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Abstract

This thesis concerns the problem of working with large amounts of partially non-relational or
non-structured data on lightweight clients, such as mobile devices. The amount of devices and
the data generated from them grows at an unprecedented speed, propelling the development of
new database systems. Whereas the vast majority of data transfers on the web is standardized
through for instance the JavaScript Object Notation (JSON)), storage and querying techniques for
this type of data are still very limited and do not meet today’s needs. Although a lot of research
is done in this field, when looking at (lightweight) client solutions it leaves much to be desired.

We introduce and develop ESQLite, an extension on top of the relational SQLite database which is
able to fill the void in JSON data handling. ESQLite can store and foremost query non-relational
data represented as JSON. ESQLite offers both efficient storage, as well as an XPath like query
language extension to perform path queries. Before storing, the JSON is shredded at insertion into
key-value pairs, along their tree-structure meta data. When disk space is of concern, the shredding
can also be done temporary at query time. This approach enables us to implement efficient path
querying on JSON properties. Reconstructing the JSON can be done with a tree walk or self-join
algorithm. Finally, ESQLite is able to extract relational parts from the JSON, and handle these
as relational data, further boosting performance.
Special effort is put into developing an easy to use, backwards compatible and open source avail-
able library, in the form of an Android specific wrapper. Android is the platform of choice since it
is open source, has more than one billion users, built-in SQLite support and a lot of data intensive
applications.

Using two datasets, of one which is a real world medication database, the performance of ES-
QLite is benchmarked. A set of queries and dimensions of interest is chosen, with speed and disk
space as the main focus. Whereas ESQLite insertion queries are on average an order of magnitude
slower than normal SQLite, it can handle selection XPath queries on JSON data as fast as normal
SQL SELECT queries. Therefore there is a trade off between insertion and query speed. Several
optimizations and variations are discussed, boosting the performance on average 8% to 50%.

While ESQLite as an open source library may be a useful tool for those interesting in work-
ing and querying JSON data, it may also form a starting point for further research. A lot remains
to be done; for instance improvements in determining and extracting the relational base of the
JSON, efficient reconstruction and extension of the query language.
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Chapter 1

Introduction

Nowadays (web) applications are highly data intensive and often include a combination of rela-
tional, non relational, unstructured, schema-less or sparse data. A great effort of research is put
into the storage and querying of these types of data, resulting in the development of a wide land-
scape of so called ‘Not only SQL’ (NoSQL) databases. Examples of such database systems are;
key-value stores or graph databases. In Chapter 2.1 we discuss NoSQL in more detail. Interesting
to observe is that both server-side storage as (web) transfer of data has evolved to handling this
types of data, but lightweight client side database systems are less developed in this area. Since
less effort is put into enabling lightweight mobile clients to cope with this type and size of data,
a gap falls between the capabilities of server- and client-side databases. This can be partly ex-
plained by the fact that client-side applications often request only small subsets of preprocessed
and pre-queried data from the server, the data is then used and the device does not hold a copy of
the dataset in non-volatile memory. For applications where this not possible, due to for instance
security, privacy or off-line usage, this leaves us with a complex storage and query problem. This
approach does not leverage the possibilities of database systems to their full potential.

When looking from a technological perspective, the de facto standard for storing data on mo-
bile devices is SQLite. SQLite is a relational database system based on the programming language
C. It is developed as a lightweight version of MySQL [2], able of handling relational data in an
ACID transactional way. SQLite tables have fixed schema’s describing the data. The de facto
standard for transferring data on the web is Javascript Object notation (JSON), which contrary
to what the name may suggest, is language-independent. It is a text format which contains one
or more objects of attribute-value pairs, possibly in arrays. JSON is schema-less and highly flexible.

We observe that there is a mismatch between the technologies for storing these types of data
and how its transferred and queried. Furthermore the data is often a combination of relational
and non relational data, making it hard to have good performance on both types within the same
system. For the above reasons the few existing NoSQL solutions for mobile devices are usually
unsatisfactory. This motivates to design an approach and implementation which is introduced as
the Android wrapper library ESQLite.

The remainder of this Chapter is organized as follows. Section 1.2 grasps the problem as de-
scribed into a problem statement after which we further materialize the statement into three
research questions. These questions will give guidance throughout the research. In Section 1.1
aims to make the problem more tangible by elaborating on a real world example. Afterwards we
will outline the main contributions in Section 1.3 and finally Section 1.4 will briefly elaborate on
the thesis outline.

ESQLite: A relational database solution for JSON data with applications in mobile computing 1



CHAPTER 1. INTRODUCTION

1.1 Real world example

The problem at hand is derived from a problem we came across in a company setting. The com-
pany operates in the healthcare domain of patient drug management. For that reason the company
handles a large medication database of prescription medication available in the Netherlands. This
case in particular is interesting since the data is both hierarchical (relational) as partly not rela-
tional. Whereas from a patient perspective, medication can be seen as simple items, for instance
that red round pill, the healthcare professional uses a more hierarchical approach. Medication
can be divided into substances, products and articles, each with their own characteristics. A pa-
tient who is prescribed the drug item Finimal 500MG is actually using the brand Finimal of the
substance Paracetamol with a dose of 500mG. For each substance a large variety of brands and
doses are available. Since Finimal comes in different forms, sizes and quantities the professional
also needs notion on a item level such as Finimal 500MG 30 pieces Oral. The actual hierarchical
structure is even far more complex, containing logistic information such as barcodes, clinical rules,
usage- and pricing information and so on. In Figure 1.1 the complete structure as handled is
shown.

Figure 1.1: Overview of medicine data Hierarchy

Besides this data, the company also stores other media oriented (meta)data such as information
leaflets, bijsluiters, instruction-videos and more. All of which are related to one or more items,
products or substances. This results in an complex stack of data which can be relational, non-
relational or a combination of both. To clarify, in Figure 1.2 an example of semi unstructured
data for the drug Ibuprofen is represented as a JSON document.

When storing the above data in a normal relational database such as SQLite one would have to
use a lot of tables. For all levels as shown in Figure 1.1 as well as all other subtree objects, a table
has to be created containing columns for every property. This will introduce a lot of sparse data
and a demoralized database, introducing foreign keys, joins and thus poor performance. Because
the schema-less properties of some of the subtrees would introduce a column for each attribute,
this will result in a very sparse table.

For example, since the brand name is stored at the ’trade product’ level, whereas the substance
name is stored at the ’substance’ level, Figure 1.1 shows that selecting the combination of brand
and substance name would require at least five joins. Keeping in mind that there are over 100.000
regularly updated medicines available, which have to be stored to a regular phone. One can ima-
gine that a normal relational database would not satisfy storage and query needs for this type of
data, the above therefore illustrates the need of a renewed form of JSON data handling. Please
mention that the above case is partly relational data, there is also a vast amount of completely
non-relational data use cases available.

2 ESQLite: A relational database solution for JSON data with applications in mobile computing



CHAPTER 1. INTRODUCTION

Figure 1.2: Example of JSON stored medicine data

1.2 Problem statement

The unsatisfactory storage and query methods for (partially) non-relational data on mobile devices,
as described in the previous section, leaves room for a (real world usable) solution which bridges
this gap. We underpinned this observation and placed it in context by using a company example.
In this section we will formulate a problem statement and corresponding research questions which
will form our basis to tackle the problem at hand. The effort that needs to be done can be grasped
in the following problem statement:

Current mobile storage of partially unstructured, spare or schema-less data has many
shortcomings. To tackle this problem an extension to SQLite, the de facto standard
for mobile databases, has to be designed and developed, which is capable to efficiently
store JSON, as well as SQL relational data.

Since the problem is complex and highly multidimensional it is important to first define what
boundary conditions a possible solution has to address to. First, the approach to be chosen has to
be able to efficiently store and query partly non-relational JSON data, while not detracting normal
SQL performance and query abilities. Furthermore to ensure usability we constantly have to look
at the behavior of our approach in real-world use cases and come up with an implementation that
requires minimum effort and maximum backwards compatibility. Finally disk space usage has to
maintain within reasonable boundaries.

The above problem statement and boundary conditions can be translated to the following main
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research question.

‘How and in what way can we extend SQLite, so that is equipped to efficiently store
and reason over JSON data?’

From this we can derive three subquestions, listed below.

1. Could SQLite be extended so that it can efficiently store document data?

2. Could SQLite be extended so that it can efficiently reason over document data?

3. Could SQLite be extended without effecting normal SQLite performance and usability on
relational data?

Since for different data and queries the above questions can differ in importance, Section 4.1.2
further defines evaluation criteria and Section 6.4 defines a set of queries for our experimental
evaluation.

1.3 Contributions

The main contribution of this thesis is the design of ESQLite, an open source wrapper library on
top of SQLite, especially designed for Android applications [25]. For ESQLite to come to existence
we first looked at the current shortcomings in handling JSON data and defined a general problem
statement and research questions.

The main concept within our approach is the shredding an reconstruction of JSON to key-value
tuples which can be stored relational. This storage technique enables us to query the JSON very
efficiently. We discuss several shredding techniques. We investigated at both insertion time shred-
ding as selection time shredding alongside some optimization techniques. Next we discussed three
possible JSON reconstruction approaches, again with several optimizations. At last our approach
enables us to use an XPath like Query language extension which is capable of querying JSON on
key,value and path basis.

The approach at hand is then translated to our implementation ESQLite en thoroughly evalu-
ated. Results show that while ESQLite decreases the insertion and selection speed significantly, it
shows great advantages when querying the relational stored data. ESQLite furthermore does not
effect normal SQL performance for relational data. ESQLite meets the requirements as denoted
in our research questions, and for several known limitations improvements are at hand. Based
on these observations we conclude that ESQLite turns out to, however there is much to improve,
successfully meet our demand of handling JSON data efficiently while maintaining usability.

1.4 Thesis overview

In the next chapter, Chapter 2, will give a preliminary overview of the field of interest. Concepts
as SQL, NoSQL, Mobile Storage and SQLite are discussed in more detail, providing the necessarily
background.

In Chapter 3 related work is studied. First the overall architectural approaches are discussed,
after which questions are proposed which are used to further discuss four different specific solu-
tions available.

In Chapter 4 the problem is formalized an a general (implementation in depended) approach
is discussed. First evaluation criteria are outlined, after which the necessarily notations are elab-
orated. Then from a mathematical basis all different concepts which add up to what will be the
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ESQLite framework are elaborated and materialized in the form of pseudocode. The chapter is
concluded with an architectural overview of the approach as proposed.

Chapter 5 discusses the translation of our approach to a usable implementation framework called
ESQLite. In the previous chapter different approaches for specific subproblems are outlined, which
in this chapter are translated to different implementation variations. Since one of the tree main
evaluation criteria is usability, special interest is put into this aspect in this section.

In Chapter 6 the experimental setup is discussed, elaborating on the approach, environment,
objective, chosen queries and datasets. When the evaluation setup is laid out, in Chapter 7 the
different variations of the implementations are evaluated. After some preliminary tests are per-
formed, a detailed look at the performance of JSON1 and ESQLite in specific is discussed.

Finally Chapter 8 concludes the results of the thesis, by means of the evaluation research. Also
we elaborate on suggestions for future work and limitations of the current implementation.
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Chapter 2

Preliminaries

This chapter serves as background on the topic by providing context, techniques and definitions in
the field of mobile storage, which will be used to propose a solution. For a domain expert reader
this chapter may be superfluous. In Section 2.1 we take a look at the concepts of SQL and NoSQL,
after which in Section 2.2 we take a brief look at the field of mobile storage in specific.

2.1 SQL and NoSQL

Database management systems (DBMS) can roughly be divided in relational and non-relational
databases. The Relational databases, as first described by Edgar Frank Codd [1], have been
dominant for the last three decades. But the fast increase in the amount of data generated pushes
relational database systems beyond their limits. Researchers therefore looked at other approaches
that can meet the modern day requests, resulting in the rise of what is called Not only SQL or
NoSQL database solutions. For a complete survey on NoSQL data-stores one could look at the
work of Jing et al [3].

2.1.1 SQL

The rational approach, gained popularity by its simplicity of storing rows representing instances
of an entity and columns representing the corresponding attribute values describing each instance.
Also the Structured Query Language SQL, is one of the competitive advantages of relational RD-
BMS. SQL is a declarative language, so how data is stored on the actual system is abstracted
from. The programmer has no notion of the data storage layer.

Relational database’s have several strong features. The most important one is ACID transactions,
which guarantee the availability, consistency, isolation and durability of the database transactions.
ACID is a set of properties which guarantee that transactions in a database system maintain the
databases integrity. Atomicity requires that transactions are all or nothing, so no partial trans-
action is possible. Consistency ensures that every given transaction will bring the database from
one valid state to another valid state. Isolation ensures that concurrent transactions give the same
final state as executing these states in serial, and finally durability ensures that committed trans-
actions remain. ACID was introduced by Jim Gray in the 1970s [9]. For these properties to be
possible relational databases demand strict schema’s to which the data has to adhere. Relational
databases are also normalized, meaning that data is only stored once, ensuring data consistency
and integrity while maintaining storage needs to a minimum.

Relational databases also have several shortcomings, most notably listed below:

1. To maintain a RDBMS a lot of specific domain knowledge is needed to facilitate a specific
programming language to interact with SQL.
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2. Scaling and distribution of RDBMS is difficult, particularly when scaling to multiple hard-
ware nodes or physical locations is needed.

3. The data has to adhere to a strict schema. Schema-less data such as log-files are not easy
to store and query.

4. ACID transactions introduce latency and computational bottlenecks.

5. New loosely defined data formats such as JSON, GSON, XML are not supported by RDBMS
and are all viewed as simple (non queryable) text.

6. SQL queries can become very complex and non-intuitive. There is a mismatch between
application logic and database logic.

2.1.2 NoSQL

NoSQL database systems address the shortcomings of relational databases. The fast growing
amounts of data, web 2.0 like applications and large amounts of user-generated content foster the
development of alternatives to relational databases. One of the first real world implementations
of NoSQL was Googles BigTable [10]. There are three common types of non relational RDBMS
systems: Key-value stores, which store information as key-value pairs in associative arrays. Graph
databases which store interconnected objects as nodes and edges. Finally column-oriented stores,
which store data into columns rather than into rows. These systems are particularly strong in
not only storing relational data but also log-files, binary, graph, unstructured, XML, JSON and
document data.For the scope of this project we will not go into details regarding NoSQL techniques.

The main advantages of NoSQL are; the massive scalability, distributed architecture, possibil-
ity to store schema-less data, native querying and coping with high volumes of read/write data.
NoSQL fills a void in the database landscape, especially when ACID transactions are of limited
interest.
The most notable shortcomings of NoSQL are listed below:

• NoSQL typically has no ACID transactions and a trade-off between availability, consistency,
integrity and distributivity has to be made, making them less suitable for all round tasks.

• The concept is relatively young and therefore limited standardization and corporate ready
solutions are in place.

• The underlying models differ greatly between different solutions, making interoperability
difficult.

Imported to note is that while NoSQL fills some of the shortcomings of RDBMS both fill a different
part of the changing database landscape.

2.2 Mobile storage

Whereas most database systems are hosted on large servers or computers, the upcoming amount
of lightweight clients such as smart-phones, tablets and other smart devices increase the need
for lightweight mobile data-stores. Especially since these kind of devices fulfill an interface role
between user, other connected devices and the Internet. Mobile devices are often equipped with
a large amount of sensors and are capable of registering large amounts of data.

The spectrum of mobile devices is very broad, varying from tables, drones, phones to watches. In
this research we focus on mobile phone clients equipped with a fully functional operating system
such as Android, iOS, Windows or Linux. For these platforms the database system SQLite is the
most dominant solution, on which we will elaborate further in the next section.
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2.2.1 SQLite

SQLite is a relational database system based on the programming language C. It is developed as
a lightweight version of MySQL, capable of handling relational data with ACID properties is fully
supported. SQLite tables have fixed schemes describing the data, and in that regard can be seen
as a traditional relational database system (RDBMS). However there are some great differences
between SQLite and other RDBMS. The most important are outlined below:

• SQLite is a self-contained single file based database, making it enormously portable. SQLite
as a whole is 0.3 MB in size.

• SQLite’s single file strategy makes it possible to load the entire database into memory.

• SQLite does not offer security, user management, or multi-threading support.

• SQLite only supports a single write operation at a given time, and has no concurrency control
whatsoever.

• SQLite has a zero-configuration policy, creating a database is a single action.

• SQLite has no server-client model, and directly interacts with the operating system.

• SQLite has a very flexible variable-length record system which stores rows as simple linked
lists.

• SQLite supports fewer data-types compared to a fully fledged RDBMS.

Below in Figure 2.1 a schematic overview of SQLite is given, explaining the basic architecture of
SQLite consisting of three parts; The core, backend and SQL compiler. The core contains the
interface with application logic, SQL processor and virtual machine. Whereas the SQL compiler
consists of a tokenizer which splits up the queries, parser and code generator converting the query
to byte code. The backend assures the representation and storage of the data by means of a B-tree,
pagination system and OS interface. For a detailed explanation of the architecture, one could look
at [12].

2.2.2 Android OS

Android is widely know as an mobile operating system developed by Google. Android runs on
more then one Billion devices worldwide and its currently last stable release is Android 6.0. For
the scope of this report a detailed android explanation is superficial, but some technical details
will be shortly explained below.

Figure 2.2 shows that Android runs on a Linux kernel written in C. On top of the kernel a
wide variability of libraries is deployed, which handle for instance media, video processing and
network communications and can be accessed through Application Programmer Interfaces. One
of these libraries is SQLite. Furthermore on top of the kernel the Android runtime is deployed.
This is a Java virtual machine which is capable of compiling Java to byte-code on runtime. This
immediately sheds light on the Java oriented top level in which the application framework and
all applications are accommodated. Whereas Java from a programmer perspective is almost com-
pletely Java oriented, the underlying core including SQLite is programmed in C.
Android applications run in a Sandbox on top of the Android framework. This ensures that applic-
ations have no access to the rest of the system and can be allocated a fixed amount of resources,
the latter one is important for testing purposes.
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Figure 2.1: Architectural overview of SQLite [12]

Figure 2.2: Architectural overview of Android [11]

10ESQLite: A relational database solution for JSON data with applications in mobile computing



CHAPTER 2. PRELIMINARIES

2.2.3 JSON

JSON, which stands for Javascript Object Notation is an open standard for transmitting data
objects in the form of attribute-value pairs. The standard is human readable and does not force
a certain schema or language. Key-value pairs can be of type text, int, boolean, null, object or
array, and the latter two can be of any of these types, facilitating nesting. JSON is first introduced
by Douglas Crockford and at the time of writing JSON is the most common data transfer format
used on the Internet [14]. In Section 4.2.1 we further elaborate on the notation of JSON.
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Chapter 3

Related work

This chapter enables to place our project in the context of previous performed research and de-
velopment. In recent years a lot of research is done which looked beyond the scope of traditional
Relational Database Systems (RDBMS). Resulting in the development of NoSQL on one side and
on the other side extensions and enhancements to RDBMS. However most of the research is fo-
cused on non-relational XML, document data or data in general, less is known about how to cope
with JSON data. In this section the current state of art is assessed. For the scope of this chapter
we look primarily at JSON enabled RDBMS, but also take a look at XML and document-data
oriented studies, since there is significant similarity.

First a brief classification on the architectural approaches which are currently available is done in
Section 3.1. Architectural approaches of interest are shredding, native storage, JSON type stor-
age and JSON mappers and layers. We then focus on four specific solutions derived from these
approaches in Section 3.2. In detail we discuss the Argo framework, native storage, PostgreSQL
and MySQL and finally JSON1. Later on these solutions are used as a source of inspiration when
designing our own approach to address the problem of JSON storage.

3.1 Overall architectural approaches

At architectural level there are several different approaches to storing and querying JSON data,
the most common are outlined below. Each approach has different strengths, weaknesses and use
cases, which will be elaborated very briefly. For a more extensive analysis and benchmarking one
could look at referred studies.

Shredding One of the popular approaches in handling JSON is decomposing the JSON objects
into tables containing id-name-value triples. This is referred to as shredding. Examples of this ap-
proach are Argo, and LegoDB [4] [6]. We will discuss Argo in detail in the next section. Shredding
is efficient in querying specific properties of objects, but is extremely slow when documents have
to be inserted or reconstructed. To reconstruct a document multiple tables have to be accessed
and a number of self-joins are needed.

Native (blob/text) The second approach is storing JSON as a string in a native blob type or
text (variation is varchar) type. In its simple form this approach does not need any RDBMS
modification and the application layer takes most of the heavy lifting. Storing as a blob is the
fasted solution since it has no further translation steps, but comes with the price of limited
query possibilities, because most RDBMS systems can only perform searches on text data-types.
We discuss this in more detail in Chapter 5. This approach is less I/O intensive compared to
shredding and therefore is very fast, but offers very limited query and index capability. All selection
querying has to be done in memory or application logic, limiting the maximum document size.

ESQLite: A relational database solution for JSON data with applications in mobile computing13



CHAPTER 3. RELATED WORK

This approach offers full flexibility in term of schema-less storage. Since this approach does not
require any changes to the RDBMS it is often used as a quick fix.

native JSON type To enhance query and index capabilities the RDMBS can be extended with
the introduction of a native JSON type. The most well known example is PostgreSQL which
recently introduced the support of such a native JSON type. [15].

JSON functions, mappers and layers Another approach to enhancing the functionality of a
JSON enabled RDBMS is by defining custom functions. The best known example is the recently
introduced MySQL JSON support [16]. Besides custom functions also custom operators and
interfaces can be implemented resulting in more complex mappers and layers. There are several
projects available such as NoSQLite, Ecstortive or MongoLite, which are SQLite and python based
document stores [18] [19] [17]. Both SQL and SQLite support custom functions, which enable
developers to write python or C functions to, for example, verify, import, export or minimize
JSON. For the scope of this research no in-depth look at index optimizing techniques as proposed
by some of these studies is taken.

Interpreted One might store JSON in a shredded form to avoid null values for sparse data.
Sparse data exists of records with many attributes that are null for most records. One could
choose a ’vertical’ storage approach such as shredding, but as mentioned this comes with a price
regarding performance. Another approach is to extend the RDBMS tuple storage format to allow
the representation of sparse attributes as interpreted fields. Interpreted storage differs from normal
SQL storage in that the association between a data value and its attribute is represented by a tag
in the data value. An interpreted record has a header containing relation-id, tuple-id and tuple
length. When a value for an attribute is known the record than contains the attribute identifier,
length and value for this attribute. The attribute identifier corresponds to an attribute catalog.
Interpreted storage gives more efficient and flexible querying. In the studies of Beckmann et all a
PostgreSQL based implementation is discussed [7].

3.2 Specific solutions

In the previous section four distinctively architectural approaches to storing and querying JSON
are described. In this subsection several specific implementations will be discussed. To streamline
the discussion, the following four questions will be addressed.

1. What is the query language or API?

2. How and in what way is the query language related to the RDBMS?

3. How is the JSON data stored and/or represented in the RDBMS?

4. Where is the solution located in the database engine?

3.2.1 Argo (shredding)

In the paper of Craig Chasseur et al, an automated mapping layer for storing and querying JSON
data in a RDBMS called Argo is proposed [4]. Argo claims to provide all advantages of document
stores while providing higher performance and richer functionality. It supports ACID transactions
and native joins, which normal document stores are not capable of. Argo consist of two main
components; the mapping layer to convert JSON objects to relational triples and vice versa and
a SQL like JSON query language called Argo/SQL. Argo is benchmarked using NoBench which
shows some interesting results. Argo performs very well compared to MongoDB when the store
contains less than four million records. Especially insert and selection queries are fast, up to 70
times faster then MongoDB. Join queries however are significantly slower.
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What is the query language/API? Argo introduces Argo/SQL which is a SQL like query
language for collections of JSON objects, it supports INSERT, SELECT and DELETE. For the
SELECT and DELETE queries argo is capable of evaluating simple predicates such as mathem-
atical operators or LIKE patterns. Finally Argo is capable of doing single INNER joins, but it
does not support complex joins. Below is a simple example of a Argo/SQL INSERT.

1 INSERT INTO co l l e c t i on name OBJECT{ . . }

Listing 3.1: Argo notation of INSERT query containing JSON

How and in what way is the query language related to the RDBMS? Argo is a mapping
layer on top of the RDBMS. When performing an INSERT query it begins as a SQL transaction
on the RDBMS. Argo then recursively walks through the structure of the JSON document while
executing INSERT statements on the underlying table structure. When finished, Argo commits the
transaction to the RDBMS. When performing a SELECT query on Argo, it fetches the matching
object ID’s and stores these in a temporary table. Then it fetches all attribute values from the
desired tables. The paper of Chasseur et all discusses the techniques used in more detail [4].

How is the JSON data stored/represented in the RDBMS? Argo decomposes JSON
objects to triples. for all JSON attributes a record with a objid, key and value column is created.
Argo uses three tables, one for each primitive type of JSON namely; string, number and boolean.
Below in Table 3.1 the decomposition of the given JSON document in 3.2 is shown:

1 {
2 ”name ” : ”” ,
3 ”age” : 35 ,
4 ” k ids ” : [
5 {
6 ”name” : ”Michael ” ,
7 ”age” : 5
8 }
9 ]

10 }

Listing 3.2: JSON data example as passed to Argo.

Objid keystr valstr
1 name George
1 kids[0].name Michael

Objid keystr valnum
1 age 35
1 kids[0].age 5

Table 3.1: Argo table representation of JSON data.

Where is the solution located in the database engine? Because argo is a mapping layer,
it sits on top of the existing RDBMS. The actual query engine and storage layer is not altered.

3.2.2 Native storage

The studies of Liu et al considered native storing of JSON data within a RDBMS, the study is
based on three architectural principles for storage, querying and indexing [5].
For storage, the JSON data is stored natively without shredding it into relational form. Because
JSON objects are schema-less they are stored as one aggregated object in a column without any
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decomposition.
The second architectural principle regarding querying considers SQL as a set oriented query lan-
guage by extending SQL with a JSON path language based on XPath. This path language is able
to query over a collection of JSON documents.
Finally the study proposes a partial schema-aware indexing architecture. when Common JSON
attributes, sub-documents or members can be identified in a given collection this can be seen as
a partial schema. On top of the JSON collection one could then store a secondary structure in
the form of a B+ tree representing this partial schema. Lui et al. did a benchmark on Argo and
concluded with a solution which is a factor two more efficient in runtime, since no objects have to
be build from triples.

What is the query language/API? When storing JSON natively no query language exten-
sion is needed, however SQL then offers no support for querying SQL other then as plain text.
SQL supports custom data-types and SQL functions, which one could use to further enhance func-
tionality. For instance Lui et al mention the introduction of an IS-JSON function which checks if
the JSON is syntactically correct.

The Query language is extended to SQL/JSON by introducing a set of operators and functions
which embed a JSON path language. SQL/JSON is derived from the ISO SQL/XML standard.
Functions as JSON-EXISTS, JSON-VALUE JSON-TABLE are introduced. JSON-TABLE for in-
stance expands a JSON array into a set of relational rows with each corresponding to an element in
the array. In this way JSON-TABLE bridges between JSON and relational data. JSON-VALUE
is used to extract scalar values from JSON and cast them to corresponding SQL types. Also
JSON-QUERY is capable of extracting parts of JSON and create new JSON objects. Finally
default SQL INSERT, DELETE, and UPDATE statements can be used.
The SQL/JSON path language is similar to XPath and JsonPath [20] [22].

How and in what way is the query language related to the RDBMS? SQL/JSON is an
extension of SQL. Lui et al propose a stream processing architecture which feeds JSON streams to
a SQL/JSON path language processor. No further detail on the implementation of the processor
is given in the paper.

How is the JSON data stored/represented in the RDBMS? A collection of JSON objects
is stored as records in a table with a JSON column. The column type can be varchar, blob or raw
in which the JSON is natively stored.

Where is the solution located in the database engine? The SQL/JSON functions can be
implemented as custom functions or as built-in functions in the core of the specific RDBMS.

3.2.3 PostgreSQL and MySQL

PostgreSQL, together with MySQL are the most well known RDBMS, since PostgreSQL 9.2 JSON
it has a natively supported JSON data type. This enabled more efficient storage rather than just
storing json as blob or varchar. This version also introduced a few JSON specific functions, for
instance is-valid-json, array-to-json and row-to-json. As of the release of 9.3 a more complete
JSON support is introduced.
MySQL only recently introduced JSON support. In contrary to PostgreSQL, no native JSON type
is introduced but rather functionality is added on top of the varchar data type. Microsoft chose to
do this for compatibility and migration reasons. Likewise to PostgreSQL it has custom functions
and operators. MySQL is also capable of exporting, importing and transforming between JSON
and relational form and next to that has indexing capabilities, based on B-trees.
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What is the query language/API? For both MySQL as PostgreSQL the normal SQL query
language is extend with new functions and operators. PostgreSQL also introduced a native JSON
data type.

How and in what way is the query language related to the RDBMS? The same as in
normal MySQL and PostgreSQL databases.

How is the JSON data stored/represented in the RDBMS? The JSON data is in both
cases stored as text in a table column. For the indexing capabilities of MySQL also system tables
for storing B+ trees are generated.

Where is the solution located in the database engine? The solution is implemented on
query engine level. The query planner, optimizer and executor are improved to handle the new
functionality.

3.2.4 JSON1

JSON1 is a SQLite extension that implements thirteen functions capable of managing JSON data.
Compared with solutions above JSON1 is quite limited, however it is one of the few JSON enabled
implementations already build on SQLite. The ’1’ annotation is on purpose, since the developer
expects new extensions to follow shortly.

What is the query language/API? The query language is an extension on SQL. Examples
of implemented functions are json, which verifies and minifies a JSON string. Json-array, which
returns a json array and json-extract, json-insert, json remove. For example, query 3.3 below uses
json-extract to extract the titles of all entries that contain the given tag. More examples can be
found in the SQLite documentation.

1 SELECT j s on e x t r a c t ( ” t1 ” . ”data” , ’ . t i t l e ’ ) AS t i t l e FROM ” entry ”

Listing 3.3: JSON1 notation of INSERT query containing JSON

Furthermore virtual table functions are available such as json-each and json-tree which are capable
of performing tree walks on objects. When a table stores zero or more phone numbers as a JSON
array object called user.phone, one could use json-each to find all users have some specific area
code.

1 SELECT DISTINCT user . name
2 FROM user , j s on each ( user . phone )
3 WHERE json each . va lue LIKE ’704−% ’ ;

Listing 3.4: JSON1 notation of SELECT query containing JSON

How and where is the query language related to the RDBMS? The same as normal
SQL.

How is the JSON data stored/represented in the RDBMS? JSON data is stored as type
text. No new type is introduced, so that backwards compatibility is ensured.

Where is the solution located in the database engine? JSON1 can be loaded as an
extension to the core of SQLite.

3.2.5 Others

Below a list of other less known projects is given. These are only briefly described.
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NoSQLite NoSQLite is lightweight, document-oriented and based on on Python and SQLite.
It provides a very lightweight and easy way to use SQLite and has analogies to MongoDB [18].

MongoLite MongoLite is a schema-less database on top of SQLite. It is referred to as ’What
UnQLite is to MongoDB as SQLite is to PostgreSQL’ [17].

JsonLite JsonLite is a wrapper. Since it is very limited and has no query interface, no further
investigation is performed, but an interested reader could take a look at the documentation [21].
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Our approach: ESQLite

In the previous chapters we discussed the problem of storing and querying partially unstructured,
sparse or schema-less data. In this chapter we will introduce ESQLite as our approach for solving
the problem at hand. To support decision making in terms of our approach we will first discuss
design criteria in Section 4.1. We aim to grasp all design criterion and make the best possible
combination, adding up to the ESQLite framework. When addressing the problem one has to look
at all three aspects of the database system and their mutual interaction. These are; the database
storage engine, query engine and query language. Therefore in Section 4.2 we look at the storage
aspect, in Section 4.3 we investigate the desired query language extension, and finally in Section
4.4 focuses on the query engine. Note that this chapter does not concern implementation design
decisions, this will be discussed in Chapter 5.

4.1 Design criteria

Before we can propose an approach to the problem at hand, the design criteria it has to meet will
be discussed. In Section 4.1.1 we elaborate on use cases on which our approach has to address to.
In Section 4.1.2 we then determine evaluation criteria that form the basis of our approach. The
evaluation criteria are closely aligned to the research question as opposed in Chapter 1.

4.1.1 Use cases

As there is a large amount of use cases to elaborate on, we will focus on cases closely aligned
to our field of studies. First two generic cases are addressed, followed by more specific use cases
derived from the Drug database use case used in this research.

One-to-may data When inserting a large amount of records to a single relational table, SQLite
is able to batch insertions into a single transaction. This means a number of records is written
to the disk at once, rather then each record separately. This ensures that SQLite is capable of
handling large amounts of insertions reasonably fast.

When inserting relational data which has to be split over two tables, A and B linked with a
foreign key constraint, a problem arises. Batching the insertions becomes impossible since SQLite
first has to store the first part in table A and use the ID of that item to construct the foreign key
as saved in table B. This results into a decrease of performance. Also lookups of data become
slower since joins over multiple tables are needed. An example of this type of data is a system
which logs all sessions of a user on a certain software system. The database then stores users in a
user table and sessions in a a session table. There is a foreign key relation between one user and
zero or more sessions.

ESQLite: A relational database solution for JSON data with applications in mobile computing19



CHAPTER 4. OUR APPROACH: ESQLITE

Hierarchical data The above use case elaborates on a one-to-may relation. We can further
generalize this problem when data is highly hierarchical, as we saw for our real-world medicine
example in Section 1.1. Relational storing of this data is done over multiple tables, as well as
querying which takes multiple joins. The level of hierarchy within the data determines the number
of joins needed.

Storing sparse properties When certain data-objects or items have a lot of possible properties,
but only a few of them are used for each specific item, the result is very sparse data. For instance
every car has some properties such as the brand, type, color, and license plate. But one specific
car can have one or more of the following; stereo installation, navigation, parking sensors, climate
control, and so on. When storing this in a normal relational table, one would get a very high
number of columns containing only null values. Often a workaround is to make a separate table
which stores triples with a parent identifier, property-name and property-value. When single
column data has a large set of sparse properties, the storage in a single table results in a large
amount of null values, which occupies a lot of disk space.

Non-relational data When handling (partially) non-relational data, often precisely this part
of the data, stored as JSON, is of interest to query. SQL does not support querying on this
data, other then searching for specific substrings by use of the LIKE clause. When for instance
a specific key-value pair within the document at a specific location (path) is of interest, path
querying techniques are needed.

4.1.2 Evaluation criteria

Since we now have an understanding of the use cases of interest, it can be concluded that the
landscape of data storage and handling is very complex. For this reason a proposed solution can
never be equipped to offer an one stop shop. For the purpose of this project we define four main
evaluation criteria ro implement and evaluate a solution. These evaluation criteria are derived
from our research question as stated in Section 1.2 and are outlined below.

Runtime performance The first and most important criterion is performance. Since this is
rather abstract, we will focus on the runtime performance in specific. Important to note is that
this pure statistical metric may turn out to be a inadequate proxy for the overall performance as
experienced by the user, and therefore some additional criteria have to be defined. In relational
database systems the four elemental operations Create, Read, Update and Delete can be distin-
guished, alongside with other more complex statements. For the scope of this project we focus
on an approach which tries to satisfy performance requirements to these four operations, whereas
the focus on for instance Join operations is left as future work.

Disk space performance The second most important criterion is the disk space usage. Since
databases handle vast amounts of data, their disk footprint can grow rapidly. While this is a key
element of interest for database systems, it is even more important for our desired implementation
explicitly designed for lightweight mobile devices. Runtime versus disk space performance are at
odds, which will be extensively discussed in the coming sections.

Query Capabilities The third evaluation criterion is regarding the query possibilities of the
JSON document part. Though SQL turns out to be very suitable to query relational data, it
offers limited to none support for querying on the JSON part of the data. Therefore the approach
of choice has to address the ability to query the JSON data efficiently. This criterion is tightly
connected to the first two.
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Usability The last criterion we take into account is from a non technical perspective. Our
approach has to maintain high usability. Meaning that it can be used easily by programmers,
is compatible with current available implementations and works in a real world situation. The
latter one implies that our approach has to perform well over a broad spectrum of use cases and
data-types, providing extra challenges to the runtime and disk space criteria as denoted above.

ACID Since normal relational database systems as investigated in the related work chapter are
all ACID database systems, the requirement of a full ACID database system remains unchanged.

4.2 Storage

The first aspect of interest is the storage of JSON data within SQLite. The most efficient way
of storing JSON data, in terms of disk size and insertion speed, is as native blob. As clarified in
Chapter 3, this also eliminates all query possibilities on the JSON data, so this approach does
not satisfy our query capability evaluation criterion. Another approach is to shred the document
into tuples, introducing advance query possibilities. We chose to use this technique and tackle the
subsequent performance and size drawbacks by implementing several optimizations. In Section
3.2.1 we investigated Argo as a solution that uses shredding, which will be of inspiration to our
approach. We will now explain how JSON shredding is done, and how it can be optimized.
Before we can dive into more detail we first walk trough some basic notations.

4.2.1 Key-value pair notation

Before we dive further into our approach we first discuss some basic notations regarding SQL
and JSON document data. As shown in the previous chapter, JSON data can be represented as
document entities. A given JSON document consists of a set of m (possibly nested) key value
pairs, denoted as follows:

We now have a clear understanding of the use cases and the evaluation criteria our approach
has to address to, which will be used throughout the coming sections.

{k1 : v1, k2 : v2, ....., km : vm} (4.1)

{k1 : {kn1 : vn1, kn2 : vn2, ....., knm : vnm}, k2 : v2, ....., km : vm} (4.2)

As can be seen in equation 4.1 and 4.2, key-value pairs can be both single atomic values as well
as nested key-value sets.

The JSON syntax denotes three atomic types and two complex types. In table 4.1 all JSON
types are listed.

Type Description
Number A signed decimal number
String A sequence of zero to more unicode characters
Boolean 1 bit integer, having values {true,false}
Null

Table 4.1: Overview of JSON atomic data-types

Besides these atomic data-types, the JSON syntax contains the type object, which is an unordered
collection of key-value pairs, this is shown in equation 4.3. Finally JSON contains an array object,
which is an ordered list of key-value pairs, shown in equation 4.4.

JSONobject = {k1 : v1, k2 : v2, ....., kn : vn} (4.3)

JSONarray = [JSONobject1 , JSONobject2 , ..JSONobjectn ] (4.4)
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In equation 4.5 we show a set of atomic key-value pairs in set notation and their translation to a
set of 2-tuples in 4.6.

{k1 : v1, k2 : v2, ....., km : vm} (4.5)

{(k1, v1), (k2, v2), .., (km, vm)} (4.6)

Since JSON documents often have a highly nested structure, one could represent a JSON object
as a tree of key-value pairs, all key-value pairs containing an atomic value represent leaf nodes,
whereas the non atomic values; object and array are intermediate nodes. In Figure ?? a simple
tree representation of a document is given.
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To conclude this section we showed that a JSON document consists of a set of key-value pair
of either atomic or complex types. A given key-value pair can be expressed as a set, tuple or
(sub)tree.

4.2.2 Shredding

As described in Section 4.2.1 a JSON document can be denoted a set key-value pairs. To be able
to fit the nested structure of a document into a relational form, we shred a document into 4-tuples
as shown in equation 4.7.

{k1 : v1} → (id, parent, key, value) (4.7)

While shredding the document into 4-tuples, the internal structure of the document has to be
stored as well. Since in Section 4.2.1 we show that a document can be expressed as a tree, we
therefore store the key, value and parent pointer of a given key-value pair.

We define two functions Fshred and Kshred to shred a nested document while preserving its struc-
ture this is done by storing parent pointers. Performing 4.8 and 4.9 on a given document returns
te union of all its child tuples. 4.9 returns a tuple for atomic JSON types and the union of the
tuple with a recursive call on Fshred for complex types. The recursiveness of the combination of
4.8 and 4.9 ensures that the parent id of a nested tuple is stored within the tuple.

Fshred(JSON) = ∪iKshred(vi) where vi ∈ JSON (4.8)

Kshred(vi) =

{
(id, parent, key, value) if ki is atomic

(id, parent, key, null) ∪ Fshred(vi) if ki is an object
(4.9)

The above set notation can be rewritten to pseudocode as shown in listing 4.1.

1 func t i on shred ( ob j e c t )
2 f o r ( i n t i < keys . count )
3 key = keys [ i ]
4 va lue = va lue s [ i ]
5 i f ( va lue ins tanceOf JSONObject )
6 shred ( va lue )
7 s t o r e : : ( id , parents , key , nu l l )
8 e l s e i f ( va lue ins tanceOf (number | boolean | s t r i n g | nu l l ) )
9 s t o r e : : ( id , parents , key , va lue )

Listing 4.1: Pseudocode representation of shred function

Since JSON supports both unordered lists of key-value pairs in the form of JSONObjects, as
well as ordered sets of key-value pairs in JSONArrays, the above is not sufficient. The following
pseudocode in Listing 4.2 gives the array support needed to shred JSON.

1 func t i on shred ( ob j e c t )
2 f o r ( i n t i < keys . count )
3 key = keys [ i ]
4 va lue = va lue s [ i ]
5 i f ( va lue ins tanceOf JSONObject )
6 shred ( va lue )
7 s t o r e : : ( id , parents , key , nu l l )
8 e l s e i f ( va lue ins tanceOf JSONArray)
9 shredArray ( va lue )

10 s t o r e : : ( id , parents , key , nu l l )
11 e l s e i f ( va lue ins tanceOf (number | boolean | s t r i n g | nu l l ) )
12 s t o r e : : ( id , parents , key , va lue )
13
14 func t i on shredArray ( array )
15 f o r ( i n t i < array . l ength )
16 shred ( array [ i ] )

Listing 4.2: Pseudocode representation of extended shred function
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There is another approach to shredding. This approach does not need both the storage of the
tuples ID and parent ID, but only an unique ID for every nesting level. This means that siblings
have the same ID, but parent-child relations have a distinct ID. Tree reconstruction is still possible
in this case, but it has a higher runtime. On the other hand this approach reduces the storage
needs. Because of the higher runtime, this approach is not further investigated in this research.

Shredding can be done both at insertion- and selection-time of a given document, both of which
will be evaluated in Chapter 7.

4.2.3 Reconstruction

This section concerns the reconstruction of tuples to JSON documents. There are two main
strategies to distinguish here; first is the reconstruction of the document on query level, and
second the reconstruction on application (in code) level.

IN QUERY A commonly used reconstruction method for JSON documents from tuples is done
through self-joins. Since all tuples are stored as rows in the same table, in order to reconstruct
the tree one has to join all tuples to form that table. In the paper of Roijackers, this approach is
discussed in detail [8]. Below in Listing 4.3 a query illustrating this reconstruction technique is
shown for a simple JSON object.

1 SELECT shred 0 . key , shred 0 . value , . . . shred n . key , schred n . va lue
2 FROM shred as shred 0
3 LEFT JOIN shred as shred 1
4 . .
5 LEFT JOIN shred as shred n
6 WHERE shred 0 . id = <id>

Listing 4.3: Example of IN QUERY reconstruction

The example of the simple selection in Listing 4.3 shows the complex nature of this reconstruction
method, forcing a large number of expensive join operations on the same table. This approach
can be further improved when the root and tree level of each tuple is stored, removing the need
for multiple self joins as shown below.

1 SELECT shred0 .∗
2 FROM shred as shred 0
3 WHERE shred 0 . root = <id>
4 ORDER by l e v e l

Listing 4.4: Example of IN QUERY reconstruction

However the above seems to be quite efficient, still a lot of post processing needs to be done to
reconstruct the JSON tree structure, bringing us to the concept of IN CODE reconstruction.

IN CODE To overcome the problems of the previous mentioned IN QUERY approach, the
IN CODE approach fetches the required tuples form the database and reconstructs the object in
application logic. The main advantage of this approach is that complex document reconstructions
are divided in separate database calls, and the object can be build op stepwise and intermediately
stored in memory. Needles to say this approach introduces more overhead in the application logic.
In Listing 4.5 a pseudocode example of IN CODE reconstruction is shown:

1 func t i on r e c on s t ru c t ( ID)
2 ob j e c t = new JSONOBject
3 shred = database . get (WHERE parent = ID)
4 f o r ( i n t i < keys . count )
5 key = keys [ i ]
6 va lue = va lue s [ i ]
7 i f ( va lue ins tanceOf JSONObject )
8 ob j e c t . put ( key , r e c on s t ru c t ( shred . id ) ) ;
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9 e l s e i f ( va lue ins tanceOf (number | boolean | s t r i n g | nu l l ) )
10 ob j e c t . put ( key , va lue )
11 re turn ob j e c t

Listing 4.5: Pseudocode representation of reconstruct function

4.2.4 Optimizations

As pointed out in the beginning of this chapter; while the approach of shredding and reconstruct-
ing a JSON gives us vast query possibilities, it has a severe impact on the performance and space
requirements. Both will be examined in Chapter 7. For this reason several optimization tech-
niques are discussed in this section. The first optimization technique is relational base schema
storing, followed by extending the tuples with additional meta data. Note that the IN CODE
reconstruction technique of the previous chapter can be seen as a type of the first optimization.

Relational base schema

JSON documents are in essence schema-less. However in most use cases the data seems to
have some sort of schema overlap in between them in the form of recurring objects or key-value
pairs. We call this the relational base schema. Given a set of two documents, as showed below:

1 {
2 f i rstName : ”Edwin” ,
3 lastName : ”Hermkens” ,
4 grades : [
5 {”0” : 10} ,
6 {”1” ,6}
7 ]
8 ” graduated ” : t rue
9 }

Listing 4.6: JSON relational base - 1

1 {
2 f i rstName : ”Bob” ,
3 lastName : ”Wil l iams ” ,
4 grades : [
5 {”0” : 8} ,
6 {”1” ,6}
7 {”2” ,7}
8 ]
9 }

Listing 4.7: JSON relational base - 2

In the above example one can see that both firstName and lastName occur in all documents,
whereas graduated only occurs in one and grades has different number of child objects. We
can therefore derive a common base schema for this set of two documents, containing the keys
firstName and lastName.
Since this data is relational, it leaves room to store these properties as additional relational columns
outside of the JSON document. For the scope of this thesis we limit ourselves to only extracting
a relational base on the root level of a document. Equation 4.10 Fbase(JSON) and Equation 4.11
Kbase(vi) are shown below and can be used for extracting the relational base of a document. 4.10
takes the union of all child objects, then 4.11 returns every tuple that is of an atomic type.

Fbase(JSON) = ∪iKbase(vi) where vi ∈ JSON (4.10)

Kbase(vi) =

{
(id, parent, key, value) if ki is atomic

if ki is an object
(4.11)

The above notation can be rewritten to pseudocode, as shown in Listing 4.8. The function cal-
culates a base by dismissing any keys that at some point, when storing a new JSON document,
are absent. This ensures that only keys that are in every document will be evaluated as relational
base. The drawback of this approach is that our optimization does not perform well when the
relational base changes over time.

1 func t i on c a l c u l a t e (JSON) {
2 cache = new Cache ( )
3 i f ( ! cache . a c t i v e )
4 f o r ( i n t i < keys . count )
5 i f ( va lue ins tanceOf (number | boolean | s t r i n g | nu l l ) )
6 i f ( ! cache . conta in s ( key ) )
7 cache . add ( key )
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8 cache . a c t i v e = true ;
9 e l s e

10 f o r ( i n t i < keys . count )
11 i f ( ! JSON. has ( key ) )
12 cache . remove ( key )

Listing 4.8: Pseudocode respresentation for calculating (relational base) function

Root, path, type storage

The 4-tuple can be extended to further improve the reconstruction and query performance by
storing additional information such as the root, path and type of the key-value pair. This additional
stored information off course has impact on the disk space requirements of the database. Equations
4.12, 4.13, 4.14 and 4.15 show the corresponding notation for each of them, we also give a brief
explanation below.

{k1 : v1} → (id, root, parent, key, value) (4.12)

{k1 : v1} → (id, path, parent, key, value) (4.13)

{k1 : v1} → (id, root, path, parent, key, value) (4.14)

{k1 : v1} → (id, root, path, parent, key, value, type) (4.15)

Root Storing the root for a given tuple, eliminates the need of traversing the tree from the
selected key-value pair to its root when querying. In Listing 4.9 a pseudocode example to get the
root of a given key-value tuple is shown.

1 getRoot ( id ) {
2 shred = database . get (WHERE parent = ID)
3 f o r ( i n t i < keys . count )
4 St r ing parent = shred . parent
5 i f ( parent == id ) { // i s root
6 re turn guid
7 e l s e
8 re turn getRoot ( parent )

Listing 4.9: Pseudocode representation of getRoot function

Path Storing the path for any given tuple ensures that not all matching key-value pairs for a
query have to be evaluated, but only those with the path structure matches that of the XPath,
without first having to traverse the tree and storing the path. In Listing 4.10 a pseudocode example
to get the path of a given key-value tuple.

1 getPath ( id ) {
2 shred = database . get (WHERE parent = ID)
3 f o r ( i n t i < keys . count )
4 St r ing parent = shred . parent
5 i f ( parent == id ) { // i s root
6 re turn ;
7 e l s e
8 r e t = getPath ( parent ) + ”/” + key
9 return r e t

Listing 4.10: Pseudocode representation of getPath function

Type Storing the type of a given key-value tuple eliminates the need of calculating the type at
each query.
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Dynamic shredding

The proposed shredding technique handles every new JSON document exactly the same. If for
a given set of documents there is a high document similarity, this means a redundant storage of
tuples. In the most extreme case a collection of n exactly the same documents result in n − 1
duplicates of exactly the same data tuples. This can be prevented by using dynamic shredding.
If a tuple already exists, then store multiple root ID’s to that tuple, rather then the whole tuple.
This technique is often referred to sub document embedding in NoSQL systems and can be applied
to individual tuples or (sub) objects. For the scope of this project Dynamic shredding is left as
future work.

4.3 Query language extension

The second aspect of the approach concerns the query language. In Section 4.2 shredded storage
is proposed, under the presumption that it would leverage query possibilities on the JSON data,
in this section we will elaborate on this further. Since SQL is not equipped to reason over tree
structured data, we need some form of query language extension. Because one of the four eval-
uation criterion for our approach is usability, only backwards compatible extensions are considered.

We showed that JSON documents have a tree like structure, therefore it seems favorable to pro-
pose some sort of path query language to leverage this structure. In the next section a XPath like
query structure is proposed. Our related work investigation in Chapter 3 showed some interesting
starting points, which we incorporate in our approach.

4.3.1 Tags

First a convenient system for indicating ESQL extensions within the SQL code is needed. For
this we define JSON tags. A tag can be one of the types shown in Table 4.2. Our query engine
extension has to detect tags and deal with them accordantly. TY PE JSON indicates that the
JSON within this tag has to be handled by ESQLite rather then natively. TY PE XPath tells
ESQlite that an XPath query has to be evaluated. Both tag types are invoked by typing json()
within the SQL statement.

Tag Description
TY PE JSON a tag containing JSON.
TY PE XPATH a tag containing a XPath query descriptor

Table 4.2: Overview of available JSON tag types in ESQLite

4.3.2 XPath Querying

Since JSON is tree like and has close resemblances to XML, the proposed query language bares
great resembles with the widely known XPath language [20]. XPath is the path traversal related
subset of XQuery (XML Query Language), which in its turn is a language able to select and
manipulate subsets and substructures from a set of XML files. There are several variations to
XPath available which are able to handle JSON, for example; JsonPath and JAQL [22] [23].
JsonPath differs from XPath mainly on notation, which is aligned to JSON. JSONiq is based
on XQuery. Since the XPath notation is widely known, and our approach has only need for
simple path traversal and attribute selection functionality, we propose a query language inspired
on XPath. First we define a set of selection expressions which can be used in Table 4.3.

We define complex path expressions in Table 4.4. Important to note is that XPath, and thus our
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Expression Description
nodename Selects all nodes with the name ‘nodename’
/ Selects from the root node
. Selects the current node
@ Select attribute

Table 4.3: Overview of XPath expressions available in ESQLite

approach, supports all logic operators such as <,>,=.

Expression Description
//title[@lang] Selects all title elements that have an te named lang
//title[@l =′ en′] Selects all title elements that have a ‘l’ attribute with a value of ‘en’
/bookstore/book[price > 35] Selects all book elements of the bookstore element that have p > 35

Table 4.4: Overview of XPath predicates available in ESQLite.

The notation as given in Table 4.3 and 4.4 gives us the tools needed to query the JSON data. In
Section 4.4 we elaborate on the use of this query language in respect to the query engine in detail.

4.4 Query engine

The previous section elaborated on how JSON data can be efficiently stored and reconstructed,
this section will further explain the role of the query engine. We do this by translating the
required queries and use the previously introduced function Fshred to facilitate the transformation
from JSON to relational storage. Since we aim to remain complete backwards comparability, this
approach does not alter the query engine or query planner inner workings.

4.4.1 Shredding

To explain we use the following example query on a table data containing only one column called
json. Suppose one would be interested in inserting a JSON document into the table, the pro-
grammer would use the SQL statement as shown in Listing 4.11

1 INSERT INTO data VALUES({ k1 : v1 , k2 : v2 , . . , km:vm}) ;

Listing 4.11: Example INSERT query with JSON

Applying the function Fshred on the JSON part of the above query, we get the following result:

Fshred({k1 : v1, k2 : v2, .., kn : vn}) = {(1, 0, k1, v1), (2, 0, k2, v2), .., (n, 0, kn, vn)} (4.16)

For which each tuple in the tuple-set can be stored as a native SQL record in the shred table as
shown in Listing 4.12.

1 INSERT INTO data VALUES(< i d e n t i f i e r >) ;
2
3 INSERT INTO data shred VALUES(1 ,0 , k1 , v1 ) ;
4 INSERT INTO data shred VALUES(1 ,0 , k2 , v2 ) ;
5 . .
6 INSERT INTO data shred VALUES(1 ,0 , kn , vn ) ;

Listing 4.12: Example INSERT query with shredded JSON
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To ensure that the JSON tuples later can be restored and linked to the correct record, we store
an identifier to the tuple-set root object.

4.4.2 Reconstruction

In this section, selection and reconstruction of JSON data will be discussed. Listing 4.14 shows
an arbitrary SQL SELECT WHERE statement.

1 SELECT {k1 , k2 , . . , km}
2 FROM R1 , . . ,RN
3 WHERE <condi t ion>

Listing 4.13: Example SELECT query

The statement can be expressed in the following relational algebra notation;

Πk1,k2,..,KN
σcondition(R1 × ..×Rn) for n tables (4.17)

Πk1,k2,..,KN
σcondition(R1) for 1 table (4.18)

For the ESQL statement in Listing 4.14, containing an XPath construct, the selection and re-
construction works slightly different. Note that for this example we eliminate the complexity of
multiple tables.

1 SELECT {k1 , k2 , . . , km}
2 FROM R1
3 WHERE <condi t ion> AND json (\\ j s on \ [@K1=V1 ] )

Listing 4.14: Example ESQL SELECT XPath query

The first step is to get all shreds which satisfy the XPath statement. Equation 4.19 returns a set
of root ID’s of documents matching the XPath query. For this example we used root storage and
path storage optimizations as shown in Equation 4.14 and 4.15, to eliminate the number of tree
traversals.

Πrootσkey=K1∧value=V 1∧path=\(R1 shred) (4.19)

Then with the set of root ID’s available, we will now use the inverse function of Fshred to reconstruct
the JSON of the documents containing these root ID’s.

Freconstruct(ID) = F−1shred (4.20)

Function 4.20 uses 4.21 to fetch al needed shreds and then performs the reconstruction. Since a
reference to the root ID is stored in the original table, the reconstructed JSON can be linked to
the correct record.

Πid,root,path,parent,key,value,typeσshred.root=ID(R1) (4.21)

If no root storage optimization is used, the algorithm is slightly more complicated, needing for m
levels of nesting, m self joins as shown in 4.22.

Πid,root,path,parent,key,value,typeσshred0.parent=ID,s1.parent=s0.id,..,sm.parent=sm−1.id(S0 × S1 × ..× Sm)
(4.22)

This concludes our approach to the storage and reconstruction of JSON data. In the next chapter
we will discuss our implementation in more detail
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Chapter 5

Implementing ESQLite

In Chapter 4 an approach for handling JSON data by extending SQLite is developed and evaluated.
Therefore it is now possible to implement the proposed solution as a library. This chapter outlines
and discusses the implementation of ESQLite as a Java Android application. In Section 5.1 we
first look at the native SQL implementation. We do this since it sheds light on how JSON storage
is normally done, and provides a baseline for our evaluation in Chapter 7. In Section 5.2 ESQLite
is proposed. At first we give a brief library outline and architecture overview in Section 5.2.1,
followed by an example of the ESQLite query life-cycle in Section 5.2.2. Finally the chapter is
concluded with a more detailed explanation of all the configuration options in Section 5.2.3. All
configuration options are closely aligned to the proposed approaches in Chapter 4.

5.1 Native SQL

Before we discuss our implementation ESQLite we first take a brief look at the native SQL ap-
proach of storing JSON data. For the native implementation the JSON part of the data can be
stored as text or blob column in the corresponding table of that item. The text type stores data
as a string using the database’s encoding. Java stores strings encoded as UTF-16 whereas default
SQLite implementations use UTF-8. The database system can perform string functions such as
comparisons and searches on text type columns. Blob stores the data as a Binary Large Object
exactly as it was. A blob can be text, PDF, image or anything else. The database is not able to
search, compare or manipulate blob values, but they can be inserted and selected very fast due to
the absence of type and encoding translations. Ideally the data is encoded in the same format as
received, for instance JSON or XML. In the native approach the query engine, storage engine and
query language all remain unchanged, hence the name native.

To illustrate, the synthetic dataset as given in Listing 6.1 will be inserted as shown in listing
5.1

1 INSERT INTO Users (name , data ) VALUES
2 ( ’ admin i s t ra to r ’ , ’ [{” ac t i on ” :” l o g i n ” ,” datet ime ”:”2015−10−01
3 10 :00 :01”} ,{” ac t i on ” :” logout ” ,” datet ime ”:”2015−10−01 11 : 0 0 : 0 1 ”} ] ’ ) ;

Listing 5.1: Example INSERT query with JSON data

5.2 ESQLite

ESQLite is written in JAVA SE7 on top of the Android Development platform. ESQLite is sup-
ported for mobile devices running Android 4.0 onwards. ESQLite does not require any additional
packages libraries or bindings and can be easily included as an Java library project. ESQLite can
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be freely downloaded from Gitlab [25]. In Section 2.2 more background details about Android and
SQLite can be read.

Android SQLite engine Android comes with its own custom developed Java Database Driver
under the name of android.database.sqlite [13]. It is also possible to use other Java Database client
interfaces but this is strongly discouraged. If one would be require to use a custom driver, then
this driver has to be shipped with the application. With respect to our usability condition, this is
not desirable and we choose to use the android driver. The custom Android SQLite engine does
not need any configuration and is available for use.

Query language extension For the framework to determine if JSON has to be processed, we
extend the query language with XPath inspired ESQLTags. In section 4.3 this query language
extension is discussed in more detail. Tags can be of type JSON or XPath. Whereas the JSON
tag indicates the presence of JSON data in need of processing, the XPath tag contains an XPath
query. Since XPath querying is not natively supported by SQL, the use of such a tag is unavoidable.
Listing 5.2 shows how to select all records of table user for which the column data contains the
path /name with key-value pair first = edwin.

1 SELECT ∗ FROM user WHERE json (// data/name/ [ @ f i r s t=’ edwin ’ ] ) ;

Listing 5.2: Example ESQLTag Xpath

5.2.1 Architectural overview

The main component of ESQLite is the ESQLiteDatabaseWrapper class. From a programmer
perspective this class replaces the SQLiteDatabase class references and provides all interfacing
with ESQLite. Below in Listing 5.3 an example is given of how ESQLite compared to SQLite is
initialized.

1 //normal SQLite
2 SQLiteDatabase db = th i s . openOrCreateDatabase (DB PATH) ;
3 db . execSQL ( s q l ) ;
4
5 //ESQLIte
6 ESQLiteDatabaseWrapper dbWrapper = ESQLiteDatabaseWrapper . openOrCreateDatabase (

DB PATH) ;
7 dbWrapper . execSQL ( s q l ) ;

Listing 5.3: Example Usage of ESQLite

The library is backwards compatible, meaning that a programmer does not have to change any
existing code or queries other than using the wrapper class. Since the wrapper class is a static,
no instantiation is required.
ESQLite comes with several configuration options regarding shredding and reconstruction, these
configuration options are the result of the different approaches as discussed in Chapter 4. We use
a Builder pattern to enable programmers to easily tune the configuration to their needs, below
in Listing 5.4 the builder pattern is shown. In the next section all configuration options will be
explained.

1 ESQLiteDatabaseWrapper . Bui lder bu i l d e r = new ESQLiteDatabaseWrapper . Bu i lder ( )
2 . debug ( t rue )
3 . shred type ( ShredType .UPDATE)
4 . r e c on s t ru c t t ype ( ReconstructType . IN CODE)
5 . s t o r e ba s e ( t rue )
6 . s t o r e pa th (truePATH)
7 . s t o r e r o o t ( t rue ) ;
8 ESQLiteDatabaseWrapper dbWrapper = ESQLiteDatabaseWrapper . openOrCreateDatabase (

DB PATH, bu i l d e r ) ;

Listing 5.4: Example Usage of ESQLite with configuration builder
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The UML diagram in Figure 5.1 provides an architectural overview by listing all classes and rela-
tions within the ESQLite framework. Please note that all helper classes and functions as well all
get() and set() functions are left out.
The main class of our framework is ESQLiteDatabaseWrapper. An instance of this class is cre-
ated (i.e. mainActivity) in the Android application when a database connection is needed. The
ESQLiteDatabaseWrapper processes and stores SQL queries as ESQLQuery objects. The ES-
QLQuery instance checks whether the query contains ESQLTag objects, indicating the presence
of JSON functionality and if this tag is present stores these as ESQLTag objects. A given
ESQLiteDatabaseWrapper instance handles zero or more ESQLQueries with zero or more
ESQLTags. For a given insertion query, depending on the ShredType and ReconstructType
configurations that are passed by the builder, the framework will then shred the JSON into
ESQLShreds. These shreds will eventually be stored as tuples in a relational table. Config-
uration options concerning the storage of a path, root and base ensure these references are stored
within the tuples and ESQLRelationalBase objects are instantiated. From a performance per-
spective the instances ESQLBaseCache, ESQLShredCache and TempTableCache are used to
speed up the process. When a selection query is processed by the framework the reconstruction
and XPath evaluation is done. In Figure 5.2 a more detailed overview of query reconstruction is
provided. Figure 5.1 also outlines the test framework related classes and builder configurations
which will be further discussed in Chapter 6.

Figure 5.1: Architectural overview of the ESQLite library

5.2.2 ESQLite query lifecycle

In Figure 5.2 the ESQLite query life-cycle is shown. In this example a very basic JSON document
is used with two key-value pairs. At insertion (step 1) the JSON string is replaced by an identifier
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and inserted in the database (2). If it does not exists already a shred table is created (3) after
which the shredded key-value tuples are stored in this table(4). If there is a relational base, e.g.
the key age, that tuple is inserted in a relational base table(5b). If it does not exists the base
table is created at that time (5a).
At selection time (6) the (potential) XPath tag is evaluated and the corresponding records are
returned as a Cursor (7). If no XPath tag is present, the query is executed normally after which it is
possible the Cursor detects that there is a JSON reference present. If so it fetches the corresponding
shreds and base table records (9,11). In both cases the JSON has to be reconstructed (8) and
passed back to the application logic(12).
This example is the most basic approach of ESQLite, several configurations and optimizations are
available and discussed in the next section.

Figure 5.2: Example of the ESQLite query life cycle

5.2.3 ESQLite configurations

ESQLite comes with a set of configuration options which can be easily set at instantiation time as
shown in Listing 5.4. Besides a debug logging option it is possible to determine the ShredType,
reconstuctionType as well as with the base, path and root storage options. All configuration
options are closely aligned to our approach chosen and are implemented not only from a usability
perspective but will be used in Chapter 7 for evaluation.

ShredType The framework depicts three different shredding types. The None type handles
JSON data as normal text in exactly the same way as described in Section 5.1. The UPDATE
type shreds the data as described in the previous chapter at insertion time. Whereas this ap-
proach is relatively slow at insertion time, it is very fast at selection time. If the performance
requirements are the other way round the option SELECT is available. This option also has less
storage requirements since the shredding is done in temporary tables and dropped after querying.
The latter option is not available in conjunction with relational base storage. A more detailed
evaluation of the performance is done in Chapter 7.
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ReconstructType For reconstructing the JSON from tuples there are three approaches avail-
able. The default configuration is IN CODE which performs the actual JSON reconstruction
within the wrapper application logic. The option IN QUERY however does the complete recon-
struction within the query itself. Since this approach works with nested self joins (see Section
4.2.3) it becomes very inefficient or even impossible on large JSON objects. If the JSON object
at hand is rather simple, this solution turns out to be quite efficient since it eliminate coding
overhead in reconstruction. The third option available is JSON1 which, inspired by the SQLite
JSON1 extension, does only a partial reconstruction. JSON1 returns an Cartesian product of the
relational table with all its corresponding shreds, leaving all querying to the programmer. This
option can not be used in conjunction with XPath query expressions.

Root storage In its most basic form ESQLite needs to do a complete tree walk based on the
shreds’ parent pointers to reconstruct the JSON from all shreds. To speed up the process of
reconstruction it is possible to store the root of each shred. Off course this introduces more
storage overhead.

Path storage Analog to the above the XPath evaluation needs to do a tree walk in order to
determine if a JSON key-value pair matches a given path. To speed up the process of querying it
is possible to store the path of each shred. Off course this introduces more storage overhead.

Base storage When storing a large number of JSON documents, it is possible that all the
documents have partially the same structure or schema. The baseStorage option extracts the
shared relational base from each document and stores these properties as normal columns within
a relational table. When documents have highly similar structures this increases the performance
significantly and reduces the disk space needed (as shown in 7.5). Since in the scope of this project
this implementation is rather naive, it performs bad when the schema changes over time.
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Chapter 6

Experimental setup

In the previous Chapter, 5, different implementations where proposed. With the ESQLite Library
encapsulating these implementation variations we can now focus on developing a testing envir-
onment and derive evaluation objectives from the main research objectives as stated in Chapter
1. The evaluation of our implementation is of vital importance to asses whether ESQLite can be
proposed as a solution to the problem at hand. This chapter therefore presents the setup for our
experimental evaluation of the proposed implementation. The chapter starts with an explanation
of the desired environment in terms of hard- and software in Section 6.1. Then Section 6.2 states
the evaluation objective followed by the designed set of queries needed to evaluate in Section 6.4
and datasets in Section 6.3. We conclude this chapter with a brief explanation of the testing
platform in Section 6.5.

6.1 Environment

The focus of this research lies within mobile storage. For that reason it is of essence that the
experiments are conducted on mobile devices or machines that mimic their specifications and
behavior as closely as possible. The preliminary evaluation uses a virtual private machine running
Linux, while the ESQLite benchmark and remainder of the evaluation are performed on a virtual
Android device running in an emulator on top of a Windows host system. In the follow subsections
the hardware and software which we used is discussed in more detail.

6.1.1 Hardware

The preliminary evaluation uses a virtual private machine running Linux. The machine has a
single core 2.2Ghz CPU, 1024MB of RAM and 50GB of SSD storage. This setup closely matches
a normal phone, while having the benefit of excluding a lot of device specific variables. The re-
mainder of the evaluation uses a virtual Android device instance, so called emulator, running on
a Windows 8 host machine. Using the emulator minimizes the dependencies on external factors
compared to a real device. Exact specifications are outlined below.

Windows hostmachine

• : CPU: Intel Core i7-3770 3.40Ghz quadcore.

• : Memory: 16GB DDR3

• : Storage: Solid State Disk 128G. Read 480MB/s Write 200MB/s

• : OS: Windows 7

Linux virtual machine
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• : CPU: Intel E5600 2.40Ghz singlecore.

• : Memory: 1GB DDR3

• : Storage: Solid State Disk 50GB (virtual file system). Read 9000MB/s Write 100MB/s

• : OS: Ubuntu LTS 14.04.3

Nexus 5 Android emulator

• : CPU: Emulated ARM processor.

• : Memory: 1.5GB

• : Storage: Solid State Disk 1GB (virtual file system).

• : OS: Android 6.0 MarshMellow x86 64bit

6.1.2 Software

The hostmachine uses a clean Windows 7 installation, whereas the emulator uses a clean Android
6.0 MarshMallow installation, MarshMallow is the current last stable release of Android. The
Android virtual device manager is used to create and manage virtual machines, which runs on top
of Oracle Virtual Box.

6.1.3 Android emulator

The Android emulator is an application that provides a virtual mobile device on which one can run
Android applications. It runs a full Android system stack, down to the kernel level. The Android
emulator mimics all of the hardware and software features of a Nexus 5 mobile device. It provides
a variety of navigation and control keys, as well as a screen in which the application is displayed.
The emulator uses the host network adapter to emulate the devices network connectivity. Also,
the emulator provides dynamic binary translation of device machine code to the OS and processor
architecture of the host machine. For this evaluation an emulator is preferable over a real device
since it is a more stable controlled environment.

6.1.4 SQLite Wrapper

The proposed ESQLite solution aims to provide an easy to use library for Android/Java on top
of SQLite. A more detailed description of SQLite is provided in Chapter 2 whereas Chapter 5
elaborated on the ESQLite wrapper.

6.2 Objective

The experiments we want to conduct have to be closely aligned to the research objective as stated
in Chapter 1. Furthermore the evaluation criteria which formed the basis of our approach as out-
lined in Section 4.1.2, have to be addressed closely. We primarily focus on runtime and disk space
performance but also focus our boundary condition of usability. The objective of our evaluation
therefore can be denoted as follows.

Measure the performance of ESQLite on different types of datasets in terms of
runtime and disk space.

Our implementation has several optimizations and configurations, which all have some impact
on the overall performance. Our evaluation objective can therefore be divided into the following
sub-objectives.
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1. What is the performance in terms of query runtime for different types of datasets.

2. What is the performance in terms of disk space usage for different types of datasets.

3. What is the runtime performance for different shredding alternatives.

4. What is the runtime performance for different reconstruction alternatives.

5. What is the performance compared to SQLite and JSON1.

In the next section we denote several datasets of interest, which will form the basis of our evalu-
ation.

6.3 Datasets

To get a clear understanding of how our implementation performs, we first define datasets and
queries on which it will be evaluated. We have to make sure that the datasets as chosen provide
a solid assessment and address all of the in Section 6.2 mentioned objectives. For this we use two
artificial datasets representing two extremes, as well two real world complex datasets.

Example set 1: Artificial In listing 6.1 below, an example document of our first artificial
constructed dataset is shown. The actual dataset contains 100 or 1000 documents depending on
the specific test. This set contains all the five JSON types introduced in 4.2.1, has limited nesting,
and, since all top level keys are present in all documents, a large relational base. This set can
therefore be used to verify the basic workings and performance of ESQLite.

1 {
2 ” i d ” : ”1” ,
3 ” p r e f i x ” : ” a ” ,
4 ” nestedArray1 ” : [{
5 ”key1” : ” value1 ”
6 } ] ,
7 ” nestedObject1 ” :{
8 ”key1” : ” value1 ”
9 } ,

10 ” str ingKey ” : ” value1 ” ,
11 ” intKey” : 1 ,
12 ”booleanKey” : true ,
13 ”key4” : ” value4 ” ,
14 ”key5” : ” value5 ” ,
15 ”key6” : ” value6 ”
16 }

Listing 6.1: Example dataset 1: Artificial

Example set 2: Artificial The second dataset is artificially constructed as well, and also
contains up to 1000 documents of the structure as shown in listing 6.2 below. In contrary to the
first set, this one contains no relational base and has a highly nested structure. In conjunction
with set 1 these sets cover both highly nested as non-nested sets with different key-value types.
Therefore these two sets are used to benchmark the corner-cases of our solution.

1 {
2 ” i d ” : ”1” ,
3 ” p r e f i x ” : ” a ” ,
4 ” nestedArray4 ” : [{
5 ”nestedArray3 ” : [{
6 ”nestedArray2 ” : [{
7 ”nestedArray1 ” : [{
8 ”key1” : ” value1 ”
9 } ]

10 } ]
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11 } ]
12 } ]
13 }

Listing 6.2: Example dataset 2: Artificial

Example set 3: Medicine dataset In Section 1.1 we elaborate on a real-world example in
the field of medicine. Since one of our stated boundary conditions is usability in real world
situations, we use this dataset as one of our evaluation sets in Chapter 7. The set shown below in
Listing 6.3 is a small subset of the actual dataset at hand, important to note is the hierarchy of
medicine, products, articles and substances which provide both a combination of hierarchical and
unstructured data.

1 {
2 ” i d ” : ”e7287b00−296 f−11e5−bee2−cb50caea7737 ” ,
3 ”name” : ”Paracetamol ” ,
4 ” s t r ength ” : ”360MG” ,
5 ” form” : ” Z e tp i l ” ,
6 ”number” : ”16018958” ,
7 ”amount” : ”12” ,
8 ”RVG” : ”3843” ,
9 ” d r i v i n g a b i l i t y ” : f a l s e ,

10 ” atc ” : ”N02BE01” ,
11 ” products ” : [{
12 ”brand” : ”Finimal ” ,
13 ”company” : ”Bayer” ,
14 ” un i t ” : ” stuk ” ,
15 ” i d ” : ” e728c030−296 f−11e5−a4cd−7b07b8392b38” ,
16 ” a r t i c l e s ” : [{
17 ” s upp l i e r ” : ”Umcg Ziekenhuisapotheek ” ,
18 ” ob so l e t e ” : f a l s e ,
19 ” i d ” : ”e7291ad0−296 f−11e5−a1e6−3 f 5 c 8 f 5 ”
20 } ]
21 } ] ,
22 ” substances ” : [{
23 ”name” : ”Methylparahydroxybenzoaat ” ,
24 ” a c t i v e ” : f a l s e ,
25 ” i d ” : ” e729b5e0−296 f−11e5−91f8−d7d09ebe06fc ”
26 } , {
27 ”name” : ”Propylparahydroxybenzoaat ” ,
28 ” a c t i v e ” : f a l s e ,
29 ” i d ” : ” e729ed60−296 f−11e5−9235−bbf593d9302d”
30 } ]
31 }

Listing 6.3: Example dataset 3: Medicine

Example set 4: Magic the Gathering This dataset contains meta-data of playing cards
for the game Magic the Gathering. Whereas the previous dataset contains a highly hierarchical
structure, with some non-relational parts, this set has a larger schema-less component, and has a
lot of Array values. Each card has a wide variety of properties, all of which do not have to occur
for each card. Below, in Listing 6.4 the JSON representation of one card within the dataset is
given.

1 {
2 ” layout ” : ”normal” ,
3 ”name” : ”Air Elemental ” ,
4 ”manaCost” : ”{3}{U}{U}” ,
5 ”cmc” : 5 ,
6 ” c o l o r s ” : [ ”Blue” ] ,
7 ” type” : ”Creature \u2014 Elemental ” ,
8 ” types ” : [ ”Creature ” ] ,
9 ” subtypes ” : [ ”Elemental ” ] ,
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10 ”imageName” : ” a i r e l ementa l ” ,
11 ” p r i n t i n g s ” : [ ”LEA” , ”LEB” , ”2ED” , ”CED” , ”CEI” , ”3ED” , ”4ED” , ”5ED” , ”PO2” , ”

6ED” , ”S99” , ”BRB” , ”BTD” , ”7ED” , ”8ED” , ”9ED” , ”10E” , ”DD2” , ”M10” , ”DPA”
, ”ME4” , ”DD3 JVC” ] ,

12 ” l e g a l i t i e s ” : [{
13 ” format ” : ”Commander” ,
14 ” l e g a l i t y ” : ”Legal ”
15 } , {
16 ” format ” : ”Freeform” ,
17 ” l e g a l i t y ” : ”Legal ”
18 } , {
19 ” format ” : ”Legacy” ,
20 ” l e g a l i t y ” : ”Legal ”
21 } , {
22 ” format ” : ”Modern” ,
23 ” l e g a l i t y ” : ”Legal ”
24 } , {
25 ” format ” : ” Pr i smat ic ” ,
26 ” l e g a l i t y ” : ”Legal ”
27 } , {
28 ” format ” : ” S ing l e ton 100” ,
29 ” l e g a l i t y ” : ”Legal ”
30 } , {
31 ” format ” : ” Tr iba l Wars Legacy” ,
32 ” l e g a l i t y ” : ”Legal ”
33 } , {
34 ” format ” : ”Vintage ” ,
35 ” l e g a l i t y ” : ”Legal ”
36 } ] ,
37 ” c o l o r I d e n t i t y ” : [ ”U” ]
38 }

Listing 6.4: Example dataset 4: MTG

6.4 Queries

Whereas the different datasets as depicted in the previous section influence the performance of
our implementation, the queries performed on those sets are important as well. The type and
complexity of queries determine how the SQLite query planner and ESQLite library will generate
and execute a plan. To evaluate our implementation we use three basic queries which are derived
from our approach in Section ??. These queries encapsulate the insertion, selection and XPath
query aspects, which make up the most vital operations of SQL. The insertion query QO as shown
in Listing 6.5 is used to evaluate our approach as described in Section 4.2.2, selection queries Q1
and Q2 as listed in 6.6 and 6.7 are used to evaluate the in Section 4.2.3 proposed reconstruction
methods. For all queries the corresponding table does not hold any keys or indexes. The queries
abstract from implementation and will be used to evaluate both our implementation as well as
regular SQL.

1 INSERT INTO <tab le> VALUES { s e t } ;

Listing 6.5: Q0: INSERT

1 SELECT ∗ FROM <tab le >;

Listing 6.6: Q1: SELECT

1 SELECT ∗ FROM <tab le> WHERE <XPath expres s i on>

Listing 6.7: Q2: SELECT WHERE

The above queries are general. Depending on the dataset and test case, the table and expression is
substituted. In Listing 6.8 Q2 is materialized for each of the datasets as discussed in the previous
section.
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1 datase t 1 : SELECT ∗ FROM data WHERE json ( ’ // j son / [ @stringKey=value1 ] ’ )
2
3 datase t 2 : SELECT ∗ FROM data WHERE json ( ’ // j son /nestedArray4 /nestedArray3 /

nestedArray2 /nestedArray1 [ @key1=value1 ] ’ )
4
5 datase t 3 : SELECT ∗ FROM data WHERE json ( ’ // j son / [@number=16018958] ’ )
6
7 datase t 4 : SELECT ∗ FROM data WHERE json ( ’ // j son / [@power=3] ’ )

Listing 6.8: Q2: SELECT WHERE PER SET

For evaluation of native SQLite and JSON1 as done in 7.3 we need additional queries. Q3 as
shown in Listing 6.9 and Q4 as shown in Listing 6.10, illustrate how JSON1 respectively native
SQL could be used to mimic the behavior of Q2 as closely as possible, with the absence of XPath
query language extension. For explanatory reasons these queries are materialized using dataset 3.

1 SELECT count (∗ ) FROM al lCards , j s on each ( a l lCards . j son ) WHERE json each . key =
2 ”power” AND json each . va lue = ”3” ;

Listing 6.9: Q3: SELECT WHERE

1 SELECT count (∗ ) FROM al lCards
2 WHERE json LIKE ’%”power”:”3”% ’ ;

Listing 6.10: Q4: SELECT WHERE

6.5 Testing framework

For the purpose of testing, the ESQLite wrapper framework as discussed in Chapter 5 is further
extended to a full fledged testing framework. By use of a single Builder construct all necessarily
parameters, variations and optimizations can be set as desired. A detailed architectural overview
can be seen in Figure 5.1. Below an example of the testing framework Builder is given. Appendix
A shows a more detailed example of the testing suite.

1 INSERT TEST. Bui lder bu i l d e r = new INSERT TEST. Bui lder ( )
2 . tag ( ”ESQLWRAPPER” )
3 . dbName( ” t e s t . db” )
4 . debug ( f a l s e )
5 . context ( t h i s )
6 . ope ra t i on s (1000)
7 . i t e r a t i o n s (20)
8 . pragma ( ”PRAGMA synchronous = 0” )
9 . t r a n s a c t i o n a l ( f a l s e )

10 . s l e e p (1500)
11 . s t o r e r e l a t i o n a l b a s e ( t rue )
12 . s t o r e p a t h o f s h r e d ( t rue )
13 . s t o r e r o o t o f s h r e d ( t rue )
14 . r e c on s t r u c t i on typ e ( ReconstructType . IN CODE)
15 . shredd ing type ( ShredType .UPDATE)
16 . l o g s i z e ( t rue )
17 . c l e a r d a t a ( t rue )
18 . log dump of t imes ( t rue )
19 . l o g i t e r a t i o n d u r a t i o n ( t rue ) ;
20
21 INSERT TEST i n s e r t t e s t = new INSERT TEST( bu i l d e r ) ;
22 i n s e r t t e s t . s t a r t ( ) ;

Listing 6.11: ESQlite testing framework initialization.

The testing suite defines a base TEST class which can be extended for each specific test. All
tests are performed on a single non-blocking non UI-thread. Each test will run n operations in
m iterations, for which all individual run times as well as average and disk space usage is stored,
ensuring stable results.
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Experimental evaluation

Now that we have developed the ESQLite library, we can perform experiments to evaluate its
effectiveness. We do this in accordance with our evaluation objectives as stated in Section 6.2.
This means that we measure the performance of our implementation for three types of queries
and four types of datasets. The runtime and disk space performance are the primary evaluation
criteria, though we will also keep the query capabilities and usability in mind. At first, in Section
7.1, some preliminary results are shown which form the basis for further investigation. In Section
7.2 we show an extensive evaluation of ESQLite. After which we evaluate JSON1 in Section 7.3.
However JSON1, is not part of our implementation, as it served as inspiration for our approach,
and therefore is of interest. With these results at hand we do a final comparison between how
ESQLite, JSON1 and native SQLite handle JSON data in Section 7.4. The chapter is concluded
with a discussion of the results in Section 7.5.

For all tests in this chapter we use the testing framework as proposed in Section 6.5. All queries
are executed n times in m runs, and all measurements given in this chapter are the average of
these n ∗m runs, to ensure stable results. The default is 20 runs of 100 queries each. Limitations
in available disk space on the virtual Android environments restricted us to a maximum database
size of 1GB.

7.1 Preliminary

In this section some preliminary results are discussed, providing a baseline for the rest of the
evaluation and ensuring that optimal parameters are chosen to rule out as much background noise
as possible.

Firstly, the default Android SQLite implementation is tested. For this we used the experimental
setup as discussed in Section 6.1. Also, we benchmarked ESQLite with all JSON support disabled,
acting as default SQLite but introducing the ESQLite library overhead.

Type none transactions synchronized both
SQL native TEXT type 5 10 135 139
SQL native BLOB type 5 7 128 130
ESQL native TEXT type 5 10 138 142
ESQL native BLOB type 5 9 133 133

Table 7.1: Query Q0: 100x1 records INSERT (different settings)

As can be seen in Table 7.1 the SQL blob storage type is about 8% faster than SQL text type,
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which matches our expectations from Chapter 3. Furthermore it shows that full disk synchron-
ization results in a factor 25 performance drawback, since a SQL write command has to wait for
drive confirmation when a record is stored before proceeding. Forcing transactions for every query
only has a limited effect on the performance.

From the above results we can conclude that synchronization has a large impact on performance
whereas forced transactions does not. Blob storage gives a small performance increase compared
to text but since blob storage does not provide any query possibility, it is in most cases not desired
to use blob types. To minimize noise we put both parameters on false for all coming tests.

7.2 Benchmark ESQLite

In this section we benchmark the ESQLite wrapper, our implementation as discussed in Chapter 5.
First we discuss the runtime performance in Section 7.2.1 followed by the disk space performance
in Section 7.2.2. While these two evaluation dimensions provide us with a good understanding of
the ESQLite performance, we take a more detailed look at the disk space saving selection time
shredding in Section 7.2.3 and two reconstruction alternatives in Section 7.2.4. We introduced
some implementation configurations in Section 5.2.3, and we first take quick look at their per-
formance impact in terms of runtime. This section is concluded with some scalability evaluation
results in Section 7.2.5, providing further decision support.

All benchmarks are performed with the three queries types we defined in Section 6.4, and the
four datasets as defined in Section 6.3. To be able to obtain valid results we need to minimize
environment parameters. Therefore the following parameters are fixed; synchronization is turned
off, SQLite does not wait for the disk to callback a successful write. Default SQLite transaction
settings are used. No indexes or primary keys are used.

7.2.1 Runtime performance

For evaluating the runtime performance we observe three different dimensions; implementation,
query types and datasets. The implementation dimension consists of three implementations; Nat-
ive SQLite, our basic ESQLite implementation and finally our fully fledged SQLite implementation.
Whereas the basic ESQLite implementation does not have root, path and relational base storage
optimizations (discussed in Chapter 4), the ESQLite full implementation does. The second di-
mension of interest is about the query types as denoted in Section 6.4; insertion, selection and
XPath type queries. The final dimension we measure is the datasets. We use four datasets, two
synthetic and two real world sets. In the figures below we show native SQLite, basic ESQLite and
the ESQLite full configuration for all datasets. All running times shown are per 100 insertions or
selections.

Set 1 From our evaluation as shown in Figure 7.1 the following conclusions can be derived.
The native approach is about three 30 times faster for inserts, and 8 times faster for selection
queries compared to ESQLite. This clearly indicates the added costs of enabling JSON XPath
query capabilities. Later in Section 7.2.3 we evaluate the selection time shredding improvement,
to eliminate these costs.
We observe that the native implementation is not able to perform query Q2. Since Q2 is our
XPath tag containing query, this is expected behavior since SQL does not have any JSON query
capabilities. We also see that the full ESQLite implementation performs about 25% faster for Q0,
about 10% faster for Q1 and 50% as fast for Q2 . These results are conform what we expect.
Dataset 1 has limited nesting and a large relational base which in our full implementation will be
stored relational. We therefore see an increase in performance for insertion query Q0 since less
shreds have to be stored. We can conclude that the path and root storage functionality really
shows its added value for Q2 on dataset 1, since the XPath evaluation (tree walk) can be done
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Figure 7.1: Runtime comparison - Set 1
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Figure 7.2: Runtime comparison - Set 2
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Figure 7.3: Runtime comparison - Set 3
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Figure 7.4: Runtime comparison - Set 4
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much more faster. In this test all 100 records are in the result set of Q2. When the query only
returns 1 out of 100 records, Q2 takes only 83ms, since less JSON objects have to be reconstructed.
From this we can conclude that the XPath evaluation is 37% of the runtime, whereas 63% of the
runtime costs is concerning the reconstruction. In Section 4.2.4 we elaborated on this in detail.

Set 2 In Figure 7.2 we benchmark our solutions for the second dataset. This dataset is highly
nested and has no relational base. Equivalent to the previous results of dataset 1, we see that
ESQLite is 10 times slower for insertion than the native approach. Again we see that the native
approach is not capable of performing Q2, for the same reasons as mentioned in the previous
set. The performance of ESQLite differs however for this dataset compared to the previous, for
query Q1 and Q2. It is clearly visible that the full ESQLite implementation does not benefit from
relational base storage in Q1 (as there is none in this set) which can be deduced from both having
roughly the same runtime. However we can conclude that for Q2 our full approach still benefits
from path and root storage, realizing a factor two improvement in speed. Again in this test the
result set of the Q2 XPath query gives all 100 records as result.

Set 3 The previous two datasets contained synthetic data. The set used in this evaluation (Figure
7.3) is a real-world medicine dataset. In this evaluation we are interested how our implementation
performs on real world data. We see that ESQLite becomes even more slower then the native
approach, with run times up to 60 times that of the native approach. However, we also see that
both our implementations are able to execute Q2 in under 250ms per 100 records, which, given
the fact that this dataset is larger then the previous two, is within expectation. Finally we can
conclude that our full ESQLite implementation still offers an improvement over our basic approach,
whereas in the previous tests this improvement was up to 50% it is now limited to 18%. This,
because the relative fraction of relational base values compared to the whole document is rather
small for this set, and the JSON is highly nested.

Set 4 Whereas the previous dataset is highly nested, the fourth dataset as tested above in Figure
7.4 has a lot of array typed values. For this query we again see that ESQLite is up to 100 times
slower than native SQL, and our full implementation performs 10% to 20% better then our basic
implementation. Across the board the ESQLite implementation performs about twice as slow for
this set in comparison to the previous set which contains roughly the same amount of key-value
pairs.

Set comparison In Figure 7.5 we finalize this section by comparing the full ESQLite solution
for all datasets as tested above. We see that ESQLite performs best on dataset 1 whereas dataset
4 has by far the highest runtime. We also see that the relative performance per query is the same
for each dataset. We can conclude that ESQLite thus performs best on a JSON with a large
relational base and a limited amount of nested arrays.
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Figure 7.5: Runtime comparison Q0, Q1 and Q2 for all sets

7.2.2 Disk space performance

In Figure 7.6 we compare the disk space usage per solution. We do this only for one dataset
since only the relative difference is of interest. Whereas all previous tests we only looked at the
basic ESQLite versus full ESQLite implementation we now explicitly also look at the configuration
options individually, to derive which option has what effect on the disk size. From Figure 7.6 we
see that our ESQLite shredding increases the disk space usage by a factor 7.8, which is quite
substantial. If we store the relational base separate we see that half of this increase can be
recovered (for this dataset). Furthermore we see that the root storage has only a marginal effect
whereas path storage costs about 20% extra storage space. We can conclude that the full ESQLite
implementation thus costs 4.8 times the disk size compare to native storage. To overcome this
storage burden one could use selection time shredding, which is benchmarked in the following
section.

7.2.3 Selection time shredding

In Figure 7.7 we compare the runtime performance for the configuration options; selection-time
and update-time shredding. Selection time shredding is explained in Section 5.2.3. Please note
that the results of the update series are the same as in the previous section, and for both we use
the full ESQLite implementation. We use dataset 1 for this test.
We immediately see the increased performance for the insertion query Q0 and decline for selection

query Q2 when using selection time shredding. We also see a performance increase by factor 8 for
Q1. This can be explained since there is no need to do selection time shredding if no XPath query
is involved. We can conclude that one could therefore choose to use selection time shredding if
insertion and simple selection queries have to be fast. Furthermore insertion time shredding has
only a temporary need for additional storage, since shredding is performed in temporary tables.
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7.2.4 Reconstruction alternative

In Figure 7.8 as shown below we compare runtime for JSON reconstruction with the configuration
options in code and in query, both of which are explained in Section 5.2.3 of our implementation.
Please note that the results of the update series are those of the previous section. For this
benchmark we use the full ESQLite implementation and dataset 1. Before we can draw any
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Figure 7.8: In code vs in query reconstruction

conclusions from the above results, please note that this is only the in query selection of all
necessary key-value pairs, the actual tree reconstruction of the query based on the cursor results
still has to be done in code.
The first observation is that for set 4 in query reconstruction is completely out of scope, since its
runtime is 5530ms. We see that for set 1 both reconstruction methods are comparable, but taking
into account the remaining reconstruction work for in query we can conclude that set 1 is faster.
For set 2 in query reconstruction performs slightly better, but for the real world sets 3 and 4,
in query reconstruction becomes tremendously slow. From the above we can conclude that there
is limited ground for using this type of reconstruction, other than for very simple JSON data.

7.2.5 Scalability

For all previous evaluations we inserted or selected 100 queries. In this section we do a brief
evaluation of how scalable ESQLite is. In Figure 7.9 the runtime for the XPath query Q2 is plotted
against the number of records in the result set. We see that the runtime increases more than linear,
which one would expect form a normal SQL selection query. When we try to approximate the
runtime we find a function of the following form.

Runtime(n) = (an) ∗ (b2logn) (7.1)

This can be explained since, for every selection we also need to do a tree reconstruction. The tree
reconstruction takes logn since we have to perform a query for each level of each subtree. Due
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Figure 7.9: Q3: Runtime SELECT WHERE increased number of records in resultset.

to implementation limitations it is not possible to perform an ESQL query for which te expected
result set is larger than 1000.

7.3 Benchmark JSON1

JSON1 is briefly but explicitly benchmarked, since it forms the inspiration of this project. As
can be read in Chapter 3 it is the only mobile database system having any support for JSON
queries. In Section 3.2.4 we investigated JSON1 as related work in our implementation. Since
JSON1 is not available for android, we benchmark SQLite and JSON1 both on the Linux setup
as introduced in Section 6.1. For all tests we used dataset 1. Since JSON1 does only return the
shredded JSON and leaves the where evaluation to the user, it is not able to perform Q2.

Type Native JSON1
Q0 1.3 1.4
Q1 6.3 50
Q2 n.a n.a.

Table 7.2: Runtime(ms) JSON1 Set 3 100 records

Runtime performance Table 7.2 shows the runtime of JSON1 compared to Native SQLite.
Since JSON1 does the shredding on runtime, we see fast insertions for query Q0. For the selection
query Q1 we see that json each is about 10 times slower, since it has to output a Cartesian
product of the JSON with all its key-value pairs.
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Type Native text JSON1
set 1 7 7
set 2 10.3 10.3

Table 7.3: Disk space usage JSON1 (MB)

Disk space performance From a disk space usage perspective, we see that JSON1 has the same
footprint as normal SQLite, this can be explained since SQLite does the shredding in memory when
a selection query is executed.

7.4 ESQLite compared to SQLite and JSON1

In this section we compare the performance of SQLite, ESQLite and JSON1. Since SQLite and
JSON1 cannot evaluate XPath queries, these results are left out. We perform this evaluation on
dataset 1.

Since we can only run JSON1 on our Linux test setup, and ESQLite on the Android testing
framework, in order to compare both, we first determine what the runtime on both setups is for
SQLite. In Figure 7.1 we see that for dataset 1 Q0 took 5ms and Q1 15ms, whereas in this setup Q0
took 1.3ms and Q1 took 6.3ms. From this we conclude that our Android setup introduces roughly
a factor 3 performance decrease. Despite this limited proxy, it gives us the order of magnitude to
take into account. From Table 7.4 we conclude our evaluation with a comparison of native SQLite,

Type Q0 Q1 Q2
Native(ms) 5 15 n.a.
JSON1(ms) 4 150 n.a.
ESQLite(ms) 115 108 116

Table 7.4: Runtime comparison SQLite, ESQLite and JSON1

ESQLite and JSON1. We confirm our earlier results that both ESQLite and JSON1 are about
10 times slower for selection queries compared to native SQLite. Both however are not able to
perform XPath query Q2. The two differ in that JSON1 performs the same as SQLite for insertion
query Q1, since it only does shredding on selection time. The main conclusion we can derive from
the above is that for dataset 1, JSON1 is slightly slower than ESQLite. When we also take into
account that JSON1 results are only a Cartesian product rather than the constructed JSON as
delivered by ESQLite we can safely conclude that ESQLite outperform JSON1. Important to
note is that the performance conversion factor between our two test setups is taken into account.
Since dataset 1 is rather simple compared to our real-world datasets 3 and 4, we expect that the
difference will be significantly larger for these sets, but that evaluation is out of the scope of this
research.

7.5 Discussion

In this chapter we evaluated our ESQLite implementation using the experimental setup as outlined
from the previous chapter. In Section 6.2 we stated the following evaluation objective; Measure
the performance of ESQLite on different types of datasets in terms of runtime and disk space.
We divide this objective into five sub-objectives regarding; the runtime and disk space perform-
ance, evaluation of our shredding and reconstruction alternatives and the performance of ESQLite
against JSON1 and native ESQLite.
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The evaluation of the first sub-objective; what is the performance in terms of query runtime
for different types of datasets, leads to the following conclusions. The runtime performance of ES-
QLite for insertion queries turned out to be 20 to 100 times slower than native SQLite, depending
on the complexity and level of nesting of the JSON data. For selection type queries the runtime
is in the range of 8 to 20 times slower. The added costs however enable ESQLite to reason over
JSON with XPath queries, which native SQLite is not capable of. Furthermore ESQLite does not
effect runtime for data which does not contain JSON. We determined that the XPath evaluation
took 83ms (per 100 records), whereas the complete XPath query costs 286ms (per 100 records)
for dataset 1, and up to 588ms (per 100 records) for dataset 4.
Most interesting is the increase in performance between the basic ESQLite implementation com-
pared to our fully fledged implementation. We see, that depending on the dataset, this results in
an 8% to 50% runtime performance increase. ESQLite optimizations turn out to have great effect
on limited nested datasets and a large relational base.

Regarding the second sub-objective; What is the performance in terms of disk space usage for
different types of datasets, we conclude that the basic ESQLite implementation has a 7.8 times
larger disk space need than native SQLite, whereas a 4.8 times larger footprint for our optimized
implementation.

ESQLite also offers selection time shredding. The results to our corresponding third sub-objective;
What is the runtime performance for different shredding alternatives, lead to the following con-
clusions. Selection time shredding can be useful when insertion performance and/or disk space
is important. Selection time shredding partially redeems the added runtime costs of ESQLite.
Furthermore we showed that selection time shredding is fast when no XPath evaluation has to be
done, since shredding is then completely skipped.

What is the runtime performance for different reconstruction alternatives, is the fourth sub-
objective of interest. Looking at the ESQLite in query and in code reconstruction alternatives
we conclude that both perform equally on dataset 1 and 2, but in code performs significantly
better on the real world datasets, and therefore will be preferable in most cases.

The final sub-objective of our evaluation is stated as follows; what is the performance compared to
SQLite and JSON1. JSON1 is benchmarked and ESQLite is compared to both JSON1 as native
ESQLite. We again conclude that both ESQLite as well as JSON1 are about 10 times slower for
selection queries compared to native SQLite and we also concluded that ESQLite performs better
than JSON1 on the selected queries and datasets.

The conclusion to our main evaluation objective as denoted above can therefore be summar-
ized as follows; while ESQLite turns out to be a order of magnitude slower than native SQLite,
it is able to handle JSON data with a reasonable performance. In any case, for both synthetic as
well as real-world datasets, ESQLite is faster than the current available JSON1.
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Chapter 8

Conclusions

This thesis introduces the problem of handling partially non-relational data on lightweight clients
such as mobile devices. Whereas this type of data increasingly emerges and new techniques for
coping with this data are developed, the mobile field seems to fall behind. In this chapter we sum-
marize our contributions and underpin these with the evaluation results as obtained. Afterwards
in Section 8.2 we look at ESQLite’s limitations and what future work has to be done.

8.1 Summary of contributions

The current dominant database system for mobile devices is the relational database SQLite. The
main contribution of this thesis is the design and development of ESQLite, a wrapper library on top
of SQLite, enabling it to store and reason over JSON data. ESQLite shreds JSON into key-value
pairs and stores them as tuples in a relational table, then on selection the JSON is reconstructed.
This approach not only gives us a way of storing the data relational, but allows for extensive
querying on the JSON data. A XPath like query language extension is proposed to perform this
querying. Several variations and optimizations to ESQLite are discussed and implemented. ES-
QLite is backwards compatible and easy to use, which besides performance requirements was an
explicit boundary condition for our implementation.

We then set up an evaluation framework with the objective of verifying the performance of ESQL-
ite on different types of real-world data. We conclude that while ESQLite is an order of magnitude
slower then native SQLite, these additional costs enable us to query efficiently over JSON data.
Important to note is that ESQLite does not affect performance when JSON data is not present.
Evaluating a single JSON XPath query takes 83mS and the selection and evaluation of 100 real-
world medicine records takes 203ms, which turns out to be reasonably fast and significantly faster
then the current available JSON1. We improved our basic ESQLite solution to store the relational
base of a JSON document in a table, store a root pointer and store the path of each tuple to
further improve the reconstruction runtime. We showed that the these improvements boost the
performance with 8% to 50% depending on the dataset. Since ESQLite has a 4.8 times larger disk
space requirement then native SQLite, we also introduced a selection time shredding option. This
option uses temporary memory for shredding and has no additional storage needs.

We address both storage and reasoning of JSON data, and proved to do this in an efficient matter,
while not effecting the normal SQL performance. So it is safe to say that ESQLite answers our
research question: How and in what way can we extend SQLite, so that it is optimal equipped to
store and reason over JSON data.
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8.2 Limitations and future work

The proposed, implemented and evaluated framework is merely a prototype and offers perspective
for further investigation. There remains a lot to be done to further fill the void currently present
in the field of JSON storage. Below some of the most interesting limitations and future work
proposals are briefly discussed.

Dynamic relational base extraction The current implementation can only observe simple
key/value pairs and cannot evaluate arrays or nested objects. Also the current implementation is
fairly naive and performs poor when the relational base is calculated suboptimal.

Topological sorting and reconstruction With the use of topological sorting algorithms it is
possible to further improve the reconstruction runtime. There are several different approaches to
this, the easiest is storing the level of a node.

Dynamic shredding In the current implementation shredding is done for every document.
When for instance n exactly the same documents are inserted to ESQLite, one would have n− 1
duplicate tuples in the database, effecting runtime and disk space need. An optimization could
be to store multiple parent pointers when a tuple has multiple occurrences. Note that this has a
negative effect on the topological sorting as suggested above. In Section 4.2.4 we briefly discussed
this topic.

Indexing However some of the related work showed interesting results regarding indexing tech-
niques, this was out of scope for this project.

Query language extension The current XPath query language extension can evaluate simple
expressions but has no support for more complex aggregation functions.
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Appendix A

Code examples of ESQLite
Testing framework

1 protec ted void onResume ( ) {
2 super . onResume ( ) ;
3 INSERT TEST. Bui lder bu i l d e r = new INSERT TEST. Bui lder ( )
4 . tag ( ”ESQLWRAPPER” )
5 . dbName( ” t e s t . db” )
6 . debug ( f a l s e )
7 . context ( t h i s )
8 . ope ra t i on s (100)
9 . i t e r a t i o n s (1 )

10 . pragma ( ”PRAGMA synchronous = 0” )
11 . t r a n s a c t i o n a l ( f a l s e )
12 . s l e e p (1500)
13 . s t o r e r o o t o f s h r e d ( t rue )
14 . s t o r e p a t h o f s h r e d ( t rue )
15 . s t o r e r e l a t i o n a l b a s e ( t rue )
16 . r e c on s t r u c t i on typ e ( ReconstructType . IN QUERY)
17 . shredd ing type ( ShredType .UPDATE)
18 . l o g s i z e ( t rue )
19 . c l e a r d a t a ( t rue )
20 . log dump of t imes ( t rue )
21 . l o g i t e r a t i o n d u r a t i o n ( t rue ) ;
22
23 INSERT TEST i n s e r t t e s t = new INSERT TEST( bu i l d e r ) ;
24 i n s e r t t e s t . s t a r t ( ) ;
25 // other t e s t s are s t a r t ed from the i n s e r t t e s t thread .
26 }

Listing A.1: Code example ESQLite testing framework initialization

1 pub l i c c l a s s INSERT TEST extends TEST {
2
3 pub l i c INSERT TEST( Bui lder bu i l d e r ) {
4 super ( bu i l d e r . context , bu i l d e r ) ;
5 }
6
7 @Override
8 pub l i c void run ( ) {
9 St r ing DB PATH = ”/data/data/” + context . getPackageName ( ) + ”/” + DBBAME;

10 ESQLiteDatabaseWrapper . Bui lder wrapperBui lder = new ESQLiteDatabaseWrapper .
Bui lder ( )

11 . debug (DEBUG)
12 . shred type (SHRED TYPE)
13 . r e c on s t ru c t t ype (RECONSTRUCTTYPE)
14 . s t o r e ba s e (STORE BASE)
15 . s t o r e pa th (STORE PATH)
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16 . s t o r e r o o t (STOREROOT) ;
17 ESQLiteWrapper = ESQLiteDatabaseWrapper . openOrCreateDatabase (DB PATH, nul l ,

nu l l , wrapperBui lder ) ;
18 t ry {
19 i f ( s l e e p > 0) Thread . s l e e p (3000) ;
20 i f (OUTPUT SIZE) Log . e ( ”SIZE” , getDBSize (DBBAME) ) ;
21 ESQLiteWrapper . execSQL (INIT QUERY) ;
22 i f (PRAGMAQUERY != nu l l ) {
23 ESQLiteWrapper . execSQL (PRAGMAQUERY) ;
24 }
25 f o r ( i n t i = 1 ; i < ITERATIONS; i++) {
26 //INSERT QUERY = INSERT QUERY. r ep l a c e (” key”+( i −1) , ”key” + i ) ;
27 i f (OUTPUT ITERATION DURATION)
28 Timer . get ( ) . s t a r t (OPERATIONS + ” INSERTED ” + i + ”/” + (ITERATIONS −

1) + ” RUNS” ) ;
29 f o r ( i n t j = 0 ; j < OPERATIONS; j++) {
30 i f (TRANSACTIONAL)
31 ESQLiteWrapper . execSQL ( ”BEGIN TRANSACTION” ) ;
32 ESQLiteWrapper . execSQL (INSERT QUERY) ;
33 i f (TRANSACTIONAL)
34 ESQLiteWrapper . execSQL ( ”COMMIT” ) ;
35 }
36 i f (OUTPUT ITERATION DURATION) Timer . get ( ) . stop ( ) ;
37 i f (OUTPUT SIZE) Log . e ( ”SIZE” , getDBSize (DBBAME) ) ;
38 }
39 i f (OUTPUTDUMPTIMES) Timer . get ( ) . dumpTimes ( ) ;
40 } catch ( Exception e ) {
41 Log . e ( ”TIMER” , ”ERROR ” ) ;
42 e . pr intStackTrace ( ) ;
43 }
44 // run second t e s t
45 bu i l d e r . ope ra t i on s (1 ) ;
46 bu i l d e r . i t e r a t i o n s (20) ;
47 bu i l d e r . l o g s i z e ( f a l s e ) ;
48 bu i l d e r . c l e a r d a t a ( f a l s e ) ;
49
50 SELECT TEST s e l e c t t e s t = new SELECT TEST( bu i l d e r ) ;
51 s e l e c t t e s t . s t a r t ( ) ;
52 }
53 }
54 }

Listing A.2: Code example ESQLite testing framework
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