
The second does not involve extending the metamodel, but does extract the
interfaces implicitly. The interfaces are used as anchor and slot components in
the models. Then when components have been created with the anchor and
slot interfaces they can be linked together to create a composite model from
the submodels. The interface system is comparable to our solution of using
functions, but with our function system we intend to create a more reusable
solution.

In another approach proposed by Kelsen et al. [6] modularity is achieved by
creating submodels with interfaces. Those submodels can be composed by cre-
ating a model which contains referential nodes to the submodels. The interfaces
are certain relations that are found in the metamodel, giving information about
which relation the submodel will satisfy.

Another solution is the Common Variability Language (CVL) tool. CVL
is a language that can be combined with a Domain-Specific Language (DSL)
to create an environment in which you can use variables. CVL is introduced
by Haugen et al. [7] to use variables in a DSL without affecting the original

30

DSL. The variables will be bound in a separate model. Using the binding of
the variables a base model (defined in the given DSL) can be transformed to a
new model. A CVL tool has been implemented. The implementation is based
on EMF and supports the domain-specific languages that are defined through
EMF.

Furthermore, there is a plugin for EMF that aims to achieve modularity in
yet another different way. The plugin EMF Splitter [8] allows models to be split
based on a modularity strategy. The models can be split into submodels, such
that each submodel gives a view on one part of the model. The fragmentation is
defined on the metamodel and when creating a new model the submodels will be
placed into packages of an Eclipse project, with each package holding one view
of the model. EMF Splitter also supports the composition of the submodels
into a single model, such that the model can be used for the tooling that exists
for the metamodel.

In this thesis we showed another solution. Our solution is based on refer-
encing to model parts from other models, similar to the solutions of [5] and [6].
What our approach does different, is using functions.

Our solution is quite similar to [5], because they also introduce new model
elements which work somewhat similar to our FunctionApply elements. Like
our solution, you can put those elements in your model, which are used as a
placeholder for the model part which is defined in a separate model file. The
differences are that they define the linking of the model parts in a different
model file and that there is no support for parameters. Advantages of their
solution, compared to the solution presented in this paper, are that is easier
to change how the model parts are linked and that model parts can be linked
using multiple anchor points. For example, when you have a model part that
has two different anchor points, then you can link another model part to it on
two different places. Advantages of our solution are that parameters can be
used and that no separate model to link the model parts together is required.
Using the parameters, you can use more reusability, because the model parts
are usable for more situations.

Our solution is also quite similar to CVL, as introduced in [6]. With CVL
you can also reuse model parts and change properties of the model parts while
using them. The differences are that CVL uses a separate model file which
changes the values of attributes and model elements and that CVL works with
model instances of the original metamodel. Using model instances of the original
metamodel, gives the advantage that you can use the tooling that is created for
the original metamodel. Furthermore, CVL has a more extensive plugin, which
has already been used by a number of companies. Advantages of our solution are
that no separate model is needed to combine the model parts and that functions
are used within models directly. Using functions within models directly, has
the advantage that it follows the convention as seen in programming languages
such as Java and C, where you have a main function that contains calls to other
functions. Using those conventions, can make it easier for software developers
to start using our solution, because they are already familiar with it.

31

Chapter 9

Conclusion and Future
Work

9.1 Conclusion

In this paper we looked at how modularity can be improved when working with
models in EMF. We presented a solution based on extending existing metamod-
els. The extended metamodels contain new concepts. Those concepts allow
developers to define and use functions. We also presented a transformation to
transform models with functions to models without functions. Those steps are
then automated, such that the solution can be applied to any metamodel. The
system that automates the steps can be installed in Eclipse as a plugin.

With our new solution, it is possible to separate one model into multiple
model parts and to reuse the model parts in a parameterized way. The ex-
tended metamodel enhances the domain-specific language such that libraries of
functions can be created in separate models. Those models can then be used in
other models to keep those models concise and better maintainable. We expect
that our solution helps developers to work with models in a more modular ap-
proach, without having to depend on whether the original metamodel supports
modularity.

9.2 Research Goals Revisited

In Section 1.1 we introduced four research goals. In this section we will argue
for each research goal how we achieved it.

Our solution has also been implemented. The implementation can be found
at https://github.com/StefvanSchuylenburg/functional-ecore. One could
argue, however, that the implementation is not yet complete to be used for pro-
duction. Suggestions for how our solution can become complete can be found
in Section 9.3. The implementation does serve as a proof of concept; it shows
that it can be implemented and gives a basis on which future improvements can
be build.

32

https://github.com/StefvanSchuylenburg/functional-ecore

9.2.1 Changeability

We defined changeability as the ability to change one part of the model without
affecting the other parts. Without the usage of functions it is already possible to
keep parts of the model separated. This can be done for example by structuring
the model such there are as few as possible relations between parts of a model.
One part can then be edited without affecting the other parts of the model. Our
solution improves this by making clear what the parts are that can be changed
without affecting the other parts.

Without functions, it may not be clear what the parts are that should stay
loosely connected, because all the parts are bundled together in a single model
file. With functions it is clear what the separated parts are, as they are phys-
ically separated. The parts are placed under different functions and are given
names.

So, to improve changeability our solution does not introduce new things that
were not possible before. It does, however, help in making clear how the models
are structured, such that better changeability can be achieved.

9.2.2 Comprehensibility

Comprehensibility is the ability to understand a part of the model without
having to understand the complete model first. As the models become larger
and there are more model elements and relationships, it becomes more difficult
to keep the model comprehensible. With our solution, this can be solved by
keeping one model as the main model. This is the model that will be transformed
to the model we want to use. From this model you can refer to other functions.
Now when a developer looks at the model, he sees the names of the functions
and he finds less elements than the complete model contains. This gives him
information about how the element are related in the model, without having to
look at all the elements that are part of the complete model.

For example with the functions introduced for the Tree model in Chapter 5,
we could make one tree consisting of a Node element with two different Func-
tionApply elements as children. When you look at the model now, you can
see that the children are separated parts. And using the name of the Function
you can get an idea what the parts do, without having to know how they are
precisely constructed.

9.2.3 Reusability

Reusability is the ability to reuse parts of models in multiple different models.
EMF itself does not supply reusability of model parts.

Our function system achieves this by allowing developers to create libraries
of functions. Then in other models you can use the functions of the libraries
by referring to them. This gives a high level of reusability, because the libraries
can be placed in separate files.

9.3 Future Work

Our solution can, however, still be improved. For example we do not support
using attributes as parameter; with the current solution, you can only use the

33

parameters for references of model elements and not for the attributes of the
model elements.

Support for basic constructs like loops and if-then-else structures are also not
possible yet. In general-purpose languages those constructs are often used to
create more powerful functions. Adding this to model functions could greatly
improve the flexibility of functions. Using those constructs it would also be
necessary to create expressions over arguments, such that we can evaluate the
guards of the loops and evaluate the if-then-else conditions.

Another feature that is still missing in our solution is validation of how the
functions are used within models. Right now you can use any type of element
as argument for a function application. Validation of whether the type of the
argument satisfies the type of the function application could help developers
to discover mistakes early. Especially because the Ecore models are based on
strict typing, it can become confusing for developers when we do not handle
type checking. This also applies to checking whether a Function Apply element
has the same expected type as the body of the Function element.

9.4 Acknowledgments

This work was supported in part by the European Union’s ARTEMIS Joint
Undertaking for CRYSTAL - Critical System Engineering Acceleration - under
grant agreement No. 332830.

34

Bibliography

[1] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[2] Object Management Group, “Omg formally released versions of mof.” http:

//www.omg.org/spec/MOF/.

[3] D. S. Kolovos, R. F. Paige, and F. A. Polack, “Scalability: The holy grail
of model driven engineering,” in ChaMDE 2008 Workshop Proceedings: In-
ternational Workshop on Challenges in Model-Driven Software Engineering,
pp. 10–14, 2008.

[4] P. Kelsen, Q. Ma, and C. Glodt, “Models within models: Taming model com-
plexity using the sub-model lattice,” in Fundamental Approaches to Software
Engineering, pp. 171–185, Springer, 2011.

[5] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler, “On language-
independent model modularisation.,” T. Aspect-Oriented Software Develop-
ment VI, vol. 6, pp. 39–82, 2009.

[6] P. Kelsen and Q. Ma, “A modular model composition technique,” in Fun-
damental Approaches to Software Engineering, pp. 173–187, Springer, 2010.

[7] Ø. Haugen, B. Moller-Pedersen, J. Oldev, G. K. Olse, and A. Svendsen,
“Adding standardized variability to domain specific languages,” in Software
Product Line Conference, 2008. SPLC’08. 12th International, pp. 139–148,
IEEE, 2008.

[8] A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara, “Emf splitter:
A structured approach to emf modularity,” in XM 2014–Extreme Modeling
Workshop, p. 22, 2014.

35

http://www.omg.org/spec/MOF/
http://www.omg.org/spec/MOF/

Appendix A

Transformation: Extending
the Metamodel

This appendix contains the model transformation that is used in Section 6.1.
As inputs it takes a metamodel and it generates a new metamodel. Developers
can use the generated metamodel to create model instance, in which they can
create and use functions.

modeltype Ecore uses ’http ://www.eclipse.org/emf /2002/ Ecore ’;

/**

* The transformation takes a normal ecore model

* and add function classes to it.

*/

transformation addFunctions(in _source: Ecore , in _ecore: Ecore ,

out _target: Ecore);

main() {

// map for the target model

var root := _source.rootObjects ()![EPackage];

root.map transform ();

}

/**

* Transform the EPackage (that is the package holding all the classifiers)

* of the source to the package of the target.

*/

mapping EPackage :: transform (): EPackage {

name := self.name + "_fun";

nsPrefix := self.nsPrefix + "_fun";

nsURI := self.nsURI + "/ functional ";

// Creating the model elements

var function := object EClass {

name := "Function ";

36

eStructuralFeatures := Set{

object EReference {

name := "body";

containment := true;

lowerBound := 1;

upperBound := 1;

eType := ecore (" EObject ");

},

object EAttribute {

name := "name";

eType := ecore (" EString ");

}

};

};

var lib := object EClass {

name := "Library ";

eStructuralFeatures := object EReference {

name := "functions ";

containment := true;

lowerBound := 0;

upperBound := -1;

eType := function;

};

};

var functionClasses := self.referencedClasses ()->map

toFunctionClass(function , self.nsURI + "/ functional ");

var paramClasses := self.referencedClasses ()->map

toParamClass(self.nsURI + "/ functional ");

eClassifiers := self.eClassifiers

->union(functionClasses)

->union(paramClasses)

->union(Set{lib , function });

}

/**

* Creates a function class that is a subtype of self.

* The given function class , is the class defining a function.

* @param nsURI the name space of the target model

*/

mapping EClass :: toFunctionClass(functionClass: EClass ,

nsURI: EString): EClass {

name := "FunctionApply" + self.name;

eSuperTypes := self;

eAnnotations := object EAnnotation {

source := nsURI + "/ FunctionApply ";

};

eStructuralFeatures := Set{

37

object EReference {

name := "function ";

eType := functionClass;

containment := false;

lowerBound := 1;

upperBound := 1;

},

object EReference {

name := "argument ";

eType := ecore (" EObject ");

containment := true;

lowerBound := 0;

upperBound := -1;

}

};

}

/**

* Creates a Lambda class htat is a subtype of self

* @param nsURI the name space of the target model

*/

mapping EClass :: toParamClass(nsURI: EString): EClass {

name := "Param" + self.name;

eSuperTypes := self;

eAnnotations := object EAnnotation {

source := nsURI + "/Param ";

};

eStructuralFeatures := Set {

object EAttribute {

name := "index ";

eType := ecore("EInt ");

defaultValueLiteral := "1";

}

};

}

/**

* Gets all the classes in the EPackage with a reference to it

*/

query EPackage :: referencedClasses (): Collection(EClass) {

var refs := self.eClassifiers.allSubobjectsOfKind(EReference)

.oclAsType(EReference);

return refs.eReferenceType ->selectByKind(EClass);

}

/**

* Finds the Classifier with the given name in the Ecore model

38

*/

query ecore(name: EString): EClassifier {

return _ecore.objectsOfType(EClassifier)

->any(classifier: EClassifier | classifier.name = name);

}

39

Appendix B

Transformation: Generating
the Model Transformation

This appendix contains the model transformation that used in Section 6.2. It
takes as input a container model, which contains a reference to an original
metamodel and an extended metamodel. The model transformation generates
a text file, which is a QVT Operational transformation. The generated trans-
formation transforms a model instance of the extended metamodel to a model
instance of the original metamodel. The extended metamodel that is used for
this transformation, should be generated by the transformation of Appendix A.

[comment encoding = UTF -8 /]

[module generate(

’http :// stefvanschuylenburg/functionalecore/packagecontainer ’,

’http :// www.eclipse.org/emf /2002/ Ecore ’

)]

[template public generateTransformation(container : EPackageContainer)]

[comment @main /]

[let nsURI: EString = container.extension.nsURI]

[file (container.extension.name.concat(’.qvto ’), false)]

modeltype M uses ’[container.original.nsURI /]’;

modeltype MFun uses ’[container.extension.nsURI /]’;

transformation [container.extension.name /](in source: MFun , out target: M);

main() {

var root := source.rootObjects ();

// map the root based on its type

root.transformAny(null);

}

/*

40

* Mappings for the referenced classes.

* Disjuncts between all possible instances.

*/

[for (class: EClass | container.extension.referencedClasses(nsURI))]

mapping MFun ::[class.name /]:: transform(in x: Sequence(Element)):

M::[class.name/]

[let subclasses: OrderedSet(EClass) =

container.extension.subClasses(class)->asOrderedSet ()]

disjuncts MFun ::[subclasses ->first (). name /]:: transform

[subclasses ->first (). name /][for (subclass: EClass |

subclasses ->excluding(subclasses ->first ()))] ,

MFun ::[subclass.name /]:: transform[subclass.name /][/ for];

[/let]

[/for]

/*

* Mappings for objects from [container.original.nsURI /]

*/

[for (class: EClass | container.original.eClasses ())]

mapping MFun ::[class.name /]:: transform[class.name /](in x: Sequence(Element)):

M::[class.name/] {

[if (not class.eAllAttributes ->isEmpty ())]

// the attributes

[for (attr: EAttribute | class.eAllAttributes)]

[attr.name/] := self.[attr.name /];

[/for]

[/if]

[if (not class.eAllReferences ->isEmpty ())]

// the references

[for (ref: EReference | class.eAllReferences)]

[ref.name/] := self.[ref.name /].map transform(x);

[/for]

[/if]

}

[/for]

/**

* Mappings for the FunctionApply and Param elements

*/

[for (class: EClass | container.extension.referencedClasses(nsURI))]

mapping MFun:: FunctionApply[class.name/]

:: transformFunctionApply[class.name /](

in x: Sequence(Element)): M::[class.name/] {

init {

var function :=

self.function.body.oclAsType(MFun ::[class.name /]);

var argument :=

self.argument.oclAsType(Element). transformAny(x);

41

result := function.map transform(argument);

}

end {

// remove argument again: it is only passed around

argument ->forEach(arg) {

target.removeElement(arg);

};

}

}

mapping MFun:: Param[class.name /]:: transformParam[class.name /](

in x: Sequence(Element)): M::[class.name/]

when {x != null && self.index > 0} {

init{

result := x->at(self.index). deepclone ()

.oclAsType(M::[class.name /]);

}

}

[/for]

/**

* Transforms an element using the mappings defined in this transformation.

* The transform is based on the type of the element

*/

query Element :: transformAny(in x: Sequence(Element)): Element {

switch {

[for (class: EClass |

container.extension.referencedClasses(nsURI))]

case (self.oclIsKindOf(MFun ::[class.name /])) {

return self.oclAsType(MFun ::[class.name /]). map

transform(null);

}

[/for]

}

}

[/file]

[/let]

[/ template]

[comment

All the concrete EClasses within ePackage ,

this will not yield the abstract classes

/]

[query public eClasses(ePackage: EPackage): OrderedSet(EClass) =

ePackage.eClassifiers ->selectByKind(EClass)->reject(abstract)

/]

42

[comment

Selects all the concrete classes that are a subtype of superClass

/]

[query public subClasses(ePackage: EPackage , superClass: EClass):

OrderedSet(EClass) =

ePackage.eClasses()->select(class: EClass |

superClass.isSuperTypeOf(class))

/]

[comment

Finds the referenced classes by looking at for which classes there

is an FunctionApply method.

/]

[query public referencedClasses(extension: EPackage , nsURI: EString):

OrderedSet(EClass) =

extension.eClassifiers ->selectByKind(EClass)

->reject(class: EClass | class.isFunctionApply(nsURI))

->select(class: EClass | extension.eClasses ()

->exists(class2: EClass | class.isSuperTypeOf(class2)

and class2.isFunctionApply(nsURI)))

/]

[comment Determines whether the class is a FunctionApply class. /]

[query public isFunctionApply(elem: EModelElement , nsURI: EString): Boolean =

not (elem.getEAnnotation(nsURI + ’/FunctionApply ’) = null)

/]

43

	Introduction
	Research Goals

	Model Driven Engineering
	Models
	Metamodels
	Model Transformations

	Overview of Our Approach
	Extending Metamodels
	Introducing the Metamodel
	Extending the Metamodel
	Transforming the Models
	Conclusion
	Workflow

	Defining Functions on the Model Level
	Updating the Metamodel
	Transforming the Models
	Conclusion
	Workflow

	Automating the Procedure
	Generating the Metamodel
	The Original Classes
	The Additional Classes
	The FunctionApply Classes
	The Param Classes

	Generating the Model Transformation
	The Original Classes
	The FunctionApply Classes
	The Param Classes
	The Complete Model

	Streamlining the Procedure
	Workflow

	Use Case: POOSL
	Extending the Grammar
	Future Work

	Related Work
	Conclusion and Future Work
	Conclusion
	Research Goals Revisited
	Changeability
	Comprehensibility
	Reusability

	Future Work
	Acknowledgments

	Transformation: Extending the Metamodel
	Transformation: Generating the Model Transformation

