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Abstract

In this thesis we consider the technique of Robust Optimization and apply it in a queueing con-
text. We show how Robust Optimization accounts for uncertain model parameters with a so-called
uncertainty set. We apply robust methods to the Capacity Assignment problem by Kleinrock and
consider different forms of uncertainty. We characterize the corresponding optimization problems
and compute the robust capacity assignment. Several examples and numerical simulations illustrate
that a robust method can significantly reduce the probability of infeasibility and the probability of
high average delay, without performing worse on average. We also consider multiserver G/G/s
queues under Halfin-Whitt scaling and take a worst case perspective. By characterizing interarrival
and service times in uncertainty sets we derive an upper bound for the worst case queue length in
this scaling regime.
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1
Introduction

In this introductory chapter we explain the technique of Robust Optimization through several examples.
How does it work and what are the strengths of this technique? In the following chapters we will apply
Robust Optimization to various models in a queueing context. Chapter 2 and 3 discuss the capacity
assignment problem. Chapter 4 considers multiserver queues under Halfin-Whitt scaling.

1.1 What is Robust Optimization?

One way of solving real-world problems is through mathematical modeling. The idea is to develop
a model that is simple enough to be mathematically tractable, but realistic enough to have practical
use. Often the focus is on optimization, finding the ‘best’ solution for a problem, like achieving the
lowest possible costs or providing the highest service standards to customers. The hope is then that
the model is accurate enough to be relevant in practice.

Unfortunately, models are not always satisfactory or sufficient descriptions of reality. They use
simplifications, predictions and estimations. The model parameters are often based on historical
data or expert opinions and those are inherently uncertain. A method to handle parameter uncer-
tainty is Robust Optimization (RO). For an overview, we refer to Ben-Tal et al. (2009). RO tries
to find a solution that is resilient (robust) against errors or uncertainty in the data. Instead of us-
ing point estimates, this method tries a whole range of possible parameter values, captured in an
uncertainty set. This uncertainty set expresses how sure we are that we estimated the parameters
correctly.

Instead of optimizing our model for the estimated value of the parameters, we optimize it for
the worst possible value in the uncertainty set. Instead of hoping for the best, we prepare for the
worst. The idea is that the robust solution performs well even if the model parameters are different
from what was expected. It protects the user against risk by taking a more conservative approach.
The following introductory example shows how this works.

MSc thesis W. van der Heide



2 Chapter 1. Introduction

1.1.1 Newsvendor problem

As an example of Robust Optimization we will consider the newsvendor problem, a well-known
model for determining the optimal inventory of a perishable good. The newsvendor buys items and
then sells them for a profit. The problem is that he does not know how much demand there will be
each day. If he buys too many items, the amount he does not sell perishes and he has to throw it
away. But if he buys too few items, he has to disappoint customers and misses out on a profit. The
optimal number of items to buy is the amount that maximizes his profit.

Say the newsvendor buys items for AC3 and sells them for AC5. Then ordering a quantity Q items
costs 3Q euro. He can never sell more items then he bought and no more then the demand, so with
a demand D he sells exactly min {Q,D} items. The profit P is his income from selling minus the
costs from buying:

P = 5 min {Q,D} − 3Q

However, the newsvendor does not know the demand D in advance. On a busy day he might sell
120 items and on another day he might only have a demand for 80 items. We model the demand
with a uniform distribution: D ∼ Unif(80, 120). This means that each demand between 80 and 120
is equally likely. Now we can look at the expected profit, the average profit he would get per day in
the long run if he ordered Q items per day.

E[P ] = E[5 min {Q,D}]− 3Q

The optimal order quantity Q∗ is the quantity that maximizes the expected profit. We skip the
details and just state that

Q∗ = 80 + (120− 80) · 5− 3

5
= 80 + 16 = 96.

There is always a demand for 80 items, so the newsvendor should always buy at least 80 items. He
wants to buy a little more, because if the demand is higher he misses AC2 profit on each item. On
the other hand, every unsold item is a loss of AC3. The optimal order quantity of 96 is slightly lower
than the average demand of 100.

Until now we have done nothing with Robust Optimization. We just found the optimal solution
for the model. We had to deal with uncertainty in the demand, but we had the distribution and
could just take the expectation. Robust Optimization deals with a different kind of uncertainty,
namely uncertainty in the model parameters. What if the true minimum demand is not 80, but
70? Then ordering 96 items would be too much; we would have to throw away more of them than
expected.

We can formalize the uncertainty in the parameters in a so-called uncertainty set. This set
contains all possible demand distributions we are worried about. In Section 1.3 we discuss the
construction of the uncertainty set in more depth. For now, let us allow a deviation of 10 for the
minimum and maximum demand. Instead of knowing for sure that the minimum is 80, it could be
anything between 70 and 90. The maximum demand is somewhere between 110 and 130. The set
UD of all possible demand distributions then becomes

UD =

{
D ∼ Unif(a, b)

∣∣∣∣∣ a, b ∈ N, 70 ≤ a ≤ 90, 110 ≤ b ≤ 130

}

W. van der Heide MSc thesis



1.1. What is Robust Optimization? 3

Now we need to pick an order quantity Q. After that, we assume the worst possible scenario in
the uncertainty set happens. We want to pick Q such that the profit in this worst case is as high as
possible. In other words, we want the best outcome for the most pessimistic scenario. The order is
important here. We first make a decision for the order quantity and then we get to see the result.
Anticipating on the actual demand distribution is not possible.

In this example it is straightforward to see that lower demand is always worse for the newsven-
dor. No matter what quantity he decides to order, the worst thing that could happen to him is
being left with unsold items because the demand was too low. The lowest demand distribution in
the uncertainty set is Unif(70, 110), so the newsvendor should optimize his order quantity for that
pessimistic scenario. That is,

Q∗ = 70 + (110− 70) · 5− 3

5
= 70 + 16 = 86,

so the robust solution to the newsvendor problem would be ordering 86 items. Robust Optimization
considered the possibility that we overestimated the demand and that the actual demand could be
10 items lower. If that is the case, it is better to order 10 items less. The robust approach is conser-
vative and protects the newsvendor from the risk of buying too many items if we overestimated the
demand. In Table 1.1.1 we compare the classic and the robust approach for the predicted demand
and the two most extreme demand distributions in the uncertainty set.

classic robust absolute difference % difference
lower demand 149.195 155.415 -6.220 -4.17%
predicted demand 175.415 169.439 5.976 3.41%
higher demand 189.439 172.000 17.439 9.21%

Table 1.1: Comparison of the profit for the classic versus robust newsvendor problem

The results are very typical for Robust Optimization. The robust solution is better in the pes-
simistic scenario with low demand. It provides a relatively stable expected profit of at least AC155
per day. In the classic approach there is more variation in the outcomes. If the demand turns out to
be what was expected in the model or even higher, the classic approach can take full advantage of it
with a high expected profit. The robust approach is for conservative, risk averse newsvendors who
want a stable income. The classic approach is for newsvendors who want maximum profits and can
afford the risk of being wrong.

Finally, note that the uncertainty set plays a major role in Robust Optimization. Taking a larger
uncertainty set would mean allowing even more pessimistic scenarios and being more conservative.
On the other hand, taking a smaller uncertainty set would bring us closer to the classic approach.
If we are extremely confident about the model parameters, the uncertainty set would contain just
one value and the robust approach would be identical to the classic approach.

1.1.2 Relationship with other techniques

Robust Optimization is not the only technique that deals with uncertainty; the reader might be
familiar with some of them. What makes Robust Optimization special?

• Sensitivity analysis is a way to calculate the sensitivity of a solution to uncertainty in the pa-
rameters. It tells you how big the effect of deviations is and which parameters have the biggest

MSc thesis W. van der Heide



4 Chapter 1. Introduction

effect. Sensitivity analysis is done after obtaining a solution and can signal that uncertainty
needs to be taken into account. RO offers a way to deal with uncertainty by incorporating it
into the model (through the parameters). Sensitivity analysis does the evaluation afterwards,
whereas RO offers an integrated solution.

• Stochastic programming models uncertainty with probability distributions and then solves
the corresponding linear optimization problem. It requires difficult to estimate stochastic
distributions for the parameters, while RO needs less information about the uncertainty. Fur-
thermore Stochastic programming is only computationally tractable for specific distributions.
RO uses a more general setting and does not need as many assumptions about the uncertainty
to remain computationally tractable.

• Robust control is a concept from engineering where the goal is to build a controller that
works well under uncertain disturbances. An example is keeping your bike straight when the
wind is blowing against it. The designer has little control over the disturbances, but he wants
to keep them in check. That can be done by feedback loops (if the bike is tilting to the left,
lean to the right). The goal is similar to RO, but the context is very different. Note that there
also exists Adjustable Robust Optimization which reacts to changes in the parameters as well.

• Bayesian statistics is a field of statistics that looks at variables in terms of ‘belief’ and assumes
variables have no ‘true’ value, but come from some distribution. We can use data to update our
belief about that distribution. Uncertainty in parameters is the core of the Bayesian framework
and it offers techniques to update that uncertainty when presented with data. Therefore
Bayesian statistics may be a good candidate to construct uncertainty sets for RO.

Modeling uncertainty is not new, but Robust Optimization gives a unique perspective that takes
uncertainty into account at the modeling stage while remaining computationally tractable.

1.2 When is Robust Optimization valuable?

In the introductory example we saw a few of the strengths and weaknesses of a robust approach
compared with a classic approach. A fundamental difference is the philosophy and the starting
assumptions. Robust Optimization makes sense if:

• Model parameters are uncertain

• This uncertainty can be quantified

• Small changes in model parameters would drastically affect the results

Queueing models already incorporate several sources of uncertainty. Arrival and service times
are often uncertain and they require special restrictions or assumptions on the associated distribu-
tions to analyze them. Poisson arrival processes and exponential service times make life a lot easier,
and there are several other ‘easy’ or ‘tractable’ distributions. These distributions are often chosen for
mathematical convenience, even when it is obvious that it is not a realistic assumption. Empirical
distribution functions on the other hand would be a lot more realistic, but they tend to be difficult
to analyze and often require cumbersome numerical algorithms or stochastic simulation.

W. van der Heide MSc thesis



1.3. Uncertainty sets 5

For tractability, the parameters like the mean arrival rate or mean service time are often assumed
known. You could argue that the model already contains a lot of uncertainty, so we cannot handle
uncertainty in the parameters as well. But in reality it is highly unlikely that we can accurately
predict mean arrival rates. The reason to ignore uncertainty in the parameters is a lack of mathe-
matical tools and not a lack of importance of uncertainty. However, uncertainty in the parameters
should not be ignored, since queueing models show huge swings in performance for slightly differ-
ent occupation rates. The next example illustrates that.

Example: sensitivity to arrival rate
Consider a single server queue with Poisson arrivals and exponential processing times (M/M/1
queue). The mean processing time is 1 minute and on average 0.95 customers arrive per minute.
That means that the server is working 95% of the time. In this model the mean waiting time is
E[W ] = 0.95/(1 − 0.95) = 19 minutes. But what if the mean arrival rate is actually 0.96? That
would give a mean waiting time of E[W ] = 0.96/(1 − 0.96) = 24 minutes. An increase of around
1% in the arrival rate, from 0.95 to 0.96, leads to an increase in the mean waiting time from 19 to
24 minutes. That is more than a 26% increase! In this example, even a small error in predicting the
arrival rate could have huge consequences. This is very typical behavior in many queueing models.

Robust Optimization can mitigate this model sensitivity to errors. It reduces the variance of
performance measures like waiting time and decreases the probability of extreme outcomes. In
queueing models extreme outcomes can have a drastic effect, because the system can become infea-
sible. If there are more arrivals than a server can handle, the queue will grow to infinity. Infeasibility
represents the worst performance a queueing system can have. Due to the sensitivity this can hap-
pen even for very small errors in the parameters. Robust Optimization can be a valuable technique
to reduce the probability of infeasibility.

Robust Optimization could also be used in adaptive systems that learn over time. When we learn
more about the parameters, we become more certain about what their true values are. That can be
captured in terms of a shrinking uncertainty region. As the size of the uncertainty set diminishes
with time, the robust solution starts to resemble the classic solution more. In that robust methods
could improve systems early in the learning process, while later on its effect becomes smaller.

Besides improving the performance of queueing systems, Robust Optimization can also be used
to analyze them. Uncertainty in queueing theory is usually modeled with stochastic distributions,
but a perspective with a worst case in an uncertainty set is also worth considering. The deterministic
nature can make problems easier to analyze and it requires less knowledge about the underlying
distributions. Bertsimas et al. (2011) discuss one example of performance analysis of queueing
networks via Robust Optimization, in Chapter 4 of this thesis we show another example.

1.3 Uncertainty sets

A key concept of Robust Optimization is the uncertainty set. This set contains all scenarios the user
wants to consider. A larger uncertainty set means considering more deviations from the expected
results and therefore a more conservative approach. A common misconception is that the uncer-
tainty set should contain every possible event that could happen. That is not true, it should only
contain events you consider realistic and worth considering. When designing a chair, it should po-
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6 Chapter 1. Introduction

tentially support a heavy person, so that event is in your uncertainty set. However, the event that an
elephant steps on your chair is not something you care about, so those too extreme weights should
not be in your uncertainty set.

Let us look at an example with claims arriving at an insurance company. One of the model
parameters is the number of claims per month. The company kept record of the number of claims
over the last four months. The amounts were 127, 90, 145 and 102. There are several ways to
construct an uncertainty set with this data, each with its own advantages and disadvantages.

Average: Simply estimating the number of claims by the average. Here we get (127+90+145+
102)/4 = 116 claims per month. We do not consider uncertainty and just take this average as the
model parameter. This method is quick and widely used, but it does not represent reality very well.
Over the past four months we saw significant deviations from the average of 116. This would be a
naive classic approach.

Weighted scenarios: Take each month as a different scenario. Every scenario happened once
in the past, so we could assign probability 1/4 to each scenario. Denote this as a probability vector
p = (1/4, 1/4, 1/4, 1/4). However, we are not certain that every scenario is equally likely. Maybe 127
claims happens more often than 90 claims. Then we should give a higher weight to the first scenario,
for example p = (1/3, 1/6, 1/4, 1/4). If we are uncertain about the likelihood of each scenario, we
could take every probability vector ‘close to’ p in the uncertainty set. We can specify ‘close to’ with
some measure of distance between two probability vectors; one example is the χ2-distance. This is
called distributional robust optimization. The corresponding uncertainty set is

U =

{
q ∈ R4 :

4∑
i=1

qi = 1,

4∑
i=1

(pi − qi)2

pi
≤ α

}
where α determines the size of the uncertainty set. A larger α corresponds to more uncertainty in
p and more conservativeness. The disadvantage here is in the modeling assumptions. Are there
really only four scenarios that could happen? No, probably any number of claims between 90 and
145 could occur. Those scenarios were only discarded because they never happened in the past, but
that means discarding a lot of realistic scenarios.

Confidence interval: We can see the data from the past four months as four realizations of
some probability distribution. Under the assumption that this underlying probability distribution
is normal, we can construct a confidence interval for the expectation. The formula for the 95%-
confidence interval with 4 data points is

x̄− t3;0.025 ·
s√
4
< µ < x̄+ t3;0.025 ·

s√
4

where x̄ is the average of 116. t3;0.025 is a quantile of the Student t-distribution and if we look it
up in a table we find 3.182. Finally, s is an estimator for the standard deviation, which turns out to
be 24.73 when we calculate it. Together this gives the 95%-confidence interval 76 < µ < 156. The
interpretation is that when we make these intervals, 95% of the time the true expectation is within
it. The corresponding uncertainty set for the number of claims n would be

U =

{
n ∈ Z : 76 < n < 156

}

W. van der Heide MSc thesis
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and the size of the uncertainty set can be adapted by taking a different confidence level than 95%.
Using statistics to quantify uncertainty looks solid, but it should not be seen as a definitive answer.
The underlying probability distribution for the number of claims is unknown, so the assumption
that it is normal is hard to justify. Furthermore, the confidence interval can be very wide if there
is not much data. The whole point of Robust Optimization is that it is used when the parameters
are unknown and not enough data is available, but confidence intervals require assumptions on the
underlying distribution and a lot of data.

Credible interval: In Bayesian statistics, credible intervals are a concept analogous to confi-
dence intervals in frequentist statistics. In a Bayesian view of the world, one would already have
beliefs about the number of claims even before seeing the data. Maybe it is information from an
expert or ideas such as "there are probably a few hundred claims at this company each month".
This prior belief is expressed in a prior probability distribution. Then one reviews the data and uses
Bayesian techniques to update their beliefs in a posterior probability distribution. A 95% credible
interval contains 95% of the probability mass in the posterior distribution. You believe that the
model parameter is in the credible interval 95% of the time.

The advantage of this approach is that it is close to the Robust Optimization view. It sees model
parameters as a random variable and we can use data to adjust our beliefs about that random
variable. Searching for the one true value of a parameter is pointless if that parameter could take
a range of values. The disadvantage is that Bayesian statistics is not widely known and accepted.
Furthermore, the problem shifts from "How to formulate an uncertainty set?" to "How to determine
my prior distribution?". The prior is often based on opinions and feelings, which can be seen as an
advantage (incorporating all information) or a disadvantage (subjectivity).

1.4 Reading guide

In this introductory chapter we introduced the method of Robust Optimization and key concepts like
the uncertainty set. The following chapters apply these techniques to different contexts or examples
from queueing. Chapter 2 and 3 consider a robust approach to the Capacity Assignment problem.
Chapter 2 introduces the problem, shows how to make it robust and how to solve the corresponding
robust optimization problem. Chapter 3 uses numerical results and examples to show the value of
a robust approach to the Capacity Assignment problem. Chapter 4 can be read separately from the
previous chapters. It considers multiserver queues under Halfin-Whitt scaling from a worst case
perspective. Chapter 5 is the conclusion which summarizes the thesis and poses new questions
about how to apply Robust Optimization in a queueing context.
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2
Capacity Assignment Problem

In this chapter we consider the Capacity Assignment (CA) problem. This problem has been solved in
1976 by Kleinrock for given parameters. But what happens if we are uncertain about the value of the
parameters? We introduce a robust counterpart to the CA problem and show how to derive the robust
solution.

2.1 Model

Consider a computer-communication network with M channels to send messages over. These mes-
sages have lengths drawn independently from an exponential distribution with mean 1/µ (bits).
Each channel experiences Poisson distributed traffic with rate λi and has a capacity Ci (bits per
second) to process them. Part of the traffic is internal (messages passed from other channels) and
the rest is external (new messages). The total external traffic entering the network is denoted by γ.
We are interested in the average message delay T .

This problem was introduced and solved by Kleinrock (1976). The problem was later extended
by Wein (1989) to general interarrival and service distributions. Kleinrock states that, when the M
channels can be considered independent, the average message delay is given by

T =

M∑
i=1

λi
γ

[
1

µCi − λi

]
(2.1)

We continue with Kleinrock’s description and solution of the Capacity Assignment (CA) problem:

Given: Flows λi and network topology
Minimize: T
With respect to: Ci
Under constraint: D =

∑M
i=1 diCi

MSc thesis W. van der Heide



10 Chapter 2. Capacity Assignment Problem

The CA problem can be written as

min
Ci

M∑
i=1

λi
γ

[
1

µCi − λi

]
. (2.2)

So we want to pick the capacities Ci in order to minimize T . However, each channel has a linear
cost di for its capacity, and there is only a total budget D. How should the capacities be divided?
The first step is forming the Lagrangian

G = T + β

[
M∑
i=1

diCi −D

]
, (2.3)

where the positive parameter β will be determined later. Note that minimizing G with respect to
the capacities is the same as minimizing T , since the budget constraint makes the term in brackets
identically equal to zero. To minimize G we must satisfy the following set of M equations:

∂G

∂Ci
= 0, i = 1, 2, ...,M.

Using equation (2.1) gives

−λiµ
γ

1

(µCi − λi)2
+ βdi = 0

which can be written as

(µCi − λi)2 =
λiµ

βγdi

or

Ci =
λi
µ

+

√
λiµ

βγdi
· 1

µ
=
λi
µ

+
1√
βγµ

√
λi
di

i = 1, 2, ...,M. (2.4)

We proceed by multiplying with di and summing over i:

M∑
i=1

Cidi =
M∑
i=1

λidi
µ

+
1√
βγµ

M∑
i=1

√
λidi.

The left-hand side is simply D. Now we solve for the constant to eliminate β:

1√
βγµ

=
D −

∑M
i=1

λidi
µ∑M

i=1

√
λidi

=
De∑M

i=1

√
λidi

where the “excess dollars” De are defined by

De , D −
M∑
i=1

λidi
µ
. (2.5)
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2.2. Robust approach 11

Finally, by substituting everything into equation (2.4) we arrive at the optimal solution for the CA
problem

Ci =
λi
µ

+

(
De

di

) √
λidi∑M

j=1

√
λjdj

i = 1, 2, ...,M. (2.6)

This solution can be understood as follows. The assigned capacities are at least λi/µ, which
is the minimum required capacity for handling all messages. The remaining budget, given by the
excess dollars De, is used to improve the performance of the network. After scaling by the cost rate
di, each channel gets additional capacity in proportion to the square root of the cost-weighted load
λidi. Low cost, high load channels receive the lion share of the additional capacity.

2.2 Robust approach

Let us now consider the robust counterpart of the CA problem (RCA). We no longer assume that
the λi are known. This uncertainty is captured in an uncertainty set U . The modified CA problem
becomes:

Given: Flows λi ∈ U and network topology
Minimize: T for the worst λi ∈ U
With respect to: Ci
Under constraint: D =

∑M
i=1 diCi

In view of equation (2.2) the objective function thus becomes

min
Ci

max
λi∈U

M∑
i=1

λi
γ

[
1

µCi − λi

]
. (2.7)

In other words, we want to find the capacities that minimize the average delay for the worst choice
of traffic that is still in the uncertainty set. The order is important here: first we pick capacities and
then the worst traffic is determined. In general, this is a difficult optimization problem, since the
worst traffic could be different depending on the capacities chosen. There are potentially infinitely
many scenarios in the uncertainty set U to optimize over. In the literature, this is often circumvented
by using the dual optimization problem, see for example Bertsimas & Sim (2004). However, we will
show in a different way that the RCA problem is numerically tractable, because there are only a
finite number of relevant scenarios to consider.

Now we need to define uncertainty sets. We consider two types of uncertainty: uncertainty
about the total volume of traffic in the network (overall higher or lower traffic) and uncertainty
about the distribution of the arrivals over the different channels (uncertain routing). Together they
cover all forms of uncertainty in the arrival parameters, but we separate them because they have
opposite effects on the robust solution. More uncertainty about the total volume of arrivals leads
to assigning more capacity to the most used channels, while more uncertainty about the routing of
arrivals leads to taking away capacity from the most used channels. It is not always straightforward
which form of ‘uncertainty’ needs to be considered and what the corresponding uncertainty set
should look like.
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12 Chapter 2. Capacity Assignment Problem

2.2.1 Overall higher or lower traffic

Let us consider the case where the traffic at all channels could be higher or lower than expected. We
ignore the fact that the channels are connected and look at them independently. The channel i could
have a mean arrival rate λi + αi instead of the expected mean λi. The corresponding uncertainty
set is

U =

{
λ̃ ∈ RM : λ̃i > 0, |λ̃i − λi| ≤ αi for i = 1, ...,M

}
. (2.8)

For each channel there is a separate inequality for the maximum mean arrival rate. The worst case
is independent of the capacities chosen, because a higher arrival rate always leads to a longer delay.
Therefore the worst values of the parameters are λ∗i = λi + αi. The objective function (2.7) then
becomes

min
Ci

M∑
i=1

λi
γ

[
1

µCi − λ∗i

]
. (2.9)

which is just the original objective function (2.2) with λi replaced by λ∗i . That means that the
original derivation can be followed to get the robust solution

Ci =
λ∗i
µ

+

(
D∗e
di

) √
λ∗i di∑M

j=1

√
λ∗jdj

i = 1, 2, ...,M. (2.10)

This solution is only valid if the amount of excess dollars D∗e is positive. D∗e ≤ 0 means that there
is not enough budget to process all messages. Then the queue lengths would grow to infinity and
we would call the model infeasible. Therefore the available budget limits how much uncertainty
can be handled. This restricts the values of the αi. That brings us to a key difficulty when applying
Robust Optimization to queueing models: "The size of the uncertainty set must be chosen such that
the system is still feasible, even in the worst case scenario." An infeasible robust solution can be taken
as a warning that the available resources are not sufficient to cover all the desired risks. Picking a
smaller uncertainty set is one solution, but in practice raising the budget could be more desirable.

Provided that the budget is sufficient to handle the worst case scenario, what can we learn from
the robust solution? Compared to the classic solution, every channel gets a higher base capacity of
λi/µ. Channels with high uncertainty αi profit the most from this. Since overall traffic is higher in
the robust approach, there is less excess capacity to divide. The additional capacity is still assigned
based on the square root of the cost-weighted load λ∗i di. We can illustrate the difference between
robust and classic with two competing effects.

If there is one channel with a relatively high αi (a lot of uncertainty about the mean arrival rate),
the robust approach assigns more capacity to that channel ‘just to be sure’. If your main concern is
that one particular channel gets way more traffic than expected, the robust solution tells you how
to compensate for that. Another concern is that the overall load on the entire system is higher than
expected. For example, αi = λi · 0.05 indicates 5% more traffic everywhere. This gives λ∗i = 1.05λi
and robust capacities

Ci =
1.05λi
µ

+

(
D∗e
di

) √
1.05λidi∑M

j=1

√
1.05λjdj

=
1.05λi
µ

+

(
D∗e
di

) √
λidi∑M

j=1

√
λjdj

i = 1, 2, ...,M.
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2.2. Robust approach 13

(2.11)

We see that the additional capacity is divided over the channels by the same ratio as the classic
approach in equation (2.6). The difference is in the first term, 1.05λi/µ. This term gives 5% more
base capacity to every channel, so higher load channels end up with a bigger share of the total
capacity than in the classic approach. This effect is stronger if there are less excess dollars D∗e . We
can summarize that the robust approach assigns more capacity to channels with a relatively high
uncertainty and channels with a high mean arrival rate. This capacity is taken away from channels
with less uncertain arrival rates and channels with a low mean arrival rate. In Section 3.2 numerical
examples are given.

2.2.2 Uncertain routing

Another model is based on the connection between the channels in a network. The channels are
used to send messages from A to B, but we are not certain what the routing from A to B is.
Kleinrock assumes a unique path through the network for a given origin-destination pair, but on
page 315 he notes that in some practical cases dropping the fixed routing procedure may introduce
a useful degree of freedom. For this model we assume that the total amount of traffic can be
estimated accurately, but the distribution over the channels is uncertain.

One uncertainty set that captures these modeling assumptions could be:

U =

{
λ̃ ∈ RM : λ̃ ≥ 0,

M∑
i=1

λ̃i =

M∑
i=1

λi,

M∑
i=1

|λ̃i − λi| ≤ α

}
. (2.12)

The condition
∑M

i=1 λ̃i =
∑M

i=1 λi fixes the total arrival rate. The parameter α determines the size
of the uncertainty set, it can be seen as the rate of messages with a different routing than expected.
The model behind this assumes that there can be small errors in the estimated arrival rates. At a
small rate, say ε, messages predicted to go to one channel use a different channel. There are N of
these errors. Here are some reasons for these errors and ways to determine the corresponding ε and
N :

• Prediction errors. Routing is based on message types. A survey is used to estimate the pro-
portion of each message type. ε is the error margin on these estimates and can be calculated
for example with a 95%-confidence interval. Each of the channels has an error margin, so
there are a total of N = M possible errors.

• Hashing collision. Routing uses hash functions to map messages to destinations (see for
example L. Saino et al. (2013)). Emphasis for the mapping is on speed, so some ‘wrong’
mappings are allowed. ε = [the probability that an arrival gets a specific wrong mapping] ·
[the total arrival rate] and N is the number of wrong mappings that can occur.

• Future changes. Even if the current estimate is correct, the routing algorithm or the mix of
messages may change in the future. We want a capacity assignment that is robust against these
changes. ε is the rate of affected arrivals and N is the number of future changes expected.
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14 Chapter 2. Capacity Assignment Problem

There are other applications with their own uncertainty, like the road network on page 36. Each
error shifts a part of the arrival rate from a random channel to another random channel. Some
of these errors might cancel each other out. A shift from channel j to channel k cancels out a
shift from channel k to channel j. That means that the total deviation from the estimated arrivals∑M

i=1 |λ̃i− λi| is probably less than N times ε. The parameter α is chosen such that 95% of the time
we have

∑M
i=1 |λ̃i − λi| ≤ α.

If we have an estimate for the size of errors ε and the number of errors N , we can simulate
hypothetically true arrival rates with N random shifts of size ε. Then we pick α such that 95%
of the time these hypothetically true arrival rates are in the uncertainty set. In Section 3.1.2 the
algorithm is explained in more detail. The important part is that the total traffic stays the same. If
one channel gets more messages than expected, other channels get fewer messages to compensate.
If one channel experiences a pessimistic scenario with more arrivals than expected, other channels
have an optimistic scenario with less messages. This dependence between channels makes it difficult
to pick one overall worst case scenario. In fact, the worst case depends on the capacities chosen.
On page 15 we see an example of this dependence.

Figure 2.1: Worst average delay T for various capacity assignments C = (C1, 17− C1).
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2.3. Structure of the worst case 15

Example: worst case depends on capacities chosen
Consider the RCA problem with two channels. The mean arrival rates are estimated to be 4 and

8 messages per minute. Both channels have the same cost and the budget allows capacity for 17
messages per minute. We are uncertain about the routing of α = 1 message per minute. That means
that the first channel gets between 3 and 5 messages per minute and the second channel between
7 and 9 messages per minute. The total arrival rate of messages should always add up to 12, so
λ∗1 +λ∗2 = 12. Also, the capacities should add up to the budget of 17, so C2 = 17−C1. The objective
function can be written as

min
C1,C2

[
λ∗1

C1 − λ∗1
+

λ∗2
C2 − λ∗2

]
= min

C1

[
λ∗1

C1 − λ∗1
+

12− λ∗1
(17− C1)− (12− λ∗1)

]
.

under the constraints

3 ≤ λ∗1 ≤ 5 and 5 < C1 < 8,

because C1 needs to be at least 5 for the first channel and at most 8 so there is 9 capacity left for
the second channel.

If we pick the capacities C = (6, 11), the maximum average delay T ∗ = 6.75 is realized for arrival
rates λ∗1 = (5, 7). Apparently in the worst case the first channel is the bottleneck with an arrival rate
close to the capacity. Maybe we should increase the capacity for the first channel? If we pick the
capacities C = (7, 10), the maximum average delay T ∗ = 9.75 is realized for arrival rates λ∗1 = (3, 9).
Now the worst case has changed: the second channel became the bottleneck. Apparently the worst
case depends on the capacities chosen. Since capacity can only be assigned once, giving more
capacity to one channel takes away capacity from another channel, creating new problems there.
In Figure 2.1 we see the worst case average delay for various values of C1. The minimum is at
C1 ≈ 6.21. For values below 6.21 the first channel is the bottleneck and the worst case is λ∗1 = (5, 7).
For values above 6.21 the second channel is the bottleneck and the worst case is λ∗1 = (3, 9). The
minimum average delay is reached when both extreme worst cases are equally bad. The robust
solution tells us we should pick capacities C = (6.21, 10.79). Then the average delay is below 6
minutes for every scenario in the uncertainty set.

2.3 Structure of the worst case

We have seen that with uncertain routing each choice of the capacities can have a different worst
case. That means that we potentially have an infinite number of worst cases to optimize over.
However, we will show that the optimization problem is tractable, because there is only a finite
number of distinct worst cases that cover all possible capacity choices. In this section we start with
fixed capacity choices Ci and we will characterize the corresponding worst case arrival rates λ∗.
Remember that the worst case is the set of arrival rates that maximizes the average delay for our
choice of capacities.

First we need the assumption that the capacities Ci can handle every arrival rate in the uncer-
tainty set: For any λ̃ ∈ U we have µCi > λ̃i for all i = 1, ...,M . Capacities without this property are
not worth analyzing, because they would allow infeasibility within the uncertainty set. Infeasibility
leads to infinite delay, so any capacities that do not cause infeasibility are always better solutions
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16 Chapter 2. Capacity Assignment Problem

to the robust optimization problem. If all capacity assignments cause infeasibility within the uncer-
tainty set, there is too much uncertainty in the system to make it feasible reliably. In that case one
should reduce the uncertainty in the model parameters before trying any kind of optimization.

Now we introduce a lemma with the average delay T as a function of the arrival rate at channel
j, say x. Since we want the total arrival rate to remain constant, select one other channel k 6= j
with arrival rate Λ − x, where Λ is the combined arrival rate for channel j and k. Fix the arrival
rates at all other channels, say λFIX

i . Using equation (2.1) we get the average delay function

T (x) =
x

γ(µCj − x)
+

Λ− x
γ
(
µCk − (Λ− x)

) +

M∑
i=1
i 6=j,k

λFIX
i

γ

[
1

µCi − λFIX
i

]
(2.13)

Lemma 2.3.1. The function T (x) is strictly convex for x ∈ (Λ− µCk, µCj).

Proof. Since the capacity needs to exceed the total arrival rate, we have

Cj + Ck >
x

µ
+

Λ− x
µ

=
Λ

µ
,

so the interval (Λ− µCk, µCj) is non-empty. The first derivative is

T ′(x) =
1

γ

(
1

µCj − x
+

x

(µCj − x)2
− 1

µCk − (Λ− x)
− Λ− x

(µCk − (Λ− x))2

)
=

1

γ

(
µCj

(µCj − x)2
− µCk

(µCk − (Λ− x))2

)
and the second derivative is

T ′′(x) =
1

γ

(
2µCj

(µCj − x)3
+

2µCk
(µCk − (Λ− x))3

)
.

On the specified interval the denominators are both strictly positive. We have T ′′(x) > 0 so T (x) is
strictly convex.

Now we consider the worst case arrival rates λ∗ for the capacities C, so the arrival rates that
maximize T . As a reference point we use the estimated/observed arrival rates λ. These are the
values the classic, nonrobust method uses. It turns out that λ∗ and λ only differ for two channels.

Lemma 2.3.2. Among the worst case arrival rates λ∗ there is at most one channel j such that λ∗j > λj .
There is also at most one channel l such that λ∗l < λl.

Proof. We use contradiction. Suppose there are multiple channels such that λ∗i > λi. Pick two of
these channels, say j and k with j 6= k. We will define two different sets of arrival rates in the
uncertainty set, λL and λH . We show that at least one of these two sets gives a higher average delay
than λ∗, which is a contradiction with the fact that λ∗ is the worst case. Therefore there cannot be
multiple channels such that λ∗i > λi.
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2.3. Structure of the worst case 17

Define

λLi =


λj , for i = j,
λ∗k + λ∗j − λj , for i = k,

λ∗i , otherwise,

This can be interpreted, starting from λ∗, as lowering the arrival rate at channel j to the predicted
arrival rate λj . To compensate, the arrival rate at channel k is increased by the same amount. Now
we show that λL ∈ U by showing that this vector satisfies all the requirements in expression (2.12).
We will use the fact that λ∗ ∈ U , because the worst case has to be in the uncertainty set. The
requirement

λL ≥ 0

is satisfied, since λ∗ ≥ 0, λj ≥ 0 and λ∗k + λ∗j − λj ≥ λ∗k ≥ 0. Furthermore,

M∑
i=1

λLi = λj + λ∗k + λ∗j − λj +

M∑
i=1
i 6=j,k

λ∗i =

M∑
i=1

λ∗i =

M∑
i=1

λi.

Using our assumption λ∗j > λj and λ∗k > λk we get

|λLj − λj |+ |λLk − λk| = |λj − λj |+ |λ∗k + λ∗j − λj − λk| = |λ∗j − λj |+ |λ∗k − λk|.

Therefore

M∑
i=1

|λLi − λi| =
M∑
i=1

|λ∗i − λi| ≤ α,

so since λ∗ satisfies the conditions of the uncertainty set, λL is in the uncertainty set as well.

Similarly, we define arrival rates

λHi =


λ∗j + λ∗k − λk, for i = j,

λk, for i = k,
λ∗i , otherwise,

Now the arrival rate at channel k is lowered to λk and the arrival rate at channel j is higher to
compensate. By symmetry we can conclude λL ∈ U ⇒ λH ∈ U .

This leaves us with three different arrival rates for channel j: a low arrival rate λLj , a middle
arrival rate λ∗j and a high arrival rate λHj . All three of these arrival rate are within the interval
(Λ− µCk, µCj), since

Λ− µCk = λ∗j + λ∗k − µCk < λ∗j + λ∗k − (λ∗k + λ∗j − λj) = λj = λLj < λ∗j < λHj < µCj ,

where we used Λ = λ∗j + λ∗k and µCk > λLk = λ∗k + λ∗j − λj .
According to Lemma 2.3.1 the function T (x) is strictly convex, which gives

T (λ∗j ) < max
{
T (λLj ), T (λHj )

}
.

MSc thesis W. van der Heide



18 Chapter 2. Capacity Assignment Problem

There exist arrival rates in the uncertainty set with a bigger average delay than the worst case. This
is a contradiction with the definition of the worst case, so we can conclude that there can be at most
one channel j such that λ∗j > λj .

The proof for λ∗l < λl is analogous. Suppose there are multiple channels with λ∗i < λi, pick two
of them, say l and m. Define

λHi =


λl, for i = l,
λ∗m + λ∗l − λl, for i = m,
λ∗i , otherwise,

and

λLi =


λ∗l + λ∗m − λm, for i = l,
λm, for i = m,
λ∗i , otherwise,

We have λH ∈ U and λL ∈ U , because the total deviation from the estimated parameters λ stays the
same as for λ∗ (similar to the proof above). The arrival rates for channel l are ordered λLl < λ∗l < λHl
and they fall in the interval (Λ− µCm, µCj), since

Λ− µCm = λ∗l + λ∗m − µCm < λ∗l + λ∗m − λm = λLl < λ∗l < λHl = λl < µCl,

According to Lemma 2.3.1 the function T (x) is strictly convex, which gives

T (λ∗l ) < max
{
T (λLl ), T (λHl )

}
.

There exist arrival rates in the uncertainty set with a bigger average delay than the worst case. This
is a contradiction with the definition of the worst case, so we can conclude that there can be at most
one channel l such that λ∗l < λl.

Now we proceed to the structure of the worst case for given capacities.

Proposition 2.3.3. The worst case λ∗ is of the form

λ∗i =


λi + α/2, for i = j,
λi − α/2, for i = k,
λi, otherwise,

where j 6= k.

Proof. By Lemma 2.3.2 the worst case has at most one channel with an arrival rate larger than
expected and at most one channel with an arrival rate smaller than expected, say channels j and k.
Since the total arrival rate

∑M
i=1 λi needs to stay the same, they deviate by the same amount. Call

this deviation ε. Then the worst case is of the form

λ∗i =


λi + ε, for i = j,
λi − ε, for i = k,
λi, otherwise,

Because the worst case has to be in the uncertainty set, see (2.12), the total deviation in arrival
rates should be less than α. It follows that −α/2 ≤ ε ≤ α/2. Now we show that ε = ±α/2.
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2.3. Structure of the worst case 19

By the assumption of feasibility the capacities should be large enough for any vector of arrival
rates in the uncertainty set (µCi > λ̃i, ∀λ̃ ∈ U). Therefore[

λj − α/2, λj + α/2
]
⊂
(
Λ− µCk, µCj

)
By Lemma 2.3.1 the average delay is strictly convex in the arrival rate for channel j on the interval(
Λ−µCk, µCj

)
, so it is also strictly convex on the subinterval

[
λj−α/2, λj +α/2

]
. The maximum of

a convex function on a compact set is attained at the boundary, so λ∗j = λj − α/2 or λ∗j = λj + α/2.
Therefore ε = ±α/2 and the main result follows.

Proposition 2.3.3 shows that we do not have to optimize over all possible values in the uncer-
tainty set. Instead, there is a finite number of characteristic worst cases in the uncertainty set. It is
sufficient to only optimize over the worst cases stated in the proposition. There are M(M − 1) ar-
rival rates of that form (M choices for a channel with a higher arrival rate, remaining M−1 choices
for a channel with a lower arrival rate). This allows us to calculate the robust solution numerically.
We illustrate this with the example on page 20.

Figure 2.2: Worst average delay T for various capacity assignments C = (C1, C2, 32− C1 − C2).

The example shows that the worst average delay function is of a special form: it is convex in
the capacities and consists of M(M − 1) pieces. Each piece corresponds to a different worst case. A
heuristic way to find the minimum is a form of steepest descent. One starts at a point, for example
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20 Chapter 2. Capacity Assignment Problem

Example: finding the robust solution for uncertain routing
Consider the uncertain routing model with M = 3 channels. For simplicity we set µ = γ = 1 and
equal costs for capacity d = (1, 1, 1). The arrival rates are λ = (4, 9, 16). The total budget is D = 32
and hence De = 32 − 4 − 9 − 16 = 3. We set the uncertainty parameter α = 1.0. This allows a
maximal increase/decrease in arrival rate of 0.5 per channel. Following Proposition 2.3.3 we get 6
possible worst cases. We call the reduced uncertainty set that only contains these 6 worst cases Û .

Û :={
(3.5, 9.5, 16.0), (3.5, 9.0, 16.5), (4.0, 9.5, 15.5), (4.0, 8.5, 16.5), (4.5, 9.0, 15.5), (4.5, 8.5, 16.0)

}
Now the optimization problem (2.7) simplifies to

min
Ci

max
λi∈U

3∑
i=1

λi
Ci − λi

= min
Ci

max
λi∈Û

3∑
i=1

λi
Ci − λi

.

For given capacities, we can calculate the worst average delay by calculating the average delay for
each of the 6 vectors in Û and taking the maximum. In Figure 2.2 the worst average delay is plotted
on the vertical axis with the capacities C1 and C2 on the horizontal axes. Note that once we pick
C1 and C2, the rest of the budget fixes C3. So for three channels we get two degrees of freedom. In
the figure we see 6 regions corresponding to the 6 worst cases. In each region a different worst case
governs the average delay. The robust solution is the minimum in the figure.
In this example the minimum is attained for capacities C = (4.782, 10.003, 17.215), where three re-
gions intersect. These three regions corresponds to the worst cases (3.5, 9.5, 16.0), (3.5, 9.0, 16.5) and
(4.5, 8.5, 16.0). Since the worst average delay is a convex function of the capacities, changing the
robust capacities would mean increasing the average delay for one of these three worst cases. The
robust solution finds a balance where all three worst cases are equally bad, they all give the same av-
erage delay of 34.7825. To compare, the nonrobust capacities would be C = (4.667, 10.000, 17.333).
Those capacities have worst case (4.5, 8.5, 16.0) with an average delay of 44.6667. The robust so-
lution takes away capacity from the busiest channel and gives it to the least busy channel for a
reduction in average delay from 44.6667 to 34.7825.
Remarkable is that the capacity for the second channel does not change as much between the
nonrobust and robust approach, changing from 10 to 10.003. That can be seen in Figure 2.2 as well,
since the gradient at the classic solution has a relatively large component for C1 and a relatively
small component for C2. Therefore changes in C1 have a bigger impact on the average delay than
changes in C2. The smallest channel benefits the most from extra capacity, the busiest channel is
the least impacted by losing capacity, so the optimal strategy is concentrating the capacity changes
on the outer channels and leaving the middle channel almost the same.
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2.3. Structure of the worst case 21

at the classic solution. Calculate the gradient at that point and move in the direction of the negative
gradient. This is the direction where the average delay decreases the most. In the new point we
can calculate the gradient again, and so on. At some point we will hit a piece of the function that
corresponds to a different worst case, which means we need to go back a little. If we take enough
steps like this, we approach the minimum of the function. There are a few caveats like the function
not being differentiable at the intersection of two pieces, but this is the general idea.

In this chapter we explained what the CA problem is and what its robust counterpart RCA looks
like. We introduced two different forms of uncertainty and showed how to solve for the robust
solution numerically. In the next chapter we will use these methods to compare RCA with CA and
to show what the effect of Robust Optimization is in this setting. What makes it valuable?
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3
Numerical results for the CA problem

In this chapter we use numerical simulation results to compare RCA with CA and to answer the question
whether or not Robust Optimization is valuable in this setting.

3.1 Sampling from the uncertainty set

To compare the performance of robust and nonrobust capacities, we need to sample hypothetically
true values for the parameters. For each sampled set of parameters we calculate the value of the
objective function for the robust and nonrobust optimal solutions. For the CA problem the objective
function is the average delay, see (2.1). It is a common practice in the Robust Optimization literature
to take a sample such that approximately 95% of the sample is within the uncertainty set. For
example, Ben-Tal et al. (2013) sample probability vectors in a newsvendor problem using normal
distributions. The mean of these normal distributions is the estimated probability from data and the
standard deviations are chosen such that approximately 95% of the sample is within the uncertainty
region. We will modify this method to make it applicable to the CA problem.

It is noteworthy that if approximately 95% of the sample is within the uncertainty set, approx-
imately 5% of the samples is outside of it. This is in line with the technique of RO, since the
uncertainty set should capture most scenarios, but not all of them. See also Section 1.3 on the
construction of uncertainty sets. For queueing models this freedom in sampling can have drastic
consequences. In the CA problem for example, a channel could get more arrivals than its capacity.
Then the queue at that channel would grow indefinitely and the average delay would be infinite. In
that case we call the system infeasible.

If a capacity assignment leads to infeasibility, the entire system stops functioning. Therefore,
we will use the probability of infeasibility as one of the performance indicators for a capacity as-
signment. Both the robust and nonrobust method can experience infeasibility, but the one with
the least infeasibility is the most desirable. When we exclude cases where the system is infeasible,
we can also compare other performance characteristics like the absolute and relative difference in
average delay and the range of values the average delay can take. How close are the minimum and
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maximum average delay?
Ben-Tal et al. (2013) use a method centered around the estimated parameters. There is one

set of estimated parameters and all samples are generated from a normal distribution around those
estimations. One only has to find the robust and nonrobust solutions once, and then apply that
solution to the sampled hypothetically true values. Only solving the optimization problem once
is an advantage if optimizing requires considerable computational power. That is the case for our
uncertain routing, so we also use a method centered around the estimated parameters for that
model.

However, one could argue that it is more realistic to take fixed true values for the parameters.
The part that changes are the estimated parameters. The estimations are subject to errors and
following the Central Limit Theorem it is natural to assume the estimated parameters are normally
distributed. Then we can sample estimated parameters and calculate a robust and a nonrobust
solution for each of them. This is only possible if calculating the robust solution for given estimated
parameters can be done relatively quickly. With overall higher traffic this is the case. For that model
we compare the robust and nonrobust capacities for each sampled set of parameters with the true
value of the parameters.

In the uncertain routing model we cannot use a normal distribution to sample arrival rates, since
the total arrival rate needs to stay the same. Sampling λ1, ...λM−1 would fix λM . Instead we use
an algorithm which is symmetric in all channels and keeps the total arrival rate constant. It also
achieves that approximately 95% of the sample is in the uncertainty set.

We use only two sampling methods, but there are many variations possible. For example, if
the errors have a known distribution we can adjust our sample for that. But the power of Robust
Optimization is that it does not need a distribution for the uncertainty set. We are not even sure
that our uncertainty set is correct, so having approximately 95% of the sample within it is somewhat
arbitrary. We are testing the performance of Robust Optimization when all its assumptions hold, but
we want to know the performance of Robust Optimization in reality. So instead of showing many
sampling methods we will draw conclusions that are valid regardless of the sampling method used.
What is the influence of the robust method on the capacities? How does this affect the average
delay? What is the effect on infeasibility?

3.1.1 Sampling for "overall higher traffic"

The first simulation setup is for the "overall higher traffic" model. Take a fixed situation with flows
through the network with rate λi. We do not observe the real rates, but get data with some error.
We assume the data is generated from a normal distribution with mean λi. We assume that the
uncertainty set has a reasonable size, so we can choose the standard deviation such that 95% of the
probability mass would fall within the uncertainty set if the real λi were observed. If the uncertainty
set contains deviations up to 5%, the standard deviation is σi = 0.05λi/1.96, where 1.96 is the 95%
quantile of the normal distribution. Then we draw 106 samples for the traffic rates from this normal
distribution. For each sample, we calculate classic and robust capacities. Then we can calculate
the average delay for these capacities for the true arrival rates. This gives 106 results for both
approaches, so they can be compared.

There are a few implementation issues with this approach. Since the ‘observed’ rates are drawn
from a normal distribution, they could take negative values. This can be solved by redrawing all
negative arrival rates. But even a very low observed rate is problematic. Both the classic and the
robust approach could assign a capacity that is too low for the actual arrival rate. The result is an
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infeasible system. An extremely high observed arrival rate could give similar problems where our
methods report that the budget is insufficient even though it was just an error in the observed data.
We report the probability of infeasibility separately for both the robust and the nonrobust approach.
The mean and standard deviation are computed for only the feasible part of the sample.

Besides drawing from the distribution N(λi, 0.05λi/1.96) we construct a second sample while
drawing from the distribution N(0.95λi, 0.05λi/1.96). This second sample represents an average
underestimation of the arrival rates of 5%. This should be an ideal scenario for the robust solution,
because it has as a worst case that all arrival rates are 5% higher than predicted.

3.1.2 Sampling for "uncertain routing"

The second simulation setup is for the "uncertain routing" model. Now we take our data as fixed,
and the real values of the parameters as the changing factor. We draw possible values from the
parameters with an algorithm based on the nature of errors in real-world applications. We consider
small errors in the routing of messages over different channels. Instead of using channel j, the
message uses channel k. That would mean subtracting ε from the arrival rate at channel j and
adding that arrival rate to channel k, where ε is a small part of the total arrival rate. If we experience
N of these small errors, we would get the following algorithm.

1. Start with the data (λ1, λ2, ..., λM )

2. Pick a random channel from 1 to M , say channel j.

3. The new rate for channel j is ε higher, λj ← λj + ε.

4. Pick a random channel from 1 to M , say channel k.

5. The new rate for channel k is ε lower, λk ← λk − ε.

6. Repeat step 2-5 for a total of N times.

7. Output (λ1, λ2, ..., λM )

The uncertainty set for uncertain routing (see (2.12)) was based on this scheme. During this
algorithm the total arrival rate stays the same - what we add in step 3 is subtracted in step 5
- so we see that condition back in the uncertainty set. The parameter α can be chosen such that
approximately 95% of the sample falls within the uncertainty set Uα. Consider the uncertain routing
model from the example on page 20 with M = 3 channels. For simplicity we had µ = γ = 1 and
equal costs for capacity d = (1, 1, 1). Furthermore, the observed arrival rates are λ = (4, 9, 16). The
total budget is D = 32 and we can calculate De = 32− 4− 9− 16 = 3.

We pick the parameters for our algorithm ε = 0.05 and N = 45. That means we have 45 errors
with rate 0.05 on a total arrival rate of 4 + 9 + 16 = 29. After generating 106 sample values we
found that approximately 95% of the sample was within U1.0, so we get α = 1.0. Solving the
optimization problem with the method by Kleinrock gives the nonrobust solution for the capacities
C ≈ (4.667, 10.000, 17.333). Solving the robust problem (2.7) gives C ≈ (4.782, 10.003, 17.215).
We will compare those two capacity assignments with each other. We are also interested in the
performance of Robust Optimization when the uncertainty set is too large or too small. Does the
method fail if the uncertainty set poorly describes the real situation? To test that, we generate two
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extra samples, one with ε = 0.025 and N = 45 (U too large) and another with ε = 0.075 and N = 45
(U too small). As the size for our samples we choose 106, since that gives small enough confidence
intervals without taking excessive simulation time.

3.2 Overall higher traffic

Consider a network with M = 4 channels and arrival rates λ = (4, 6, 8, 10). However, due to
prediction errors we observe faulty arrival rates from a normal distribution N(λi, 0.05λi/1.96) for
each channel. The classic approach uses the predicted arrival rates and the robust approach uses 5%
higher arrival rates. For simplicity we set µ = γ = 1. The costs for capacity are d = (1, 1.5, 1, 1.5),
so we can test the influence of different costs per channel. The total budget is D = 39. That means
that we have excess dollars De = 39− 4 · 1.0− 6 · 1.5− 8 · 1.0− 10 · 1.5 = 3 for additional capacity.

Now we simulate 106 data sets as described in Section 3.1.1 and calculate the classic and the
robust capacities. Then we see what average delay these capacities cause for the real arrival rates.
The first question is what the difference between both methods is. On average, the robust approach
overestimates the arrival rates. Therefore it assigns more capacity to busy channels and expensive
channels, because those are the first bottlenecks if the system becomes busier. The busiest channels
get the largest absolute increase in arrival rates and the expensive channels tend to have relatively
low capacities in the classic approach, to save money. That does mean that the robust solution
assigns less capacity to channels with low arrival rates and cheap channels. This can be seen if we
look at the average capacities assigned over all samples in Table 3.1.

True arrival rate 4 6 8 10
True optimal arrival rate 4.51 6.51 8.73 10.66
Nonrobust average capacities 4.51 6.51 8.72 10.66
Robust average capacities 4.41 6.51 8.69 10.77

Table 3.1: Average robust and nonrobust capacities for each of the four channels, sample size 106.

The robust approach takes away capacity at the cheap first and third channel to increase the ca-
pacity at the big expensive fourth channel. That comes with a price: the robust solution sometimes
gives a capacity of less than 4 to the first channel, causing infeasibility. This severe underestimation
happened in 0.3% of the simulated data sets. By contrast, the classic approach had a 0.1% probabil-
ity of infeasibility. On average, the nonrobust capacities are very close to the true optimal capacities.
In the nonrobust case infeasibility is usually caused by understaffing the busiest fourth channel. In
this example we see that Robust Optimization causes infeasibility more often. But how do both
approaches perform when the system is feasible? Table 3.2 shows the probability of infeasibility
and the mean and standard deviation of the feasible part of the sample.

We can conclude that Robust Optimization gives worse results here. It causes infeasibility more
often and gives longer average delays than the classic, nonrobust approach. It also heavily increases
the standard deviation, so there is a higher risk of extreme outcomes. The opposite of what we
want. Even if our initial predictions of the arrival rate tend to underestimate the true arrival rate
(rightmost column), robust performs worse. In this example Robust Optimization is nothing more
than adapting your prediction and optimizing the system for higher arrival rates. That works great
if there are actually higher arrival rates, but otherwise it backfires.
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Observed mean arrival rates λ 0.95λ
accurate predictions underestimating predictions

Probability of infeasibility in percentage (%)
nonrobust [0.105, 0.118] [0.083, 0.094]
robust [0.295, 0.317] [0.173, 0.190]
best method nonrobust nonrobust
Mean average delay
nonrobust [46.434, 46.469] [45.520, 45.704]
robust [52.066, 57.127] [48.680, 50.235]
best method nonrobust nonrobust
Standard deviation of average delay
nonrobust [8.787, 8.811] [46.924, 47.054]
robust [1287, 1291] [395.8, 396.9]
best method nonrobust nonrobust

Table 3.2: Comparison of infeasibility, mean and standard deviation for overall higher or lower
traffic.

We know that the classic capacities are optimal if we predicted the true arrival rates. The robust
capacities are optimal if we underestimated all arrival rates by 5%. On the scale from severely
underestimating to severely overestimating the classic capacities perform best in the middle, while
the robust capacities need an edge case. Since the prediction errors are normally distributed, the
errors are symmetric. Overestimating occurs as often as underestimating. That means that in the
majority of the time the classic solution is better. The only hope for robust is that the edge case of
underestimating causes extreme delays.

A key observation is that extreme delays only occur when the assigned capacities are very close
to the true arrival rate. In the formula for average delay (2.1) there is a division by µCi − λi,
which gives a huge delay if it is close to zero. High utilization at one channel outweighs medium
utilization at all channels. One bottleneck dominates the whole system. That means that the
robust solution is protecting us against the wrong risk. The real risk is not underestimating the
arrival rate everywhere, it is underestimating the arrival rate at one channel. Table 3.1 shows that
robust capacity amplify this problem the first and third channel, only the fourth channel gets a
higher capacity. Extreme delays happen more often than with classic capacities, since there are
two candidates for bottlenecks instead of one. That is the reason robust has such a high standard
deviation and also a higher mean average delay.

All in all Robust Optimization did exactly what we asked it to do. It protects us against the worst
case in the uncertainty set. Unfortunately a higher arrival rate at all channels, like the worst case
in the uncertainty set, is still better than an extremely high arrival rate at one channel. Because we
worried about the wrong risks, the approach did not work as intended. The lesson learned is that
not every uncertainty set magically works, it has to capture the relevant risk for the problem. In
the CA problem the relevant risk is a concentration of all arrivals on one channel. That is exactly
what Proposition 2.3.3 states for the "uncertain routing" model. In the next section we move on to
numerical results for that model.
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3.3 Uncertain routing

Now we use the three samples of size 106 as described in Section 3.1.2. For each sample we calculate
performance characteristics for robust and nonrobust capacities. One performance characteristic is
the probability of infeasibility, since a feasible system is always more desirable than an infeasible
one. For the rest of the sample, where both robust and nonrobust capacities yield a feasible system,
we compare the mean and the standard deviation of the average delay. To see if robust capacities
prevent extreme outcomes, we compare the probability that the average delay is more than 35. The
value of 35 was chosen because it is close to the worst average delay in the uncertainty set. Finally,
we show the absolute difference in average delay for 104 hypothetically true arrival rates, so we can
see the distribution of the difference.

ε 0.025 0.050 0.075
α 0.5 1.0 1.5
Probability of infeasibility in percentage (%)
nonrobust [0., 0.] [0.111, 0.125] [2.910, 2.977]
robust [0., 0.] [0.021, 0.028] [1.021, 1.061]
best method tie robust robust
Mean average delay
nonrobust [27.439, 27.441] [29.556, 29.596] [33.344, 33.412]
robust [27.645, 27.645] [29.066, 29.076] [32.528, 32.610]
best method nonrobust robust robust
Standard deviation of average delay
nonrobust [0.524, 0.524] [10.212, 10.221] [17.109, 17.125]
robust [0.538, 0.538] [2.572, 2.575] [20.589, 20.607]
best method nonrobust robust nonrobust
Probability of average delay > 35 in percentage (%)
nonrobust [0.007, 0.010] [3.966, 4.043] [17.740, 17.892]
robust [0.000, 0.001] [2.769, 2.833] [17.179, 17.329]
best method robust robust robust

Table 3.3: Comparison of infeasibility, mean, standard deviation and extreme outcomes for uncer-
tain routing.

Table 3.3 shows our performance characteristics for the three samples. Remember that ε = 0.050
is the amount of uncertainty we assumed in the uncertainty set the robust capacities are based on.
We also want to know what happens if we are wrong about the magnitude of the uncertainty, so
there is a scenario ε = 0.025 with much less variation in the arrival rates and a scenario ε = 0.075
with a lot more variation than anticipated.

First of all, we see that the robust solution has a lower probability of infeasibility for every
sample. Moreover, for the cases ε = 0.025 and ε = 0.050 the nonrobust capacities were always
infeasible when the robust capacities were infeasible. In the case ε = 0.075 this happened almost
always in our sample of size 106. Out of almost 30000 infeasible arrival rates, only 64 times the
robust capacities were infeasible while the nonrobust capacities were feasible. If your goal is pre-
venting infeasibility, Robust Optimization is clearly the way to go. However, when there is a small
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amount of uncertainty (ε = 0.025), infeasibility almost never occurs with the classic capacities as
well. More uncertainty makes infeasibility occur more often, but Robust Optimization can reduce
the probability significantly.

In the mean average delay we see small deviations. When there is as much uncertainty as
assumed (ε = 0.050) or even more uncertainty (ε = 0.075), the robust solution has a slightly lower
mean. Apparently preventing extreme cases has a small positive effect on the mean as well. When
there is less uncertainty (ε = 0.025), the robust mean is 0.205 higher, which is an increase of about
0.75%. At best the robust mean is a few percent lower than the classic mean, at worst it is about
0.75% higher. The effect on the mean is fairly small for all samples.

The standard deviation of the average delay is a different story. We see that the standard de-
viation heavily increases as the uncertainty increases. For ε = 0.050, which was the assumption
the uncertainty set was based on, the robust capacities drastically lowered standard deviation. The
robust average delay is more reliable and shows smaller swings throughout the sample. This is char-
acteristic for the robust method. For ε = 0.025 and ε = 0.075 we found a small increase in standard
deviation between the robust and the nonrobust capacities. For ε = 0.025 that is understandable,
since robust is preparing for scenarios that never happen and the punishment is a small increase in
mean and standard deviation.

The increase for ε = 0.075 is more remarkable. For the probability of infeasibility and the mean
we saw the trend that robust outperforms nonrobust more as the uncertainty increases. Why is that
not the case for the standard deviation? The reason is that infeasibility is not taken into account in
our calculation of the standard deviation. In the table we can see that nonrobust gets to discard the
3% highest delays due to infeasibility, while robust only gets to discard their highest 1%. The result
is a (slightly) higher standard deviation for robust.

The probability that the average delay is higher than 35 is always in favor of the robust capacities.
Extreme outcomes happen less often with robust capacities, regardless of the magnitude of the
uncertainty. In an absolute sense robust capacities prevent more extreme cases as there is more
uncertainty, but the relative reduction is the largest for low uncertainty. For ε = 0.025 the absolute
decrease is about 0.008% of the cases, which is a relative reduction around 95%! On the other hand,
for ε = 0.075, around 0.5% fewer scenarios had an average delay of more than 35, but that is a minor
relative reduction of around 0.03%. The expected uncertainty with ε = 0.050 gives a decrease in
probability from 4% to 2.8%, a relative decrease of around 30%. Decreasing the probability of
extreme outcomes by 30% is a good reason to use robust capacities.

Now we know the effect of Robust Optimization on the average delay in terms of the mean and
the standard deviation, but we can also plot the distribution. In Figures (3.1), (3.2) and (3.3) the
absolute differences in average delay are plotted for each sample. We used a sample size of 106.
Infeasible values were discarded, so the actual sample size is 104 minus all infeasible values.

We see that in each of the three graphs more than half of the sample values gave a positive
value. That means that in a majority of the cases the classic, nonrobust solution performed better
than the robust solution. The strength of RO is in the magnitude of the improvements. For ε = 0.050
and ε = 0.075 we see that the left side of the graph takes big negative values, while the right side
shows smaller positive values. That means that robust sometimes works way better than classic,
but robust is (almost) never a lot worse than classic. There is a huge potential upside, and almost
no downside.

With the results from sampling we can draw the following conclusions:
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Figure 3.1: Absolute difference in delay for a sample with ε = 0.025 of size 104.

Figure 3.2: Absolute difference in delay for a sample with ε = 0.050 of size 104.
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Figure 3.3: Absolute difference in delay for a sample with ε = 0.075 of size 104.

• Robust capacities prevent infeasibility. Infeasibility occurs significantly less often with ro-
bust capacities. We saw a decrease of about 75% in the probability of infeasibility. Moreover,
the robust method did not introduce new cases where the nonrobust capacities would have
been feasible, but the robust capacities are not.

• Robust capacities prevent very high average delay. Robust capacities significantly reduce
the probability of having an average delay longer than 35. With the right uncertainty set, they
also reduce the standard deviation of the average delay significantly (with a factor 4).

• Robust capacities have little impact on the mean average delay. The mean average de-
lay for both methods was almost the same, but robust performed a little better when the
uncertainty was estimated correctly or underestimated.

• Robust performance is insensitive to the magnitude of uncertainty. Even if the uncer-
tainty is severely under- or overestimated, robust capacities do not perform much worse than
nonrobust capacities. The conclusions above still hold and at worst the mean and standard
deviation of the average delay are slightly higher. That means that the potential downside of
robust capacities is small in terms of performance.

3.4 Generalizations

3.4.1 Uncertain routing without sampling

In the previous sections we used a specific sampling method to evaluate the performance of robust
capacities. A sampling method is a way to give a weight to various hypothetically true arrival rates.
It gives quantitative results like "robust capacities cause 75% less infeasibility". But even without
sampling we can calculate the average delay for various hypothetically true arrival rates. That way
we get qualitative results about the structure of the robust solution. Those results are more general,
since they do not depend on a specific sampling method.
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We still consider the uncertain routing model with estimated arrival rates λ = (4, 9, 16). In
Table 3.4 we see the average delay for the classic, nonrobust approach. In the columns λ1 varies
from 3.3 to 4.7 and in the rows λ3 varies from 15.3 to 16.7. Once we know λ1 and λ3, we can find
λ2 = 29 − λ1 − λ2. Values in the uncertainty region are shown in red, these are all scenarios that
satisfy

|λ1 − 4|+ |λ2 − 9|+ |λ3 − 16| ≤ 1.0.

We recognize the six corners of the uncertainty region as the six worst cases from Proposition 2.3.3,
namely (3.5, 9.5, 16.0), (3.5, 9.0, 16.5), (4.0, 9.5, 15.5), (4.0, 8.5, 16.5), (4.5, 9.0, 15.5) and (4.5, 8.5, 16.0).
The table also shows values outside of the uncertainty set, since the true parameter values might be
outside the uncertainty set.

In Table 3.5 we see the same table, but now for the robust approach. Robust Optimization finds
the capacity assignment that minimizes the largest value in the uncertainty region. This value of
34.7825 (rounded to 34.8 in the table) is attained in the three corners (3.5, 9.5, 16.0), (3.5, 9.0, 16.5)
and (4.5, 8.5, 16.0). We see in both tables that the average delay is a convex function of the arrival
rates. For the classic solution the minimum is at attained for arrival rates (4.0, 9.0, 16.0). Those are
the observed arrival rates. The more the true arrival rates deviate from the observed arrival rates,
the higher the average delay grows. For very large deviations, like (3.3, 10.4, 15.3), we even see an
average delay of∞. This means that the system is infeasible, the second channel cannot handle an
arrival rate of 10.4.

With these tables we can verify that most of the conclusions in the previous section hold regard-
less of the distribution of the true uncertainty. Without a sampling method we cannot calculate the
mean average delay, so the conclusion "Robust capacities have little impact on the mean average
delay" cannot be checked with these tables. The rest of the conclusions do hold.

Robust capacities prevent infeasibility.
We see in the tables that when the robust capacities lead to an infeasible system, the nonrobust
capacities produce an infeasible system as well. But infeasibility also occurs in the rightmost column
for the nonrobust capacities, while the robust capacities show a feasible system there. The rightmost
column corresponds to λ1 = 4.7, so the robust capacity for channel 1 of 4.782 is enough while the
nonrobust capacity of 4.667 leads to infeasibility. We see the same effect in the top left corner,
nonrobust leads to more infeasibility of the second channel since it has a slightly lower capacity
for the second channel. For the third channel infeasibility is no problem, the average delay at the
bottom of the table did not increase dramatically. The reason is that the third channel has a lot of
excess capacity with both methods, so it can handle substantial increases in arrival rates. Robust
Optimization uses this fact and assigns a bit less capacity to the third channel without consequences
in terms of infeasibility.

Robust capacities prevent very high average delay.
When we look at all possible values for the average delay in the uncertainty set, we see that the
nonrobust capacities have a minimum average delay of 27.0 and a maximum average delay of 44.5.
In other words, around 95% of the time the average delay is between 27.0 and 44.5. The robust
capacities have a minimum average delay of 27.1 and a maximum average delay of 34.8. The
minima are almost the same, but the robust solution has a way lower maximum. This shows that
Robust Optimization drastically reduces the risk of having a high average delay. The difference is
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λ3 \ λ1 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
15.3 ∞ ∞ ∞ ∞ ∞ 111 61.6 45.9 38.8 35.5 34.9 37.3 46. 86.6 ∞
15.4 ∞ ∞ ∞ ∞ 111 61.4 45.4 38. 34.2 32.6 33. 36. 45.1 86. ∞
15.5 ∞ ∞ ∞ 111 61.3 45.2 37.5 33.5 31.4 30.7 31.7 35.1 44.5 85.5 ∞
15.6 ∞ ∞ 111 61.4 45.2 37.4 33.1 30.7 29.5 29.5 30.8 34.5 44.1 85.3 ∞
15.7 ∞ 111 61.6 45.3 37.4 33. 30.4 28.9 28.3 28.7 30.3 34.2 43.9 85.3 ∞
15.8 112 62. 45.6 37.7 33.1 30.4 28.7 27.8 27.7 28.3 30.1 34.1 44. 85.4 ∞
15.9 62.5 46.1 38.1 33.5 30.6 28.8 27.7 27.2 27.3 28.2 30.2 34.3 44.2 85.8 ∞
16. 46.7 38.7 34. 31. 29.1 27.9 27.2 27. 27.3 28.3 30.4 34.6 44.7 86.2 ∞
16.1 39.5 34.7 31.7 29.7 28.4 27.5 27.1 27.1 27.6 28.7 30.9 35.2 45.3 86.9 ∞
16.2 35.7 32.6 30.6 29.2 28.2 27.7 27.5 27.6 28.2 29.4 31.7 36. 46.2 87.8 ∞
16.3 33.9 31.7 30.3 29.3 28.6 28.2 28.2 28.5 29.2 30.4 32.8 37.2 47.3 89. ∞
16.4 33.3 31.8 30.7 29.9 29.5 29.3 29.4 29.7 30.5 31.8 34.2 38.6 48.8 90.6 ∞
16.5 33.7 32.6 31.8 31.3 31. 30.9 31. 31.5 32.3 33.7 36.1 40.6 50.8 92.6 ∞
16.6 35.2 34.3 33.7 33.3 33.2 33.2 33.4 33.9 34.8 36.2 38.6 43.1 53.4 95.2 ∞
16.7 37.8 37.1 36.7 36.4 36.3 36.4 36.7 37.3 38.2 39.6 42.1 46.6 56.9 98.7 ∞

Table 3.4: Average delay for various arrival rates with nonrobust capacities (4.667, 10.0, 17.333).

λ3 \ λ1 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
15.3 ∞ ∞ ∞ ∞ 3227 108 60.7 45.1 37.8 34.1 32.5 32.7 35.4 43.3 74.3
15.4 ∞ ∞ ∞ 3227 108 60.6 44.9 37.4 33.4 31.3 30.6 31.5 34.5 42.7 73.9
15.5 ∞ ∞ 3227 108 60.7 44.9 37.3 33. 30.6 29.5 29.4 30.6 34. 42.4 73.7
15.6 ∞ 3228 108 61. 45.1 37.3 33. 30.4 28.9 28.3 28.7 30.2 33.7 42.2 73.7
15.7 3228 109 61.3 45.4 37.6 33.1 30.4 28.7 27.8 27.7 28.3 30. 33.6 42.3 73.8
15.8 109 61.9 45.9 38. 33.5 30.6 28.8 27.7 27.3 27.4 28.2 30. 33.8 42.6 74.1
15.9 62.6 46.6 38.6 34. 31.1 29.2 28. 27.3 27.1 27.4 28.3 30.3 34.2 43. 74.7
16. 47.4 39.4 34.8 31.8 29.8 28.5 27.7 27.3 27.2 27.7 28.8 30.8 34.8 43.7 75.4
16.1 40.5 35.8 32.8 30.7 29.3 28.4 27.8 27.6 27.8 28.3 29.5 31.6 35.6 44.6 76.3
16.2 37.1 34. 31.9 30.5 29.5 28.8 28.5 28.4 28.7 29.3 30.5 32.7 36.8 45.8 77.5
16.3 35.6 33.5 32. 30.9 30.2 29.8 29.6 29.6 30. 30.7 32. 34.2 38.3 47.3 79.1
16.4 35.6 34. 32.9 32.1 31.6 31.3 31.2 31.4 31.8 32.6 33.9 36.2 40.3 49.4 81.2
16.5 36.8 35.6 34.8 34.2 33.8 33.6 33.6 33.9 34.3 35.2 36.5 38.9 43. 52.1 83.9
16.6 39.3 38.4 37.8 37.4 37.1 37. 37.1 37.4 37.9 38.8 40.2 42.5 46.7 55.8 87.7
16.7 43.6 43. 42.5 42.2 42. 42. 42.1 42.4 43. 43.9 45.3 47.7 51.9 61.1 92.9

Table 3.5: Average delay for various arrival rates with robust capacities (4.782, 10.003, 17.215).
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big; the nonrobust capacities could experience an increase in delay of 64.6% due to uncertainty
within the uncertainty set, while the robust capacities keep this increase below 28.8%.

Robust performance is insensitive to the magnitude of uncertainty.
An extreme case is no uncertainty at all. That means that the predicted arrival rates (4.0, 9.0, 16.0)
were correct after all and the classic average delay of 27.0 would always be realized. Using robust
capacities would lead to an average delay of 27.26 instead of 27.0. That is an increase of less than
1%. Even if all starting assumptions about uncertainty are wrong, we are still less than 1% above
the optimal average delay. Robustness comes with a price, but for the CA problem that price is
negligible. Robust Optimization has huge potential upsides and a very small downside.

3.4.2 Different forms of uncertainty

Until now we investigated two forms of uncertainty. One was uncertainty about the total volume of
traffic, where a robust approach did not work. The other was uncertain routing, where the robust
approach was a big improvement. We could also use a hybrid of these forms of uncertainty in a set
like

U =

{
λ̃ ∈ RM : λ̃ ≥ 0,

∣∣∣∣∣
M∑
i=1

λ̃i −
M∑
i=1

λi

∣∣∣∣∣ ≤ β,
M∑
i=1

|λ̃i − λi| ≤ α

}
.

This set allows a deviation β in the total volume while the sum of the deviations at all channels
can be at most α. Unfortunately an increase in the total volume suggests increasing the capacity
for the channel with the highest arrival rate, while for uncertain routing it is better to take away
capacity from that channel. The two forms of uncertainty work against each other. Instead of using
a hybrid model we advise to use just the uncertain routing model, for the total volume a single point
estimate works better.

There are also other model parameters where uncertainty plays a role. The service rate µ and
the capacities Ci could be uncertain as well. One reason could be prediction errors, like not knowing
the average service time. Another source of uncertainty could be implementation errors. Exactly
implementing the capacities Ci can be difficult, especially if capacity consists of discrete units (extra
employees for example). Luckily, models with uncertainty in the service times look very similar to
uncertainty in the arrival rates. Remember that the average delay function is

min
Ci

M∑
i=1

λi
γ

[
1

µCi − λi

]
.

Uncertainty in λi or µCi has a similar effect on the denominator µCi − λi. What matters is the
difference between the capacity and the arrival rate. That is the dominating factor that determines
the average delay. There is a minor difference between uncertainty in arrival or service times,
because the average delay at each channel is weighted by the arrival rate λi. That means that
arrival rate uncertainty is amplified a bit more, since a higher arrival rate than expected not only
causes a longer delay at that channel, but also gives it a higher weight.

A model with constant capacity looks like the model for uncertain routing. For example, when
you have to decide how to divide the total server capacity over different message types. A similar
result to Proposition 2.3.3 and the supporting Lemmas holds. It is easily verified that the average
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delay is a strictly convex function of the capacities, and the rest of the proofs do not even rely on
the average delay function. A model where the capacity of each channel is uncertain independent
of the other channels is similar to the overall higher or lower traffic model. In that case it is better
to avoid the robust method we used.

Another extension is assigning different costs di to buying capacity for channel i. That makes the
relationship between the capacities a little more complicated. The budget does not always buy you
the same amount of capacity. This only changes the allowed capacity assignments, but the optimal
classic capacities are still given by equation (2.6). In the robust optimization problem the budget
constraint D =

∑M
i=1Ci is replaced by D =

∑M
i=1 diCi, the solution methods are the same.

Figure 3.4: Road network between cities A, B, C and D.

Let us end the section with a model of a road network.
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Example: road network
Consider the road network between the cities A, B, C and D as shown in Figure 3.4. There is a

highway from city B to C and there are smaller roads from A to B, A to C, B to D and C to D. The
highway has a high capacity and has a high maximum speed. That means that someone traveling
from A to B has a choice; the shortest route via the road from A to B, or the fast route over the
highway from A to C to B. Even if we know how many people travel from A to B, we do not know
which route they will take.
The population in this area is rising, so more traffic is expected in the future. To prevent the road
network from getting congested, there is a budget to upgrade the road network by increasing the
capacity. There are two plans:

1. Spending most of the money on the highway. This is an efficient way to spend the budget if
most of the extra traffic uses the highway.

2. Spending most of the money on the smaller roads. The smaller roads could become congested
as the population rises, while the highway still has enough capacity.

We want to pick the plan with the lowest probability of congestion. This is a typical example of a CA
problem with uncertain routing. We can estimate the amount of traffic with a rising population, but
it is uncertain which roads will handle that extra traffic. In the classic approach we would predict
how the traffic is divided and pick the optimal capacity assignment for that prediction. A robust
approach would consider worst case scenarios and pick the capacity assignment that minimizes the
worst delay.
As we have seen before, the robust method favors small servers. The small roads will get congested
the fastest with an increase in arrival rate, so they get the lion share of the extra capacity (plan 2).
The robust solution is better at preventing huge traffic jams due to increasing population, which
was the goal of the upgrade. Giving more capacity to the highway might do better on average, but
it also performs really bad in a pessimistic scenario.
Besides the uncertainty where the extra traffic will appear, it is also uncertain how much traffic will
increase overall. At best, we can have an estimate of the population growth and the relationship
with the increase in traffic. We could assume the most pessimistic scenario for our capacity, but we
have seen that it is better to use a classic approach with an estimate for the rise in traffic.
Note that the CA problem as a model has some limitations in this situation. One assumption is
independence between the traffic rates on different roads. In reality we expect that when two
roads are connected, their traffic rates are dependent. The other assumption is that any continuous
capacity assignment is possible. In reality, increasing the capacity of a road can be done in discrete
amounts by adding a lane. This can be easily solved by adding extra constraints on the capacities.
If there are only a finite number of capacity assignments allowed, we can simply try them all when
searching for the optimal assignment.
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4
Worst case perspective in multiserver queues

In this chapter we consider multiserver queues under Halfin-Whitt scaling. We are interested in the
queue length in a worst case scenario and use that as a bound. We introduce the problem, prove several
results and discuss open questions regarding this research area.

4.1 Problem description

In previous chapters we used Robust Optimization to deal with uncertainty in the model parameters.
But queueing models also exhibit uncertainty in arrivals and departures. In this chapter we take it
one step further and replace the probabilistic nature of arrivals and departures by arbitrary values
restricted by constraints. Due to the deterministic nature of the model it is easier to compute
performance measures, but because we use probabilistic laws in the starting assumptions, the results
are still connected to the stochastic model. One of the first efforts in this area can be found in
Bertsimas et al. (2011).

The analysis of multiserver queues tends to be a challenging area of queueing theory. Many
results require Poisson arrival and/or service time distributions. In general we lack the tools to
compute bounds on key performance measures, such as the queue length. The advantage of the
Robust Optimization approach in a queueing context is that knowledge about the underlying dis-
tribution is not required. That makes it a promising method for models with general arrival and
service distributions. There are some bounds for general models, for example Kingman (1970) de-
rived bounds on the mean waiting time for the G/G/s queue. Such bounds are not known for the
Halfin-Whitt regime, so we consider a model with that scaling.

We are interested in a very pessimistic scenarios with many arrivals in a short time and long
service times. We characterize the allowed pessimistic scenarios in the form of an uncertainty set.
Under the assumption that the arrival times and service times satisfy the conditions of the uncer-
tainty sets, we obtain upper bounds for the queue length. This gives us a worst case perspective on
the G/G/s queue. Just like in the other examples in this thesis this is not the worst scenario that
could happen, but the worst scenario that we want to consider in the uncertainty set. Starting from
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38 Chapter 4. Worst case perspective in multiserver queues

the situation with all servers busy, the queue length will grow in a pessimistic scenario.
In the long run there is more service capacity than arriving load, so the queue will eventually

become empty again. But what happens in the meantime? How large can the queue length become
and at what time is it maximal? There are a few parameters in the model, namely the size of the
uncertainty sets for the arrival and service times and the number of servers in relation to the load.
Our results directly express performance measures in these parameters. This can help decision
makers in weighing risk versus reward. How many servers do you need to reach a given risk level?
What is the effect on the worst case queue length if you reduce the number of servers? With a
certain number of servers, how long can a busy period be?

4.1.1 Model

The model we consider is an FCFS multiserver G/G/s queue in steady state. That means that
there are s servers and we do not specify the arrival time and service time distributions, hence the
G for ‘General’. We use the scaling introduced by Halfin and Whitt (1981), which connects the
number of servers and the arrival rate for large systems. Fix some excess parameter β > 0 and let
λs = s− β

√
s. Furthermore let A and B denote some random variables with non-negative support,

finite expectation E[A] = E[B] = 1 and finite variance. Now consider the FCFS G/G/s queue with
interarrival times drawn i.i.d. distributed as Aλ−1

s and processing times drawn i.i.d. distributed as
B.

Because we are interested in the queue length, we use a setting that was also used by Gamarnik
and Goldberg (2013). The idea is keeping track of the number of jobs in the queue by counting the
number of arrivals and departures. To that end we introduce the following renewal processes.

A(t) = number of arrivals at time t with renewal distribution Aλ−1
s

Ni(t) = number of departures from server i at time t with renewal distribution B

X(t) = total number of departures from all servers combined at time t =
s∑
i=1

Ni(t)

At time 0 we start counting, so A(0) = 0 and Ni(0) = 0 for all i = 1, ...s. One concern could be that
the arrival process should not grow faster than the departure process: for stability every arriving
customer needs to leave the system eventually. On average an interarrival time is E[Aλ−1

s ] = λ−1
s

while the average time between departures is at most E[B] = 1 for each server, so s−1 at all servers.
Under the Halfin-Whitt scaling λs < s ensures stability. However, as s gets larger the load on the
system increases as λs approaches s. Where relevant, we will make the dependence on the number
of servers explicit with a subscript s, but sometimes we leave it out for ease of notation.

Now a few assumptions are needed to describe the situation we are interested in. We consider
the system in steady state, which means the first renewals only have a residual interarrival or service
time left. The corresponding processes are called an equilibrium renewal process. As the starting
state take one job in every server and an empty queue. This represents the moment just before the
queue starts growing. Our perspective is worst case, we want to find the longest possible queue
length. To achieve that, the servers should be working all the time. Every time a server finishes a
job, there is a nonempty queue to draw from. If a server ever becomes idle, the queue length must
be zero.

In the long run a server will become idle, but what happens after that time is irrelevant for the
worst case queue length. We might as well assume that there is no idle time when building up to
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the longest queue length. This assumption is true if there are more arrivals than departures. When
the servers are always working, the consequence is that the departure processes at each server are
independent of departures at other servers and independent of the arrival process.

• A(t) ≥
∑s

i=1Ni(t) for any t > 0.

• A(t) and Ni(t) are mutually independent for all i = 1, ..., s.

The queue length Q(t) at time t is the number of arrivals minus the number of departures
at all queues, so Q(t) = A(t) −

∑s
i=1Ni(t). Note that this is only true under our assumption

of more arrivals than departures. Also note that we took a queue length of 0 at time t = 0 to
keep things simple, but we might as well start with a positive queue length Q(0). Then Q(t) =
A(t)−

∑s
i=1Ni(t) +Q(0) and in the following analysis Q(t) would be a constant Q(0) larger. Since

we are after the scaling of the queue length in the number of servers s, this constant disappears in
the final result.

4.1.2 Worst case queue length

Since A(t) is an equilibrium renewal process we have E[A(t)] = tλs = t(s − β
√
s) = ts − βt

√
s.

Similarly, using the independent and identically distributed departure processes at the servers,
E[X(t)] = E[

∑s
i=1Ni(t)] = sE[N1(t)] = ts. For the standard deviation we have σ(X(t)) =

σ(
∑s

i=1Ni(t)) =
√
s · σ(N1(t)). By the Central Limit Theorem (CLT), as t → ∞, the random

variables

A(t)− (ts− βt
√
s)

σ
(
A(t)

) (4.1)

and

X(t)− ts
σ
(
X(t)

) (4.2)

are asymptotically standard normal. Now the idea is bounding the number of arrivals and depar-
tures by discarding the tails of these standard normal random variables. Since a standard normal
variable Z satisfies P(Z ≤ 2) ≈ 0.975 and P(Z ≤ 3) ≈ 0.995 we can take a value Γa around 2 or 3
such that random variable (4.1) stays below it with high probability. Similarly we can take a value
Γs around 2 or 3 such that random variable (4.2) stays above it with high probability. Note that we
want an upper bound on the arrivals, but a lower bound on the departures to keep the waiting time
under control.

This motivates us to construct the following uncertainty set for the realized number of arrivals
At,s at time t :

Ua =
{
At,s

∣∣ At,s ≤ ts− βt√s+ Γaσ
(
A(t)

)
, ∀t ≥ 0

}
and the uncertainty set for the realized total number of departures from all queues Xt,s at time t:

Us =
{
Xt,s

∣∣ Xt,s ≥ ts− Γsσ
(
X(t)

)
, ∀t ≥ 0

}
Note that similar uncertainty sets were used in Bandi et al. (2015). Each renewal process can
take its expected value, but there is a margin of error based on the CLT. The parameters Γa and
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Γs determine the allowed deviation from the expected values. They are chosen such that each
individual equation is satisfied with high enough probability. Γa and Γs are used to reflect the
accepted risk level.

There is a problem with this choice for the uncertainty sets. Even though each inequality has a
high probability of being satisfied, the uncertainty sets contain a lot of inequalities. There is at least
one inequality for every arrival/departure in the busy period we are interested in. The probability
that a given arrival/departure process is in this uncertainty set is roughly

P(arrival/departure process is in U) ≈ P(one inequality safisfied)[number of inequalities],

which can get very small for large systems and when investigating over a long time horizon. Basi-
cally the assumptions are almost never satisfied in the stochastic system, so results for this model
do not automatically hold in the stochastic system we are interested in. However, this uncertainty
set does have a reasonable motivation through the CLT, so we believe it can still provide a valuable
perspective. Constructing an uncertainty set is a trade-off between realism and tractability, and here
we go for tractability. The strict nature of our uncertainty set enables us to bound the queue length
for arbitrary arrival and service distributions.

The queue length for the system is the number of arrivals minus the number of departures, so
the longest queue length for a given arrival sequence At,s and departure sequence Xt,s occurs at
time t∗, where t∗ maximizes

Qs = max
t≥0

[
At,s −Xt,s

]
.

We want to look at the worst (longest) queue length Q∗s for arrivals and departures within the
uncertainty set, which gives

Q∗s = max
At,s∈Ua

max
Xt,s∈Us

max
t≥0

[
At,s −Xt,s

]
. (4.3)

Now we exchange the order of maximization to get

Q∗s ≤ max
t≥0

[
max

At,s∈Ua
At,s − max

Xt,s∈Us
Xt,s

]
.

In words, we first pick the worst possible arrival and departure processes and then find the moment
in time where the queue length is maximal. We will show that this bound is in fact tight by pointing
out arrival times and departure times that achieve the worst case that do not depend on the time t.

Lemma 4.1.1. In a G/G/s FCFS queue in the Halfin-Whitt regime, there exists an arrival sequence
A∗t,s ∈ Ua and a departure sequence X∗t,s ∈ Uss achieving

Q∗s = max
t≥0

[
max

At,s∈Ua
At,s − max

Xt,s∈Us
s

Xt,s

]
. (4.4)

Proof. Since Xk,s and Ak,s are independent, we can maximize them separately over their uncer-
tainty sets. We take all arrivals as early as possible and all departures as late as possible.
Take the sequence of departure times such that

X∗t,s =
⌈
ts− Γsσ

(
X(t)

)⌉
, ∀t ≥ 0.
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Similarly, take the sequence of arrival times such that

A∗k,s =
⌊
ts− βt

√
s+ Γaσ

(
A(t)

)⌋
, ∀t ≥ 0.

These are the maximum values still contained in their corresponding uncertainty set and they do
not depend on the time t. Therefore we can take the maximization over t out of equation (4.3).
Note that these arrival and departure times are not unique, as long as the order of arrivals and
departures stays the same the queue length is also maximized.

4.2 Bounds in the Halfin-Whitt regime

In the literature some bounds can be found on the queue length in a G/G/s queue. The problem
is that these bounds do not give useful information in the Halfin-Whitt regime, they grow too fast
with s. Gamarnik and Goldberg (2013) show that the queue length scales like O(

√
s). One of the

relevant bounds is a result by Kingman (1970), who states for the mean waiting time in a G/G/s
queue (note that we used µ = 1)

E[W ] ≤ 1

2

sσ2
a + σ2

s + (1− 1/s)
s
λ − 1

=
ρ
(
sσ2

a + σ2
s + (1− 1/s)

)
2(1− ρ)

=
λ
(
σ2
a + σ2

s/s+ (1/s− 1/s2)
)

2(1− ρ)
.

Through Little’s law E[Qs] = λE[W ] this also yields a bound for the mean queue length. When we
‘translate’ this bound to the Halfin-Whitt regime, using (1− ρ) ≈ β/

√
s, we get

E[Qs] = λE[W ] ≤
√
s ·
s2
(
σ2
a + σ2

s/s+ (1/s− 1/s2)
)

2β
.

The bound by Kingman does not survive the Halfin-Whitt regime, since it grows too fast with s.
Recently progress has been made with a robust derivation by Bandi et al. (2015), who showed for
the mean system time S (waiting time plus service time)

E[S] ≤ λ

4

(Γa + Γs/
√
s)2

1− ρ
+
s

λ
.

Unfortunately this bound also grows too fast in s to be used in the Halfin-Whitt regime.
In this section we prove a bound on the queue length that does have the desired scaling of

O(
√
s). In particular, we are interested in the limit of the worst case queue length lims→∞Q

∗
s/
√
s.

This is possible because we construct a bound on the worst case queue length instead of the mean
queue length. The interpretation of ‘worst case’ depends on the uncertainty sets chosen, ideally they
are both realistic and tractable. In Section we discuss the relevance, but first we show tractability of
the uncertainty set. First we show the structure of the proof for the special M/M/s case and then
move on to the general case of the G/G/s queue.

4.2.1 M/M/s queue

For the M/M/s queue we can explicitly calculate the standard deviations of the renewal processes,
so it is a good test case. The goal of this section is showing the proof structure without the com-
plications of the general case. Since an equilibrium renewal process with an exponential renewal
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distribution is just a Poisson distribution, the standard deviation is the square root of the expected
number of renewals. We find

σ
(
A(t)

)
=
√
tλs =

√
t
(
s− β

√
s
)

=

√
ts− βt

√
s (4.5)

and, using independence between servers,

σ
(
X(t)

)
=
√
s · σ

(
N1(t)

)
=
√
ts.

The worst case arrival process is

A∗t,s =

⌊
ts− βt

√
s+ Γa

√
ts− βt

√
s

⌋
and the worst case departure process is

X∗t,s =

⌈
ts− Γs

√
ts

⌉
.

Proposition 4.2.1. In an M/M/s queue in the Halfin-Whitt regime satisfying At,s ∈ Ua and Xt,s ∈ Us
the queue length is bounded by

lim
s→∞

Qs√
s
≤ (Γa + Γs)

2

2β
. (4.6)

Proof. We will calculate an upper bound for the worst queue length, Q∗s, and use that as the upper
bound for all queue lengths in the uncertainty set. Starting from equation (4.4) and substituting
the worst case equilibrium processes we get

Q∗s = max
t≥0

[
max

At,s∈Ua
At,s − max

Xt,s∈Us
Xt,s

]
= max

t≥0

[⌊
ts− βt

√
s+ Γa

√
ts− βt

√
s

⌋
−
⌈
ts− Γs

√
ts

⌉]

= max
t≥0

[⌊
ts− βt

√
s+ Γa

√
ts− βt

√
s

⌋
+

⌊
− ts+ Γs

√
ts

⌋]

≤ max
t≥0

[
− βt
√
s+ Γa

√
ts− βt

√
s+ Γs

√
ts

]

=
√
s ·max

t≥0

[
− βt+ Γa

√
t− βt√

s
+ Γs

√
t

]

At this point we see that the queue length scales like O(
√
s), exactly what one would expect in this

regime. Divide left and right by the desired scaling factor
√
s and take the limit for s→∞.

lim
s→∞

Q∗s√
s
≤ lim

s→∞
max
t≥0

[
− βt+ Γa

√
t− βt√

s
+ Γs

√
t

]
= max

t≥0

[
− βt+

(
Γa + Γs

)√
t

]
. (4.7)
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What remains is finding t∗, the time at which the worst case queue length is maximal. Denote
the function to be maximized by f(t) := −βt +

(
Γa + Γs

)√
t. We calculate f ′(t) = −β + Γa+Γs

2
√
t

and f ′′(t) = −Γa+Γs

4t
√
t

. Since f ′′(t) < 0 for all t > 0, the function f(t) is concave and we can simply

maximize it by solving f ′(t) = 0. The solution is (Γa+Γs)2

4β2 . That means that the time where the

queue length divided by the square root of s is maximized is t∗ = (Γa+Γs)2

4β2 . Finally, by substituting
this value for t in equation (4.7) we get

lim
s→∞

Q∗s√
s
≤ max

t≥0

[
− βt+

(
Γa + Γs

)√
t

]
.

= −β · (Γa + Γs)
2

4β2
+ (Γa + Γs)

√
(Γa + Γs)2

4β2

= −(Γa + Γs)
2

4β
+

(Γa + Γs)
2

2β

=
(Γa + Γs)

2

2β

Because the worst case queue length is the longest possible queue length under the conditions
of the uncertainty set, we have Qs ≤ Q∗s for any arrival/departure process.

lim
s→∞

Qs√
s
≤ lim

s→∞

Q∗s√
s
≤ (Γa + Γs)

2

2β
.

Proposition 4.2.1 gives some insight in the queue length of the M/M/s queue in the Halfin-
Whitt regime. One of the main insights is the dependence on the excess parameter β. When you
double β, the worst case queue length is halved. This is very useful in determining how much
excess capacity is necessary for an appropriate risk level. The dependence on the uncertainty in the
arrival and departure process is also remarkable. The parameters Γa and Γs play a symmetric role
in the M/M/s queue. When aiming to reduce queue lengths, one should reduce the total variability
Γa + Γs as much as possible. There is no bias towards one process or the other.

Another interesting aspect is that the time at which the worst case queue length is achieved,
t∗ = (Γa+Γs)2

4β2 , does not depend on s. As s increases there are more arrivals and departures in that
time period. A lot more happens in this time interval, but time itself does not scale. This tells us
how much time this system needs to go from an empty queue to an extremely long one. Now we
extend the results to the more general G/G/s model.

4.2.2 G/G/s queue

For general arrival and service distributions we need the standard deviation of the corresponding
equilibrium renewal processes. The standard deviation of a renewal process N(t) with renewal
distribution X is (see Nebres, 2011)

lim
t→∞

Var[N(t)]

t
=

Var[X]

(E[X])3
.
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Lemma 4.2.2. For the given arrival and departure processes with E[A] = E[B] = 1 and with σa, σs <
∞, we have

σ
(
A(t)

)
= σa

√
ts− βt

√
s

and

σ
(
X(t)

)
= σs

√
ts.

Proof. Using the result for the variance of an equilibrium renewal process and the starting assump-
tion E[A] = 1 we find

σ2
(
A(t)

)
t

=
Var[Aλ−1

s ]

(E[Aλ−1
s ])3

=
λ−2
s Var[A]

λ−3
s E[A]3

= λsVar[A]

and when we calculate the standard deviation

σ
(
A(t)

)
=
√
tλsVar[A] = σa

√
tλs = σa

√
ts− βt

√
s.

For the departure process we find a similar result when using E[B] = 1,

σ2
(
N1(t)

)
t

=
Var[B]

(E[S])3
= Var[B]

and

σ
(
X(t)

)
=
√
sσ
(
N1(t)

)
=
√
s ·
√
tVar[B] = σs

√
ts.

With this Lemma we can tackle the problem for the general G/G/s model, provided that the
standard deviation is finite.

Proposition 4.2.3. In a G/G/s queue in the Halfin-Whitt regime satisfying At,s ∈ Ua and Xt,s ∈ Us
and with σa, σs <∞, the queue length is bounded by

lim
s→∞

Qs√
s
≤ (Γaσa + Γsσs)

2

2β
. (4.8)

Proof. The idea of the proof is similar to the M/M/s case. We calculate an upper bound for the
worst queue length, Q∗s, and use that as the upper bound for all queue lengths in the uncertainty
set. Starting from equation (4.3), substituting the worst case equilibrium processes from Lemma
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4.1.1 and then the standard deviations from Lemma 4.2.2, we get

Q∗s = max
t≥0

[
max

At,s∈Ua
At,s − max

Xt,s∈Us
Xt,s

]
= max

t≥0

[⌊
ts− βt

√
s+ Γaσ

(
A(t)

)⌋
−
⌈
ts− Γsσ

(
X(t)

)⌉]

= max
t≥0

[⌊
ts− βt

√
s+ Γaσa

√
ts− βt

√
s

⌋
−
⌈
ts− Γsσs

√
ts

⌉]

= max
t≥0

[⌊
ts− βt

√
s+ Γaσa

√
ts− βt

√
s

⌋
+

⌊
− ts+ Γsσs

√
ts

⌋]

≤ max
t≥0

[
− βt
√
s+ Γaσa

√
ts− βt

√
s+ Γsσs

√
ts

]

=
√
s ·max

t≥0

[
− βt+ Γaσa

√
t− βt√

s
+ Γsσs

√
t

]

Again we notice that the queue length scales like O(
√
s), exactly what one would expect in the

Halfin-Whitt regime. Divide left and right by the desired scaling factor
√
s and take the limit for

s→∞.

lim
s→∞

Q∗s√
s
≤ max

t≥0

[
− βt+ (Γaσa + Γsσs)

√
t

]
. (4.9)

What remains is finding t∗, the time at which the worst case queue length is maximal. Denote
the function to be maximized by f(t) := −βt+

(
Γaσa+Γsσs

)√
t. We calculate f ′(t) = −β+ Γaσa+Γsσs

2
√
t

and f ′′(t) = −Γaσa+Γsσs
4t
√
t

. Since f ′′(t) < 0 for all t > 0, the function f(t) is concave and we can

simply maximize it by solving f ′(t) = 0. The solution is (Γaσa+Γsσs)2

4β2 . That means that the time

where the queue length divided by the square root of s is maximized is t∗ = (Γaσa+Γsσs)2

4β2 . Finally,
by substituting this value for t in equation (4.7) we get

lim
s→∞

Q∗s√
s
≤ max

t≥0

[
− βc+ (Γaσa + Γsσs)

√
t

]
= −β · (Γaσa + Γsσs)

2

4β2
+ (Γaσa + Γsσs)

√
(Γaσa + Γsσs)2

4β2

= −(Γaσa + Γsσs)
2

4β
+

(Γaσa + Γsσs)
2

2β

=
(Γaσa + Γsσs)

2

2β

Because the worst case queue length is the longest possible queue length under the conditions
of the uncertainty set, we have Qs ≤ Q∗s for any arrival/departure process.
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lim
s→∞

Qs√
s
≤ lim

s→∞

Q∗s√
s
≤ (Γaσa + Γsσs)

2

2β
.

Proposition 4.2.3 has some interesting implications. Let us compare it with the bounds by
Kingman and Bandi, rewritten using Little’s law E[Qs] = λE[W ] in terms of the mean queue length:

lim
s→∞

Qs√
s
≤ (Γaσa + Γsσs)

2

2β
(Proposition 4.2.3)

E[Qs] ≤
λ2
(
σ2
a + σ2

s/s+ (1/s− 1/s2)
)

2(1− ρ)
(Kingman)

E[Qs] ≤
λ2

4

(Γa + Γs/
√
s)2

1− ρ
+ s− λE[B] (Bandi)

A direct comparison is hard, because the bounds are for different performance measures. Our
bound is for the worst case queue length and not for the mean queue length. Kingman’ bound
has a stochastic nature, while the other two bounds are based on a robust setting with uncertainty
parameters Γa and Γs. Finally, our bound is for the Halfin-Whitt regime while the other two are not.
In the Halfin-Whitt regime 1−ρ scales like β/

√
s, so the denominators of the three bounds have the

same functional dependence on 1− ρ, which is characteristic for many classical queueing models.
Also compare the roles of σ2

a with Γ2
a and σ2

s with Γ2
s. All bounds share a functional dependence

on the sum of the variances of the interarrival and processing times. However, the uncertainty
parameters Γa and Γs from Bandi et al. (2015) cannot be directly compared with the parameters
Γa and Γs in Proposition 4.2.3, since they are based on different uncertainty sets. The new bound
does not depend on s or λ except for the order

√
s, by which ρs is normalized. Apparently this

choice of uncertainty set makes the result tractable in the Halfin-Whitt regime. Unfortunately the
assumptions for the worst case are usually not satisfied, so we cannot extend our conclusions to the
stochastic system automatically.

The uncertainty set excludes extremely short interarrival times and extremely long processing
times. To compensate, the worst case assumes that all interarrival times are relatively short and
all processing times are relatively long. The strictness of the uncertainty set is determined by a
parameter Γ. For most distributions there will be some value for Γ for which the excluded extreme
values almost never occur. Then the corresponding uncertainty set is reasonable. However, if the
distribution has a very high or infinite variance (in the case of heavy-tailed distributions), there is
no reasonable value for Γ and the bound does not work. That can be seen in the assumptions as
well; the result requires finite variances and assumes the CLT to hold.

4.3 Open questions

The main shortcoming of the uncertainty sets described in this chapter is that an arbitrary arrival
or departure process has a very low probability of being in the uncertainty set. At best we can say
that a large majority of the arrivals and departures satisfy the assumptions. As a consequence the
derived bound on the queue length does not necessarily hold in the stochastic system that assumes
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a parameterized family of distributions for the arrival and service processes. This could be solved
by finding a broader uncertainty set which contains an arbitrary arrival or departure process almost
surely. The difficulty is that this uncertainty set needs to give a tractable optimization problem as
well. Instead of the CLT one could use the Law of the Iterated Logarithm as inspiration for the
uncertainty set, since Bertsimas et al. (2011) had some success with that.

Another open question is how to interpret robust results in a queueing context. How does it
compare to probabilistic methods? Robust Optimization circumvents many problems with stochastic
models, since it specifies which uncertainty is important. By creating an uncertainty set, one chooses
to ignore part of the problem. Robust Optimization needs to show that this part can be ignored
without changing the core behavior of the stochastic model. If you do not believe in the uncertainty
set, the robust results are of little value. But if you can make a strong argument for the uncertainty
set, Robust Optimization is a powerful new tool to analyze queueing networks.

Work needs to be done in showing that implications of a probabilistic model are just as strong as
having the correct probabilistic model itself. For example, Proposition 4.2.3 shows a new bound on
the queue length in the Halfin-Whitt regime. But one could suspect that in creating the uncertainty
set the problem was simplified too much, and the bound is not representative for the behavior of
the stochastic model. What is missing is a strong argument why this choice is valid, beyond pointing
out that the bound has a functional form we would expect for this model.

The role of variability parameters like Γa and Γs remains somewhat vague as well. Why is
one parameter sufficient for the whole arrival process? One would expect a significant difference
between the variability of the time of the first arrival and a much later arrival. The CLT argument
only works asymptotically. The value chosen for Γ seems arbitrary; the literature focuses more on
the existence of this constant than on the actual value. That suffices when looking for qualitative
insights, but the constants do matter for quantitative results.
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5
Conclusion

In this thesis we have seen several examples of Robust Optimization in a queueing environment. In this
chapter we discuss the lessons we can learn from Robust Optimization in this context. What makes it
meaningful and valuable? What opportunities for future research are there?

5.1 Conclusion

Since Robust Optimization reduces the effect of uncertainty in model parameters, it works best if
uncertainty matters. Small changes need to have a big impact. In queueing system that is often
the case, especially if the system is in heavy traffic. When the load on the system is close to the
maximum capacity, a small change in either the load or the capacity has a huge effect on perfor-
mance characteristics such as average waiting time, probability of waiting and queue length. This
sensitivity makes queueing models a good candidate for Robust Optimization.

In optimization, using nominal values can often lead to (severe) infeasibilities (Den Hertog,
2015). It means a violation of constraints which Robust Optimization can prevent. In a queueing
context infeasibility also is a problem. It occurs when the system gets more arrivals on average than
it can handle, violating the constraint that capacity needs to exceed arrival rate. Infeasibility is the
worst state a queueing system can be in. But even being close to infeasibility is a huge problem. The
goal is not only preventing infeasibility, but also staying away from it as much as possible. Robust
Optimization is a suitable technique to do that.

The success of Robust Optimization depends greatly on the uncertainty set. Choosing the right
uncertainty set can make or break the method. On on hand the uncertainty set needs to be chosen
such that the resulting optimization problem is tractable, but on the other hand it needs to describe
the system well. A common way to show tractability is by considering the dual optimization prob-
lem. In this thesis we used our knowledge about queueing models to simplify the uncertainty set.
Even though there are infinitely many scenarios to consider, only a few of them are candidates for
the worst case. Proposition 2.3.3 and Lemma 4.1.1 are examples of that.

Identifying the proper risks and characterizing them in an uncertainty set is not straightforward.
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Not every risk can be mitigated by a robust approach. We saw some examples in the CA problem.
The risk of overall higher traffic could not be reduced with robust capacities. The robust capacities
are optimal for one worst case, when every arrival rate is underestimated. But when the deviations
are a mix of over- and underestimation, the classic capacities work better. Moreover, there were
multiple ‘extreme’ cases in the uncertainty set, and the robust capacities covered only one of them.
Robust performed worse in the majority of cases and when it did work better, it was not the only
‘extreme’ case.

A form of risk that works better with Robust Optimization is uncertain routing. The total arrival
rate is known, but we do not know how the arrival rates are divided over all servers. We showed that
the worst case has a specific form. There is one bottleneck channel that receives all problems in the
form of extra arrivals. Which channel is the bottleneck depends on the assigned capacities. Robust
Optimization identifies bottleneck channels and gives them more capacity, without creating new
bottlenecks. It finds a balance in the average delay across multiple possible scenarios. Therefore
the robust capacities outperform the classic capacities for a wide range of possible deviations. But
more importantly, they perform way better for the most occurring scenarios with extremely long
delay.

Our numerical results showed how potent Robust Optimization can be. Reducing the probability
of infeasibility by 75%, the probability of a high delay by 30% and making the standard deviation
of the possible outcomes a factor 4 smaller, while performing slightly better on average as well.
This was just one numerical example, but in general robust capacities give more reliable results and
drastically reduce the occurrence of extreme outcomes. When there is more uncertainty about the
model parameters, Robust Optimization can make an even bigger difference.

Are there also downsides to using robust capacities in the CA problem? Calculating them is a
little bit more work. Instead of using the formula by Kleinrock, one needs to solve a relatively simple
optimization problem. The problem is minimizing the maximum of M(M − 1) convex functions,
where M is the number of servers. Many software programs can do that, we used Mathematica for
example. That makes the robust capacities computationally tractable. Another concern is that you
might be wrong about the starting assumptions. What if we overestimated uncertainty and the first
predictions were right all along? It turns out that in that case the penalty for using robust capacities
is very small, they perform almost as well as the optimal nonrobust capacities.

Another way to use Robust Optimization is replacing the stochastic nature of queueing models.
Instead of describing interarrival and service times with probability distributions, they can take any
value in an uncertainty set. This means excluding extreme cases outside of the uncertainty set.
Probability laws like the CLT can help form the uncertainty set such that extreme cases have a very
small probability of happening. This method shifts a stochastic model to an optimization problem
and permits new ways to analyze the model. One advantage is analyzing models with general
distributions, since only information about the mean and standard deviation is needed. Another
advantage is that it provides a new perspective or angle to analyze queueing models.

5.1.1 Further research

The goal of this thesis was exploring the possibilities of Robust Optimization in a queueing context.
Perhaps more important than finding the answers is formulating the right questions. There are a
few interesting directions for further research. Robust Optimization has proven itself as an effective
way to deal with uncertainty, and we know that in queueing networks uncertainty matters. The CA
problem is just one example, but what is this like for queueing theory as a whole? How sensitive
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are queueing models to errors in the parameters? Do queueing models describe practical problems
accurately enough? Is a more conservative approach desirable? How well would robust queueing
decisions work out in practice?

The questions above are aimed at improving our capability of implementing accurate and effec-
tive models in practice. But Robust Optimization also has potential for more theoretic results. It
offers a radically different view on uncertainty. This view does not require knowledge about com-
plete distribution functions and shifts the analysis to a different domain, namely optimization. By
excluding unlikely extreme cases, the analysis can become easier. What advantages does a robust
view on uncertainty offer? Are there problems in stochastic models that a robust approach can
circumvent? When is the robust version of a model tractable?

A robust view on uncertainty also calls for a better understanding of the connection between
probability and Robust Optimization. That leads to some deep questions about the ideas behind
Robust Optimization. When is an uncertainty set meaningful? What does it represent? What is
the connection between stochastic models and robust models? What is needed is not just proof
that Robust Optimization works in a queueing context, but also a justification why it is a good
assumption to view the world in uncertainty sets. Then it could get a place next to other methods
to analyze queues.

As long as uncertainty plays a major role in queueing systems, Robust Optimization can form
a valuable tool in improving and analyzing them. The potential is only limited by the amount of
uncertainty, and queueing models have an abundance of uncertainty to deal with. Hopefully both
research areas will profit from learning from each other in the coming years.

MSc thesis W. van der Heide





Bibliography

[1] C. Bandi, D. Bertsimas and N. Youssef, Robust Queueing Theory, Operations Research 63
(2015), No. 3: 676-700.

[2] A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization, Princeton University Press
(2009).

[3] A. Ben-Tal et al. Robust solutions of optimization problems affected by uncertain probabilities,
Management Science 59 (2013), No. 2: 341-357.

[4] D. Bertsimas and X. V. Doan, Robust and data-driven approaches to call centers, European
Journal of Operational Research 207 (2010), No. 2: 1072-1085.

[5] D. Bertsimas, D. Gamarnik and A. Rikun, Performance analysis of queueing networks via robust
optimization, Operations Research 59 (2011), No. 2: 455–466.

[6] D. Bertsimas and M. Sim, The price of robustness, Operations Research 52 (2004), No. 1:
35-53.

[7] S. Borst, A. Mandelbaum and M. I. Reiman, Dimensioning large call centers, Operations re-
search 52 (2004), No. 1: 17-34.

[8] D. Gamarnik and D. Goldberg, Steady-state GI/GI/n queue in the Halfin-Whitt regime, Annals
of Applied Probability 23 (2013), No. 6: 2382-2419.

[9] N. Gans, H. Shen, et al., Parametric stochastic programming models for call-center workforce
scheduling, Technical report (2009).

[10] S. Halfin and W. Whitt, Heavy-traffic limits for queues with many exponential servers, Opera-
tions research 29 (1981), No. 3: 567-588.

[11] D. den Hertog, Practical Robust Optimization, course notes, Tilburg University (2015).

[12] P. Jelenkovic, A. Mandelbaum and P. Momcilovic, Heavy traffic limits for queues with many
deterministic servers, Queueing Systems 47 (2004), No. 1-2: 53-69.

[13] G. Jongbloed and G. Koole, Managing uncertainty in call centers using Poisson mixtures, Applied
Stochastic Models in Business and Industry 17 (2001): 307-318.

[14] J. F. C. Kingman, Inequalities in the theory of queues, Journal of the Royal Statistical Society,
Series B (Methodological) 32 (1970), No. 1: 102-110

[15] L. Kleinrock, Queueing Systems, volume 2: computer applications, New York: John Wiley &
Sons, Inc. (1976).

MSc thesis W. van der Heide



54 Bibliography

[16] S. Liao, C. Van Delft and J.-P. Vial, Distributionally robust workforce scheduling in call centres
with uncertain arrival rates, Optimization Methods and Software 28.3 (2013): 501-522.

[17] S. Liao, G. Koole, C. Van Delft and O. Jouini, Staffing a call center with uncertain non-stationary
arrival rate and flexibility, OR spectrum 34 (2012), No. 3: 691-721.

[18] P. Nebres, Renewal theory and its applications, (2011).

[19] K. Postek, A. Ben-Tal, A., D. den Hertog and B. Melenberg, Exact robust counterparts of am-
biguous stochastic constraints under mean and dispersion information, preprint (2015).

[20] L. Saino, I. Psaras and G. Pavlou, Hash-routing schemes for information centric networking,
Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric networking, ACM
(2013), pp. 27-32.

[21] L. M. Wein, Capacity allocation in generalized Jackson networks, Operations Research Letters 8
(1989), No. 3: 143-146.

[22] E. B. Wilson and M. M. Hilferty, The distribution of chi-square, Proceedings of the National
Academy of Sciences of the United States of America 17 (1931), No. 12: 684-688.

[23] J. Zan, J. J. Hasenbein and D. P. Morton, Staffing Large Service Systems Under Arrival-rate
Uncertainty, arXiv preprint arXiv (2013): 1304.6701.

W. van der Heide MSc thesis



A
Appendix

A.1 Construction of confidence intervals

In this thesis we used several 95%-confidence intervals. Here follows a description of how we
calculated them. We used a sample of size N = 106, because that gave accurate enough results
within a reasonable simulation time. Part of the sample yields an infeasible system for either the
nonrobust or the robust capacities. In that case we cannot compare the mean or the standard
deviation, since the average delay is infinite. Therefore we discarded all cases of infeasibility and
computed the mean and standard deviation for the slightly smaller sample of size n.

Our estimator for the mean average delay is the sample mean

T̄ =
1

n

n∑
i=1

Ti.

The estimator for the standard deviation is the square root of the sample variance

S =

√√√√ 1

n− 1

n∑
i=1

(Ti − T̄ )2.

These estimators can be calculated recursively to avoid the storage of the entire sample in memory.

T̄ (i) =
i− 1

i
· T̄ (i− 1) +

1

i
· Ti

and

S2(i) =
n− 2

n− 1
· S2(i− 1) +

1

i
·
(
Ti − T̄ (i− 1)

)2
with T̄ (1) = T1 and S2(1) = 0.
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By the Central Limit Theorem the mean average delay is distributed approximately normal, so
the corresponding 95%-confidence interval is given by[

T̄ − 1.96 · S√
n
, T̄ + 1.96 · S√

n

]

where 1.96 is the quantile z0.025 of the normal distribution. Note that since n is large, the normal
quantile and the t-distribution quantile are almost equal. If Ti approximately follow a normal
distribution,

∑n
i=1(Ti − T̄ )2 is approximately χ2-distributed. The corresponding 95%-confidence

interval for the variance is given by[
(n− 1)S2

χ2
n−1;0.025

,
(n− 1)S2

χ2
n−1;0.975

]
.

By taking the square root of these values we get the standard deviation. The quantiles χ2
n−1;0.025

and χ2
n−1;0.975 were calculated with the approximation by Wilson and Hilferty (1931),

χ2
n−1;0.025 =(n− 1) ·

(
1.96

√
2

9(n− 1)
+ 1− 2

9(n− 1)

)3

χ2
n−1;0.975 =(n− 1) ·

(
− 1.96

√
2

9(n− 1)
+ 1− 2

9(n− 1)

)3

Finally we are interested in the proportion of the sample that is infeasible. The estimator for
that is the fraction of the sample with infeasibility,

p̂ =
N − n
N

.

By the Central Limit Theorem this proportion is distributed approximately normal, with a variance
of p̂(1− p̂). The corresponding 95%-confidence interval is given by[

p̂− 1.96 ·
√
p̂(1− p̂)
N

, p̂+ 1.96 ·
√
p̂(1− p̂)
N

]
.

The proportion of the sample with T > 35 follows the same approach with estimator

q̂ =
# times T > 35

n

and 95%-confidence interval[
q̂ − 1.96 ·

√
q̂(1− q̂)

n
, q̂ + 1.96 ·

√
q̂(1− q̂)

n

]
.
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