
 Eindhoven University of Technology

MASTER

Implementation of a low-latency EtherCAT slave controller with support for gigabit networks

Guerra Marin, R.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f86670de-c547-4371-bd59-605df3e04e95

Implementation of a Low-Latency EtherCAT Slave
Controller with Support for Gigabit Networks

Master Project Thesis

Eindhoven University of Technology,
Prodrive Technologies

Date: 22-02-2017
Author: Rubén Guerra Marín

Supervisors:
Prof.dr.ir. Kees van Berkel
MSc. Bas van de Ven
Dr.ir. Sander Stuijk

Prodrive Technologies Eindhoven University of Technology

Abstract

Nowadays, industrial communication is moving towards industrial Ethernet networks for its well-
structured standard and its compatibility with most devices. EtherCAT is a highly flexible Ethernet
network protocol that is developing a rapid growth because of its high speed and efficiency. Since
the EtherCAT slaves applications are not involved in the processing of the Ethernet packets, short5
cycle times can be achieved. These network cycle times are dependent, among other factors, on the
EtherCAT slaves latencies that conform the network. As the current EtherCAT standard describes the
usage of EtherCAT over a Fast Ethernet network (data rate of 100 Mbps), all EtherCAT implementations
are developed using this feature. As current automation networks are increasing their number of
connected devices, the cycle time of the whole network increases accordingly. For this reason, faster10
networks are needed to fulfill current timing requirements. This thesis looks to implement an EtherCAT
network using Gigabit communication, reducing the network cycle time by improving not only the
network latency but also the EtherCAT slaves latencies.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 2 of 42

Acknowledgments

I wish to thank the Technische Universiteit Eindhoven, together with all my professors and tutors, for
all the wisdom transferred to me and for giving me the opportunity to study here. I am very grateful
to the "Consejo Nacional de Ciencia y Tecnología" for believing in me and for their financial support
during this master’s program. I want to also thank Prodrive Technologies for giving me the opportunity5
to do my final project with them.

It was an honor for me to be under the supervision of Kees van Berkel, Bas van de Ven, Sander Stuijk
and Leo van Eeuwijk. Thank you for guiding me through this project. I am also in debt with all my
colleagues at Prodrive Technologies for helping me in those times I didn’t know how to proceed.

Special thanks go to all the new friends I made in the Netherlands, as all of you made my stay here10
feel like home.

And most of all, I would like to thank my family, because without their love an support I would not have
been able to achieve this goal. ¡Los quiero!

15

Rubén Guerra Marín

Eindhoven, February 2016

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 3 of 42

Contents

1 INTRODUCTION . 8
1.1 ETHERCAT PROTOCOL . 8
1.2 ETHERCAT SLAVE CONTROLLER . 10
1.3 STRUCTURE . 125

2 PROBLEM STATEMENT . 13

3 ARCHITECTURE . 16
3.1 ESC REQUIREMENTS . 16
3.2 GENERAL OVERVIEW . 16
3.3 CLOCKING . 1810

4 DESIGN . 20
4.1 CONFIGURATION REGISTERS . 20

4.1.1 Registers interface. 20
4.1.2 Configuration registers . 20

4.2 ESC MEMORY SPACE . 2115
4.3 MAC .. 21
4.4 LOOPBACK FUNCTION . 21
4.5 PROTOCOL CHECKER . 21
4.6 DATAGRAM PROCESSOR . 23
4.7 SYNCMANAGER . 2520
4.8 PDI . 26

5 FUNCTIONAL TESTS . 27
5.1 QUALIFICATION ENVIRONMENT . 27

5.1.1 Required hardware tools . 27
5.1.2 Required software tools . 2825

5.2 FUNCTIONAL QUALIFICATION . 28
5.2.1 PHY & MAC . 28
5.2.2 Loopback function . 28
5.2.3 Protocol checker . 30
5.2.4 Datagram processor . 3030
5.2.5 Memory . 31
5.2.6 PDI . 32
5.2.7 SyncManager . 32

6 RESULTS . 34
6.1 PHY LATENCIES . 3435
6.2 FORWARDING LATENCY . 34
6.3 PROCESSING LATENCY . 35
6.4 FINAL RESULTS . 35

7 CONCLUSIONS AND FUTURE ENHANCEMENTS . 38

8 REFERENCES . 3940

A TESTS RESULTS . 40

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 4 of 42

List of Figures

1.1 EXAMPLE OF AN ETHERCAT SYSTEM[13] . 9
1.2 ETHERCAT FRAME STRUCTURE[13] . 9
1.3 STRUCTURE OF AN ETHERCAT SLAVE . 11

2.1 ETHERCAT SLAVE LATENCIES . 145

3.1 ARCHITECTURE OF THE ETHERCAT SLAVE CONTROLLER PROPOSED BY THE ETHER-
CAT TECHNOLOGY GROUP[13] . 17

3.2 PROPOSED ARCHITECTURE OF THE ETHERCAT SLAVE CONTROLLER 17
3.3 COMMUNICATION DIAGRAM . 19

4.1 CONFIGURATION REGISTERS . 2010
4.2 LOOPBACK FUNCTION . 22
4.3 PROTOCOL CHECKER STATE MACHINE. 22
4.4 SYNCMANAGER STATE MACHINE. 25

5.1 TEST SETUP . 27
5.2 INFORMATION OF THE SENT AND RECEIVED PACKETS. 2915

6.1 FORWARDING LATENCY ACCORDING TO THE IMPLEMENTATION . 34
6.2 PROCESSING LATENCY ACCORDING TO THE IMPLEMENTATION . 35
6.3 CYCLE TIME OF AN ETHERCAT NETWORK WHERE 1 DATA BYTE IS TRANSFERRED. 37
6.4 CYCLE TIME OF AN ETHERCAT NETWORK WHERE 1000 DATA BYTES ARE TRANSFERRED 37

A.1 TEST RESULT FOR 1 DATA BYTE TRANSFERRED . 4020
A.2 TEST RESULT FOR 2 DATA BYTES TRANSFERRED . 40
A.3 TEST RESULT FOR 50 DATA BYTES TRANSFERRED . 41
A.4 TEST RESULT FOR 100 DATA BYTES TRANSFERRED . 41
A.5 TEST RESULT FOR 500 DATA BYTES TRANSFERRED . 42
A.6 TEST RESULT FOR 1000 DATA BYTES TRANSFERRED . 4225

List of Tables

2.1 PROPAGATION LATENCY EXAMPLES[19] . 13
2.2 MODULES OF AN ETHERCAT SLAVE CONTROLLER . 15

3.1 COMPARISON OF GIGABIT ETHERNET PROTOCOLS . 16
3.2 COMPARISON OF COMMUNICATION PROTOCOLS . 1830

4.1 ETHERCAT COMMAND DETAILS . 24

5.1 REQUIRED HARDWARE TOOLS . 27
5.2 REQUIRED SOFTWARE TOOLS . 28
5.3 MAC TEST RESULTS . 28
5.4 LOOPBACK FUNCTION TEST RESULTS . 2935
5.5 CONFIGURATION OF THE PACKETS FOR THE PROTOCOL CHECKER TEST. 30
5.6 PROTOCOL CHECKER TEST RESULTS. 30
5.7 DATAGRAM PROCESSOR RESULTS . 31
5.8 PACKETS SENT FOR THE MEMORY MODULE TEST . 31
5.9 DPRAM RESULTS . 3240
5.10 PACKETS SENT FOR THE PDI TEST . 32
5.11 PDI RESULTS. 32

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 5 of 42

5.12 SYNCMANAGER TESTS RESULTS . 33

6.1 MARVELL 88E1111 LATENCIES . 34
6.2 MAC LATENCIES . 34
6.3 ETHERCAT SLAVE LATENCY FOR AN IMPLEMENTATION ASSUMING 4 PORTS 36
6.4 CYCLE TIME OF AN ETHERCAT NETWORK WHERE 1 DATA BYTE IS TRANSFERRED. 365
6.5 CYCLE TIME OF AN ETHERCAT NETWORK WHERE 1000 DATA BYTES ARE TRANSFERRED 36

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 6 of 42

Abbreviations

ASIC Application-Specific Integrated Circuit
AXI Advanced Extensible Interface
AXIF Advanced Extensible Interface Full
AXIL Advanced Extensible Interface Lite
AXIS Advanced Extensible Interface Stream
BUFG Global Buffer
CAN Controller Area Network
CoE CAN over EtherCAT
CRC Cyclic Redundancy Check
DC Distributed Clocks
DLL Data-Link Layer
DPRAM Dual-Ported Random Access Memory
EDD Engineering Design Document
EEPROM Electrically Erasable Programmable Read-Only Memory
ESC EtherCAT Slave Controller
ESM EtherCAT State Machine
EtherCAT Ethernet for Control Automation Technology
EPU EtherCAT Processing Unit
FCS Frame Check Sequence
FIFO First In First Out
FMMU Fieldbus Memory Management Unit
FoE File over EtherCAT
FPGA Field-Programmable Gate Array
GMII Gigabit Media-Independent Interface
I2C Inter Integrated Circuit
IC AXI Interconnect
IDDR Input Double-Data-Rate
IP Intellectual Property
LED Light-Emitting Diode
MAC Media Access Control
MII Media-Independent Interface
MMCM Mixed-Mode Clock Manager
ODDR Output Double-Data-Rate
OSI Open Systems Interconnection
PDI Process Data Interface
PHY Physical Layer
PMP Prodrive Motion Platform
QRD Qualification Results Document
QSGMII Quad Serial Gigabit Media-Independent Interface
RAM Random Access Memory
RGMII Reduced Gigabit Media-Independent Interface
SFD Start of Frame Delimiter
SPD Specification Document
SGMII Serial Gigabit Media-Independent Interface
SII Slave Information Interface
SyncManager Synchronization Manager

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 7 of 42

1. Introduction
Prodrive Technologies[10] is a fast growing privately owned technology company in The Netherlands.
It was born on 1993 in Eindhoven, and now it is currently based in Son en Breugel. It has around 1000
employees with offices around the world.

One of its main products is the Prodrive Motion Platform (PMP) which is currently on its version 3. The5
PMP is a platform motion control which offers real-time performance and tooling. Due to its flexible
interfaces and its hardware independence, the platform can be used in virtually any type of application,
ranging from high-end motion control systems to low cost applications.

One of the PMP implementations consists of a master with several slaves, which communicate through
EtherCAT, a real-time Ethernet protocol. The current EtherCAT slave implementation of PMP consists10
on an IP core made by Beckhoff[9], which currently only supports communication of 100 Mbps. The
goal of the project is to raise this communication speed to 1 Gbps by implementing our own EtherCAT
slave design on an FPGA.

Among the different protocols targeted at industrial communications, Ethernet is becoming the pre-
ferred solution to cover the specific requirements that industrial platforms demand. This is mainly15
due to the excellent price/performance relationship and the continuous improvements of the Ethernet
standard. Industrial Ethernet protocols can be classified mainly into three categories[15], going from
more popular IEEE 802 standards towards better performance and predictability:

1. The protocols are using the Ethernet stack as it is, adding only an industrial user level on top of
TCP/IP. At most 100ms of data transfer time can be achieved. Examples of this category are20
ModBus and Ethernet/IP.

2. In this second category, there is a trade-off between the native Ethernet standard and perfor-
mance, having data transfer times of around 10ms. In this category we can find, for example,
PROFINET RT.

3. To reach this category, protocols must change the original MAC structure in order to obtain data25
transfer times below milliseconds, and usually they need specific hardware or software to work
on. EtherCAT (on the slaves’ side) and PROFINET IRT are clear examples of protocols falling
into this category.

The last category is the one of most interest for us, as these protocols are the most suitable for
industrial automation. A brief description of these two protocols is explained below.30

● EtherCAT was introduced in 2003 by Beckhoff Automation and has become international standard
since 2007. It utilizes standard Ethernet frames and the physical layer as defined in the Ethernet
Standard IEEE 802.3.

● PROFINET IRT is a protocol developed by Siemens and it is part of their PROFINET protocol
suite. It requires special hardware support for both the master and the slaves.35

Gunnar Prytz[18] made an in-depth comparison between these two protocols, showing that EtherCAT
performs equal or better than PROFINET IRT in all the tested situations.

1.1. EtherCAT protocol
EtherCAT is an open technology (meaning anyone is allowed to implement or use it) and it is in
continuous development by the EtherCAT Technology Group. As described before, it utilizes standard40
Ethernet frames and the physical layer as defined in the Ethernet Standard IEEE 802.3. It has become
widely popular mainly for the following characteristics:

● It satisfies hard real-time requirements with deterministic response times.
● Supports up to 65,535 individual EtherCAT slaves in the network.
● EtherCAT can use any network topology (line, star, tree) and any combination of them.45
● It uses standard Ethernet hardware, making it a cheap solution.
● EtherCAT masters can be implemented on many devices with a standard network card, including

computers.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 8 of 42

An EtherCAT network is composed of a master device and several slaves connected to each other
in a daisy chain fashion. All EtherCAT datagrams are sent by the master, and these datagrams are
reflected at the end of each network segment and sent back to the master. The basic operation
principle is that all nodes in the EtherCAT network can read and write data on-the-fly to the EtherCAT
datagram as it passes through the EtherCAT slave. A large number of slaves can be reached using5
only one datagram optimizing bandwidth usage. A simple example of an EtherCAT connected system
can be seen in Figure 1.1.

Figure 1.1: Example of an EtherCAT system[13]

As mentioned before, EtherCAT embeds its payload in a standard Ethernet frame and it has its own
reserved identifier (0x88A4)[17] in the Ethernet type field. In Figure 1.2, the whole frame structure of
the EtherCAT protocol can be seen, followed by a brief description of each field.10

Figure 1.2: EtherCAT frame structure[13]

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 9 of 42

● Ethernet header: Standard Ethernet frame header field containing destination and source
MAC addresses (not used by the EtherCAT slaves but kept for standardization), and EtherType
(0x88A4).

● EtherCAT header
○ Length: Length of the EtherCAT datagrams.
○ Res: Reserved.
○ Type: Protocol type. Only type 0x01 is addressed by the EtherCAT slaves.

● EtherCAT Datagram
○ Datagram header

◾ Cmd: EtherCAT command type.
◾ Idx: The index is used by the master for identification of duplicates or lost diagrams.
◾ Address: Address field which value depends on the addressing mode used.
◾ Len: Length of the data within the same datagram.
◾ R: Reserved.
◾ C: Flag to avoid a circulating frame.
◾ M: Flag representing that there are more EtherCAT datagrams in the same Ethernet

frame.
◾ IRQ: EtherCAT Event Request registers of all slaves combined with a logical OR.

○ Data: The actual data transmitted.
○ Working counter: Counts the number of devices that were successfully addressed by this

EtherCAT datagram.
● FCS: Standard Ethernet error-detecting code which consists of the bits obtained using CRC32.

EtherCAT slaves can be addressed either by device addressing or by logical addressing. Three device
addressing modes are available:

● Auto Increment address: The datagram holds the position address of the addressed slave as
a negative value, and each slave increments the address by one. The slave which reads the
address 0x0000 is the one addressed.5

● Configured address: A fixed address is assigned by the master.
● Broadcast: All EtherCAT slaves are addressed.

In logical addressing, slaves read and write their data into the 32-bit logical space. They use several
FMMUs to map data from the logical process data image to their local address space.

1.2. EtherCAT Slave Controller10

EtherCAT slaves are devices performing actions such as sense data or move an actuator. Fig-
ure 1.3[13] shows the general structure of an EtherCAT slave. As it can be seen, EtherCAT slaves are
built upon three layers of the OSI model: physical layer, data link layer and application layer. EtherCAT
slave devices rely on an EtherCAT Slave Controller (ESC), which is an interface between the EtherCAT
fieldbus and the slave application. A brief description of the functional units conforming an ESC is15
presented next.

PHY Management and ports
The PHY management unit communicates the ports with the external PHYs. The communication can
be through any PHY standard protocol (MII, GMII, RGMII, etc.) or through EBUS.

EtherCAT Processing Unit20

The EPU is responsible to process the EtherCAT data stream. Its main purpose is to coordinate the
access to the registers and the memory space of the ESC. It also contains the auto-forwarder which
receives the Ethernet frames and forwards them to the next available logical port. The EPU uses the
SyncManager for data consistency and the FMMU for data mapping when logical addressing is used.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 10 of 42

Figure 1.3: Structure of an EtherCAT Slave

Fieldbus Memory Management Unit
The FMMU maps logical addresses to physical addresses of the ESC. It is needed for support of
logical read/write commands.

SyncManager
There can be multiple SyncManagers inside one ESC, and these are responsible for handling data5
integrity when multiple sources access the DPRAM.

Memory Space
The ESC memory space is split as follows: the first 4 kilobyte are used for the ESC configuration
registers[7], and the rest is used as process memory, which size can be up to 60 kB. Access to the
process memory is typically managed by the SyncManagers.10

Slave Information Interface EEPROM
The ESC needs a non-volatile memory to store the EtherCAT slave information. Typically, this memory
is connected through I2C to the ESC core. This memory contains the relevant information of the slave
(vendor ID, revision number, etc.) and the configuration parameters for the functional blocks so the
slave can correctly initialize at runtime.15

Process Data Interface or Application Interface
The PDI connects the ESC to the application layer of the slave, typically addressed by a bus.

Distributed Clocks
Distributed clocks provide a synchronization mechanism between all the EtherCAT slave devices.
They also provide time stamps of events as well as synchronized generation of output signals and20
input sampling. EtherCAT distributed clocks support external clock synchronization, as specified by
the standard IEEE 1588[1].

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 11 of 42

Other features
● Error counters and watchdogs.
● Reset.
● Status LEDs.

1.3. Structure
The thesis report is organized as follow. Chapter 3 explains the current state of EtherCAT slave
implementations and also explains the factors that constitute its latency. Chapter 4 describes the
general overview of the implementation, as well as its architecture. Following, Chapter 5 shows the5
design decisions taken to implement the project. Chapter 6 aims to validate the EtherCAT slave’s
functionality, showing that the implemented project works as is supposed to be. Results are further
discussed in Chapter 7, where a detailed analysis of them is presented. Finally, Chapter 8 presents
the conclusions and future work to improve the general project.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 12 of 42

2. Problem statement
Current EtherCAT implementations and products available on the market have a speed fixed to 100
Mbps, being enough for most of the industrial applications. Still, there exist a wide range of applications
where this bandwidth is below the required rate, having to adapt their products to current state-of-the-
art designs. EtherCAT may in principle be implemented on a gigabit Ethernet network using standard5
hardware both at the master and slaves. There are already many EtherCAT master implementations
for various systems and platforms, which in principle can work at any frequency as masters do
not require specific hardware implementation. For example, the current master implementation at
Prodrive Technologies already supports a bandwidth of 1 Gbps. On the other hand, slaves need
to be implemented on specific hardware due to the on-the-fly processing, being limited the current10
implementations to 100 Mbps.

The main goal of the project is to design, implement, test and document an EtherCAT slave controller
supporting gigabit communication on FPGAs. The final implementation will be simulated and tested
on a FPGA development board. This EtherCAT slave has to agree with the EtherCAT and Ethernet
standards, resulting in a compatible plug-and-play slave for any gigabit EtherCAT network.15

Having a high bandwidth implementation is not useful if the latency produced by the EtherCAT
slaves is high. As for this, the implementation will not only consist on making a gigabit EtherCAT slave
implementation, but also keeping EtherCAT slaves latencies low to take advantage of this improvement.
In order to understand the EtherCAT slave latency, Equation (2.1) presents the necessary parts that
compose the general EtherCAT slave latency[20].20

Ts = dp + (n − 1)df + n(dtx + drx) (2.1)

where

Ts is the EtherCAT slave latency.
dp is the EtherCAT slave processing latency.
n is the number of ports used by the EtherCAT slave, where 1 ≤ n ≤ 4.
df is the EtherCAT slave forwarding latency.25
dtx is the EtherCAT slave PHY transmit latency.
drx is the EtherCAT slave PHY receive latency.

To have a better understanding of these concepts, Figure 2.1 shows where in the EtherCAT slaves
are taken this measurements. As the EtherCAT frames are processed on-the-fly, the values of all this
individual latencies are to be measured from the start of the first byte to arrive (the SFD) to the module30
(PHY, EPU, Auto-forwarder), until this same first byte (the SFD) arrives to the next module.

To determine what is a low latency, Table 2.1 shows the propagation latencies of the Beckhoff ET1100
EtherCAT slave controller and the Beckhoff Xilinx IP core. This table shows only the latencies that are
under the implementation control (as the PHY latencies are bounded to the PHYs manufacturer).

Table 2.1: Propagation latency examples[19]

Name Min (ns) Avg (ns) Max (ns) Description

ET1100 dp 280 305 335 Processing latency of an EtherCAT frame going through the EPU[6].
ET1100 df 240 265 295 Forwarding latency of an EtherCAT frame going directly to another port[6].
Beckhoff IP core dp 335 355 375 Processing latency using the current Beckhoff Xilinx IP core[9].
Beckhoff IP core df 295 315 335 Forwarding latency using the current Beckhoff Xilinx IP core[9].

To understand the impact of the EtherCAT slaves latencies as well as of increasing the bandwidth to 135
Gbps, the cycle time of the whole EtherCAT network has to be analyzed. Equation (2.2) shows the
components needed to calculate the EtherCAT network cycle time, followed by Equation (2.3) and
Equation (2.4), where the EtherCAT slave latency and bandwidth can be examined.

Tecat = L +m (2.2)

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 13 of 42

Rx

Tx

Tx

Rx

EtherCAT
Processing Unit

Loopback
function

Loopback
function

Loopback
function

Tx Rx

Rx Tx

PHY0

PHY3

PHY1

PHY2

EtherCAT SlaveProcessing latency

Forwarding latency

Forwarding latency

Forwarding latency

Receive
latency

Transmit
latency

Transmit
latency

Receive latency

Receive latency

Receive latency

Transmit
latency

Transmit
latency

Loopback
function

Figure 2.1: EtherCAT slave latencies

where

Tecat is the EtherCAT network cycle time.
L is the latency summation from all network components (master, slaves and cables). See
Equation (2.3).
m is the transmission time needed to send the whole frame through the network. See Equa-5
tion (2.4).

L = Tm +
N

∑
i=1

T i
s + Tc (2.3)

where

Tm is the forwarding latency of the master.
N is the number of EtherCAT slaves in the network.
Tc is the propagation latency along the cables. In a copper CAT5 patch-cable, this is 2.5 ns per10
50 cm of cable.

m = 8f

B
(2.4)

where

f is the total number of data bytes transmitted per cycle.
B is the corresponding network bandwidth.

EtherCAT slaves are composed of different modules, from which only some are compulsory. The rest15
of the modules might be needed to fulfill certain functions, but are not needed for a basic EtherCAT
slave implementation. Table 2.2 shows a list of compulsory and optional modules composing an
EtherCAT slave. This list is arranged from the most important modules to the least important.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 14 of 42

Table 2.2: Modules of an EtherCAT Slave Controller

Mandatory Optional

PHY management (1 port) SyncManagers
Memory and Registers FMMU
SII EEPROM Phy management (2-4 ports)
PDI Reset
Ethernet network support of min. 100 Mbps Error counters
Status LEDs Distributed clocks

Interrupts

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 15 of 42

3. Architecture
In this chapter, a general overview of an EtherCAT slave is described.

3.1. ESC requirements
Each EtherCAT slave has a minimum of requirements in order to operate correctly. These are
described below:5

● One Ethernet port.
● 5 kB of memory space. 4 kB are used for internal registers and minimum 1 kB is used for

process memory.
● A PDI (microprocessor, FPGA, etc.) in charge of processing the slave actions on application

level.10

In order to achieve 1 Gigabit communication, a PHY supporting this rate is needed. There are several
protocols that connect gigabit PHYs with the FPGA. A comparison of these protocols can be seen in
Table 3.1.

Table 3.1: Comparison of gigabit Ethernet protocols

Name Number of pins 10/100 Base-T Compatibility Clocks

GMII[12] 24 Yes 125 MHz (25 MHz for 100 Base-T, 2.5 MHz for 10 Base-T)
RGMII[14] 12 Yes 125 MHz
SGMII[11] 8 Yes 625 MHz
QSGMII[21] 4 Yes 5 GHz

As GMII adds more clocks and uses many pins, this option is discarded from the choices. RGMII
achieves half of the pins of GMII by clocking data on both the rising and falling edges of the clock.15
SGMII is an extension to MII which uses serial interface (SerDes). QSGMII combines four SGMII lines
into a 5 Gbps interface. The benefits among these last three protocols relies on the number of pins
(for hardware designers) and that with one single clock they can achieve different rates. As SGMII
and QSGMII require a higher clock to achieve the same rate that RGMII can provide with a simpler
clock, this last one is to be preferred. Hence, a PHY with RGMII connectivity support is needed for the20
implemented EtherCAT slave.

3.2. General Overview
In Section 1.2, all the features available for an ESC are described. Figure 3.1 shows the architecture
set by the EtherCAT Technology Group[8] on how all these modules are connected between each
other, followed by the proposed architecture in Figure 3.2. In this diagram, arrows represent the25
relationship between masters and slaves.

Some features are not shown in the proposed architecture as these are mostly optional and have
no influence in the EtherCAT slaves latencies. The main differences between these architectures is
explained below.

● Modules are connected to a multiplexer which forwards data to the required destination.30
● Memory space was split in two modules:

○ Configuration registers: This module contains the first 4 kB, which are used for configuration
registers. Each individual register has its own reset value and different access permissions
for PDI and the datagram processor.

○ DRAM controller: This module contains the rest of the DRAM space, which is used for35
process memory.

● Two new blocks were added:
○ Datagram processor: This module processes the individual EtherCAT datagrams.
○ Mux: This is the module used to multiplex the data as explained before.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 16 of 42

Figure 3.1: Architecture of the EtherCAT Slave Controller proposed by the EtherCAT Technology
Group[13]

MAC 0

Loopback
function

Datagram
processor

FMMU

DRAM
Controller

EEPROM
Manager

PDI

Mux

SII EEPROM

Application
layer

PHY1

I²C

Sync
Manager

MI

PHY0

MAC 1RGMII

SI

RGMII

FPGA

SI

SI

Configuration
registers

MI

Protocol
Checker

DRAM

Reset,
Monitoring,
Status LEDs

Distributed
clocks

Figure 3.2: Proposed architecture of the EtherCAT Slave Controller

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 17 of 42

● All data going to the DRAM controller is first analyzed by the SyncManager in order to protect
data as explained in Section 1.2.

An important aspect to consider for the general design is how data will be transfered among the
different modules without losing any data. On Table 3.2 there is a comparison among the most popular
communication protocols.5

Table 3.2: Comparison of communication protocols

Name Memory mapped Number of compul-
sory signals

Burst mode support Number of cycles
for write operation

Number of cycles
for read operation

Open Core
Protocol[2]

Yes 11 Yes 2 3

Avalon Streaming
Interface[3]

No 8 Yes 1 Not supported

Avalon Mem-
ory Mapped
Interface[3]

Yes 14 Yes 3 2

AXI4-Stream[4] No 3 Yes 1 Not supported
AXI4-Lite[5] Yes 18 No 3 2
AXI4-Full[5] Yes 31 Yes 3 2

First, a high throughput protocol is needed to transfer the bytes belonging to the Ethernet packet. The
Avalon Streaming Interface and the AXI4-Stream protocol are right for this, as both have a proper
handshake mechanism and both only need one cycle to transfer data. AXI4-Stream has the advantage
to need less signals and it is also supported by all Xilinx and Altera IP cores. For this reason, the
AXI4-Stream protocol will be used.10

Second, as there are two modules that need access to the memory space (the Datagram processor
and the user application), a memory mapped communication protocol is needed. Also, as the memory
space is divided in registers (Section 4.1.1) and user data (Section 4.8), they will be divided accordingly.
The Open Core Protocol, the Avalon Memory Mapped Interface, the AXI4-Lite protocol and the AXI4-
Full protocol are candidates for this purpose, and the three of them need in total the same amount of15
cycles for "read" and "write" operations. As mentioned above, AXI4 is the most popular communication
protocol among the major vendors. AXI4-Full provides burst operation at the cost of high complexity.
AXI4-Lite provides a memory mapped protocol without burst mode, with minimum use of resources
and ease of implementation. As the user application might be implemented on a limited-resources
FPGA or a microcontroller, AXI4-Lite is the protocol to be implemented. Figure 3.3 shows a diagram20
showing how the modules communicate to each other.

The AXI interconnect seen in the diagram is a way to connect different masters (the Datagram
processor and the user application) to multiple slaves (the Registers interface and the User data
memory) using a single interface per module.

3.3. Clocking25

As RGMII is chosen as the communication protocol between the PHY and the FPGA, a clock of 125
MHz has to be provided as explained in Table 3.1. In order to make use of this bandwidth, the FPGA
logic clock has to be at least the same speed as the one for the RGMII. The chosen clock for this
design is of 200 MHz, but greater speeds are also possible.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 18 of 42

MAC 0

Loopback
function

Datagram
processor

FMMU

DRAM
Controller

AXI
Interconnect

User
application

PHY1

AXIS

Sync
Manager

MI AXIL

PHY0

MAC 1RGMII

AXIS

RGMII

FPGA

SIAXIL

SIAXIL

Configuration
registers

MI AXIL

Protocol
Checker

AXIS

AXIL

AXIS

AXIS

DRAM

Figure 3.3: Communication diagram

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 19 of 42

4. Design
In this chapter, the design of all the blocks conforming the EtherCAT Slave Controller are described.

4.1. Configuration registers
An EtherCAT slave can have an address space of up to 64 kB. The first block of 4 kB (0x0000 -
0X0FFF) is used for configuration registers. The ESC address range is directly addressable by the5
EtherCAT master and the slave application. This module consists of two parts: the Registers interface
which is a block that maps memory registers to individual signals, and the Configuration registers
which are multiple blocks inside different modules in the design, used to store the actual values of
these registers. This can be better understood by looking to Figure 4.1 and looking at the sections of
the individual modules.10

AXI
Interconnect

Registers
interface

AXIL

MAC
Configuration

registers

Loopback
function

Configuration
registers

Datagram
processor

Configuration
registers

Type Checker
Configuration

registers

SyncManager
Configuration

registers

Figure 4.1: Configuration registers

4.1.1. Registers interface
This module is generated by the Prodrive RegisterBuilder which is an excel sheet with a Visual Basic
macro that can be used to generate memory-mapped VHDL register interfaces. It supports different
register field types, like write-only, read-only, read and write, among others. It is also configurable with
individual reset values per register, and supports the AXI4-Lite interface. As this is a simple AXI4-Lite15
slave interface, the latency added by this module is the same as described in Table 3.2.

4.1.2. Configuration registers
This module stores the registers of the different EtherCAT slave modules. When the EtherCAT master
or the EtherCAT slave application reads a register, the Registers interface reads the value from
the belonging register inside the Configuration registers module. When it is a write request, the20
Configuration registers stores temporary the value and updates the registers when the EtherCAT
packet leaves the ESC, as specified by the EtherCAT datasheet. These modules do not add any
latency to the EtherCAT slave latency as this is run only after the Ethernet frame left the ESC.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 20 of 42

4.2. ESC memory space
The memory space from address 0x1000 onwards is used as the process memory (up to 60 Kbyte).
The size of process memory depends on the device. The ESC address range is directly addressable
by the EtherCAT master and the slave application. This address space is to be implemented using
the Xilinx Core Generator tool. As the memory controller is just an AXI4-Lite interface, the delay5
introduced by this module is the time to transfer data through AXI4-Lite.

4.3. MAC
The MAC is part of the Data-Link Layer in the OSI model of computer networking. It is responsible for
composing and decomposing Ethernet frames. The MAC is generated by the Xilinx Vivado software
tool since designing a MAC is not on the focus of this project, and reinventing the wheel is not wished.10
The Xilinx MAC IP[22] core is the one in charge of composing/decomposing the Ethernet frames. It
was generated with the following features:

● 1000/100/10 Base-T support.
● Full duplex operation.
● RGMII communication with the PHY.15
● Automatic interframe gap for transmission.
● Automatic Frame Check Sequence checking at receiving and FCS insertion at transmitting.
● Auto padding on transmit and stripping on receive paths.
● Configured through vectors bits.

4.4. Loopback function20

Each port of an ESC can be in one of two states: open or closed. If a port is open, frames are
transmitted to other Ethernet devicess at this port and frames from other Ethernet devices are
received. A port which is closed will not exchange frames with other Ethernet devices, instead, the
frames are forwarded internally to the next logical port until an open port is reached. The loop state of
each port can be controlled either by the master or automatic mode determined by the link state of25
the port. Figure 4.2 shows a diagram representing a loopback function with 2 ports. This module is
designed such that more ports can be inserted into the design by just connecting them to the other
ports.

The basic operation of this module is to receive packets through an AXI4-Stream interface and relay
them to the next module depending on its state. The loopback function supports the four states30
described below. These states can be set either by the EtherCAT master or by the user application. In
case of Auto or Auto close, the link state is provided by the MAC IP core, as explained in Section 4.3.

● Manual open: The port is open regardless of the link state. If there is no link, outgoing frames
will be lost.

● Manual close: The port is closed regardless of the link state.35
● Auto: The loop state of each port is determined by the link state of the port.
● Auto close: The port is closed depending on the link state. After this, if the link is established,

the loop will not be automatically opened. Instead, it will remain closed until the master explicitly
opens the port or if a valid Ethernet frame arrives correctly on that port.

The latency induced by this module is minimum as only one clock cycle is needed to forward a byte to40
the next module.

4.5. Protocol checker
For an Ethernet frame to be processed by the EtherCAT slave, it needs to meet the following conditions:

● Ethernet type field should be 0x88A4, which is the reserved identification number for EtherCAT
packets provided by IEEE.45

● Protocol type should be 0x01, which are the only EtherCAT commands supported by the
EtherCAT slaves.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 21 of 42

MAC 0

Protocol
Checker

MAC 1
AXIS AXIS

AXISAXIS

open closed

closed open

AXIS

AXIS AXIS

Configuration
registers

Loopback bunction

Registers
interface

Figure 4.2: Loopback function

Figure 4.3 shows the state machine used for this module, followed by a description of each state. This
module processes the Ethernet header byte per byte and responses to it "on-the-fly". Because of this,
only one clock cycle is needed to process every byte.

Idle

Receive
header

Forward
back

Send to
process

Packet arrived

Types are correct

Types are
not correct

Figure 4.3: Protocol checker state machine.

● Idle: State in which the state machine is while there is no packet being processed. As soon as
there is a packet being received through the AXI4-Stream interface, the state machine moves5
into the next state.

● Receive header: In this state, the packet header is received and forwarded back to the loopback
function. When the whole header is received, both the Ethernet type and the EtherCAT protocol

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 22 of 42

type are analyzed. If these fields are correct, then the state machine goes to the "Send to
process" state, and if one of the fields is incorrect, then state machine goes to the "Forward
back" state.

● Send to process: The rest of the Ethernet packet (which are the EtherCAT datagrams) is
transmitted to the datagram processor. Also, the incoming data from the datagram processor is5
forwarded to the loopback function. The state machine goes back to Idle when the last byte from
the datagram processor is transmitted back to the loopback function.

● Forward back: As either one or both types were incorrect, the rest of the packet is forwarded
back to the loopback function. This state ends when the last byte is forwarded back.

4.6. Datagram processor10

The Datagram processor module is in charge of reading and executing all the EtherCAT datagrams. It
will read, write or both to the specified address and update the datagrams accordingly. Table 4.1 has a
list of all the available EtherCAT commands with the necessary modifications to the datagram, and the
following list shows the behavior of this module.

1. Idle until a datagram arrives.15
2. For the first 10 bytes (the header), receive them and process them byte-by-byte as soon as they

arrive.
● Start transmitting back the header as soon as the 3rd byte arrives. This is because some

fields inside the datagram are composed of two bytes, so we need to receive both and
(most probably) make an operation with them before transmitting them back.20

3. When the whole header arrived, don’t receive any bytes until the header was fully transmitted
back to compensate for the difference between receive/transmit cycles.

4. Receive and process the data bytes on-the-fly. If the datagram is addressed to that slave, the
Read and/or Write operations are executed in the following way:

● For a write operation, when four bytes are received from the datagram, call a Write AXIL25
function to write these bytes to the memory space at the same time that the next four bytes
are arriving from the datagram.

● For a read operation, call a Read AXIL function to read four bytes from the memory space
before these bytes are to be transmitted back to the loopback function.

Read and write operations in parallel are possible due to the fact that AXIL write and AXIL read30
signals are different. Also, no race condition is achieved as the registers are updated only once
after the Ethernet packet left the ESC.

5. These operations are executed as long as there are still bytes to process. As soon as a byte is
received from the datagram, the same byte or the read byte (if read operation) is transmitted
back to the loopback function.35

6. Receive, process and transmit back the working counter.
7. If there are more datagrams in this packet, continue since step 2. Otherwise go back to idle.

For the read and write AXI4-Lite transactions, 4 bytes are read or written as the width of the AXI
data line is of 32 bits. As seen in Section 3.2, a write operation takes 3 cycles while a read operation
takes 2 cycles. This ensures that these operations will always be finished before the next 4 bytes are40
required to be processed. This implementation shows an optimized behavior for on-the-fly processing,
minimizing the latency of per-byte processing.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 23 of 42

Table 4.1: EtherCAT command details

CMD Name High Addr. In High Addr. Out Low Addr. Address Match Data In Data Out WKC

0 No Operation untouched none untouched
1 Auto Increment Read Position Pos. + 1 Offset High Addr. In = 0 - Read +0/1
2 Auto Increment Write Position Pos. + 1 Offset High Addr. In = 0 Write +0/1
3 Auto Increment Read Write Position Pos. + 1 Offset High Addr. In = 0 Write Read +0/1/2/3
4 Configured Address Read Address Offset High Addr. = Conf. Station Addr. - Read +0/1
5 Configured Address Write Address Offset High Addr. = Conf. Station Addr. Write +0/1
6 Configured Address Read Write Address Offset High Addr. = Conf. Station Addr. Write Read +0/1/2/3
7 Broadcast Read - High Addr. In + 1 Offset all - Data In OR Read +0/1
8 Broadcast Write - High Addr. In + 1 Offset all Write +0/1
9 Broadcast Read Write - High Addr. In + 1 Offset all Write Data In OR Read +0/1/2/3

10 Logical Memory Read Logical address FMMU - (Read AND configured bitmask) OR +0/1
(data IN AND NOT configured bitmask)

11 Logical Memory Write Logical address FMMU Write +0/1
12 Logical Memory Read Write Logical address FMMU Write (Read AND configured bitmask) OR +0/1/2/3

(Data In AND NOT configured bitmask)
13 Auto Increment Read Multiple Write Position Pos. + 1 Offset Read: High Addr. In = 0 - Read +0/1

Write: High Addr. In /= 0
14 Configured Read Multiple Write Address Offset Read: High Addr. = Conf. Station Addr. - Read +0/1

Write: High Addr. /= Conf. Station Addr. Write +0/1
15-255 reserved untouched none untouched

Im
plem

entation
ofa

Low
-Latency

E
therC

AT
S

lave
C

ontrollerw
ith

S
upportforG

igabitN
etw

orks
22-02-2016

P
age

24
of42

4.7. SyncManager
As both the EtherCAT master and the user application have access to the memory space, there should
be a mechanism to ensure data consistency. SyncManagers protect data from being accessed from
both sides at the same time. These SyncManagers are configured by the EtherCAT master, which can
chase the communication direction as well as the communication mode:5

● Buffered mode: This mode allows simultaneous access to the DPRAM from both the EtherCAT
master and the local application. The producer can always write to the buffer, while the con-
sumer can always read the latest completely written buffer. As these SyncManagers use three
contiguous buffers, the effective size is one third of the configured length.

● Mailbox mode: In this mode, both the EtherCAT master and the user application only get access10
to the buffer after the other one has finished its access. This ensures that all produced data is
received by the consumer without any loss.

Buffers are allowed to be accessed beginning with the start address (buffer becomes open). After
the buffer becomes open, the rest of the buffer is accessible until the end address is accessed (buffer
becomes closed).15

Figure 4.4 shows the state machine followed by the SyncManager module. The states are as follows:

Receive
address

Idle

Send address
to DPRAM

Process data
in DPRAM

Receive data

Process buffer
mode

Discard data

Buffer mode
is used

Not
accessible

Send response
back to IC

Figure 4.4: SyncManager state machine.

● Idle: State in which the state machine is while waiting for an address to arrive, either from
the Datagram processor or the User application. As soon as an address arrives through the
AXI4-Lite interface, the state machine moves into the next state.

● Receive address: In this state, the address is received from the AXI interconnect, taking only20
one clock cycle for this.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 25 of 42

● Receive data: The address is checked if it belongs to one of the enabled SyncManagers. If
it does not, the next state is "Send address to DPRAM" so the access to the memory can
continue without interference. If the state belongs to a Buffer SyncManager, then the next
state is "Process buffer mode". If the address belongs to a Mailbox SyncManager, then it is
checked if it has the correct access permissions. If it does, the state machine moves into the5
"Send address to DPRAM" state, and if it does not or if the address fails to pass through all the
constraints (SyncManagers opened, start address, state of the SyncManagers) the state moves
into "Discard data". If it is a "read" operation, the data is also received from the AXI Interconnect.
This is a simple AXI4-Lite operation and it only takes one clock cycle to process.

● Send address to DPRAM: The address is sent through AXI4-Lite to the DPRAM controller, and10
then it continues to the next state. As this is just part of the AXI4-Lite protocol, ths state takes
only one clock cycle to process.

● Process data in DPRAM: In this state, the data is written or read from the DPRAM controller.
As the address was already sent, this state will take 1 or 2 cycles depending if it is a "read" or
"write" operation.15

● Send response back to IC: The response and (if it is the case) required data are sent back to
the interconnect. Being the last state of the AXI4-Lite protocol, this only requires of one clock
cycle to process.

● Process buffer mode: The address is internally converted to the necessary address as required
by the Buffer SyncManagers, depending which of the three buffers is required to be written or20
read. This operation takes again one cycle and is done separately as the next state will need to
send this address.

● Discard data: As the address was not accessible, the incoming data is discarded and an error
signal is sent back. This would be the same operation as "Send response back to IC" taking the
same time as it.25

4.8. PDI
The Process Data Interface (PDI) realizes the connection between the EtherCAT slave application and
the ESC. As the communication protocol used is AXI4-Lite and this protocol can be implemented on
an FPGA or a microcontroller, a Slave Interface was added to the Interconnect. In this way, the user
application can communicate directly to the registers and user memory. This module does not add30
any latency to the EtherCAT slave latency as it works independent of it.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 26 of 42

5. Functional tests
This chapter is used for the qualification of the EtherCAT Slave Controller and it covers specification
items described in the EtherCAT Slave Controller datasheet.

5.1. Qualification Environment
This section describes the context of the EtherCAT Slave Controller in its qualification environment.5
The following subsections describe the required qualification material for the procedures.

5.1.1. Required hardware tools
Table 5.1 shows the required hardware tools to qualify the EtherCAT Slave Controller. Figure 5.1
shows how these components are connected to each other.

Table 5.1: Required hardware tools

Name Description Version Vendor

1000 Base-T Ethernet Card Provides two Ethernet ports which support 1000 Base-T standard PHY
functions with the connection between FMC-LPC connector.

1.02 inrevium

Platform Cable USB II Provides integrated firmware to deliver configuration of Xilinx FPGAs 1.5 Xilinx
Zynq-7000 AP SoC ZC702 Zynq-7000 evaluation board ZC702 Xilinx

Figure 5.1: Test setup

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 27 of 42

5.1.2. Required software tools
Table 5.2 shows the required software tools to qualify the EtherCAT Slave Controller.

Table 5.2: Required software tools

Name Description Version Vendor

Ostinato Network packet crafter/traffic generator 0.7.1 Ostinato
Wireshark Network protocol analyzer 1.12.8 The Wireshark team

5.2. Functional qualification
In this section it is qualified that all modules forming the EtherCAT Slave Controller work as specified
in Chapters 3 and 4.5

5.2.1. PHY & MAC
In this subsection it was qualified that the packets arriving to the Ethernet port are correctly sent and
received through RGMII from/to the MAC, and that the MAC is capable of stripping the preamble, the
Start of Frame Delimiter, and that is also able to perform FCS.

Pre-conditions:10

● A loop from the "Receive FIFO" to the "Transmit FIFO" was programmed in VHDL. This loop
does not only forward the packets, but also exchanges the destination address with the source
address.

Method:

1. Using Ostinato, five packets were sent to the FPGA. The contents of these packets are of no15
importance.

2. These packets were analyzed with Wireshark. The received packets were exactly the same as
the sent packets, with the destination and source addresses swapped.

Results: Figure 5.2 shows a Wireshark screenshot of one packet sent with Ostinato to the FPGA and
the same packet back from the FPGA. Table 5.3 shows the results of the analysis of these packets.20

Table 5.3: MAC test results

Name Description Result

Packet swap destinations Check that the destinations were swapped and received correctly PASS
Packet data Check that the sent and received data are the same PASS

Conclusion: The MAC used was the Tri-Mode Ethernet MAC IP-core from Xilinx, with a few modifi-
cations. Hence, this IP-core was also validated by them. Passing these tests means also that the
FCS checking and FCS generator are working, as well as the MAC is properly working with RGMII.
Also, the SFD is being stripped to incoming packages and added to outgoing packages. As this
implementation only works when there is a link of 1 Gpbs and Full-Duplex operation, it can be deduced25
that this features also work.

5.2.2. Loopback function
In this subsection it was verified that the ESC is capable of detecting an open/closed link, and that it is
able to forward packets to the next available port.

Pre-conditions:30

● For part of this test, it was necessary that the two Ethernet ports of the 1000 Base-T Ethernet
card were connected to the laptop.

● The same loop of the PHY & MAC test was implemented.

Method:

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 28 of 42

Figure 5.2: Information of the sent and received packets.

● Test ports 1 and 2 individually.
1. Using Ostinato, five packets were sent to the FPGA. The contents of these packets are of

no importance for this test.
2. The sent and received packets were analyzed with Wireshark. The received packets

should be exactly the same as the sent packets, with the destination and source addresses5
swapped.

● Port 1 to 2.
1. Using Ostinato and choosing port 1 as the output port, five packets were sent to the FPGA.
2. The sent and received packets were analyzed with Wireshark. The received packets

should be exactly the same as the sent packets, with the destination and source addresses10
swapped.

● Port 2 to 1.
1. Using Ostinato and choosing port 2 as the output port, five packets were sent to the FPGA.
2. The sent and received packets were analyzed with Wireshark. The received packets

should be exactly the same as the sent packets, with the destination and source addresses15
swapped.

Results: Table 5.4 shows the results of the analysis of these tests.

Table 5.4: Loopback function test results

Name Description Result

Test ports 1 and 2 individually Checked that the destinations were swapped and received correctly. PASS
Port 1 to 2 Checked that packets sent through port 1 were received on port 2 with addresses

swapped.
PASS

Port 2 to 1 Checked that packets sent through port 2 were received on port 1 are exactly the
same.

PASS

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 29 of 42

Conclusion: These tests show that packets are forwarded correctly depending on the state of the link
of the ports. If there is a link in a port, then that port is open and forwards packets through it. If there
is no link on that port, then packets are forwarded to the next available port.

5.2.3. Protocol checker
In this subsection it was verified that the ESC will process only datagrams as in conformance with the5
EtherCAT datasheet[8]. The Ethernet type should be 0x88A4 and the datagrams type should be 0x01.

Pre-conditions:

● The same loop of the PHY & MAC test was implemented.

Method:

1. Using Ostinato, four packets were sent with the configuration shown in Table 5.5.

Table 5.5: Configuration of the packets for the Protocol Checker test

Packet Ethernet type Datagram type

1 0x88A4 0x1000
2 0x88A4 Anything but 0x1000
3 Anything but 0x88A4 0x1000
4 Anything but 0x88A4 Anything but 0x1000

10
2. With Wireshark, the packets were analyzed.

Results: Table 5.6 shows the results of the analysis of these tests.

Table 5.6: Protocol checker test results

Name Description Result

First packet The received packet was equal to the sent packet. PASS
Second packet The received packet was equal to the sent packet with the first 6 bytes of data swapped with the

next 6 bytes.
PASS

Third packet The received packet was equal to the sent packet with the first 6 bytes of data swapped with the
next 6 bytes.

PASS

Fourth packet The received packet was equal to the sent packet with the first 6 bytes of data swapped with the
next 6 bytes.

PASS

Conclusion: These tests show that the ESC is capable of recognizing and executing proper action of
EtherCAT slave datagrams as described in the EtherCAT datasheet.

5.2.4. Datagram processor15

In this section it was verified that the EtherCAT datagrams are processed according to the EtherCAT
Slave Controller datasheet.

Method:

1. Using Ostinato, several packets were sent to test all the possible outcomes for the datagram
processor. For every test, read, write and read packets were sent to make sure that the values20
written and read are valid.

● Auto increment address fail.
● Auto increment write and Auto increment read.
● Auto increment Read Write.
● Configured address fail.25
● Configured address write and Configured address read.
● Configured address Read Write.
● Broadcast write and broadcast read.
● Broadcast read write.
● Auto increment read multiple write when position address is 0x00.30
● Auto increment read multiple write when position address is different than 0x00.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 30 of 42

● Configured read multiple write when position address equals the configured address.
● Configured read multiple write when position address is different than the configured

address.
● Multiple datagrams in a single packet.

2. The received packets were analyzed using Wireshark.5

Results: Table 5.7 shows the results of the analysis of these tests.

Table 5.7: Datagram processor results

Name Description Result

Auto Increment address fail Auto Increment commands with an position address dif-
ferent than 0x00. Should increment WKC and forward
back the datagram.

PASS

Auto Increment Write and Auto Increment Read Working counter and position address updated on the
Write datagram, and values updated on the Read data-
gram.

PASS

Auto Increment Read Write Values updated on the Write datagram, working counter,
position address and values updated on the Read Write
datagram, and values updated on the Read datagram.

PASS

Configured Address fail Configured Address commands with a different position
address than the target ESC. Should just forward back
the datagram.

PASS

Configured Address Write and Configured Address Read Working counter updated on the Write datagram, and
values updated on the Read datagram.

PASS

Configured Address Read Write Values updated on the Write datagram, working counter
and values updated on the Read Write datagram, and
values updated on the Read datagram.

PASS

Broadcast Write and Broadcast Read Working counter and position address updated on the
Write datagram, and values updated on the Read data-
gram.

PASS

Broadcast Read Write Values updated on the Write datagram, working counter,
position address and values updated on the Read Write
datagram, and values updated on the Read datagram.

PASS

Auto Increment Read Multiple Write with Address = 0x00 Working counter, position address and data updated PASS
Auto Increment Read Multiple Write with Address /= 0x00 Working counter and position address updated on the

Auto Increment Read Multiple Write datagram, and val-
ues updated on the Read datagram.

PASS

Configured Read Multiple Write with Address = Config-
ured position address

Working counter and data updated PASS

Configured Read Multiple Write with Address /= Config-
ured position address

Values updated on the Configured Read Multiple Write
datagram, and values updated on the Read datagram

PASS

Multiple datagrams in a single packet Multiple datagrams processed in a single packet, and
configuration updated only after the packet left the ESC

PASS

Conclusion: All the fields were updated according to the EtherCAT specifications datasheet, so it is
concluded that all the fields were updated correctly (Working Counter, Address fields and data fields).
Also, it can be concluded that writing to the registers generated by the Prodrive RegisterBuilder work
as they should.10

5.2.5. Memory
In this subsection it was verified that the Datagram Processor can write to DPRAM.

Pre-conditions:

● To reproduce this test, the project ESC in Vivado has to be programmed into the FPGA.

Method:15

1. Using Ostinato, two packets were sent with the fields as specified in Table 5.8.

Table 5.8: Packets sent for the Memory module test

Command Position addr. Offset addr. Data WKC

Broadcast write (0x08) 0xAAAA 0x2020 0x1234 0x1110
Broadcast read (0x07) 0xAAAA 0x2020 0x0000 0x1110

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 31 of 42

2. These packets received were analyzed with Wireshark.

Results: Table 5.9 shows the results of the analysis of these tests.

Table 5.9: DPRAM results

Name Description Result

Memory write and read The datagram processor wrote and read from a location in the DPRAM PASS

Conclusion: The datagram processor is capable of writing to the registers inside the DPRAM.

5.2.6. PDI
In this subsection it was validated that the PDI interface is capable of writing and reading from the5
registers.

Pre-conditions:

● An RTL implementation was designed to simulate the user application connected to the PDI.
This module copies every time the packet leaves the ESC, the value stored in location 0x2020 to
0x3030.10

Method:

1. Using Ostinato, two packets were sent with the fields as specified in Table 5.10.

Table 5.10: Packets sent for the PDI test

Command Position addr. Offset addr. Data WKC

Broadcast write (0x08) 0xAAAA 0x2020 0x1234 0x1110
Broadcast read (0x07) 0xAAAA 0x3030 0x0000 0x1110

2. These packets received were analyzed with Wireshark.

Results: Table 5.11 shows the results of the analysis of these tests.

Table 5.11: PDI results

Name Description Result

PDI write and read PDI copied the value of 0x2020 into 0x3030 PASS

Conclusion: As the written value from the datagram processor on 0x2020 was the same read on15
0x3030, it can be concluded that the PDI interface successfully read the value from 0x2020 and wrote
it into 0x3030.

5.2.7. SyncManager
In this subsection it was validated that the SyncManager operates accordingly to the EtherCAT Slave
Controller standard.20

Pre-conditions: The SyncManager has to be configured first as Buffer mode and then as Mailbox
mode to cover all aspects of this module.

Method:

1. Using Ostinato, packets were sent in order to cover the following tests.
● Address not in SyncManager: Sent a packet where the address is not contained by any25

SyncManager.
● SyncManager not opened: Sent a packet where the address is contained in a SyncManager

(and this address is not the starting address of the SyncManager) but this is still no opened
for access.

● Buffer mode write and read: Read from the buffer, then write a complete buffer, and last try30
to read again the buffer. This read one should be exactly the same as the one written.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 32 of 42

● Mailbox mode write/read fail: This is composed by two tests. First, if the buffer is not yet
written, try to read it and the test should fail. After writing to the buffer, trying to write it
again should fail until the buffer was first read.

● Mailbox mode correct operation: Alternate write and read packets.
2. The received packets were analyzed with Wireshark.5

Results: Table 5.12 shows the results of the analysis of these tests.

Table 5.12: SyncManager tests results

Name Description Result

Address not in SyncManager The offset address does not belong to any SyncManager, so the transaction
occurs without problem

PASS

SyncManager not opened The requested address belongs to a SyncManager that is not opened PASS
Buffer mode write and read Address is in a buffer mode SyncManager. After writing the complete buffer, it is

then open for reading
PASS

Mailbox mode write/read fail It is not the turn for the mailbox to be read or written PASS
Mailbox mode correct operation Mailbox is correctly written and read PASS

Conclusion: The SyncManager module work as specified in the EtherCAT Slave Controller datasheet.
Both the Mailbox mode and the Buffer mode were supported.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 33 of 42

6. Results
The current project consisted not only on just implementing a working gigabit EtherCAT Slave Controller,
but also on the latencies of this. As explained in Equation (2.1), EtherCAT slaves latencies are
composed by the slave processing latency, the slave forwarding latency and the PHY latencies (which
these last two depend on the number of ports).5

6.1. PHY latencies
PHY latencies are dependent on the PHYs used and these values are already provided by the
manufacturer. The clock used for the PHYs will always be of 125 MHz, as required by RGMII. The
PHYs used for the implementation were the Marvell 88E1111[16]. As specified in the datasheet, its
receive and transmit latencies are shown in Table 6.1.10

Table 6.1: Marvell 88E1111 latencies

Name Min (ns) Max (ns)

RGMII to 1000 Base-T (Transmit latency) 76 84
1000 Base-T to RGMII (Receive latency) 176 208

As these values are fixed, on later calculations the values used will be the average between the
minimum and maximum latencies (80 for transmit latency and 202 for receive latency).

6.2. Forwarding latency
Forwarding latencies are defined as the time elapsed when one byte arrives to the MAC until this
same byte arrives to the next available PHY. According to our implementation, the forwarding latency15
would be defined as in Figure 6.1.

MAC1
Loopback
function

MAC0 PHY0PHY1

Start timer Stop timer

Figure 6.1: Forwarding latency according to the implementation

As mentioned in Section 4.3, the MAC implementation was provided by Xilinx. As this is a private IP
core, it cannot be modified to obtain its latency via FPGA logic. Instead, the values are to be obtained
by the MAC’s datasheet[22]. According to the datasheet, the MAC is composed by three parts: An
RGMII-GMII converter, the MAC itself, and transmit and receive FIFOs. The number of cycles it takes20
these individual parts to process are shown in Table 6.2.

Table 6.2: MAC latencies

Name Transmit (cycles) Receive (cycles)

RGMII-GMII conversion 1 1
MAC 8 15
FIFO 3 3

This part runs over two clock domains: the GMII-RGMII converter, the MACs and the receive FIFO
are synchronized with the 125 MHz clock, while the transmit FIFO runs at a rate of 200 MHz. As in
the forwarding latency MAC1 receives the packet but MAC0 transmits it, the total number of cycles
regarding the MAC for the forwarding latency are the sum of these both. This gives a total of 2825

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 34 of 42

cycles running at 125 MHz, and 3 cycles running at 200 MHz. The only missing part to complete the
forwarding latency is the loopback function, and as explained in Section 4.4, this module consists on a
simple switch which takes only one cycle to process. This gives a total forwarding latency of 244
ns.

As seen in Table 2.1, the average forwarding latencies of the Beckhoff ET1100 EtherCAT Slave5
Controller and of the Beckhoff Xilinx IP core are of 265ns and 315 ns, respectively. This concludes
that the forwarding latency from our implementation using gigabit communication was indeed an
improvement.

6.3. Processing latency
The last latency needed to complete Equation (2.1) is the processing latency. This latency is obtained10
as shown in Figure 6.2.

PHY0 MAC0
Loopback
function

Protocol
Checker

Datagram
processor

Loopback
function

MAC1PHY1

Timer starts

Timer stops

Figure 6.2: Processing latency according to the implementation

As this time contains also the elements involved in the forwarding latency, the processing latency is
equivalent to the sum of the forwarding latency plus one extra cycle of the loopback function plus the
Type Checker plus the Datagram processor. To obtain the latencies of these last blocks, a test was
built to turn on a digital pin when the packet arrives to the Protocol checker and to turn it off when this15
same byte arrives back to the Protocol checker. This time was measured using a 1 GHz oscilloscope.
Several packets with different lengths were sent in order to see the variations in the performance of
these modules.

As our implementation processes the bytes on-the-fly, there was no variation in the latencies of these
packets. See Appendix A for screenshots of the oscilloscope taken during these tests. It can be seen20
that the ESC latency measured for all packets is of 30ns (as the clock used for this part is of 200 MHz,
the results were rounded to their nearest value multiple of 5). This latency added to the forwarding
latency gives a total processing latency of 274ns. Comparing our processing latency to the ones
discussed in Chapter 2, it can be seen that there is an improvement of 31ns and 81ns with respect to
the Beckhoff ESC ET1100 and the Beckhoff ESC IP core.25

6.4. Final results
Using Equation (2.1), and as discussed in the previous section, the EtherCAT slave latency is
dependent on the number of bytes transferred. Table 6.3 shows the final EtherCAT slave latencies
for the implemented design compared to the EtherCAT slaves latencies of the products provided
by Beckhoff. As these products do not specify the PHY used, the Marvell 88E1111 (used in our30
implementation) will be assumed for fair comparison. These PHYs will be in MII 100 Base-T operation
mode.

Increasing the bandwidth to 1 gigabit does not only allow us to decrease the EtherCAT slaves latencies
but also to decrease the network cycle time. As seen in Equation (2.2), the cycle time depends on

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 35 of 42

Table 6.3: Ethercat Slave latency for an implementation assuming 4 ports

Product PHYs latency (ns) Forwarding latency (ns) Processing latency (ns) EtherCAT slave latency (ns)

Gigabit implemen-
tation

1128 732 274 2134

Beckhoff ET1100 1280 795 305 2380
Beckhoff IP core 1280 945 355 2580

both the individual latencies of the components forming the network, and on the transmission time
needed to send the whole frame through the network. The formula to obtain this transmission time is
shown in Equation (2.4), where it can be seen that the bandwidth plays an important role in the cycle
time. It can be calculated that the time needed to send a frame through a gigabit network is of 8ns per
byte. For the case of the Beckhoff products, as it works in a network of 100 Mbps, the time needed to5
send a frame throught the network would be of 80ns per byte. Table 6.4 shows a comparison of the
network cycle times between our gigabit implementation and the Beckhoff products when the amount
of data bytes transferred is 1 and Table 6.5 shows this same comparison when the number of data
bytes transferred is 1000. It is assumed that the master’s PHY uses also a Marvell 88E1111, and that
the cable length is equal for all tests. Hence, the cable delay will not be considered in the analysis. It10
is also assumed 4 open ports per slave.

Table 6.4: Cycle time of an EtherCAT network where 1 data byte is transferred

Number of slaves Gigabit implementation (ns) Beckhoff ET1100 (ns) Beckhoff IP core (ns)

1 2470 5008 5208
50 107036 121628 131628
100 213736 240628 260628
1000 2134336 2382628 2582628

Table 6.5: Cycle time of an EtherCAT network where 1000 data bytes are transferred

Number of slaves Gigabit implementation (ns) Beckhoff ET1100 (ns) Beckhoff IP core (ns)

1 10470 85008 85208
50 115036 201628 211628
100 221736 320628 340628
1000 2142336 2462628 2662628

As it can be seen, varying the number of slaves in the EtherCAT network proportionally increases
the cycle time of every test. To have a better sight of the impact of the gigabit implementation, these
values are represented in the graphs in Figure 6.3 and Figure 6.4.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 36 of 42

Figure 6.3: Cycle time of an EtherCAT network where 1 data byte is transferred

Figure 6.4: Cycle time of an EtherCAT network where 1000 data bytes are transferred

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 37 of 42

7. Conclusions and future enhancements
The project consisted on designing, developing, analyzing and documenting an EtherCAT Slave
Controller with gigabit communication support. As seen in the results, PHYs latencies improved in
12% due to the faster processing of the packet. The forwarding latency improved in 8% with respect
to Beckhoff products. This might be due to a bottleneck in the MAC, which is discussed later in this5
chapter. The last latency measured was the processing latency, which had an impact of 11% of
improvement against the best Beckhoff product. This implementation proved to be of a higher level
than those in the market as the network cycle time was discovered to have a big improvement. The
impact becomes more evident when the number of data bytes transferred through the network or
when the number of slaves in the network is considerable high.10

The project was developed in accordance to all Prodrive Technologies requirements, starting frrom
an Engineer Design Documentation, which includes the architecture and designs of the project. It
continued to the implementation phase, were the models described during the EDD were programmed
and built into the FPGA. The last step consisted on qualifying the project, which included all functional
tests and these were documented on a Qualification Results Document.15

The scope of the project was to analyze the advantages of implementing a gigabit EtherCAT net-
work. Still, this project lacks of being a complete implementation. There are many elements and
improvements that can enhance this project and provide better results.

Complete design
The implemented design does not include all the necessary elements that compose a complete20
EtherCAT Slave Controller, like the SII EEPROM for default configuration or the FMMU for logical
addressing. The next step in the design would be to implement these functions as well as distributed
clocks and other elements that can take advantage of the gigabit Ethernet network, such as jumbo
frames and 10/100 Base-T support. The current user application at Prodrive Technologies is yet not
compatible with the implemented design, as it does not currently supports AXI4 communication. As25
the user application is the one that performs the actions requested by the EtherCAT master, it is of
extreme importance to adapt the user application to support it. The implemented design was made in
such a way that no further changes are needed on this interface in order to support communication
with the user application through AXI4-Lite or AXI4-Full.

Custom MAC30

In our gigabit implementation, it can be seen that the module that takes the most time to process
is the MAC. As seen in Chapter 6, even though our MAC works at a rate of 125 MHz while the one
of the Beckhoff products works a rate of 25 MHz, our MAC latency is almost the same as of those
from Beckhoff. This can be due the fact that the MAC implemented in this project was generated
using the Xilinx Core Generator tool, which provides a standard MAC that fits various applications. For35
the forwarding latency (and hence, the processing latency) to decrease, a custom MAC should be
implemented to also process every byte on-the-fly and to have a native RGMII implementation. Doing
this, the forwarding latency can go as low as 76ns while the processing latency would only be 106ns.

10 gigabit communication
Even though 10 gigabit Ethernet is not that common due to its price and complexity, there are40
some networks that already support this bandwidth. Before implementing EtherCAT on this kind of
networks, an analysis of the performance of the implementation of this would be needed to know of
the improvements and capabilities for EtherCAT devices to be connected to it.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 38 of 42

8. References
Bibliography

[1] Ieee standard for a precision clock synchronization protocol for networked measurement and
control systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pages 1–269, July
2008.5

[2] accellera. Open Core Protocol Specification, 3.0 edition, 09 2013.

[3] Altera. Avalon Interface Specifications, 2.0 edition, 12 2015.

[4] ARM. AMBA 4 AXI4-Stream Protocol, 1.0 edition, 05 2010.

[5] ARM. AMBA AXI and ACE Protocol Specification, 2.0 edition, 02 2013.

[6] Beckhoff. ET1100 Hardware Data Sheet, 1.8 edition, 05 2010.10

[7] Beckhoff. EtherCAT Slave Controller Hardware Datasheet Section II, 2.7 edition, 07 2013.

[8] Beckhoff. EtherCAT Slave Controller Hardware Datasheet Section I, 2.2 edition, 07 2014.

[9] Beckhoff. Et1815, et1816 | ethercat ip core for xilinx fpgas. http://www.beckhoff.com/english.
asp?ethercat/et1815_et1816.htm, 06 2015.

[10] Prodrive Technologies B.V. Prodrive technologies. http://www.prodrive-technologies.com,15
June 2015.

[11] Yi-Chin Chu. Serial-GMII Specification. Cisco Systems, 1.7 edition, July 2001.

[12] David Fifield. GMII Timing and Electrical Specification. Sun Microsystems Computer Company,
November 1996.

[13] EtherCAT Technology Group. Ethercat. http://www.ethercat.org, May 2015.20

[14] Hewlett-Packard, Broadcom, Marvell. Reduced Gigabit Media Independent Interface, 2.0 edition,
April 2002.

[15] J. Jasperneite, M. Schumacher, and K. Weber. Limits of increasing the performance of industrial
ethernet protocols. In Emerging Technologies and Factory Automation, 2007. ETFA. IEEE
Conference on, pages 17–24, Sept 2007.25

[16] Marvell. 88E1111 Product Brief, 1 edition, 10 2013.

[17] Institute of Electrical and Electronics Engineers. Ieee standars association - registration author-
ity. https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries,
11 2015.

[18] G. Prytz. A performance analysis of ethercat and profinet irt. In Emerging Technologies and30
Factory Automation, 2008. ETFA 2008. IEEE International Conference on, pages 408–415, Sept
2008.

[19] M. van Kranenburg and F. Overdijk. Engineering Design Document of Prodrive Motion Platform.
Prodrive Technologies B.V., 3 edition, 05 2015.

[20] Xuepei Wu, Lihua Xie, and F. Lim. Ethercat-enabled next generation baggage handling systems.35
In Emerging Technologies Factory Automation (ETFA), 2013 IEEE 18th Conference on, pages
1–6, Sept 2013.

[21] Xilinx. Quad Serial Gigabit Media Independent, 3.3 edition, 11 2015.

[22] Xilinx. Tri-Mode Ethernet MAC, 9.0 edition, 11 2015.

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 39 of 42

http://www.beckhoff.com/english.asp?ethercat/et1815_et1816.htm
http://www.beckhoff.com/english.asp?ethercat/et1815_et1816.htm
http://www.beckhoff.com/english.asp?ethercat/et1815_et1816.htm
http://www.prodrive-technologies.com
http://www.ethercat.org
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries

Appendix A. Tests results

Figure A.1: Test result for 1 data byte transferred

Figure A.2: Test result for 2 data bytes transferred

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 40 of 42

Figure A.3: Test result for 50 data bytes transferred

Figure A.4: Test result for 100 data bytes transferred

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 41 of 42

Figure A.5: Test result for 500 data bytes transferred

Figure A.6: Test result for 1000 data bytes transferred

Implementation of a Low-Latency EtherCAT Slave Controller with Support for Gigabit Networks
22-02-2016 Page 42 of 42

	1 Introduction
	1.1 EtherCAT protocol
	1.2 EtherCAT Slave Controller
	1.3 Structure

	2 Problem statement
	3 Architecture
	3.1 ESC requirements
	3.2 General Overview
	3.3 Clocking

	4 Design
	4.1 Configuration registers
	4.1.1 Registers interface
	4.1.2 Configuration registers

	4.2 ESC memory space
	4.3 MAC
	4.4 Loopback function
	4.5 Protocol checker
	4.6 Datagram processor
	4.7 SyncManager
	4.8 PDI

	5 Functional tests
	5.1 Qualification Environment
	5.1.1 Required hardware tools
	5.1.2 Required software tools

	5.2 Functional qualification
	5.2.1 PHY & MAC
	5.2.2 Loopback function
	5.2.3 Protocol checker
	5.2.4 Datagram processor
	5.2.5 Memory
	5.2.6 PDI
	5.2.7 SyncManager

	6 Results
	6.1 PHY latencies
	6.2 Forwarding latency
	6.3 Processing latency
	6.4 Final results

	7 Conclusions and future enhancements
	8 References
	A Tests results

