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The cover figure shows the distribution of axial velocity in a plane perpendicular to the axis of an air-
plane trailing vortex. Darker colors indicate higher axial velocities. The concentration of lighter colors
corresponds to a remnant of the boundary layer flow over the wing that spirals inwards to the vortex cen-
tre. This nicely illustrates the roll-up of a vortex sheet shed from an airplane wing. The wing is located
horizontally and to the left side of the vortex centre, and its trailing edge is 1.5 chord lengths upstream.



Abstract

Trailing vortices may pose a severe hazard to an aircraft that closely follows another aircraft. This
is especially the case during the landing and take off phases of flight. A detailed knowledge of
trailing vortex breakdown is important to reduce the stress on air traffic control spacing rules.
Many studies are therefore concentrated on the breakdown of a system of two counter-rotating
trailing vortices at large downstream distance. However, to obtain a better understanding of this
process, it is believed that the evolution of single trailing vortex needs to be thoroughly analyzed
first.

In this work, wind tunnel experiments are performed on a single trailing vortex shed from an
airplane wing. We analyzed cases without and with grid-generated turbulence. The 3C-PIV
measurement technique is applied to obtain three-components velocity fields in a plane perpen-
dicular to the vortex axis of symmetry. In contrast to the 2C-PIV measurement technique applied
by Van Jaarsveld (2008), it was now possible to measure the axial velocity as well. Mean distri-
butions of the azimuthal and axial components of the velocity and vorticity, the circulation, and
the kinetic energy of turbulence are determined from an ensemble of 1.000 realizations for each
measurement. Special care is taken to determine the vortex centre position for each realization. A
frame of reference moving with the fluctuating vortex centre is applied to correct for the effects of
vortex wandering. The ensemble of vortex centre positions in the stationary frame of reference is
used to determine a probability density function (PDF) for the radial position of the vortex from
its mean position.

Flow quantities are retrieved in the vortex core region with a higher accuracy and spatial resolu-
tion than Van Jaarsveld (2008). It was therefore possible to capture the roll-up of a trailing vortex
in detail. The axial velocity near the vortex centre shows a jet-like structure at a downstream dis-
tance close to the wing, but transforms into a wake-like structure further downstream. A good
indication is found for the azimuthal and axial velocity being related to each other as suggested
by Batchelor (1964). Radial profiles of the circulation show the necessity for a two-length-scales
vortex model. The inner length scale characterizes the viscous decay of the vortex core, while the
outer length scale characterizes the roll-up of the vortex sheet. The PDFs for the radial position
of the vortex from its mean position are in close agreement with those of a Rayleigh distribution
characterizing the random-walk process.

Following the definition of Crow and Bate (1976) and making use of a typical distance between
two trailing vortices as applied by Van Jaarsveld (2008), the grid-generated turbulence can be
characterized as having a weak turbulence intensity. This means that a trailing vortex pair would
break-up due to the Crow instability and the subsequent linking of vortex lines. It was found that
the influence of weak turbulence is negligible for the decay of a single trailing vortex.
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Chapter 1

Introduction

A trailing vortex is a strongly rotating structure inherent to lift generating bodies. Flying birds,
rotating propellers, and boats sailing against the wind are just a few examples of objects leaving
such vortical structures behind. Most studies on trailing vortices are concentrated on the vortical
structures shed from a lift generating airplane wing. Fascinating manifestations of these kinds
of trailing vortices can be seen across the open sky, in which the vortices may be visible by con-
densation of water vapor inside their cores. The motivation for studies on trailing vortices in
aeronautics is twofold. First, an airplane experiences significant drag associated with the energy
stored in a trailing vortex system. It is of aeronautical interest to reduce such drag to minimize
fuel consumption. Second, trailing vortices can pose a severe hazard to an aircraft that closely fol-
lows an other aircraft. This is especially the case during the landing and take off phases of flight
so that stringent spacing rules are necessary in air traffic control. It is believed that the stress
on air traffic control will only increase with the ever increasing intensity and sizes of airplanes
leaving and approaching airports. Many studies are therefore focused on the understanding and
the control of trailing vortex breakdown.

The formation of trailing vortices behind an airplane wing was first recognized by Lanchester
(1907). This illustrates that trailing vortices were analyzed even shortly after the birth of flight in
1903. Many theoretical and experimental studies have been dedicated to the topic of trailing vor-
tices since then. Numerical simulations of trailing vortices are boosted during the recent decades
of increasing computer power. Most of the theoretical, experimental, and numerical studies are
motivated by spacing rules in air traffic control. Interestingly, Spalart (1998) notes in his review-
ing work on trailing vortices, that the activity of aeronautical trailing vortices research dropped
during the 1980s. The air traffic control rules were viewed as satisfactory and much heavier air-
planes would not enter service. The recent introduction of the Airbus A380 illustrates that this
perspective needed revision, and many studies are focused on aeronautical trailing vortices these
days.

Studies motivated by the increasing stress on air traffic control are mostly related to the break-
down of two oppositely rotating trailing vortices. The understanding of this topic is greatly
contributed by the work of Crow (1970) and Crow and Bate (1976). Crow (1970) considered the
break-up of vortices due to a longwave cooperative instability and the subsequent linking of
the vortex lines. The specific longwave cooperative instability that causes two counter rotating
vortices to break-down is well known as the Crow instability. Crow and Bate (1976) were the
first to derive an asymptotic relation between external turbulence and the lifetime of two oppo-
sitely rotating trailing vortices. They distinguished two flow regimes. For the case with weak and
moderate turbulence intensity, the break-up is caused by the Crow instability and the subsequent
linking of the vortex lines. In the flow regime with strong turbulence intensity, the trailing vor-
tex breaks up due to bodily convection in the turbulent flow field. These break-up mechanisms
are recovered and analyzed in many studies, see Tombach (1973), Sarpkaya (1998), Liu (1992),
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and Van Jaarsveld (2008). The decay of trailing vortices is not limited by the break-up mecha-
nism described by Crow (1970) and Crow and Bate (1976). Viscous decay and cross-diffusion at
the symmetry plane where vorticity of opposite sign cancels, are two other important and well
analyzed decay mechanisms. The decay of two oppositely rotating trailing vortices due to cross-
diffusion is considered in the work of Cantwell and Rott (1988).

Van Jaarsveld (2008) performed wind tunnel experiments on the decay of a single and two oppo-
sitely rotating trailing vortices. Cases with and without grid-generated turbulence were consid-
ered in the experiments on the break-down of a trailing vortex pair, the grid-generated turbulence
was characterized as having a strong intensity. Note that we use the definition of Crow and Bate
(1976) in making a distinction between weak and strong turbulence intensities. The single trail-
ing vortex was observed to consists of a laminar core embedded in region with relatively low
vorticity. Van Jaarsveld (2008) found that the radius of the vortex core decays like that of a Lamb-
Oseen vortex, while the radius of the outer region stays approximately constant. This behaviour
was found to be independent of the external turbulence, which is in contrast to the decay of a
vortex pair that strongly depends on the external turbulence. Van Jaarsveld (2008) found that
the influence of external turbulence on the decay of two oppositely rotating trailing vortices is
twofold. First, the turbulence increases the cross-diffusion of vorticity, and second, it triggers the
Crow instability and the subsequent linking of vortex lines. These two decay mechanisms were
found to occur at the same time, resulting in a complex break-up process.

This work can be seen as a continuation of the work of Van Jaarsveld (2008). We analyze the
evolution of a single trailing vortex without and with grid-generated turbulence. By applying
weak instead of strong external turbulence, it is believed that we will contribute to an enhanced
understanding of the observations made by Van Jaarsveld (2008). It is illustrated by Devenport
et al. (1996) that the flow field of a trailing vortex, even at thirty chord lengths downstream, is
greatly influenced by its formation. Therefore, we also analyse the evolution of the trailing vortex
from a downstream distance closer to the wing than Van Jaarsveld (2008). It is assumed that this
will give more insight in the distinct regions of a trailing vortex as discussed by Van Jaarsveld
(2008).

Wind tunnel experiments are performed on a single trailing vortex with and without grid-generated
turbulence. The trailing vortex is shed from an airplane wing with a rectangular circulation dis-
tribution. Three-components particle image velocimetry (3C-PIV) is applied at four downstream
distances. For the case without grid-generated turbulence, a fifth measurement location at a
larger downstream distance is considered as well. In contrast to the 2C-PIV measurement tech-
nique applied by Van Jaarsveld (2008), it is now possible to measure the axial velocity as well.
Every measurement consists of an ensemble with 1.000 realizations. Each realization is a three-
components flow field defined in a plane perpendicular to the vortex axis. The mean quantities
of the ensemble provide insight in the evolution of the azimuthal and axial velocity and vor-
ticity components, the circulation, and the kinetic energy of turbulence. Special care is taken
to determine the trailing vortex centre position for each realization. A statistical analysis of the
fluctuating vortex centre position, also known as ’vortex wandering’, is therefore found to be
possible.

This report is organized as follows. A theoretical introduction of trailing vortices is provided
in Chapter 2. The experimental procedure of the trailing vortex measurements and the the post-
processing of the measurement data is discussed in Chapter 3 and Chapter 4, respectively. The
results of the wind tunnel experiments are presented in Chapter 5. Chapter 6 will end this report
with providing the main conclusions together with a brief discussion.
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Chapter 2

Theory

There are many theoretical studies concentrated on trailing vortices, see for example Saffman
(1992) and Green (1995). Saffman (1992) applies an analytical approach to viscous and laminair
vortices. This work is therefore of special interest when the trailing vortex is analyzed at large
downstream distances. The formation of a trailing vortex is more extensively discussed by Green
(1995). A detailed study on both the azimuthal and axial velocity in a trailing vortex is provided
by Batchelor (1964), Moore and Saffman (1973), and Saffman (1992).

We will consider the governing equations relevant to trailing vortices in Section 2.1. Section
2.2 considers the formation of a trailing vortex from the flow over a lift generating wing. As
will be discussed in Section 2.3, a trailing vortex contains both strong azimuthal and axial cur-
rents near the vortex centre. We will provide the relationship for the evolution of the axial and
azimuthal velocity components as derived by Batchelor (1964). We will end this chapter with a
brief discussion of representative trailing vortex models.

2.1 Governing equations

In our wind tunnel experiments, the flow is in good approximation incompressible. For an in-
compressible flow, the divergence theorem holds

~∇ · ~U = 0, (2.1)

with the velocity denoted by ~U . The equation of motion for fluid flows was derived by Claude-
Louis Navier and George Gabriel Stokes. The equation for incompressible flows is well-known
as the Navier-Stokes equation:

∂~U

∂t
+ (~U · ~∇)~U = −1

ρ
~∇P + ν ~∇2~U +

1
ρ

~F . (2.2)

Here, the density of the fluid is denoted by ρ and the kinematic viscosity by ν. The terms on the
left hand side of Eq. 2.2 form the inertia terms. The partial time derivative gives the local rate of
change of ~U . The second inertia term is the advective derivative. The first term on the right hand
side represents the pressure gradient force, and the second term denotes the viscous or friction
force. Contributions other than the pressure and viscous terms are included in ~F . From this point
on, we will consider ~F = 0. The vorticity is given by:

~ω = ~∇× ~U. (2.3)

Because the divergence of a curl vanishes, the vorticity for any flow must satisfy:

~∇ · ~ω = 0. (2.4)
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By taking the the curl of Eq. 2.2, one obtains the equation for the rate of change of vorticity

~∇×
{∂~U

∂t
+ (~U · ~∇)~U = −1

ρ
~∇P + ν ~∇2~U

}
, (2.5)

which can be simplified to

∂~ω

∂t
+ (~U · ~∇)~ω = (~ω · ~∇)~U + ν ~∇2~ω, (2.6)

for the case of a barotropic flow. The two terms on the left hand side of Eq. 2.6 represent the
instationary and stationary advection terms, respectively. The rate of change of vorticity due to
stretching and tilting of vortex lines is represented by the first term on the right hand side of
Eq. 2.6. The second term on the right hand side represents the diffusion of vorticity.

Integrating Eq. 2.4 over a volume and applying Gauss’ theorem results in
∫

V
~∇ · ~ωdV =

∮
~ω · ~ndA = C = 0, (2.7)

where ~n is the normal to the surface A which encloses the volume V . Basically, Eq. 2.7 states
that the total flux of vorticity through a surface A enclosing volume V is zero in absence of any
sources or sinks (C = 0).

The flux through a surface A′ bounded by contour C′ is called the circulation and is defined
by

Γ =
∫ ∫

A′
~ω · ~n′dA′ =

∮

C′
~U · d~l′, (2.8)

where ~n′ is the normal vector to surface A′, and d~l′ an element of contour C′. Kelvin’s theorem
states that the circulation around a closed curve moving with the fluid remains constant with
time for an inviscid, barotropic flow, with conservative forces only. Since we assumed incom-
pressibility and did not include any body forces, Kelvin’s theorem

∂Γ
∂t

+ (~U · ~∇)Γ = 0, (2.9)

can be applied when viscous effects are neglected. Trailing vortices are often assumed to be slen-
der, which means that the axial component of the vorticity is much larger than the perpendicular
components.

2.2 Flow over a wing: the formation of a trailing vortex

The lift generated per unit span in an irrotational flow over a two-dimensional body of arbitrary
cross section is given by the Kutta-Zhukhovsky lift theorem:

fL = ρΓUx. (2.10)

Here, the circulation generated by the lifting body is denoted by Γ. The lift force per unit span
fL is directed perpendicularly to the main stream velocity Ux. According to Eq. 2.10, the flow
over a lift generating wing needs to create circulation. This is found to be possible when the
trailing edge of a wing is sufficiently sharp such that the Kutta condition holds, see Kuethe and
Schetzer (1959). At the initial moment that the circulation is created, a so-called starting vortex is
created parallel to the wing. For an illustrative discussion of the creation of circulation by a lift
generating body, the reader is referred to Kundu et al. (2008). The starting vortex is inherent to
the circulation, i.e. lift, generated by the wing since Eq. 2.7 needs to be satisfied. Note that the
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Figure 2.1: Schematic overview of the formation of a trailing vortex shed from a wing with a rectangular
circulation distribution (top), and that with a more elliptical circulation distribution (bottom). In case of a
wing with a more elliptical circulation distribution, a vortex sheet is formed out of trailing vortex filaments
that collectively roll-up into a trailing vortex. The roll-up process stands in contrast with the formation
of a trailing vortex shed from a wing with a rectangular circulation distribution. In this case, the trailing
vortex has a well defined position and does not form out of a rolled up vortex sheet. The vortex filament
emerging from surface A2 is equal to the difference in vorticity flux through surface A1 and A3 such that
the total flux through V is zero.

wing generates circulation as long as the lift is nonzero. One can therefore think of the wing as a
vortex along its span and with a circulation equal to that generated by the wing. This hypothet-
ical vortex filament replacing the wing is called the bound vortex, with bound signifying that it
moves with the wing.

With the wing span parallel to the y-axis, and the free-stream velocity directed in the x-direction,
the circulation generated by the wing at each position along the wing span is given by Γ(y). For
most wings, the strength of the circulation is maximum at the center of the wing and zero at the
wing tips. In combination with Eq. 2.7, this means that a vortex filament emerges from one of the
sides of a box enclosing the wing, see Figure 2.1. The strength ς(y) of the vortex filament emerged
from a change in circulation dΓ over a length dy is now given by:

ς(y) = −dΓ
dy

dy. (2.11)

The Helmholtz vortex theorems state that vortex tubes cannot end within the fluid. Vortex tubes
must either end at a solid boundary or form a closed loop. The bound vortex therefore bends
downstream and forms a trailing vortex which eventually connects to the the starting vortex.
One can think of the vortices with strength given by Eq. 2.11 as filaments from the bound vortex,
which collectively roll-up into the trailing vortex.

In this work, a specially designed twisted wing is applied. This wing is characterized by a rectan-
gular lift distribution. This means that the distribution of circulation is constant along the wing

Γ(y) = Γw 0 < y 5 s (2.12)
= 0 y > s, (2.13)

in which the wing is located between 0 < y 5 s and y > 0. By applying 2.11, it becomes clear
that the trailing vortex is located at y = s, see also Figure 2.1. In practice, it comes down to the
trailing vortex being highly concentrated even close to the wing. For a detail description of the
twisted wing design, the reader is referred to Van Jaarsveld (2008).
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2.3 Flow field of a trailing vortex

We discussed the origin of a trailing vortex in Section 2.2. Here, it was put forward that a trailing
vortex is inevitable to a lift generating body. The flow field of a trailing vortex will now be con-
sidered. This flow field is complex nearby the wing due to the roll-up of the vortex sheet. Further
downstream, the trailing vortex becomes in good approximation axisymmetric and simplified
models can therefore be applied to represent the vortex. We will first discuss the axial flow in a
trailing vortex. We will end this section with considering some representative models of a trailing
vortex.

Many experimental studies on trailing vortices report a strong axial current near the axis of sym-
metry of a trailing vortex, see Green (1991) and Chow (1997). In the windtunnel experiments
of Chow (1997), such an axial current was observed with a velocity 1.77 times that of the main
stream velocity. In this section, we will consider the physical principle behind the axial current
in a trailing vortex. For this, we closely follow the work of Batchelor (1964).

In the following, we apply a cylindrical coordinate system r, θ, x. The velocity field of an ax-
isymmetric trailing vortex is given by ~U = (Ur, Uθ, Ux). For the sake of the argument, we assume
that:

Ur ¿ Uθ, (2.14)
∂

∂x
¿ ∂

∂r
. (2.15)

We will validate this boundary layer type approximation in Section 4.1. The radial, azimuthal,
and axial components of the equation of motion for a stationary flow are now given by

U2
θ

r
=

1
ρ

∂p

∂r
, (2.16)

Ux
∂Uω

∂x
= ν

(∇2Uω − Uω

r2

)
, (2.17)

Ux
∂Ux

∂x
= −1

ρ

∂p

∂x
+ ν∇2Ux, (2.18)

respectively. The radial component shows a balance between the centrifugal force and the pres-
sure force. The pressure can be obtained at any point in the trailing vortex by making use of
the Bernoulli function. With the pressure p∞ and main stream velocity ~U = (0, 0, Ux) at a large
distance upstream from the wing, the Bernoulli equation may be written as

p

ρ
+

1
2
(U2

x + U2
θ ) +4H =

p∞
ρ

+
1
2
U

2

x, (2.19)

in which the total head loss due to viscous effects is included in 4H = 0. One can combine
Eq. 2.16 and 2.19 in order to obtain a function for the axial velocity at any radial position from
the trailing vortex axis of symmetry

U2
x(r) = U

2

x − U2
θ (r) + 2

∫ ∞

r

U2
θ

r′
dr′ − 24H, (2.20)

which can be rewritten with Γ(r) = 2πUθ(r)r as

U2
x(r) = U

2

x +
1
2π

∫ ∞

r

1
r′2

∂Γ(r′)
∂r′

dr′ − 24H. (2.21)

When viscous effects are neglected, Eq. 2.21 reduces to:

U2
x(r) = U

2

x +
1
2π

∫ ∞

r

1
r′2

∂Γ(r′)
∂r′

dr′. (2.22)
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The vorticity of a trailing vortex is usually single signed, which means that the radial profile of
circulation increases monotonically. The second term on the right hand side of Eq. 2.22 therefore
represents the increase in U2

x . The increase in axial velocity can be thought of as the Bernoulli
theorem accompanying for the pressure drop due to the centrifugal force.

The trailing vortex has an axial velocity surplus, often called a jet, near the axis of symmetry.
The radial profile of axial velocity is here given by Eq. 2.22. In deriving this equation, we applied
an inviscid approach which is valid as long as νt/r1 ¿ 1, with r1 approximately the radius of
maximum azimuthal velocity and t = 4x/Ux. The downstream distance from the trailing edge
to the wing is here denoted by 4x. The inviscid approach is therefore valid for streamwise dis-
tances close to the wing where the trailing vortex has not yet rolled up completely. Batchelor
(1964) proved that viscosity becomes important for large downstream distances and showed that
the continual slowing-down of the azimuthal motion by viscosity leads to a positive axial pres-
sure gradient and consequently to continual loss of axial momentum. The relation for the viscous
decay of the maximum azimuthal velocity with streamwise distance can be derived from Eq. 2.2
and is given by:

Uθ,max(4x) ∼ 4x−1/2. (2.23)

An asymptotic analysis revealed that the maximum axial velocity is related to the downstream
distance 4x from the trailing edge of the wing as:

Ux,max(4x) ∼ 4x−1 log(4x). (2.24)

Batchelor (1964) showed that the decaying swirling motion increases the pressure in the vortex
core and consequently decreases the axial velocity according to log(4x), while diffuse spreading
of the vortex continually diminishes the axial velocity according to (4x)−1. The combination of
these effects result in Eq. 2.24. According to this relation, the jet can evolve into a wake with an
axial velocity defect near the vortex centre. For an extensive discussion on the axial velocity in a
trailing vortex, the reader is referred to Saffman (1992).
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Figure 2.2: Radial profiles of the azimuthal velocity (left) and the circulation (right) for the Lamb-Oseen
model with Γvor = 1, R = 1 (dark lines) and the two-length-scales VM2 with Γvor = 1, r1 = 1, r2 = 5,
β = 0.8 (dark gray) and β = 0.5 (gray). The VM1 is applied for the case with β̂ = 0.8 (dotted lines).

2.4 Trailing vortex models

The topic of trailing vortices is the focus for many theoretical, numerical, and experimental stud-
ies. Most of these studies apply simplified models to represent a trailing vortex. In this section,
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we will discuss two common trailing vortex models. The most simple axisymmetric viscous vor-
tex model is provided by the Lamb-Oseen vortex, see Lamb (1932). It arises as an exact solution
of the Navier-Stokes equations for the initial condition

ωx(r, 0) = Γvorδr=0, (2.25)

with Γvor the circulation of the vortex, and the delta-function δr=0 being one for r = 0 and zero
otherwise. The exact solution is given by

Uθ(r) =
Γvor

2πr

(
1− exp(−r2/R2)

)
, (2.26)

where the vortex core radius is denoted by R and evolves under viscous decay according to:

R(t) =
√

4νt. (2.27)

The circulation profile is given by:

Γ(r) = Γvor(1− exp(−r2/R2)). (2.28)

The Lamb-Oseen vortex model is based on the viscous decay of a line vortex, in which the vor-
ticity has initially a delta-function singularity. This is in contrast with the roll-up of a finite sized
vortex sheet into a trailing vortex, see Section 2.2. It is believed that due to the roll-up process,
a significant amount of vorticity is concentrated in a region around the vortex core. Here, the
vortex core is that region in which the flow field can be approximated by a solid-body rotation.
More elaborate vortex models are necessary for a more correct description of the region around
the vortex core. We will consider the two-length-scales vortex model as first discussed by Jacquin
et al. (2001). This vortex model is based on three radial regimes, defined as:

Uθ(r) = Ω̂vorr 0 < r 5 r̂1, (2.29)

= Ωvor r̂1

( r

r̂1

)−β̂

r̂1 < r 5 r̂2, (2.30)

=
ˆΓvor

2πr
r > r̂2. (2.31)

In analogy with Fabre and Jacquin (2004), the vortex model described by Eqs. 2.29-2.31 is referred
to as VM1. The more realistic, smooth version of VM1 is referred to as VM2 and is given by

Uθ(r) =
Ωvorr

[1 + (r/r1)4](1+β)/4[1 + (r/r2)4](1−β)/4
, (2.32)

and the corresponding circulation profile is specified by

Γ(r) = Γvor
(r2/r1)β−1 · (r/r1)2

[1 + (r/r1)4]
1+β
4 · [1 + (r/r1)4]

1−β
4

, (2.33)

in which r1, r2, β correspond to the VM1 parameters r̂1 and r̂2, respectively. The radius r1 de-
fines that region in which the flow field can be approximated by solid-body rotation with angular
frequency Ωvor. It has to be remarked, that r1 is approximately equal to the radius of maximum
azimuthal velocity. The radius r2 > r1 defines the outer region of the vortex in which 97% of the
total circulation Γvor = 2πΩvorr

2
1(r2/r1)1−β is contained. The angular velocity decays according

to Uθ(r) ∼ r−β in the region r1 / r / r2, and according to Uθ(r) ∼ r−1 for r ' r2. The values of
r2 and β > 0 depend on the wing geometry. From now on, the inner vortex region is defined by
0 < r < r1 and the outer vortex region by r1 < r < r2.

Figure 2.2 shows the difference between the Lamb-Oseen vortex model given by Eqs. 2.26-2.28
and the two-length-scales vortex model described by Eqs. 2.29-2.33.
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Chapter 3

Experimental Procedure

Trailing vortices are analyzed in many theoretical, numerical, and experimental studies. The
experimental studies on a single and a pair of trailing vortices can be divided in experiments per-
formed in a wind tunnel (see Beninati and Marshall (2005), Chow (1997), Devenport et al. (1996)),
in a towing tank (Iversen (1976), Sarpkaya and Daly (1987), Liu (1992)), and during flight tests
(see Tombach (1973), Sarpkaya (1998)). Wind tunnel studies can be performed with the help of
two- (three-)components particle image velocimetry 2C-PIV (3C-SPIV), (multiple) hotwires, and
(multiple) pitot tubes. The main difference between these measurement techniques is the spatial
and temporal resolution of the measurement. The temporal resolution of hotwire and pitot tube
measurements is large and it is often not a problem to cover the smallest time scales present in
a (turbulent) flow. On the other hand, the spatial resolution of an instantaneous measurement
with multiple hotwires/pitot tubes is limited due to probe interference with the flow. In other
words, the spatial resolution is limited by the amount of probes that can be installed without
significantly influencing the flow field. The PIV measurement technique makes use of passive
tracer particles so that the interference with the flow is negligible. One can provide the flow with
a high density of passive particles so that the spatial resolution of PIV is, among other reasons,
relatively large. The temporal resolution is limited due to current technological restrictions. The
main advantage of PIV above probe measurements is that snapshots of the entire domain of in-
terest can be obtained. On the other hand, hotwire measurements are much more accurate than
PIV measurements.

Vortex wandering is a problem encountered in many fixed probe studies on trailing vortices.
The coherent low-frequency motion of a trailing vortex can lead to large errors in mean velocity
and turbulence measurements made with fixed probes. Devenport et al. (1996) have extensively
analyzed and quantified the effects of vortex wandering. They were able to reverse its effects on
mean-velocity measurements and spectral decomposition was used to separate its velocity fluc-
tuations from those produced by turbulence. In contrast to fixed-probe measurements, vortex
wandering is not that an issue for PIV measurements. The in-plane vortex centre can be defined
for every instantaneously obtained flow field, and it is therefore easy to correct for vortex wan-
dering.

For an extensive discussion on the hotwire measurement technique, the reader is referred to
Tropea et al. (2007), and the issue of probe interference is discussed by Devenport et al. (1996).
This work makes use of the 3C-PIV measurement technique. We will briefly discuss the principle
of 3C-PIV in Section 3.1. The method of calibration and experimental parameters are found to be
important for the quality of the 3C-PIV measurement results. This will be discussed in Sections
3.1.1 and 3.1.2. We will end this chapter with briefly discussing the experimental setup in Section
3.2.
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Figure 3.1: Schematic overview of the 3C-PIV experimental setup. The CCD camera A (B) is positioned
such that it makes an angle ϕcA(ϕcB) with the (x, y)-plane, and an angle ψcA(ψcB) with the (x, z)-plane.
By analyzing the recordings of each CCD camera separately, the in-plane velocities UyA, UzA, UyB , and
UzB are obtained. General geometrical imaging formulas given by Eqs. 3.1-3.4 are applied to obtain the
velocity components Ux, Uy , and Uz .

3.1 Three-Components Particle Image Velocimetry: 3C-PIV

Three-components particle image velocimetry (3C-PIV) is based on determining the displace-
ment of passive tracer particles in three directions. The fluid mechanical properties of the tracer
particles are such that they follow the flow accurately and in a passive manner. For each in-
dividual 3C-PIV measurement, the tracer particles are illuminated twice by a laser sheet and
at each illumination recorded by two cameras. Subsequently, a local displacement in the laser
sheet plane is determined by analyzing the two recordings of each CCD camera separately. Note
that the displacements are perceived differently for each CCD camera since they are observing
the laser sheet at different angles. The displacements are determined by applying the method
of autocorrelation, and a measure for the quality of autocorrelation is given by the correlation
coefficient. The local displacements can now be divided by the time delay between two subse-
quent illumination pulses to obtain the local velocity. We will proceed with briefly discussing the
procedure with which the three-dimensional velocity is determined from the in-plane velocities
obtained by analyzing the recordings of each CCD camera separately. After that, we will describe
the most important experimental parameters that determine the quality of the 3C-PIV result.

The CCD camera A (B) is positioned such that it makes an angle ϕcA(ϕcB) with the (x, y)-plane,
and an angle ψcA(ψcB) with the (x, z)-plane, see Figure 3.1. By analyzing the recordings of each
CCD camera separately, the in-plane velocities UyA, UzA, UyB , and UzB are obtained. The actual
velocity of the tracer particle is denoted by ~U and consists of components Ux, Uy , and Uz . These
velocities can now be obtained from the four measured velocities and angle at which the CCD
camera observe the laser sheet

Ux =
UyA − UyB

tan(ϕcA) + tan(ϕcB)
(3.1)

=
UzA − UzB

tan(ψcA) + tan(ψcB)
, (3.2)

Uy =
UyA tan(ϕcB) + UyB tan(ϕcA)

tan(ϕcA) + tan(ϕcB)
(3.3)

Uz =
UzA tan(ψcB) + UxB tan(ψcA)

tan(ψcA) + tan(ψcB)
, (3.4)

which are general geometrical imaging formulas. The system of equations 3.1-3.4 is overdeter-
mined and can be solved with a least-squares method. The residual of this least-squares fit can be
used as a measure of quality for the three-component measurement result. A high quality result
is obtained when the residual is between 0.1 and 0.5 pixels, and a low quality result is obtained
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when the residual value is larger than 0.5 pixels. With this, we follow the definition of Raffel et al.
(2007). High spatial variations in the flow field and misalignment of the CCD camera views are
the most important contributions to significant residuals. Note that the correlation coefficient is
indirectly related to the residual value, and that both give a measure for the quality of the 3C-PIV
result. However, we use the residual value since it is a more direct measure for the quality of the
obtained three-dimensional velocity field. The method of calibration and the setting of experi-
mental parameters are important for the quality of the result. We will briefly discuss the method
of calibration and the most important 3C-PIV and experimental parameters.

3.1.1 Method of calibration

In order to reconstruct the local displacement vector, the viewing direction and magnification
factor for each CCD camera must be known at each point in the respective PIV recording. There-
fore, a sophisticated method of calibration is applied. For each camera, recordings are made of
a calibration target placed parallel to the laser sheet at five different x-positions. The calibration
target consists of a mesh of dots which are equally spaced with a known distance. This distance
is set such that approximately 152 dots are contained in the CCD camera view. The x-positions
of the calibration target are set to -2, -1, 0, 1, and 2 mm with respect to the estimated x-position
of the laser sheet. The x-position of the laser sheet cannot be determined accurately since the
sheet thickness varies with the position in the laser sheet. The relative x-locations of the calibra-
tion target are determined by a micrometer and with an accuracy of 0.005 mm. The variations
in x-positions are large enough to extract the relative (y, z)-position of the cameras accurately,
while small enough for the calibration target to be still in focus at every x-position. Digital image
processing techniques are applied to acquire the (yc, zc) coordinates of each dot in the calibration
target as perceived by each camera. The (yc, zc) coordinates of the dots can be transformed to
(y, z) with the help of a second-order polynomial fit

x = a0xc + a1yc + a2x
2
c + a3xcyc + a4y

2
c , (3.5)

y = b0xc + b1yc + b2x
2
c + b3xcyc + b4y

2
c , (3.6)

in which the twelve unknown projection parameters are determined by a least-squares fit of at
least six (yc, zc) coordinates. The mapping procedure as based on these projection equations is
found to be very robust since it accounts for lens distortions and other image nonlinearities. The
viewing direction and the magnification of each CCD camera can now be determined from the
mapping equation obtained at each of the five x-positions.

The described calibration method provides the essential information needed for the reconstruc-
tion of a three-dimensional displacement vector from two separate two-dimensional displace-
ment vectors as obtained at the same instant but from two CCD camera recordings. However,
this reconstruction approach assumes that the calibration target is perfectly aligned with the cen-
ter of the laser sheet. As already mentioned above, this is very difficult to achieve since the
x-position of the laser sheet cannot be determined accurately. It was found that a slight out-
of-plane position and/or minor rotation of the calibration target results in high values of the
residual, i.e. the quality of the result is low. The problem of misalignment is solved with the
help of a disparity correction. The disparity correction as applied in this work, is based on the
actual PIV recordings from both cameras at the same instant. These images are dewarped ac-
cording to their projection equations and a cross-correlation is performed between the views. In
this way, a displacement field is obtained which represents the disparity of the views with re-
spect to each other. The information from the displacement field can now be used to reposition
the laser sheet. With the laser sheet being repositioned, the displacement field is still nonzero
due to minor rotation of the calibration target. The displacement field is now used to modify the
projection parameters. For this, the displacement field is least-squares fitted with a fourth order
polynomial. The procedure described above is called the disparity correction and is performed
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for every pair of 3C-PIV recordings. The quality of the three-dimensional velocity fieldwas found
to be significantly higher when a disparity correction was applied.
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Figure 3.2: The inner ( ) and outer region ( ) measurement results for radial profile of circu-
lation. The inner region measurements are performed with a time delay of 25 and 75 µs, respectively. In
contrast to Van Jaarsveld (2008), it becomes clear that the inner and outer region measurement results
nicely overlap. The circulation is made dimensionless with a typical value for the total circulation of the
trailing vortex.

3.1.2 3C-PIV processing and experimental parameters

For evaluation of the tracer particles displacement, the digital PIV recording is divided in small
subareas called interrogation areas. It is hereby assumed that all particles within one interro-
gation area move homogeneously between the two illuminations. The size of the interrogation
areas during evaluation must therefore be small enough to resolve the velocity gradients, but
large enough to contain a sufficient amount of tracer particles. The interrogation areas are set to
16 by 16 pixels to obtain sufficient quality results even at small distances from the vortex centre
where the velocity gradients are high. Low quality results are obtained for r/r1,0 / 1/8 with r1,0

a typical value for r1. This region of low quality results approximately corresponds to the region
in which interrogation areas closest to the vortex centre are located.

The time delay between two illumination pulses and the laser sheet thickness are important pa-
rameter and need to be set according to the characteristics of the flow. The time delay must be
long enough to obtain a sufficient large displacement of the tracer particles, but short enough to
avoid particles leaving the laser sheet between subsequent illuminations. For the same reason,
the laser sheet has to be sufficiently thick but not too thick to avoid loss of the required intensity
of particle illumination.

3C-PIV measurements are performed that capture both the inner and outer region of the trailing,
and there are 3C-PIV measurements performed that capture the inner vortex region only. The
experimental parameters are set for each measurement region according to the corresponding
flow characteristics. We will continue with discussing the inner and outer region measurements
and the most important experimental parameters.
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Figure 3.4: The streamwise profile of the turbulence dissipation rate for the wind tunnel flow with grid-
generated turbulence. The streamwise location of the wing is xa = 3.45 m, see Table 3.1.
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Figure 3.5: The longitudinal energy spectrum for the wind tunnel flow without ( ) and with ( )
grid-generated turbulence. The temporal detaching of the boundary layer in the diffuser is believed to
responsible for the peak around f = 4 s−1. For a more detailed discussion of the energy spectrum, the
reader is referred to Appendix C.

3.1.3 Inner and outer region measurements

Measurements have been performed for the inner and outer region of the trailing vortex. Both
kind of measurements have the vortex centre as midpoint. The sides of the inner region measure-
ments are about 3.5 ·10−2 m, and that of the outer region measurements 14.0 ·10−2 m. In this way,
the region of the trailing vortex r/r1,0 < 3 is covered with high quality by the inner region mea-
surements, while 3 < r/r1,0 < 12 is covered with high quality by the outer region measurements.
In other words, the inner and outer region measurements cover the region around the vortex with
a radius approximately three and twelve times that of maximum azimuthal velocity, respectively.
The velocities and velocity gradients are larger in the inner region than in the outer region. This
means that the time delay between two illumination pulses and the laser sheet thickness needs
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(b) pressure drop over contraction
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(c) main stream velocity
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(d) pressure drop over contraction

Figure 3.6: The main stream velocity Ux(t)/Ux (left) and the pressure drop over the contraction
4pcont(t)/4pcont (right) are shown for a measurement of 600 s for the case without (top, denoted by
M000) and with grid-generated turbulence (bottom, denoted by M254). The temporal detaching of the
boundary layer in the diffuser is believed to occur at a frequency around f = 4 s−1. It can be seen that
sudden changes of 1-2% in the main stream velocity take place and it is believed that these sudden changes
are related to unsteady the flow field in the diffuser. The sudden changes in the main stream velocity last
about 10 s, and they occur more frequently in the case without than with grid-generated turbulence.

to be set differently. It was found more practical to adapt the time delay while leaving the laser
sheet thickness at approximately 3 mm. The time delay is set to 25 and 75 µs for the inner and
outer region measurements, respectively. The measurement results of the inner region and outer
region are validated with those obtained with a time delay of 75 and 100 µs, respectively. The
overlap between the inner and outer region measurement is shown in Figure 3.2.

The tracer particles have a diameter of approximately 4µm, see Raffel et al. (2007), which is both
in the inner and outer region measurements smaller than covered by one pixel. This means
that the exact position, and therefore the displacements, of tracer particles cannot be determined
exactly. As a result, the displacements can be biased toward integral pixel values. This effect is
called peak locking, and is discussed by Van Jaarsveld (2008) and Raffel et al. (2007). It was found
by Van Jaarsveld (2008) that the effect of peak locking reduces when the seeding density of tracer
particles is sufficiently high. With this in mind, the seeding density is controlled by visual inspec-
tion. The tracer particles are illuminated by a laser sheet produced by a double pulses Nd:YAG
laser. Every pulse is approximately 2 ns which is sufficiently short to avoid streaks. The flow is
monitored with an externally triggered 10-bit CCD camera. The CCD has a resolution of 1600 by
1200 pixels and may store image pairs with a frequency of 15 Hz. Sophisticated post-processing
software is applied to handle the great amount of data. Both cameras are equipped with a 105
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mm and 28 mm lens for the inner and outer region measurements, respectively. The cameras are
mounted according to the Scheimpflug condition so that the field of depth is sufficiently large.

Table 3.1: The wing locations xa and the measurement locations 4x. Here, xa is measured from the
entrance of the wind tunnel test section, and 4x is measured from the trailing edge of the wing. The
values of 4x are made dimensionless with the chord length of the wing c = 7.5 · 10−2 m. The time
t = 4x/Ux is made dimensionless with the advection time scale Γvor,0/(2πr2

1,0) ≈ 4.28 · 10−4 s. Here,
t(Γvor,0/2πr2

1,0) = 0 corresponds to the trailing edge of the wing. We only performed measurements with
t(Γvor,0/2πr2

1,0) = 662.5 for the cases without grid-generated turbulence. It was not possible to consider
the same time for the cases with grid-generated turbulence. The turbulence intensity at the location of
the wing namely changes since the wing needed to be replaced from xa = 3.45 towards 1.45 m to obtain
t(Γvor,0/2πr2

1,0) = 662.5 still within the wind tunnel test section.

xa (m) 4x(m) 4x/c t(Γvor,0/2πr2
1,0)

3.45 0.11 1.5 17.5
3.45 0.56 7.5 87.5
3.45 1.13 15.0 175.5
3.45 2.25 30.0 350.0
1.45 4.25 56.7 662.5

3.2 Experimental setup

An overview of the experimental setup is presented in Figure 3.3. The test section of the TU/e
Goliath Windtunnel is 8.00 m long, and has a cross section of 1.05 by 0.70 m. Measurements
are performed for the case with and without grid-generated turbulence. The turbulence grid is
characterized by a mesh size M ≈ 2.54 · 10−2 and solidity σ = 0.26. This turbulence grid is
especially designed to generate weak turbulence, see Appendix B and Crow and Bate (1976) for
the definition of weak turbulence. It has to be remarked that the definition of weak or strong
turbulence depends on the distance between the two trailing vortices, and that we use typical
values for these as applied by Van Jaarsveld (2008). The wind tunnel flow with and without grid-
generated turbulence is extensively studied in Appendix C. The main stream velocity is denoted
by Ux and is set to 15±0.5 m s−1 for all measurements. The main stream velocity is controlled
by the pressure drop over the contraction 4pcon. In this way, no velocity measurement device
has to be installed inside the test section such that it can interfere with the flow. The streamwise
profile of the turbulence dissipation rate for the wind tunnel flow with grid-generated turbulence
is presented in Figure 3.4. For this case, the Taylor Reynolds number decays from 55±8 to 45±5
at the end of the test section. The wind tunnel flow field was found to be in good approximation
homogeneous and isotropic. However, a fluctuation is caused by a temporal detaching of the
boundary layer in the diffuser. The temporal detaching of the boundary layer in the diffuser is
believed to occur at a frequency around f = 4 s−1, see Figure 3.5. From Figure 3.6, it becomes
clear that the main stream velocity can suddenly change 1-2%. It is believed that these sudden
changes are related to the unsteady flow field in the diffuser. The sudden changes in the main
stream velocity last about 10 s, and they occur more frequently in the case without than with
grid-generated turbulence.

A specially designed wing with a rectangular lift distribution, see Chapter 2, is located at stream-
wise position xa. Here, xa is defined as the streamwise distance from the entrance of the wind
tunnel test section towards the trailing edge of the wing. The wing has a chord length of c =
7.50 · 10−2 m and the angle of attack is set to α = 7.5◦ for every measurement. In this way, the
flight Reynolds number

Ref =
Γw

ν
(3.7)
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is approximately 40.000. The measurement location, that is the streamwise position at which the
laser sheet is located, is denoted by xa +4x. The streamwise distance from the trailing edge of
the wing towards the laser sheet is then given by 4x.

We discussed in Section 2.2 that a vortex sheet rolls up into a trailing vortex. Green (1995) re-
ported that the inner region of the vortex becomes approximately axisymmetric within three
chord lengths from the trailing edge of the wing. To capture the roll-up of the vortex, we set our
first measurement location at 1.5 chord lengths from the trailing edge of the wing. The measure-
ment location farthest away from the wing is defined by practical reasons. The measurement
locations are shown in Table 3.1.

The CCD cameras A and B are placed on top of the test section at positions xcA and xcB . The
positions are set such that the angles ϕcA and ϕcB are close to 45 degrees. In this way, the mea-
surement precision of the out-of-plane component is optimal, see Raffel et al. (2007). The angles
ψcA and ψcB , see Figure 3.1, are very close to zero.

3.3 Nondimensional quantities

The quantities reported in this work are made dimensionless with the radius r1 of the inner re-
gion and the total circulation Γvor of the trailing vortex. The values are given by r1,0 = 5.85 ·10−3

m and Γvor,0 = 0.50 m2 s−1, where the subscript 0 refers to the flow quantity obtained at
t(Γvor,0/2πr2

1,0) = 350.0 behind the wing. The time is made dimensionless with the advection
time scale (2πr2

1,0)/Γvor,0 ≈ 4.28 · 10−4 s.

We will describe the evolution of the trailing vortex in terms of time 4x/Ux instead of distance
4x behind the wing. It is more convenient to make the time dimensionless with parameters of
the trailing vortex, than it is for the distance behind the wing. The measurement locations are
made dimensionless in Table 3.1.

3.4 Acquisition of experimental data set

An ensemble P with 1.000 realizations is acquired for every measurement. The realizations p ∈ P
are obtained with a frequency of 15 Hz, which is approximately equal to 6.5 · 10−3Γvor,0/(2πr2

1,0).
This means that about every 1.5 · 1022πr2

1,0/Γvor,0 a snapshot of the trailing vortex is obtained.
A measurement in which P = 1.000 realizations are obtained, takes then approximately 1.5 ·
1052πr2

1,0/Γvor,0). In this way, low-frequency events such as vortex wandering, and more impor-
tantly, the sudden changes in main stream velocity are believed to be sufficiently resolved. The
typical time of the former is provided by Devenport et al. (1996) and is given byO(·2πr2

1,0/Γvor,0),
and that of the latter results from Figure 3.6 and is given by O(104 · 2πr2

1,0/Γvor,0). We may con-
clude that one measurement of P realizations approaches ergodicity.
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Chapter 4

Postprocessing of Data

We will discuss the postprocessing of the experimentally obtained three-components velocity
field in a plane perpendicular to the trailing vortex axis. Great care is taken to accurately deter-
mine the position of the vortex centre for each pair of PIV-recordings. This will be discussed in
the first section. Subsequently, a distinction is made between the stationary and two kinds of
co-moving frames of reference. In Section 4.2, we will describe the method in which statistical
data is derived from an ensemble of vortex centre positions. The calculation of the azimuthal and
axial velocity and vorticity components, the circulation, and the kinetic energy of turbulence is
elaborated in Section 4.3.

The x-, y-, and z-components of the velocity obtained at the jth
s grid point in the y-direction

and the kth
s grid point in the z-direction is denoted by

Up
s,ζ(js, ks) ζ = x, y, z js = 1..Ns,j , k = 1..Ns,k, (4.1)

in which Ns,j and Ns,k represent the number of grid points in the y- and z- direction, respec-
tively. The ys- and zs- positions corresponding to grid point (js, ks) are denoted by ys(js, ks) and
zs(js, ks). The subscript s refers to quantities as obtained from the stationary frame of reference.
The superscript p refers to the quantities obtained in the pth realization with p = 1..P inside the
ensemble P .

4.1 Stationary and co-moving frame of reference

The position of the vortex centre is determined by means of an interpolated extremum in the
two-dimensional streamfunction. The streamfunction is obtained by integration of the in-plane
velocity components Up

s,y(js, ks) and Up
s,z(js, ks). In doing this, we assume that the in-plane flow

field is incompressible and divergence free:

∂Up
s,y

∂ys
+

∂Up
s,z

∂zs
= 0. (4.2)

This two-dimensional approximation of the flow field is based on similar assumptions as used
in boundary layer theory. In analogy with the boundary layer approximation, we can define
r1,0 as a characteristic length scale of the in-plane variation of Up

s,y(js, ks) and Up
s,z(js, ks), and

(νr2
1,0/Γvor,0)1/2 as a characteristic length scale of the streamwise variation of Up

s,x(js, ks) due to
viscous decay. The assumption of a two-dimensional flow

∂

∂ys
,

∂

∂zs
À ∂

∂xs
(4.3)
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is now validated since:
1

r1,0
À 1

(νr2
1,0/Γvor,0)1/2

. (4.4)

Note that Eq. 4.4 can be rewritten as Revor = Γvor,0/ν À 1, with Revor representing the Reynolds
number based on the total circulation of the trailing vortex.

The numerical integration of the in-plane velocity field is based on the Gauss-Seidel iteration
method. This is a method of successive corrections, in which at every instant all of the latest
known components of the streamfunction are used, see Kreyszig (1978). The starting point of the
numerical integration process is set arbitrarily at a grid point in the region r1,0 around the vortex
centre as defined by visual inspection.

The streamfunction is determined at every grid point (js, ks). The grid-point vortex centre is
now defined as that grid point at which the streamfunction has an extremum. To define a po-
sition of the vortex centre which is not limited to a grid point, we apply an interpolation of the
streamfunction in the region r1,0/2 around the grid-point vortex centre. In this region, the vortex
is approximately in solid-body rotation so that the streamfunction can be fitted with a second-
order polynomial function

Ψp
fit(ys, zs) = c1y

2
s + c2z

2
s + c3yszs + c4ys + c5zs + c6, (4.5)

with c1 − c6 the fitting parameters to be determined. The least-squares fit is based on approxi-
mately 70 grid points in the region r1,0/2 around the grid-point vortex centre. The maximum of
this second-order polynomial fit is defined as the vortex centre (ys,c, zs,c) and deviates on aver-
age r1,0/4 from the grid-point vortex centre. The difference between the grid-point vortex centre
and the vortex centre determined by a least-squares fit of a second-order polynomial through
the streamfunction for r/r1,0 < 0.5 is illustrated in Figure 4.1. Clearly, the vortex centre is not
bounded to a grid point when it is determined by a least-squares fit of the streamfunction.

Now that the vortex centre position is known, a new square grid is applied such that the vor-
tex centre (ys,c, zs,c) corresponds to a grid point. The new grid has the same spatial resolution as
the original grid, but the centre of this grid (y(((Nj − 1)/2), ((Nk − 1)/2)), z(((Nj − 1)/2), ((Nk −
1)/2))) = (0, 0) corresponds to the vortex centre:

(ys,c, zs,c) ⇒ (y((Nj − 1)/2, (Nk − 1)/2), z((Nj − 1)/2, (Nk − 1)/2)) = (0, 0). (4.6)

We define (y, z) as the in-plane coordinates in the frame co-moving with the vortex centre, while
(ys, zs) are those in the stationary frame. Unless stated otherwise, we define the co-moving frame
of reference as that co-moving with the vortex centre and not with the grid-point vortex centre.
The number of grid points in the frame moving the vortex centre, that is Nj(= Nk), is reduced to
an extent determined by the variation in the vortex centre position. The velocity field at the grid
moving with the vortex centre is determined by bilinear interpolation.

With an experimentally obtained set of three-components velocity fields in the (ys, zs)-plane,
it is possible to determine mean flow quantities in the stationary and the co-moving frame of
reference. Information about vortex wandering can be obtained by analyzing the ensemble of
vortex centre positions in the stationary frame. However, the co-moving frame is more suitable
for analyzing the vortex dynamics, because the trailing vortex is believed to be a passive tracer
in an unsteady wind tunnel flow, see Van Jaarsveld (2008). It is therefore common practice in ex-
perimental studies on trailing vortices to correct for vortex wandering, see Van Jaarsveld (2008),
Devenport et al. (1996), Green and Acosta (1991).

We will proceed with discussing the data postprocessing for the analysis of vortex wandering,
vortex dynamics, and the turbulence in the vortex.
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Figure 4.1: The grid-point vortex centre and the vortex centre determined by a least-squares fit of a second-
order polynomial through the streamfunction for r/r1,0 < 0.5 are shown for t(Γvor,0/2πr2

1,0) = 350.0
and the case without grid-generated turbulence.

4.2 Vortex wandering: vortex centre position

The analysis of vortex wandering is based on the spatial distribution of the vortex centre positions
in the stationary frame of reference. The mean vortex centre position is determined by

ys,c =

∑P
p=1 yp

s,c

P
, (4.7)

zs,c =

∑P
p=1 zp

s,c

P
, (4.8)

in which (yp
s,c, z

p
s,c) is the vortex centre position of realization p ∈ P in the ensemble of P realiza-

tions, as conceived in the stationary frame. For every realization p ∈ P , the radial position of the
vortex centre position with respect to the mean vortex centre position is given by:

rp
s,c =

√
(yp

s,c − ys,c)2 + (zp
s,c − zs,c)2. (4.9)

A probability density function (PDF) is determined for the probability of rp
s,c being in a region

(i− 1)4rs,c 5 rp
s,c < i4rs,c with 4rs,c = 2r1,0/25 and i = 1, 2, 3.... The width of the bin 4rs,c is

set in such a way that a smooth PDF is obtained. The PDF is defined according to

Pr(a4rs,c 5 rp
s,c < b4rs,c) =

b∑

i=a

PDF4rs,c b > a; a, b = 1, 2, 3... (4.10)

with Pr(a4rs,c 5 rp
s,c < b4rs,c) the probability of rp

s,c to be in the interval a4rs,c 5 rp
s,c < b4rs,c.

The PDF is now determined by:

PDF =
1

4rs,c

∑P
p=1 δ(i−1)4rs,c5rp

s,c<i4rs,c∑N4rs,c

l=1

∑P
p=1 δ(l−1)4rs,c5rp

s,c<l4rs,c

, i = 1, 2, 3...N4rs,c . (4.11)

The delta-function δ(i−1)4rs,c5rp
s,c<i4rs,c

is defined to be 1 if (i − 1)4rs,c 5 rp
s,c < i4rs,c holds,

and zero if not. The maximum radius to which the PDF is determined is given by N4rs,c4rs,c

and is set sufficiently large such that limi4rs,c→N4rs,c4rs,c PDF = 0.
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4.3 Vortex dynamics: velocity, vorticity, and circulation

The dynamics of the trailing vortex is analyzed by means of the radial, azimuthal, and axial ve-
locity as well as the circulation and the axial and azimuthal vorticity. The analysis of turbulence
quantities is restricted to the kinetic energy of the turbulence and the azimuthal-radial Reynolds
shear stress. We will continue with discussing the method in which these flow quantities are ob-
tained from the ensemble of three-components velocity fields in the (y, z)-plane of the co-moving
frame of reference. The distribution of these flow quantities will be considered both in the (y, z)-
plane and the radial direction.

With the vortex centre position as the origin in the co-moving frame of reference, the radial ve-
locity at every position y = y(j, k) and z = z(j, k) is determined by

Up
r (y, z) = Up

y (y, z) cos θ + Up
z (y, z) sin θ, (4.12)

with θ the azimuthal angle with respect to the y-axis. Likewise, the azimuthal velocity is deter-
mined by

Up
θ (y, z) = Up

z (y, z) cos θ − Up
y (y, z) sin θ. (4.13)

The axial velocity is simply given by Up
x (y, z), and the circulation Γp is approximated for every

position as
Γp(y, z) = 2πrUp

θ (y, z), (4.14)

with r =
√

y2 + z2. Note that the circulation is an integral quantity, and that therefore the value
of the circulation distribution defined by Eq. 4.14 is limited to axisymmetric vortices. The reason
for defining the circulation distribution will become clear later on. The axial vorticity distribution
ωp(y, z) = ∂Up

z /∂y − ∂Up
y /∂z is determined by

ωp
x(y(j, k), z(j, k)) =

Up
z (y(j + 1, k), z(j + 1, k))− Up

z (y(j − 1, k), z(j − 1, k))
y(j + 1, k)− y(j − 1, k)

−
Up

y (y(j, k + 1), z(j, k + 1))− Up
y (y(j, k − 1), z(j, k − 1))

z(j, k + 1)− z(j, k − 1)
, (4.15)

in which the central difference method is applied. The azimuthal vorticity distribution
ωp

θ (y, z) = ∂Up
r /∂x− (∂Up

x /∂y) cos θ − (∂Up
y /∂z) sin θ is approximated likewise by

ωp
θ (y(j, k), z(j, k)) = −Up

x (y(j + 1, k), z(j + 1, k))− Up
x (y(j − 1, k), z(j − 1, k))

y(j + 1, k)− y(j − 1, k)
cos θ −

Up
x (y(j, k + 1), z(j, k + 1))− Up

x (y(j, k − 1), z(j, k − 1))
z(j, k + 1)− z(j, k − 1)

sin θ, (4.16)

in which we assume that the flow is two-dimensional and that the term ∂Up
r /∂x is therefore neg-

ligible small, see the boundary layer approximation as stated by Eqs. 4.2-4.4.

With the velocities, circulation, and vorticities determined for every realization p ∈ P , it is now
possible to determine the ensemble mean quantities for every position (y, z)

Ur(y, z) =
∑P

i=1 Up
r (y, z)

P
, (4.17)

and likewise for Uθ(y, z), Ux(y, z), Γ(y, z), ωx(y, z), and ωθ(y, z). In this work, we assume that
the local standard deviation of the velocity is a good approximation of the kinetic energy of
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turbulence. We are therefore interested in the following quantities:

u2
rms,r(y, z) =

∑P
i=1(U

p
r (y, z)− Ur(y, z))2

P
, (4.18)

u2
rms,θ(y, z) =

∑P
i=1(U

p
θ (y, z)− Uθ(y, z))2

P
, (4.19)

u2
rms,x(y, z) =

∑P
i=1(U

p
x (y, z)− Ux(y, z))2

P
. (4.20)

The kinetic energy of turbulence q can now be determined by:

q(y, z) =
1
2
(u2

rms,r(y, z) + u2
rms,θ(y, z) + u2

rms,x(y, z)). (4.21)

At this stage, the ensemble averaged velocities, circulation, and vorticities are known for every
position (y, z) in the co-moving frame of reference. The kinetic energy of the turbulence is derived
from the ensemble quantities, and is likewise defined for every position (y, z) in the co-moving
frame of reference. Radial profiles of the flow quantities are now obtained by defining annular
regions (i − 1)4r 5 r < i4r (i = 1, 2, 3...), also called annular bins, in which flow quantities
will be averaged. The width of the annular regions is determined by the spatial resolution of the
(y, z)-plane. The smallest number of grid points (j, k) is found in the annular region closest to
the origin: 0 5 r < 4r. In practice, the width of the annular regions 4r is set in such a way that
the eight grid points closest to centre (y, z) = (0, 0) are still in the first annular bin. The flow is
highly axisymmetric near the vortex centre and it is therefore sufficient to enclose only the eight
nearest grid points to the first annular bin. In this way, the annular bins are wide enough to
perform reliable statistics even close to the vortex core, while a sufficient high radial resolution
is maintained to cover the vortex core region accurately. The radial profiles of the mean flow
quantities are now determined by

Ur(r = i4r) =

∑Ny

j=1

∑Nz

k=1 Ur(y, z)δ(i−1)4r5r<i4r∑Ny

j=1

∑Nz

k=1 δ(i−1)4r5r<i4r

, (4.22)

and likewise for Uθ, Ux, Γ, ωx, ωθ, and q. The delta-function δ(i−1)4r5r<i4r defined to be 1 if
(i− 1)4r 5 r < i4r holds, and zero if not. The maximum radius to which the radial profiles are
determined is set such that N4r4r = y(Ny, 0) = z(0, Nk). In other words, that is half the side
of the square (y, z)-plane in the co-moving frame of reference. Erroneous azimuthal averaging
is herewith prevented in case of a vortex that is not symmetric, for example during the roll-up
process of a trailing vortex. The standard deviation of the mean flow quantities is given by

Ûr(r = i4r) =

√√√√
∑Ny

j=1

∑Nz

k=1 δ(i−1)4r5r<i4r(Ur(y, z)− Ur(r = i4r))2
∑Ny

j=1

∑Nz

k=1 δ(i−1)4r5r<i4r

, (4.23)

and likewise for Uθ, Ux, Γ, ωx, ωθ, and q. The standard deviation is now defined to be the mea-
surement accuracy. The uncertainty consists of both the measurement accuracy, and the intrinsic
variation of the flow quantities inside an annular bin. In practice, it was found that the latter
is the most important contribution to the uncertainty. This means that the uncertainty increases
when the annular bins become larger.

It was already mentioned that the value of circulation distribution as defined by Eq. 4.14 is
limited to axisymmetric vortices. By averaging the circulation distribution according to Eq. 4.22,
we correctly approach the integral:

Γ =
∫ 2π

0

Uθrdθ. (4.24)

The value of Eq. 4.22 is therefore not limited to axisymmetric vortices.
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Chapter 5

Results

We will first discuss the evolution of the azimuthal and axial velocity and vorticity components
in terms of radial profiles and distribution in the (y, z)-plane. It will become clear that in the
first stage of the evolution, the vortex is not symmetric, but that it becomes more axisymmetric
at later times. The initial trailing vortex is not axisymmetric since it has yet not rolled up com-
pletely. After that, we will consider the radial profiles of the circulation and the energy in the
root-mean-square variations of the velocity. The root-mean-square variations of the velocity are
used to approximate the kinetic energy of the turbulence. This chapter will be concluded with an
analysis of vortex wandering. The vortex centre positions are plotted in the stationary frame of
reference, and a probability distribution function (PDF) is determined for the radial position of
the vortex centre.

For the conversion between time and location behind the wing, the reader is referred to Table
3.1. All the presented quantities are determined as discussed in Chapter 4 and are made dimen-
sionless as described in Chapter 3.

5.1 Evolution of velocity and vorticity

Radial profiles of the azimuthal and axial velocity are shown in Figure 5.1. The profiles are
shown for the cases without and with grid-generated turbulence. Here, we only show the inner
region measurement data. The outer region measurement data will be considered later on. For
the azimuthal velocity, one can see that the peak value of the azimuthal velocity decreases and
that the corresponding radius increases. The axial velocity peaks are located at the vortex centre.
While the axial velocity is positive in the region r/r1,0 / 0.5 at t(Γvor,0/2πr2

1,0) = 17.5, it is
negative for r/r1,0 / 1.5 at later times. The maximum axial velocity surplus and deficit are found
to be 1.12 and 0.72 times the main stream velocity, respectively. Note that Ux(2πr1,0/Γvor,0) = 1.1.
The evolution of the maximum azimuthal velocity and the axial velocity at the vortex centre for
the case without and with grid-generated turbulence is shown in Figure 5.2. The evolution of the
maximum azimuthal velocity is fitted with c1(t−c2)−1/2+c3 and the maximum axial velocity with
c′1(t− c′2)

−1 log(t− c′2)+ c′3. In this way, we try to retrieve the relation for Uθ,max and Ux,max−Ux

with Ux,max = Ux,r=4r as suggested by Batchelor (1964), see Eqs. 2.23-2.24. The relations are in
good approximation recovered, but a more thorough analysis with more data points is necessary
to draw firm conclusions. The evolution of the swirl number defined by

s ≡ Uθ,max

Ux,r=4r − Ux

, (5.1)

is shown in Figure 5.3. It becomes clear that the swirl number initially switches from a pos-
itive to negative value. The swirl numbers reaches an approximate constant value of -2 for
t(Γvor,0/2πr2

1,0) ' 150.
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Figure 5.1: Radial profiles of the azimuthal (left) and axial (right) velocity profiles for the case with-
out (top) and with (bottom) grid-generated turbulence. From black to light gray: t(Γvor,0/2πr2

1,0) =
17.5; 87.5; 175.5; 350.0; 662.5 (the last time only for the case without grid-generated turbulence).

The axial velocity profile at t(Γvor,0/2πr2
1,0) = 17.5 is compared with the theoretically derived

profile from Eq. 2.21, see Figure 5.4. Note the theoretical profile involves integration of the az-
imuthal velocity profile. For this, we numerically integrated the azimuthal velocity profile as
obtained in the region 0 < r/r1,0 5 12. Note that we approximate the infinite outer integration
limit by r/r1,0 = 12. This approximation is valid since the difference between the axial velocity
profile of a Lamb-Oseen vortex determined with an infinite outer integration limit and that with
r/R = 12 is found to be negligible. The inner and outer region measurement data are linked to
each other, as will be discussed in Section 5.2. Apparently, the axial velocity is lower than the
theoretical profile in the region 0 < r/r1,0 / 2. This is most likely caused by nonzero viscous
contributions which are neglected in the theoretical profile.

One may conclude from the analyses shown above that the difference between the cases without
and with grid-generated turbulence is negligible on the axial and azimuthal velocity profiles in
the region 0 < r/r1,0 5 3.

Radial profiles of the axial and azimuthal vorticity are shown in Figure 5.5, the axial vorticity is
positive and shows a maximum at r/r1,0 = 4r for all the analyzed times. The profile is sharply
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Figure 5.2: The evolution of the maximum azimuthal velocity and the axial velocity at r/r1,0 = 4x for
the case with (black lines) and without grid-generated turbulence (dark gray lines). Apparently, the grid-
generated turbulence has negligible influence on the evolution of the azimuthal and axial velocity profiles
in the vortex inner region r/r1 / 1. The evolution of the maximum azimuthal and axial velocity is fitted
(dotted lines) with profiles suggested by Batchelor (1964), see Eqs. 2.23-2.24 with 4x ∼ t.
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Figure 5.3: Evolution of the swirl number s = Uθ,max/(Ux,max − Ux) for the case without (black lines)
and with grid-generated turbulence (dark gray lines). The swirl numbers reaches an approximate constant
value of -2 for t(Γvor,0/2πr2

1,0) ' 150.

peaked at the vortex centre for t(Γvor,0/2πr2
1,0) = 17.5, but the profiles become smoother at later

times. The peak in the axial vorticity decreases in time. At t(Γvor,0/2πr2
1,0) = 17.5, the azimuthal

vorticity has a maximum at the vortex centre. The profile shows a transient profile for the subse-
quent time t(Γvor,0/2πr2

1,0) = 87.5. For later times, the azimuthal vorticity has a minimum in the
region 0.25 < r/r1,0 < 0.75. As is the case for the radial profiles of azimuthal and axial velocity,
the difference between the cases without and with grid-generated turbulence is negligible.

The error bars of the axial velocity and azimuthal vorticity are for t(Γvor,0/2πr2
1,0) = 17.5 signif-

icantly larger than those for subsequent times. Apparently, there is a relatively large azimuthal
variation in the axial flow at this stage. This is elucidated by visualizing the distribution of ax-
ial velocity and azimuthal vorticity in the (y, z)-plane of the co-moving frame of reference, see
Figures 5.6-5.7. Clearly, the distribution of axial velocity and azimuthal vorticity is not axisym-
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Figure 5.4: The radial profile of the axial velocity for the case without grid-generated turbulence and
t(Γvor,0/2πr2

1,0) = 17.5 is compared to the theoretical profile determined from Eq. 2.22. It becomes clear
that the axial velocity is lower in the region 0 < r/r1,0 / 2. This is most likely caused by viscous
contributions that are neglected in the theoretical profile.

metric at t(Γvor,0/2πr2
1,0) = 17.5. At this time the distribution of axial velocity shows streaks of

positive and negative values around the vortex centre. The streak of negative axial velocity starts
in the bottom left side from where it winds around the vortex centre. This streak of negative
axial velocity is believed to be a remnant of the boundary layer flow over the wing. In accor-
dance with the radial profile shown in Figure 5.1, the axial velocity has a positive maximum at
the vortex centre. At t(Γvor,0/2πr2

1,0) = 87.5, the concentration of negative axial velocity around
the vortex centre is slightly tilted at about an angle of 30◦ degrees with respect to the vertical
z-axis. This antisymmetry may be a result of the winding boundary layer remnant around the
vortex centre. It is moreover believed that the initial positive axial velocity in the vortex cores,
is brought to a negative axial velocity due that same boundary layer flow spiralling inwards. At
t(Γvor,0/2πr2

1,0) = 87.5, the distribution of azimuthal vorticity shows an annular region around
r/r1,0 ≈ 0.5 with less negative vorticity than that in the region enclosed by it. This may also be a
product of the boundary layer remnant winding around the vortex centre. For the analyzed times
t(Γvor,0/2πr2

1,0) = 175.5, the distribution of axial velocity and azimuthal vorticity was found to
be axisymmetric in the region r/r1 / 1. It is therefore believed that distribution of axial velocity
and azimuthal vorticity can be conceived as transient.
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Figure 5.5: Radial profiles of the axial (left) and azimuthal (right) vorticity profiles for the case with-
out (top) and with (bottom) grid-generated turbulence. From black to light gray: t(Γvor,0/2πr2

1,0) =
17.5; 87.5; 175.5; 350.0; (662.5; only for the case without grid-generated turbulence).
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Figure 5.6: Distributions of the axial velocity Ux − Ux in the (y, z)-plane for the cases without (left) and
with grid-generated turbulence (right). At t(Γvor,0/2πr2

1,0) = 17.5, there is a jet (Ux − Ux) > 0 in
the the region r/r1,0 / 0.5. This jet is surrounded by both positive and negative streaks of (Ux − Ux).
For t(Γvor,0/2πr2

1,0) = 87.5, the jet has been transformed to a wake (Ux − Ux) < 0 which is in good
approximation symmetric.
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Figure 5.7: Distributions of the azimuthal vorticity as determined by the ensemble average of Eq. 4.16
for the case without (left) and with grid-generated turbulence (right). At t(Γvor,0/2πr2

1,0) = 17.5, the
distribution contains both negative and positive streaks of azimuthal vorticity. The distribution becomes
in good approximation axisymmetric for t(Γvor,0/2πr2

1,0) = 87.5. Note that the artificial shapes in the
outer region of the vortex are caused by the measurement limitations, see Appendix G. The non-physical
shapes around the vortex centre are believed to be due to the PIV process.
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Figure 5.8: Distributions of the axial velocity Ux − Ux for the case without grid-generated turbulence.
It becomes clear that a remnant of the boundary rolls up around the vortex, which is even still visible at
t(Γvor,0/2πr2

1,0) = 350.0. Note that the artificial shapes in the outer region of the vortex are caused by the
measurement limitations, see Appendix G. The non-physical shapes around the vortex centre are believed
to be due to the PIV process.
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Figure 5.9: Distributions of the axial velocity Ux − Ux for the case with grid-generated turbulence. It be-
comes clear that a remnant of the boundary rolls up around the vortex, which is even at t(Γvor,0/2πr2

1,0) =
350.0 still visible. Note that the artificial shapes in the outer region of the vortex are caused by the mea-
surement limitations, see Appendix G. The non-physical shapes around the vortex centre are believed to be
due to the PIV process.
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Figure 5.10: Distributions of the axial vorticity as determined by the ensemble average of Eq. 4.15 for
the case without (left) and with grid-generated turbulence (right). From t(Γvor,0/2πr2

1,0) = 17.5, the
distribution is in good approximation symmetric.
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Figure 5.11: Distributions of the axial vorticity as determined by the ensemble average of Eq. 4.15 for the
case without (left) and with grid-generated turbulence (right). Low levels of axial vorticity are presented
to visualize that part of the trailing vortex that has not yet rolled up completely. A concentration of axial
vorticity is present in the lower left side of the domain at t(Γvor,0/2πr2

1,0) = 17.5, which represents that
part of the vortex that has not yet rolled up. Clearly, the distribution of axial vorticity is not axisymmetric
for t(Γvor,0/2πr2

1,0) = 17.5. Note that the artificial shapes in the outer region of the vortex are caused
by the measurement limitations, see Appendix G. The non-physical shapes around the vortex centre are
believed to be due to PIV process.
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We considered the axial velocity and azimuthal vorticity in the region r/r1,0 5 3. The distribution
of these quantities was found to be initially asymmetric due to a remnant of the boundary layer
flow spiraling inwards to the vortex centre. This remnant of the boundary layer flow is believed
to be extended to the region r/r1,0 > 3, since the dimensions of this flow are related to those of the
wing. The distribution of the axial velocity as obtained from the outer region measurements are
therefore shown in Figure 5.8 and 5.9, for the case without and with grid-generated turbulence,
respectively. The levels of the axial velocity are limited to low levels such that the boundary layer
remnant are visible. Note that the artificial shapes in the outer region of the vortex are caused by
the measurement limitations, see Appendix G. The non-physical shapes around the vortex centre
are believed to be due to the PIV process.

The distribution of axial velocity at t(Γvor,0/2πr2
1,0) = 17.5 shows a concentration of negative

axial velocity in the left side of the (y, z)-plane. The orientation of this concentration corresponds
to that of the wing, which is placed horizontally in the left side −60 / y/r1,0 / 0 at height
z/r1,0 ≈ 1. This validates our belief that the streak of negative axial velocity spiraling inwards to
the vortex centre is a remnant of the boundary layer flow over the wing.

By inspection of the distributions for t(Γvor,0/2πr2
1,0) = 17.5, it becomes clear that the remnant

of the boundary layer flow spirals around the vortex centre. The boundary layer remnant is
advected in the flow field of the vortex sheet rolling up into the trailing vortex. The streak of
negative axial velocity is contained in the complete domain covered by the outer region mea-
surements. The distributions suggest that the remnant of the boundary layer flow extends even
outside the area covered by the outer region measurements. The negative axial velocity contained
in the remnant of the boundary layer increases towards zero.

We will now proceed with a brief consideration of the distribution of axial vorticity in the (y, z)-
plane. The distributions as obtained from the inner region measurements are shown for the case
without and with grid-generated turbulence in Figure 5.10. In contrast to the distributions of
axial velocity and azimuthal vorticity, the distribution of axial vorticity is in good approximation
axisymmetric for t(Γvor,0/2πr2

1,0) = 17.5. In accordance with the radial profiles shown in Fig-
ure 5.5, the distributions show an axial vorticity evolving from a distribution sharply peaked at
the vortex centre, towards one that is smoother.

It was shown by the analysis of the outer region measurements of axial velocity, that a rem-
nant of the boundary layer flow over the wing spirals around the trailing vortex. This streak of
negative axial velocity is contained in the complete domain covered by the outer region mea-
surements. Clearly, the influence of the flow over the wing is still noticeable in the distribution of
axial velocity in the region r/r1,0 / 12, and for t(Γvor,0/2πr2

1,0) = O(102) behind the wing. Since
axial vorticity is a result of the flow over the wing, it is equally well believed that axial vorticity is
locally concentrated in r/r1,0 / 12 for t(Γvor,0/2πr2

1,0) = O(102) after creation of the trailing vor-
tex. The distribution of low level axial vorticity as obtained from the outer region measurements
is therefore shown in Figure 5.11 for the case without and with grid-generated turbulence. The
artificial shapes are caused by the measurement limitations, see Appendix G. The distribution
of axial vorticty is not axisymmetric and the same shapes found for the streaks of negative axial
velocity, see Figures 5.8 and 5.9, can be retrieved in the distribution of axial vorticity. It becomes
clear that axial vorticity is contained in the region r/r1,0 / 12 for t(Γvor,0/2πr2

1,0) = O(102) after
creation of the trailing vortex. This can be considered as that part of the trailing vortex that has
not yet rolled up completely. Note that for increasing time, the level of axial vorticity approaches
the measurement limitation and for that reason it is difficult to visualize the distribution of axial
vorticity properly.
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Figure 5.12: Radial profiles of the circulation for the case without grid-generated turbulence (left) and
with grid-generated turbulence (right). The profiles show a trend of increasing circulation with increasing
radial distance for t(Γvor,0/2πr2

1,0) = −332; 87.5, and 175.5. For the time t(Γvor,0/2πr2
1,0) = 0 and

662.5 (only for the case without grid-generated turbulence) the circulation reaches a maximum after which
it starts to decrease. From black to light gray: t(Γvor,0/2πr2

1,0) = 17.5; 87.5; 175.5; 350.0; 662.5 (the last
time only for the case without grid-generated turbulence).
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Figure 5.13: Radial profiles of the azimuthal velocity for t(Γvor,0/2πr2
1,0) = 350.0 and the case without

grid-generated turbulence. The azimuthal velocity profile is fitted (dotted lines) with the two-length-scales
Vortex Model 1 -VM1- (left) and the Lamb-Oseen velocity profile, see Chapter 2. It becomes clear that the
Lamb-Oseen velocity profile falls short in the region 3 / r1,0 / 12, and that the velocity profile can only
be described correctly with a two-length-scales model. VM1 instead of VM2 is applied to illustrate the
different regions of the two-length-scales model mores clearly.

5.2 Evolution of circulation

The distribution of the axial vorticity is closely related to the distribution of circulation, see Eq.
2.8. We will now continue with discussing the circulation. This will give us a better understand-
ing of the distribution of axial vorticity, i.e. circulation, and the influence of the trailing vortex
roll-up process on this distribution.
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Figure 5.14: The radial profiles of the circulation and their fitted profiles based on VM2. The parameters of
the fitted profiles are shown in Table 5.1.

Radial profiles of the circulation are shown in Figure 5.12 for the case without and with grid-
generated turbulence. The circulation profiles as obtained with inner and outer region mea-
surements are connected to each other as motivated in Appendix E. The circulation profiles are
determined by path integration of the azimuthal velocity, see Eq. 4.22, and are validated by area
integration of the axial vorticity, see Appendix F.

For t(Γvor,0/2πr2
1,0) = 17.5, 87.5, and 175.5, the circulation increases with increasing radius. Ap-

proximately 80% of the circulation at r/r1,0 = 12 is contained in the region r/r1,0 5 2, and the
remaining 20% is evenly distributed in the region 2 < r/r1,0 5 12. For t(Γvor,0/2πr2

1,0) = 350.0
the circulation profile diverts at r/r1,0 ≈ 6 from the increasing trend observed for earlier times.
The circulation even decreases about 0.05 Γvor,0 after which it converges to 0.95 Γvor,0 in the re-
gion 10 < r/r1,0 5 12. The circulation profile for t(Γvor,0/2πr2

1,0) = 662.5 starts to decrease at
r/r1,0 ≈ 7. From that radius, the circulation decreases at a constant slope from approximately
0.95 Γvor,0 towards 0.90 Γvor,0 at r/r1,0 = 12. There is no significant difference in the radial pro-
files of circulation for the case without and with grid-generated turbulence.
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turbulence (dark gray lines) to retrieve Eq. 2.27. One may conclude that the vortex inner region is
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Figure 5.16: Radial profiles of the circulation are for every quadrant determined following Eq. 5.3-5.4. The
quadrants are denoted by South West (SW), South East (SE), North East (NE), and North West (NW).
The integration area is shown for determining the circulation of quadrant SW till radius r/r1,0 = 12.

The radial profile of the circulation at t(Γvor,0/2πr2
1,0) = 350.0 for the case without grid-generated

turbulence is fitted with the two-length-scales Jacquin Vortex Model VM2, see Eq. 2.32 and Fabre
and Jacquin (2004). The necessity for describing the azimuthal velocity profile with such a two-
length-scales model is elucidated in Figure 5.13. Here, the azimuthal velocity profile is fitted with
the two-length-scales VM1 and the Lamb-Oseen velocity profile, see Chapter 2. VM1 instead of
VM2 is applied to illustrate the different regions of the two-length-scales model mores clearly. It
becomes clear that the Lamb-Oseen velocity profile falls short in the region 3 / r1,0 / 12, and
that the velocity profile can only be described correctly with a two-length-scales model.

For t(Γvor,0/2πr2
1,0) = 350.0, the axial vorticity of the trailing vortex is believed to be fully con-

tained in the measurement region. In other words, the circulation reaches a constant value inside
the region r/r1,0 5 12. This is the reason why t(Γvor,0/2πr2

1,0) = 350.0 is used for determining
the parameters Γvor,0 and r1,0 that make flow quantities dimensionless.
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Figure 5.17: Radial profiles of the circulation for every quadrant as determined by Eqs. 5.3-5.4, see also
Figure 5.16. These profiles correspond to cases without grid-generated turbulence. The distribution of cir-
culation, i.e. axial vorticity, is not axisymmetric for the analyzed times t(Γvor,0/2πr2

1,0) = 17.5 till 662.5.
At t(Γvor,0/2πr2

1,0) = 17.5 the North West (NW) and South West (SW) contain the most circulation, i.e.
axial vorticity. From black to lightgray: SE; SW; NW; NE.

42



0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
 

 vo
r,0

r/r1,0

(a) area integration of axial vorticity

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
 

 vo
r,0

r/r1,0

(b) path integration of velocity

Figure 5.18: Radial profiles of the circulation as determined by area integration of the axial vorticity (left)
and by path integration of the velocity (right) in an empty wind tunnel. An empty wind tunnel flow is
defined to be the flow without the wing and turbulence grid installed. Apparently, area integration of axial
vorticity is more reliable than path integration. At this stage, it is now known what the reason for this
difference is. From black to lightgray: SE; SW; NW; NE.

The VM2 profile contains four fit parameters: the total circulation Γvor; the inner vortex core
radius r1 characterizing the region r / r1 in which the approximation of solid-body rotation is
valid; the outer vortex core radius r2 characterizing the region r1 / r / r2 in which the az-
imuthal velocity behaves to a good approximation as Uθ ∼ r−β , with β being the last parameter.
The total circulation Γvor is set as a typical value determined from visual inspection of the cir-
culation profile in the region 4 / r/r1,0 / 12. The value for β is determined by the slope of
log(Uθ) against log(r) in the region 2.5 / r/r1,0 / 5. This region is defined such that it lies in
the middle between the estimated values of r1 and r2. With Γvor and β defined, we determine
r1 and r2 by a least-squares fit method. We believe that r1 and r2 are appropriate fit parameters
since they are more independent from each other than for example r2 and Γvor. The VM2 param-
eters at t(Γvor,0/2πr2

1,0) = 350.0 for the case without grid-generated turbulence are found to be
Γvor = 0.50 m2 s−1, β = 0.81, r1 = (5.85±0.04)·10−3 m, and r2 = (4.7±0.1)r1 = (2.75±0.06)·10−2

m. These parameters are defined to be Γvor,0, β0, r1,0, and r2,0, and are used to make flow quanti-
ties dimensionless. The VM2 parameters at t(Γvor,0/2πr2

1,0) = 662.5 for the case without grid-
generated turbulence, and those at t(Γvor,0/2πr2

1,0) = 350.0 for the case with grid-generated
turbulence are presented in Table 5.1. The fitted VM2 profiles are shown in Figure 5.14. The
circulation profiles for t(Γvor,0/2πr2

1,0) < 350.0 are not fitted. However, based on visual inspec-
tion, we believe that r2 is larger than 12r1,0.

The viscous behaviour of the inner vortex region is analyzed by fitting the circulation profiles
in the region 0 < r/r1,0 5 1.5 · rUθ,max

/r1,0 with a Lamb-Oseen vortex model. The radius of
maximum azimuthal velocity is denoted by rUθ,max

, and the region 0 < r/r1,0 5 1.5 · rUθ,max
/r1,0

is believed to be large enough to contain sufficient fitting data, but small enough to represent
the inner vortex region. The evolution of vortex core radius is shown in Figure 5.15. From this,
one may conclude that the vortex inner region is subjected to viscous decay similar to that of a
Lamb-Oseen vortex for t(Γvor,0/2πr2

1,0) ' 150.

The distribution of axial vorticity in the (y, z)-plane, shown in Figure 5.11, is not axisymmet-
ric for t(Γvor,0/2πr2

1,0) = 17.5 and 87.5. This means that the distribution of circulation is neither
symmetric. As suggested in Section 5.1, the antisymmetry is caused by that part of the trailing
vortex that has not yet rolled up completely. As a result, a streak of axial vorticity winds around
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Table 5.1: The VM2 parameters are presented for the cases without (M000) and with grid-generated
turbulence (M254). Note that Γvor and β are set, and that both r1 and r2 are determined from a least-
squares fit.

M000 M000 M254
t(Γvor,0/2πr2

1,0) 350.0 662.5 350.0
Γvor/Γvor,0 1 0.96 0.97

β 0.81 0.74 0.83
r1/r1,0 1.000±0.007 1.123±0.008 1.013±0.004
r2/r1,0 4.7±0.1 3.8±0.1 4.7±0.1

the vortex centre due to advection. To obtain a better insight in the distribution of circulation, we
determine radial profiles of the circulation for every quadrant in the (y, z)-plane, see Figure 5.16.
The circulation profiles are now not obtained by path integration of the velocity, but by area inte-
gration of the axial vorticity. Both methods are applied for the case with an empty wind tunnel,
see Figure 5.18, and the method of area integration of axial vorticity was found to be most reli-
able. At this stage, the reason for this discrepancy is not known.

We will briefly discuss the method in which the circulation profiles are obtained. Radial profiles
of the axial vorticity are determined for both the inner region and the outer region measurements,
and for every quadrant by

ωx(r = i4r) =

∑
j

∑
k ωx(y, z)δ(i−1)4r5r<i4r∑
j

∑
k δ(i−1)4r5r<i4r

i = 1, 2, 3...N4r, (5.2)

in which the summation over j and k is defined for each quadrants as:

SW 1 5 j 5 (Ny + 1)/2 1 5 k 5 (Nz + 1)/2,

SE (Ny + 1)/2 5 j 5 Ny 1 5 k 5 (Nz + 1)/2,

NE (Ny + 1)/2 5 j 5 Ny (Nz + 1)/2 5 k 5 Nz,

NW 1 5 j 5 (Ny + 1)/2 (Nz + 1)/2 5 k 5 Nz.

The circulation profile is now determined by

Γ(r = i4r 5 rcon/4r) =
l=i∑

l=1

ωx(r = l4r)2πl(4r)2 i = 1, 2, 3...rcon/4r, (5.3)

for the inner measurement region, combined with

Γ(r = i4r > rcon/4r) =
l=i∑

l=rcon/4r+1

ωx(r = l4r)2πl(4r)2 + Γ(rcon); (5.4)

i− rcon/4r = 1, 2, 3...N4r − rcon/4r

for the outer measurement region. The circulation profiles are connected to each other at position
rcon as motivated in Appendix E. The radial profiles of the circulation as determined for every
quadrant SouthWest (SW), South East (SE), North East (NE), and North West (NW) are shown
in Figure 5.17. We only consider the case without grid-generated turbulence, since we believe
that the difference is insignificant for this discussion. For t(Γvor,0/2πr2

1,0) = 17.5, the trend of
increasing circulation for increasing radius as found for the circulation determined for the four
quadrants together, see Figure 5.12, is also retrieved for that in every quadrant separately. For
r/r1,0 ' 8, the amount of circulation is different for every quadrant. The most circulation is
concentrated in the SW quadrant, which is followed by the NW, SE, and NE quadrants, respec-
tively. The amount of circulation in between subsequent quadrants differs approximately 0.025
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Γvor,0 from each other. It has to be remarked, that great care is necessary for drawing conclu-
sion for the region r/r1,0 ' 8 since the distribution of circulation was found to be asymmetric
in the empty wind tunnel measurements, see Figure 5.18. Nevertheless, we believe that the spe-
cific shape of the circulation profiles for r/r1,0 / 8 can be explained by a streak of axial vorticity
winding around the vortex centre. As discussed in Section 5.1, this streak of axial vorticity is
part of the trailing vortex that had not yet rolled up completely. The circulation profiles show a
sudden increase in its slope at r/r1,0 ≈ 3, r/r1,0 ≈ 2.5, r/r1,0 ≈ 2, r/r1,0 ≈ 3 for the SW, SE, NE,
and NW quadrants, respectively. It is believed that from these radii, the streak of axial vorticity
becomes part of the corresponding region in which the circulation is determined. The wing is
placed horizontally in the left side −60 / y/r1,0 / 0 at height z/r1,0 ≈ 1. The streak of axial
vorticity originates from the wing and spirals inwards to the vortex centre. The streak of axial
vorticity is therefore for the SE and NE quadrants closer to the vortex centre than for the other
quadrants. This is in accordance with the radius at which the slope of the circulation profile in-
creases, being smaller for the SE and NE quadrants than that for the SW and NW quadrants. For
t(Γvor,0/2πr2

1,0) = 87.5, the circulation profile suggests a axisymmetric distribution of circulation
in the region r/r1,0 / 8. Apparently, axial vorticity is evenly distributed over the four quad-
rants such that the circulation profile for each separate quadrant increases at a constant slope for
3 / r/r1,0 / 8. For r/r1,0 ' 8, the circulation profiles diverge from each other. However, it has
to be remarked that measurement limitations may become important here and that it is therefore
very difficult to give a physical explanation of the observation.

For t(Γvor,0/2πr2
1,0) = 175.5, 350.0, and 662.5, the circulation profiles in the region r/r1,0 / 8

differ as much as 0.05Γvor between each quadrant. This is believed to be a result of the streak of
axial vorticity winding around the vortex centre. From this point of view, one may conclude that
the antisymmetry holds on for t(Γvor,0/2πr2

1,0) = O(102) after creation of the trailing vortex.

We discussed the evolution of the velocity, vorticity and circulation. For that, we considered ra-
dial profiles and the distribution of these flow quantities in the (y, z)-plane. It has become clear,
that remnants of the flow over the wing are still observable for t(Γvor,0/2πr2

1,0) = O(102) after
creation of the trailing vortex. The boundary layer of the flow over the wing spirals as a streak
of negative axial velocity around the vortex centre. Likewise, positive axial vorticity that has not
yet rolled up into the trailing vortex, winds around the vortex centre. We will now proceed with
discussing the kinetic energy of the turbulence in the region r/r1,0 5 3.

5.3 Evolution of kinetic energy of turbulence

It is assumed that the root-mean-square variations of the velocity are a good approximation
for the turbulence velocities. The kinetic energy of the turbulence is determined by Eq. 4.22
and its radial distribution is shown for the case without and with grid-generated turbulence
in Figure 5.19. Except at t(Γvor,0/2πr2

1,0) = 350.0, the kinetic energy of the turbulence has
a maximum at the vortex centre for all cases. For t(Γvor,0/2πr2

1,0) = 350.0, the maximum is
slightly out of the vortex centre at r/r1,0 = 0.25. The maximum kinetic energy of turbulence is
q(2πr1,0/Γvor,0)2 ≈ 0.7 for t(Γvor,0/2πr2

1,0) = 17.5, after which it decreases to q(2πr1,0/Γvor,0)2 ≈
0.3 for t(Γvor,0/2πr2

1,0) = 87.5, and it stabilizes at a constant value of q(2πr1,0/Γvor,0)2 ≈ 0.12
for subsequent times. Clearly, the trailing vortex contains a lot of velocity fluctuations after its
creation. These velocity fluctuations are believed to be inherent to the asymmetric trailing vortex
roll-up. The velocity fluctuations reduce to constant level for t(Γvor,0/2πr2

1,0) = O(102) after cre-
ation of the trailing vortex.

The influence of the grid-generated turbulence is insignificant for the kinetic energy of turbu-
lence in the region r/r1,0 / 1. For the analyzed times after t(Γvor,0/2πr2

1,0) = 87.5, the influence
of grid-generated turbulence is visible for r/r1,0 ' 1. Higher levels of constant q are obtained
than those for the cases without grid-generated turbulence. At t(Γvor,0/2πr2

1,0) = 87.5, the value
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Figure 5.19: Kinetic energy of the turbulence as defined by the ensemble average of Eq. 4.21. The
amount of kinetic energy in the inner vortex region decreases from q(2πr1,0/Γvor,0)2 ≈ 0.7 at
t(Γvor,0/2πr2

1,0) = 17.5 to q(2πr1,0/Γvor,0)2 ≈ 0.1 for t(Γvor,0/2πr2
1,0) = 175.5 till t(Γvor,0/2πr2

1,0) =
350.0 (662.5 for the case without grid-generated turbulence). From black to light gray: t(Γvor,0/2πr2

1,0) =
17.5; 87.5; 175.5; 350.0; 662.5 (the last time only for the case without grid-generated turbulence).
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Figure 5.20: Kinetic energy of the turbulence as defined by the ensemble average of Eq. 4.21 in the
frame of reference co-moving with the vortex centre ( ), co-moving with the grid-point vortex cen-
tre frame ( ), and that in the stationary frame of reference ( ). The profiles are obtained at
t(Γvor,0/2πr2

1,0) = 350.0 and for the case without grid-generated turbulence.

of this constant level of kinetic turbulence is found to be q(2πr1,0/Γvor,0)2 ≈ 0.1. This value is of
the same order as that found in our study on the grid-generated turbulence characteristics, see
Chapter C.

We assume that the vortex centre position is determined correctly by the method described in
Section 4.2. An incorrect vortex centre position would mean that large fluctuations in the veloc-
ity are inherent to large velocity gradients. This can be illustrated by determining Eq. 4.21 in
the stationary frame of reference, and the frame of reference co-moving with the vortex centre
and the grid-point vortex centre. In case of the frame of reference co-moving with the grid-point
vortex centre, the vortex centre positions are pinned down to a grid point, see Section 4.2. Fig-
ure 5.20 shows the kinetic energy of turbulence as determined by Eq. 4.21 for the stationary
frame of reference, and the frame of reference co-moving with the vortex centre and the grid-
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Figure 5.21: The evolution of the maximum kinetic energy of the turbulence is shown for the case with-
out (black line) and with grid-generated turbulence (dark gray line). This maximum decays within
O(1022πr2

1,0/Γvor,0) towards a constant 15% of its value found closest behind the wing.

point vortex centre. The profiles are obtained at t(Γvor,0/2πr2
1,0) = 350.0 and for the case without

grid-generated turbulence. Apparently, the kinetic energy of turbulence as obtained in the sta-
tionary frame of reference is about 15 times, and in the frame of reference co-moving with the
grid-point vortex centre 2 times that obtained in the frame of reference co-moving with the vor-
tex centre position. Clearly, high levels of velocity fluctuations are inherent to the combination of
an incorrect vortex centre position and large velocity gradients as found in the vortex core region.
The same analysis is performed for the azimuthal and axial velocity and vorticity components,
and is considered in Appendix H.

5.4 Evolution of vortex centre positions

The vortex centre is determined by a least-squares fit of a second-order polynomial through the
streamfunction for r/r1,0 < 0.5. The vortex centre position rp

s,c is determined for every real-
ization p ∈ P and is shown in the stationary frame in Figures 5.22 and 5.23. Apparently, the
vortex centre position fluctuates with increasing intensity for increasing times. The distribution
of vortex centre positions is found to be axisymmetric at t(Γvor,0/2πr2

1,0) = 17.5 for both the case
with and without grid-generated turbulence. However, at t(Γvor,0/2πr2

1,0) = 87.5 and 175.5, this
distribution is found to be axisymmetric for the case with grid-generated turbulence, but not for
the case without grid-generated turbulence. For the case without grid-generated turbulence at
t(Γvor,0/2πr2

1,0) = 87.5, the distribution is slightly tilted at an angle of about 10 degrees with re-
spect to the vertical axis. At t(Γvor,0/2πr2

1,0) = 175.5, this distribution is slightly tilted at an angle
of about 45 degrees from the vertical axis. The distribution is found to be in good approximation
axisymmetric for the times analyzed after t(Γvor,0/2πr2

1,0) = 175.5.

A probability density function (PDF) is determined for the probability of rp
s,c being in a re-

gion (i − 1)4rs,c 5 rp
s,c < i4rs,c with 4rs,c = 2r1,0/25 and i = 1, 2, 3..., see Eq. 4.11. The

PDFs are shown in Figure 5.24. The PDFs are at t(Γvor,0/2πr2
1,0) = 17.5 sharply peaked around

rs/r1,0 = 0.05, but they evolve into a smoother distribution for later times. In the case without
grid-generated turbulence, the PDF peaks around rs/r1,0 = 0.25 for t(Γvor,0/2πr2

1,0) = 662.5.
Except at t(Γvor,0/2πr2

1,0) = 350.0, the PDFs for the cases with grid-generated turbulence are
broader than those for the same cases without grid-generated turbulence. One may conclude
that the vortex wandering is more intense with grid-generated turbulence for the analyzed cases
at t(Γvor,0/2πr2

1,0) < 350.0. This means that the vortex wandering is less intense with grid-
generated turbulence for t(Γvor,0/2πr2

1,0) = 350.0.
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Figure 5.22: The vortex centre positions in the stationary frame for the the case without grid-generated
turbulence. The region in which the vortex centre positions are located becomes larger with time.
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Figure 5.23: The vortex centre positions in the stationary frame for the the case with grid-generated tur-
bulence. The region in which the vortex centre positions are located becomes larger with time.
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Following Devenport et al. (1996), it is assumed that the vortex centre is subjected to Gaussian
isotropic wandering. This assumptions implies that the radial position of the vortex centre can
be compared to the distance from the origin for a random walk in two dimensions. The PDF is
therefore fitted with the Rayleigh distribution defined by

PDF (r) =
r

χ2
exp(

−r2

2χ2
) χ > 0; r = 0 (5.5)

with χ
√

π/2 the mean of the distribution. The evolution of χ
√

π/2 for increasing time is shown
in Figure 5.25. The mean radial position increases approximately linearly with time. This means
that a direct analogy with the random walk is not possible. The distance from the origin for
a random walk in two dimensions evolves namely with the square root of the duration when
constant step sizes are assumed. This relation is not retrieved in Figure 5.25.
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Figure 5.24: Probability Density Function (PDF) as determined by Eq. 4.11. The probability Pr for the
vortex centre position rp

c,s to be in the interval a4rs,c 5 rp
c,s < b4rs,c with a, b = 1, 2, 3... and b > a is

given by Pr(a4rs,c 5 rp
c,s < b4rs,c) =

∑b
i=a PDF4rs,c. The PDF function is fitted with a Rayleigh

distribution, see Eq. 5.5. From black to light gray: t(Γvor,0/2πr2
1,0) = 17.5; 87.5; 175.5; 350.0; 662.5 (the

last time only for the case without grid-generated turbulence).
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Figure 5.25: Mean radial position rs,c as determined from fitting PDF with a Rayleigh distribution, see
Figure 5.24. The data is presented for the case without grid-generated turbulence (black lines), and the case
without grid-generated turbulence (dark gray lines). The error bars are determined by the standard error
of the fitting procedure. For t(Γvor,0/2πr2

1,0) / 250, the mean radial position of the vortex centre is about
0.025r1,0 larger for the case with than that without grid-generated turbulence. After this time, the mean
radial position for the case without grid-generated turbulence is larger.
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Chapter 6

Conclusions and Discussion

Wind tunnel experiments were performed for a single trailing vortex without and with grid-
generated turbulence. This work can be seen as a continuation of the work of Van Jaarsveld
(2008). The 3C-PIV measurement technique was applied to obtain a three-components velocity
field in planes perpendicular to the trailing vortex axis. With respect to the 2C-PIV measurements
of Van Jaarsveld (2008), it was now possible to measure the axial velocity as well. Inner and
outer region measurements covered the region around the vortex with a radius approximately
three and twelve times that of maximum azimuthal velocity, respectively. The inner region mea-
surements captured the vortex with a higher spatial resolution and accuracy than obtained by
Van Jaarsveld (2008). Every measurement consisted of an ensemble with 1.000 realizations. Spe-
cial care was taken to determine the trailing vortex centre position for each realization separately.
A frame of reference co-moving with the vortex centre was applied to correct for vortex wander-
ing.

The mean quantities of the ensemble provide insight in the evolution of the azimuthal and axial
velocity and vorticity components, the circulation, and the kinetic energy of turbulence. The dif-
ferences between these flow quantities for the cases with and without grid-generated turbulence
are found to be negligible. Following the definition of Crow and Bate (1976) and making use
of a typical distance between two trailing vortices as applied by Van Jaarsveld (2008), the grid-
generated turbulence can be characterized as having a weak turbulence intensity. This means
that a trailing vortex pair would break-up due to the Crow-instability and the subsequent link-
ing of vortex lines. Apparently, the influence of weak turbulence is negligible for the decay of a
single trailing vortex but significant for that of a vortex pair.

The axial velocity near the vortex centre transforms from a jet- to a wake-like structure. The
jet-like structure near the vortex centre is consistent with the Bernoulli theorem relating the pres-
sure to the azimuthal velocity. The distribution of axial velocities suggests that a sheet of nega-
tive axial velocity winds around the vortex centre. In this way, streamlines that have passed the
viscous boundary layer of the wing flow entrain the region of high axial velocity. The viscous
contribution of 4H in

U2
x(r) = U

2

x − U2
θ (r) + 2

∫ ∞

r

U2
θ

r′
dr′ − 24H, (6.1)

cannot be neglected anymore and, as a result, the axial velocity decreases. The number of turns of
the viscous boundary layers wrapped around the vortex centre increases as the roll-up evolves.
Ultimately, the neighboring turns of the spiral are believed to be close enough for viscous spread-
ing to make a continuous distribution of flow quantities. This evolution is nicely illustrated in
Figure 5.6.
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The transformation from a surplus towards a deficit of velocity near the vortex centre is not
only caused by the entrainment of the viscous boundary layer flow. It is namely discussed by
Batchelor (1964) that the continual slowing-down of the azimuthal motion due to viscosity leads
to a positive axial pressure gradient and consequently to a continual loss of axial momentum.
The velocity defect arising from this conversion of azimuthal motion increases, but is continually
diminished by diffusive spreading. Batchelor (1964) derived in an asymptotic analysis a relation
for this process. We have tried to recover this relation, but a more thorough analysis is necessary
to fully understand the observed evolution of axial velocity near the vortex centre. As reported
by Green (1995), the complexity of the axial velocity is caused by its dependence on the tangential
velocity distribution, the wing boundary layer and details of the roll-up phase, and the dissipa-
tion in the vortex.

The maximum axial velocity surplus (jet) and deficit (wake) are found to be 1.12 and 0.72 Ux,
respectively. Higher axial velocities were observed by Chow (1997) and Green and Acosta (1991)
who reported axial currents near the vortex centre with a maximum velocity of 1.77 and 1.62 Ux,
respectively. These higher maximum velocities were obtained within two chords lengths from
the trailing edge of the wing. Further downstream, the axial velocity is usually found to have a
wake-like structure. Beninati and Marshall (2005) and Devenport et al. (1996) reported an axial
velocity deficit of 0.86 and 0.80 Ux, repectively. These values were found to stay approximately
constant between about five and thirty chord lengths from the wing.

It is assumed that the root-mean-square variations of the velocity are a good approximation for
the turbulence velocities. The kinetic energy of the turbulence is found to be maximum at or
closely near the vortex centre. This maximum decays within O(1022πr2

1,0/Γvor,0) towards a con-
stant 15% of its value found closest behind the wing. Apparently, the flow field in the inner region
of the trailing vortex rapidly laminarizes towards that with a rather constant turbulence inten-
sity. This supports the findings of both Devenport et al. (1996) and Chow (1997). Devenport et al.
(1996) also concluded that the remaining velocity fluctuations are inactive motions produced as
the core is buffeted by turbulence from the surrounding wake. The high kinetic energy of the
turbulence for the trailing vortex close behind the wing is thought to be inherent to the roll-up
process.

The roll-up of the vortex sheet is illustrated by the distributions of axial velocity. The trailing
vortex becomes approximately axisymmetric at O(1022πr2

1,0/Γvor,0) downstream from the trail-
ing edge of the wing. Radial profiles of the circulation show the necessity for a two-length-scales
trailing vortex model. In such a vortex model, the inner length scale characterizes the viscous
decay of the vortex core while the outer length scale characterizes the roll-up of the vortex sheet.
Here, we applied the vortex models VM1 and VM2 as introduced by Jacquin et al. (2001).

The values for the VM2 parameters β and r2/r1 are found to be higher, respectively lower than
those found by Jacquin et al. (2001). This is most likely caused by the rectangular lift distribu-
tion of our wing, instead of the more elliptical lift distribution of the wing used by Jacquin et al.
(2001). Due to this difference, the axial vorticity is more closely concentrated around the vortex
centre and higher, respectively lower values are found for β and r2/r1.

Van Jaarsveld (2008) found that the radius r1 of the inner vortex region decays like that of a
Lamb-Oseen vortex. This behaviour is retrieved for O(1022πr2

1,0/Γvor,0) downstream from the
trailing edge of the wing. According to Van Jaarsveld (2008), the outer region of the vortex with
radius r2 stays approximately constant. This is in contradiction with our results, which suggest
an evolution in r2. Van Jaarsveld (2008) found values of r2/r1 constantly around ten, while we
observed values evolving from larger than 12 to as small as 3.8. Further analysis is necessary to
resolve this discrepancy.
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Special care is taken to accurately determine the vortex centre position for each of the 1.000 real-
izations in one ensemble. A probability distribution function (PDF) is determined for the radial
position of the vortex centre from its mean position in the stationary frame of reference. The PDFs
show a good agreement with that of a Rayleigh distribution, which suggests that an analogy with
a random walk in two dimensions is possible.

The vortex wandering is more intense with grid-generated turbulence for O(1022πr2
1,0/Γvor,0)

downstream from the trailing edge of the wing. For later times, the vortex wandering was found
to be more intense for the cases without grid-generated turbulence. This is remarkable, and
needs further investigations. One may think of the flow field in the wind tunnel diffuser being
significantly different for the cases with and without grid-generated turbulence. This may influ-
ence the vortex wandering as measured close to the diffuser, there where the more intense vortex
wandering without grid-generated turbulence is observed.

6.1 Future work

We will end this chapter with providing some suggestions for future work.

• Future work may involve hotwire measurements, since these kind of measurements can
capture the small velocities in the outer region of the vortex more accurately. This may solve
the discrepancy between this work and that of Van Jaarsveld (2008) about the evolution of
the outer region of the vortex with radius r2. The effects of vortex wandering are believed to
be very small in the outer region of the vortex, see Appendix H. Nevertheless, the correction
method of Devenport et al. (1996) can be applied, supplemented with a detailed knowledge
of the fluctuating vortex centre position as provided in this work.

• The numerical simulation of a vortex with net vorticity in a flow domain with periodic
boundary conditions is found to be troublesome, see Appendix A. However, we believe
that it is possible to verify the evolution of flow quantities in the inner region of the vortex
with the help of the discussed numerical code. One can think of simulating the evolution of
the trailing vortex with initial conditions found in the experiments at O(1022πr2

1,0/Γvor,0)
downstream from the wing. Here, the influence of the roll-up process on the inner region
of the vortex is believed to be negligible, so that an axisymmetric initial trailing vortex can
be applied.

• We analyzed a single trailing vortex with and without grid-generated turbulence. The grid-
generated turbulence is characterized as having a weak turbulence intensity. This means
that trailing vortex pair would break-up due to the Crow-instability and the subsequent
linking of vortex lines. The break-up of a trailing vortex pair in strong external turbulence is
analyzed by Van Jaarsveld (2008), and it would be interesting to analyze the break-up with
weak external turbulence. This will give more insight in the complex break-up mechanism
as described by Van Jaarsveld (2008).

• Green (1995) reported that the inner region of the vortex becomes approximately axisym-
metric within three chord lengths from the trailing edge of the wing. Future 3C-PIV mea-
surement may be performed at multiple streamwise positions within this region. This will
give more insight in the complex evolution of a jet-like to a wake-like structure in the inner
region of the trailing vortex.
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Nomenclature

f frequency

i integer

t time, t = 0 corresponds to the trailing edge of the wing and the time
increases with downstream distance

j, k jth grid point in y-direction and kth grid point in z-direction as in the
co-moving frame of reference, j = 1..Ny and k = 1..Nz

js, ks jth
s grid point in y-direction and kth

s grid point in z-direction as in the
stationary frame of reference, js = 1..Ns,y and ks = 1..Ns,z

x, y, z streamwise, horizontal, and vertical coordinate in the frame moving
with the vortex centre position, x = 0 corresponds to the position of
the turbulence grid, the vortex centre is located at y = z = 0

r, θ, x radial, azimuthal and axial or streamwise coordinate in the frame of
reference co-moving with the vortex centre, r = 0 corresponds to the
vortex centre

Experimental parameters

α angle of attack of the wing (α = 7.5◦)

Ux main stream velocity (Ux = (15± 0.5) m s−1)

4x streamwise distance of the measurement location from xa

c chord length of the wing (c = 7.5 · 10−2 m)

xa streamwise position of measurement location, is defined as the stream-
wise position of the wings’ trailing edge from the position of the turbu-
lence grid

Values of parameters used to make quantities dimensionless

(Γvor,0/2πr1,0)2 = 1.9 ·102 m2 s−2

2πr2
1,0/Γvor,0 = 4.2 ·10−4 s

Γvor,0 = 5.0 ·10−1 m2 s−1

Γvor,0/(2πr2
1,0) = 2.4 ·103 s−1

Γvor,0/2πr1,0 = 1.4 ·101m s−1

r1,0 = 5.8 ·10−3 m
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Nondimensional quantities

Reλ = urmsλ
ν Taylor Reynolds number based on root-mean-square turbulence veloc-

ity and Taylor microscale

Ref = Γw

ν flight Reynolds number based on root circulation of the wing

Revor = Γvor

ν trailing vortex Reynolds number based on total circulation of the trail-
ing vortex

Postprocessing parameters

p,P,P realization p ∈ P and p = 1..P with P = 1.000

4r size of annular bins in which data is averaged

4rs,c size of annular bins for determining a PDF for the vortex centre posi-
tions rp

c,s

PDF probability distribution function

rp
c,s centre of vortex for realization p in the vortex stationary frame of ref-

erence with rc,s = 0 as the mean vortex cenrtre position in ensemble
P

yp
c,s,zp

c,s y- and z-coordinate of the vortex centre for realization p ∈ P in the
vortex stationary frame of reference with yc,s = zc,s = 0 as the mean
vortex cenrtre position in ensemble P

Flow quantities

Γ circulation

ν kinematic viscosity

Ω rotation rate of a vortex in solid-body rotation

ω vorticity

ρ density

4H viscous contribution to Bernoulli function, 4H = 0

4pcont pressure drop over contraction, the main stream velocity Ux is con-
trolled by 4pcont

ε turbulence dissipation rate

E energy density

p pressure

p∞ pressure far upstream from the wing where ~U = (0, 0, Ux)

q kinetic energy of turbulence according to q = 1
2 (u2

rms,x + u2
rms,y + u2

z)

s swirl number s = Uθ,max/(Ux,max − Ux)

U velocity
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Sub- and superscripts

0 flow quantity at t(Γvor,0/2πr2
1,0) = 350.0, used for making quantities

dimensionless

A CCD camera A

B CCD camera B

vor value related to the trailing vortex

w value related to the wing

θ θ-component of quantity

a value at the streamwise location of the wings’ trailing edge

max maximum value of a quantity

r r-component of quantity

rms root-mean-square value of fluctuating quantity

x x-component of quantity

y y-component of quantity

z z-component of quantity

Turbulence grid and wind tunnel parameters

σ solidity of turbulence grid, σ = 0.26 m

L,W,H length, width, height of TU/e Goliath wind tunnel test section, L =
8.00, H = 1.05, W = 0.70 m

M mesh size of turbulence grid, M = 2.54 · 10−2 m

Vortex model parameters

β two-length-scales VM2 fit parameter;
Uθ = Ωvorr1(r/r1)−β approximated in the region
r1 / r / r2, see Jacquin et al. (2001)

r̂1 two-length-scales VM1 fit parameter; solid-body rotation Uθ = Ωvorr
in the region 0 < r 5 r1, see Jacquin et al. (2001)

r̂2 two-length-scales VM1 fit parameter; Uθ = Ωvorr1(r/r1)−β in the re-
gion r1 < r 5 r2, see Jacquin et al. (2001)

R vortex core radius of Lamb-Oseen vortex model,
Uθ(r) = Γvor

2πr

(
1− exp(−r2/R2)

)

r1 two-length-scales VM2 fit parameter; solid-body rotation Uθ = Ωvorr
approximated in the region 0 < r / r1, see Jacquin et al. (2001), inner
region of vortex is defined by 0 < r < r1

r2 two-length-scales VM2 fit parameter;
Uθ = Ωvorr1(r/r1)−β approximated in the region
r1 / r / r2, see Jacquin et al. (2001), outer region of vortex is defined
by r1 < r < r2
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Appendix A

Numerical Simulation of a Vortex
with Net Vorticity

The study as described in this appendix considers the influence of periodic boundary conditions
on the numerical simulation of a vortex with net vorticity, of which the trailing vortex is an ex-
ample of this. A detailed description of the Direct Numerical Simulation code can be found in
Kuczaj and Geurts (2006).

Pradeep and Hussain (2004) discussed the influence of boundary conditions in numerical simu-
lations of vortices with net vorticity in turbulence. The effect of periodic boundary conditions are
found to be twofold.

First, the flow field related to the infinite array of periodic images exerts a strain field on the
flow within the computational domain. This strain field realigns and intensifies the turbulence
vortex filaments into vortexlets surrounding the main vortex. These vortexlets have a vorticity
with a sign that is opposite to that of the main vortex. There are two effect of these vortexlets on
the main vortex that have to be considered. The vortexlets can induce strong bending waves on
the main vortex, and they peel away vorticity from the main vortex.

Second, the periodicity implies that the net circulation contained within the domain must be pre-
cisely zero. Consequently, an isolated vortex is rendered centrifugally unstable by the Rayleigh
criterion, see Rayleigh (1880).

This study is organized as follows. We will first specify the circulation profiles of the vortices
that will be simulated. We define three variations of the vortex core size relative to the compu-
tational flow domain, and two vortex Reynolds numbers. This means that we have six vortex
configurations in total. In the subsequent sections, the influence of the periodic boundary con-
ditions on all six vortex configurations with and without a turbulent background is analyzed. It
will become clear that a vortex with net vorticity can only be simulated, with periodic boundary
conditions, under certain conditions.

A.1 Initialization of vortex parameters

We will analyse the effect of the periodic boundary conditions on vortices with net vorticity.
These vortices are described by the two-length-scales Vortex Model 2 of Jacquin (VM2), see Fabre
and Jacquin (2004). The azimuthal velocity profile is given by

Uθ(r) =
Ωvorr

[1 + (r/r1)4](1+β)/4[1 + (r/r2)4](1−β)/4
, (A.1)
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in which r2 > r1. The radius r1 characterizes the inner region of the vortex rotating with angular
frequency Ωvor, and the radius r2 characterizes the outer region of the vortex in which 97% of
the total circulation Γvor = 2πΩvorr

2
1

r2
r1

1−β is contained. The angular velocity decays according
to Uθ(r) ∼ r−β in the region r1 / r / r2, and according to Uθ(r) ∼ r−1 for r ' r2. The circulation
profile of the VM2 is specified by:

Γ(r) = Γvor
(r/r1)2

r2
r1

1−β · [1 + (r/r1)4]
1+β
4 · [1 + (r/r1)4]

1−β
4

. (A.2)

Batchelor (1964) considered the axial velocity component of a trailing vortex. The link between
the azimuthal and axial components of motion in a steady line vortex is provided by the pressure;
the radial pressure gradient balances the centrifugal force. Batchelor (1964) derived that the axial
velocity in the vortex core is given by

U2
x,vor(r) = U2

x − U2
θ (r) + 2

∫ ∞

r

U2
θ (r)
r

dr, (A.3)

with Ux the x-component of the main stream velocity at infinity in which we assumed Ux =√
U2

x . It has to be remarked that Batchelor (1964) applied the Bernoulli theorem in which no loss
of total pressure is assumed. In combination with Eq. A.1, one is able to derive the axial velocity
profile. Since no analytical solution of the axial velocity profile is available, we determine the
axial velocity profile by numerical integration

U2
x,vor(r) = U2

x − U2
θ (r) +

N=5000∑

i=0

U2
θ (r + i · 4r′)
r + i · 4r′

· 4r′; 4r′ =
1
50

r1, (A.4)

in which we assume that r + 7500 · 4r′ is approaching infinity. This means that the maximum
radius over which integration takes place for r = 0 equals 150 · r1 = 15 · r2 when r2,0/r1,0 = 10,
see Van Jaarsveld (2008) and Fabre and Jacquin (2004).

The vortex Reynolds number is defined by ReΓvor,0 = Γvor/ν, and varies in the experimen-
tal work of Van Jaarsveld (2008) between 16 · 103 and 48 · 103. In this study, we analyse vortices
with ReΓvor,0 = 30 · 103 and 7.5 · 103. Van Jaarsveld (2008) found that the VM2 parameter β is
typically 0.8. It is experimentally found that r2/r1 = 10, see for example Van Jaarsveld (2008)
and Fabre and Jacquin (2004). With β = 0.8 and r2/r1 = 10, the fixed vortex Reynolds number
can be obtained by several combinations of Γvor,0 and r2,0(r1,0). With the sides of computational
domain equal to Lbox = 1, we define for each vortex Reynolds number three cases defined by
r1,0/Lbox = 0.020, 0.027 and 0.040, see Figure A.1.

The simulations are performed with a numerical resolution N3 = 2563. This means that the vor-
tex inner region with radii r1,0/Lbox = 0.02, 0.027, and 0.04 is resolved by 256 · r1,0/Lbox = 5, 7,
and 10 grid points, respectively. One may ask whether if it is sufficient to resolve the vortex core
by only five grid points. To test this, we analyse the Lamb-Oseen vortex

Uθ(r) =
Γvor

2π

1− exp(−r2/R2)
r

, (A.5)

with core radius R initially resolved by five grid points. The analytical solution of the Lamb-
Oseen vortex tells us that the vortex core radius evolves according to R2(t) = R2

0 + 4vt. This
relation can be retrieved in Figure A.2b, which shows the evolution of the core radius R for a
Lamb-Oseen vortex with ReΓvor,0 = 30 · 103. Apparently, it is sufficient to resolve the Lamb-
Oseen vortex core R by five grid points. Herewith, we assume that the axial velocity profile is
sufficiently resolved as well. This is acceptable since the vorticity corresponding to the axial ve-
locity profile is approximately a order lower than that of the main vortex.
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Figure A.1: The azimuthal and axial velocity of the VM2 profile. The axial velocity profile is determined
by Eq. A.4, in which we set U2

x = 0. The inner vortex radius r1,0/Lbox is set to 0.020, 0.027 and 0.040.

It is sufficient to resolve the core R of a Lamb-Oseen vortex with five grid points only. We will
now compare the vorticity distribution of a VM2 vortex at c of which the core r1,0 is resolved
with ten (r1,0/Lbox = 0.04), seven (r1,0/Lbox = 0.027), and five (r1,0/Lbox = 0.02) grid points. The
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evolution of vortex core against the radius nondimensionalized with r1,0 is shown in Figure A.3.
From this, one can see that the evolution of the inner vortex region with initial radius r1,0 re-
solved with ten (r1,0/Lbox = 0.04) grid points, matches that with seven (r1,0/Lbox = 0.027) and
five (r1,0/Lbox = 0.02) grid points. This supports our earlier analysis of a Lamb-Oseen vortex,
that it is sufficient to resolve the vortex inner radius r1,0 with five grid points only.

A.1.1 Relevant time domain

In the experimental work of Van Jaarsveld (2008), the evolution of the vortex is analyzed only
in a limited time domain. This time is determined by the length of the wind tunnel and the
main stream velocity. We apply a nondimensional time scale to define the same time domain
in the numerical and experimental work. The advection time scale is defined by 2πr2

1/Γvor,
and the diffusion time scale by r2

1/ν. We will determine these time scales for a trailing vortex
that is sufficiently far away from the wing such that remains of the roll-up process can be ne-
glected. With the wing located at xa = 1.5 m, the parameters for a vortex at 4x = 2.25 m are
t = (L − xa − 4x)/Ua ≈ 5/15 ≈ 0.3 s (L = 8.0 m), r1 ≈ 10 · 10−3 m, Γvor ≈ 0.45 m2s−1,
and ν = 1.5 · 10−5. With these parameters we find a nondimensional advection time domain
of 0 < tΓvor,0/(2πr2

1,0) / 215 and a nondimensional diffusion time domain of tnu/r2
1 / 0.15.

This shows the relative importance of advection against diffusion, and therefore we require
that the nondimensional advection time domain is the same for the experimental and numer-
ical work. This study addresses the influence of the boundary conditions in the time domain
0 < tΓvor,0/(2πr2

1,0) < 225.

A.1.2 Postprocessing of data

The vortex is analyzed by the evolution of the axial vorticity and the circulation profile. The
vorticity field is obtained directly from the numerical code that solves the flow field in spectral
space. The circulation profile is obtained by integrating the vorticity field in the same way as
discussed in Appendix F. Since the initial vortex centre is located at y, z = 0.5Lbox, we set the
maximum radius at which the circulation profile is determined to 0.5 Lbox.
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(a) vorticity profile
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Figure A.2: Evolution of the vorticity profile and vortex core radius for a Lamb-Oseen vortex which core
R0/Lbox = 0.02 is initially resolved by five grid points. The analytical relation for the evolution of the
vortex core R is given by R(t)2 = R0 + 4νt, and can be retrieved in panel b.
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Figure A.3: Snapshot of the axial vorticity distribution at tΓvor,0/(2πr2
1,0) = 225(tnu/r2

1 = 0.15) for
ReΓvor,0 = 30 · 103 and r1,0/Lbox = 0.02 ( ), r1,0/Lbox = 0.027 ( ), and r1,0/Lbox = 0.04
( ). The vortex core with initial size r1,0 is resolved by five, seven, and ten grid points, respectively.
The vorticity distributions match each other, which indicates that it is sufficient to resolve the vortex core
r1,0 with five grid points only.
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Figure A.4: Vorticity distribution for the case ReΓvor,0 = 7.5 · 103, r1,0/Lbox = 0.02 for
tΓvor,0/(2πr2

1,0) = 20. The periodic boundary conditions requires net zero circulation, this is achieved by
a vorticity concentration near the boundary, that is at y/Lbox = 1, with a sign opposite to that of the main
vortex. The centre of the main vortex is located at y/Lbox = 0.5.
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Figure A.5: Vorticity distribution for the case ReΓvor,0 = 7.5 · 103, r1,0/Lbox = 0.02 for the initial
condition tΓvor,0/(2πr2

1,0) = 0 and tΓvor,0/(2πr2
1,0) = 20, as is shown in Figure A.4 with linear axes.

Initially, the boundary vorticity distribution shows a non-smooth pattern. At tΓvor,0/(2πr2
1,0) = 20, this

pattern has evolved into a smoother profile.

A.2 Vortex without turbulence

The evolution of the circulation and vorticity profiles of the vortices with ReΓvor,0 = 7.5 · 103 and
30 · 103 with initial inner core radius r1,0/Lbox = 0.02, 0.027, and 0.04 are shown in Figures A.6
and A.7, respectively. Here, the vorticity is shown against the radius that is made dimensionless
with the box size Lbox.

The circulation profile goes to a constant value for the circulation for large radii since the main
vortex is nonisolated. However, the net circulation of the whole flow domain is zero, as required
by the periodic boundary conditions. Note that in Figures A.6 and A.7, we only show the cir-
culation for r/Lbox 50.5, which is only part of the flow domain. The net circulation is brought
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to zero by a concentration of vorticity near the boundaries, with a sign opposite to that of the
main vortex. The vorticity concentrated near the boundary can be seen in Figure A.4 which is a
profile of the axial vorticity in y-direction. It has to be remarked, that this vorticity concentration
near the boundaries is numerically created, and not prescribed: it is a product of the periodic
boundary conditions. Initially, the boundary vorticity distribution shows a non-smooth pattern,
see A.5. This patterns continues even after r2,0 more inwards. However, the amplitude is here
O(10−2) which is believed to be negligibly small. After tΓvor,0/(2πr2

1,0) = 20, the non-smooth
pattern has evolved into a smoother profile.

The opposite-signed vorticity concentrations that wrap around the main vortex in ring-like struc-
tures are called vortexlets. The vortexlets can induce strong bending waves on the main vortex,
and it can merge with the main vortex such that vorticity gets dissipated. Moreover, since the
net circulation needs to be zero, centrifugal instability can be initiated. Neither strong bending
waves, nor centrifugal instabilities are found to occur in all the analyzed cases. Note that this
asymmetric behaviour may occur when the flow is initially perturbed. We therefore analyse the
same cases with turbulence in Section A.3.

The evolution of the vorticity distribution in a yz-plane is given for ReΓvor,0 = 7.5 · 103 and
r1,0/Lbox = 0.02, and ReΓvor,0 = 30 · 103 and r1,0/Lbox = 0.04 in Figures A.9, and A.10, respec-
tively. Here, one clearly sees that for ReΓvor,0 = 7.5 · 103 and r1 = 0.02, the vortexlets consists
of four bands of strong vorticity moving inwards in time. For ReΓvor,0 = 30 · 103 and r1 = 0.04,
the vortexlets spread out more quickly and are more equally distributed over a larger region sur-
rounding the main vortex. The vortexlets spread inwards in time primarily due to advection by
the main vortex flow field.

The vortexlets affect the circulation profile of the main vortex, as can be seen in Figures A.6
and A.7. The circulation profile diverts from the constant value Γvor at large radii. The radius at
which the circulation starts to decrease, that is the radius at which dΓvor(r)/dr = 0, decreases in
time tΓvor,0/(2πr2

1,0) and is dependent on the initial vortex inner radius r1,0/Lbox, but is virtually
independent on the Reynolds number ReΓvor,0 . For both ReΓvor,0 = 7.5 · 103 and 30 · 103 and
at a fixed time tΓvor,0/(2πr2

1,0), the circulation profile starts to decrease at a radius that decreases
with increasing initial vortex inner radius r1,0/Lbox. At tΓvor,0/(2πr2

1,0) = 225, the circulation pro-
files corresponding to the main vortices with r1,0/Lbox = 0.02, 0.027, and 0.04 start to decrease
at r/Lbox = 0.46, 0.42, and 0.35, respectively. Note that the outer radius of the vortex equals
r2,0/Lbox = 10r1,0/Lbox in our definition. The vortices with r2,0/Lbox = 0.2 and r2,0/Lbox = 0.27
evolve most isolated from the vortexlets, when it is assumed that the outer radius stays approx-
imately constant during the simulation r2(t) ≈ r2,0 (note that tν/r2,0 ¿ 1). In this case, there is
the largest distance between the initial vortex core outer radius r2,0 and the point that the circu-
lation starts to decrease dΓvor(r)/dr = 0. The vortex with r2,0/Lbox = 0.4 cannot evolve isolated
from the vortexlet since the vortex outer core radius r2,0 is larger than the radius at which the
circulation starts to decrease dΓvor(r)/dr = 0.

We also numerically simulated the case r1,0/Lbox = 0.02, ReΓvor,0 = 7.5 · 103 with a resolution of
N3 = 3843. The simulations with N3 = 2563 and N3 = 3843 give a better insight in the effect of
the resolution on the periodic boundary effects. Therefore we reproduced Figures A.6a,b for the
case with a numerical resolution N3 = 3843, see Figure A.8. Apparently, increasing the resolution
from N3 = 2563 to 3843 does not significantly influence the evolution of the circulation profile
near the boundaries.
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(b) vorticity profile, r1,0/Lbox = 0.02
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(c) circulation profile, r1,0/Lbox = 0.027
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(d) vorticity profile, r1,0/Lbox = 0.027
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(e) circulation profile, r1,0/Lbox = 0.04
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(f) vorticity profile, r1,0/Lbox = 0.04

Figure A.6: Evolution of the circulation and axial vorticity profile for the vortices with ReΓvor,0 =
7.5 · 103. The smallest radius at which the circulation starts to decrease due to the effects of the peri-
odic boundary conditions is for r1,0/Lbox = 0.04 at r/Lbox ≈ 0.34, see panel e. tΓvor,0/(2πr2

1,0) =
0 ; 45 ; 90 ; 135 ; 180 ; 225 .
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(a) circulation profile, r1,0/Lbox = 0.02
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(b) vorticity profile, r1,0/Lbox = 0.02
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(c) circulation profile, r1,0/Lbox = 0.027
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(d) vorticity profile, r1,0/Lbox = 0.027
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(e) circulation profile, r1,0/Lbox = 0.04
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Figure A.7: Evolution of the circulation and axial vorticity profile for the vortices with ReΓvor,0 =
30 · 103. The smallest radius at which the circulation starts to decrease due to the effects of the peri-
odic boundary conditions is for r1,0/Lbox = 0.04 at r/Lbox ≈ 0.32, see panel e. tΓvor,0/(2πr2

1,0) =
0 ; 45 ; 90 ; 135 ; 180 ; 225 .
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(a) circulation profile, r1,0/Lbox = 0.02
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Figure A.8: Evolution of the circulation and axial vorticity profile for the vortex with ReΓvor,0 =
7.5 · 103, r1,0/Lbox = 0.02, and with a numerical resolution of N3 = 3843. A close match was
found between these profiles and those in Figure A.6. This means that that increasing the numeri-
cal resolution from N3 = 2563 to 3843 does not significantly influence the extent in which a vortex
specified by r1, ReΓvor,0 , can evolve isolated from the periodic boundary effects. tΓvor,0/(2πr2

1,0) =
0 ; 45 ; 90 ; 135 ; 180 ; 225 .
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Figure A.9: Evolution of the axial vorticity for the vortex with ReΓvor,0 = 7.5 · 103 and r1,0/Lbox = 0.02,
which is rotating counterclockwise. The vortexlets are concentrated in four band near the boundaries. The
vortexlets get primarily advected from the boundaries, but stay concentrated in the region r ' 2r2,0. One
can consider this case (r1,0/Lbox = 0.02) as the case in which the vortex can evolve most isolated from the
effects of the periodic boundaries. The vortex outer core radius r2(t) ≈ r2,0 is smaller than the radius at
which vortexlets are present. The color scale varies for the different panels.

A.2.1 Conclusion and discussion

We may conclude the following:

• It is sufficient to resolve the VM2 vortex inner radius r1,0 with only five grid points;

• The vortex with net vorticity in a periodic domain, results in a opposite-signed vorticity
concentration near the boundaries that are called vortexlets. Initially, the boundary vortic-
ity distribution shows a non-smooth pattern. This patterns continues even after r2,0 more
inwards. However, the amplitude is O(10−2) which is believed to be negligibly small. The
non-smooth pattern has evolved into a smoother profile after typically tν/r2

1,0 = 1.50 ·10−2.

• Vortexlets are observed near the periodic boundaries. These vortexlets move inward, and
affect the circulation profile of the main vortex. The radius at which the circulation pro-
file starts to decrease (the radius at which dΓvor(r)/dr = 0) from depends on the time
tΓvor,0/(2πr2

1,0), and the size of the vortex r1,0/Lbox, but not on the vortex Reynolds num-
ber ReΓvor,0 and is not significantly dependent on the numerical resolution N3 = 2563 or
3843.

• Although the vortexlets are observed, neither strong bending waves, nor centrifugal insta-
bility is found to occur.
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Figure A.10: Evolution of the axial vorticity for the vortex with ReΓvor,0 = 30 ·103 and r1,0/Lbox = 0.04,
which is rotating counterclockwise. The vortexlets get primarily advected from the boundaries, but stay
concentrated in the region r ' 0.8r2,0. One can consider this case (r1,0/Lbox = 0.04) as the case in which
the vortex can evolve least isolated from the effects of the periodic boundaries. The vortex outer core radius
r2(t) ≈ r2,0 is larger than the radius at which vortexlets are present. The color scale varies for the different
panels.

• The vortex with r1,0/Lbox = 0.02 is found to be most isolated from the vortexlets in the time
domain of 0 < tΓvor,0/(2πr2

1,0) < 225. In other words, there is the largest distance between
the initial vortex core outer radius r2,0 and the point that the circulation starts to decrease
dΓvor(r)/dr = 0.

These conclusions may be different for the cases in which the flow field is perturbed with turbu-
lence. This will be analyzed in the next section.

A.3 Vortex with turbulence

Turbulence can change the evolution of the main vortex and the vortexlets. This means that
the influence of periodic boundary effects on a vortex with net vorticity can be different from
those described in the section above. The case with ReΓvor,0 = 7.5 · 103, r1,0/Lbox = 0.02 and
ReΓvor,0 = 30 ·103, r1,0/Lbox = 0.02 were found to be most isolated from the vortexlets in the time
domain of 0 < tΓvor,0/(2πr2

1,0) < 225. This means that we should now consider these vortices to-
gether with a turbulent background. However, the turbulence field that will to be superimposed
on the vortex with ReΓvor,0 = 30 · 103 cannot be resolved by the numerical grid with resolu-
tion N3 = 3843 (this will be elucidated later). Therefore, we will proceed with only considering
ReΓvor,0 = 7.5 · 103, r1,0/Lbox = 0.02.

73



The turbulence that will be added to the flow field of a VM2 vortex defined by ReΓvor,0 = 7.5 ·103,
r1,0/Lbox = 0.02, is based on the model spectrum discussed in Pope (2000)

E(κ) = Cε2/3κ−5/3fL(κL)fη(κη), (A.6)

where fL(κL) and fη(κη) are specified non-dimensional functions. The function fL(κL) deter-
mines the shape of the energy-containing range, and tends to unity for large κL. Similarly, fη(κη)
determines the shape of the dissipation range, and it tends to unity for small κη. In the inertial
subrange both fL(κL) and fη(κη) are essentially unity, so the Kolmogorov spectrum with κ−5/3

is recovered. The function fL(κL) is defined by

fL(κL) =
( κL√

(κL)2 + c2
L

)11/3
. (A.7)

Clearly fL(κL) tends to unity for large κL, while the exponent 11/3 leads to E(κ) varying as κ2

for small κL. The function fη(κη) is defined by:

fη(κη) = exp−γ[((κη)4 + c4
η)1/4 − cη]. (A.8)

This indicates that the energy-spectrum function decays exponentially for large wavenumbers κ.

The model energy spectrum contains four parameters: the constant C; the exponent γ and con-
stant cL, both important in the large lengths scales; and a constant cη important in the the small
length scales. The results of experimental and numerical work established that C = 1.5 and
γ = 5.2, see for example Saddoughi and Veeravalli (1994). The results of our turbulence experi-
ments suggest that these values are correct. With C = 1.5 and γ = 5.2, we are left with the values
of cη and cL. These values are indirectly determined by specifying values for the turbulence
dissipation rate ε and the integral scale L(≡ E

3/2
tot /ε) since:

ε =
∫ ∞

0

2νκ2E(κ)dκ, (A.9)

L(≡ E
3/2
tot /ε) =

[∫ ∞

0

E(κ)dκ
]3/2

/

∫ ∞

0

2νκ2E(κ)dκ. (A.10)

We determine the values of cη and cL from the turbulence dissipation rate and the integral scale,
since we believe that ε and L are the important parameters in the study on turbulence-vortex
interaction. The turbulence dissipation rate is found to be important in turbulence and trailing
vortices interaction, see for example Van Jaarsveld (2008), while the integral scale represents the
scale of the most energetic eddies that interact with the trailing vortex.

It is now still a matter of defining the turbulence dissipation rate and the integral scale. For
this, we will apply nondimensional values to relate experimental value with those in the nu-
merical simulations. The nondimensional turbulence dissipation rate for the interaction between
turbulence and a single vortex interaction is taken as:

ε∗r1,0
≡ 2π

ε
1/3
0 r

4/3
1,0

Γvor,0
. (A.11)

The nondimensional integral length scale L∗r1,0
is defined to be:

L∗r1,0
=

L

r1,0
. (A.12)

The turbulence generated with the M254 grid and the vortex generated with the same wing as
used by Van Jaarsveld (2008), will result in ε∗r1,0

= 1.3 · 10−2, since ε = 0.067 m2s−3, r1 = 0.01 m,
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and Γvor = 0.45 m2s−1. The same parameters for the M127 grid are given by ε∗r1,0
= 0.9 · 10−2,

since ε = 0.032 m2s−3, r1 = 0.01 m, and Γvor = 0.45 m2s−1. The nondimensional integral length

scale L∗ = ( 3
2 u2

rms)3/2

r1,0ε0
equals 3.5 and 3.2 for the M254 and M127 grid respectively. These values

are based on the turbulence characteristics measured at the position x/L = xa/L = 0.44 and
y, z = 0, see Chapter C.

It is not possible to perform direct numerical simulations of the turbulence flow field that cor-
responds to the vortex with ReΓvor,0 = 30 · 103, r1,0/Lbox = 0.02. The nondimensional turbulence
dissipation rate goes with the third power of the circulation, see Eq. A.11. When the vortex
Reynolds number increases with a factor 4, the dissipation rate increases with a factor 64 (in
case that the inner vortex core radius stays fixed with r1,0/Lbox = 0.02). When the dissipation
rate increases with a factor 64, the Kolmogorov microscale becomes about 2.5 times smaller since
η ∼ ε−1/4. It was found that the Kolmogorov microscale corresponding to the turbulent flow
field for ReΓvor,0 = 7.5 · 103, r1,0/Lbox = 0.02 becomes as small as 2/3N for N3 = 3843, that is 2/3
of the distance between two grid points. This shows that ReΓvor,0 = 7.5 · 103,r1,0/Lbox = 0.02 is
already close to the limit for N3 = 3843. It becomes possible to perform direct numerical simu-
lations of ReΓvor,0 = 30 · 103, r1,0/Lbox = 0.02 with corresponding turbulence when a numerical
resolution of N3 = 10243 is applied.

With the model spectrum given by Eq. A.6; C = 1.5 and γ = 5.2 fixed; and both ε∗r1,0
and L∗r1,0

determining cη and cL, the spectrum is completely specified. The turbulence fields are initialized
with different values of ε∗r1,0

, L∗r1,0
than those corresponding to the trailing vortex in turbulence

generated by the M254 and M127 grids. In this way, the turbulent field is able to relax before the
desired values of ε∗r1,0

, L∗r1,0
are obtained. To quantify the relaxation process of the turbulence,

we consider the total energy Etot, the Taylor Reynolds number Relambda, and the skewness of
S. The resolved kinetic energy is strongly influenced by the larger scales in the flow, whereas
Relambda and S depend on the components of the velocity derivatives and hence characterize the
accuracy with which smaller scales are captured. The evolution of these parameters are shown
in Figure A.11.

The nondimensional energy spectra E11(k)Γ2
vor,0/r1,0 obtained in the experiments and applied

in the numerical simulation for L∗ = 3.5, ε∗r1,0
= 1.3 · 10−2 (M254) and L∗ = 3.2, ε∗r1,0

= 0.9 · 10−2

(M127) are shown in Figure A.12. Distributions of the absolute vorticity for the numerical sim-
ulations are shown in Figure A.13. The evolution of the circulation profiles of the turbulent flow
fields are shown in Figure A.14. These results reveal that the turbulent flow field alters the initial
VM2 circulation profile with ten percent at maximum.

The turbulence flow field with L∗ = 3.6, ε∗r1,0
= 1.3 · 10−2 (M254) is now added to the flow

field of a vortex with ReΓvor,0 = 7.5 · 103, r1,0/Lbox = 0.02. The circulation profiles, as also given
in Figure A.6 without turbulence, are shown in Figure A.15. These circulation profiles are ob-
tained by integration of the average axial vorticity distribution. Here the averaging takes place
in the axial and azimuthal direction. Apparently, the integral scale of turbulence is too large to
obtain averaged circulation profiles according to limL→0 Γ(r) = 0.

Note that the initial circulation profile of a vortex in turbulence is a superposition of that due
to turbulence, see Figure A.14, and due to the vortex, see Figure A.6. The fluctuations between
0.15 / r/Lbox / r0.30 are due to the turbulent flow field, the boundary effect is visible for
r ' 0.30. The evolution of the circulation between a vortex with and without turbulence can be
observed by comparing Figures A.15 and A.6. One should note that the negative vorticity con-
centration near the boundaries gets advected further in the same amount of time. For the case
without turbulence, the radius at which the circulation starts to decrease dΓvor(r)/dr = 0, moved
inwards to r/Lbox = 0.46. In the case with turbulence, this radius is r/Lbox ≈ 0.35. However, it
is difficult to separate the effect of turbulence and the periodic boundary conditions on the circu-
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lation profile.

Distributions of the axial vorticity distribution are given in Figure A.16. Concentrated bands
of opposite-signed vorticity, that are vortexlets, are less present than in the case without turbu-
lence, compare Figures A.9 and A.16. The vortexlets are believed to be advected by the turbulent
flow field over a wider area, including the area more inwards. The turbulence is in this view
responsible for distributing the opposite-signed vorticity quicker inward.

A.3.1 Conclusion and discussion

We may conclude the following:

• The initial circulation profile is influenced by turbulence and the opposite-signed vorticity
concentration near the boundaries. The initial turbulence results in a fluctuation on the
initial circulation profile of maximal 7% (M127) and 10% (M254).

• The vortexlets near the periodic boundaries mix with turbulence. Therefore, they get ad-
vected quicker and further inwards than in the case without turbulence. The vortex evolves
in an isolated way from the periodic boundary effects in the time domain till tΓvor,0/(2πr2

1,0) =
225. In this time domain, the vortex core outer radius r2(t) ≈ r2,0 = 0.2/Lbox is ap-
proximately smaller than the radius at which opposite-signed vorticity is concentrated
(r/Lbox ' 0.35).

• Although the perturbed flow field is centrifugally unstable, no overturning motion (which
is typical for centrifugal instability) is found to occur. Signs of bending waves are visible,
but is is unknown if these are caused by the periodic boundary conditions; this needs a
more thorough analysis with different kinds of boundary conditions.
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Figure A.11: The evolution of the skewness and the Taylor Reynolds number show that initial effect are
present. The skewness needs to be typically 0.5, and the Taylor Reynolds number normally decreases in
decaying turbulence. Therefore, the turbulence needs to be relaxed for a sufficient amount of time. The
turbulence corresponding to L∗ = 3.6, ε∗r1,0

= 2 ·10−3 (M254) ( ) is decayed for tΓvor,0/(2πr2
1,0) =

150 and that of L∗ = 3.2, ε∗r1,0
= 1.5 · 10−3 (M127) ( ) for tΓvor,0/(2πr2

1,0) = 120.
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Figure A.12: The longitudinal energy spectrum nondimensionalised with the vortex parameters Γvor and
r1,0. It becomes clear that the nondimensional enegy of the turbulence with length scale r1,0 corresponds
with that of the experiments.
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Figure A.13: Distributions of the absolute vorticity are shown for the cases L∗ = 3.6, ε∗r1,0
= 2 · 10−3

(M254) and L∗ = 3.2, ε∗r1,0
= 1.5 · 10−3 (M127).
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Figure A.14: The circulation profile of the turbulent flow field corresponding to L∗ = 3.6, ε∗r1,0
= 2 · 10−3

(M254) ( ) and L∗ = 3.2, ε∗r1,0
= 1.5 · 10−3 (M127) ( ). The circulation is normalized with

Γvor corresponding to ReΓvor,0 = 7.5 · 103. It becomes clear that the turbulent flow field alters the initial
VM2 circulation profile with maximal ten (M254) and seven (M127) percent. Apparently, the integral
scale of turbulence is too large to obtain averaged circulation profiles according to limL→0 Γ(r) = 0.
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Figure A.15: Evolution of the circulation profile for the vortex with ReΓvor,0 = 7.5 · 103 and r1,0/Lbox =
0.02 with turbulence specified by L∗ = 3.6, ε∗r1,0

= 2 · 10−3 (M254). The boundary effect of de-
creasing circulation is clearly visible. However, it is difficult to separate the effect of turbulence and
the periodic boundary conditions on the circulation profile. For the case without turbulence, the ra-
dius at which the circulation starts to decrease dΓvor(r)/dr = 0, moved inwards to r/Lbox = 0.46.
In the case with turbulence, this radius is r/Lbox ≈ 0.35. The advective property of turbulence is be-
lieved to be responsible for distributing the opposite-signed vorticity quicker inward. tΓvor,0/(2πr2

1,0) =
0 ; 45 ; 90 ; 135 ; 180 ; 225 .
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Figure A.16: Evolution of the axial vorticity for the vortex with ReΓvor,0 = 7.5 ·103 and r1,0/Lbox = 0.02
with turbulence specified by L∗ = 3.6, ε∗r1,0

= 1.3 · 10−2 (M254). One can see that negative vorticity,
initially concentrated near the boundary, moves inwards in time. The color scale varies for the different
panels.
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Appendix B

Motivation for Turbulence Grid
Design

This work considers the evolution of a single trailing vortex without and with grid-generated
turbulence. By applying weak instead of strong external turbulence, it is believed that we will
contribute to an enhanced understanding of the observations made by Van Jaarsveld (2008). It
has to be remarked that the definition of weak or strong turbulence given by Crow and Bate
(1976) depends on the distance between the two trailing vortices, and that we use typical values
for these as applied by Van Jaarsveld (2008). Note that experiments on the breakdown of a trail-
ing vortex pair in weak turbulence will be executed in a later stage of the TU/e trailing vortex
program. For this, the analysis of a single trailing vortex in weak turbulence will be a good start-
ing point.

This appendix is organized as follows. We first discuss the theory of grid-generated turbulence
and some relevant parameters in the decay of a trailing vortex pair in turbulence. With that in
mind, we then discuss some alternatives to designing a new turbulence grid. After that, the bi-
plane and perforated turbulence grid configurations are considered. The choice for a biplane grid
with specific mesh sizes and solidity, is motivated by streamwise profiles of turbulence quanti-
ties, as derived by applying the empirical formulas of grid-generated turbulence. We end this
study with some points of discussion and the conclusion.

B.1 Theory

We will first briefly discuss the theory of grid-generated turbulence. This is primarily developed
and applied by Comte-Bellot and Corssin (1966). After this, we consider the relevant turbulence
quantities in the decay of a trailing vortex pair in turbulence. These quantities are made dimen-
sionless with parameters of the trailing vortex pair.

B.1.1 Theory for grid-generated turbulence

Following Comte-Bellot and Corssin (1966), we use the empirical formula

u2
rms,x = U2

xA−1

(
Uxt

M
− Uxtv

M

)−m

, (B.1)

with u2
rms,x the mean square turbulent velocity in the x-direction; Ux the mean main stream ve-

locity (Uy = Uz = 0), M the mesh size of the turbulence grid, and t the time. The streamwise
distance from the grid equals x = Uxt. The parameters m, A, and Uxtv = xv vary with grid
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and flow configurations. Uxtv = xv corresponds to the virtual origin of turbulence decay such
that u2

rms,x decays exponentially with (Uxt/M)−m. Because isotropy is not guaranteed, one usu-
ally makes a distinction between the turbulent velocity components parallel to the main stream
velocity, urms,x, and the components perpendicular to this, urms,y, uz . However, for the sake of
the argument, we assume isotropy, u2

rms,x = u2
rms,y = u2

z . The rate of decay of the turbulence
intensity is defined by:

ε = −1
2

d

dt
(u2

rms,x + u2
rms,y + u2

z) = −3
2

d

dt
(u2

rms,x). (B.2)

To compare different grid geometries, we need an equation for the dissipation rate similar to
Eq. B.1. For this, Friehe and Schwarz (1970) used the expression for the eddy dissipation rate in
homogeneous and isotropic turbulence that is related to the Taylor microscale λ by

ε = 15ν
u2

rms

λ2
, (B.3)

see for example Pope (2000). Furthermore, it is shown by Batchelor (1960) that λ2 equals 10νt/m
in the case of isotropic turbulence. Combining the latter with Eq. B.3 yields

ε =
3mU

3

x

2MA

(
Uxt

M

)−1−m

, (B.4)

where we have ignored the offset parameter Uxtv/M = xv/M , which is found to be in other grid
turbulence experiments O(5), see for example Comte-Bellot and Corssin (1966), Mohamed and
Larue (1990), Liu et al. (2007), and Lavoie et al. (2007). Moreover, we have assumed that U2

x = U
2

x.
This may cause slight differences in the values found for A with Eq. B.1 and B.4.

B.1.2 Relevant parameters in the decay of a trailing vortex pair in turbulence

In the trailing vortex society, the turbulence dissipation rate ε is made dimensionless with the
help of the tip vortices separation distance b0 and the downwash velocity Uvor

z,0 = Γvor,0/2πb0

(with Γvor,0 the circulation of the trailing vortex at time t = 0):

ε∗b0 =
(εb0)1/3

Uvor
z,0

. (B.5)

From Eq. B.4 and B.5, one can deduce the relation ε∗b0 ∼ M
n
3 . The dimensionless time is defined

as:
t∗ =

b0

Uvor
z,0

. (B.6)

Van Jaarsveld (2008) considered ε∗b0 = O(10−1 − 1) which is characterized as strong turbulence
by the definition of Crow and Bate (1976). In this work, we are interested in weak turbulence:
ε∗b0 = O(10−2).

B.2 Alternatives to a new turbulence grid

We will first discuss some alternatives that are possible in reducing the dimensionless eddy dissi-
pation rate ε∗b0 without realizing a new grid. Considering Eq. B.5, one can reduce ε∗b0 by increasing
the root circulation of the wing Γw ∼ Γvor,0 or decreasing the wing-tip separation distance d ∼ b0.
The former is possible by increasing the angle of attack of the current wing design. However, in-
creasing the angle of attack is already applied by Van Jaarsveld (2008) and thus will not result in
uncovered values of ε∗b0 . The second option in increasing the circulation, is to construct a new
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wing. This option is due to economical and practical reasons not favorable.

Our second alternative is to decrease the wing-tip separation distance d and with that the trailing
vortices separation distance b0. The trailing vortices separation distance is related to the dimen-
sionless eddy dissipation rate by ε∗b0 ∼ b

4/3
0 . Van Jaarsveld (2008) varied the wing-tip separation

distance between b0 = 10.00, 5.00, and 3.00 · 10−2 m. They concluded that b0 = 3.00 · 10−2 m is
already the minimum value possible due to overlap of the trailing vortex cores. Therefore, it is
not possible to reduce the dimensionless eddy dissipation rate anymore by this method.

To summarize, there are two alternative possible in decreasing the dimensionless eddy dissipa-
tion rate. The first one is to construct a new turbulence grid with a smaller mesh size so that the
turbulence intensity is lower, and the second one is to construct a new wing design that induces
a higher circulation. The former is favorable due to practical and economical reasons.

B.3 Turbulence grid designs and parameters

Turbulence generated by passive grids is extensively discussed in the literature. When grid-
generated turbulence is analyzed, one is generally interested in the intensity, homogeneity, and
isotropy of the turbulent flow along the longitudinal direction. In general, two types of pas-
sive grid configurations can be distinguished in studies of grid-generated turbulence: perforated
plates and biplane grids. Biplane grid are built out of two layer, one with horizontal bars and
one with vertical bars. Together they form a grid of square openings. Especially the biplane grids
are common as a turbulence generator. This is presumably due to the convention and the ease of
building a grid as opposed to making a perforated plate. We will first discuss the solidity, that is
the parameter that defines the area fraction of the solid portion, which is therefore independent
of the grid type. Turbulence that is produced by a grid acquires its energy primarily from the
pressure drop across the turbulence generator. The pressure drop, and ultimately the turbulence
level, depends essentially on the mesh size but also on the turbulence generator solidity ratio,
see Baines and Peterson (1951), Mohamed and Larue (1990), and Liu et al. (2004). Liu et al. (2004)
found that the turbulence generated by a passive grid with a fixed mesh size is related to the
solidity by:

ln




√
u2

rms,x

Ux


 ∼ ln(p) + qσ, (B.7)

with the empirical parameter p in the range of 1.0-2.5, and q in the range of 1.6-2.0. The value for
q is found to be constant with downstream distance to the grid. This implies that the influence of
the plate solidity persists as the turbulence is convected downstream. The value of p decreases
in downstream direction, which indicates that the turbulence decays. The influence of the grid
solidity σ on the eddy dissipation rate can now be derived by combining Eq. B.3 and Eq. B.7:

ε ∼ u2
rms,x ∼ e2qσ. (B.8)

A decrease of the grid solidity from 0.36 to 0.26 results in a decrease of ε with approximately 30%,
that is approximately a decrease of 10% for ε∗b0 . In other words, the influence of the grid solidity
on the turbulence intensity is significant.

An optimal grid solidity depends on more factors. In order to obtain isotropic turbulence, the
solidity ratio of the turbulence generator cannot be too high. Otherwise, the uniformity of the
mean flow will cease to exist. Moreover, the maximum obtainable wind tunnel speed becomes
lower when the solidity increases. In our work, a compromise between the desired turbulence
intensity, uniformity of the flow (lower solidity), maximum obtainable wind tunnel speed (solid-
ity of 0.2, to math conditions of Van Jaarsveld (2008)), the robustness of the turbulence generator
(higher solidity), and convention in grid-generated turbulence studies (σ varying between 0.30
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and 0.45), results in a solidity around 0.25. We will now proceed with discussing the two kinds
of passive grid configurations.

B.3.1 Turbulence grids of perforated plates

Perforated plates occur with round openings and square openings, see for example Bailey and
Tavoularis (2008), Liu et al. (2004), and Liu et al. (2007). No study has been found that discusses
the influence of the hole shape (round or square) on the intensity, isotropy, and homogeneity of
the turbulence. The work of Liu and Ting (2007) discusses the difference of turbulence generated
by sharp-edged orificed perforated plates and perforated plates that have a finite thickness. With
this, the influence of the thickness of the perforated plate on the turbulence generated by the
perforated plate is analyzed. Liu and Ting (2007) found that the turbulence generated by sharp-
edged orifice perforated plates is relatively more intense and more isotrope.

B.3.2 Biplane turbulence grids

We will now continu with discussing the second type of passive turbulence generator: the biplane
grid. The biplane grids can be separated in those built out of square bars, and those built out of
round bars, see for example Comte-Bellot and Corssin (1966), Mohamed and Larue (1990), and
Lavoie et al. (2007). Furthermore, the grid is defined by the mesh size and solidity. The solidity σ
is defined by

σ =
D

M

(
2− D

M

)
, (B.9)

in which M is the mesh size and D the diameter of the round bars or length of the sides of the
square bars. It was found by Lavoie et al. (2004), that the bar shape exerts a stronger influence
on the energy containing scales than the grid solidity, which has little effect on the scales ranging
from Kolmogorov length to Taylor microscale. Therefore, we will continue with concentrating
on the shape of the bars. Lavoie et al. (2007) showed that round bars result in a more isotropic
turbulence distribution, than their square bar counterpart. However, round bar result in a more
coherent structure of the large scales, see Lavoie et al. (2005). In other words, square bar are more
efficient at destroying their large scale flow coherence. To prevent the coherence of the large scale,
Lavoie et al. (2007) analyzed the turbulence generated by a biplane grid with round bar, which
have a small helical wire wound around the bars at a pitch of one mesh length. They showed
that the helical wire effectively reduces the coherence at the larger scales.

The intensity of the turbulence generated by grids with square bars is found to be higher than
that generated by comparable grids with round bars, see Comte-Bellot and Corssin (1966) and
Lavoie et al. (2007).

It is believed that both the biplane grid and perforated plates as turbulence generators are able to
result in desirable turbulence characteristics as intensity, isotropy, and homogeneity. However,
detailed complementary studies of turbulence generated by perforated plates are not present as
is the case with biplane grids. Many studies considered the turbulence generated by biplane grid
built of square and round bars, with a mesh size of 2.54 cm (1 inch) and 5.08 cm (2 inch) and a so-
lidity varying between 0.30 and 0.45, see for examplwe Comte-Bellot and Corssin (1966), Friehe
and Schwarz (1970), Uberoi and Wallis (1976), Mohamed and Larue (1990), Lavoie et al. (2004),
Lavoie et al. (2005), Lavoie et al. (2007). This means that the characteristics (intensity, homogene-
ity, isotropy) are already well investigated for some very specific biplane grid designs, in contrast
to that of perforated plates. Therefore, we will apply a biplane grid as turbulence generator in
our work. From a practical/economical point of view, there is no significant difference in the
ease/cost of producing biplane grids or perforated plates.
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Figure B.1: Design ’M125’ of biplane grid with round bars.
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Figure B.2: Design ’M250’ of biplane grid with round bars.
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B.4 The final turbulence grid

In this work, we will use a biplane grid with round bars as turbulence generator. A biplane grid
with round bars is preferred above that with square bars because of a higher expected isotropy
and a relatively milder turbulence intensity. To reduce the coherence of the turbulence at large
scale as reported by Lavoie et al. (2005), we apply the adapted round bar design of Lavoie et al.
(2007). This design includes a small helical wire wound around the bars at a pitch of one mesh
length. The turbulence characteristics, besides the reduction of the large scale coherence, are not
believed to be significantly different than that generated by comparable round bar designs with-
out this extra feature.

By combining the turbulence data of Van Jaarsveld (2008) (M = 10 · 10−2 m) with Eq. B.4, it
is possible to deduce values for the empirical parameters A and m. In doing this, we assume that
these parameters are independent of the mesh size M . Further analysis showed that turbulence
grids with mesh sizes of M ≈ 1.27 · 10−2 m and M ≈ 2.54 · 10−2 m combined with a solidity
of around 0.25, will result in a grid that generates turbulence with characteristics that cover our
desired range of intensities.

With the dimensions of the TU/e wind tunnel Goliath in consideration, our biplane grids M125
and M250 are defined by the combinations M = 1.25 · 10−2 m, D = 1.75 · 10−3 m and M =
2.50 · 10−2 m, D = 3.50 · 10−3 m, see Figure B.1 and B.2. In this way, the cross-sectional area of
the TU/e wind tunnel Goliath covers an integer number of meshes Nz and Ny . Both grids have
a solidity equal to 0.26.

When the bars are made of yellow brass, the resonance frequency (fres =
√

k/m/2π) of an in-
dividual bar is approximately 281·103 (along y-direction, D = 1.75 · 10−3 m), 344·103 Hz (along
z-direction, D = 1.75 · 10−3 m), 140·103 (along y-direction, D = 3.50 · 10−3 m), 172·103 Hz (along
z-direction, D = 3.50 · 10−3 m). The resonance frequency of the whole bar construction is 32·103

Hz (D = 1.75 · 10−3m) and 23·103 Hz (D = 3.50 · 10−3m). Here, the modulus of elasticity k
is given by k = 10 · 1010 N/m2 and the mass m is determined with a density of yellow brass of
ρ = 8.47g/cm3, see Lide (2006). The Strouhal frequency is determined with fstr = 0.21·Ux/(D/2),
see Kundu et al. (2008). With Ux = 15 m/s, this results in fstr = 3.6 · 103 Hz (D = 1.75 · 10−3 m)
and 1.8 · 103 Hz (D = 3.50 · 10−3 m). Resonance is not to be expected. The isotropy, expressed

as the ratio of
√

u2
rms,x/u2

rms,y , is expected to be of order 1.1-1.3. These are typical values for tur-
bulence generated by passive grids, see for example Comte-Bellot and Corssin (1966), Liu et al.
(2007), and Lavoie et al. (2007). Comte-Bellot and Corssin (1966) showed that a contraction of the

wind tunnel, located after the grid results in a condition of
√

u2
rms,x/u2

rms,y approaching unity.
However, it is not possible to build a secondary contraction in the TU/e wind tunnel Goliath. We
will continue with discussing the turbulence characteristics belonging to our grid.

The maximum main stream velocity is assumed to be Ux = 15 m/s for a turbulence grid with a
solidity of 0.26. This assumption is based on the main stream velocity achieved with a compara-
ble grid with solidity of 0.26 in the TU/e wind tunnel Goliath, see Van Jaarsveld (2008). A mean
stream velocity of Ux = 15 m/s results in Γw ≈ 0.6 m2/s for an angle of attach α = 7.5◦. We
elaborated the evolution of ε∗b0 and u/Ux for M = 12.5 · 10−3 m and M = 25.0 · 10−3 m, with
b0 = 10.00, 5.00, and 3.00 · 10−2 m. Herewith, we assume dat the wing-tip separation distance
is equal to the vortex separation distance; d = b0. In this analysis, we use the values A = 18,
m = 1.36, and U0t0/M = 0. Although no study exists with exactly corresponding grid specifica-
tions, we found that the values for our empirical parameters are typical for comparable biplane
grids and main stream velocities, see for example Comte-Bellot and Corssin (1966). Our profiles
of turbulence quantities satisfies those of Beninati and Marshall (2005), who used a grid with
M = 5.0 · 10−3 m.
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It takes about 40M before (quasi-)isotropy and (quasi-)homogeneity of the turbulence gener-
ated by a grid with round bars are developed, see for example Comte-Bellot and Corssin (1966)
and Mohamed and Larue (1990). This is equal to 0.50 m for M = 12.5 · 10−3 m, and 1.00 m
for M = 25 · 10−3 m, see Figure B.4 and B.5. Values of ε∗b0 that are O(10−2) are well covered
with our flow and grid configuration, see Figure B.3. Variations of 0.5% of the main velocity
(urms,x/Ux = 0.005) can still be measured with the current hotwire measurement technique. Be-
cause the variations of the main velocity will drop in stream wise direction eventually below
0.5%, extrapolation of urms,x/Ux may be necessary, see Figure B.6.

The magnitudes of the length scales within the free stream could play an important role in the in-
teraction between the turbulence and the vortex. It is shown in Figure 3 of Bailey and Tavoularis
(2008), that the large length scales equal the grid size after 100M. Furthermore, they showed that
the large length scales L increase in streamwise direction according to L ∼ x0.4. With the length
of test section of the TU/e wind tunnel Goliath equal to 640M (M = 12.5 · 10−3 m) and 320M
(M = 25 · 10−3 m), the large length scale will be increase to about 1.2M = 2.1 · 12.5 · 10−3m =
26 · 10−3 m and 1.6M = 1.6 · 25 · 10−3m = 40 · 10−3 m. The location of the wing xa will be deter-
mined by a compromise between (1) isotropy/homogeinity of the flow (large xa) (2) intensity of
the turbulence (average to large xa, see Figure B.3) (3) the dimensionless lifespan of the trailing
vortex which has to be contained in the test section of the TU/e wind tunnel Goliath (small to
average xa). These conditions are condensed in Figure C.19. From this, it follows that the option
to choose for two wing locations, denoted by xa, is considerable. One may think of xa = 3.5 m
and 4.5 m as appropriate wing locations. With the wing location of xa = 4.5 m, it will only be
possible to use the wing-tip separation distance of d = 5.00 and 3.00 · 10−2 m.

B.5 Points of discussion

We will end this study on turbulence grid design with some points of discussion:

1. The values of the parameters A and m are based on the work Van Jaarsveld (2008). How-
ever, the grid considered in that work is different than our proposed grid. The values for
A and m are found to vary between A = 10, n = 1.40 and A = 50, n = 1.25, see Comte-
Bellot and Corssin (1966). Note that A and m are more or less correlated. The variations in
the parameters are due to for example different wind-tunnel specifications, solidities, and
main stream velocities. The uncertainty in the parameters A and m results in a uncertainty

of about 20% in the value of ε∗b0 , and 25% in the value of
√

u2
rms,x/Ux.

2. The main velocity in the TU/e wind tunnel Goliath without a grid fluctuates about 1%
around its mean value with a frequency of about 1 Hz. The turbulent fluctuations expressed

in terms of
√

u2
rms,x are of 0.5% of the mean main velocity Ux, see Van Jaarsveld (2008). It is

believed that this low frequency oscillation is not of importance in the turbulence character-
istics, since the grid-generated turbulence is contained in higher frequencies. However, the
low-frequency oscillations can be important in the turbulence-trailing vortex interaction.
We will analyse the the low-frequency contribution in more detail in Appendix C.

3. Besides the low frequency oscillations, the TU/e wind tunnel Goliath contains also a intrin-
sic turbulence level. This intrinsic level of turbulence is not known since it is equal or below
the measurement limit. The problem is that the grid-generated turbulence at large distance
can get close to this measurement limit, and therefore possibly to the intrinsic turbulence
level of the wind tunnel. This means that the grid-generated turbulence may not be sep-
arable from the intrinsic turbulence anymore. Moreover, the turbulence generated by the
wing is not known as well. This means that the intrinsic turbulence level of the wing can be
comparable to the grid-generated turbulence. Van Jaarsveld (2008) made an approximation
of the turbulence level when no grid is installed. This approximation may correspond to
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the intrinsic turbulence level of both the wind tunnel and wing. When we assume that this
approximation is correct, the grid-generated turbulence is more intense than the intrinsic
turbulence level of the wind tunnel and wing together.

4. The proposed grids are composed of bars with a diameter of D = 1.75 · 10−3 m and D =
3.50 · 10−3 m. The grids have to withstand the pressure force caused by the wind tunnel
main velocity of 15 m/s. No mechanical calculation are performed of the stresses on the
grids, but a literature study shows that comparable grids under comparable conditions are
able to withstand the force. Nevertheless, the grids need to be mounted firmly.

5. The isotropy of turbulence generated by grids with a solidity of around 0.25 is not well
investigated in the literature. Most works on grid-generating turbulence are concentrated
on grid with a solidity of 0.36 or 0.44. The influence of solidity on the isotropy is not well
known as well. This means that the isotropy may deviate from our expectations, based on
data obtained with grids characterized by a solidity of 0.36 or 0.44. The influence of solidity
on isotropy is possibly significant.

Some points of concern are specifically related to the grid design M125 or M250. The points 1, 2,
and 5 apply to both the M = 12.5 · 10−3 m and 25 · 10−3 m grids. The point of concern described
by 3 and 4 are thought to be more relevant for the M = 12.5 · 10−3 m grid design. In general, 3
and 5 are thought to be the most relevant.

B.6 Conclusion

The dimensionless eddy dissipation rate can be decreased with two alternatives. Constructing a
new grid with a smaller mesh size, or a new wing that induces a higher circulation. The former
is favorable due to practical and economical reasons. The proposed grid designs are based on a
compromis of demands and limitations. These are based on for example the desired level of grid-
generated turbulence, characteristics of the TU/e wind tunnel Goliath, convention in literature,
connection with the prior work of Van Jaarsveld (2008). The proposed grids are biplane grids
defined by the combinations M = 1.25 · 10−2 m, D = 1.75 · 10−3 m and M = 2.50 · 10−2 m,
D = 3.50 · 10−3 m, see Figure B.1 and B.2. Both have a solidity of 0.25. An isotropy that deviates
from our expectations, and the intensity of the intrinsic turbulence of the wind tunnel and wing
are the most relevant points of concern in applying the M125 and M250 turbulence grids.
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Figure B.3: Graph showing the range of ε∗b0 that can be obtained by varying the wing-tip separation
distance b0 and the mesh size M . It becomes clear that ε∗b0 = O(10−2) is well covered.
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Figure B.4: Graph showing the streamwise evolution of ε∗b0 as function of Uxt/M for M = 1.25 · 10−2 m.
It takes about 40M for (quasi-)isotropy and (quasi-)homogeneity to develop, see for example Comte-Bellot
and Corssin (1966) and Mohamed and Larue (1990).

92



0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0.01

0.1

1

 

ep
s*

Ut/M_25

 M=25.0 mm d=100 mm
 M=25.0 mm d=50 mm
 M=25.0 mm d=30 mm

0 1 2 3 4 5 6 7

 x (m)

Figure B.5: Graph showing the streamwise evolution of ε∗b0 as function of Uxt/M for M = 2.50 · 10−2 m.
It takes about 40M for (quasi-)isotropy and (quasi-)homogeneity to develop, see for example Comte-Bellot
and Corssin (1966) and Mohamed and Larue (1990).
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Figure B.6: The streamwise evolution of
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rms,x/Ux is shown as function of x. Variations of 0.005 of

the main velocity (urms,x/Ux = 0.005) can still be measured with the hotwire measurement technique.
This minimum will be approached near the middle of test section of the TU/e wind tunnel Goliath.
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Figure B.7: The values of dimensionless dissipation rate ε∗b0 and the maximum achievable dimensionless
time t∗ are presented for two grid configurations and three initial wing-tip separations b0. The maximum
achievable dimensionless time is based on the distance xc − xa, with xc the position where an analysis of
the trailing vortices is still possible. Here, xc is set to 6.0 m and is determined by the maximum position at
which PIV measurements can be performed in the TU/e wind-tunnel Goliath. For determining the optimal
wing location xa, it is important that the maximum achievable dimensionless time t∗ is larger than the
lifespan predicted by Crow and Bate (1976). This means that the optimal wing-location lies outside the
shaded area. On the other hand, the grid-generated turbulence needs about a distance of 40M before
(quasi)-isotropy and (quasi)-homogeneity are developed. In combination with the desired range of ε∗b0 , it
can be concluded that two wing locations, xa = 3.5 m and 4.5 m, are appropriate. With the wing location
of xa = 4.5 m, it will only be possible to use the wing-tip separation distance of d = 5.00 and 3.00 · 10−2

m.
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Appendix C

A Study on the Windtunnel Flow
and Grid-Generated Turbulence
Characteristics

The study as described in this Appendix considers the characteristics of the TU/e wind tunnel
Goliath and the turbulence generated by the turbulence grids with mesh sizes M = 2.54 · 10−2

and 1.27 · 10−2 m. The wind tunnel flow without grid-generated turbulence is denoted by M000,
and that with the grid-generated turbulence by M254 and M127 for the turbulence grids with
mesh sizes M = 2.54 · 10−2 and 1.27 · 10−2 m, respectively. An extensive motivation for the de-
sign of these turbulence grids can be found in Appendix B.

This chapter is organized as follows. We first discuss the experimental setup and the valida-
tion of the pressure and turbulence measurement equipment. We then continue with defining a
relation between the pressure drop over the contraction and the main stream velocity in the test
section. This makes it possible to set the main stream velocity Ux in the test section while keeping
the test section itself clear of any obstacle that can cause interference with a trailing vortex. In
the subsequent section, we discuss the homogeneity of main stream velocity. For this, we ana-
lyze the vertical profiles of the main stream velocity at several downstream locations. Turbulence
characteristics of grid-generated turbulence (M254 or M127) and that without grid-generated
turbulence (M000) are obtained by analyzing the energy spectra. The turbulence intensity, tur-
bulence dissipation rate, and the Taylor Reynolds number are obtained at several downstream
locations. We will end this study with a recommendation on the wing location for vortex pair
decay in M254 or M127 grid-generated turbulence. The study of vortex pair decay in turbulence
is not performed in this work, but will be executed in a later stage of the TU/e trailing vortex
research program.

C.1 Experimental setup

A schematic overview of the TU/e wind-tunnel Goliath is shown in Figure C.1. The equipment
used for the measurements is given by apparatus (model number), manufacturer, and serial num-
ber:

a) Water manometer, v. Essen Delft, 0154

b) Electronic manometer (1400 1BX), Datametrics Dreser, 310-905

c) Barocel pressure sensor (590D-1kPa-2PI-V1K-4D), Datametrics Dreser, 310-1164

d) Streamline frame (90N10) plus 2 CTA modules (90C10) at pos. 2 and 6, Dantec, 00697
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e) Computer, 00728

f) Low noise preamplifier (SR560), Stanford Research Systems, 82093

g) Crosswire signal processing, Parsam

h) Barotron (698A11TRA), MKS, 4XX9-00309954

i) Signal conditioner (760BD81), MKS, 4XX9-00310450

j) Single hotwire, Dantec

k) Temperature sensor, Dantec

The TU/e Goliath wind tunnel has a test section with length L = 8.00 m, height H = 1.05 m, and
width W = 0.70 m. An ideal wing location is predicted to be at x/L = xa/L = 0.44 where x = 0
corresponds to the entrance of the wind tunnel test section, see Appendix B. We will continue
with considering this location as the ideal wing location. The flow field enters the test section
after passing the contraction. This contraction is characterized by an area decrease from 18.38 to
0.74 m2 over a distance of 5.30 m. The pressure drop over this contraction is denoted by 4pcon.
This pressure difference is measured with barocel pressure sensor (c) and electronic manometer
(b). The electronic manometer is calibrated with water manometer (a).

The velocity is measured with the help of a hotwire. Measurements are performed with a single
wire and a crosswire. The crosswire is found to resolve the turbulence scales incompletely, see
section C.1.3. Therefore, the crosswire is used for making main stream velocity profiles and de-
termining the isotropy of the turbulence only, see section C.3. All the remaining measurements
are performed with the single wire. The Parsam signal processing system is used for the cross-
wire, while the Dantec system is used for the single wire signal processing. The Parsam signal
processing system has a sampling frequency of 20 ·103 s−1, and is filtered with a low-pass filter
of 10 ·103 s−1. The Nyquist-Shannon sampling theorem is satisfied when the frequency of the
low-pass filter equals half of the sampling frequency.

The Dantec system (d) allows one to measure the hotwire signal together with the temperature
close to the hotwire. Subsequently, the hotwire signal is filtered by a low noise preamplifier (f).
The sampling frequency of the Dantec system equals 100 ·103s−1. To satisfy the NyquistShannon
sampling theorem, the signal is filtered with a low pass filter of 30 ·103 s−1. The temperature at
the hot wire location, the pressure drop over the contraction, and the hotwire signal are moni-
tored with a computer. We did not measure the temperature continuously during a measurement.
However, this may be interesting for future measurements since the temperature influences the
main stream velocity and the calibration function of the hotwire.

When turbulence is generated, the engine of the wind tunnel fan will experience more resistance.
As a result, the engine and therefore the flow through the wind tunnel will warm up. When less
turbulence is generated, the engine and the flow through the wind tunnel will cool down. In this
way, temperature changes are observed of about one degrees Celcius in one measurement of 600
seconds. The effect of a temperature change is twofold. First, the calibration function becomes
incorrect when the temperature deviates from that present during the calibration. When the tem-
perature of the main stream flow decreases, the hotwire cools off more, which is perceived as a
velocity increase. The second effect of a temperature change, is that the density of air and there-
with the air velocity changes. The density of air increases when the temperature decreases. The
velocity U2

x decreases when the density increases, since the pressure drop over the contraction
and the dynamic pressure ρ(T )U2

x/2 are fixed. It is found that the second effect is stronger than
the first effect; the main stream velocity obtained from the hotwire signal decreases, when a de-
crease in temperature is observed.
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It was found that the temperature effect changes the velocity, derived from the hotwire signal,
approximately linearly in time. Therefore, a linear correction is applied in obtaining velocity pro-
files, see section C.3. The averaged main stream velocity is kept constant in all measurements at
Ux = 15± 0.5 m/s.

The total pressure pt and static pressure ps in the wind tunnel test section are determined with
the help of a pitot tube. The dynamic pressure and therewith the main stream velocity can be
derived from the total and static pressure: ρU2

x/2 = pt − ps. The pitot tube can be placed at
several fixed x-positions with a distance closer than 0.20 m to the hotwire. The main stream flow
field is found to be approximately constant close to the hotwire, see section C.3. The pitot tube
is aligned parallel to the main stream flow field by finding the maximum value of the dynamic
pressure while rotating the pitot tube along its vertical axis. The pressure difference obtained
from the pitot tube is processed by signal conditioner (i).
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C.1.1 Pressure in the wind tunnel

This work will use the same wind tunnel as Van Jaarsveld (2008) did. However, a slight modifica-
tion is applied to reduce a severe underpressure in the wind tunnel. A normalized total pressure
difference of typically (pt − patm)/4pcon = −0.30 for 4pcon around 200Pa, was found in the
experiments of Van Jaarsveld (2008). The total pressure outside the wind tunnel is equal to the
static pressure since there is no velocity, and is denoted by patm. The total pressure inside the
wind tunnel is given by pt = ps + ρU2

x/2. The normalized total pressure difference is reduced
from -0.30 to -0.05 by applying a sufficiently sized slit at the end of the wind tunnel test section,
see Figure C.2. From this, it follows that the normalized static pressure decreases for increasing
pressure drop over the contraction. The static pressure also decreases with increasing distance
from the grid location. The measurements are performed for the case without grid, that is M000.
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Figure C.2: The normalized total pressure difference (pt − patm)/4pcon = (ps + ρU2
x/2− patm)/4pcon

obtained at several streamwise positions and a range of pressure drops over the contraction. It can be seen
that the typical normalized static pressure level is (pt− patm)/4pcon = −0.05 for4pcon around 200 Pa.

C.1.2 Validation of electronic manometer

The pressure drop over the contraction is measured with an electronic manometer. The val-
ues obtained with the electronic manometer are validated with those obtained with a water-
manomenter, see Figure C.3. For every value of the pressure drop over the contraction, a mea-
surement of 60 seconds was performed. The mean pressure and accompanying error are for
both the electronic manometer and the water manometer obtained by visual inspection. Four
independent series (A,B,C, and D) of increasing pressure drop over the contraction showed
that the values obtained with the electronic device and the water manometer are correlated by
4pwat

con = (0.990±0.005)4pelec
con . The offset was found to be 0.0495±0.0002 Pa, which is negligibly

small. It is believed that a correlation of 0.990 ± 0.005 is sufficiently accurate, since the intrinsic
temporal variations of the pressure drop over the contraction in the wind tunnel is 0.034pcon, see
section C.4.1.

C.1.3 Single wire and crosswire

In our experiments, we will measure with a single wire and a crosswire. Both come together with
a different experimental setup and signal processing. We will consider the difference between the
obtained longitudinal energy spectrum first, see Figure C.4a. The single wire signal is sampled
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Figure C.3: The values for pressure drop over the contraction as obtained with the electronic manometer
are validated against those obtained with the water manometer. For this, we performed four series of
measurements A, B, C, and D. These measurements resulted in relation between the values obtained with
the water manometer and the electronic manometer of 4pwat

con = (0.990 ± 0.005)4pelec
con . The offset was

found to be 0.0495± 0.0002 Pa.

with a frequency of 100·103 s−1, while the sampling frequency of the the crosswire setup is limited
by 20 ·103 s−1. The frequency at which noise becomes significant in the longitudinal energy
spectrum is found to be 3·103 s−1 for the crosswire, and 5·103 s−1 for the single wire. In our case, it
means that the turbulence dissipation scales are better covered with the single wire experimental
setup, see Figure C.4b. For that reason, we will only use the crosswire experimental setup for
making vertical scans of the mean velocity, and for determining the isotropy of the turbulent
flow. The single wire is used in the remaining experiment in which velocities are determined.

calibration of single and crosswire

The single and crosswire are both calibrated by defining a fourth order correlation function be-
tween the hotwire output voltage and the local air velocity. The local air velocity is derived from
the dynamic pressure 1

2ρ(T )U2
x and corresponding temperature T . Note that the calibration func-

tion depends on the temperature of the flow, and that calibration function becomes invalid when
the temperature during a measurements deviates from that used during a measurement.

We will continue with considering two methods that make it possible to determine the main
stream velocity at the wing location, without placing a measurement device (hotwire/pitot tube)
at that position itself. It is necessary to correlate the main stream velocity at the wing location
with a parameter at another position, since it is not desired to place a measurement device close
to the wing. First, we will discuss the method of correlating the pressure drop over the contrac-
tion with the dynamic pressure at the wing location, from which the main stream velocity can be
obtained easily. The second method will be discussed in section C.3.

C.2 Relation between pressure drop over contraction and dy-
namic pressure

The pressure drop over the contraction 4pcon can be correlated with the dynamic pressure
( 1
2ρ(T )U2

x)a in the TU/e Goliath wind tunnel test section at the wing location x/L = xa/L = 0.44.
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Figure C.4: The longitudinal energy spectrum (a) and dissipation spectrum (b) obtained with the cross-
wire and single wire for the turbulence at x/L = xa/L = 0.44 generated with the M127 grid. The
crosswire has a lower frequency at which noise starts to dominate the dissipation spectrum. From the dissi-
pation spectrum, it can be concluded that the single wire signal processing captures the highest frequencies
contained in the turbulence without a significant contribution of noise. The crosswire is only used for
making vertical scans of the main stream velocity, and for determining the isotropy of the flow at different
streamwise positions.
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In this way, the main stream velocity at the wing location can be set by adjusting the pressure
drop over the contraction while keeping the test section clear of any main stream velocity mea-
surements devices. To define a relation between the pressure drop over the contraction and the
main stream velocity, we have to assume that U

2

x = U2
x which is allowed since the main stream

fluctuations are only about 1%. Note that the dynamic pressure does not depend on temperature
variations, while the density and therefore the velocity do. The correlation between the pressure
drop over the contraction and the dynamic pressure is determined for a specific range of 4pcon

both with grid (M254 and M127) and without grid (M000), see Figure C.5. For every value of the
pressure drop over the contraction, a measurement of 60 seconds was performed. The dynamic
pressure is determined with the help of the pitot tube:ρU2

x/2 = pt − ps. It was found that the
correlation between 4pcon and ( 1

2ρ(T )U2
x)a is given by:

M000 : ( 1
2ρ(T )U2

x)a = (1.0572± 0.0004) · 4pcon − (0.01± 0.02), (C.1)

M127 : ( 1
2ρ(T )U2

x)a = (1.055± 0.001) · 4pcon + (0.08± 0.05), (C.2)

M254 : ( 1
2ρ(T )U2

x)a = (1.048± 0.001) · 4pcon + (0.12± 0.03). (C.3)

These correlation make it possible to determine the velocity from the pressure drop over the
contraction, when the temperature T is known. The offset is very small compared to the levels
of dynamic pressure, which are typically of O(102). This supports the correlation between the
dynamic pressure and the pressure drop over the contraction. The error in the correlation pa-
rameters is negligible, when compared to the intrinsic spatial or temporal variations of the wind
tunnel main stream velocity, see section C.4.1 or C.3. The spatial or temporal variations of the
main stream velocity are about 0.01Ux.
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Figure C.5: The relation between 4pcon and ( 1
2ρ(T )U2

x)a is linear for the cases with grid (M254 and
M127) and without grid (M000). The well defined correlation between the pressure drop over the contrac-
tion, and the dynamic pressure makes it possible to set the main stream velocity without a measurement
device (pitot tube/ hotwire) at the wing location itself.

C.3 Homogeneity of main stream flow

In this section, we will consider the main stream velocity profiles at several streamwise locations.
This will give us information about the homogeneity of the main stream flow field. The profiles
are obtained in the z-direction with y = 0. The hotwire is transferred every 30 seconds to a new
z-positions until the desired range of z-positions is covered. A coarse profile with 4z = 20 mm
is obtained at six downstream positions between x = /L0.12 and 0.81L. Note that 4z = 20 mm
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(d) M127, blocks of thirty s.
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Figure C.6: The variations of the root-mean-square velocity between blocks of five seconds determined
according to Eq. C.16 for the case with (M254 and M127) and without grid-generated turbulence (M000).
The measurements are performed at xa = 0.44L and y, z = 0. For the case with grid-generated turbulence,
the variation of the root-mean-square velocity between blocks of five seconds is about 0.03urms,x.
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(b) x/L = xa/L = 0.44
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Figure C.7: Profiles of the normalized main stream velocity for the M254 and M127 grid, for three different
streamwise distances and y = 0. The location of the wing equals z = 0, and the wind tunnel height H goes
from z=-700 till z=350mm. The distance between two scan locations equals4z− 20 mm. One can see that
a boundary layer develops in streamwise direction. It is believed that the development of the boundary layer
is similar for the top and bottom of the wind tunnel. The velocity increase/decrease due to a temperature
change is corrected with a linear correction function.
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gives us a resolution of approximately 0.8M for the M254 and 1.6M for the M127 grid. The
coarse profile gives information about the boundary layer development and the homogeneity of
the main stream flow field. The velocity profiles for x/L = 0.18, 0.44, and 0.69 are shown in Fig-
ure C.7 for the case with M254 and M127 grid. It can be seen that the thickness of the boundary
layer increases from smaller than 50 mm at x/L = 0.19, to 75 mm at x/L = xa/L = 0.44, and
almost 100 mm at x/L = 0.69. The development and thickness of the boundary layer seems to
be independent of the grid. It was practically impossible to cover the complete height H of the
wind tunnel test section from z = −700 till z = 350 mm However, we assume that the profiles are
symmetric, and that the boundary layers are similar for the top and bottom. The wing location
z = 0 is believed to be situated far enough from the boundary layer for the whole length of the
test section. Outside the boundary layers, the velocity profile is flat with deviations of 0.005Ux

from the average main stream velocity. This is most likely caused temporal variations in the main
stream velocity in combination with a limited averaging period per z-position of 30 seconds. The
temporal variations in the main stream velocity are namely of U ′

x =0.005Ux.

A fine coarse profile is obtained with a resolution of 4z = 2.5 mm. This implies a resolution
of approximately 0.1M for the M254 and 0.2M for the M127 grid. This provides information
about the grid footprint on the main stream flow field, or in other words, the extent to which
turbulence is developed. If no grid footprint is observed, it is assumed that the turbulence is
(quasi-)isotropic and (quasi-)homogeneous. Comte-Bellot and Corssin (1966) and Mohamed and
Larue (1990) found that it takes about 40M for grid-generated turbulence is developed. There-
fore, the velocity profile is obtained at x/L = 0.12 and x/L = 0.18, which is about 40M and
60M for the M254 and 80M and 120M for the M127 grid. The range of z-positions is chosen to
be from z = −275 to −75 mm, covering about 8M in case of the M254 and 16M in case of the
M127 grid. The z-positions are located around z = −175 mm, which equals the centerheight of
the wind tunnel test section. It is believed that at the centerheight, the grid-generated turbulence
requires the longest distance for its development.

The fine profiles of the main stream velocity at x/L = 0.12 for the case with grid (M254 and
M127) and without grid (M000) are shown in Figure C.8. From this, it follows that no recog-
nizable grid footprint is present in the main stream velocity profile. This suggests that the grid-
generated turbulence is (quasi-)isotropic and (quasi-)homogeneous from x/L = 0.12. Turbulence
characteristics like the intensity and dissipation rate will be obtained for streamwise positions
starting from x/L = 0.12. It is reasonable that the turbulence becomes (quasi-)isotropic and
(quasi-)homogeneous at a distance closer to the grid, especially for the M127 grid. However,
due to practical reasons we stay fixed with x/L = 0.12 as the closest measurement position from
the grid. The velocity profile is flat with deviations of 0.007Ux from the average main stream
velocity. Again, this is most likely caused by a combination of temporal variations in the main
stream velocity and a limited averaging period per z-position of 30 seconds. Temporal variations
of U ′

x = 0.005Ux are namely found in the main stream velocity.

105



-260 -240 -220 -200 -180 -160 -140 -120 -100 -80
0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

 

 

U
x/U

x

z (mm)

 M127

(a) x/L = 0.12 ≈ 80M/L

-260 -240 -220 -200 -180 -160 -140 -120 -100 -80
0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

 

 

U
x/U

x

z (mm)

 M254

(b) x/L = 0.12 ≈ 40M/L

-260 -240 -220 -200 -180 -160 -140 -120 -100 -80
0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

U
x/U

x

 

 

z (mm)

 M000

(c) x/L = 0.12

Figure C.8: The fine profiles of the main stream velocity for the case with grid (M254 and M127) and
without grid (M000) at x/L = 0.12 and y = 0. The location of the wing equals z = 0, and the wind
tunnel height H goes from z = −700 till z = 350 mm. One can see that there is a negligible grid foot
print at x/L = 0.12. The profile resolution is set to 2.5 mm, which equals approximately 0.1M for the
M254 and 0.2M for the M127 grid. A measurement of 30 seconds is performed at every position. This
means that temporal variations of the mean stream velocity, with U ′

x = 0.005Ux, may here be interpreted
as spatial variations in the velocity profile. One can prevent this by measuring for a longer period at every
position, however, this is not possible due to practical reasons.
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C.4 Turbulence characteristics

We will now proceed with discussing the turbulence characteristics. It will become clear that
various non-turbulence contributions are present in the energy spectra. The influence of these
contributions on the turbulence will be analyzed. After that, we discuss the turbulence intensity,
the turbulence dissipation rate, the isotropy of turbulence, and the Taylor Reynolds number.

C.4.1 Energy spectra

An energy spectrum of the flow field gives information about the temporal and spatial scales
contained in the flow. With this information, characteristics of the turbulent flow field can be de-
termined. The energy spectrum is obtained at 12 streamwise locations (with y, z = 0) for the case
without (M000), and with (M127 or M254) grid installed. Here, we will only discuss the spectra
obtained at the wing location xa = 0.44L = 3.55 m. All the spectra are obtained by measure-
ments of 600 seconds, in which 20 spectra obtained from blocks of 30 seconds are averaged. In
this way, we set the bandwidth of captured frequencies between 6.7·10−2 and 50·103 s−1. These
frequencies are determined by the Nquist theorem in combination with the size of the blocks
(lower frequency) and the sampling frequency (upper frequency).

The longitudinal energy spectrum is given for M000, M127, and M254 in Figure C.9. Here,
the longitudinal energy Exx(f) is defined by:

u2
rms,x = u2

rms,x =
∫ ∞

0

Exx(f)df. (C.4)

With this, we use the same definition as Pope (2000). The influence of the grid-generated turbu-
lence in the energy spectrum becomes obvious when M000 is compared to M127 or M254. The
turbulent flow field has a significant contribution from 2 s−1 and higher. The turbulence band-
width is found to be between 2 and 4.775 s−1. Note that 4.775 s−1 corresponds to a wavenum-
ber of 2 ·103m−1. This value corresponds to the transition between contributions of turbulence
dissipation and high frequency noise in the dissipation spectrum, see Figure C.4. The Taylor
hypothesis is used for conversion between the frequency and wavenumber domain

κx =
2πf

Ux

, (C.5)

which is only valid when u′rms,x/Ux ¿ 1. In our experiments, u′rms,x/Ux = O(5 · 10−3), with
Ux ≈ 15 m/s.

The characteristics of the grid-generated turbulence can be compared with literature by non-
dimensionalizing the energy spectrum. This will be done in section C.4.1. Besides the presence
of turbulence in the energy spectrum, there are three peculiar contributions that need to be con-
sidered. The low-frequency contributions below 2 s−1, the mid-low frequency peak around 5 s−1,
and the high noise frequency from approximately 4.775 s−1 will be discussed in section C.4.1. Af-
ter that, we will derive some characteristic turbulence parameters like the turbulence intensity
and the turbulence dissipation rate as function of the streamwise distance.

Nondimensional energy spectra

According to the first Kolmogorov hypothesis, velocity statistics pertaining to the universal equi-
librium range have a universal form that is uniquely determined by the turbulence dissipation
rate ε and the kinematic viscosity ν, see Pope (2000). In this way, one can use ε and ν or ε and
the wavenumber κ to non-dimensionalize Exx(κx). Note that κ can be used since (ν/ε3)1/4 gives
the Kolmogorov length scales, see Pope (2000). With ε and ν, one can non-dimensionalize the
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Figure C.9: The longitudinal energy spectrum is shown for the case with grid (M254 and M127) and with-
out grid (M000). The measurements are performed at the distance x/L = xa/L = 0.44 and y, z = 0. The
spectrum is obtained by averaging over 20 spectra obtained with a 30 seconds measurement. The turbu-
lence bandwidth is found to be between 2 and 4.775 s−1; note that 4.775 s−1 corresponds to a wavenumber
of 2 ·103 m.

longitudinal energy spectrum by

Exx(κx) = ϕ(κxη)(εν5)1/4, (C.6)

where ϕ(κη) is a universal non-dimensional function - the Kolmogorov spectrum function. Using
ε and κ to non-dimensionalize Exx(κx), one obtains

Exx(κx) = Ψ(κxη)ε2/3κ−5/3
x , (C.7)

in which Ψ(κxη), the compensated Kolmogorov spectrum function, is nondimensional and uni-
versal. The Kolmogorov spectrum function and the compensated Kolmogorov spectrum function
for the M127 and M254 grid are given in Figure C.10 and C.11, respectively. The Kolmogorov
length scale and turbulence dissipation rate are found to be η = 5.7 · 10−4 m and ε = 3.2 · 10−2

m2s−3 for the M127 grid, and η = 4.7 · 10−4 m and ε = 6.7 · 10−2 m2s−3 for the M254 grid. The
turbulence dissipation rate is determined by integrating the dissipation spectrum

ε = 15ν

∫ ∞

0

κ2
xExx(κx)dκx, (C.8)

in which the kinematic viscosity equals ν = 1.5 · 10−5 m2/s. The Kolmogorov length scale is
determined by Kolmogorov relation η = (ν3/ε)1/4.

The Kolmogorov spectrum function obtained for the M127 and M254 grid closely match each
other in the inertial subrange and dissipation range, that is κxη > 3 · 10−2. The Kolmogorov
spectrum functions correspond closely to those found in literature, see Pope (2000) Fig 6.14. The
second Kolmogorov hypothesis states that the motions in the inertial subrange are dominated by
inertial effects, and that viscous effects are negligible. This means that in the inertial subrange,
Exx(κx) has a universal form uniquely determined by ε, independent of ν. As a consequence, the
compensated Kolmogorov spectrum function, tends to a constant value in the inertial subrange.
This constant is empirically found to be approximately 0.49, see Pope (2000). In our experiments,
a value of 0.40 for the M127 grid and 0.45 for the M254 grid is found, see Figure C.11. Note
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that the inertial subrange has a very small bandwidth. This is characteristic for low intensity
turbulence, that is turbulence with a low Taylor Reynolds number. A plateau in the compensated
Kolmogorov spectrum function, indicating a larger bandwidth of the inertial subrange, can be
found for more intense turbulence, see Pope (2000) Figure 6.17.

The compensated Kolmogorov spectrum function obtained from the M127 and M254 grid, closely
match for κxη > 2 · 10−1 which represents the dissipation range. This emphasizes the universal
character of the compensated Kolmogorov spectrum function for high wavenumbers, that is the
dissipation range.

Comparison with the nondimensional energy spectra functions found in literature, see Pope
(2000), shows no abnormalities. However, the longitudinal energy spectrum given for M000,
M127, and M254 show some peculiar non-turbulent contributions, see Figure C.9. We will con-
tinue with discussing these contributions and the influence of these on turbulence.

Non-turbulence contributions to the energy spectrum

The turbulence bandwidth is found to be between 2 and 4.775 s−1. We will discuss three non-
turbulent contribtions to the energy spectrum. These are the low-frequency contributions below
2 s−1, the mid-low frequency peak around 5 s−1, and the high noise frequency from 4.775 s−1,
see Figure C.9.

high-frequency noise at f > 4.775 s−1: noise of experimental setup

The high frequency noise at f > 4.775 s−1 (note that f = 4.775 · 103 s−1 corresponds to a
wavenumber of 2 ·103m−1) is caused by the noise of the experimental setup that comes together
with the hotwire. It is important to ensure that high significant frequencies in the turbulence spec-
trum are not dominated by this noise. This can be tested by analyzing the dissipation spectrum.
The dissipation range contains namely the highest frequencies, and if the high frequency noise
significantly contaminates the turbulence spectrum, it can be seen in the dissipation spectrum
15νκ2

xE11(κ). We determine the eddy dissipation rate by integrating the dissipation spectrum,
see Eq. C.8. The dissipation spectrum is shown in Figure C.12. It can be seen that the high
frequency noise does not significantly contaminate the dissipation range of the turbulence.

midlow-frequency noise around f = 5 s−1

The longitudinal energy spectrum of the flow field as obtained without grid (M000) at the dis-
tance x/L = xa/L = 0.44 and y, z = 0 is given in Figure C.9. At about 5 s−1 there is a peak which
can be noted in the longitudinal energy spectrum of the flow field as obtained with the M127 and
M254 grid installed. This contribution is more obvious in the case of the M127 grid.

It was hypothesized that the origin of the contribution had to be found in the mechanical vi-
bration of the wind tunnel. It may be the case that the hotwire is vibrating together with the
wind tunnel (the hotwire setup is positioned on the wind tunnel), or that the wind tunnel passes
the vibration towards the flow field. In other words, there may be a direct or indirect contamina-
tion of the hotwire signal.

Our hypothesis is tested by determining the energy spectrum of the vibrating wind tunnel. This
is done with the help of a laser distance meter, directed from a fixed position towards a wooden
wall or window of the vibrating wind tunnel. An energy spectrum is derived from the signal
from the laser distance meter. In this way, the dominant frequencies of the vibrating wind tunnel
are retrieved, see Figure C.13. Here, the energy spectrum of the grid-generated turbulence, the
flow field of the wind tunnel without a grid, and the window is shown. All measurements are
performed at the distance x/L = xa/L = 0.44. This means that the laser distance meter was
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Figure C.10: a) One-dimensional Kolmogorov spectrum function ϕ(κxη) is shown for the M127 and M254
grid at the distance x/L = xa/L = 0.44 and y, z = 0. A close match of the M127 and M254 data for
κxη > 3 ·10−2 indicates the universal character of the dissipation range. The contribution to the spectrum
for κxη > 1 is due to high frequency noise, see C.4.1. b) Figure 6.14 of Pope (2000) is shown for comparison
with one-dimensional Kolmogorov spectrum function obtained in other turbulence experiments. The final
number in the legend is the value of the Taylor Reynolds number. Our data closely matches the data of the
experiments performed by U&F, 1969 with Taylor Reynolds number of 23.
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Figure C.11: a) Compensated one-dimensional Kolmogorov spectrum function Ψ(κxη) is shown for the
M127 and M254 grid at the distance x/L = xa/L = 0.44 and y, z = 0. The universal character of the
dissipation range is emphasized by the close match for κxη > 2 · 10−1 between the spectrum of M127
and M254. The contribution to the spectrum for kxη > 1 is due to high frequency noise, see C.4.1.
b) Figure 6.17 of Pope (2000) is shown for comparison with one-dimensional compensated Kolmogorov
spectrum function obtained in a turbulent boundary layer at a Taylor Reynolds number of 1,450. The
data is originally from experiments performed by Saddoughi and Veeravalli (1994). In our experiments,
the spectrum does not show a plateau at the level of 0.49, which represents the inertial subrange, see Pope
(2000). This is due to a very low Taylor Reynolds number, which means that the inertial subrange is
contained in a smaller bandwidth.
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Figure C.12: The dissipation spectrum 15νκ2
xE11(κ) is shown for the case with grid (M254 and M127)

and without grid (M000). The measurements are performed at xa = 0.44L and y, z = 0. It can be seen
that the high frequency noise does not significantly contaminates the dissipation range of the turbulence.
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Figure C.13: The peaks present around f = 5s−1 may be caused by the vibration of the wind tunnel itself.
The vibration of the wind tunnel is measured by scanning the distance from a fixed point to a vibrating
window of the wind tunnel, and transforming that time-varying signal to an frequency spectrum.

directed at a window of the wind tunnel test section. Note that an arbitrary scale is applied at the
vertical axis. The laser distance meter is also placed at different locations, including the wooden
walls and other windows of the test section. It was found that the energy spectra obtained at
different locations, contain the same characteristics.

While the energy spectrum of the flow field shows a peak at 6 s−1, the window spectrum shows
several peaks around 5 s−1, but not at 6 s−1 itself. This makes the vibration of the wind tun-
nel as cause for the midlow frequency noise debatable. There may be an underlying process that
is the cause for the midlow frequency noise, for example periodic vortex shedding in the diffuser.
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The wind tunnel test section is succeeded by the diffuser. The diffuser consists of a diverging
flow channel in which the flow slows down. Ideally, the flow keeps attached to the diverging
walls and slows down in a laminair fashion. This is not the case in our wind tunnel. The angle
under which the walls diverge is too big. An adverse pressure gradient arises and the flow de-
taches and forms a vortex. At the moment that his vortex is created, the reason for its existence
disappears. The vortex breaks down and it all starts again from the beginning. The frequency of
the vortex shedding is unknown but is estimated by visual inspection to be O(10 s−1). Visual in-
spection is performed by placing little pennons on the diffuser wall where vortex shedding takes
place. A contamination of the upstream flow field in the test section is likely. Further analysis
has to retrieve the frequency of the vortex shedding, and determine its contribution to the energy
spectrum and its influence on turbulence characteristics.

low-frequency noise for f< 2s−1

The low frequency noise from f <2 s−1 is the third non-turbulent contribution to the longitudi-
nal energy spectrum that will be discussed. Starting from 2 s−1, the contribution to the energy
spectrum increases for decreasing frequencies, see Figure C.9. This means that slow fluctuations
are present in the flow field. When the main stream velocity is written as:

Ux(t) = Ux + U ′
x(t) + u′rms,x(t), (C.9)

we identify the non-turbulence fluctuations with U ′
x(t) and the turbulence fluctuations with

u′rms,x(t). The low frequency noise from f < 2 s−1 corresponds to non-turbulence variations
U ′

x(t). When the main stream velocity is sampled with a frequency of 1 s−1, we may assume that
u′rms,x(t) = 0 since frequencies of f > 2s−1 are filtered out. In this way, Ux(t) = Ux + U ′

x(t) is
given in Figure C.14a, c, and e. The main stream velocity is measured during 600 seconds at the
distance x/L = xa/L = 0.44 and y, z = 0 with grid (M254 and M127) and without grid (M000).
The mean main stream velocity is in all measurements kept between Ux = 15 ± 0.5 m/s. Vari-
ations in the main stream velocity U ′

x are believed to occur in two ways. First, the main stream
velocity changes due to a changing temperature during a measurement. The temperature change
has an influence on the main stream velocity, but not on the pressure drop over the contraction.
In the second place, the main stream velocity and the pressure drop over the contraction can
change sporadically but suddenly. This may be caused by the flow through the diffuser. It was
found that vortex shedding occurs for most of the time. However, when the flow keeps suddenly
attached to the diffuser wall, no vortex shedding will occur, which will suddenly influence the
main stream velocity. The other way around is also possible. When the extent of vortex shedding
suddenly increases, it will suddenly influence the main stream velocity as well. These changes in
the main stream velocity occur sporadically but suddenly. This means that it will contribute to
the full bandwidth of the energy spectrum. Since these fluctuations are not recognized as turbu-
lence, we need to ensure that these fluctuations do not influence the turbulence characteristics.
This will be considered in the next section.

To summarize, we discussed three frequency ranges of the energy spectrum in which non-turbulence
contribution are found. We believe that the non-turbulence contributions are caused by different
processes:

• The high frequency noise at f > 4.775 s−1 is caused by noise of the experimental setup;

• It was hypothesized that the midlow frequency noise around f = 5 s−1 is caused by me-
chanical vibrations of the wind tunnel. Although the wind tunnel vibrates with a frequency
around f = 5 s−1, no exact match in the energy spectrum is found. The periodic vortex
shedding may be the reason for the midlow frequency noise around f = 5 s−1. Further
analysis is necessary to confirm this hypothesis;
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(a) main stream velocity for M254 case
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(b) pressure drop over contraction for M254 case
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(c) main stream velocity for M127 case
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(d) pressure drop over contraction for M127 case
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(e) main stream velocity for M000 case
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(f) pressure drop over contraction for M000 case

Figure C.14: The main stream velocity and the pressure drop over the contraction for the M127 grid are
plotted as function of the time. The main stream velocity is measured at xa/L = 0.44 and y, z = 0. The
averaged main stream velocity is kept constant in all measurements at Ux = 15 ± 0.5 m/s. Variations in
the main stream velocity of U ′

x = O(0.01Ux) are found to occur suddenly. The influence of these main
stream fluctuations may influence the turbulence. In case of M127, the main stream velocity decreases
in time while the pressure drop over the contraction stays around a constant value. This is caused by a
temperature change in the main stream flow.
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Figure C.15: The root-mean-square velocity is determined by urms,x =
√∫ f2

f1
Exx(f)df , with f1 =2 to

f2 =f4.775 s−1. The energy spectrum of M000 between 2 and 20 s−1 shows that the non-turbulence
fluctuations U2

rms,x(t) are only about O(10) smaller than the turbulence fluctuations u2
rms,x(t). This

means that non-turbulence fluctuations contaminate the turbulence fluctuations.

0.0 0.2 0.4 0.6 0.8 1.0
0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020
 

 

U
(n

)/U

t (600 s)

Figure C.16: The main stream velocity as measured in the TU/e David wind tunnel. This wind tunnel is a
smaller version of the TU/e Goliath wind tunnel. Here, sudden variations in the main stream velocity are
found in a lesser extent than in the TU/e Goliath Windtunnel, see for comparison Figure C.14.

• The low frequency noise for f < 2 s−1 can be identified with two possible processes. First,
the main stream velocity changes due to a temperature change during a measurement. This
may cause the low frequency contributions in the energy spectrum. This may also be caused
by the observed sporadic but sudden main stream velocity fluctuations. It is hypothesized
that these velocity fluctuations are caused by changes in the diffuser flow field.

influence of non-turbulence contributions

We will continue with considering the influence of the non-turbulence contributions discussed
in Section C.4.1, C.4.1, and C.4.1. For this, we will analyse the root-mean-square velocity urms,x
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which can be determined in two ways. In the first method, the root-mean-square velocity is

determined directly from U2
x(t) and Ux(t)

2
:

u2
rms,x = U2

x(t)− Ux(t)
2

(C.10)

= (Ux + U ′
x(t) + u′rms,x(t))2 − (Ux + U ′

x(t) + u′rms,x(t))
2

(C.11)

= U
2

x + U ′
x(t)2 + u′rms,x(t)2 + 2(UxU ′

x(t) + Uxu′rms,x(t) + U ′
x(t)u′rms,x(t))− U

2

x(C.12)

= U ′2
x(t) + u′2x(t) + 2U ′

x(t)u′rms,x(t) (C.13)

However, to obtain the root-mean-square velocity related to the turbulent flow field u2
rms,x =

u′x(t)
2
, the slow fluctuations in the main stream velocity U ′

x(t) need to be zero. One can achieve
this by performing the averaging procedure over a sufficiently small block size. By setting the
block size to 5 seconds, one artificially filters for fluctuations with a frequency below 2.5 s−1.
However, it is found virtually impossible to obtain a situation in which U ′

x(t) is filtered out prop-
erly. Therefore, we prefer the spectral method since it is more versatile with respect to the possi-
bilities of filtering frequencies and defining a sufficient averaging period.

Integration of the energy spectrum is the second method to obtain the root-mean-square velocity
urms,x. This makes use of the longitudinal energy spectrum function Exx(f)

urms,x =

√∫ f2

f1

Exx(f)df, (C.14)

in which f1 and f2 are the lower and upper frequencies of the bandwidth in which turbulence
is found to act. In this way, one is able to filter the low frequency fluctuations and the high
frequency noise directly. However, it is not known if the slow velocity fluctuations contami-
nate the energy spectrum in the bandwidth between f1 and f2. This considers the question if
non-turbulent contributions contaminate the turbulent contribution. For example, sporadic but
sudden variations in the main stream velocity are found which indicate the presence of high fre-
quency components, see Figure C.14a, c, and d. We assume that the high frequency noise, that
is f > 4.775 s−1, contaminates the turbulence energy spectrum to a negligible extent. To get an
better insight in the non-turbulent contributions to the turbulence intensity, Exx(f)f is plotted
against ln(f) for the case with (M254 and M127) and without (M000) grid-generated turbulence,
see Figure C.15. Note that Exx(f)df = Exx(f)fd ln(f). This gives an alternative way to write
Eq. C.14, and to obtain the root-mean-square velocity by integration:

urms,x =

√∫ ln (f2)

ln (f1)

Exx(f)fd ln f. (C.15)

We assume that the energy spectrum obtained for the case with M254 and M127 grid is based on
the non-turbulence fluctuations U ′

x(t) plus the turbulence fluctuations u′rms,x(t), and the energy
spectrum obtained for the case M000 only on the non-turbulence fluctuations U ′

x(t). The energy
spectrum of M000 shows that the energy contained in U ′

x(t) for 2 s−1 < f < 20 s−1 is significant
compared to that in u′rms,x(t), see Figure C.15. This means that this part of the turbulence band-
width is contaminated with non-turbulence contributions. We will continue with discussing the
extent of non-turbulence contamination in the turbulence bandwidth. We will consider the vari-
ation of the root-mean-square velocity in time. The variation of the root-mean-square velocity in
time is determined by the spectral method

urms,x(n)
urms,x

=

√∫ f2

f1
Exx(f, n)df

1
N

∑N
n=1

√∫ f2

f1
Exx(f, n)df

, (C.16)
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in which n corresponds to a block of 5 s, and the average is taken over the total of N = 120 blocks.
The spectral method is chosen since it combines the possibility of measuring long enough to
obtain a reliable energy spectrum (a block size of 5 s), and to relate the root-mean-square velocity
only to a specific bandwidth (f1 = 2 to f2 = 4.775 s−1). A block size of 5 s is believed to be long
enough for obtaining reliable energy spectra, but short enough to capture individual main stream
fluctuations. In other words, the block sizes are short enough so that the average main stream
velocity Ux(n) in one block equals the average main stream velocity Ux for the total number of
blocks plus a fluctuation U ′

x in the mean stream velocity:

Ux(n) ≈ Ux + U ′
x. (C.17)

The variation of the root-mean-square velocity in time as determined by Eq. C.16, is given in Fig-
ure C.6. This shows that variations of 0.03urms,x exist in the root-mean-square velocity between
blocks of 5 s for the case with grid-generated turbulence. We also determined the exent of these
variations for blocks with a size of 30 seconds. For this, we found variations of 0.01urms,x. How-
ever, we believe that the data obtained with block sizes of 5 s are more informative. These show
namely the variations in the root-mean-square velocity during individual sporadic but sudden
fluctuations of the main stream velocity itself. The variations of the root-mean-square velocity
between blocks of 5 s is larger for the case without grid-generated turbulence, that is the case
M000. Note that the root-mean-square velocity is now related to the fluctuations U ′

x in the band-
with f1 =2 to f2 =4.775 s−1. Although the average root-mean-square velocity is about an order
ten smaller, the fluctuations are larger.

C.4.2 Turbulence intensity and dissipation rate

In this section, we will discuss the turbulence intensity and dissipation rate as function of the
distance from the grid. Comte-Bellot and Corssin (1966) used the following empirical formula
for the turbulence intensity in grid-generated turbulence:

u2
rms

U2
x

= A−1
( x

M
− xv

M

)−m

. (C.18)

From this, one can derive a similar equation for turbulence dissipation rate as function of the
distance from the grid

ε =
3mU

3

x

2MA

( x

M
− xv

M

)−1−m

, (C.19)

see Appendix B for the derivation. The empirical parameters m,A, and xv/M will be determined
for the turbulence generated by the M254 and M127 grid. The measurements are performed at
12 streamwise locations with y, z = 0 and x between x/L = 0.12 and 0.81. It takes about 40M for
(quasi-)isotropy and (quasi-)homogeneity to develop, see for example Comte-Bellot and Corssin
(1966) and Mohamed and Larue (1990). For that reason, the closest measurement position was
set at x/L = 0.12, that is 40M/L for the M254 grid and 80M/L for the M127 grid. In section C.3,
no grid footprint was found in the flow field at x/L = 0.12, which suggests (quasi-)isotropy and
(quasi-)homogeneity. The averaged main stream velocity is in all measurements kept between
Ux = 15 ± 0.5m s−1. All the energy spectra are obtained by measurements of 600 seconds, in
which 20 spectra obtained from blocks of thirty seconds are averaged.

The turbulence intensity is determined by the spectral method

q(x) =
u2

rms,x(x)

U2
x(x)

=

∫ κx,2

κx,1
Exx(κx, x)dκx

U2
x(x)

, (C.20)
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Figure C.17: The turbulence intensity is determined by Eq. C.20, and the turbulence dissipation rate by
Eq. C.21 for the case with turbulence generated by the M254 and M127 grid. The measurements are
performed at 12 streamwise positions between x/L = 0.12 and 0.81. Note that L corresponds to 315M in
case of the M254 grid, and 630M in case of the M127 grid. The estimated profile of the turbulence intensity
and the turbulence dissipation rate as applied in Appendix B, that is with A = 18, n = 1.36, and xv = 0,
is given by the line without symbols. The deviation between the estimate profile and that obtained by the
wind tunnel measurements are negligible.

in which κ1 = 1 and κ1 = 2.000 correspond to the turbulence bandwidth f1 =2 to f2 =4.775 s−1.
The turbulence dissipation rate is determined from the dissipation spectrum:

ε(x) = 15ν

∫ κx,2

κx,1

κ2
xExx(κx, x)dκx. (C.21)

Again, the turbulence bandwidth is defined to be between κ1 = 1 and κ1 = 2.000.

The turbulence intensity and dissipation rate as function of the streamwise distance for the tur-
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bulence generated by the M254 and M127 are shown in Figure C.17. The parameter xv/M corre-
sponds to the virtual origin of the turbulence generated by the grid. The logarithmic turbulence
intensity and dissipation rate is plotted for a range of values for he virtual origin xv/M . The value
of xv/M is sought for which the data obeys the best linear relation. Subsequently, the parameter
m is determined from the incline of this line, while the ordinate level determines A.

The parameters A, m and xv/M for the turbulence intensity are found to be A = 60 ± 8, m =
1.34 ± 0.04 and xv/M = 8 for the M254 grid and A = 32 ± 7, m = 1.40 ± 0.04 and xv/M for the
M127 grid. The same parameters for the turbulence dissipation rate are found to be A = 21± 1,
m = 1.39± 0.01 and xv/M = 8 for the M254 grid and A = 14± 1, m = 1.39± 0.01 and xv/M = 0
for the M127 grid. Deviations of the values obtained for the turbulence intensity and dissipa-
tion rate may be caused by anisotropy of the turbulence, while isotropy is assumed in deriving
Eq. C.21 from C.20. It was not possible to find a reliable optimum value for xv/M in case of the
M127 grid. For that reason, we chose to set xv/M = 0.

The parameters A, m and xv/M are for a number of turbulence experiments reported in Comte-
Bellot and Corssin (1966). Our values fall in the range reported in there. The values for A, m
and xv/M that were used for predicting the evolution of turbulence quantities in Appendix B
are A = 18, m = 1.36 and xv/M = 0. The values obtained in the turbulence measurements,
correspond to these estimated values; deviations are negligible.
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Figure C.18: The Taylor Reynolds number is determined for 12 streamwise positions for the case with the
M254 and M127 grid. The streamwise positions are located between x/L = 0.12 and 0.81. Note that L
corresponds to 315M in case of the M254 grid, and 630M in case of the M127 grid.

Isotropy of turbulence

The isotropy urms,x/urms,y of the turbulence is measured at six streamwise locations between
x/L = 0.12 and 0.81. The isotropy is determined at y, z = 0 with a measurement of 600 seconds,
and for a range of z-positions and y = 0 with a measurement at each position of 30 seconds.
In this way, an accurate value for the isotropy at y, z = 0 is obtained, and an indication for the
isotropy distribution for a range of z-positions. It was found that the values for the isotropy vary
as much as 5% between different measurements locations. We assume that this is a result of the
measurement accuracy or the influence of main stream fluctuations U ′

x,y , see section C.4.1. The
isotropy is determined at 1.05± 0.05 for the M254 grid, and 1.15± 0.07 for the M127 grid. These
values correspond to typical values found in literature, see for example Comte-Bellot and Corssin
(1966).
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C.4.3 Taylor Reynolds number

An important turbulence parameter is the Taylor Reynolds number defined by:

Reλ =
urmsλ

ν
. (C.22)

The Taylor Reynolds number is determined at 12 streamwise locations with y, z = 0 and x vary-
ing between x/L = 0.12 and 0.81. All the energy spectra are obtained by measurements of 600
seconds, in which 20 spectra obtained from blocks of 30 s are averaged. The root-mean-square
velocity is determined by the spectral method

u2
rms,x(x) =

∫ κx,2

κx,1

Exx(κx, x)dκx, (C.23)

in which κ1 = 1 and κ1 = 2.000 correspond to the turbulence bandwidth f1 = 2 to f2 = 4.775
s−1. The Taylor microscale is determined by the relation:

λ2 = 15ν
u2

rms

ε
. (C.24)

The streamwise evolution of the Taylor Reynolds number in case of the M254 and M127 grid
is shown in Figure C.18. The characteristic value of the Taylor Reynolds number corresponds to
values found in literature for similar grids, see for example Mohamed and Larue (1990) or Lavoie
et al. (2007).

C.5 Optimal Wing Location for Vortex Pair Decay with Weak
Grid Generated Turbulence

In Appendix B, we discussed the dimensionless dissipation rate ε∗b0 = (εb0)
1/3

Uvor
z,0

and the maximum

achievable dimensionless time t∗max = b0
Uvor

z,0
in the wind tunnel test section. Here, we will present

the graph again with data obtained from the measurements performed in Chapter C. In this
way, we can define a optimal wing location when the Crow instability is going to considered for
vortex pair decay in weak turbulence. The data shows little deviation from the predicted values
as discussed in Appendix B. Therefore, we can consider xa = 3.5 m still as the optimal wing
location when both the turbulence grids M254 and M127 will be used.
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Figure C.19: The values of dimensionless dissipation rate ε∗b0 and the maximum achievable dimensionless
time t∗ are presented for two grid configurations M254 and M127, and three initial wing-tip separations
b0. The maximum achievable dimensionless time is based on the distance xc − xa, with xc the position
where an analysis of the trailing vortices is still possible. Here, xc is set to 6.0 m and is determined by the
maximum position at which PIV measurements can be performed in the TU/e wind-tunnel Goliath. For
determining the optimal wing location xa, it is important that the maximum achievable dimensionless time
t∗ is larger than the lifespan predicted by Crow and Bate (1976). This means that the optimal wing-location
lies outside the shaded area. On the other hand, the grid-generated turbulence needs about a distance of
40M before (quasi)-isotropy and (quasi)-homogeneity are developed, see section C.3. In combination with
the desired range of ε∗b0 , it can be concluded that two wing locations, xa = 3.5 m and 4.5 m, are appropriate.
With the wing location of xa = 4.5 m, it will only be possible to use the wing-tip separation distance of
d = 5.00 and 3.00 · 10−2 m. Therefore, we will consider xa = 3.50 m as the optimal wing location.
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Appendix D

A Comparison of 3C-PIV and
Hotwire Measurement Results

This appendix considers the results obtained with 3C-PIV and hotwire measurements of the trail-
ing vortex at location x/c = 7.5 behind the wing. The experimental procedure of the 3C-PIV
measurement is elucidated in Chapter 3, and we will now discuss the experimental procedure of
the hotwire measurements.

With help of the crosswire technique, it is possible to obtain the x− and y− components of the
time-averaged velocity and root-mean-square velocity (rms-velocity) at a certain position, that
are Ux(xs, ys, zs), Uy(xs, ys, zs), urms,x(xs, ys, zs), urms,y(xs, ys, zs), respectively. Note that the
velocities are obtained in the stationary frame of reference. We assume that the flow is incom-
pressible, and that local temperature variations are negligible. Corrections of the crosswire signal
due to local temperature variations are not applied, but correction due to changes in the temper-
ature of the mean flow are. In deriving the velocity components Ux and Uy , it is necessary that
the time-averaged velocity in the z−direction is zero, i.e. Uz = 0. We assume that the axis of
symmetry of the trailing vortex is parallel to the x-axis, and that Uz = 0 along the y-axis. First,
the position of the vortex core (ys = zs = 0) is retrieved, and then, profiles of Ux and Uy along the
z−axis are obtained.

The position of the vortex centre is obtained in three steps. First, Ux and Uy profiles along the
z−axis are obtained. The z−position where Uy crosses zero is believed to be z = 0. Second, Ux

and Uy profiles along the y−axis are obtained. The position where Ux is a maximum, is believed
to be position of the vortex core, i.e. y = 0. Third, step one is repeated to obtain the exact position
of the vortex core y, z = 0. The stepsize in the z−direction4stepz/r1,0 is 0.17 and is controlled by
the hotwire traversing system. The y−position is controlled by adjusting the wing-tip location.
By moving the wing in- or outwards, a stepsize of about4stepy/r1,0 = 0.4 is achieved. Finally, in
the postprocessing of the scans in z−direction, we introduce an offset in the z−positions in such
a way that the linear interpolation of Uy in a small region around Uy = 0 is exactly zero at z = 0.
This offset is typically smaller than 0.17r1,0.

When the position of the vortex centre is retrieved, we performed scans along the z−axis of both
the velocity, Ux and Uy , and the rms-velocity, urms,x and urms,y . The outer region of the trailing
vortex is covered by −12 ≤ zs/r1,0 ≤ 12 in steps of 4stepz/r1,0 = 0.8, and the inner region by
−3 ≤ z/r1,0 ≤ 1/3 which is resolved with 4stepz/r1,0 = 0.2.

The velocity and rms-velocity as obtained with the 3C-PIV and hotwire measurements are shown
in Figures D.1 and D.1, respectively. In the case of the 3C-PIV measurements, both the profiles in
the stationary and co-moving frame of reference are presented. There are a few points that need
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to be considered:

• There is a significant difference in the velocities in the inner region as obtained with the
3C-PIV and hotwire measurements. In the case of the velocity in the y−direction, the mag-
nitude of the velocity peak from the 3C-PIV measurement is about two times that from the
hotwire measurements. Moreover, the distance of the velocity peak from the vortex centre
is about two times as that from the hotwire measurements. An even bigger difference is
observed in the axial velocity component Ux. While the 3C-PIV measurements result in a
wake with amplitude (Ux − Ux)(2πr1,0/Γvor,0) ≈ −0.18, the hotwire measurements result
in a jet with amplitude (Ux − Ux)(2πr1,0/Γvor,0) ≈ 0.42.

The discrepancy can be caused by several reason. A variation in the total temperature may
be important since the hotwire measurements are not corrected for this. However, it is not
believed that these variations are large enough to cause such a discrepancy. We will give an
estimation of change in temperature from r = r1,0 to r = 0. Inside the vortex core region,
it is assumed that vortex is in solid-body rotation Uθ = Ωr, and that a balance between the
centrifugal and pressure force is present:

U2
θ

r
= −1

ρ

∂p

∂r
, (D.1)

(Ωr)2

r
= −1

ρ

∂p

∂r
, (D.2)

∫ r1,0

0

Ω2r = −1
ρ
(P |r=r1,0 − P |r=0), (D.3)

−1
2
ρ(Ωr1,0)2 = (P |r=r1,0 − P |r=0). (D.4)

Together with the adiabatic gas relation

T |r=r1,0

T |r=0
=

P |r=r1,0

P |r=0

(γ−1)/γ

, (D.5)

and Ωr1,0 = 10 m s−1, ρ = 1.2 kg m−3, γ = 1.4, P |r=r1,0 = P |r→∞ = 105 kg m−1 s−2, one
obtains a temperature decrease of about 0.02%. Clearly, a change in the temperature in- and
outside the vortex core region cannot cause a bias in the hotwire measurement. Moreover,
a temperature decrease would result in a larger measured velocities, which is the case for
Ux but not for Uy .

At this stage, it is unknown what the reason for the discrepancy between the hotwire and
the 3C-PIV measurements is.

• The profiles of Ux as obtained from the 3C-PIV and hotwire measurements show at zs − zs,c/r1,0 =
−7.5 both a decrease in velocity. This is caused by a remnant of the wing flow boundary
layer, see the figures in Chapter 5.

• The profiles of the rms-velocities are shown in Figure D.2. The values of the rms-velocities
as obtained from the 3C-PIV measurements in the stationary frame, and those from the
hotwire measurements do not show significant discrepancies. However, a bias can be rec-
ognized in the outer region. This bias is most likely a manifestation of the difference in
measurement limitations between the 3C-PIV and hotwire technique.

• Both the 3C-PIV results are shown for the stationary and co-moving frame of reference.
From visual inspection of Figure D.1, it becomes clear that the deviation in profiles of Ux

and Uy are negligible small. However, the measured rms-velocities in the stationary frame
are as large as 300% of those in the co-moving frame of reference. For a more thorough
analysis of the flow quantities obtained in the stationary and co-moving frame of reference,
the reader is referred to Chapter 5.
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Figure D.1: Vertical profiles of Ux − Ux ( ) and Uy ( ) obtained from 3C-PIV and hotwire
measurements. Both the 3C-PIV results are shown for the co-moving frame (black lines), and those for
the stationary frame of reference (gray lines). The hotwire results are shown in the stationary frame of
reference (light gray lines).
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Figure D.2: Vertical profiles of rms-velocities urms,x ( ) and urms,y ( ) obtained from 3C-PIV
and hotwire measurements. Both the 3C-PIV results are shown for the co-moving frame (black lines), and
those for the stationary frame of reference (gray lines). The hotwire results are shown in the stationary
frame of reference (light gray lines).
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Appendix E

Circulation Profiles of the Inner and
Outer Region Measurements

Separate 3C-PIV measurements are performed for the inner and outer region of the vortex. The
circulation profiles obtained from measurements in the inner and outer region are connected
at that radial position such that the derivative dΓvor/dr becomes as smooth as possible. This
process is performed with the help of visual inspection. The range in radial position at which
both circulation profiles are connected is restricted to 2.5 < r/r1,0 < 3.0. In this way, sufficient
positions are available for correctly connecting the inner and outer region, while enough high
resolution data of the inner core region is maintained. The circulation profiles of the inner and
outer region are shown for the case with and without turbulence grid in Figures E.1 and E.2,
respectively.
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Figure E.1: Circulation profiles of the inner region ( ) and outer region ( ) measurements for
the case without grid-generated turbulence. The circulation profiles as shown in Chapter 5 are connected
to each other at position rcon.
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Figure E.2: Radial profiles of the circulation for the inner region ( ) and outer region ( ) mea-
surements in the case with grid-generated turbulence. The circulation profiles as shown in Chapter 5 are
connected to each other at position rcon.
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Appendix F

Circulation Profiles by Velocity and
Vorticity Integration

In the appendix we compare the radial profiles of the circulation as determined by path integra-
tion of the azimuthal velocity, see Eq. 4.22, and by area integration of the axial vorticity. With the
radial profile of the axial vorticity determined by Eq. 4.22, the radial profile of the circulation by
area integration of the axial vorticity is determined by

Γ(r = i4r 5 rcon/4r) =
l=i∑

l=1

ωx(r = l4r)2πl(4r)2 i = 1, 2, 3...rcon/4r, (F.1)

for the inner measurement region, combined with

Γ(r = i4r > rcon/4r) =
l=i∑

l=rcon/4r+1

ωx(r = l4r)2πl(4r)2 + Γ(rcon); (F.2)

i− rcon/4r = 1, 2, 3...N4r − rcon/4r

for the outer measurement region. The circulation profiles as shown are connected to each other
at position rcon as motivated in Appendix E. From Figure F.1, it becomes clear that the radial
profiles of the circulation as determined by both methods, are in good approximation similar.
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Figure F.1: Radial profiles of the circulation for the inner region and outer region measurements and for the
case without grid-generated turbulence. The profiles as determined by area integration of the axial vorticity
( ), see Eq. F.1 and F.2, and path integration of the azimuthal velocity ( ) , see Eq. 4.22, are in
good approximation similar. The profiles of the inner and outer measurement region are connected to each
other at position rcon as motivated in Appendix E, see also Eq. F.1 and F.2.
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Appendix G

SPIV Measurements of Flow in
Empty Windtunnel: On the
Limitations of SPIV

SPIV measurements are performed for the flow in an empty wind tunnel. With an empty wind
tunnel, we mean a wind tunnel in which no turbulence grid or wing is installed. The flow is
therefore highly uniform and stable, see Appendix C. The flow consists only of an axial velocity
component Ux, and the remaining flow quantities as vorticity, circulation, and kinetic energy of
the turbulence are believed to be negligible small.

One may expect that the uniform conditions are retrieved by the 3C-PIV measurements. How-
ever, deviations can be caused by measurement noise and limitations in measurement accuracy.
For a thorough discussion of the limitations of 3C-PIV the reader is referred to Raffel et al. (2007).
The limitations of our 3C-PIV measurements are retrieved by empty wind tunnel measurements.
The profiles of the most important flow quantities are given in Figure G.1, and contour plots
are presented in Figure G.2 and G.3. Note that separate 3C-PIV measurements are performed
for the inner and outer region of the vortex. The circulation profiles as shown in Chapter 5 are
connected at the positions motivated in Appendix E. In al cases, the origin equals that of the
co-moving frame of reference.
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Figure G.1: Profiles of flow quantities obtained with a 3C-PIV measurement for the inner and outer region
in an empty wind tunnel. The deviations from the uniform and stable empty wind tunnel flow with Ux −
Ux = 0 gives an indication of the 3C-PIV measurement limitation. Note that the deviation between Ux −
Ux observed for inner region measurement and the outer region measurement indicates the uncertainty
with which the main stream velocity can be set.
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Figure G.2: Distributions of flow quantities obtained with a 3C-PIV measurement for the inner region in
an empty wind tunnel. The artificial shapes are a manifestation of the 3C-PIV measurement limitations.

135



−12 −6 0 6 12
−12

−6

0

6

12

y/r
1,0

z/
r 1,

0

 

 

(U
x
−

U
x
)(

2π
r 1

,
0
/Γ

v
o
r
,
0
)(
·
10

−
1
)

0.0

0.1

0.3

0.4

0.6

(a) Ux − Ux

−12 −6 0 6 12
−12

−6

0

6

12

y/r
1,0

z/
r 1,

0

 

 

ω
x
(2

π
r2 1

,
0
/
Γ

v
o
r
,
0
)(

·
1
0−

2
)

−2.0

−1.0

0.0

1.0

2.0

(b) ωx

−12 −6 0 6 12
−12

−6

0

6

12

y/r
1,0

z/
r 1,

0

 

 

ω
θ
(2

π
r2 1

,0
/Γ

v
o
r
,0
)(

·
1
0−

2
)

−2.0

−1.2

−0.4

0.4

1.2

2.0

(c) ωθ

−12 −6 0 6 12
−12

−6

0

6

12

y/r
1,0

z/
r 1,

0

 

 

q(
2π

r 1
,
0
/Γ

v
o
r
,
0
)2

(·
10

−
3
)

0.0

0.2

0.4

0.6

0.8

1.0

(d) q

Figure G.3: Distribution of flow quantities obtained with a 3C-PIV measurement of the outer region in an
empty wind tunnel. The artificial shapes are a manifestation of the 3C-PIV measurement limitations.
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Appendix H

Velocity and Vorticity Profiles for
Different Frames of Reference

The discussion of kinetic energy of turbulence considered the importance of determining the
vortex centre position correctly. An incorrect vortex centre position in combination with high
levels of vorticity are inherent to large velocity fluctuations. This is elucidated by comparing the
kinetic energy of turbulence determined in the frame of reference co-moving with vortex centre,
in the frame of reference co-moving with grid-point vortex centre frame, and in the stationary
frame of reference. The influence of the applied frame of reference for the radial profiles of axial
and azimuthal components of the velocity and vorticity is shown in Figure H.1. The difference
between the grid-point vortex centre and the vortex centre determined by a least-squares fit of a
second-order polynomial through the streamfunction for r/r1,0 < 0.5 is illustrated in Figure H.2.
The shown data corresponds to t(Γvor,0/2πr2

1,0) = 175 and for the case without grid-generated
turbulence. It becomes clear that the difference between the frame of reference co-moving with
vortex centre and that co-moving with the grid-point vortex centre is negligible for the radial
profiles of velocity and vorticity. However, lower levels of velocity and vorticity are obtained
when the stationary frame of reference is applied. This difference is as much as 10% in regions of
high level vorticity.
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Figure H.1: Radial profiles of azimuthal and axial components of velocity and vorticity as obtained in the
frame of reference co-moving with the vortex centre ( ), and that co-moving with the grid-point vortex
centre ( ), and that obtained in the stationary frame of reference ( ). The data corresponds to
t(Γvor,0/2πr2

1,0) = 350.0 and without grid-generated turbulence.
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