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A B S T R A C T

We prove the sharpness of the phase transition for percolation on quasi-transitive graphs
with quasi-transitive inhomogeneities. That is, we prove that the expected cluster size is fi-
nite in the subcritical regime. A quasi-transitive graph is an infinite graph with finitely many
different types of vertices. Edges may be open with different probabilities, as long as the re-
sulting graph is quasi-transitive. The proof is an extension of the proof for the sharpness of
the phase transition for homogeneous percolation on vertex-transitive graphs by Duminil-
Copin and Tassion [14]. The result in this thesis generalizes the result by Antunović and
Veselić [2] for homogeneous percolation on quasi-transitive graphs to the inhomogeneous
case and it generalizes the result by Menshikov [35] for inhomogeneous percolation on
quasi-transitive graphs with sub-exponential growth to all quasi-transitive graphs.

Furthermore, we prove that the critical surface is Lipschitz continuous under some rather
strong (possibly severe) restrictions on the parameters. From the Lipschitz continuity of the
critical surface follows a specific lower bound in the supercritical regime on the probability
that the origin is in an infinite open cluster.

We give an overview of the above mentioned proofs for the sharpness of the phase tran-
sition, as well as an overview of results in inhomogeneous percolation.
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1I N T R O D U C T I O N

Imagine you are a fire fighter in California and you are trying the contain the biggest
forest fire of the year. You didn’t sleep in days, your feet hurt and your back aches from all
the gear you have to carry all day. But more importantly you are completely frustrated
because nothing you do stops the spread of the fire. The fire spreads quickly from tree
to tree and before you now it the front of blazing trees is too large for you and your
buddies to handle. But then the weather changes and the first rain in months falls from
the sky. This is the helping hand that you need and after a couple of days the fire is finally
under control. You come home and fall asleep on the couch with mixed feelings: you are
content that the fire is finally extinguished but you know the wildfire claimed thousands
of acres of forest. After sleeping no less than 18 hours you call your friend John for a
well deserved beer. John, who is a mathematician, is not unfamiliar with the frustration
caused by seemingly unsolvable problems. While enjoying your beer for breakfast you
casually mention how the fire spread from tree to tree. And since the forest was dense
enough, the entire area was ablaze sooner rather than later. Upon hearing this, John
immediately recognizes this to be the same problem that he is working on: Percolation.

Percolation can be used to model forest fires, but, as with most things in mathematics,
it has many more applications. The percolation model takes place on a large network con-
sisting of nodes and links between these nodes. The network is called a graph, nodes are
called vertices and links are called edges. The square lattice is commonly used as the graph
in the percolation model. The square lattice is denoted by Z2 and is shown in Figure 1. This
graph has infinitely many vertices and this is often the case for the graphs in a percolation
model. Edges are randomly open or closed. We say that an edge is open with probability

Figure 1: The square lattice

p and closed with probability 1− p, independently of each other. This is the percolation
model. If we only look at the open edges then we see a random subgraph of the original
lattice. This subgraph is shown for the square lattice and for several values of p in Figure
2. Percolation theory deals with the properties of this random subgraph. When you look at
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(a) p = 0.3 (b) p = 0.49

(c) p = 0.51 (d) p = 0.7

Figure 2: Percolation on Z2 for different values of p [16]
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Figure 2 you might wonder whether there is a path of open edges from top to bottom. If
you look closely you will see that such path does not exist for p = 0.49 and lower, but it
does exist for p = 0.51. In fact, p = 0.5 turns out to be a very special value of the parameter
for the square lattice. We will see this later. Remember however that we are working on an
infinite graph and so the question whether there exists a path from top to bottom is not
the right question to ask. We are better off asking if there exists an open path starting in a
particular vertex that has infinite length. Or even better: what is the probability of having
such a path and how does it depend on p? We will answer this question in Section 2.

Instead of letting the edges be open or closed we can also make the vertices open or closed.
This gives a slightly different percolation model called site percolation. (The original model
with open and closed edges is called bond percolation.) The site percolation model is well
suited for the forest fire example. Open vertices can be associated with trees and closed
vertices are associated with empty ground. If p is large there will be many open vertices
and they will form large open clusters. If a tree is on fire then the entire cluster it belongs to
will burn down as well. So in this case it is best to have a low value of p so that the clusters
of trees are small. Does there exist a threshold value for p such that below this value there
exists only small clusters of trees and above this threshold there is a large cluster of trees?

The bond percolation model on the other hand is well suited to model porosity of materi-
als. It has been said that mathematicians convert coffee into theorems. So a good knowledge
of brewing coffee is vital to mathematics, including knowledge of coffee filters. The filter
has microscopic holes in random places. If we pour water onto the filter the holes on the
upper side of the filter will get wet, but will the holes near the bottom of the filter get wet
as well? In other words, will the water go through the filter? For this to happen there must
be some path of holes from the top to the bottom of the filter. Such a path might exist if
there are enough holes. Indeed, a hole corresponds to an open edge. If we assume that the
holes are very small compared to the thickness of the filter, then we can model the filter
as an infinite graph. So we arrive again at the problem of the existence of an infinite open
path. This will depend on the density of the holes, which is modelled as the parameter p.
Coffee filters are just an example of a porous material and many more porous media exist.
The porosity of materials is for example also of interest in geology and building science.

Another application of percolation is found in polymers. Consider a solution of molecules,
the monomers or building blocks of a polymer. These monomers will bond with each other
and typically this will happen in a random manner. A single monomer can only bond with
several other monomers, but together they can form a large cluster. Under the right condi-
tions a very large cluster will be formed that extends through the entire solution. In that case
a polymer (or gel) is formed. The transition from a solution of monomers to a very large
cluster of monomers is called gelation. Percolation can be used to model this phenomenon
and this has been done extensively in the literature. See for example [30] and [43].

Percolation is a half-century old branch of mathematics. The start of the field is commonly
attributed to Broadbent and Hammersley [10] in 1957. They were the first to create the
mathematical framework as well as introduce the name percolation. Their paper came forth
from an interest in porosity as well as an intrinsic interest in the mathematical model itself.



2C L A S S I C A L & N E W R E S U LT S

One of the main questions in percolation is for what values of the parameter there exists an
infinite open cluster. Or equivalently, for what value of the parameter does there exist an
infinite open path. To deal with this question we first have to give the formal definition of
graphs as well as introduce some notation. The former is done in the next definition.

Definition 2.1. Let V be a countably infinite set and let E be a set of 2-element subsets of V . The
elements of V are called vertices and the elements of E are called edges. A graph G consists of these
two sets: G = (V ,E). The degree of a vertex is the number of edges that the vertex is contained in.

Throughout this thesis we assume that all graphs are locally finite, i.e., all vertices have
finite degrees. We often fix a particular vertex of G that we call the origin or root of the
graph. We denote this vertex by 0.

A percolation model consists of a graph G = (V ,E) and a percolation measure on G. In
the case of the square lattice we have V = Z2 and E is the set of pairs of nearest neighbours
of Z2. To formalize the probabilistic ideas we need a universe Ω along with a σ-algebra F.
We take Ω = {0, 1}E, so that a configuration ω ∈ Ω sets each edge e to open, 1, or closed, 0,
and this is denoted by ω(e). We then take the σ-algebra F to be the power set of Ω. Next
we define the probability measure P for an event A ∈ F. Let pe ∈ [0, 1] for all e ∈ E. This is
the probability that the edge e is open. We define P to be the product measure:

P(A) =
∑
ω∈A

∏
e∈E

p
ω(e)
e (1− pe)

1−ω(e). (2.1)

The product measure structure ensures that each edge is open or closed independently of
each other. The measure P is a very general percolation measure. In this thesis we will
study the special case where there are only finitely many different values for pe. We divide
the edge set into N disjoint subsets: E = ·∪ Ei. Each subset of E then has its own parameter
pi. We define p = (p1, . . . ,pN−1), and q = pN. The inhomogeneous percolation probability
measure is now defined as

Pp,q(A) =
∑
ω∈A

N∏
i=1

∏
e∈Ei

p
ω(e)
i (1− pi)

1−ω(e). (2.2)

Another common special case of the percolation probability measure is the homogeneous
measure Pp, where each edge has the same probability of being open:

Pp(A) =
∑
ω∈A

∏
e∈E

pω(e)(1− p)1−ω(e). (2.3)

This is the special case of the measure P,q with N = 1. A percolation model with this
measure is called homogeneous percolation. For example the homogeneous percolation
model on the square lattice is the model M =

(
Z2, Pp

)
. Here we abuse notation and

denote by Z2 both the vertex set, as well as the square lattice.

4



2.1 sharpness of the phase transition 5

We use the notation x ←→ y for the event that there is a path of open edges from x

to y. The event that there exists an infinite path of open edges starting in x is denoted by
x←→∞. The percolation function θ(p) is given by

θ(p) = Pp(0←→∞). (2.4)

The origin is used in the definition of the percolation function, but this not crucial to the
definition. For the square lattice for example any vertex could be substituted for the origin
in the definition of θ(p), since every vertex of the square lattice plays the same role. This will
be made more explicit in Section 3. The existence of an infinite open cluster is a tail event,
since it depends on the state of infinitely many edges. So by applying the Kolmogorov
zero-one law to this event we conclude that it must happen with probability zero or one.
Furthermore if θ(p) > 0, the probability of a having an infinite open cluster cannot be zero,
so there exists an infinite open cluster almost surely. Similarly if θ(p) = 0, then every vertex
is almost surely not part of an infinite open cluster, so that an infinite open cluster exists
with probability zero. So apparently θ(p) > 0 and θ(p) = 0 characterise two distinct cases in
which the behaviour of the model is different. We say that percolation occurs in the former
case, so whenever θ(p) > 0.

Clearly θ(0) = 0 and θ(1) = 1 > 0. For larger values of p more edges will be open on
average, so that the event 0←→∞ is more likely to occur. From this we conclude that θ(p)
is increasing in p. (For a rigorous proof see [22, Theorem 2.1].) This implies that there exists
some value of p, denoted by pc such that

θ(p)

= 0 if p < pc,

> 0 if p > pc.
(2.5)

We call this value of p the critical probability and it is defined as follows:

pc = inf{p ∈ [0, 1] : θ(p) > 0}. (2.6)

2.1 sharpness of the phase transition

The exact calculation of pc turns out to be very difficult, and the exact value is only known
on a few specific graphs. For percolation on a straight line Z there is a trivial critical proba-
bility pc = 1, since for every p < 1 there will be infinitely many closed edges on either side
of 0, so that no infinite open cluster exists. We can find more interesting behaviour on the
square lattice Z2, in fact the critical probability on this graph equals 1/2. Harris proved the
fact that pc > 1/2 in 1960 in [24], and twenty years later Kesten gave a proof for pc 6 1/2

in [28]. The proof makes use of several symmetries of the square lattice, which in general
do not hold for other lattices.

So there is a non-trivial critical probability 0 < pc < 1 on the square lattice, and in fact it
turns out that this is the case on Zd for any d > 2. The square lattice Z2 is a subgraph of
Zd for any d > 2, so if an infinite open cluster exists almost surely on Z2 for some value of
p, then it will also exist on Zd almost surely for that value of p. So it must be the case that
the critical probability on Zd, pc(Zd), satisfies pc(Zd) 6 pc(Z2). On the other hand we can
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bound pc(Zd) from below by 1/2d, by comparing the percolation process to a branching
process: every vertex of Zd has 2d neighbours. If we start at the origin and consider the
neighbouring vertices that have an open edge to the origin to be the children of the origin,
then we potentially have 2d children, each with probability p. Similarly, these children
have at most 2d other children, and so on. So we find a branching process with critical
probability 1/2d, i.e., if p > 1/2d then there exists a positive probability that the branching
process has a total population of infinite size. However for percolation the analysis is not as
simple, as vertices can be counted multiple times in this way. Nonetheless the population
of the branching process will be at least as big as the size of the open cluster containing the
origin. So this gives us the lower bound 1/2d for the critical probability of percolation on
Zd. Combining this with the fact that Zd 6 1/2 we see that it is indeed the case that there
exists a non-trivial critical probability on Zd for any d > 2.

From the non-trivial critical probability it follows that the model exhibits two distinct
phases: a subcritical and a supercritical phase. For this reason we speak of a phase transition
when p increases from below pc to a value greater than pc. Moreover, the critical case p = pc
is a separate case from the subcritical and supercritical phases and also displays different
behaviour.

Other properties of the percolation function have also been of interest, in particular con-
tinuity of θ(p). The percolation function is clearly continuous for p < pc and it has been
proven by van den Berg and Keane that θ(p) is continuous on p > pc [7]. Furthermore θ(p)
is right continuous everywhere. See [22, Chapter 8] for the these two results. So continuity
of the percolation function boils down to the value of θ(pc). If θ(pc) = 0 then the percola-
tion function is continuous, otherwise it is not. This depends on the existence of an infinite
of open cluster at criticality. For particular graphs this behaviour is known, in particular on
Z2 and on Zd for large d, but in general this is unknown. In fact this is often seen as the
most important open problem in percolation theory.

Another way to characterize the behaviour of the system is by looking at the expected
cluster size. Let C (x) be the open cluster that contains the vertex x, the cluster size is
denoted by |C (x)|. The susceptibility χ(p) is defined by

χ(p) = Ep|C (0)|. (2.7)

If p > pc it is clear that χ(p) = ∞, but it is not immediately clear if the converse is true
as well, i.e., does p < pc imply χ(p) < ∞? We will investigate this further and define the
critical value pr for the susceptibility:

pr = inf{p ∈ [0, 1] : χ(p) =∞}. (2.8)

From the above observation we get pr 6 pc. In fact, Aizenman and Barsky proved in 1987

in [1] that equality holds for percolation models with vertex-transitive graphs. A vertex-
transitive graph has symmetry among all the vertices, the formal definition is given in
Section 3. For example Zd is a vertex-transitive graph, but there are many more vertex-
transitive graphs.

Theorem 2.2 (Aizenman, Barsky, 1987). Let G be a vertex-transitive graph. The critical probabil-
ity for

(
G, Pp

)
satisfies

pc = pr. (2.9)
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This is known as the sharpness or uniqueness of the phase transition. A different proof
was given by Menshikov in [35] for quasi-transitive graphs with sub-exponential growth.
The concept of quasi-transitivity will be explained in Section 3, but in a nutshell it means
that the graph has finitely many different types of vertices with respect to the neighbour-
hoods of these vertices. The proof by Menshikov is also valid for percolation models with
the inhomogeneous measure Pp,q.

Let the distance between two vertices u, v ∈ V be denoted by d(u, v), this is defined to be
the number of edges in the shortest path from u to v in G. The set of vertices at distance at
most k of u is denoted by Λuk :

Λuk := {v ∈ V : d(u, v) 6 k}. (2.10)

The set of vertices at distance exactly k is then denoted by ∂Λuk := Λuk\Λ
u
k−1. Menshikov

proved the following theorem.

Theorem 2.3 (Menshikov, 1986). Let G be a quasi-transitive graph satisfying for all k ∈ N:
|Λuk | < c exp(akγ), for some c,a > 0 and 0 < γ < 1, and for any u ∈ V . Then the critical
probability for

(
G, Pp,q

)
satisfies

pc = pr. (2.11)

The cubic lattice satisfies this sub-exponential growth condition, since for this graph |Λuk |

grows polynomially in k. However trees for which vertices have a degree larger than 2 are
excluded from the proof of Menshikov. For example the tree shown in Figure 3 for which
every vertex has degree 4 has growth |Λuk | > 3

k. There are many more examples of graphs

Figure 3: The 4-regular tree has exponential growth of |Λuk |.

with exponential growth, we will discuss this in Section 4.
Antunović and Veselić later removed the sub-exponential growth condition for homoge-

neous percolation. By modifying the proof of Aizenman and Barsky in [2], they prove the
following theorem.
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Theorem 2.4 (Antunović, Veselić, 2008). LetG be a quasi-transitive graph. The critical probability
for
(
G, Pp

)
satisfies

pc = pr. (2.12)

Recently Duminil-Copin and Tassion introduced a new proof for the sharpness of the
phase transition in [15] for Zd and in a more general setting in [14]. Their proof also gives
insight in the behaviour of the system in the subcritical and supercritical phases.

Theorem 2.5 (Duminil-Copin, Tassion, 2015). If G is vertex-transitive the following three state-
ments hold for

(
G, Pp

)
:

(a) If p < pc, then there exists a constant c > 0 such that for all k ∈N

Pp(0←→ ∂Λ0k) 6 e
−ck. (2.13)

(b) If p < pc, then the susceptibility χ(p) is finite, i.e.,

Ep|C (0)| <∞. (2.14)

(c) If p > pc, then

Pp(0←→∞) >
p− pc
p(1− pc)

. (2.15)

The sharpness of the phase transition follows immediately from Theorem 2.5(b). Note
that the exponential decay in (2.13) is not enough to prove that the susceptibility is fi-
nite. The exponential decay of (2.13) only implies finite susceptibility on graphs with sub-
exponential growth. The results proven by Duminil-Copin and Tassion in [14] are more
general than the result stated above. They do not require the probability measure to be
homogeneous, but they do require that each vertex has the same role. Edges can have dif-
ferent probabilities of being open, as long as the graph remains vertex-transitive. This is
made more formal in 3.

The proof of Duminil-Copin and Tassion relies on a different characterisation of the crit-
ical point. For a finite S ⊂ V we denote by ∆S the edge-boundary of S and we define

φp(S) = p
∑

{y,z}∈∆S

Pp(0
S←→ y), (2.16)

where x S←→ y denotes the event that there exists a path from x to y using only open edges
which have both endpoints in S. The alternative characterisation of the critical point is given
by

p̃c := sup
{
p ∈ [0, 1] : ∃S ⊂ V with 0 ∈ S, |S| <∞ and ψp,q(x,S) < 1

}
. (2.17)

From the proof by Duminil-Copin and Tassion it follows that

pc = p̃c. (2.18)
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2.2 main results

In this thesis we extend Theorem 2.5 to inhomogeneous percolation on quasi-transitive
graphs. Thus we prove the sharpness of the phase transition for this model. This percolation
model uses the probability measure Pp,q. The details of this model are given in Section 6.
Since we have multiple parameters we now have a critical surface instead of a critical point.
This surface is defined as

qc(p) := inf{q ∈ [0, 1] : Pp,q(0←→∞) > 0}. (2.19)

The following theorem is the main new contribution of this thesis.

Theorem 2.6. Let G = (V ,E) be a quasi-transitive graph and let {Ei}Ni=1 be a partition of E. Let
pi ∈ [0, 1] for all 1 6 i 6 N and let Pp,q be as in (2.2). Then the following statements hold for(
G, Pp,q

)
:

(a) If q < qc(p), then there exists a constant c > 0 such that for all v ∈ V and for all k ∈N

Pp,q (v←→ ∂Λxk) 6 e
−ck. (2.20)

(b) If q < qc(p), then the susceptibility is finite, i.e., for every v ∈ V it holds that

Ep,q|C (v)| <∞. (2.21)

Define the critical surface for the susceptibility

qr(p) = inf
{
q ∈ [0, 1] : ∃ v ∈ V with Ep,q|C (v)| =∞}. (2.22)

The sharpness of the phase transition for this model immediately follows from Theorem
2.6(b):

Corollary 2.7. Consider the setting of Theorem 2.6. The critical probability for
(
G, Pp,q

)
satisfies:

qc(p) = qr(p). (2.23)

The proof by Menshikov for the sharpness of the phase transition is also valid for inhomo-
geneous percolation, but as stated earlier only for graphs with sub-exponential growth. Our
result does not rely on this condition; it is valid for all quasi-transitive graphs. So our proof
extends the result of Duminil-Copin and Tassion, it generalises the result of Antunović
and Veselić to inhomogeneous percolation, as well as generalise the result of Menshikov by
removing the sub-exponential growth condition.

To summarise we give an overview of the different proofs for the sharpness of the phase
transition in Table 1. We denote by T the set of vertex-transitive graphs, by Q the set of
quasi-transitive graphs and by Qs the set of quasi-transitive graphs with sub-exponential
growth. A check mark denotes that the proof is valid for that particular percolation model.

Furthermore we prove that the critical surface qc is Lipschitz continuous under some
strong assumptions on the parameters. It is unclear if a percolation model exists that satis-
fies these assumptions. The Lipschitz continuity of qc can be used to prove a lower bound
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(T , Pp) (Qs, Pp) (Q, Pp)
(
Qs, Pp,q

) (
Q, Pp,q

)
Aizenman & Barsky 3 5 5 5 5

Menshikov 3 3 5 3 5

Antunović & Veselić 3 3 3 5 5

Duminil-Copin & Tassion 3 3 3 5 5

Thesis 3 3 3 3 3

Table 1: Proofs for the sharpness of the phase transition

on Pp,q(0←→∞) in the supercritical phase, similar to the bound in (2.15) for homogeneous
percolation.

The concept of quasi-transitivity is explained in Section 3. Some background on percola-
tion on different graphs is given in Section 4. We subsequently study the proofs of Duminil-
Copin and Tassion, Aizenman and Barsky, and Menshikov in more detail in Section 8. Our
results are then given in Section 6 and proofs can be found in subsequent sections. An
overview of results in inhomogeneous percolation is given in Section 5.
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In this section we take a short break from percolation and introduce a class of graphs
that we use in percolation models later: quasi-transitive graphs. Informally speaking, these
infinite graphs have a finite number of different types of vertices.

An automorphism of a graph is a permutation σ of the vertex set V such that {u, v} ∈
E if and only if {σ(u),σ(v)} ∈ E. Because we are dealing with an infinite vertex set, the
permutation σ should be seen as bijection from V to itself. So an automorphism permutes
the vertices such that edges are preserved. And since the edges are preserved, the original
graph and the graph obtained after applying the permutation are essentially the same. So
if such an automorphism of G exists, then G exhibits some form of symmetry among the
vertices. That is, there is symmetry between u and σ(u). If this kind of symmetry exists
between all the vertices of V we have a vertex-transitive graph. This is defined rigorously
in the following definition.

Definition 3.1. The graph G = (V ,E) is called vertex-transitive if for all u, v ∈ V there exists a
permutation σ of V such that σ(u) = v and

{x,y} ∈ E ⇐⇒ {σ(x),σ(y)} ∈ E x,y ∈ V . (3.1)

All vertices of a vertex-transitive graph are essentially the same. The cubic lattice, the
triangular lattice and the hexagonal lattice are examples of infinite vertex-transitive graphs
and these are shown in Figure 4.

We will now generalise the concept of vertex-transitivity to quasi-transitivity. We give
each edge a colour from a set of N possible colours, with N < ∞. So E can be partitioned
into N disjoint subsets:

E =

N⋃
i=1

Ei and Ei ∩ Ej = ∅ i 6= j. (3.2)

Figure 4: Examples of parts of vertex-transitive graphs

11



quasi-transitive graphs 12

We define the edge-coloured graph

Gcol =
(
V , {E1, . . . ,EN}

)
. (3.3)

For the edge-coloured graph we define the property of quasi-transitivity.

Definition 3.2. The edge-coloured graph G is called quasi-transitive if there exists a finite subset
V0 of V such that

∀v ∈ V ∃u ∈ V0, permutation σ of V such that σ(v) = u and e ∈ Ei ⇐⇒ σ(e) ∈ Ei,
(3.4)

where, with some abuse the notation, σ(e) = σ({y, z}) := {σ(y),σ(z)}.

Quasi-transitivity can also be defined for monochrome graphs, simply by giving each
edge the same colour. In that case our definition is equivalent to the standard definition of
quasi-transitivity in the literature, see for example [5].

The property of quasi-transitivity can also be characterised in the following way.

Proposition 3.3. The graph G is quasi-transitive if and only if there exists a k ∈N and a partition
of V into k disjoint subsets, V = ·∪ki=1 Vi such that

∀ 1 6 i 6 k, ∀ u, v ∈ Vi ∃ permutation σ of V s.t. σ(u) = v and e ∈ Ei ⇐⇒ σ(e) ∈ Ei.
(3.5)

Proof. Suppose G satisfies the condition in Definition 3.2. Fix the set V0 ⊂ V . Define k = |V0|

and order the elements of V0 arbitrarily: v1, ..., vk. We can partition V in the following way.
Define for i = 1, . . . ,k

Vi =
{
v ∈ V : ∃ permutation σ of V s.t. σ(v) = vi and e ∈ Ei ⇐⇒ σ(e) ∈ Ei

}∖ i−1⋃
j=1

Vj.

(3.6)

Then all Vi are disjoint and V =
⋃k
i=1 Vi. Now let u, v ∈ Vi for some i. Then there exist

appropriate permutations σ1 and σ2 of V such that σ1(u) = vi and σ2(v) = vi. Now define
σ = σ−12 σ1, then σ(u) = v and e ∈ Ei ⇐⇒ σ(e) ∈ Ei.

Now suppose G satisfies the condition in Proposition 3.3. Then we can partition V in
disjoint subsets, V =

⋃k
i=1 Vi, for some k ∈ N. Define V0 by taking an arbitrary element

from each subset Vi, i.e., V0 =
⋃k
i=1{vi} for some vi ∈ Vi. Now let v ∈ V be given, then

v ∈ Vj for some j and there exists a permutation σ of V such that σ(v) = vj ∈ V0 and
e ∈ Ei ⇐⇒ σ(e) ∈ Ei.

Quasi-transitive graphs can thus be thought of as having a finite number of different
types of vertices. The disjoint subsets of V in Proposition 3.3 are these different types. Note
however that this partition of V is not unique. In the following example a graph is given
that has clear symmetries, but is not quasi-transitive, precisely because it can be shown that
it has infinitely many different types of vertices.
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Figure 5: The cubic lattice with a lower-dimensional hyperplane

Example 3.4 (Hyperplane). Consider the d-dimensional cubic lattice, V = Zd. In the lattice
we embed an s-dimensional hyperplane Hs := Zs × {0}d−s, for s < d. Let E2 denote the
edges in Hs and let E1 be the set of all other edges. This graph is shown in Figure 5.
We prove that this graph is not quasi-transitive. Suppose G is quasi-transitive, then we
can use Proposition 3.3 to partition the vertices into k disjoint subsets V =

⋃k
i=1 Vi. Let

ed = (0, . . . , 0, 1) and define I := {ied : i ∈ Z}. For u ∈ V , denote by δ(u) the distance
between u and the hyperplane. Then there exists a Vi such that there exist u, v ∈ Vi ∩ I with
δ(u) < δ(v). Let σ be the permutation of V such that σ(u) = v and e ∈ Ei ⇐⇒ σ(e) ∈ Ei. So
u moves away from the hyperplane under σ. If u ∈Hs we find a contradiction, because the
q-edges will not be preserved under σ. So assume u 6∈ Hs. We can write u = δ(u)ed and
similarly w :=

(
δ(u) − 1

)
ed, so that there is an edge between u and w. Since u moves away

from the hyperplane, w has to move away from the hyperplane as well. Now if w ∈Hs we
again find a contradiction because the q-edges will not be preserved under σ. Otherwise we
can repeat the argument to find a vertex x ∈Hs that has to move away from the hyperplane
under σ, which again gives a contradiction. We conclude that G is not quasi-transitive.

Vertices with different distances from the hyperplane are fundamentally different from
each other. Each distance gives rise to a different type of vertex, which leads to infinitely
many different types and so G cannot be quasi-transitive. This is also reflected in the proof.
It does however suggest a way to alter this graph in such a way that it is quasi-transitive.
This is shown in the next example.

Example 3.5 (Layers). Consider again the d-dimensional cubic lattice, V = Zd. We now
embed infinitely many parallel s-dimensional hyperplanes at distance K from neighbouring
hyperplanes. The hyperplanes are indexed by i ∈ Zd−s, denote them by Hs

i := Zs× {i1K}×
· · · × {id−sK}. We again have two sets of edges, let E2 denote the edges in Hs

i for some i
and let E1 denote all other edges. A sketch of this graph is shown in Figure 6. We can
show that this graph is quasi-transitive by showing that the graph satisfies the condition in
Definition 3.2.

Define V0 := {0}s × {0, 1, . . . ,K − 1}d−s. Let u = (u1, . . . ,ud) ∈ V be given. Then v =

(v1, . . . , vd) defined by

vi =

0 if i 6 s,

ui mod K if i > s,
(3.7)
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Figure 6: The cubic lattice with multiple lower-dimensional hyperplanes

is an element of V0. Let σ be the permutation of v that translates every vertex over v− u.
Then σ(u) = v. Since the elements of v−u are multiples of K, we have that for any w ∈Hs

i
it holds that σ(w) ∈ Hs

j for some j. Furthermore if x and y are neighbours, σ(x) and
σ(y) are neighbours as well. We conclude e ∈ Ei ⇐⇒ σ(e) ∈ Ei and thus the graph is
quasi-transitive.

Several other examples of quasi-transitive graphs are shown in Figure 7.
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Figure 7: Examples of parts of quasi-transitive graphs



4T H E R E L AT I O N B E T W E E N T H E P E R C O L AT I O N M O D E L A N D I T S
G R A P H

How does the structure of the graph affect the behaviour of the percolation model? In this
section we will look at the relation between the percolation model and its graph.

4.1 percolation on Zd

Many percolation theory results are known for the cubic lattice Zd . Furthermore Zd is
historically one of the first graphs to be studied in percolation theory. In this section we
state some of the results that are known specifically for Zd. In fact, many results for the
cubic lattice only hold for specific values of the dimension d.

Percolation on the line Z with nearest neighbour edges is the easiest case to consider,
but not the most interesting one. If p < 1 there will be closed edges on either side of 0, so
that 0 is not in an infinite cluster almost surely. Conversely if p = 1 all edges are open, so
that 0 is in an open cluster. So we end up with a trivial critical probability pc = 1. More
interesting behaviour can be found in percolation models on Z with different edge sets. For
example in long range percolation connection are possible between any two vertices.

The square lattice Z2 is arguably one of the most studied graph in percolation theory.
The square lattice has some special properties and so a lot of results are known on Z2 .
Most notably, the square lattice is self-dual. The dual graph of a planar graph is obtained
by taking a planar embedding of the graph. The dual has a vertex for every face of the
planar embedding and an edge whenever two faces are separated by an edge in the original
graph. The square lattice is a planar graph, so we can construct its dual in this way. This is
shown in Figure 8. So we see that the dual of the square lattice is again the square lattice.
Thus we say that the square lattice is self-dual. Self-duality is a very powerful property in
percolation, because we can copy the percolation process to the dual. It can be used to prove
pc = 1/2, so that at criticality dual edges are closed with probability 1/2 as well. This fact
can then be used to prove the continuity of the percolation function: θ(pc) = 0.

These symmetry properties do not hold in higher dimensions. In fact not much is known
for percolation on Zd for 3 6 d 6 6. This is the no man’s land between the symmetry
properties of the square lattice and the high-dimensional techniques for percolation on Zd

with d > 7.
On the cubic lattice with d > 7 the critical probability is low. Kesten proved in [29] that

pc is asymptotically equal to 1/2d as d → ∞, i.e., 2dpc → 1 as d → ∞. So in high
dimensions on average every vertex has about one open edge. This means that loops of
open edges are unlikely, and loops are precisely what makes the analysis of percolation
difficult. If there are no loops, than the model behaves as percolation on a tree, which is
easier to analyse. Formalising this idea is a lot harder however. The existence of loops might
have a low probability, but they are still possible. This leads to a perturbative analysis of
the model. See [25] for an overview of results in high-dimensional percolation.

16
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Figure 8: The square lattice and its dual in blue

4.2 percolation beyond Zd

The cubic lattice might be a commonly studied setting for percolation, but there exist many
more possible percolation models that use different graphs. Some of these percolation mod-
els give rise to very different behaviour than the behaviour of percolation on Zd. In this
section we will look at some of these graphs.

A graph is planar if it can be embedded in the plane such that no edges intersect each
other. For example, a regular tree is planar because it can be drawn in the plane without
edges crossing each other, as shown in Figure 3. Non-planar graphs are of interest as well,
but less results are known for these graphs. Roughly speaking, every infinite, connected,
planar, vertex-transitive graph is similar to exactly one of the following spaces: Z, the tree
with vertices of degree 3, R2, and the hyperbolic plane H2. This is made precise with the
notion of quasi-isometry, see [3] and [6]. Two metric spaces are quasi-isometric if there
exists a quasi-isometry between the two spaces.

Definition 4.1. Let (V1,d1) and (V2,d2) be two metric spaces and let f be a function from (V1,d1)
to (V2,d2). Then f is a quasi-isometry if there exists constants A > 1 and B,C > 0 such that

∀v,w ∈ V1 :
1

A
d1(v,w) −B 6 d2

(
f(v), f(w)

)
6 Ad1(v,w) +B, (4.1)

and

∀x ∈ V2 ∃v ∈ V such that d2
(
x, f(v)

)
6 C. (4.2)

We use the graph distance as a metric on graphs. A quasi-isometry focusses on the large
scale structure of the metric spaces and ignores the small scale structure. For example the
square lattice is quasi-isometric to R2.

Definition 4.2. A vertex-transitive graph G = (V ,E) has one end if for every finite S ⊂ V there is
precisely one infinite connected component in G\S.
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The square lattice has one end, since the removal of a finite set of vertices can never
break the graph into two or more unconnected infinite components. The removal of such a
set can only disconnect a finite number of vertices. This is not true for Z however, because
the removal of vertex will cause the graph to split into two infinite components, one on the
left and one on the right of the removed vertex. Similarly a tree has more than one end,
since the removal of some vertices might split the tree up into several infinite branches.
Therefore an infinite connected planar vertex-transitive graph with one end can only be
quasi-isometric to R2 or the hyperbolic plane H2.

Another important characteristic of graph is its growth rate: the speed at which |∂Λk|

grows as k increases. The proof by Menshikov for the sharpness of the phase transition
requires this speed to be sub-exponential. We will now make the notion or growth rate
more formal. The Cheeger constant is defined as

H(G) := inf
S⊂V :
|S|<∞

|∂S|

|S|
, (4.3)

where ∂V is the vertex boundary of V , i.e., the vertices in V\S that have a neighbour in S.

Definition 4.3. An infinite graph G is amenable if H(G) = 0. Conversely, G is nonamenable if
H(G) > 0.

So this means that for large sets V in amenable graphs the boundary can become negligi-
ble. On the other hand the size of the boundary of a set V in nonamenable graphs is always
larger than c|V |, for some constant c > 0. It immediately follows that for nonamenable
graphs |∂Λk| grows exponential in k. The surface area of a ball in R2 grows quadratically
in its radius, so a nonamenable graph cannot be quasi-isometric to R2. Therefore a nona-
menable, connected, planar, vertex-transitive graph with one end has to be quasi-isometric
to the hyperbolic plane H2. We call graphs quasi-isometric to H2 hyperbolic graphs.

The hyperbolic plane can be visualised using the unit disk. M.C. Escher has done this in
an artistic manner in his Circle Limit Series. Circle Limit III is shown in Figure 9. Points
are more spread out near the center and get more crowded towards the boundary of the
disk. This is formalised in the Poincaré disk model. In fact the fish in Circle Limit III form a
hyperbolic graph. This graph is vertex-transitive if we ignore the colour of the fish. However
if we incorporate the colour of the fish into the graph we end up with a quasi-transitive
coloured graph. There are four different types of vertices, since three different colours meet
in every vertex. So the graph in Figure 9 is an example of a graph that is covered by the
new result of this thesis, but is not covered by the existing proofs for the sharpness of the
phase transition in the literature.

Percolation on trees is similar to a branching process, which makes it relatively easy to
analyse. We will focus on hyperbolic graphs instead. Therefore the condition that the graph
has one end is a natural requirement. We will now look at some results for these graphs.
These results can be found in [6] and [31].

Nonamenable graphs have a non-trivial critical probability. In particular, Benjamini and
Schramm proved the following theorem in [5].
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Figure 9: Circle Limit III by M.C. Escher and its underlying hyperbolic graph

Theorem 4.4 (Benjamini, Schramm). Let G be a nonamenable graph. The critical probability for
the model (G, Pp) satisfies

pc(G) 6
1

1+H(G)
< 1. (4.4)

Burton and Keane showed in [11] that supercritical percolation on amenable vertex-
transitive graphs has a unique infinite open cluster almost surely. It cannot be the case
that there are two or more infinite open clusters in Zd. This contrasts with the result
by Grimmett and Newman in [19] for the product of Z and some regular tree T. They
show that percolation on T×Z can have infinitely many infinite open clusters. In fact for
any vertex-transitive graph there can only by 0, 1 or infinitely many infinite open clusters,
as was shown by Newman and Schulman in [37]. Furthermore as p increases the model
moves from no infinite open clusters to infinitely many infinite open clusters and finally
to a unique infinite open cluster, possibly skipping the phase with infinitely many infinite
open clusters. This follows from the result in [40] by Schonmann. Thus it is natural to define
a new critical point pu, the smallest value of p such that the model has a unique infinite
open cluster almost surely:

pu := inf{p ∈ [0, 1] : there exists a unique infinite open cluster}. (4.5)

On amenable vertex-transitive graphs there cannot be infinitely many infinite graphs,
so that pc = pu on these graphs. However Benjamini and Schramm show that for nona-
menable planar vertex-transitive with one end this is not the case. They prove the following
theorem in [6].

Theorem 4.5 (Benjamini, Schramm). Let G be a planar, nonamenable, vertex-transitive graph
with one end. Then the critical probabilities for the model (G, Pp) satisfy

0 < pc(G) < pu(G) < 1. (4.6)
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Benjamini and Schramm further conjecture that pc < pu holds for any nonamenable
quasi-transitive graph.

The behaviour of percolation at the critical point has proven to be a hard problem. How-
ever for planar nonamenable vertex-transitive graphs with one end the following theorem
is known.

Theorem 4.6 (Benjamini, Lyons, Peres, Schramm). Let G be a planar, nonamenable, vertex-
transitive graph with one end. Then there is no infinite open cluster at pc:

θ(pc) = 0. (4.7)

Benjamini, Lyons, Peres and Schramm prove the above theorem in greater generality in
[4]. The behaviour at the other critical point p = pu is also known, see [6].

Theorem 4.7 (Benjamini, Schramm). Let G be a planar, nonamenable, vertex-transitive graph
with one end and let p = pu. Then there exists a unique infinite open cluster almost surely.

It should be clear that different graphs can lead to very different behaviour of the associ-
ated percolation models. In the next section we will look at inhomogeneous percolation in
some more detail.



5I N H O M O G E N E O U S P E R C O L AT I O N

Inhomogeneous percolation is a generalisation of the percolation model in which edges
do not all have the same probability of being open. This can be achieved in several ways
and so there is not a single inhomogeneous percolation model. To stay in line with Section
3 on quasi-transitive graphs we give each edge a colour. This colour then determines the
parameter of the edge, so the probability that the edge is open. In this way we can talk
about the vertex-transitivity or quasi-transitivity of the coloured graph.

The parameters or colours of the edges can be chosen in such a way that the result-
ing coloured graph is vertex-transitive. For example by giving the horizontal edges of the
square lattice one colour, and the vertical edges another. We will focus instead on models
where the coloured graph is not vertex-transitive.

Why is inhomogeneous percolation of interest at all? As we have seen, percolation has
many applications in physics. Physics deals with the real world and reality is not always
as simple as we might like. The assumption that edges are open with the same probability
everywhere might not be a very realistic, depending on the application. Recall that perco-
lation theory can be used to model porous materials. It might be the case that the material
is made up of two different substances, each with its own level of porosity. In that case an
inhomogeneous percolation model would be more suitable than a homogeneous model.

As an example consider again the polymer gelation model. We can imagine that the
solution of monomers is made up two different liquids that meet along a surface. Now the
monomers might be more likely to bond along this surface than in one of the two liquids.
So the corresponding percolation model would have a surface of edges which have a high
probability of being open, while the bulk of the edges have a low probability of being open.
In fact this is precisely the application and model described in [27].

Another application of inhomogeneous percolation might be found in superconductors.
A lattice with layers such as in Example 3.5 may be used to model the BSCCO family
of superconductors. The atomic structure of BSCCO is shown in Figure 10. The material
consist of several layers of different molecules, and these layers appear in a regular fashion.
A superconductor is a material that can conduct electricity without electrical resistance.
They can be used to make powerful magnets, such as the ones found in MRI scanners or
particle accelerators. Conventional superconductors work at temperatures below 30◦ K, or
−243◦C. However, BSCCO is a family of high-temperature superconductors and they work
at temperatures around 100◦ K, or −173◦C [34]. This makes cooling of the material much
easier. Nitrogen has a boiling point of 77◦ K, so that liquid nitrogen can be used as a coolant
of high-temperature superconductors. BSCCO is a brittle material, so this might be a reason
to study a percolation model on this lattice. Alternatively, percolation theory on this lattice
might be useful to gain a better understanding of the magnetic properties of the material.
Percolation theory has strong ties with the Ising model, which is a model for magnetism.

There is one more reason to study inhomogeneous percolation other than applications
in physics. The inhomogeneous model is thought to be useful for understanding critical

21
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Figure 10: Atomic structure of the BSCCO superconductor [41]

homogeneous percolation. In particular it might be used to prove the existence of infinite
open clusters at criticality, or lack thereof. This could give insight into the continuity of the
percolation function defined in Section 2. So this is a purely theoretical motivation to look
at inhomogeneous models.

In fact the first paper on inhomogeneous percolation, written by Chayes, Chayes and
Durrett in 1987, had this motivation [13]. They studied percolation on Z2 with density
p(e) = pc + |ē|−λ, where ē is the midpoint of the two endpoints of the edge e. So that
almost every edge had a different probability of being open. Furthermore the system is
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very close to criticality. They showed under some assumptions that there exists a critical
value λc such that if λ > λc there exists no infinite open cluster almost surely and if λ < λc
an infinite open cluster does exist almost surely. This gives some insight into the existence
of an infinite open cluster at criticality, and the hope was to extend this proof to higher
dimensions.

5.1 defect plane percolation

In the subsequent years several other papers were published on inhomogeneous percolation
and these publications share the same inhomogeneous model. This is bond percolation
model on Zd with two parameters. Similar to Example 3.4 we embed an s-dimensional
hyperplane Hs := Zs × {0}d−s into the lattice. This hyperplane is often called a defect
plane. The edge set is then divided into two separate sets: edges with both endpoints in
Hs are open with probability q and all other edges with probability p. This is shown in
Figure 11. We call this model the defect plane percolation model. This model was first
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Figure 11: The inhomogeneous percolation model with a defect plane

introduced by Campanino and Klein in [12] in 1991, with s = 1, so with a line of defects.
They prove the following theorem.

Theorem 5.1 (Campanino, Klein, 1991). Consider defect plane percolation with s = 1. Then the
following two statements hold for any d > 2:

(a) If p < pc(Zd), then Pp,q(0←→∞) = 0, for any q < 1,

(b) If p > pc(Zd), then Pp,q(0←→∞) > 0, for any q > 0.

So percolation does not occur if p < pc for any q < 1, but if p > pc percolation does
occur for every value of q. The case where p = pc was addressed by Zhang in [44] for Z2.
He shows the following theorem.

Theorem 5.2 (Zhang, 1994). Consider defect plane percolation with d = 2 and s = 1 and let
p = pc(Z

2). Then Pp,q(0←→∞) = 0 for any q < 1.
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This generalises the result that θ(pc) = 0 for Z2. Similarly if we can prove the same result
for higher dimensions it would generalise θ(pc) = 0 in that dimension. Newman and Wu
prove this for high dimensions in [38]:

Theorem 5.3 (Newman, Wu, 1997). Consider defect plane percolation with d > 11 and s = 1 and
let p = pc. Then Pp,q(0←→∞) = 0 for any q < 1.

Madras, Shinazi and Schonmann have also studied this model in [33] for the s = 1 case.
However they prove a slightly different result: they prove that for a fixed q > pc the critical
value for p remains unchanged. So if p < pc percolation does not occur, but for any p > pc
an infinite open cluster exists.

Friedli, Ioffe and Velenik [18] study the rate of exponential decay along the defect line of
Pp,q

(
0 ←→ (n, 0, . . . , 0)

)
as n tends to infinity in the s = 1 case. In particular they studied

how the rate of decay depends on q.
Newman and Wu also studied the s > 2 case [38]. They prove that in high dimensions

and for p = pc there exists a non trivial critical value qc for the edges in the defect plane.
Define qc by

qc(p) = inf {q ∈ [0, 1] : Pp,q(0←→∞) > 0} . (5.1)

Newman and Wu prove:

Theorem 5.4 (Newman, Wu, 1997). Consider defect plane percolation with d > 11 and 2 6 s 6
d− 3 and let p = pc. Then the critical value qc satisfies

pc(Z
d) < qc < pc(Z

s). (5.2)

Recently Iliev, van Rensburg and Madras have also published results on this inhomoge-
neous percolation model with s > 2. They prove several properties of the critical probability
qc(p). In particular they prove that qc(p) is a strictly decreasing function on the interval
[0,pc], and they show that qc(p) is discontinuous at p = pc. Furthermore they prove that
whenever q < qc(p) that the susceptibility is finite:

Theorem 5.5 (Iliev, van Rensburg, Madras, 2015). Consider defect plane percolation with d > 3
and 2 6 s < d. Suppose q < qc, then there exist constant C, c > 0 such that

Pp,q(0←→ ∂Λ0n) 6 Ce
−cn, (5.3)

and

Ep,q|C (0)| <∞. (5.4)

So they prove the sharpness of the phase transition for this model. Conversely if q >
qc(p), Pp,q

(
n 6 |C (0)| <∞) decays sub-exponentially. They give some numerical estimates

of qc(p) as well.
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We now introduce our inhomogeneous percolation model and state our results for this
model. These results are subsequently proven in the later sections. Most notably we prove
the sharpness of the phase transition for this model.

6.1 the inhomogeneous percolation model

We first introduce the inhomogeneous percolation model. ’The setting is the graph G =

(V ,E) as defined in Section 2. Thus V is countably infinite and G is locally finite. Further-
more we again give each edge a colour of a total of N possible colours and consider the
coloured graph Gcol as in (3.3). Lastly we require this graph to be quasi-transitive.

An edge e ∈ Ei is open with probability pi and closed with probability 1 − pi inde-
pendently of each other. So the colour of an edge determines the probability that that
particular edge is open. This is our inhomogeneous bond percolation model. We write
p = (p1, . . . ,pN−1) and q := pN. We denote a configuration of the edges by ω, which lies
in the space Ω = {0, 1}E. We denote by ω(e) the state of edge e in the configuration ω. We
take the σ-algebra F over Ω to be the power set of Ω. For an event A ∈ F we define the
product measure Pp,q to be

Pp,q(A) =
∑
ω∈A

N∏
i=1

∏
e∈Ei

p
ω(e)
i (1− pi)

1−ω(e). (6.1)

We introduce some more notation that we will need later. For a set S ⊂ V we write ∆S for
its edge-boundary, i.e., {x,y} ∈ ∆S if x ∈ S and y 6∈ S and {x,y} ∈ E. Furthermore for S ⊂ V
we write x S←→ y whenever there is a path from x to y using only open edges which have
both endpoints in S.

We are interested in the phase transition surface

qc(p) = inf
{
q ∈ [0, 1] : ∃x ∈ V with Pp,q(x←→∞) > 0

}
. (6.2)

The critical surface qc(p) is the generalisation of the critical probability pc for homogeneous
percolation defined in (2.6). Instead of just one critical value of the parameter, we now have
a critical surface. We also define the susceptibility analogous to the homogeneous case:

χ(p,q) = max
x∈V

Ep,q|C (x)|. (6.3)

This leads to the critical surface for the susceptibility:

qr(p) = inf
{
q ∈ [0, 1] : χ(p,q) =∞}. (6.4)

Since we require the coloured graph Gcol to be quasi-transitive, our inhomogeneous per-
colation model does not generalise the defect plane percolation model given in Section 5.
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This is because we have seen in Example 3.4 that Zd with an embedded hyperplane is not
a quasi-transitive graph. However if we embed infinitely many parallel equidistant hyper-
planes into Zd as in Example 3.5 we do end up with a quasi transitive graph. So our model
generalises the Zd model with layers, as well as percolation models on the graphs shown
in Figure 7. Furthermore our model contains the inhomogeneous percolation models of
Grimmett and Manolescu in [21].

6.2 sharpness of the phase transition

Our aim is to show the sharpness of the phase transition, so to show that the two critical
surfaces qc(p) and qr(p) are equal. In particular we aim to prove Theorem 2.6. Therefore
we need insight into the behaviour of the model below the surface qc(p). This behaviour is
established in the theorem below. The proof of the theorem relies on a different character-
isation of the critical surface, which we will introduce first. We define for x ∈ V and for a
finite set x ∈ S ⊂ V

ψp,q(x,S) :=
N−1∑
i=1

pi
∑

{y,z}∈
∆S∩Ei

Pp,q

(
x

S←→ y
)
+ q

∑
{y,z}∈
∆S∩EN

Pp,q

(
x

S←→ y
)

. (6.5)

So ψp,q is the analogue of φp defined in (2.16) for homogeneous percolation. Similarly the
characterisation of the critical surface is analogous to (2.17):

q̃c(p) = sup
{
q ∈ [0, 1] : ∀x ∈ V ∃S ⊂ V with x ∈ S, |S| <∞ and ψp,q(x,S) < 1

}
,

(6.6)

or equivalently,

q̃c(p) = sup
x∈V

inf
S⊂V :

x∈S,|S|<∞
sup
{
q ∈ [0, 1] : ψp,q(x,S) < 1

}
. (6.7)

The following theorem is the main new result of this thesis.

Theorem 6.1. Let Gcol =
(
V , {E1, . . . ,EN}

)
be an infinite, locally finite, quasi-transitive coloured

graph withN colours, and let p ∈ [0, 1]N−1. Suppose qc(p) > 0. Then for (Gcol, Pp,q) the following
statements hold:

(a) qc(p) = q̃c(p).

(b) If q < qc(p), then there exists a constant c > 0 such that for all x ∈ V and for all k ∈N

Pp,q (x←→ ∂Λxk) 6 e
−ck. (6.8)

(c) If q < qc(p), then the susceptibility χ(p,q) is finite, i.e., for every x ∈ V it holds that

Ep,q|C (x)| <∞. (6.9)

From this theorem the sharpness of the phase transition immediately follows.
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Corollary 6.2 (Sharpness of the phase transition). Under the conditions of Theorem 6.1 it holds
that

qc(p) = qr(p). (6.10)

Proof. Let p ∈ [0, 1]N−1, for any q > qc(p) there exists some x ∈ V with Pp,q(x ←→∞) > 0. It follows that χ(p,q) = ∞ and hence qr(p) 6 qc(p). Conversely if q > qc(p),
Theorem 6.1 (c) states that the susceptibility is finite, so that qr(p) > qc(p).

The fact that the susceptibility is finite has to be proven separately; it does not follow
from the exponential decay in (6.8) when G is nonamenable. If G is an amenable graph on
the other hand, then finite susceptibility would follow from (6.8). In that case |∂Λxk| would
grow sub-exponential as k tends to infinity. So we obtain

Ep,q|C (x)| =

∞∑
k=0

∑
v∈∂Λxk

Pp,q(v←→ x) 6
∞∑
k=0

|∂Λxk|e
−ck <∞. (6.11)

6.3 further results

For particular values of p and q we can prove that the surface qc(p) is Lipschitz continuous.
Let ∆ be the maximum degree of G and denote by ∆N the maximum degree of the graph
(V ,EN).

Proposition 6.3 (Lipschitz Continuity). Let δ1, δ2, ε > 0. The critical curve qc(p) is Lipschitz
continuous on the set

P =

{
p ∈ [0, 1]N−1 : ∀i δ1 < pi <

1

∆− 1
− δ2, 0 < qc(p) <

1

∆N
− ε

}
, (6.12)

i.e., there exists a constant C dependent on ε, δ1 and δ2 such that for any i ∈ {1, . . . ,N− 1} and
p ∈P we have∣∣∣∣ ∂∂piqc(p)

∣∣∣∣ 6 C. (6.13)

The proof of this proposition is given in Section 10. We note that we have not been able
to find an example for which we can prove that P is not empty.

In the case that the surface qc(p) is Lipschitz continuous we can give an explicit lower
bound for Pp,q (x←→∞) in the supercritical regime. So in particular under the assump-
tions of Proposition 3.3 this lower bound holds.

Theorem 6.4. Let Gcol =
(
V , {E1, . . . ,EN}

)
be an infinite, locally finite, quasi-transitive coloured

graph with N colours and consider the percolation model (Gcol, Pp,q). Assume qc(p) is Lipschitz
continuous on some domain D ⊂ [0, 1]N−1 with Lipschitz constant K. Let p ∈ D and suppose
qc(p) > 0. Then if q > qc(p) it holds for all x ∈ V that

Pp,q(x←→∞) >
1

4K+ 1

(
q− qc(p)

)
. (6.14)
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6.4 discussion

There are several questions left unanswered about our inhomogeneous percolation model.
These are some possible directions for future research. First of all, can we prove that qc(p)
is Lipschitz continuous everywhere, instead of only on the set P? This would imply the
lower bound (6.14) for all parameter values in the supercritical phase.

The proof by Duminil-Copin and Tassion for the sharpness of the phase transition is also
valid for the Ising model. This is a model for ferromagnetism. Since our proof is modifica-
tion of their proof, it is reasonable to assume that we could adapt our proof to fit the Ising
model.

We have seen that for homogeneous percolation on nonamenable graphs there can be an
infinite number of infinite open clusters. It is likely that is also possible for inhomogeneous
percolation on nonamenable graphs. In particular it is interesting to see how pu, the small-
est value of p such that there exists a unique infinite open cluster, would generalise to our
inhomogeneous model. A generalisation could be

qu(p) := inf
{
q ∈ [0, 1] : there exists a unique infinite open cluster in (G, Pp,q)

}
. (6.15)

How does this depend on p, and how does this depend on the choice of the subset of the
edges to take as q-edges?
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Before we prove our new results we will look the existing proofs for the sharpness of
the phase transition. Both the existing proofs and our new proofs rely on some standard
techniques of percolation theory. We introduce three of these tools here. We start with a
useful property of events that is a recurring theme in percolation theory. An eventA is called
increasing if it is more likely to happen whenever more edges are open. For configurations
ω,ω ′ ∈ Ω we say that ω 6 ω ′ whenever ω(e) 6 ω ′(e) for all e ∈ E, so that every open
edge of ω is also open in ω ′. The formal definition of an increasing event is as follows.

Definition 7.1. An event A is called increasing if for all ω,ω ′ ∈ Ω = {0, 1}E with ω 6 ω ′ it
holds that 1A(ω) 6 1A(ω

′).

From 1A(ω) 6 1A(ω
′) it follows that if A occurs for the configuration ω then it also

occurs for ω ′. Events such as the existence of an open path from a to b or the existence
of an infinite open path from the origin are all increasing, so this property occurs often in
percolation theory. We can be a bit more general by defining the same property for random
variables.

Definition 7.2. A random variable X is called increasing if X(ω) 6 X(ω ′) whenever ω 6 ω ′.

We see right away that an event is increasing whenever its indicator function is increasing.
The FKG inequality applies to increasing events, which states that these random variables
are positively correlated. The inequality is named after Fortuijn, Kasteleyn and Ginibre who
introduced the inequality in their 1971 paper [17].

Proposition 7.3 (FKG inequality). Let X and Y be two increasing random variables on a probabil-
ity space with product measure P. Suppose E[X2] <∞ and E[Y2] <∞, then

Cov(X, Y) > 0. (7.1)

For the proof we refer to [22, p.35]. The inequality holds for all product measures, so in
particular we can apply it the homogeneous measure Pp and the inhomogeneous measure
Pp,q. From the above inequality the next Corollary immediately follows.

Corollary 7.4 (Alternative form of the FKG inequality). Let A and B be two increasing events
and let P be a product measure, then

P(A∩B) > P(A)P(B). (7.2)

Proof. The events A and B are increasing, so 1A and 1B are increasing random variables.
Applying the FKG inequality on these indicators gives

Cov(1A,1B) = E[1A1B] − E[1A]E[1B] = P(A∩B) − P(A)P(B) > 0. (7.3)

29
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The inequality in (7.2) is also known as the FKG inequality and this is a commonly used
form in percolation theory. The FKG inequality gives a lower bound on the probability
of the event A ∩ B, but sometimes we require an upper bound instead. So a similar type
of inequality that goes in the other direction would be useful. This gap is filled by the
BK inequality, named after van den Berg en Kesten, who introduced the inequality in 1985

[8]. We cannot expect Pp(A ∩ B) 6 Pp(A)Pp(B) to hold in general for increasing events,
because combined with the FKG inequality this would imply that A and B are independent.
Instead we will look at disjoint occurrences of A and B. Suppose A and B depend on the
edges e1, . . . , en only. For a configuration ω ∈ Ω, define K(ω) by

K(ω) = {ei : ω(ei) = 1, 1 6 i 6 n}, (7.4)

the set of open edges in the configuration ω. Conversely a configuration ω ′ of the edges
e1, . . . , en is uniquely determined by a set K(ω ′). We define A ◦ B to be the set of configu-
rations ω for which we can partition K(ω) into two disjoint sets K ′ and K ′′, such that the
configuration ω ′ determined by K(ω ′) = K ′ is an element of A and the configuration ω ′′

with K(ω ′′) = K ′′ is an element of B. So we say that A ◦ B occurs whenever A and B occur
on disjoint sets of edges. The BK inequality states the following about this event.

Proposition 7.5 (BK inequality). Let A and B be two increasing events dependent on finitely
many edges and let P be a product measure, then

P(A ◦B) 6 P(A)P(B). (7.5)

The third standard tool that we introduce here is Russo’s formula which also applies to
increasing events. However, we first need to define the notion of a pivotal edge.

Definition 7.6. An edge e ∈ E is called pivotal for an event A and a configuration of the other
edges ω ∈ Ω whenever ωo ∈ A and ωc 6∈ A, where ωo and ωc are the configurations obtained by
taking the configuration ω and setting the edge e to open and closed, respectively.

So an edge e is pivotal for A whenever its state decides the occurrence of the event A.
Whether e is open or closed is irrelevant for e being pivotal. We now state the most general
form of Russo’s formula.

Proposition 7.7 (Russo’s formula). Let f ∈ E and let P be the general percolation measure defined
in (2.1). Consider the percolation model (G, P). Let A be an increasing event dependent on finitely
many edges. Then

∂

∂pf
P(A) = P(f is pivotal for A). (7.6)

Proof. Consider independent random variables {U(e)} for every edge e, with uniform distri-
bution on [0, 1]. We construct the configuration ω by setting an edge e to be open whenever
U(e) 6 pe, and to be closed otherwise. Let f ∈ E and define

p ′(e) =

p ′f if e = f,

pe if e 6= f.
(7.7)
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The configuration ω ′ is constructed by setting an edge e to be open if and only if U(e) 6
p̃(e). Suppose p ′f > pf. Then for an increasing event A we find

P(A) − Pp ′(A) = Pu(ω 6∈ A,ω ′ ∈ A)
= (p ′f − pf)P(f is pivotal for A) +O

(
(p ′f − pf)

2
)
, (7.8)

where Pu is the measure induced by the random variables {U(e)}. By dividing by p ′f − pf
and taking the limit p ′f → pf we obtain

∂

∂pf
P(A) = P(f is pivotal for A). (7.9)

In our inhomogeneous percolation model multiple edges have the same parameter. This
leads to an alternative form of Russo’s formula.

Corollary 7.8 (Russo’s Formula (Inhomogeneous case)). Consider the percolation model
(G, Pp,q). Let A be an increasing event dependent only on edges in Λvn for some n ∈N and v ∈ V ,
then for any 1 6 i 6 N we have

∂

∂pi
Pp,q(A) =

∑
e∈Λvn∩Ei

Pp,q(e is pivotal for A)

=
1

1− pi

∑
e∈Λvn∩Ei

Pp,q
(
{e is pivotal for A}∩Ac

)
. (7.10)

Proof. We can apply general form of Russo’s formula to our inhomogeneous percolation
model. Let A be an increasing event dependent only on the edges in Λxn for some n ∈ N

and x ∈ V . We use the Chain Rule to find for any 1 6 i 6 N,

∂

∂pi
Pp,q(A) =

∑
e∈Λxn

∂

∂pe
Pp̃(A)

dpe
dpi

∣∣∣∣
p̃=(p,q)

=
∑

e∈Λxn∩Ei

∂

∂pe
Pp̃(A)

∣∣∣∣
p̃=(p,q)

=
∑

e∈Λxn∩Ei

Pp,q(e is pivotal for A)

=
1

1− pi

∑
e∈Λxn∩Ei

Pp,q
(
{e is pivotal for A}∩Ac

)
, (7.11)

where the final equality follows because an edge e is closed with probability 1− pi, and if
e is closed and pivotal for A, the event A will not happen.

Finally we give a form of Russo’s formula for the homogeneous percolation model. This
form follows directly from the inhomogeneous case.
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Corollary 7.9 (Russo’s Formula (Homogeneous case)). Consider the percolation model (G, Pp).
Let A be an increasing event dependent on finitely many edges, then

d
dp

Pp(A) =
∑
e∈E

Pp(e is pivotal for A)

=
1

1− p

∑
e∈E

Pp
(
{e is pivotal for A}∩Ac

)
. (7.12)
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P E R C O L AT I O N

As a preparation of our original proofs we will look at several existing proofs in the litera-
ture for the sharpness of the phase transition

pc := inf{p ∈ [0, 1] : θ(p) > 0} = inf{p ∈ [0, 1] : χ(p) =∞} =: pr. (8.1)

We will look at on of the first proofs of this fact by Aizenman and Barsky, as well as at the
proof given by Menshikov around the same time. The other proof we look at here is the
recent proof by Duminil-Copin and Tassion.

8.1 the aizenman and barsky proof

Aizenman and Barsky showed the sharpness of the phase transition for homogeneous per-
colation on vertex-transitive graphs in [1]. In this section we state the main ideas of their
proof, so we prove Theorem 2.2. Let G be a vertex-transitive graph and consider the homo-
geneous percolation model (G, Pp).

The mean finite cluster size χf(p) is defined as

χf(p) = Ep
[
|C (0)|

∣∣ |C (0)| <∞]. (8.2)

If p < pc, then P(|C (0)| = ∞) = 0, so that χ(p) = χf(p). So to show the sharpness of the
phase transition it suffices to show that χf(p) <∞ for all p < pc.

The Aizenman and Barsky proof relies on the magnetization defined as

M(p,γ) := Ep

[
1− (1− γ)|C (0)|

]
=

∞∑
k=1

(
1− (1− γ)k

)
Pp
(
|C (0)| = k

)
. (8.3)

We can interpret this quantity as follows. We colour each vertex green with probability γ
independently of each other. Then the magnetization is equal to the probability that C (0)

contains at least one green vertex. We can see this by conditioning on the size of C (0).
Denote by G the random set of green vertices, then

Pγp
(
C (0)∩ G 6= ∅

)
=

∞∑
k=1

Pp
(
C (0)∩ G 6= ∅

∣∣ |C (0)| = k
)
Pp
(
|C (0)| = k

)
=

∞∑
k=1

(
1− (1− γ)k

)
Pp
(
|C (0)| = k

)
=M(p,γ). (8.4)

From this insight we see that M(p,γ) is increasing in p and γ. Furthermore M(p, 0) = 0

and M(p, 1) = 1. This interpretation of the magnetization can also be used to prove a set of
differential inequalities for the magnetization.

33
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Lemma 8.1 (Aizenman and Barsky differential inequalities). If 0 < p < 1 and 0 < γ < 1, then

(1− p)
∂M

∂p
6 2d(1− γ)M

∂M

∂γ
, (8.5)

M 6 γ
∂M

∂γ
+M2 + pM

∂M

∂p
. (8.6)

We only prove inequality (8.5) here. The proof for the other differential inequality is
similar and can be found in [1], see also [25].

Proof. We write {x ←→ G } := {C (x) ∩ G 6= ∅}. We start by using Russo’s formula on this
event, to find

(1− p)
∂

∂p
M(p,γ) = (1− p)

∑
e∈E

Pγp(e is pivotal for 0←→ G )

=
∑
e∈E

Pγp(e is closed and pivotal for 0←→ G ). (8.7)

The edge {x,y} is closed and pivotal for 0 ←→ G if and only if 0 ←→ x, y ←→ G , and
0 6←→ G . Thus,

(1− p)
∂

∂p
M(p,γ) =

∑
{x,y}∈E

Pγp(0←→ x,y←→ G , 0 6←→ G ). (8.8)

Conditioning on C (0) gives

(1− p)
∂

∂p
M(p,γ) =

∑
{x,y}∈E

∑
C

Pγp(C∩ G = ∅,y←→ G
∣∣C (0) = C)Pγp(C (0) = C), (8.9)

where we sum over all C ⊂ V with 0, x ∈ C, y 6∈ C and P
γ
p(C (0) = C) 6= 0. If we know

C (0) = C for a set of vertices C that does not contain y, then the events {C ∩ G = ∅}
and {y ←→ G } are independent, since the first event only depends on the colour of the
vertices in C, and {C (y) ∩ G 6= ∅} depends on the status of the edges and vertices outside
C. Furthermore, conditionally on the event C (0) = C, the cluster of y cannot contain any
vertices of C, so the probability that the cluster of y contains a green vertex cannot increase:

Pγp(y←→ G
∣∣C (0) = C) 6 Pγp(y←→ G ) =M(p,γ). (8.10)

Combining this with the conditional independence of {C∩ G = ∅} and {y←→ G } gives

(1− p)
∂

∂p
M(p,γ) 6

∑
{x,y}∈E

∑
0,x∈C,
y6∈C

Pγp(C∩ G = ∅
∣∣C (0) = C)Pγp(C (0) = C)M(p,γ)

6
∑

{x,y}∈E

Pγp(0 6←→ G , 0←→ x, 0 6←→ y)M(p,γ)

6
∑

{x,y}∈E

Pγp(0 6←→ G , 0←→ x)M(p,γ). (8.11)
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The above inequality is now independent of y, so we can sum over the vertices instead over
the edges. Every vertex has 2d edges, so changing the sum gives a factor 2d:

(1− p)
∂

∂p
M(p,γ) 6 2d

∑
x∈V

Pγp(0 6←→ G , 0←→ x)M(p,γ). (8.12)

Now we observe that∑
x∈V

Pγp(0 6←→ G , 0←→ x) = Ep,γ
[
|C (0)|1{0 6←→G }

]
, (8.13)

and

Ep,γ
[
|C (0)|1{0 6←→G }

]
=

∞∑
k=1

kPγp
(
|C (0)| = k, 0 6←→ G

)
=

∞∑
k=1

k(1− γ)kPγp
(
|C (0)| = k

)
= (1− γ)

∂

∂γ
M(p,γ). (8.14)

Combining this with (8.12) proves the desired differential inequality.

The Aizenman and Barsky differential inequalities can then be used to prove a lower
bound on the magnetization.

Proposition 8.2. Let 0 < p < 1 such that χf(p) = ∞ and let 0 < γ < 1, then there exists a
constant C such that

M(p,γ) > C
√
γ. (8.15)

This bound can be proven by inserting (8.5) into (8.6) and integrating the obtained in-
equality. For a complete proof we again refer to [1] and [25].

We will now prove the sharpness of the phase transition from the above results. Let
p < pc and suppose χf(p) =∞, we will arrive at a contradiction by showing that θ(b) > 0
for all b > p. We rewrite the differential inequality (8.6) as follows.

1

M(p,γ)
∂M(p,γ)
∂γ

+
1

γ

∂

∂p

(
pM(p,γ) − p

)
> 0. (8.16)

Let a < b < pc. We integrate the above inequality over the rectangle defined by a 6 p 6 b

and ε 6 γ 6 δ, with 0 < ε < δ:

0 6
∫b
a

∫δ
ε

1

M(p, δ)
∂M(p, δ)
∂γ

dγdp+
∫δ
ε

∫b
a

1

γ

1

∂p

(
pM(p, δ) − p

)
dpdγ

=

∫b
a

(
logM(p, δ) − logM(p, ε)

)
dp+

∫δ
ε

1

γ

(
bM(b,γ) − b− aM(a,γ) + a

)
dγ. (8.17)
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Since M(p,γ) is increasing in both p and γ, it is maximal in the point (b, δ). Combining this
with the above inequality gives

0 6 (b− a)
(

logM(b, δ) − logM(a, ε)
)
+ log(δ/ε)

(
bM(b, δ) − b− aM(a, ε) + a

)
= (b− a)

logM(b, δ) − logM(a, ε)
log δ− log ε

+
(
bM(b, δ) − (b− a)

)
. (8.18)

We now take the limit ε→ 0. By Propostion 8.2 we obtain

lim
ε→0

logM(b, δ) − logM(a, ε)
log δ− log ε

6 lim
ε→0

logM(b, δ) − logC
√
ε

log δ− log ε

6 lim
ε→0

logM(b, δ) − logC− 1/2 log ε
log δ− log ε

=
1

2
, (8.19)

so that

0 6
1

2
(b− a) +

(
bM(b, δ) − (b− a)

)
=
(
bM(b, δ) −

1

2
(b− a)

)
. (8.20)

Finally we take the limit δ → 0 and claim that M(b, δ) → θ(b) as δ → 0. We obtain the
contradiction

θ(b) >
b− a

2b
> 0, (8.21)

and we conclude χf(a) <∞.
It remains to show that M(p,γ)→ θ(p) as γ→ 0. We use (8.4) to write

M(p,γ) = 1− Pγp
(
C (0)∩ G = ∅

)
. (8.22)

Conditioning on the size of C (0) gives

M(p,γ) = 1−
∞∑
k=1

Pp
(
C (0)∩ G = ∅

∣∣ |C (0)| = k
)
Pp
(
|C (0)| = k

)
= 1−

∞∑
k=1

(1− γ)kPp
(
|C (0)| = k

)
. (8.23)

We now take the limit γ→ 0 and obtain

lim
γ→0

M(p,γ) = 1−
∞∑
k=1

Pp
(
|C (0)| = k

)
= 1− Pp

(
|C (0)| <∞) = θ(p). (8.24)

8.2 the menshikov proof

In this section we give a sketch of the proof of Menshikov for the sharpness of the phase
transition. So we give a sketch of the proof of Theorem 2.3. This proof is arguably the
most technical of the three proofs, and so we will not go into full detail. Menshikov’s proof
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can be found in [35] and [36], see also [22, Chapter 5.2]. Let G be a quasi-transitive graph
with sub-exponential growth. The proof is valid for the inhomogeneous percolation model
(G, Pp,q), but we will only look at the proof in the homogeneous case (G, Pp).

Menshikov proves the result for site percolation. This is a percolation where the vertices
are open or closed instead of the edges. The sharpness of the phase transition for bond
percolation immediately follows from this proof as well: consider the bond percolation
process on G = (V ,E). We can construct an equivalent site percolation model by defining
the graph G ′ = (V ′,E ′) as follows. Create a vertex ve ∈ V ′ for every edge e in E. There is
an edge in E ′ between vertices ve and vf whenever e and f have an endpoint in common
in G. The site percolation process on G ′ is now equivalent to the bond percolation process
on G, since an open/closed vertex in G ′ is associated with an open/closed bond in G.
Furthermore if G is a quasi-transitive graph with sub-exponential growth, then so is G ′. So
without losing generality, we will only consider site percolation for the remainder of the
proof. Note that the tools introduced in Section 7 also hold in an analogous form for site
percolation.

The proof is split into two parts. We prove that for any quasi-transitive graph and for
p < pc that

Pp(v←→ ∂Λvn) < exp
(
−c

n

logn

)
, (8.25)

for some constant c > 0 and any v ∈ V . From this bound the finite susceptibility will follow
for graphs with subexponential growth. We will prove this first. Let G be a graph satisfying
for all v ∈ V and n large enough:

|Λvn| < exp(nγ), (8.26)

for some constant 0 < γ < 1. It follows that

Pp(v←→ ∂Λvn) > P
(
|C (v)| > |Λvn|

)
> Pp

(
|C (v)| > exp(nγ)

)
, (8.27)

so that

Pp
(
|C (v)| > k) 6 Pp

(
v←→ ∂Λv

(logk)1/γ

)
. (8.28)

Using the bound in (8.25) gives

Pp
(
|C (v)| > k

)
6 exp

(
−cγ

(logk)1/γ

log logk

)
. (8.29)

We conclude

Ep
[
|C (v)|

]
=

∞∑
k=0

Pp
(
|C (v)| > k

)
6

∞∑
k=0

exp

(
−cγ

(logk)1/γ

log logk

)
<∞, (8.30)

since 1/γ > 1. So it follows that pc = pr.
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We will now look at the proof for the bound in (8.25). Let N (v) denote the number of
pivotal vertices for the event 0←→ ∂Λvn. Applying Russo’s formula on this event gives

d
dp

Pp(v←→ ∂Λvn) =
∑
v∈V

Pp(v is pivotal for v←→ ∂Λvn)

=
1

p

∑
v∈V

Pp
(
{v is pivotal for v←→ ∂Λvn}∩ v←→ ∂Λvn

)
=
1

p

∑
v∈V

Pp
(
v is pivotal for v←→ ∂Λvn

∣∣ v←→ ∂Λvn
)
Pp(v←→ ∂Λvn)

=
1

p
Ep
[
N (v)

∣∣ v←→ ∂Λvn
]
Pp(v←→ ∂Λvn). (8.31)

This gives

d
dp

log Pp(v←→ ∂Λvn) =
1

p
Ep
[
N (v)

∣∣ v←→ ∂Λvn
]
. (8.32)

Integrating the above equation between a and b for some 0 < a < b < 1 gives

log Pb(v←→ ∂Λvn) − log Pa(v←→ ∂Λvn) =

∫b
a

1

p
Ep
[
N (v)

∣∣ v←→ ∂Λvn
]
dp, (8.33)

so that

Pa(v←→ ∂Λvn) = Pb(v←→ ∂Λvn) exp

(
−

∫b
a

1

p
Ep
[
N (v)

∣∣ v←→ ∂Λvn
]
dp

)

6 Pb(v←→ ∂Λvn) exp

(
−

∫b
a

Ep
[
N (v)

∣∣ v←→ ∂Λvn
]
dp

)
. (8.34)

The proof now comes down to a proper estimation of Ep
[
N (v)

∣∣ v←→ ∂Λvn
]
. We only give

a sketch here. If p < pc, then the event v←→ ∂Λvn is unlikely to occur. So if it does happen
it is reasonable to assume that the connection between v and ∂Λvn is sparse. There might be
multiple paths between v and ∂Λvn, but these paths likely have many vertices in common.
Therefore the number of pivotal edges is roughly equal to the length of a path from v to
∂Λvn. It follows that the number of pivotal vertices is more or less linear in n. Formalising
this observation and a proper choice of a and b gives the bound in (8.25).

We give a simplified sketch here to make the upper bound in (8.25) plausible. Assume
that Ep

[
N (v)

∣∣ v←→ ∂Λvn
]
> n/ logn. Then by setting a = p and b = 1 we find

Pp(v←→ ∂Λvn) 6 exp
(
−(1− p)

n

logn

)
, (8.35)

which is the same upper bound as in (8.25), so this completes the proof.

8.3 the duminil-copin and tassion proof

In this section we introduce the proof of Duminil-Copin and Tassion for Theorem 2.5. From
item (b) the sharpness of the phase transition immediately follows. Their proof can be found
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in [15] for Zd and a more general proof in [14]. The latter proof is valid for percolation on
any vertex-transitive graph and also holds for the Ising model. We restrict ourselves here
to percolation on a general vertex-transitive graph.

The core idea of the proof is to characterise the critical probability in a new way. Before
we can introduce this characterization we first need some notation. For a set S ⊂ V we write
∆S for its edge-boundary, i.e., {x,y} ∈ ∆S if x ∈ S and y 6∈ S and {x,y} ∈ E. Furthermore for

S ⊂ V we write x S←→ y whenever there is a path from x to y using only open edges which
have both endpoints in S. For a finite S ⊂ V we define

φp(S) = p
∑

{y,z}∈∆S

Pp(0
S←→ y). (8.36)

We now the define the alternative critical point

p̃c := sup
{
p ∈ [0, 1] : ∃S ⊂ V with 0 ∈ S, |S| <∞ and φp,q(x,S) < 1

}
. (8.37)

If we can prove the three results of Theorem 2.5 with pc replaced with p̃c we will imme-
diately have shown that p̃c = pc, since item (a) ensures that θ(p) = 0 for all p < p̃c and
from item (c) it follows that θ(p) > 0 for all p > p̃c.

The first two items of Theorem 2.5 can be proven using the following lemma.

Lemma 8.3. Let G = (V ,E), let S ⊆ A ⊆ V and let B ⊆ V . Let u ∈ S and suppose B ∩ S = ∅.
Then

Pp

(
u

A←→ B
)
6 p

∑
{x,y}∈∆S

Pp

(
u

S←→ x
)

Pp

(
y

A←→ B
)

. (8.38)

Proof. If there is a path of open edges from u to B then that path must use some edge from

∆S, since u ∈ S, but B ∩ S = ∅. Let {x,y} be the first edge of ∆S in this path. Then u S←→ x

and y A←→ B, and these two connections are disjoint. Furthermore the edge {x,y} has to be
open and this also occurs disjointly from these two connections. So the result follows from
applying the union bound and the BK inequality twice.

8.3.1 Proof of Theorem 2.5 (a)

We know that p < p̃c, so there exists an S ⊂ V with 0 ∈ S and φ(S) < 1 − ε, for some
ε > 0. We drop 0 from the notation: Λn = Λ0n. Let L > 0 be such that S ⊂ ΛL−1. Applying
Lemma 8.3 gives

Pp (0←→ ∂Λn) 6 p
∑

{x,y}∈∆S

Pp

(
0

S←→ x
)

Pp (y←→ ∂Λn) . (8.39)

If y←→ ∂Λn, it is connected to a vertex at distance at least n− L of y, since y has distance
at most L from 0. Therefore, by the by the vertex-transitivity of the graph we have

Pp (0←→ ∂Λn) 6 p
∑

{x,y}∈∆S

Pp

(
0

S←→ x
)

Pp (0←→ ∂Λn−L)

= φp(S)Pp (0←→ ∂Λn−L) . (8.40)

Iteration gives the desired exponential decay.
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8.3.2 Proof of Theorem 2.5 (b)

We have that p < p̃c, so there exists an S ⊂ V with 0 ∈ S and φ(S) < 1 − ε, for some
ε > 0. Fix this set S. Let u ∈ V . Since the graph is vertex-transitive, there exists a graph
automorphism sending 0 to u. Let Su be the image of S under this automorphism. For a
finite set A ⊂ V define

χp(A) := max
u∈V

∑
v∈V

Pp

(
u

A←→ v
)

. (8.41)

Let A ⊂ V be such that Su ⊂ A and A\Su 6= ∅. By Lemma 8.3 we know that

Pp

(
u

A←→ v
)
6 p

∑
{x,y}∈∆Su

Pp

(
u
Su←→ x

)
Pp

(
y

A←→ v
)

. (8.42)

Summing this inequality over the vertices in A\Su gives∑
v∈A\Su

Pp

(
u

A←→ v
)
6
∑

v∈A\Su

∑
{x,y}∈∆Su

pPp

(
u
Su←→ x

)
Pp

(
y

A←→ v
)

6 φp(S)
∑

u∈A\Su

Pp

(
y

A←→ u
)

6 φp(S)χp(A). (8.43)

We now add the vertices in Su to the sum using the union bound:∑
v∈A

Pp

(
u

A←→ v
)
6 |S|+φp(S)χp(A). (8.44)

The right hand side of the above inequality is independent of u, so we can maximise over
u ∈ V , keeping the bound intact:

max
u∈V

∑
v∈A

Pp

(
u

A←→ v
)
6 |S|+φp(S)χp(A). (8.45)

Using the definition of χp(A) we conclude

χp(A) 6
|S|

1−φp(S)
<

|S|

ε
<∞. (8.46)

Item (b) of Theorem 2.5 follows by letting A tend to V .

8.3.3 Proof of Theorem 2.5 (c)

Fix n ∈N. By Russo’s formula we have that

d
dp

Pp(0←→ ∂Λn) =
∑
e∈Λn

Pp(e is pivotal for 0←→ ∂Λn)

=
1

1− p

∑
e∈Λn

Pp
(
{e is pivotal for 0←→ ∂Λn}∩ 0 6←→ ∂Λn

)
.

(8.47)



8.3 the duminil-copin and tassion proof 41

We define the random set S as follows:

S = {v ∈ Λn : v 6←→ ∂Λn}, (8.48)

the set of vertices in Λn that are not connected to the boundary of Λn. If 0 6←→ ∂Λn it is an
element of S . We can condition on the set S to obtain

d
dp

Pp(0←→ ∂Λn) =
1

1− p

∑
S⊂Λn:
0∈S

∑
e∈Λn

Pp
(
{e is pivotal for 0←→ ∂Λn}∩S = S

)
. (8.49)

The edge boundary of S are closed edges of which the endpoint that is not in S is con-
nected to ∂Λn by a path of open edges (possibly of length 0). So the edges pivotal for
0 ←→ ∂Λn are precisely the edges on the boundary of S of which the endpoint in S is
connected to 0. Conditioning on S = S we obtain

d
dp

Pp(0←→ ∂Λn) =
1

1− p

∑
S⊂Λn:
0∈S

∑
{x,y}∈∆S

Pp

(
0

S←→ x, S = S
)

. (8.50)

The occurrence of the event {S = S} can be determined from the configuration of the
edges outside of S. This can be done by exploring from the boundary of Λn as follows. Set
T = ∅. Start from some vertex on the boundary of Λn and see which vertices inside Λn
it is connected to using only edges in Λn\S. Add these vertices to T . We subsequently do
this for every vertex on the boundary of Λn, so the set T contains vertices in Λn that are
connected to the boundary of Λn. Now if T contains some vertex that is in S, then S 6= S,
and similarly if T does not contain some vertex that is not in S then S 6= S. The only
remaining case is T = Λn\S. We can split S into two disjoint subsets Si and Sb, where Si
are the vertices in S that only have neighbours inside S and Sb is the set of vertices that
have some neighbour outside S. If T = Λn\S, then all vertices in Sb are not connected
to the boundary of Λn. Otherwise some vertex of Sb would have been added to T in the
exploration process. Similarly all vertices in Si are not connected to the boundary of Λn,
otherwise T would contain some vertex of Sb. So if T = Λn\S, then S = S. We conclude
that the event {S = S} is determined by the configuration of the edges outside S, and is

therefore independent of {0 S←→ x}. We find

d
dp

Pp(0←→ ∂Λn) =
1

1− p

∑
S⊂Λn:
0∈S

∑
{x,y}∈∆S

Pp

(
0

S←→ x
)

Pp(S = S)

=
1

p(1− p)

∑
S⊂Λn:
0∈S

φp(S)Pp(S = S)

>
1

p(1− p)
inf

S⊂Λn:
0∈S

φp(S) Pp(0 6←→ ∂Λn). (8.51)

Since p > p̃c, we know that φp(S) > 1 for all S, so

d
dp

Pp(0←→ ∂Λn) >
1

p(1− p)

(
1− Pp(0←→ ∂Λn)

)
, (8.52)
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and

−
d

dp
log
(
1− Pp(0←→ ∂Λn)

)
=

d
dpPp(0←→ ∂Λn)

1− Pp(0←→ ∂Λn)
>

1

p(1− p)
=
1

p
+

1

1− p
. (8.53)

We now integrate this inequality between p̃c and p to obtain

log
(
1− Pp̃c(0←→ ∂Λn)

)
− log

(
1− Pp(0←→ ∂Λn)

)
> log(p/p̃c) − log

(
1− p

1− p̃c

)
,

(8.54)

so that

− log
(
1− Pp(0←→ ∂Λn)

)
> log(p/p̃c) − log

(
1− p

1− p̃c

)
. (8.55)

It follows that

1

1− Pp(0←→ ∂Λn)
>
p(1− p̃c)

p̃c(1− p)
, (8.56)

and finally

Pp(0←→ ∂Λn) > 1−
p̃c(1− p)

p(1− p̃c)
=

p− p̃c
p(1− p̃c)

. (8.57)

The final result follows from letting n tend to infinity.
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In this section we prove Theorem 6.1. If we show Theorem 6.1 (b) for q < q̃c(p) as well as
prove that for some x ∈ V

Pp,q(x←→∞) > 0 ∀ q > q̃c(p), (9.1)

then we will immediately have shown that q̃c(p) = qc(p). Since if (6.8) holds for q < q̃c(p)
then by taking the limit of k to infinity we see that Pp,q(0 ←→ ∞) = 0 and thus q̃c(p) 6
qc(p). Similarly, from (9.1) it follows that q̃c(p) > qc(p).

Furthermore, the condition qc(p) > 0 implies that q̃c(p) > 0. We show this by induction
on N: Suppose N = 2 and q̃c(p) = 0. Then by setting q = 0 we obtain the homogeneous per-
colation model on a quasi-transitive graph. By extending the proof in [14] to quasi-transitive
graphs it can be shown that percolation occurs in this model and thus we find qc(p) = 0.
Now suppose N > 2 and q̃c(p) = 0. Then by setting q = 0 we find an inhomogeneous
percolation model with N− 1 colours in which percolation occurs. By using the induction
hypothesis and Theorem 6.1 we see that qc(p) = q̃c(p) = 0. So qc(p) > 0 indeed implies
q̃c(p) > 0.

9.1 proof of exponential decay

We now prove Theorem 6.1 (b). Suppose q < q̃c(p). Then for any x ∈ V there exists a
finite set Sx ⊂ V with x ∈ Sx such that ψp,q(x,Sx) < 1. Furthermore, since G is quasi-
transitive there are only finitely many different types of vertices so we can find an L ∈ N

such that Sx ⊂ ΛxL for any x ∈ V . Now let x ∈ V be given and fix the set S with x ∈ S and
ψp,q(x,S) < 1. Since G is quasi-transitive there exists a u ∈ V such that

min
u∈S⊂V :
S⊂ΛuL

ψp,q(u,S) = sup
v∈V

min
v∈S⊂V :
S⊂ΛvL

ψp,q(v,S). (9.2)

The above step is where the proof would fail if the graph was not quasi-transitive. Because
of the quasi-transitivity the above supremum is really a maximum that is attained for some
u ∈ V . Without quasi-transitivity it is not clear if the supremum would be attained in some
vertex, or at infinity.

Since q < q̃c(p) we have for some ε > 0 that

min
u∈S⊂V :
|S|<ΛuL

ψp,q(u,S) = 1− ε. (9.3)

Define the random set

C := {z ∈ S : x
S←→ z}. (9.4)

43
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Now if we let k ∈ N and we suppose x ←→ ∂ΛxkL, then we know that there exists an

edge {y, z} ∈ ∆S such that x S←→ y, {y, z} is open and z C c←→ ∂ΛxkL. So by summing over all
possible edges in ∆S and over all possible values of C we obtain

Pp,q(x←→ ∂ΛxkL) 6∑
C⊂S

∑
{y,z}∈∆S

Pp,q

({
x

S←→ y, C = C
}

, {y, z} open, z Cc←→ ∂ΛxkL

)
. (9.5)

The three events in the above inequality depend on disjoint sets of edges:
{
x

S←→ y, C = C
}

only depends on edges in C, the event z Cc←→ ∂ΛxkL depends on edges in Cc and the edge
{y, z} is neither in C nor in Cc. So these events are independent and we obtain

Pp,q(x←→ ∂ΛxkL) 6

q
∑
C⊂S

∑
{y,z}∈
∆S∩EN

Pp,q

(
x

S←→ y, C = C
)

Pp,q (z←→ ∂ΛxkL)

+

N−1∑
i=1

pi
∑
C⊂S

∑
{y,z}∈
∆S∩Ei

Pp,q

(
x

S←→ y, C = C
)

Pp,q (z←→ ∂ΛxkL) . (9.6)

Since z ∈ ΛxL, we know that the distance between x and z is at most L. So if z ←→ ∂ΛxkL,
z is connected to a vertex at distance kL from x. Therefore, by the triangle inequality, z is
connected to a vertex at distance at least kL− L from z. So we find

Pp,q (z←→ ∂ΛxkL) 6 Pp,q

(
z←→ ∂Λz(k−1)L

)
. (9.7)

Furthermore since G is quasi-transitive there exists a w ∈ V such that

Pp,q

(
w←→ ∂Λw(k−1)L

)
= sup
v∈V

Pp,q

(
v←→ ∂Λv(k−1)L

)
> Pp,q

(
z←→ ∂Λz(k−1)L

)
. (9.8)

So that for this w ∈ V

Pp,q (z←→ ∂ΛxkL) 6 Pp,q

(
w←→ ∂Λw(k−1)L

)
. (9.9)

This bound can now be used in (9.6) to obtain

Pp,q(x←→ ∂ΛxkL) 6 q
∑
C⊂S

∑
{y,z}∈
∆S∩EN

Pp,q

(
x

S←→ y, C = C
)

Pp,q

(
w←→ ∂Λw(k−1)L

)

+

N−1∑
i=1

pi
∑
C⊂S

∑
{y,z}∈
∆S∩Ei

Pp,q

(
x

S←→ y, C = C
)

Pp,q

(
w←→ ∂Λw(k−1)L

)
6 ψp,q(x,S)Pp,q(w←→ ∂Λw(k−1)L)

6 (1− ε)Pp,q(w←→ ∂Λw(k−1)L). (9.10)

Iteration gives the desired exponential decay:

Pp,q(x←→ ∂ΛxkL) 6 (1− ε)k = exp
(

log(1− ε)k
)
= exp(−ck). (9.11)
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9.2 proof of inequality (9 .1) (supercritical phase)

If q̃c(p) = 1, the theorem is automatically satisfied. So suppose q̃c(p) < 1 and let q > q̃c(p).
The characterisation of the critical curve

q̃c(p) = sup
x∈V

inf
S⊂V :

x∈S,|S|<∞
sup
{
q ∈ [0, 1] : ψp,q(x,S) < 1

}
. (9.12)

as given in 6.7 is equivalent to

q̃c(p) = max
x∈V

inf
k∈N

min
S⊂V∩Λxk:
x∈S

sup
{
q ∈ [0, 1] : ψp,q(x,S) < 1

}
, (9.13)

since the supremum over x ∈ V is attained in some x0 ∈ V , because G is quasi-transitive,
and the infimum over S ⊂ V can be split into an infimum and a minimum by conditioning
on the size of S. So for every k ∈ N the above minimum is attained in some Sk ⊂ V ∩Λxk
with x ∈ Sk. We know that for any x ∈ V and for any S ⊂ V , ψp,q(x,S) is increasing in q.
Furthermore, for fixed p, ψp,q(x0,Sk) is a polynomial in q and for large k this polynomial
has degree at least 1, since q̃c(p) > 0. Combining these observations we conclude that
ψp,q(x0,Sk) is strictly increasing in q. So sup{q ∈ [0, 1] : ψp,q(x0,Sk) < 1} can be seen as
the inverse in the q-variable of ψp,q(x0,Sk) at 1. This justifies the notation

ψ←p (1; x0,Sk) := sup
{
q ∈ [0, 1] : ψp,q(x0,Sk) < 1

}
. (9.14)

Furthermore, since ψp,q(x0,Sk) is a polynomial of order at most k, we conclude that
ψ←p (1; x0,Sk) is continuous in p for all k. So the critical curve can be written as

q̃c(p) = lim
k→∞ψ←p (1; x0,Sk). (9.15)

The inverse ψ←p (1; x0,Sk) is decreasing in k, so q̃c(p) is a decreasing limit of continuous
functions and is therefore upper semi-continuous. We use this property to define an auxil-
iary point (p̂, q̂) in the (p,q)-space. Let ε =

(
q− q̃c(p)

)
/2. Then there exists a δ > 0 such

that

q̃c(p ′) < q̃c(p) + ε for all ‖p ′ − p‖ 6 δ, (9.16)

where ‖ · ‖ denotes the 2-norm on RN−1. We define p̂ = p − (δ/
√
N− 1, . . . , δ/

√
N− 1), so

that ||p̂ − p|| = δ. We take q̂ = q̃c(p̂), so that q− q̂ > ε. Consider the line segment from
(p̂, q̂) to (p,q). We parametrise this line segment in the following way:

r(t) =

(
p̂ + t(p − p̂)

q̂+ t(q− q̂)

)
t ∈ [0, 1]. (9.17)

Since q̃c(p̂) = q̂ and since G is quasi-transitive, there exists an x ∈ V such that

inf
S⊂V :

x∈S,|S|<∞
ψp̂,q̂(x,S) = 1. (9.18)
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Moreover, since ψp,q(x,S) is increasing in p and q, we have for any 0 6 t 6 1 and for the
same x ∈ V that

inf
S⊂V :

x∈S,|S|<∞
ψr(t)(x,S) > 1. (9.19)

Fix n ∈N. We apply Russo’s Formula to x←→ ∂Λxn, to find

∂

∂q
Pp,q(x←→ ∂Λxn) =

1

1− q

∑
e∈Λxn∩EN

Pp,q(e pivotal, x 6←→ ∂Λxn), (9.20)

and a similar expression for the derivative to pi:

∂

∂pi
Pp,q(x←→ ∂Λxn) =

1

1− pi

∑
e∈Λxn∩Ei

Pp,q(e pivotal, x 6←→ ∂Λxn), (9.21)

so we also have an expression for ∇Pp,q(x ←→ ∂Λn). Specifically for (p,q) = r(t) the
gradient equals:

∇Pr(t)(x←→ ∂Λn) =



1
1−p̂1−t(p1−p̂1)

∑
e∈Λxn∩E1 Pp,q(e pivotal, x 6←→ ∂Λxn)

1
1−p̂2−t(p2−p̂2)

∑
e∈Λxn∩E2 Pp,q(e pivotal, x 6←→ ∂Λxn)

...
1

1−p̂N−1−t(pN−1−p̂N−1)

∑
e∈Λxn∩EN−1

Pp,q(e pivotal, x 6←→ ∂Λxn)

1
1−q̂−t(q−q̂)

∑
e∈Λxn∩EN Pp,q(e pivotal, x 6←→ ∂Λxn)


,

(9.22)

and we can integrate this in the (p,q)-space along the straight line segment starting in (p̂, q̂)
and ending in (p,q). We use the Gradient Theorem to obtain∫1

0

∇Pr(t)(x←→ ∂Λxn)dr(t) = Pp,q(x←→ ∂Λxn) − Pp̂,q̂(x←→ ∂Λxn)

6 Pp,q(x←→ ∂Λxn). (9.23)
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On the other hand we can use the expression for ∇Pp,q(x ←→ ∂Λxn) and the definition of
the line integral along with the parametrization r(t) to obtain∫1

0

∇Pr(t)(x←→ ∂Λxn)dr(t)

=

∫1
0

∇Pr(t)(x←→ ∂Λxn) · r ′(t)dt

=

N−1∑
i=1

∫1
0

pi − p̂i
1− p̂i − t(pi − p̂i)

∑
e∈Λxn∩Ei

Pr(t)(e pivotal, x 6←→ ∂Λxn)dt

+

∫1
0

q− q̂

1− q̂− t(q− q̂)

∑
e∈Λxn∩EN

Pr(t)(e pivotal, x 6←→ ∂Λxn)dt

>
N−1∑
i=1

∫1
0

(pi − p̂i)(pi + t(pi − p̂i))
∑

e∈Λxn∩Ei

Pr(t)(e pivotal, x 6←→ ∂Λxn)dt

+

∫1
0

(q− q̂)(q+ t(q− q̂))
∑

e∈Λxn∩EN

Pr(t)(e pivotal, x 6←→ ∂Λxn)dt. (9.24)

We now define the random subset of Λxn

S =
{
y ∈ Λxn such that y 6←→ ∂Λxn

}
, (9.25)

The boundary of S are the vertices of Λxn for which all neighbours that are not in S are
connected to ∂Λxn. If x 6←→ ∂Λxn, then x ∈ S , so if we sum over all possible values of S we
find

Pp,q(x←→ ∂Λxn)

>
N−1∑
i=1

∫1
0

(pi − p̂i)(pi + t(pi − p̂i))
∑
S⊂Λxn:
x∈S

∑
e∈

Λxn∩Ei

Pr(t)(e pivotal, S = S)dt

+

∫1
0

(q− q̂)(q+ t(q− q̂))
∑
S⊂Λxn:
x∈S

∑
e∈

Λxn∩EN

Pr(t)(e pivotal, S = S)dt. (9.26)

When we know S = Swe know that the pivotal edges for the event {x←→ ∂Λxn} are exactly
the edges {y, z} on the edge-boundary ∆S of S that are connected to x, i.e., y ∈ S, z 6∈ S and
x←→ y. We can sum over these edges to obtain

Pp,q(x←→ ∂Λxn)

>
N−1∑
i=1

∫1
0

(pi − p̂i)(pi + t(pi − p̂i))
∑
S⊂Λxn:
x∈S

∑
{y,z}∈
∆S∩Ei

Pr(t)

(
x

S←→ y, S = S
)

dt

+

∫1
0

(q− q̂)(q+ t(q− q̂))
∑
S⊂Λxn:
x∈S

∑
{y,z}∈
∆S∩EN

Pr(t)

(
x

S←→ y, S = S
)

dt. (9.27)
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The occurrence of the event {S = S} can be determined from the configuration of the
edges outside of S. This can be done by exploring from the boundary of Λxn similar to the
exploration process preceding (8.51). We conclude that the event {S = S} is determined by

the configuration of the edges outside S, and is therefore independent of {x S←→ y}. We find

Pp,q(x←→ ∂Λxn)

>
N−1∑
i=1

∫1
0

(pi − p̂i)(pi + t(pi − p̂i))
∑
S⊂Λxn:
x∈S

∑
{y,z}∈
∆S∩Ei

Pr(t)

(
x

S←→ y
)

Pr(t) (S = S)dt

+

∫1
0

(q− q̂)(q+ t(q− q̂))
∑
S⊂Λxn:
x∈S

∑
{y,z}∈
∆S∩EN

Pr(t)

(
x

S←→ y
)

Pr(t) (S = S)dt. (9.28)

By (9.19) we have that ψr(t)(x,Sx) > 1 for all x ∈ Sx ⊂ Zd. Using bounds on pi − p̂i and
q− q̂ we find

Pp,q(x←→ ∂Λxn) > min
{

δ√
N− 1

, ε
}∫1

0

∑
S⊂Λxn:
x∈S

ψr(t)(x,Sx)Pr(t)(S = S)dt

> min
{

δ√
N− 1

, ε
}∫1

0

Pr(t)(x 6←→ ∂Λxn)dt

> min
{

δ√
N− 1

, ε
}

Pp,q(x 6←→ ∂Λxn). (9.29)

Finally we obtain

Pp,q(x←→ ∂Λxn) >
min
{

δ√
N−1

, ε
}

1+ min
{

δ√
N−1

, ε
}

> 0, (9.30)

and the final result follows by letting n tend to infinity.

9.3 proof of finite susceptibility in the subcritical phase

We prove Theorem 6.1 (c). Suppose again q < qc(p), so that also q < q̃c(p). Therefore, for
any x ∈ V there exists a finite set Sx ⊂ V with x ∈ Sx and ψp,q(x,Sx) < 1. For a finite set
A ⊂ V define

χ(A) = max
u∈V

∑
v∈A

Pp,q

(
u

A←→ v
)

. (9.31)

Let x ∈ V and let A ⊂ V be such that A\Sx 6= ∅. Now suppose that the event x A←→ u holds
for some u ∈ A\Sx. Then there exists an open edge e = {y, z} on the boundary ∆Sx such
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that x Sx←→ y and z A←→ u using disjoint paths. We can use this observation together with

the BK inequality to bound the probability of x A←→ u:

Pp,q

(
x

A←→ u
)
6

N∑
i=1

∑
{y,z}∈
∆Sx∩Ei

piPp,q

(
x
Sx←→ y

)
Pp,q

(
z
A←→ u

)
. (9.32)

Summing the above inequality over all u ∈ A\Sx gives:

∑
u∈A\Sx

Pp,q

(
x

A←→ u
)
6
∑

u∈A\Sx

N∑
i=1

∑
{y,z}∈
∆Sx∩Ei

piPp,q

(
x
Sx←→ y

)
Pp,q

(
z
A←→ u

)
(9.33)

6 ψp,q(x,Sx)
∑

u∈A\Sx

Pp,q

(
z
A←→ u

)
(9.34)

6 ψp,q(x,Sx)χ(A). (9.35)

We subsequently add the vertices in Sx and use the trivial bound Pp,q

(
x

A←→ u
)
6 1:

∑
u∈A

Pp,q

(
x

A←→ u
)
6 |Sx|+ψp,q(x,Sx)χ(A) (9.36)

6 max
x∈V

{
|Sx|+ψp,q(x,Sx)χ(A)

}
. (9.37)

The above inequality holds for any x ∈ V , so in particular it holds for the vertex which
maximizes the left hand side. This vertex exists because the graph is quasi-transitive. We
find

max
x∈V

∑
u∈A

Pp,q

(
x

A←→ u
)
6 max
x∈V

{
|Sx|+ψp,q(x,Sx)χ(A)

}
, (9.38)

so that

χ(A) 6 max
x∈V

{
|Sx|+ψp,q(x,Sx)χ(A)

}
. (9.39)

We conclude

χ(A) 6
maxx∈V |Sx|

1− maxx∈V ψp,q(x,Sx)
, (9.40)

so that χ(A) is uniformly bounded from above. Therefore the final result follows by letting
A tend to V .
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Let i ∈ {1, . . . ,N− 1} be given. If we can prove Lipschitz continuity for q̃c(p) we immedi-
ately have proved the same property for qc(p), since q̃c(p) = qc(p) by Theorem 6.1. Similar
to (9.13), the critical curve q̃c(p) can be written as

q̃c(p) = max
x∈V

inf
k∈N

min
S⊂V∩Λxk:
x∈S

sup{q ∈ [0, 1] : ψp,q(x,S) < 1}. (10.1)

So we obtain again

ψ←p (1; x0,Sk) := sup{q ∈ [0, 1] : ψp,q(x0,Sk) < 1}, (10.2)

as in (9.14). Since q̃c(p) < 1 we have for k large enough that ψ←p (1; x0,Sk) < 1. This
immediately leads to

ψp,ψ←p (1;x0,Sk)(x0,Sk) = 1. (10.3)

Differentiating both sides to pi gives

∂ψp,q(x0,Sk)
∂pi

∣∣∣∣
q=ψ←p (1;x0,Sk)

+
∂ψp,q(x0,Sk)

∂q

∣∣∣∣
q=ψ←p (1;x0,Sk)

∂ψ←p (1; x0,Sk)
∂pi

= 0, (10.4)

so that∣∣∣∣∂ψ←p (1; x0,Sk)
∂pi

∣∣∣∣ =
∣∣∣∣∣∣∣
∂ψp,q(x0,Sk)

∂pi

∣∣∣
q=ψ←p (1;x0,Sk)

∂ψp,q(x0,Sk)
∂q

∣∣∣
q=ψ←p (1;x0,Sk)

∣∣∣∣∣∣∣ . (10.5)

Note that the denominator is not equal to zero for k large enough, because ψp,q(x0,Sk)
is a polynomial in q of degree at least 1. We will give an upper bound for this fraction
by computing upper and lower bounds for the numerator and denominator respectively.
Computing the derivative gives

∂ψp,q(x0,Sk)
∂q

∣∣∣∣
q=ψ←p (1;x0,Sk)

=

N∑
i=1

pi
∑

e∈∆Sk∩Ei

∂

∂q
Pp,q

(
x0

Sk←→ e
)∣∣∣∣
q=ψ←p (1;x0,Sk)

+ Pp,ψ←p (1;x0,Sk)

(
x0

Sk←→ e
)

.

(10.6)

If x0 ∈ e for some e ∈ ∆Sk, then Pp,ψ←p (1;x0,Sk)
(
x0

Sk←→ e
)
= 1 and the above derivative

is bounded from below by min0<i6N pi. Now assume that there is no e ∈ ∆SK such that
x0 ∈ e. Then we have

∂ψp,q(x0,Sk)
∂q

∣∣∣∣
q=ψ←p (1;x0,Sk)

>
N∑
i=1

pi
∑

e∈∆Sk∩Ei

∂

∂q
Pp,q

(
x0

Sk←→ e
)∣∣∣∣
q=ψ←p (1;x0,Sk)

.

(10.7)

50
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and we can use an inequality on the above derivative. We follow the proof of Grimmett in

[22, Theorem 2.36b]. Let A = Ak be the event that x0
Sk←→ e, then A depends on the edges

in Λx0k+1 only. Let mi be the number of i-edges in Λx0k+1 and let Oi(ω) be the number of
open i-edges for a configuration ω of the edges in Λx0k+1. Then we find

Pp,q(A) =
∑
ω

1A(ω)

N∏
i=1

p
Oi(ω)
i (1− pi)

mi−Oi(ω), (10.8)

so that

∂

∂q
Pp,q(A) =

∑
ω

1A(ω)

N∏
i=1

p
Oi(ω)
i (1− pi)

mi−Oi(ω)

(
ON(ω)

q
−
mN −ON(ω)

1− q

)

=
1

q(1− q)

∑
ω

1A(ω)

N∏
i=1

p
Oi(ω)
i (1− pi)

mi−Oi(ω)(ON(ω) −mNq)

=
1

q(1− q)

∑
ω

N∏
i=1

p
Oi(ω)
i (1− pi)

mi−Oi(ω)
(
ON(ω) −mNq

)(
1A(ω) − Pp,q(A)

)
,

(10.9)

since Ep,q[ON] = mNq. We decompose the sum over ω into two sums as follows: let Ωp be
the set of configurations for the edges in E\EN and let ωp ∈ Ωp. We denote by Ω(ωp) the
set of configurations ω ∈ Ω that satisfy ω(e) = ωp(e) for all e ∈ E\EN. Then we obtain

∂

∂q
Pp,q(A) =

1

q(1− q)

∑
ωp∈Ωp

∑
ω∈Ω(ωp)

N∏
i=1

p
Oi(ω)
i (1− pi)

mi−Oi(ω) (10.10)

·
(
ON(ω) −mNq

)(
1A(ω) − Pp,q(A)

)
So we get

∂

∂q
Pp,q(A) =

1

q(1− q)

∑
ωp∈Ωp

Cov
(
ON,1A

∣∣Ω(ωp)
)
. (10.11)

The number of open q-edges ON is an increasing random variable, and we can show that
conditioned on Ω(ωp) the random variable ON − 1A is increasing as well: let ω and ω ′ be
two configurations in Ω(ωp) satisfying ω 6 ω ′. Then if 1A(ω) = 1A(ω

′) we get ON(ω) −

1A(ω) 6 ON(ω
′) − 1A(ω

′). Since A is an increasing event, the only remaining option is
that 1A(ω) = 0 and 1A(ω

′) = 1. In that case there is at least one extra open q-edge in
ω ′ compared to ω, so that ON(ω) − 1A(ω) 6 ON(ω

′) − 1A(ω
′). So Ω(ωp) is indeed an

increasing random variable conditioned on Ω(ωp). Note that the measure Pp,q
(
·
∣∣Ω(ωp)

)
is a product measure. We obtain

Cov
(
ON,1A

∣∣Ω(ωp)
)
= Cov

(
1A,1A

∣∣Ω(ωp)
)
+ Cov

(
ON − 1A,1A

∣∣Ω(ωp)
)

> Var
(
1A

∣∣Ω(ωp)
)
, (10.12)
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where we used the FKG inequality to conclude

Cov
(
ON − 1A,1A

∣∣Ω(ωp)
)
> 0. (10.13)

This gives the inequality

∂

∂q
Pp,q(A) >

1

q(1− q)

∑
ωp∈Ωp

Var
(
1A

∣∣Ω(ωp)
)

>
1

q(1− q)
Pp,q(A)

(
1− Pp,q(A)

)
. (10.14)

Combining this with (10.6) we find

∂ψp,q(x0,Sk)
∂q

∣∣∣∣
q=ψ←p (1;x0,Sk)

>
1

q(1− q)

·
N∑
i=1

pi
∑

e∈∆Sk∩Ei

Pp,ψ←p (1;x0,Sk)

(
x0

Sk←→ e
)(
1− Pp,ψ←p (1;x0,Sk)

(
x0

Sk←→ e
))

.

(10.15)

Since x0 6∈ e, we can now bound the last factor with the probability that x0 is an isolated
vertex. We find

∂ψp,q(x0,Sk)
∂q

∣∣∣∣
q=ψ←p (1;x0,Sk)

>
1

q(1− q)

N∑
i=1

pi
∑

e∈∆Sk∩Ei

Pp,ψ←p (1;x0,Sk)

(
x0

Sk←→ e
)
(1− pmax ∨ q)

∆

=
(1− pmax ∨ q)

∆

q(1− q)
ψp,ψ←p (1;x0,Sk)(x0,Sk)

=
(1− pmax ∨ q)

∆

q(1− q)
, (10.16)

so that the derivative to q is bounded away from zero uniformly in k.
We can find an upper bound for the derivative to pi as follows:

∂

∂pi
ψp,q(x,S) =

N∑
j=1

pj
∑

{y,z}∈
∆S∩Ej

∂

∂pi
Pp,q

(
x

S←→ y
)
+
∑

{y,z}∈
∆S∩Ei

Pp,q

(
x

S←→ y
)

6 ∆
∑
y∈S

∂

∂pi
Pp,q

(
x

S←→ y
)
+
1

pi
ψp,q(x,S). (10.17)

We use Russo’s formula on the first term to find

∂

∂pi
ψp,q(x,S) 6 ∆

∑
y∈S

1

pi
Ep,q

[
# of open edges in Ei pivotal for

{
S

x←→ y
}]

+
1

pi
ψp,q(x,S). (10.18)
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If an open edge is pivotal for
{ S
x←→ y

}
then there is a path of open edges in S from x to

y. Let Wl(x,y, e) denote the set of paths in S of length l from x to y that contain the edge e.
Then we can sum over all edges e, all l > 0 and all of these paths to find∑

y∈S
Ep,q

[
# of open edges in Ei pivotal for

{
S

x←→ y
}]

6
∑
y∈S

∑
e∈Ei

∞∑
l=d(x,y)

∑
w∈

Wl(x,y,e)

N∏
i=1

p
|w∩Ei|
i . (10.19)

Let m be the number of q-edges on the path. The number of paths of length l is less than or
equal to ∆(∆− 1)l−1−m∆mN , since there are ∆ possible edges for the first edge in the path
and ∆− 1 possibilities for subsequent p-edges. Similarly there are at most ∆N possibilities
for each q-edge. Furthermore, a path of length l has at most l edges in Ei, so that the path
gets counted at most l times when we sum over e. Using these observations we find∑

y∈S
Ep,q

[
# of open edges in Ei pivotal for

{
S

x←→ y
}]

6
∞∑
l=1

l∑
m=0

l∆(∆− 1)l−1−mpl−mmax q
m

=
∆

∆− 1

∆Nq− (∆− 1)pmax(2∆Nq− 1)(
1− (∆− 1)pmax

)2(
1−∆Nq

)2
6

∆

(∆− 1)3∆2N

(
2

δ22ε
2
−
∆N

δ22ε
−

(∆− 1)

δ2ε2

)
. (10.20)

It follows that

∂

∂pi
ψp,q(x,S) 6

1

δ1

(
∆

(∆− 1)3∆2N

(
2

δ22ε
2
−
∆N

δ22ε
−

(∆− 1)

δ2ε2

)
+ 1

)
6 C ′. (10.21)

Combining (10.5) with (10.16) and (10.21) we conclude that∣∣∣∣∣∣ ∂∂pi min
S⊂V∩Λxk:
x∈S

sup{q ∈ [0, 1] : ψp,q(x,S) < 1}

∣∣∣∣∣∣ 6 C, (10.22)

for some constant C independent of k and all p ∈P . Write

ηk(p) = min
S⊂V∩Λxk:
x∈S

sup{q ∈ [0, 1] : ψp,q(x,S) < 1}, (10.23)

then the functions ηk(p) are all Lipschitz continuous with the same Lipschitz constant. By
the Arzelà-Ascoli Theorem (see for example [39, Theorem 11.28]) there exists a subsequence
kn such that

lim
n→∞ηkn(p) = η(p), (10.24)
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for some η(p) which is again Lipschitz continuous with the same Lipschitz constant C.
Furthermore,

(
ηk(p)

)
is a decreasing sequence in k. We conclude that

inf
k∈N

ηk(p) = lim
k→∞ηk(p) = lim

n→∞ηkn(p) = η(p). (10.25)

We conclude that∣∣∣∣ ∂∂pi q̃c(p)
∣∣∣∣ 6 C, (10.26)

for all p ∈P .
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This proof is analogous to the proof for inequality (9.1), however, the auxiliary point (p̂, q̂)
is defined differently. Let q̂ = (q+ q̃c(p))/2, so that the point (p, q̂) lies above the surface
q̃c(p). We have assumed that qc(p) is Lipschitz continuous, so by Theorem 6.1 we know
that q̃c(p) is Lipschitz continuous as well. Thus there exists a unique 0 6 α < 1 such
that q̃c(αp) = q̂. Define p̂ = αp and consider the line segment from (p̂, q̂) to (p,q). We
parametrise this line segment in the following way:

r(t) =

(
p̂ + t(p − p̂)

q̂+ t(q− q̂)

)
t ∈ [0, 1]. (11.1)

Furthermore, by Proposition 6.3 we know that q̃c(p) is Lipschitz continuous so that it holds
for some K > 0 that

|q̃c(p) − q̃c(p̂)| 6 K|p − p̂|, (11.2)

so that

|p − p̂| >
1

2K
|q− q̃c(p)|. (11.3)

We can now repeat the proof of Theorem 6.1 to get the same inequality as in (9.28):

Pp,q(x←→ ∂Λxn)

>
N−1∑
i=1

∫1
0

(pi − p̂i)(pi + t(pi − p̂i))
∑
S⊂Λxn:
x∈S

∑
{y,z}∈
∆S∩Ei

Pr(t)

(
x

S←→ y
)

Pr(t) (S = S)dt

+

∫1
0

(q− q̂)(q+ t(q− q̂))
∑
S⊂Λxn:
x∈S

∑
{y,z}∈
∆S∩EN

Pr(t)

(
x

S←→ y
)

Pr(t) (S = S)dt. (11.4)

By (9.19) we have that ψr(t)(x,Sx) > 1 for all x ∈ Sx ⊂ Zd. Using (11.3) and multiplying
the second term in (9.28) by 1/2K gives

Pp,q(x←→ ∂Λxn) >
1

2K
(q− q̂)

∫1
0

∑
S⊂Λxn
x∈S

ψr(t)(x,Sx)Pr(t)(S = S)dt

>
1

2K
(q− q̂)

∫1
0

Pr(t)(x 6←→ ∂Λxn)dt

>
1

2K
(q− q̂)Pp,q(x 6←→ ∂Λxn). (11.5)
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Finally we obtain

Pp,q(x←→ ∂Λxn) >
q− q̂

2K+ (q− q̂)
=

q− q̃c
4K+ (q− q̃c)

>
1

4K+ 1
(q− q̃c), (11.6)

and the final result follows by letting n tend to infinity.
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