
 Eindhoven University of Technology

MASTER

Deep convolutional network evaluation on the Intel Xeon Phi
where subword parallelism meets many-core

Raina, G.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ccadce74-a8c1-4c82-9595-54d7a6d33b64

Eindhoven University of Technology

Master’s Thesis

Deep Convolutional Network
evaluation on the Intel Xeon Phi:
Where Subword Parallelism meets

Many-Core

Author:
Gaurav RAINA
MSc Student
Embedded Systems
0871676
g.raina@student.tue.nl

Committee:
(TU/e)

Prof.Dr. Henk Corporaal
Dr.ir. Pieter Cuijpers

ir. Maurice Peemen
(Recore Systems)

Dr.ir. Gerard Rauwerda

January 25, 2016

Abstract

With a sharp decline in camera cost and size along with superior comput-
ing power available at increasingly low prices, computer vision applications
are becoming ever present in our daily lives. Research shows that Convo-
lutional Neural Networks (ConvNet) can outperform all other methods for
computer vision tasks (such as object detection) in terms of accuracy and
versatility [31].

One of the problems with these Neural Networks, which mimic the brain,
is that they can be very demanding on the processor, requiring millions of
computational nodes to function. Hence, it is challenging for Neural Network
algorithms to achieve real-time performance on general purpose embedded
platforms.

Parallelization and vectorization are very effective ways to ease this prob-
lem and make it possible to implement such ConvNets on energy efficient
embedded platforms. This thesis presents the evaluation of a novel ConvNet
for road speed sign detection [38], on a breakthrough 57-core Intel Xeon Phi
processor with 512-bit vector support. This mapping demonstrates that the
parallelism inherent in the ConvNet algorithm can be effectively exploited
by the 512-bit vector ISA and by utilizing the many core paradigm.

Detailed evaluation shows that the best mappings require data-reuse
strategies that exploit reuse at the cache and register level. These imple-
mentations are boosted by the use of low-level vector intrinsics (which are
C style functions that map directly onto many Intel assembly instructions).
Ultimately we demonstrate an approach which can be used to accelerate
Neural Networks on highly-parallel many core processors, with execution
speedups of more than 12x on single core performance alone.

i

Acknowledgments

I would like to express my sincere gratitude and respect to my super-
visors at the university, Prof. Henk Corporaal, Maurice Peemen and my
supervisors at Recore Systems, namely Dr. Gerard Rauwerda and Dr. Yi-
fan He.

I offer my heartfelt thanks to my colleagues and seniors at Recore Sys-
tems in Enschede namely Fasil Taddesse, Jarkko Huijts, Jordy Potman, Ti-
mon Ter Braak, Patrick Klok, Ines Nijman, Marcel van de Burgwal, Tauseef
Ali, for their insight and guidance, Marco Greven for the much needed IT
infrastructure, Frank Litjens, Kim Sunesen, Eduard Fernandez and Nathalie
Watermulder for their support. I cherish the opportunity that I had to learn
something very valuable from each one of you.

I thank my colleagues and friends at the Electronic Systems group at
TU/e for their support and encouragement which kept me going. The en-
thusiasm and hard work displayed by the ES group members in their work,
inspired me to perform my best.

I am indebted to my family in India, without whose love, support and
encouragement this could not have become a reality.

Gaurav Raina
Eindhoven, December 2015.

ii

Contents

List of Abbreviations v

1 Introduction 1
1.1 Trends in Computer vision systems 3
1.2 Research Problem . 5
1.3 Major contributions . 5
1.4 Outline of the thesis report 6

2 Background and Related Work 7
2.1 Artificial Neural Nets . 7
2.2 Convolutional Neural Networks 8

2.2.1 Computations and Data Transfer 10
2.2.2 Parallelism and Data Reuse 11

2.3 The Roofline model: A performance measure 11
2.3.1 Arithmetic Intensity 12
2.3.2 Bandwidth Ceilings 13
2.3.3 An example Roofline 13

2.4 STREAM benchmark . 14
2.5 Optimization Approach . 14
2.6 Levels of parallelism . 16
2.7 Related Work . 17

3 ConvNet Speed Sign detection application 19
3.1 Speed Sign detection Algorithm 19

3.1.1 C language implementation of the speed sign ConvNet
algorithm . 20

3.2 Initial Experiments and Results 23
3.2.1 Dimensioning computational requirements 24

4 Hardware Platforms 26
4.1 Intel Core i7 - 5930K . 26
4.2 Intel Xeon Phi - 31S1P . 29

4.2.1 Many Integrated Core micro-architecture 30
4.3 Sub-word parallelism . 32

iii

4.4 Summary . 33

5 ConvNet Mapping on the Core i7 35
5.1 A Brief on the Intel intrinsics format 35
5.2 Method to Vectorize a Convolutional Kernel on the Haswell . 36

5.2.1 Fused Multiply Add Intrinsic 36
5.2.2 Gathering and Arranging data for FMA 38

5.3 Results . 40
5.4 Roofline model: Performance evaluation 41

5.4.1 Calculation of Compute Roofline Haswell 42
5.4.2 Calculation of Memory Roofline Haswell 42

5.5 Analysis of Results . 42

6 ConvNet Mapping on the Xeon Phi 44
6.1 Going from Core i7 to Xeon Phi 44

6.1.1 Multiply-Accumulate instruction 45
6.2 Method to Vectorize a Convolutional Kernel 46
6.3 Results . 50
6.4 Roofline model: Performance evaluation 51

6.4.1 Calculation of compute ceiling Xeon Phi 51
6.4.2 Calculation of memory ceiling of Xeon Phi 51

6.5 Intel Core i7 (Haswell) v/s Xeon Phi (MIC) 53
6.6 Challenges faced on the Xeon Phi 54

7 Conclusion and Future Work 55
7.1 Conclusions . 55
7.2 Future Work . 56

7.2.1 Multi-core mapping using OpenMP 56
7.2.2 Auto vectorization with OpenMP #pragma simd . . . 56
7.2.3 Performance comparison with SIMD accelerator and

GPU . 57

Bibliography 63

A Appendix: Core i7 platform details 64

iv

List of Abbreviations

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit

AVX Advanced Vector Extensions

ConvNet Convolutional Neural Networks

CPU Central Processing Unit

DDR Double Data-Rate

FLOP FLoating-point OPeration

FMA Fused Multiply Add

FPGA Field-Programmable Gate Array

GCC GNU C Compiler

GPU Graphics Processing Unit

ICC Intel C Compiler

ILP Instruction Level Parallelism

IMCI Initial Many Core Instructions

ISA Instruction Set Architecture

KNC Knights Corner (First generation Many Integrated Core ar-
chitecture)

MAC Multiply-ACcumulate operation

MIC Many Integrated Core architecture

MLP Multi-Layer Perceptron

RAM Random-Access Memory

v

SIMD Single Instruction Multiple Data

SMT Simultaneous MultiThreading

SSE Streaming SIMD Extensions

VLSI Very-Large-Scale Integration

vi

Chapter 1

Introduction

Figure 1.1: [1]

One of the major goals of the ”Eyes of Things” EU international project
which aims to build the best embedded computer vision platform, is to
enable a future with computer vision devices embedded everywhere in the
world around us [49]. To a large extent this has already become a reality in
the world we live in today with cameras all around us, in smart-phones, lap-
tops, flying drones, surveillance cameras, cameras in automobiles, wearables,
industrial vision applications, in robotics, smart homes and so on.

Many of these device are connected to the Internet and fit into the larger
Internet of Things trend prevalent in the tech industry. All this has led to
new opportunities in the areas of computer vision and image processing,
which demand advanced recognition that is as good or even better than
humans. Such technologies have the potential to support us in complex,
time consuming and dangerous tasks or can even take full control of such
systems.

To meet the computational demands of such vision tasks, efficient algo-
rithms and very capable processing hardware are required. There has been
a lot of innovation in this area, giving rise to many new computer architec-
tures and vision algorithms have been developed to run such vision tasks.
Selecting the right hardware platforms and an optimal software implemen-
tations of vision algorithms becomes all the more important with real-time
constraints and while running on embedded devices.

This thesis focuses on a very flexible class of image recognition algo-

1

(a) Multi-rotor vehicles. (b) Security surveillance.

(c) Wearables. (d) Automotive applications.

Figure 1.2: The ubiquitous presence of cameras

rithms called Deep Neural Networks, which are biologically inspired net-
works trained for recognition tasks. More specifically we focus on a sub-
type of neural network algorithms, namely Convolutional Neural Networks
(ConvNet). They are a special type of artificial neural network topology,
that is inspired by the animal visual cortex and tuned for computer vision
tasks.

There is a lot of research work in this field resulting in many neural
network implementations and platforms, but the majority exhibit a problem
of high computational complexity and unoptimized implementations. This
project address the problem by proposing neural network parallelization
approaches to effectively utilize the vector capabilities of modern processor
hardware.

(a) Robotics appli-
cations

(b) Interactive gam-
ing

(c) Feature recogni-
tion

(d) Traffic Monitor-
ing

Figure 1.3: Computer vision applications

This chapter is organized as follows: We start with a discussion on
various recent trends in computer vision systems in Section 1.1. Then in

2

Computer
Vision

Machine
Vision

Image
Processing

OpticsPhysics

Non-linear SP

Signal Processing

Multi-variable SP

Robotic Vision

Control
Robotics

Computer
Intelligence

Artificial
Intelligence

Cognitive
Vision Machine

Learning

Statistics

Geometry

Optimization

Mathematics

Biological
Vision

Neurobiology
Smart
Cameras

Imaging

Figure 1.4: Overview of relations between computer vision and other fields
[27]

Section 1.2, we introduce the existing research problems in deep neural net-
works. Finally, the main contributions of this thesis are then addressed in
Section 1.3.

1.1 Trends in Computer vision systems

A computer vision system is a system with cameras, an image processing
section with compute hardware and custom software which analyses the im-
ages to extract relevant data. An overview of the relation between computer
vision and other disciplines is shown in fig.1.4.

Convolutional neural nets have revolutionized the computer vision indus-
try in the years since 2012, as seen by the trends in the top computer vision
conference Computer Vision and Pattern Recognition (CVPR), IEEE Con-
ference. Neural net algorithms dominate all the top spots in the publications
[29, 45]. Deep Neural Networks take the top spots in ImageNet (Large Scale
Visual Recognition Challenge) and Microsoft Common Objects in Context
(COCO, an image recognition, segmentation and captioning dataset), which
are the state-of-the art object recognition challenges [31].

Classical methods are currently being replaced by machine learning ap-
proaches based upon deep learning. This is due to the many advantages of
deep learning over manually designed algorithms. The quality of classical
methods depends on the quality of the hand-crafted front-end while deep
learning algorithms depend on the training using quality datasets that are

3

easy to obtain. Also, the other advantage is that it is simple to modify
such deep learning systems, by just adding new trained data. For classical
methods, the designer needs to develop a largely new routine for each new
problem.

Figure 1.5: Mainstream object recognition pipeline 2006-2012 [29]

Traditional pattern recognition (refer fig.1.5) can be broadly classified
in two stages: The first stage low-level feature extraction is often hand-
crafted, for eg. Scale-Invariant Feature Transform (SIFT), Histogram of
Oriented Gradients (HOG) are some standard ways of extracting low level
features from images [35, 16]. The second stage expands the dimension so
that the features can be aggregated and sent to a classifier for eg. sparse
coding, vector quantization [13].

Figure 1.6: Latest deep learning pipelines are hierarchical and trained [29]

Modern deep learning pipelines can be simply represented as shown in
figure 1.6. The structure is made up of a sequence of modules, all stages are
trainable, with each stage converting the data into a higher representation.
This can be thought of as a hierarchy of representations with an increasing
level of abstraction. Some of the applications of deep learning can be seen
in the figure 1.3.

Need for a trainable algorithm: Traditional techniques in image recog-
nition use a cascade of specially designed filters which pre-process the image
before detecting. Designing such a pipeline of algorithms is very time con-
suming and must be redone to support new road signs or other objects. The
mapping of these computationally complex algorithms to onboard vision
platforms is a time consuming task and they are not designed to be updated
later during lifetime. This is why the vision system used in this project is
based on a fully trainable Convolutional Neural Network (ConvNet).

4

1.2 Research Problem

As mentioned earlier, the computational requirements of deep convolu-
tional networks are massive, requiring millions of arithmetic operations per
input image. Sequential processors do not achieve a high throughput in
such embarrassingly parallel pixel processing applications. New platforms
that employ massive parallelism need to be evaluated so as to remove the
performance bottlenecks.

Parallelization is one of the most effective ways to ease this problem and
make it possible to implement such neural networks on energy efficient em-
bedded platforms [32]. In this project, the Intel Xeon Phi co-processor is
evaluated as a representative candidate for parallel many-core systems. The
problem tackled in this project is the performance evaluation of a convolu-
tional neural network (ConvNet) on the highly-parallel Intel Xeon Phi co-
processor. More specifically it is shown how one could map a ConvNet onto
the Intel Haswell and the Many Integrated Core (MIC) architecture, tak-
ing into account issues with memory transfer (Roofline model, section 2.3),
caches, vector parallelism and multi-core.

1.3 Major contributions

The most important contributions of this project are:

• Evaluation of ConvNet requirements (Chapter 2)
A convolutional network based speed sign detection application is thor-
oughly studied and tested, to extract the typical requirements in terms
of computations and memory accesses.

• Vectorized mappings on the Core i7 and Xeon Phi (Chapters 5
and 6)
The speed sign detection algorithm is first optimized on the Intel Core
i7 followed by the Intel Xeon Phi. This application is accelerated
using Single Instruction Multiple Data (SIMD) vector parallelization
approach along with other optimizations. Up to 12 times faster per-
formance is achieved per network layer, while running on a single pro-
cessor core.

• Bottleneck analysis with evaluation (Chapters 5 and 6)
Here we try to analyze the performance numbers, with the help of
the Roofline models. We try to explain the difference between ideal
expected performance gains, versus the actual practical gains in per-
formance. This helps us judge the maximum possible performance of
the neural network application along with the hardware platform.

5

1.4 Outline of the thesis report

The remainder of this thesis is organized as follows: Chapter 2 provides
an overview of artificial neural networks, the Roofline performance model
and presents research works related to the contributions presented in this
thesis. In Chapter 3, details about the speed sign detection application used
in this project are explained. Chapter 4 briefly presents the relevant hard-
ware architecture details of the two processor platforms used in this project.
Chapters 5 and 6, discuss the details of the tested vectorized implementa-
tions of the ConvNet application on the Core i7 and Xeon Phi platforms
respectively. Finally, the thesis concludes in Chapter 7 along with a discus-
sion on future work.

6

Chapter 2

Background and Related
Work

This chapter begins with an overview of artificial neural networks in
Section 2.1. The Section 2.3 introduces the Roofline performance model.
By the end of this chapter the reader should have a basic framework to
understand the convolutional network used in this project.

2.1 Artificial Neural Nets

Artificial neural networks (ANNs) are biologically inspired networks in-
terconnected in a specific manner as per the application requirement. One
of the many advantages of artificial neural nets is that they require min-
imum or no preprocessing of input data. While the traditional elaborate
feature extractors are hand tuned for particular sets of data. A simplistic
mathematical model of an artificial neural net is shown in fig. 2.1.

Figure 2.1: An artificial neuron model [43]

Artificial neural network models have the ability to learn and generalize
by using examples. This ability to adapt to the recognition task even after
design time, makes it unique compared to other training methods.

7

2.2 Convolutional Neural Networks

input
32 x 32

feature maps
28 x 28

5x5
convolution

2x2
subsampling

feature maps
14 x 14

feature maps
10 x 10

feature maps
5 x 5

5x5
convolution 2x2

subsampling
fully

connected

C1 S1 C2 S2 n1 n2
output

feature extraction classification

0 1

8 9

Figure 2.2: A ConvNet for a handwritten digit recognition application [39]

A convolutional neural network is a special type of artificial neural net-
work topology, that is inspired by the animal visual cortex and tuned for
computer vision tasks by Yann LeCun in early 1990s [28, 53]. It is a
multi-layer perceptron (MLP), which is feed-forward artificial neural net-
work model, specifically designed to recognize two-dimensional shapes. This
type of network shows a high degree of invariance to translation, scaling,
skewing, and other forms of distortion [20]. The position invariance of the
features makes it possible to reuse most of the results of the feature extrac-
tor, this makes a ConvNet very computationally efficient for object detec-
tion tasks. At each new search location only a single output pixel needs
to be computed [41]. The ability to share weight kernels increases data
locality and leads to a more efficient implementation in the case of convolu-
tional networks. This is another advantage of ConvNets over fully connected
multi-layer perceptrons.

An example of a simple convolution operation with a weight kernel is
shown in figure 2.3. Here the 3x3 weight kernel (yellow) is convolved with
a 3x3 pixel section of the image (green) and the resulting output pixel is
written in the feature map (pink). This operation is done for each row and
column of the image, which results in a 3x3 output feature map.

In convolutional networks, any complex new task is learned in a super-
vised manner by means of a network whose structure includes the following
forms of constraints:

Feature extraction: Each neuron takes its synaptic inputs from a local
receptive field in the previous layer, thereby forcing it to extract local fea-
tures. Once a feature has been extracted, its exact location becomes less
important, so long as its position relative to other features is preserved.

8

(a) The weight kernel (b) 1st Step

(c) 2nd step (d) 9th step

Figure 2.3: 3x3 convolution calculation example [2]

Feature mapping: Each computational layer of the network is composed
of multiple feature maps, with each feature map being in the form of a plane
within which the individual neurons are constrained to share the same set of
synaptic weights. This second form of structural constraint has the following
beneficial effects:

• Shift invariance, is introduced into the operation of a feature map
through the use of convolution with a small size kernel, followed by a
sigmoid activation function.

• Reduction in the number of free parameters, is achieved through the
use of weight sharing.

An input image operated up on by a convolutional kernel produces an
output feature map, see fig 2.4.

Subsampling: Each convolutional layer is followed by a computational
layer that performs local averaging and sub-sampling, whereby the resolution
of the feature map is reduced. This operation has the effect of reducing the
sensitivity of the feature maps output to shifts and other forms of distortion.

9

Figure 2.4: Image converted into a feature map by a convolution kernel [17]

input
X

subsample
Y

convolution
C

S2·K2

kernel

(K+S-1)2

kernel

S2

kernel

Fig. 3. Feature extraction layer example with 2d-convolution kernel size K=3 and
subsample factor S=2, data dependencies are visualized from input to CL and SL. For
the merged method of operation there is no need for a middle CL.

operations are merged; this is only possible if the activation function of the CL
is linear. The merged expression with corresponding coefficients is derived by
substitution of the CL expression (1) with a linear activation function into the
SL expression (3).

y[m,n] = φs(bs + u
S−1∑

i=0

S−1∑

j=0

c[mS + i, nS + j])

=φs(bs + u
S−1∑

i=0

S−1∑

j=0

φc(bc +
K−1∑

k=0

K−1∑

l=0

v[k, l]x[mS + i+ k, nS + j + l]))

= φ̃(b̃+
K+S−2∑

k=0

K+S−2∑

l=0

ṽ[k, l]x[mS + k, nS + l])

(5)

The enlarged kernel ṽ is constructed from all coefficients that are multiplied with
each input value x. The new bias b̃ is the CL bias multiplied by u and added
to the SL bias. From Fig. 3 and (5) is concluded that merging a linear CL and
a SL result in a reduction of MACC operations while retaining the functional
correctness. With the significant reduction of MACC operations the number of
memory accesses is also reduced because there is no intermediate storage of a CL.
Table 2 shows expressions for the number of kernel weights, MACC operations
and memory accesses that are required to calculate a feature map output. The
reduction of MACC operations for multiple merged CL and SL configurations is
depicted in Fig. 4.

Table 2. For a feature map output the required number of weights, MACC operations
and memory accesses depend on kernel size K and subsample factor S.

feature extractor # kernel weights # MACC operations # mem. accesses

CL and SL K2 + 1 S2(K2 + 1) S2(K2 + 2) + 1
merged (K + S − 1)2 (K + S − 1)2 (K + S − 1)2 + 1

Figure 2.5: An example of a 2D feature extraction layer [39]

In figure 2.5, we see the data dependencies between a 4x4 section of the
input image (X), the convolution layer (resulting in C) and the subsampling
layer (resulting in Y). Here the convolution kernel is of size 3x3 (K=3), the
subsampling factor is 2 (S=2) and the final result pixel is store in Y.

2.2.1 Computations and Data Transfer

The compute requirement of a ConvNet depends greatly on the complex-
ity of a classification task at hand. The main contributor to the compute load
are the convolutions. In the case of the speed sign detection application, as
we increase the number of speed signs that can be identified, the number of
multiply-accumulate operations which represent the convolutions, increase
significantly. As the detail in the input images increases, so do the data
transfer requirements. In case of high definition images, the intermediate
feature maps may become too large for the on-chip main memory to store,
which leads to stores to external memories like DDR RAM. This means,
that each pixel might be read and written to and from external memory
more than once. This can incur a huge time penalty as off-chip DDR RAM
access are in the order of 100x slower than accessing on-chip cache memo-
ries. An example of the real-world computations and data access numbers

10

can be seen the table 3.1, which summarizes these numbers for the speed
sign detection application.

2.2.2 Parallelism and Data Reuse

It is wise to exploit the spatial correlations (fig.2.6) and temporal reuse
(fig.2.7) inherent in images, in developing neural net algorithms for these
applications. Individual convolutions should be parallelized to improve the
throughput of the ConvNet algorithm.

Figure 2.6: Spatial locality as seen at the pixel compute level [42]

Optimally, many neighboring convolutions can be computed together to
produce an output array. As seen in fig.2.6 such parallel operations reduce
the overall data transfer required by exploiting the spatial locality of the
input pixels, shown as gray pixels. When the convolution window moves to
the next column, see fig.2.7, the gray pixels are reused in this new set of
convolutions, reducing memory accesses substantially.

2.3 The Roofline model: A performance measure

To estimate the performance of the neural network application intro-
duced in previous sections, on a target processor platform in an insightfully
visual manner we need the roofline model. Roofline is a performance model
which helps us arrive at a performance bound for an algorithm running on
multi-core, many-core or accelerator processor architectures.

The Roofline model gives an estimation of the application performance
based on the assumption that performance is limited by two factors: memory

11

Figure 2.7: Temporal locality as seen at the pixel compute level [42]

bandwidth between off-chip memory and the processor or compute through-
put of the architecture. This Roofline figure can be used to assess the quality
of achieved performance (with the current implementation) and the inherent
performance ceilings of the specific processor [52].

The Roofline model can be applied to different architectures, because
it assumes computational elements (e.g. CPUs, cores, function units) and
memory elements (e.g. RAM, caches, register) as black boxes interconnected
via a network.

2.3.1 Arithmetic Intensity

This is one of the absolute core parameters in the making of the Roofline
model. Arithmetic Intensity is the ratio of total arithmetic operations to
total data movement in bytes, see equation 2.1.

Arithmentic Intensity =
Total number of operations

Total data movement to memory(bytes)
(2.1)

Cache size, cache conflicts and cache misses can increase data movement
to off-chip memory significantly, which can reduce arithmetic intensity.

Croof = #cores · Cf · Cops operations/sec (2.2)

12

Cops =

q−1∑

0

FUwidth (2.3)

As seen in the equation 2.2, to find the computational roofline we have
to take the produce of the number of cores, the clock frequency of the cores
(Cf) and the number of FLOP per core per clock cycle (Cops). Cops is found
using the formula 2.3, which is a summation of the width of Functional Units
(FUwidth) over q, which is the number of functional units (FU) [50].

2.3.2 Bandwidth Ceilings

Broof = Mf ·Mdt ·Mwidth · #channels bytes/second (2.4)

The equation 2.4, can be used to calculate the maximum theoretical
bandwidth roofline Broof ; where Mf is the frequency at which the memory
unit can issue transfers, Mdt is the number of data transfers per clock tick,
Mwidth is the width of a single meory transfer in bytes and #channels is
the number of channels of memory [50].

Memory bandwith can be found by taking the ratio of the y unit by x
unit, i.e. attainable compute performance (Ops/second) by the arithmetic
intensity (Ops/byte), which yields bandwidth (bytes/second).

2.3.3 An example Roofline

An example of the Roofline model is shown in figure 2.8, both the axes
use a log scale. On the Y axis the maximum attainable compute performance
is expressed in Giga Floating Point Operations per second (GFLOP/s) and
on the X axis the arithmetic intensity of the kernel under test is expressed
in terms of the ratio of Floating Point Operations per byte of data loaded
from external memory (FLOP/Byte). The first application (kernel 1), has
an arithmetic intensity of 2 Ops/byte and its performance is bounded by
the memory bandwidth. The second application (kernel 2), has arithmetic
intensity of 8 Ops/byte and it is bounded by the computational performance
of the processor.

Performance is bounded by the optimizations which are implemented.
In-core optimizations can affect horizontal ceilings, bandwidth optimizations
affect the diagonal ceilings and memory traffic optimizations are represented
as vertical walls.

13

Roofline Model
20

actual FLOP/Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

Performance Roofline

Y coordinate is
performance

Processor BW
Roofline

(Slope is BW)

Kernel 2

Kernel 1

Each kernels
performance

bound

Each kernels
performance

bound

Figure 2.8: An example Roofline model

2.4 STREAM benchmark

The STREAM benchmark is an industry standard benchmark to mea-
sure sustainable memory bandwidth. It measures sustainable memory band-
width (in MB/s) and the corresponding computation rate for simple vector
kernels [34]. The benchmark is a very useful indicator for real-world appli-
cation performance. This benchmark is repeatedly referred to in many high
performance computing benchmarks, for eg. the High-Performance Conju-
gate Gradient Benchmark (HPCG) on the Xeon Phi [37]. In this paper, the
net bandwidth for HPCG is reported to be about 65 to 80 percent of the
STREAM benchmark, hence this shows that it is a good indicator for the
bandwidth performance. We use the results of STREAM benchmark as a
cross check for our practical result from the experiments.

2.5 Optimization Approach

Optimizations on the ConvNet application are performed in the following
order:

1. Compiler optimization flags

2. Loop unrolling

3. Vectorization using SIMD intrinsics

14

Processor

Core 0 Core n

Memory (Cache)

Input/Output

Instruction
Unit(s)

Functional
Unit(s)

Core

Main memory

…

SIMD ParallelismVector
Unit x0 x1 x2 x3

Figure 2.9: A big picture of the different levels of parallelism in computer
architecture

It is common to see enormous speedups being reported from porting
existing CPU applications to GPUs and other accelerators like the Intel
Xeon Phi, but often very little thought is given to the baseline chosen for the
comparison. The performance of the original code is often directly compared
against code produced by experts on the chosen accelerator. The resulting
speedup, while factually correct, may give a misleading result [33].

To make a fair comparison, we implement basic software optimization
before we check for what speedups are achieved. We implement the same
speed sigh detection algorithm, on all versions of the code.

We analyze the order of execution and remove unnecessary work in criti-
cal loops. Then we iterate on a number of measure-optimise-measure cycles.
We compare performance with both un-vectorized and auto-vectorized ver-
sions of the application code.

We focus on execution time to find the bottlenecks, remove them and
measure again. We try to make the best use of the features of the hard-
ware and the accompanying instruction set. The CPUs include many op-
portunities to boost application performance including vector units, special
instruction sets, caches and multi-core, if used correctly.

15

2.6 Levels of parallelism

In figure 2.9, we can see a birds eye view of the different levels of par-
allelism available in computer architecture. At the top we start with a
computer running on a multi-core processor, then we focus on a single pro-
cessing core, inside the core among all the functional units we focus on the
vector unit, here we see the SIMD sub-word parallelism capabilities. In this
thesis we will focus on the lowest level of parallelism, i.e. SIMD sub-word
parallelism which is found inside the vector unit of each core in a multi-core
processor.

As seen from the figure 2.10, Intel intrinsics used in this project is the
lowest level and most powerful method to vectorize an application. The
figure gives an overview and classification of all the programming models
available for the Many-Integrated Core architecture, which will be intro-
duced in Chapter 4. The approaches are ordered according to the ease of
implementation versus the degree of precise control available.

Figure 2.10: Many Integrated Core architecture programming models [18]

16

2.7 Related Work

Much work has been done on this topic of mapping complex image pro-
cessing applications on the Intel Xeon Phi [26, 51, 15]. In addition, a number
of performance comparison studies have been done comparing the MICs to
the GPUs and CPUs [47]. Very few neural network algorithms in research are
suited for achieving real-time performance on embedded platforms. Many
of the FPGA based neural network accelerators have been unsuccessful due
to the high design cost, poor flexibility and the competing increase of CPU
and GPU performance [41].

The speed sign detection ConvNet has been implemented on a Nvidia
GeForce GTX460 GPU at the PARSE group at TU Eindhoven, achieving
35 frames per second with an HD 720p video stream input [38]. Training
of the total classification system is done off-line with the help of the error
back-propagation algorithm.

7

GPUs

Frameworks

Neural Net
Applications

Tesla TX-1 Titan

Figure 2.11: cuDNN is a library of primitives for deep learning applications
on NVIDIA GPUs

Other approaches available in the computer vision community to accel-
erate neural net based applications include the use of deep learning frame-
works such as Caffe [25], which offer an open-source library, public reference
models and working examples for deep learning. Torch7 is another useful
numeric computing framework and machine learning library[14], which is an
environment to learn and experiment with machine learning like Matlab is
for numerical computing. Theano is a python software package developed
by machine learning researchers at the University of Montreal, which com-

17

piles symbolic code for different architectures including the CPU and GPU.
It has performance comparable to hand-crafted C implementations on the
GPU, for complex machine learning tasks like deep convolutional networks,
which benefit from parallelization [11]. These frameworks can be better un-
derstood using the diagram 2.11, which shows their position in the overall
image processing system; with the application at user level, the frameworks
using the underlying cuDNN libraries to fully utilize the compute potential
of the GPUs underneath.

Many of these frameworks use NVIDIAs cuDNN library in the back-end
to implement many neural network specific operations. This enables these
frameworks to accelerate their code on GPUs very efficiently, but they lack
in performance on vector enabled CPUs and other new many-core architec-
tures.

18

Chapter 3

ConvNet Speed Sign
detection application

The computational workload in a neural networks prevents software im-
plementations from achieving real-time recognition. The two main bottle-
necks are computational workload and data transfer. Exploiting the avail-
able parallelism in ConvNets is essential to remove the computational scaling
problems. In addition memory locality should be heavily exploited to reduce
the excessive memory bandwidth which is also a bottleneck [41].

To solve the above problem, an optimized implementation of a speed
sign detection ConvNet is needed. The application used in this project has
some unique characteristics: First, it uses a modified algorithm to reduce
the computational workload in CNN layers. Secondly, fixed point data types
are used instead of float data type. This ConvNet has been trained using
Error Back-Propagation and as per the results, it needs 65-83% less MACs
(multiply-accumulate operations) than the original implementation, without
loss of recognition quality [41].

In Section 3.1 we introduce the speed sign detection algorithm used
in this project, followed by its C language implementation in Section 3.1.1.
Finally, we analyze the applications computation and memory requirements.

3.1 Speed Sign detection Algorithm

The structure of the convolutional network used for speed sign detection
can be seen in figure 3.1. The layers from Layer 1 to Layer 3 function as
a trainable feature extractor. The last Layer 4 of this architecture are a
fully connected feed forward Artificial Neural Network (ANN) layers. These
first 3 layers are ANN layers with constraints to extract specific position
invariant features from 2D images.

An example output of the speed sign detector ConvNet is shown in fig.
3.2. Here we can see the yellow bounding boxes marked in the image, around

19

Figure 3.1: ConvNet layers representation [40]

Figure 3.2: Detector output for a 50 km/h speed sign [38].

the speed signs on the street and the correctly detected speed overlay on top
of the image.

3.1.1 C language implementation of the speed sign ConvNet
algorithm

The figure 3.3 shows pseudo code of a C language implementation the
convolutions of the speed sign detection algorithm. One can relate this to
the artificial neural network seen in Chapter 1 figure 2.1. The compute line,
which is the multiply accumulate operation, is that part of the artificial
neuron where there is a product of the each input (in layer[i]) with the
corresponding weights (weight[i]) and then summation (acc) of all these is
passed through a sigmoid function (fixact[j]) and output as a detection is

20

CNN Code Structure

1. for(r=0; r<6; r++){
2. acc = bias[r];
3. for(m=0; m<YL1; m++){
4. for(n=0; n<XL1; n++){
5. for(k=0; k<6; k++){
6. for(l=0; l<6; l++){
7. acc += in_layer[m*2,n*2,l]*weight[r,k,l];
8. }
9. }
10. index=saturate_shift(acc); //10bit fixedpoint format
11. out_layer[r,m,n]=fixact[index];
12. }
13. }
14. }
“r” = o/p feature maps (6) “k*l” = 6*6 convolution kernel
“n” = Neuron outputs fixact = sigmoid activation function

6

Compute

Store

Figure 3.3: C kernel implementing the convolution operations

determined for every n neuron and stored collectively in (out layer[k]) for
each layer.

The k and l for loops determine the size of the convolution operation
window. If k and l are equal to 6, then it is a 6x6 convolution operation, as
seen in the fig. 3.3. As we go up to the outer for loops, n represents each
individual neuron output. The for loop of m shifts the input window over
input image and the for loop of r is use to jump to the next output feature
map.

The call graph of the application is shown in fig. 3.4, which gives an
idea of the structure of the code. The application uses a 720p HD video
frame as input. As visualized in figure 3.1 there are three convolution and
sub-sampling layers followed by a fourth layer for detection. The input for
Layer 1 is a 1280x720 pixel resolution image, the input for Layer 2 are six,
637x357 pixel feature maps, input for Layer 3 are sixteen, 317x177 pixel
feature maps and inputs for Layer 4 are eighty, 312x172 pixel feature maps.
The Layer 4 is the detection layer, which outputs the detected speed of the
speed sign.

In the algorithm, convolution and sub-sampling are merged as shown in

21

Figure 3.4: Calls graph of the speed sign application

equation 3.1, as derived in the paper [41].

y[m,n] = φ(b+
∑

q∈Q

K−1∑

k=0

K−1∑

l=0

vq[k, l]xq[mS + k, nS + l]) (3.1)

In the above equation 3.1, y denotes the neuron output, φ denotes the
activation function, b denotes the initial bias value required, v denotes the
kernel and x is each input value. The set Q contains the indexes of input
feature maps, which are connected to this feature map. The set of connected
input feature maps can vary for different output feature maps. The constant
K denotes the size of the convolution kernel and S represents the subsample
factor, which is implemented as the step size of the input window, on an
input feature map. This is illustrated in the figure 3.5, with X represent-
ing the input image, v[k,l] being the weight kernel and y representing the
example output.

This equation is implemented in C code as follows:

acc = acc + in_layer[(m*2+k)*XIN+n*2+l] * weight[6*(r*6+k)+l]

22

M.C.J. PEEMEN - MAPPING CONVOLUTIONAL NEURAL NETWORKS ON A RECONFIGURABLE FPGA PLATFORM 5

2 3 4 5 6 7 8 9
2

3
4

69%

78%

82%
85% 86% 88% 88% 89%

64%

72%

76%
79% 81% 82% 83% 84%

55%
60%

63% 65% 67% 68% 69% 70%

50%

55%

60%

65%

70%

75%

80%

85%

90%

re
du

ct
io

n
#M

A
C

C

K

S

Fig. 5. Reduction of the #MACC operations to calculate a merged feature
map compared to the original algorithm. The reduction is shown for multiple
kernel sizes K and subsample factors S.

K describes the new kernel size and S describes the step
size of the input window on a input feature map as depicted
in Fig. 6(b).

B. Training with error back-propagation

Training is carried out in a supervised way by an error-
driven algorithm, which learns by the difference between the
produced outputs and target output signals. The used training
algorithm is the online mode of error back-propagation [21],
which does a gradient descent in weight space to minimize
an error function. The error-function that is used is the cross-
entropy (CE) error function [22],

ECE = −
∑

n∈N
dn log(yn) + (1− dn) log(1− yn). (7)

In the error function the set N contains output neuron indices
and dn is the target value of each of the outputs. The CE error
function is a distance measure for probability distributions.
Multiple sources show that the CE error function achieves
better results on pattern recognition problems than for example
the sum squared error (SSE) [1] [23]. The basic idea of
error back-propagation is to efficiently calculate the partial
derivatives of the error in function of the weights for a given
input pattern. These partial derivatives are used to do a small
correction to each weight in the negative direction of the error
derivative. Before training all weights are randomized on a
small value. The training process can be split into three parts,
feed-forward processing, calculating partial derivatives, and
updating the weights.
1) Feed-forward processing: After initialization of the weights
the first pattern is processed by the CNN in feed-forward
mode. An example network is depicted in Fig. 6(a). Feed-
forward operation through the FELs is described by (6). For
the NLs feed-forward operation is described by (4). The feed-
forward operation results in a set of output values that are used
in the error function.
2) Calculate partial derivatives: Expressions for the partial
derivatives of the error function for the weights in the output
layer are derived. In the previous expressions x is used as

input X0

Y0
1

Y1
1

Y0
2

Y1
2

Y2
2

Y3
2

y3

y4

X

y[m,n]

S K

v[k,l]

a) unique
weights

unique
weights

input kernel output

Fig. 6. Overview of variables and indices required for CNN feed-forward
computation. a) Shows the different kernel connections between feature maps.
b) Shows the variable names which are required to compute feature map
neurons.

input and y as output, for the error derivatives more variables
are required. In the following expressions λ is used to describe
in which layer variables are positioned. The partial derivatives
are found by applying the chain rule on the CE error function
of (7), which results in

∂ECE

∂wλ
n[k]

=
∂ECE

∂yλn

∂yλn
∂pλn

∂pλn
∂wλ

n[k]

=
yλn − dn

yλn(1− yλn)
φ̇(pλn)y

λ−1
k

= (yλn − dn)y
λ−1
k

= δλny
λ−1
k

(8)

where,
φ̇(x) = φ(x)(1− φ(x)) = yn(1− yn) (9)

δ =
∂ECE

∂y

∂y

∂p
. (10)

During the calculation of the partial derivative the local gradi-
ent δ is stored for each neuron, this value is reused to calculate
the gradient of neurons that are not directly connected to the
output. The expression for the partial derivatives for a neuron
layer that is not positioned at the output is given as

∂ECE

∂wλ−1
n [k]

=
∑

i∈D

∂ECE

∂yλi

∂yλi
∂pλi

∂pλi
∂yλ−1

n

∂yλ−1
n

∂pλ−1
n

∂pλ−1
n

∂wλ−1
n [k]

=
∑

i∈D
δλi w

λ
i [n]y

λ−1
n (1− yλ−1

n)yλ−2
k

= δλ−1
n yλ−2

k .

(11)

The set D contains all neurons in the succeeding layer that are
connected to neuron yλ−1

n or y3n in Fig. 6(a) for which the local
gradient is calculated. Because it is a fully-connected layer it
contains all neurons of the succeeding layer. Expression (11)

Figure 3.5: An example computation of feature map neurons [41]

3.2 Initial Experiments and Results

The CNN application code was profiled on an Intel x86 64 bit platform
seen in fig. 3.6 (Core0 of Intel Xenon X5677 @ 3.47Ghz 24GB RAM). No
x86 architecture specific optimizations performed. In the newer gcc 4.9.2
and clang LLVM 3.5.0 compilers unrolling of inner loops is automatically
implemented at the -O3 flag optimization level.

������� ������

������ ���

�� ������

�� �������

�� ������

���� ���

�� ���

�� ���

�� �������

�� ������

���� ���

�� ���

�� ���

�� �������

�� ������

���� ���

�� ���

�� ���

�� �������

�� ������

���� ����

�� ���

�� ���

����� �����������������������

�������� ��������

����� �� �� ��� ���� �������� ���

Figure 3.6: CPU topology of the initial x86 platform used for testing

The resulting split-up of the Multiply-Accumulate (MAC) operations per
frame of the road speed sign video processed is shown in fig.3.7. This shows
that Layer 3 is responsible for more than 80% of the MACs computation,
hence this layer should be optimized at the highest priority.

23

Figure 3.7: MACs split-up of the ConvNet application

3.2.1 Dimensioning computational requirements

Methodology followed to measure computations and data accesses:

acc = acc + in layer[i index] * weight[w index] (3.2)

Equation 3.2 is counted as one Mutiply Accumulate operation and two
Read operations.

out layer[o index] = fixact[index] (3.3)

Equation 3.3 is counted as one Read and one Write operations.

Computations and Memory accesses per frame

All the computation and memory requirements of the speed sign detec-
tion algorithm are summarized in table 3.1.

A video demonstration of this road speed sign detection application can
be found at [48]. The second video demonstrates an easily extended version
of the original algorithm which can now detect road crossings in addition
to road speed signs. This demonstrates one of the advantages of having a
trainable front end (feature extractor), which enables quick additions to the
functionality by simply updating with newly trained weights. This expands
the scope of its applications in the area of car navigation systems, as the
feature extractor can use up to the minute information on road conditions
to ensure driver safety.

24

Table 3.1: MAC and data transfer requirements of ConvNet speed sign
detection (per frame)

Layers
Parameters

MACs
Data

No. of Feature Kernel Sub- transfer
feature map size sample (MB)
maps size

L1 6 637x357 6x6 2x2 49.1M 2.25

L2 16 317x177 6x6 2x2 121.2M 2.17

L3 80 312x172 5x5 1x1 858,6M 4.98

L4 1 312x172 1x1 1x1 4.3M 4.1

TOTAL 1.03G 13.5

25

Chapter 4

Hardware Platforms

It is an interesting research question to see the suitability of a Xeon Phi
platform for neural networks, as it might offer a better alternative to the
GPU model most prevalent today. Possible benefits might include energy
savings, easy portability of the optimized code to any Intel CPU, backward
compatibility to x86 CPUs and a viable test platform for new many-core
embedded platforms. As the programming model is same across these two
Intel processors, the Core i7 was a good test bench for getting a baseline for
the speed sign detection ConvNet.

In this chapter we introduce the hardware platforms used in this project.
First, we introduce the Intel Core i7 processors in Section 4.1, followed by
the Xeon Phi co-processor in Section 4.2. From this chapter you will have
better knowledge of how the hardware capabilities of the processor influence
a mapping and performance of a neural network.

4.1 Intel Core i7 - 5930K

Figure 4.1: Intel Haswell-E Core i7 processor [6]

The Intel Core i7 5930K CPU is used as a baseline for testing opti-

26

Table 4.1: Superscalar architecture: Operations can be dispatched on dif-
ferent ports [10]

Port 0 Port 1 Port 5 Port 6 Port 4 Port 2 Port 3 Port 7

ALU ALU ALU ALU Store data Load Addr Load Addr Store addr

Shift LEA LEA Shift Store addr Store addr AGU

BM BM JEU

SIMD Log SIMD ALU SIMD ALU

SIMD Shifts SIMD Log SIMD Log

SIMD misc

FMA/FP mul FMA/FP mul Shuffle

Divide FP add

JEU slow int FP mov

LEA : Load Effective Address, BM : Bit Manipulation, JEU : Jump Execution Unit (Branch Unit)
SIMD Log : Vector Logical instructions, FMA: Fused Multiply Add, AGU : Address Generation Unit
FP: Floating point

mizations before moving on to the Intel Xeon Phi. The Intel literature
recommends this approach of optimizing for high end Intel processors be-
fore moving on to the Intel Xeon Phi as most of the optimizations scale well
to the many-core Xeon Phi.

The Core i7 5930K is a 64bit CPU with Haswell-E micro-architecture.
It has 6 physical cores with 2 Threads per core (12 logical cores), including
32K bits Level 1 (L1) data and instruction cache each, 256K bits of Level 2
(L2) cache and 15360K bits (15MB) of Level 3 (L3) cache. It has a 256 bit
wide vector unit capable of running the AVX2 instruction set extensions
along with AVX, FMA3, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2
x86-64 and Intel 64 instructions.

The Haswell-E architecture is wider than the previous generation Ivy
Bridge architecture, with four arithmetic logic units (ALU), three address
generation units (AGU), two branch execution units, higher cache band-
width, improved memory controller with a higher load/store bandwidth.
The hardware functional units are visualized in the Table 4.1, which rep-
resents the superscalar parallelism in this processor. To give an idea of
the capabilities of each functional unit, some example instructions for each
functional unit are listed in Table 4.2.

It has a maximum of 32 parallel SIMD lanes of 8-bits each, as seen
in orange in the fig. 4.2. All the data-types supported by the Haswell
architecture and AVX2 instruction set combination are shown in this figure.
This is one of the important decision metrics when selecting the optimal
instructions for implementing the ConvNet kernel onto this architecture.

27

Figure 4.2: SIMD Vector Data Types

Table 4.2: Haswell microarchitecture Execution Units and example instruc-
tions [10]

Execution No. of Instructions
Unit Ports

ALU 4 add, and, or, xor, mov, (v)movdqu

SHFT 2 sal, shl, rol, adc, sarx, (adcx, adox)

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep

SIMD Log 3 (v)pand, (v)por, (v)movq, (v)blendp

SIMD Shift 1 v)psl*, (v)psr*

SIMD ALU 2 (v)padd*, (v)pabs, (v)pavgb, (v)pmax

Shuffle 1 (v)shufp*, vperm*, (v)pack*, vbroadcast, (v)pblendw

SIMD Misc 1 (v)pmul*, (v)pmadd*, (v)bendv

DIVIDE 1 divp*, vdiv*, sqrt*, vsqrt*, rsqrt*, idiv

FP Add 1 (v)addp*, (v)cmpp*, (v)max*, (v)min*,

FP Mov 1 (v)movap*, (v)movup*, (v)movsd/ss, (v)movd gpr

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

28

4.2 Intel Xeon Phi - 31S1P

Intel announced the Xeon Phi brand at the International Supercom-
puting Conference, Hamburg in June 2012 [5]. Here the first supercomputer
with Xeon Phi co-processors named ”Discovery” made the TOP500 list [21].

Figure 4.3: Intel Xeon Phi family of coprocessor [4]

In November 2012, the Green500 list named an Intel Xeon Phi based
system as the world’s most energy-efficient supercomputer [23]. This indi-
cates that the Xeon Phi has good potential in accelerating compute intensive
tasks like neural networks algorithms, in an energy efficient manner.

The Intel Xeon Phi Co-processor is in the form factor of a PCIe-16x
extension card, which runs its independent Linux operating system and can
be used by a host system either as a separate processing system or via
offloading sections of the code to the co-processor.

Intels’ first commercial product using the Many Integrated Core archi-
tecture (MIC) was named Knights Corner. In this architecture Intel in-
troduced a very wide 512-bit SIMD unit to the processor architecture, a
cache-coherent multiprocessor systems connected to the memory via a ring
bus, with each core supporting 4-way multi-threading. This can be seen in
fig.4.4, with 4 of 8 graphics double data rate (GDDR) memory controllers
(MC), tag directories (TD) which look up cache data distributed among the
cores, a ring interconnect, and the cores with separate L2 caches. Intel MIC
KNC processors have 32 native registers, 60+ in-order low power IA cores
(similar to Intel Pentium) on a high-speed bi-directional ring interconnect,
which also enables fully coherent L2 cache. It has two pipelines with dual
issue on scalar instructions, it’s scalar unit is based on Pentium processors
upgraded to Intel 64 ISA, 4-way SMT, new vector instructions, and increased
cache sizes. The scalar throughput after pipelining is one-per-clock cycle. It
has a 512bit SIMD Vector Processing Engine, with 4 hardware threads per
core and 512KB coherent L2 Cache per core. It has 8 memory controllers

29

with 2 channels each to the GDDR5 memory on-board.

Figure 4.4: Intel Xeon Phi micro-architecture with interleaved memory con-
trollers [9]

The Intel Xeon Phi 31S1P used during in this project is capable of
1 TeraFLOPs double precision performance with its 57 cores running at
1.1GHz each, it has 8GB GDDR5 memory with a speed of 5 GT/s, with
a total bandwidth of 320GB/s and has a total cache size of 28.5MB [24].
One thing lacking is L2 to L1 cache auto pre-fetching. See fig. 4.5 for some
detailed specifications. Due to a simple Instruction Decoder it needs two
threads per core to achieve full compute potential for the same instruction.

The Intel Xeon Phi has the potential to save time and resources compared
to other coprocessors in the market, because it uses familiar programming
languages, parallelism models and tools used for existing Intel processors.
This facilitates easy migration of code developed for older Intel architectures
to this new MIC architecture [36].

4.2.1 Many Integrated Core micro-architecture

At the heart of the MIC architecture is a combination of a scalar and
vector processor, as seen in fig.4.6. The scalar part of the core is mainly to
maintain the backward compatibility and easy porting of operating systems.

30

Figure 4.5: Intel Xeon Phi 31S1P specs (Co-processor used for testing) [24]

Figure 4.6: Intel Knights Corner core architecture [7]

The actual compute power is in the vector processing part of the core. The
vector processor has a 512bit SIMD unit with capability to process 16 words
per operation.

We can see the detailed block diagram of the Intel MIC architecture core
in the figure 4.7. We can clearly see that the standard scalar IA (Intel Archi-
tecture) core has been extended with a 512bit vector unit. The vector unit
contains 16 SP (single precision) ALUs and 8 DP (double precision) ALUs.
Most of the vector instructions have a latency of 4 cycles and throughput of
1 cycle and are issued in the u-pipeline. Some vector instructions like mask,
store, prefetch are issued in v-pipe [7].

The Xeon Phi’s IMCI instruction set supports 16x 4-bytes elements or 8x
8-bytes elements. As illustrated in the figure 4.8, the Knights Corner MIC
architecture does not natively support 8 bit or 16 bit data types, which

31

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vector Processing Unit Extends the
Scalar IA Core

Pipe 0 (u-pipe) Pipe 1 (v-pipe)

Decoder uCode

 L1 TLB and
L1 instruction
cache 32KB

X87 RF Scalar RF VPU RF

VPU
512b SIMD

L1 TLB and L1 Data Cache
32 KB

X87 ALU 0 ALU 1

TLB Miss
Handler

L2 TLB

L2
CRI

512KB
L2 Cache

HWP

Thread 0 IP

Thread 1 IP

Thread 2 IP

Thread 3 IP

D2 PPF PF D0 D1 WB E

On-Die Interconnect

Instruction Cache Miss

TLB miss

16B/cycle (2 IPC)

TLB miss

Data Cache Miss

4 threads in-order

7/11/2013

21 PRACE MIC Summer School, July 2013, CINECA Figure 4.7: MIC single core architecture [7]

512 bytes Intel MIC architecture

64x 8bit chars

32x 16bit shorts

16x 32bit int

8x 64bit int*

16x 32bit float

8x 64bit double

Figure 4.8: Xeon Phi MIC 512-bit vector data-types of IMCI

are supported in the Haswell architecture found in Core i7. This puts the
KNC MIC at a slight disadvantage for algorithms requiring byte operations
(which most pixel processing algorithms need), as it has to up-convert such
data types to 32bit before it can operate on them. This is a hardware limit
as there are only 16 x 32 bit lanes in the SIMD vector unit in the KNC MIC
architecture.

4.3 Sub-word parallelism

Sub-word parallelism can simply be understood as Single Instruction
Multiple Data (SIMD) within a register [19]. Sub-word parallelism enables
us to work with lower-precision data on architectures which have word-sized
data paths. It is a form of SIMD parallelism at a smaller scale and at a

32

cheaper hardware cost as one register can hold multiple data operands [30].
Vector instructions are extensions to the x86 instruction set architec-

ture for microprocessors from Intel and AMD. Advanced Vector Extensions
(AVX) were first supported by Intel with the Sandy Bridge processor in Q1
2011 and later on by AMD with the Bulldozer processor in Q3 2011. AVX2
expands most integer commands to 256 bits and introduces Fused Multiply
Add (FMA).

Vector SIMD registers

The AVX-512 (ZMM0-ZMM31) register scheme is an extension of the
AVX (YMM0-YMM15) registers and SSE (XMM0-XMM15) registers, as
visualized in the table 4.3. We can see that the SSE vector instructions
started with 128-bit registers, which were extended to 256-bits by the AVX
instruction set, then the IMCI instruction set further extended 16 registers
to 512-bits but did not maintain backward compatibility to AVX and finally
the latest AVX-512 instructions added 16 more registers while bringing back
backward compatibility to old vector extensions including AVX and SSE.

4.4 Summary

The Xeon Phi co-processor with it’s MIC architecture has been designed
for highly parallel workloads, while Core i7 with Haswell architecture is a
general purpose CPU. The table below indicates which type of workload is
suitable for each type of processor.

In the next two chapters 5 and 6, we evaluate the platforms and pro-
gramming approaches used to map the ConvNet application. In the case
of processor platforms, the layers of speed sign detection application are
mapped onto the two processors natively and the execution time is used
as the unit of performance. Similarly, for the programming approaches,
the speed sign detection application is written using Intel intrinsics and
compared with the automatically generated executable from the original C
implementation of the application.

33

Table 4.3: AVX-512 (ZMM0-ZMM31), AVX (YMM0-YMM15) and SSE
(XMM0-XMM15) registers

511 .. 256 255 .. 128 127 .. 0
bits bits bits

ZMM0 YMM0 XMM0
ZMM1 YMM1 XMM1
ZMM2 YMM2 XMM2
ZMM3 YMM3 XMM3
ZMM4 YMM4 XMM4
ZMM5 YMM5 XMM5
ZMM6 YMM6 XMM6
ZMM7 YMM7 XMM7
ZMM8 YMM8 XMM8
ZMM9 YMM9 XMM9
ZMM10 YMM10 XMM10
ZMM11 YMM11 XMM11
ZMM12 YMM12 XMM12
ZMM13 YMM13 XMM13
ZMM14 YMM14 XMM14
ZMM15 YMM15 XMM15

ZMM16 YMM16 XMM16
ZMM17 YMM17 XMM17
ZMM18 YMM18 XMM18
ZMM19 YMM19 XMM19
ZMM20 YMM20 XMM20
ZMM21 YMM21 XMM21
ZMM22 YMM22 XMM22
ZMM23 YMM23 XMM23
ZMM24 YMM24 XMM24
ZMM25 YMM25 XMM25
ZMM26 YMM26 XMM26
ZMM27 YMM27 XMM27
ZMM28 YMM28 XMM28
ZMM29 YMM29 XMM29
ZMM30 YMM30 XMM30
ZMM31 YMM31 XMM31

Table 4.4: Prediction for the two processors

Workload type Xeon Phi Core i7

Sequential Low High

Data-parallel Medium High

Memory intensive High Medium

34

Chapter 5

ConvNet Mapping on the
Core i7

In this chapter, the performance of a Core i7 is evaluated, as a baseline
for further tests. This is done by porting the speed sign detection algorithm
elaborated in Chapter 3 to a computer with the Core i7 processor. This
application is accelerated using platform specific hardware features to mea-
sure the peak performance that can be achieved. The performance of these
software optimizations are plotted on a Roofline model, which gives us a
clear comparison with the theoretical limits of the platform.

In Section 5.3, the resulting performance of the ConvNet algorithm is
discussed. By the end of this chapter you will learn some of the tricks and
methods which can be used to accelerate neural networks on wide SIMD
path platforms.

5.1 A Brief on the Intel intrinsics format

Intel intrinsic instructions, are C style functions that allow the program-
mer to easily integrate assembly instructions into C language source code,
without the need to write assembly code. They provide access to many Intel
instructions - including SSE, AVX, AVX-512, IMCI etc.

There are six main vector types which are used in the AVX, AVX2 and
IMCI instruction sets, as shown in Table 5.1. Xeon Phi supports int32,
int64, float32 and float64 elements. Normal C language data types like int

and float are also used in some intrinsics [44].

35

Table 5.1: Vector Data types

Data Type Description

m256i 256-bit vector containing integers (8, 16, 32 bit)

m256 256-bit vector containing 8floats (32 bit)

m256d 256-bit vector containing 4doubles (64 bit)

m512i 512-bit vector containing integers (32, 64 bit)

m512 512-bit vector containing 16floats (32)

m512d 512-bit vector containing 8doubles (64 bit)

5.2 Method to Vectorize a Convolutional Kernel
on the Haswell

The first step, when we decide to vectorize an application using SIMD
intrinsics is to survey the instruction set and computational capabilities of
the specifice processor. In this case it is the Core i7 with AVX2 instruction
set supporting FMA operations. The we search for the most efficient way
to implement our target computation, in this case multiply-accumulate.

As we know from Chapter 4 the Core i7 has Haswell microarchitecture
which supports AVX2 256-bit vector intrinsics. In this instruction set the
most efficient instruction for a multiply-accumulate operation is the Fused
Multiply Add instruction. As doing a multiply takes 5 clock cycles, an add
takes 1 clock cycle while a multiply-accumulate instruction takes 5 clock
cycles, thereby saving the cycle for add operation, the data transfer and
reducing dependency between different hardware units.

The next step is to find the most efficient way to gather data required
for this MAC operations. There are many load instructions available but we
must aim to increase the number of computations achieved for every byte
of data loaded. Thus vector load instructions are the most efficient.

After loading the data, we need to arrange it in the particular order
required for each iteration of the loop. This can be done using the permute
and shuffle intrinsics. There is a significant exploration, as there are different
ways to achieve the same result, but we must aim to minimize the number
of cycles.

5.2.1 Fused Multiply Add Intrinsic

The throughput of this FMA instruction is 1 clock cycle, which means
that we can have a new FMA result every clock cycle, effectively doing two
operations (multiply and add) per clock cycle. FMA instructions are not
only limited to convolution kernels but are used extensively in matrix-vector

36

and matrix-matrix product operations.

Intrinsic:__m256i _mm256_madd_epi16 (__m256i a, __m256i b)

Instruction: vpmaddwd ymm, ymm, ymm

Multiply packed signed 16-bit integers in a and b, producing intermedi-
ate signed 32-bit integers. Horizontally add adjacent pairs of intermediate
32-bit integers, and pack the results in dst. This operation is visually ex-
plained in the figure 5.2 and the pseudo code of this operation is presented
in illustration 5.1.

FOR j := 0 to 7

i := j*32

dst[i+31:i]:= a[i+31:i+16]*b[i+31:i+16] + a[i+15:i]*b[i+15:i]

ENDFOR

dst[MAX:256] := 0

Figure 5.1: madd() operation explained with pseudo code

in15 in0
a 16x 16bit

x x x x x x x x x x x x x x x x
w15 w0

b 16x 16bit

in14 x w14 in0 x w0
8x 32bit int

+ + + + + + + +
in15 x w15 in1 x w1

8x 32bit int

in14 x w14 in0 x w0
+ +

in15 x w15 in1 x w1
dst 8x 32bit int

O
perands

Interm
ediate

Results
RESU

LT
FIN

AL

Figure 5.2: Details of madd() Fused Multiply-Add operation

On the Haswell architecture this instruction has a Latency of 5 cycles
and a Throughput of 1, which means that ideally there can be one MAC
(multiply-accumulate) result produced every cycle.

37

5.2.2 Gathering and Arranging data for FMA

First we have to convert in layer[] from unsigned 8 bit data-type to
signed 16 bit data-type. weight[] array is already of the required data-type
of 16 bit signed integer.

• Naive approach
Using set intrinsic present in the AVX instruction set, as seen from the
pseudo code in illustration 5.3, we can manually provide each operand
for the vector operation.

The pseudo code for this instruction is shown in fig. 5.3, which shows
how packed 16-bit integers are store in destination address dst with
the supplied values. This is a sequential operation of loading each
value individually and hence very inefficient and wasteful considering
the large amount to memory operations required.

dst[15:0] := e0

dst[31:16] := e1

dst[47:32] := e2

dst[63:48] := e3

dst[79:64] := e4

dst[95:80] := e5

dst[111:96] := e6

dst[127:112] := e7

dst[145:128] := e8

dst[159:144] := e9

dst[175:160] := e10

dst[191:176] := e11

dst[207:192] := e12

dst[223:208] := e13

dst[239:224] := e14

dst[255:240] := e15

dst[MAX:256] := 0

Figure 5.3: set() operation explained with pseudo code

• Optimized approach
Using loadu intrinsic, followed by permute and shuffle intrinsics to
arrange the data in the vector register, as per the algorithm require-
ments. This method does much more efficient loads as it can loads
256-bits of integer data from memory into destination vector register.

38

dst[255:0] := MEM[mem_addr+255:mem_addr]

dst[MAX:256] := 0

Figure 5.4: loadu() operation explained with pseudo code

Layer 1 optimized convolution kernel steps:

1. Broadcast initial bias value to all 16 entries of a vector register
(macresult0)

2. Load the 32 bytes of raw data of the input image into a vector
register (in0) using loadu intrinsic

3. Load the 32 bytes of raw data of the weights into a vector register
(w0) using loadu intrinsic

4. Permute the data loaded in in0 register to an intermediate format.

5. Permute the data loaded in w0 register to an intermediate format.

6. Shuffle data in in0 register as per pre-calculated indexes and the
required pattern of input image data is ready in the register.

7. Shuffle data in w0 register as per pre-calculated indexes and the
required pattern of the weights is ready in the register.

8. Perform the multiply-accumulate operation on registers in0, w0
and macresult0

9. Sum the result of the current operation with the previous result,
in the first iteration it is the bias values.

10. Extract the resulting eight 32-bit accumulated value (acc) one
by one.

11. Saturate each value to fit within 10-bit precision and calculate
corresponding activation function index using if conditions.

12. Look up activation function value in the table and write to output
pixel.

In the table 5.2, we can see that the ratio of actual compute operations
to the total number of operations needed for this operation is 0.26.
Which means that only 26% of the cycles are spent in actual compute
and the rest 74% are overhead. This is one of the major factors which
prevents the vector SIMD implementation from reaching the roofline.
Admittedly, this is a simplistic was of looking at the problem, an
there are many factors that play a role here, pipelining, hardware unit
throughput, data dependency etc.

39

Table 5.2: Analysis of one AVX intrinsic kernel implementation

Intrinsic Cycles Description

loadu 3 Load 32 bytes

loadu 3

permute 3 Permute data in a register

permute 3

shuffle 1 Shuffle data within a register

shuffle 1

madd 5 Multiply-accumulate intermediate

add 1 Accumulate final result

extract 3 Extract results from vector register

TOTAL 23

Ratio Compute/Total 0.26087

5.3 Results

The results of the code optimizations using vector intrinsics, loop un-
rolling and compiler optimizations are shown in this section. Tables 5.5
and 5.6 document the actual speedup achieved in execution time after us-
ing SIMD intrinsics over the default non-vectorized code generated by the
compilers.

Table 5.3: ICC execution times of the speed sign detection application

ICC Execution time (ms)

Vectorization off Auto-vectorized Manually optimized

Layer 1 20.90 21.86 4.43
Layer 2 46.06 91.24 8.06
Layer 3 243.62 244.13 50.21
Layer 4 7.67 2.87 1.17

Complete 318.24 360.09 63.87

40

Table 5.4: GCC execution times of the speed sign detection application

GCC Execution time (ms)

Vectorization off Auto-vectorized Manually optimized

Layer 1 20.39 20.39 4.33
Layer 2 57.48 57.61 8.38
Layer 3 322.73 322.90 48.32
Layer 4 2.25 1.28 2.49

Complete 402.85 402.19 63.52

Note:
This is the only case where an auto-vectorizer successively improves
throughput of the complete application. Also this is the only case where
in Layer 4 the manually optimized code is slower than
compiler generated code.

Table 5.5: Speedup achieved with Intel C Compile

Layers Speedup over Speedup over
Un-vectorized code Auto-vectorized code

Layer 1 4.7x 4.9x

Layer 2 5.7x 6x

Layer 3 4.8x 4.8x

Layer 4 6.6x 2.5x

Complete
5.6x 5x

Application

5.4 Roofline model: Performance evaluation

Actual multiply accumulate operation in the C code:

acc = acc + in layer[i]*weight[j] (5.1)

The add and multiply accumulate (madd) intrinsics are used to imple-
ment this operation as follows: add(acc, madd(in layer,weight)). The
bytes of data loaded from memory for the operands in this operation are
as follows: in layer[i] = 1byte ; weight[j] = 2bytes. The operational
intensity of these loads versus the two arithmetic operations of multiply and
add can be calculate as: 2ops/3bytes = 0.67 Ops/Byte

41

Table 5.6: Speedup achieved with GCC compiler

Layers Speedup over Speedup over
Un-vectorized code Auto-vectorized code

Layer 1 4.7x 4.7x

Layer 2 6.8x 6.8x

Layer 3 6.7x 6.7x

Layer 4 0.9x 0.5x

Complete
6.34x 6.3x

Application

5.4.1 Calculation of Compute Roofline Haswell

Theoretical:

2 Ops/cycle (FMA) * 8 (32bit operands) * 3.5GHz

* 1 (SIMD unit for FMA) = 56 GOps/s (5.2)

5.4.2 Calculation of Memory Roofline Haswell

Aggregate Bandwidth (BW) to DDR4 RAM

Theoretical:

(2133MHz*64bits*4channels)/8 = 68.256 GBytes/s (5.3)

Read bandwidth to L1 cache

Theoretical:

3.5GHz *32byte *(2 Read units) = 224 GBytes/s (5.4)

Write bandwidth to L1 cache

Theoretical:

3.5GHz*32byte*(1 Write unit) = 112GBytes/s (5.5)

The Roofline model for a single core of the Core i7 processor is shown in
figure 5.5.

5.5 Analysis of Results

As seen in fig. 5.5, the best mapping on the Core i7 processor is hand-
optimized Layer 3 of speed sign detection, which is able to achieve 35.54
GOps/sec. This still leaves a 3.2x performance gap to the theoretical limit

42

Layer3 Hand- optimized 0.67, 35.54

Complete CNN Hand-optimized,
0.67, 32.46

Complete CNN Auto-vectorized ,
0.67, 5.13

4

8

16

32

64

0.125 0.25 0.5 1 2

Pe
rf

or
m

an
ce

 (G
ig

a
O

ps
/s

)

Operational Intensity (Ops/Byte)

Single core SIMD ops roofline - Intel i7 5930K @3.5GHz

56 Gops/s -Vector ops ceiling 112GBytes/s Write BW L1 cache

224GBytes/s Read BW L1 cache 68 GBytes/s BW to DDR RAM

16.6 GBytes/s STREAM BW Layer1 Hand-optimized - gcc

Layer2 Hand-optimized - icc Layer3 Hand-optimized - gcc

Complete CNN Hand-optimized - gcc Complete CNN Auto-vectorized -gcc

Complete CNN no-vectorization gcc

Figure 5.5: Core i7 single core Roofline: Complete ConvNet application

of the platform, which is 112 GOps/sec. This gap is wider for other mappings
ranging from 3.7x to 5x less than theoretical performance.

One of the reasons for this performance gap is the ratio of effective com-
putational instructions versus the total instructions. The actual computa-
tion instructions are only about 30% of the total instructions in the kernel,
the rest of the instructions are for loading, arranging, extracting and stor-
ing back the data. The data dependencies between the operations, further
exacerbates this problem. For eg. the add instruction used to accumulate
the product, has to wait for the multiply units to provide the results.

In the figure 5.5 we can observe an irregularity that the manually opti-
mized application points lie above the measured STREAM Triad bandwidth
(represented by the blue line). This is because the operational intensity is
based upon the instructions and not the complete application. If we use the
applications operational intensity all points will move towards the right in
the roofline fig. 5.5. If we calculate the operational intensity of the applica-
tion from table 3.1, it would be about 76 Ops/Byte which is far more than
the 0.67 used in the Roofline now.

43

Chapter 6

ConvNet Mapping on the
Xeon Phi

This chapter goes into depth of the porting the convolutional network
application onto the Intel Xeon Phi co-processor. Towards the end of this
chapter the resulting performance of the ConvNet algorithm is discussed
and reasons are put forward. By the end of the chapter you will know some
tricks and methods which can be used to accelerate neural networks on wide
SIMD path platforms.

6.1 Going from Core i7 to Xeon Phi

As illustrated in the figure 6.1, the Knights Corner MIC architecture
does not natively support 8 bit or 16 bit data types, which are supported
in the Haswell architecture found in Core i7. This puts the KNC MIC at
a slight disadvantage for algorithms requiring byte operations (which most
pixel processing algorithms need), as it has to up-convert such data types to
32bit before it can operate on them. This is a hardware limit as there are
only 16 x 32 bit lanes in the SIMD vector unit in the KNC MIC architecture.

Table 6.1: An example of corresponding vector instructions in Core i7 and
Xeon Phi

Core i7 - Haswell (AVX) Xeon Phi - MIC KNC (IMCI)
256 bit SIMD vector 512 bit SIMD vector

mm256 loadu si256 mm512 load si512
mm256 permute2x128 si256 mm512 mask permute4f128 epi32
mm256 shuffle epi8 mm512 shuffle epi32
mm256 madd epi16 mm512 fmadd epi32
mm256 extract epi32 mm512 kextract 64
mm256 mulhi epi16 mm512 mulhi epi32

44

Figure 6.1: Going from Core i7 to Xeon Phi (Haswell to KNC)

6.1.1 Multiply-Accumulate instruction

The Intel Initial Many Core Instruction set (IMCI) provides a very effi-
cient instruction which combines the multiply and add operations into a sin-
gle instruction cycle. This hybrid instruction is called Multiply-Accumulate
corresponding assembly instruction is ”vpmadd231d” which can be accessed
using the intrinsic ”fmadd()”

Intrinsic:

__m512i _mm512_fmadd_epi32 (__m512i a, __m512i b, __m512i c)

Instruction: vpmadd231d zmm {k}, zmm, zmm

Multiply packed 32-bit integer elements in a and b and add the inter-
mediate result to packed 32 bit elements in c and store the results in dst
destination register. This operation is visually explained in the figure 6.4
and the pseudo code of this operation is presented in illustration 6.3.

45

Figure 6.2: Going from AVX to Initial Many Core Instruction set

FOR j := 0 to 15

i := j*32

dst[i+31:i] := (a[i+31:i] * b[i+31:i]) + c[i+31:i]

ENDFOR

dst[MAX:512] := 0

Figure 6.3: fmadd operation pseudo-code

6.2 Method to Vectorize a Convolutional Kernel

Single core SIMD vectorized mappings of the ConvNet algorithm on the
Xeon Phi are discussed in the following sections. These optimizations are
done using the Initial Many-core instruction (IMCI) set intrinsics.

Three main steps to vector operations are Gather, Compute and Scatter.
We try to minimize the overhead in gather and scatter operations as they
are just the overhead necessary to make the vector computations possible.

Layer 1 optimized convolution kernel steps (see figure 6.5):

1. Broadcast initial bias value to all 16 entries of a vector register (macresult0)

2. Load the 16 values of the input image into a vector register (in0) using
gather intrinsic (mm512 i32extgather epi32)

3. Load 16 values of weights into a vector register (w0)

46

4. Perform the multiply-accumulate operation on registers in0, w0 and
macresult0

5. Extract the resulting 32-bit accumulated value (acc) one by one.

6. Saturate each value to fit within 10-bit precision and calculate corre-
sponding activation function index using if conditions.

7. Look up activation function value in the table and write to output
pixel.

Table 6.2, shows a simplistic analysis of the ratio of total intrinsics re-
quired, versus the actual multi-ply accumulate intrinsic (fmadd). This ratio
is very poor at 0.08 which is just 8%. This shows that even in a manual
optimized implementation of the kernel, there is massive overhead required
to gather and scatter the data before and after the compute operation. This
points to a clear inefficiency in the IMCI instruction set which does not
provide the required smaller data-types (byte and short) for this kernel.

As the Xeon Phi does not have an out-of-order execution core, we inter-
leave load and multiply-accumulate operations manually, in order to reduce
stalls in the pipeline, where the computation is waiting for operand data to
arrive.

Table 6.2: Simple analysis of actual compute intrinsics in a kernel

Intrinsic Cycles Description

extload 7 (load) + 6 (convert) load and up-convert operands

extgather 8(load) + 6 (convert) load scattered data and up-convert

extload 7 (load) + 6 (convert) load and up-convert operands

fmadd 4 multiply-accumulate

reduce 6 extract result from vector register

Total 50

Ratio Compute/Total 0.08

47

in15 in1 in0
a 16x 32bit int

x x x x x x x x x x x x x x x x
w15 32bit Multiply w1 w0

b

in15 x w15 in1 x w1 in0 x w0 64bit
. . . . Intemediate

Result

Discarding
32 bit MSB

LSB_32(in15 x w15) LSB_32(in0 x w0)
+ + + + + + + + + + + + + + + +

acc15 32bit Add acc0
c

LSB_32(in15 x w15) LSB_32(in0 x w0)
+ +

acc15 acc0
dst 16x 32bit int

RESULT

Figure 6.4: Details of fmadd() Multiply-Add operation

48

512 bytes Intel MIC architecture

bias value

bias bias bias bias
macresult

index

in30 in28 in2 in0
input

w15 w14 w1 w0
 weight

acc15 acc1 acc0
macresult
RESULT 16x 32bit int

6 4 2 018 16 14 12 10 830 28 26 24 22 20

Broadcast

Load

Gather

Vector
Multiply -Add

Extract Saturate to 10bit & Calculate index

Write output pixel

Lookup activation function

Figure 6.5: Layer 1 kernel block diagram

49

6.3 Results

The results of the code optimizations using vector intrinsics, loop un-
rolling and compiler optimizations are shown in this section.

Table 6.4 documents the actual speedup achieved in execution time after
using vector SIMD intrinsics over the default non-vectorized code generated
by the compiler.

The complete execution time of the speed sign application after opti-
mization on a single core is 1.3197 seconds. This is same as saying that
about 0.75 of a frame can be processed in one second. If we naively extrap-
olate this to 57 cores of a Xeon Phi, we can predict that the this ConvNet
speed sign application can achieve a frame rate of 43 frames per second (fps)
on the Xeon Phi 31S1P.

Table 6.3: ICC Execution times of the speed sign detection application

ICC Execution time (ms)

Vectorization off Auto-vectorized Manually optimized

Layer 1 610.89 601.09 107.97
Layer 2 1,763.23 1,097.64 173.26
Layer 3 12,001.63 10,381.03 970.94
Layer 4 160.74 37.46 67.57

Complete 14,536.48 12,117.22 1,319.73

Table 6.4: Speedup achieved using the Intel C Compiler (ICC)

Layers Speedup over Speedup over
Un-vectorized code Auto-vectorized code

Layer 1 5.7x 5.6x

Layer 2 10.2x 6.3x

Layer 3 12.4x 10.7x

Layer 4 1.0x 1.0x

Complete
11.01x 9.2x

Application

50

6.4 Roofline model: Performance evaluation

6.4.1 Calculation of compute ceiling Xeon Phi

The equations 6.1 and 6.2, show the calculation for the number of Float-
ing Point Operations (FLOP) that the Xeon Phi co-processor can compute
in one second, using all of it’s 57 cores or using only 1 core respectively.
These are the absolute maximum theoretical numbers and are difficult to
reach in practice.

Theoretical: 57 core

57cores*1.1GHz*16(32bit SIMD lanes)*2ops(FMA) =2TFLOP/s (6.1)

Theoretical: 1 core

1core*1.1GHz*16(32bit SIMD lanes)*2ops(FMA) =35.2GFLOP/s (6.2)

Practical: Scalar Roofline for a single core, calculated using the results
from STREAM benchmark is 0.48 GFLOP/s.

6.4.2 Calculation of memory ceiling of Xeon Phi

Here we calculate the available bandwidth between a processor and the
on-chip Level 1 only accessible per core, the shared on Level 2 cache which
is accessible to all 57 cores and bandwidth to the main DDR5 RAM on the
Xeon Phi PCI card. These are the absolute maximum theoretical numbers
and are difficult to reach in practice.

Bandwidth to Level 1 Data cache

Theoretical:

64bytes/cycle/core @1.1GHz = 70.4GBytes/second/core (6.3)

Bandwidth to Level 2 cache

Theoretical:

(1/2)*L1 BW[8] = 35.2GBytes/second/core (6.4)

Aggregate Bandwidth to DDR5 RAM

Theoretical:

8 mem controllers * 2channels/controller

* 32bits/channel * 5.0GT/s= 320GB/s (6.5)

51

This is the aggregate bandwidth of the platform, but as we are working
on a single core, it may have access to only 1 out of the 8 memory controllers.
This gives us a ballpark figure of 40 GB/s theoretical bandwidth per core.

Using the STREAM benchmark introduced in section 2.4, we find the
actual bandwidth available to simple vector kernels like with multiply-add
operation.

Practical: STREAM benchmark - 57 core

Bandwidth = 145 GB/s (best reported is 179GB/s[22]) (6.6)

Practical: STREAM benchmark - 1 core

Bandwidth = 5.8 GB/s (6.7)

Roofline figure

The Roofline model for a single core of the Xeon Phi co-processor is
shown in figure 6.6.

Complete - hand
optimized, 0.67, 1.5626

Complete Auto
vectorized, 0.67, 0.1702

0.125

0.25

0.5

1

2

4

8

16

32

64

0.25 0.5 1

Pe
rf

or
m

an
ce

 (G
ig

a
FL

O
P/

s)

Operational Intensity (FLOP/Byte)

Single core Roofline - Xeon Phi @1.1GHz

35.2GFLOP/s Vector compute ceiling 0.48 GFLOP/s Scalar compute ceiling
70.4GBytes/s BW L1 cache 35.2GBytes/s BW L2 cache
5.8GB/s BW to DDR RAM Layer 1 - hand optimized
Layer 1 Auto vectorized Layer 2 - hand optimized
Layer 2 Auto vectorized Layer 3 - hand optimized
Layer 3 Auto vectorized Complete - hand optimized
Complete Auto vectorized

Figure 6.6: Xeon Phi single core Roofline: ConvNet application

52

6.5 Intel Core i7 (Haswell) v/s Xeon Phi (MIC)

Intel Core i7 has a very flexible instruction set for sub-word parallelism,
whereas Xeon Phi has wider 512-bit instructions but more restricted. The
number of data types supported is less, especially for pixel processing ap-
plications like image processing which require byte level operations. Also
in terms of granularity of operation in the IMCI is only 32 bit, while the
granularity is 8 bit in AVX instruction set. This impacts the performance
by a factor of 2x slowdown for the speed sign application, as the datatype
of operands is 16bit, hence the upper 16 bits of the available 32bit operand
are unused.

The MIC has a simple core design versus the advanced out-of-order core
in the Core i7 with Haswell architecture. This means that the sequential
paths in the program will take longer to execute on a Xeon Phi as compared
to a Core i7. Thus the speedup is limited by the serial part of the program
in accordance with Amdahl’s law. The SIMD vector unit in the Xeon Phi
has a 4 clock latency and cannot issue the same instruction back to back
in the same thread. The can achieve a max throughput of 1 cycle by uti-
lizing all 4 threads to make a round-robin schedule. There are sequential
sections in the kernel which limit the speedup which is achieved with par-
allelization. The if, else if, else statements for index calculation, the
sigmoid activation function, and initialization of the bias variable biasvar

= bias[r]<<8. This hurts the Xeon Phi even more because of a very inferior
scalar unit.

One more thing to note is that the memory hierarchy on the two plat-
forms are different. In case of multi-core performance the Intel Xeon Phi
would have a larger bank of Level 2 caches (57x 512K bytes) compared to
the six 256K bytes Level 2 caches of the core i7.

The Xeon Phi core lacks automatic L2 to L1 cache pre-fetching as found
on the Haswell. Also L2 cache access times are 23 cycles on the Xeon Phi
MIC architecture whereas they are just 11 cycles on the Core i7 Haswell
[10, 7]. This put the Xeon phi core at a disadvantage compared to the Core
i7.

One of the reasons for under-utilization of the available ILP, is that the
compiler does not produce optimized assembly code. The compiler cannot
auto-vectorize nested for loops. To alleviate this problem, all convolution
operations have been implemented using Intel low-level intrinsics which in-
creased ILP.

Hardware accelerators like Intels Xeon Phi, GPUs and FPGAs are best
suited for embarrassingly parallel configurations. For eg., a Monte-Carlo
pricing application, the best performance is achieved when we choose several
million paths [33]. This shows the best performance gain for accelerators
over CPUs. This might not be representative of the real-world scenario if
your algorithm does not use this number of paths.

53

Table 6.5: Memory address mt alignment boundary [3]

broadcast: 1x16 broadcast: 4x16 broadcast: none

conversion: uint8, sint8 1 byte 4 byte 16 byte

conversion: 16-bit types 2 byte 8 byte 32 byte

conversion: none 4 byte 16 byte 64 byte

6.6 Challenges faced on the Xeon Phi

First restriction in the MIC architecture is that it can only operate on
32bit data-types. Then a restriction of the extload() intrinsic, used to load
data from memory, is that the starting memory address can only be certain
alignment, as shown in the table 6.5. The two deciding factors are whether
you would like to convert the loaded data into a data-type other than 32-
bit int, and the other factor is whether you would like to broadcast the
first 32-bits of the loaded data to all of the positions in the vector register
or broadcast first four 32-bit values to four positions each. This leads us
to use the more cycle expensive gather intrinsic to implement the loading
of operands. A large portion of the time was spend debugging memory
segmentation faults due to these memory restrictions.

The lack of backward compatibility of the IMCI instruction set of the
Knights Corner Xeon Phi chip, with the older AVX2 instruction set on the
Core i7 Haswell chip is another hurdle as the entire intrinsics code had
to be rewritten. Having this backward compatibility in the new AVX-512
instruction set of the latest Knights Landing Xeon Phi processor is a boon,
as it will enable early porting and testing of legacy code.

Having a co-processor instead of a CPU also has it’s complications in
terms of loading specific libraries and copying over relevant data for native
execution on the Xeon Phi. Now the latest Knights Landing Xeon Phi
processor offers a CPU form factor, which will be easier to natively optimize
and would have access to a larger DDR RAM, not being restricted to the
on board memory as in case of current co-processor.

54

Chapter 7

Conclusion and Future Work

With the widespread adoption of convolutional networks for various sig-
nal processing tasks, the computational demands have become a perfor-
mance bottleneck, especially for general purpose embedded systems. Even
though there have been some very efficient custom hardware accelerators,
but the prohibitive complexity of programming and inflexible architectures
have stalled market adoption. With the proliferation of multi-processor plat-
forms in the market, it is essential for the research community to acceler-
ate neural networks on highly-parallel resource constrained multi-processor
hardware. Parallelization using SIMD vector intrinsics is one of the surest
ways to move towards this goal.

7.1 Conclusions

The main contributions presented in this thesis are:

• Evaluation of a ConvNet speed sign detection application requirements

• Vectorized mappings on the Intel Core i7 and Xeon Phi

• Bottleneck analysis with evaluation

This thesis work presents highly efficient ways to utilize the subword
SIMD vector capabilities of modern processors, by using the intimate knowl-
edge of the neural net algorithm at hand. Using these techniques one can
cut down the execution times by a factor of 12x, while increasing energy
efficiency and resource utilization.

Based on the results, one can say that using SIMD vector intrinsics is an
effective way to exploit the data-level parallelism inherent in convolutional
network applications. This extra vectorization effort can mean the difference
between real-time performance guarantees and non-real-time performance of
an application. Also, in the area of dynamic power savings it has significant
implications, as the shorter execution times leads to less power consumption.

55

This work has resulted in speedups ranging from 5.6x to 12.3x in different
layers of the ConvNet speed sign application, using SIMD (Single Instruction
Multiple Data) vector intrinsics, as compared to default compiler generated
code.

The experiments conducted in this thesis serve as a precursor to judg-
ing the suitability of massively parallel many-core processors for running
ConvNet applications in real-time and with increased power efficiency.

7.2 Future Work

Further work needs to be conducted in order to compare the performance
of this ConvNet application on other architectures like Nvidia GPUs, ARM
processors and custom hardware accelerators, like the one developed at the
Eindhoven University of Technology for ConvNets [46].

7.2.1 Multi-core mapping using OpenMP

The next logical step is utilizing the power of all the 57 cores of the Intel
Xeon Phi using the OpenMP library. Each of the 57 cores in the Xeon Phi
supports 4 hardware threads. This makes it is possible to vary the number
of threads from 1 Thread per core (57 Threads) to 4 Threads per core (228
Threads). Multi-threading helps increase the hardware utilization of the
processor especially in case of lighter workloads, which do not occupy all
functional units of the processor.

We can divide work among the cores using OpenMP directives such as
”#pragma omp for” which is written at the beginning of for loops. This
instructs the OpenMP library to parallelize this for loop among threads.

There are certain environment variable which can instruct the type of
distribution of threads on the cores. Varying thread distribution on Cores
using ”KMP AFFINITY” environment variable, can significantly boost the per-
formance on the Intel Xeon Phi (refer fig.7.1). This has to be tested to fit
the particular algorithm under consideration.

This type of optimization will be suited to shared memory systems, as
this is the basis for software threading model. Nevertheless, useful hints can
be derived about optimal task distribution of the particular neural network;
which can be used to split the work on distributed memory multi-processor
systems.

7.2.2 Auto vectorization with OpenMP #pragma simd

In the OpenMP 4.0 specifications, ”simd” directives were introduced.
The simd construct can be used to indicate that a loop is capable to be
transformed into a SIMD loop. This means that multiple iterations of the
loop can be executed concurrently using SIMD instructions.

56

Figure 7.1: OpenMP thread distribution [12]

Figure 7.2: Example of desired comparison as performed by Yann LeCunn
for the NeuFlow ASIC processor [29]

7.2.3 Performance comparison with SIMD accelerator and
GPU

Comparing performance numbers of this ConvNet speed sign detection
algorithm on the Intel Xeon Phi, a custom SIMD accelerator and a GPU
implementation will give us much insight into the suitability of different
architectures for running neural network based applications. Trade-offs can
be made based on the requirements of power consumption, design time,
flexibility and cost. Such comparisons can help put the performance numbers
in perspective and help researchers design better suited architectures for
neural networks.

A good example for such a comparison performed for neural networks
performed by Yann LeCun is shown in figure 7.2. Here GOP/sec (Giga
Operations/second) represents the of billions of operations that can be per-

57

formed on an architecture per second. FPS is the Frame rate Per Second
which is achieved as a result of running a video processing application on
this architecture. The last row GOP/s/W, shows the ratio of computation
done to power consumed, which hints at the suitability of a platform to be
used in a power constrained embedded device, like a cell phone.

We can see that the custom ASIC accelerator is the clear winner, with
reconfigurable Virtex 6 FPGA accelerator coming second. This indicates
that ASICs with a component of reconfigurability might be the best way
ahead for fixed type of ConvNet algorithms.

58

Bibliography

[1] http://eyesofthings.eu/. [Online; accessed December 2015].

[2] Feature extraction using convolution. http://deeplearning.

stanford.edu/wiki/index.php/Feature_extraction_using_

convolution. [Online; accessed 2015].

[3] User and Reference Guide for the Intel C++ Compiler 15.0. https:

//software.intel.com/en-us/node/523489. [Online; accessed 2015].

[4] Intel Xeon Phi Coprocessor family. http://www.intel.com/content/
www/us/en/processors/xeon/xeon-phi-detail.html, 2012.

[5] Intel Names the Technology to Revolutionize the Future of HPC - Intel
Xeon Phi Product Family. http://goo.gl/5ku0gT, 2015.

[6] Intel Haswell-E (5960X, 5930K, 5820K).
http://www.overclock.net/t/1510106/

various-intel-haswell-e-5960x-5930k-5820k-reviews, August
2014.

[7] PRACE Summer School - Enabling Applications on Intel MIC based
Parallel Architectures - Bologna, Italy). https://events.prace-ri.

eu/event/181//, Jul 2013.

[8] Intel Xeon Phi Coprocessor System Software Developers Guide, March,
2014.

[9] Intel Xeon Phi Coprocessor - the Architecture. https://goo.gl/

iyBWgx, November 12, 2012.

[10] Intel 64 and IA-32 Architectures Optimization Reference Manual,
September 2015.

[11] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra,
Ian J. Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-
Farley, and Yoshua Bengio. Theano: new features and speed improve-
ments. CoRR, abs/1211.5590, 2012.

59

http://eyesofthings.eu/
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
https://software.intel.com/en-us/node/523489
https://software.intel.com/en-us/node/523489
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://goo.gl/5ku0gT
http://www.overclock.net/t/1510106/various-intel-haswell-e-5960x-5930k-5820k-reviews
http://www.overclock.net/t/1510106/various-intel-haswell-e-5960x-5930k-5820k-reviews
https://events.prace-ri.eu/event/181//
https://events.prace-ri.eu/event/181//
https://goo.gl/iyBWgx
https://goo.gl/iyBWgx

[12] Carlos Rosales (Texas Advanced Computing Center). Introduction to
Intel Xeon Phi Coprocessors. https://goo.gl/WnKWc6. [Online; ac-
cessed 2015].

[13] Adam Coates and Andrew Y Ng. The importance of encoding versus
training with sparse coding and vector quantization. In Proceedings
of the 28th International Conference on Machine Learning (ICML-11),
pages 921–928, 2011.

[14] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7:
A matlab-like environment for machine learning. In BigLearn, NIPS
Workshop, number EPFL-CONF-192376, 2011.

[15] Tim Cramer, Dirk Schmidl, Michael Klemm, and Dieter an Mey.
OpenMP Programming on Intel R Xeon Phi TM Coprocessors: An
Early Performance Comparison. 2012.

[16] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages
886–893. IEEE, 2005.

[17] Tim Dettmers. Deep Learning in a Nutshell: Core Con-
cepts. http://devblogs.nvidia.com/parallelforall/

deep-learning-nutshell-core-concepts/, November 3, 2015.

[18] LRZ Dr. Volker Weinberg. Introduction into Intel Xeon Phi Pro-
gramming. https://www.lrz.de/services/compute/courses/x_

lecturenotes/MIC_GPU_Workshop/micworkshop-micprogramming.

pdf, April 28, 2015.

[19] Randall James Fisher. General-purpose SIMD within a register: Par-
allel processing on consumer microprocessors. 2003.

[20] Simon S Haykin. Neural networks and learning machines, volume 3.
Prentice Hall, 2008.

[21] Raj Hazra. Intel Xeon Phi coprocessors accelerate the pace of discovery
and innovation. http://blogs.intel.com/technology/2012/06/

intel-xeon-phi-coprocessors-accelerate-discovery-and-innovation/,
June 18, 2012.

[22] Karthik Raman (Intel). Optimizing Memory Bandwidth on
Stream Triad. https://software.intel.com/en-us/articles/

optimizing-memory-bandwidth-on-stream-triad. [Online; accessed
2015].

60

https://goo.gl/WnKWc6
http://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
http://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
https://www.lrz.de/services/compute/courses/x_lecturenotes/MIC_GPU_Workshop/micworkshop-micprogramming.pdf
https://www.lrz.de/services/compute/courses/x_lecturenotes/MIC_GPU_Workshop/micworkshop-micprogramming.pdf
https://www.lrz.de/services/compute/courses/x_lecturenotes/MIC_GPU_Workshop/micworkshop-micprogramming.pdf
http://blogs.intel.com/technology/2012/06/intel-xeon-phi-coprocessors-accelerate-discovery-and-innovation/
http://blogs.intel.com/technology/2012/06/intel-xeon-phi-coprocessors-accelerate-discovery-and-innovation/
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad

[23] Radek (Intel). Green500 List Names Intel Xeon Phi Coprocessor-based
System ”Beacon” the World’s Most Energy-efficient Supercomputer.
http://goo.gl/PBmx8A, Nov 14, 2012.

[24] Colfax International. Special Promotion for Developers: Intel Xeon
Phi Coprocessor 31S1P. http://www.colfax-intl.com/nd/xeonphi/
31s1p-promo.aspx, February 6, 2015.

[25] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Dar-
rell. Caffe: Convolutional Architecture for Fast Feature Embedding.
arXiv preprint arXiv:1408.5093, 2014.

[26] Lei Jin, Zhaokang Wang, Rong Gu, Chunfeng Yuan, and Yihua Huang.
Training Large Scale Deep Neural Networks on the Intel Xeon Phi
Many-Core Coprocessor. In Parallel & Distributed Processing Sym-
posium Workshops (IPDPSW), 2014 IEEE International, pages 1622–
1630. IEEE, 2014.

[27] KYN. https://en.wikipedia.org/wiki/File:CVoverview2.svg.
[Online; accessed 2015].

[28] Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon,
D. Henderson, R. E. Howard, and W. Hubbard. Handwritten digit
recognition: Applications of neural net chips and automatic learning.
IEEE Communication, pages 41–46, November 1989. invited paper.

[29] Yann LeCun. Convolutional Networks: Unleashing the Potential of
Machine Learning for Robust Perception Systems. http://goo.gl/

cCF20G, May 2014.

[30] Ruby B. Lee. Subword Parallelism with MAX-2. IEEE Micro, 16(4):51–
59, August 1996.

[31] Allison Linn. Microsoft researchers win ImageNet computer vi-
sion challenge. http://blogs.microsoft.com/next/2015/12/10/

microsoft-researchers-win-imagenet-computer-vision-challenge/,
December 10, 2015.

[32] Junjie Liu, Haixia Wang, Dongsheng Wang, Yuan Gao, and Zuofeng
Li. Parallelizing convolutional neural networks on intel many inte-
grated core architecture. In Architecture of Computing Systems ARCS
2015, volume 9017 of Lecture Notes in Computer Science, pages 71–82.
Springer International Publishing, 2015.

[33] Jrg Lotze. Benchmarker Beware! http://blog.xcelerit.com/

benchmarker-beware/, October 2015.

61

http://goo.gl/PBmx8A
http://www.colfax-intl.com/nd/xeonphi/31s1p-promo.aspx
http://www.colfax-intl.com/nd/xeonphi/31s1p-promo.aspx
https://en.wikipedia.org/wiki/File:CVoverview2.svg
http://goo.gl/cCF20G
http://goo.gl/cCF20G
http://blogs.microsoft.com/next/2015/12/10/microsoft-researchers-win-imagenet-computer-vision-challenge/
http://blogs.microsoft.com/next/2015/12/10/microsoft-researchers-win-imagenet-computer-vision-challenge/
http://blog.xcelerit.com/benchmarker-beware/
http://blog.xcelerit.com/benchmarker-beware/

[34] John D McCalpin. Memory bandwidth and machine balance in current
high performance computers. 1995.

[35] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation
of local descriptors. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(10):1615–1630, 2005.

[36] Intel Newsroom. Intel Delivers New Architecture for Discovery with
Intel Xeon Phi Coprocessors. http://goo.gl/Dy60ba, Nov 12, 2012.

[37] Jongsoo Park, Mikhail Smelyanskiy, Karthikeyan Vaidyanathan,
Alexander Heinecke, Dhiraj D Kalamkar, Xing Liu, Md Mosotofa Ali
Patwary, Yutong Lu, and Pradeep Dubey. Efficient shared-memory im-
plementation of high-performance conjugate gradient benchmark and
its application to unstructured matrices. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 945–955. IEEE Press, 2014.

[38] Maurice Peemen, Bart Mesman, and C Corporaal. Speed sign detection
and recognition by convolutional neural networks. In Proceedings of the
8th International Automotive Congress, pages 162–170, 2011.

[39] Maurice Peemen, Bart Mesman, and Henk Corporaal. Efficiency op-
timization of trainable feature extractors for a consumer platform.
In Advanced Concepts for Intelligent Vision Systems, pages 293–304.
Springer, 2011.

[40] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Corpo-
raal. Memory-centric accelerator design for Convolutional Neural Net-
works. In Computer Design (ICCD), 2013 IEEE 31st International
Conference on, pages 13–19. IEEE, 2013.

[41] M.C.J. Peemen. Mapping convolutional neural networks on a reconfig-
urable FPGA platform . http://repository.tue.nl/710846, 2010.

[42] W. Pramadi. Automatic Mapping of Convolutional Networks on the
Neuro Vector Engine. Master’s thesis, Eindhoven University of Tech-
nology, 2015.

[43] Prof. Dr. Riko afari, Asis. Dr. Andreja Rojko, University of Maribor.
. http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/

Eng/2.Neural%20networks/_05.html, December 2006.

[44] Matt Scarpino. Crunching Numbers with AVX and
AVX2. http://www.codeproject.com/Articles/874396/

Crunching-Numbers-with-AVX-and-AVX, Feb 2015.

62

http://goo.gl/Dy60ba
http://repository.tue.nl/710846
http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/Eng/2.Neural%20networks/_05.html
http://www.ro.feri.uni-mb.si/predmeti/int_reg/Predavanja/Eng/2.Neural%20networks/_05.html
http://www.codeproject.com/Articles/874396/Crunching-Numbers-with-AVX-and-AVX
http://www.codeproject.com/Articles/874396/Crunching-Numbers-with-AVX-and-AVX

[45] Pierre Sermanet. Deep ConvNets: astounding baseline for vi-
sion. http://cs.nyu.edu/~sermanet/papers/Deep_ConvNets_for_

Vision-Results.pdf, April 6, 2014.

[46] Runbin Shi, Zheng Xu, Zhihao Sun, Maurice Peemen, Ang Li, Henk
Corporaal, and Di Wu. A locality aware convolutional neural networks
accelerator. In Digital System Design (DSD), 2015 Euromicro Confer-
ence on, pages 591–598. IEEE, 2015.

[47] George Teodoro, Tahsin Kurc, Jun Kong, Lee Cooper, and Joel Saltz.
Comparative Performance Analysis of Intel Xeon Phi, GPU, and CPU.
arXiv preprint arXiv:1311.0378, 2013.

[48] Maurice Peemen (TU/e). Speed Sign Recognition by Convolutional
Neural Networks. https://youtu.be/kkha3sPoU70, https://youtu.
be/UrWAeukkLdk. [Online; accessed 2015].

[49] Noelia Vallez, Jose Luis, Oscar Deniz, Daniel Aguado-Araujo, Gloria
Bueno, and Carlos Sanchez-Bueno. The Eyes of Things Project. In
Proceedings of the 9th International Conference on Distributed Smart
Cameras, ICDSC ’15, pages 193–194, New York, NY, USA, 2015. ACM.

[50] R.P.M. van Doormaal. Parallel Training of Large Scale Neural Net-
works: Performance Analysis & Prediction. http://repository.tue.
nl/741149, 2012.

[51] Andre Viebke and Sabri Pllana. The Potential of the Intel Xeon Phi
for Supervised Deep Learning. arXiv preprint arXiv:1506.09067, 2015.

[52] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65–76, 2009.

[53] Yoshua Bengio (Deep Learning Tutorials). Convolutional Neural Net-
works (LeNet). http://deeplearning.net/tutorial/lenet.html.
[Online; accessed 2015].

63

http://cs.nyu.edu/~sermanet/papers/Deep_ConvNets_for_Vision-Results.pdf
http://cs.nyu.edu/~sermanet/papers/Deep_ConvNets_for_Vision-Results.pdf
https://youtu.be/kkha3sPoU70
https://youtu.be/UrWAeukkLdk
https://youtu.be/UrWAeukkLdk
http://repository.tue.nl/741149
http://repository.tue.nl/741149
http://deeplearning.net/tutorial/lenet.html

Appendix A

Appendix: Core i7 platform
details

The figure A.1 shows a simplified internal block structure of the Haswell
micro-architecture in the Intel Core i7 processor. This figure gives us a
better understanding of the capability and limitations of the processor to
execute different type of instructions simultaneously. As instructions on
different ports can execute at the same time, at the same clock cycle.

64

Figure A.1: CPU Core Pipeline Functionality of the Haswell Microarchitec-
ture [10]

65

	List of Abbreviations
	Introduction
	Trends in Computer vision systems
	Research Problem
	Major contributions
	Outline of the thesis report

	Background and Related Work
	Artificial Neural Nets
	Convolutional Neural Networks
	Computations and Data Transfer
	Parallelism and Data Reuse

	The Roofline model: A performance measure
	Arithmetic Intensity
	Bandwidth Ceilings
	An example Roofline

	STREAM benchmark
	Optimization Approach
	Levels of parallelism
	Related Work

	ConvNet Speed Sign detection application
	Speed Sign detection Algorithm
	C language implementation of the speed sign ConvNet algorithm

	Initial Experiments and Results
	Dimensioning computational requirements

	Hardware Platforms
	Intel Core i7 - 5930K
	Intel Xeon Phi - 31S1P
	Many Integrated Core micro-architecture

	Sub-word parallelism
	Summary

	ConvNet Mapping on the Core i7
	A Brief on the Intel intrinsics format
	Method to Vectorize a Convolutional Kernel on the Haswell
	Fused Multiply Add Intrinsic
	Gathering and Arranging data for FMA

	Results
	Roofline model: Performance evaluation
	Calculation of Compute Roofline Haswell
	Calculation of Memory Roofline Haswell

	Analysis of Results

	ConvNet Mapping on the Xeon Phi
	Going from Core i7 to Xeon Phi
	Multiply-Accumulate instruction

	Method to Vectorize a Convolutional Kernel
	Results
	Roofline model: Performance evaluation
	Calculation of compute ceiling Xeon Phi
	Calculation of memory ceiling of Xeon Phi

	Intel Core i7 (Haswell) v/s Xeon Phi (MIC)
	Challenges faced on the Xeon Phi

	Conclusion and Future Work
	Conclusions
	Future Work
	Multi-core mapping using OpenMP
	Auto vectorization with OpenMP #pragma simd
	Performance comparison with SIMD accelerator and GPU

	Bibliography
	Appendix: Core i7 platform details

