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Abstract

In obstetrician units timely recognition of fetal distress is a great challenge. At
present, cardiotocography is the widespread method for fetal monitoring. Unfortu-
nately, the poor specificity of cardiotocography has led to an increase in unnecessary
operative deliveries without improvement on the fetal outcome. Although additional
techniques have been developed for fetal monitoring during labor, these techniques
have only shown limited diagnostic value. Therefore, an urgent need exists to develop
non-invasive techniques that provide complementary information on fetal wellbeing.

Besides techniques that are used in clinical practice, additional information might
be provided by spectral analysis of the fetal heart rate variability. The heart rate vari-
ability is under control of the autonomic nervous system and, hence, is expected to
reflect the modulation of the autonomic nervous system. To ensure accurate and re-
liable spectral analysis, the heart rate needs to be measured on a beat-to-beat basis.
A technique that enables beat-to-beat recording of the fetal heart rate throughout the
pregnancy is the non-invasive fetal ECG. To record the fetal ECG non-invasively, a
monitoring system was developed at the Maxima Medical Center in collaboration
with the Eindhoven University of Technology. However, the non-invasive recordings
are severely contaminated with noise and reliable extraction of the fetal ECG is diffi-
cult. Despite numerous improvements in signal processing techniques, currently, no
algorithm exists that allows for reliable automated extraction of the fetal heart rate
from abdominal recordings.

In this thesis, an algorithm is developed that enables for automated extraction
of the fetal heart rate in non-invasive fetal ECG recordings. For this purpose, the
state-of-the-art techniques are evaluated and the best performing techniques are se-
lected. The limitations of the existing techniques are overcome by newly developed
implementations of these techniques and the development of additional processing
techniques. All individual techniques are combined into a single algorithm that en-
ables for reliable extraction of the fetal heart rate.

The performance of the developed algorithm is compared to state-of-the-art tech-
niques and is evaluated based on manual annotation. Due to the improvements of the
technique that is used to enhance the fetal ECG, the median (range: 5-95%) Signal-
To-Noise-Ratio has increased from 8.2 (range: −6.0-18.3) to 12.3 (range: 3.6-20.6).
Furthermore, the algorithm is able to distinguish between reliable and unreliable fe-
tal ECG recordings, and the error rate for recordings with a reliable fetal ECG has
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decreased from 17.2% to 6.5%.
Before spectral parameters can be used as diagnostic values, the development of

spectral parameters should be examined in healthy fetuses throughout the pregnancy.
The developed algorithm is used to obtain spectral parameters of the fetal heart rate
variability in a longitudinal follow up study to investigate maturation of the auto-
nomic nervous system in healthy fetuses. In comparison to previous studies of our
group that used the same database, the percentage of measurements from which fetal
heart rate is extracted for spectral analysis has increased from 16% to 44%. Due to the
increase in usable fetal heart rate for spectral analysis, clear trends can be observed
in the obtained spectral parameters. The observed changes in spectral parameters are
in accordance with those seen in animal studies.
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Chapter 1

Introduction

One of the great challenges for obstetrician units these days is to recognize fetal
distress during labor. In this critical period, the fetus is exposed to temporal hypoxia,
a deficiency of oxygen, caused by uterine contractions. Generally, a healthy fetus is
capable of handling this kind of stress and will develop normally [1]. In contrast, an
unhealthy fetus might be inadequate to respond and the risk of neonatal morbidity
and mortality for this group is significant [2–4]. Additionally, the timing of medical
interventions is of vital importance. On the one hand, unnecessary interventions
result in unnecessary pre-term birth and can lead to infant death [5]. On the other
hand, late or no intervention may cause fetal metabolic acidosis, a low acid-base
status (pH value) in the tissue, that is also associated with severe brain damage [3,6].
The main goal in fetal monitoring is to aid obstetricians in their decision making.

1.1 Fetal monitoring

The introduction of cardiotocography (CTG) in the 1960s, has enabled continuously
monitoring of the fetal heart and uterine contractions. This simultaneous monitoring
allows for interpretation of variations in the fetal heart rate based on the stress expe-
rienced by a fetus during a contraction. An example of such a measurement is shown
in Fig. 1.1. In current obstetrical units, CTG has become the worldwide standard
for fetal monitoring during labor. However, the use of CTG appears to have limited
diagnostic value [7]. Since the interpretation of the CTG is based on visual pattern
recognition, the inter- and intra-observer variability is high [8]. Furthermore, despite
its high sensitivity, its specificity is rather poor (30-40%) [7]. The use of CTG has
even resulted in an increased rate of unnecessary operative interventions, without a
noticeable improvement on the fetal outcome [7]. For these reasons, CTG requires
diagnostic tests to be additionally performed in case of CTG abnormalities. To pro-
vide this extra information, fetal scalp blood sampling (FBS) and STAN (Neoventa
Medical, Gothenburg, Sweden) [9] have been introduced in the clinic.

FBS measures the pH value of a blood sample, obtained from the fetal scalp dur-
ing labor. This invasive method requires rupture of the fetal membranes (reported
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Figure 1.1 – Example of a cardiotocogram. Upper line: fetal heart rate. Lower line:
uterine contractions.

with an overall incidence of complication of 6% [10]) and the blood sample can be
contaminated with maternal blood or amniotic fluid. Furthermore, it only provides
instantaneous information and needs to be repeated in case of persisting CTG ab-
normalities. With regard to the implementation of FBS, some clinical studies have
reported a reduction in unnecessary interventions [10], but the evidence for this is
not undisputed [11]. Besides, other studies did not show an improvement in fetal
outcome [7].

Besides the pH value obtained from FBS, additional information might also be
obtained from the fetal electrocardiogram (ECG). The ECG provides information
about the electrical activity of the heart during a cardiac contraction and several stud-
ies have associated changes in the shape of the ECG waveform with hypoxia [12–16].
As an alternative to the instantaneous information provided by the FBS technique,
STAN continuously monitors changes in the fetal ECG (fECG). More specifically,
STAN analysis changes in the ST-segment, the part of the ECG that is associated
with relaxation of the cardiac muscle. Since STAN invasively records the fECG by a
single electrode attached to the fetal scalp, it can only be used during labor.

A recent meta-analysis showed that CTG in combination with STAN reduced
the number of operative vaginal deliveries and the requirement for FBS [17]. Despite
these improvements, no significant difference was seen in the rate of severe metabolic
acidosis at birth, the number of caesarean sections or the neonatal outcome [17].
Furthermore, it cannot be used adequately in clinical practice without the availability
of FBS [18]. The fact that ST-events occur at a similar frequency for normal and
abnormal CTG patterns [19] further emphasizes the need for additional information.

Besides fetal blood pH values and ECG waveform analysis, more information
might be gained from fetal heart rate variability (HRV). For the interpretation of the
CTG, the fetal HRV has already been reported to be an important parameter [20–23].
The fetal heart rate is controlled by the cardiac regulation of the autonomic nervous
system (ANS) [24, 25]. A normal fetal HRV is indicative for fetal well-being [21],
whereas decreased fetal HRV is associated with low pH value [26], low Apgar score
[27] and perinatal death [21, 22].

To quantify these changes in HRV, spectral analysis might provide a more ob-
jective classification compared to the visual pattern recognition in the interpretation
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of the CTG. Recent studies have already shown that spectral parameters of the HRV
are correlated with severe metabolic acidosis at birth [28] and might be indicative for
fetal distress in an early stage of labor [29].

Before spectral analysis can be used as a diagnostic tool for fetal monitoring,
more insight needs to be gained in normal development of the ANS. At present,
limited research has been done on fetal HRV in the frequency domain during the sec-
ond and third trimester of the pregnancy, the period in which the autonomic cardiac
control system develops [30–32]. In these studies an increase is seen in the overall
frequency power of the fetal HRV with gestational age (GA). This increase is thought
to be a result of ANS maturation [30, 31]. However, the studies are in disagreement
concerning changes in the spectral parameters of the HRV. This can be explained
from the fact that only absolute frequency power spectra were investigated and fetal
rest-activity cycles [33], associated with typical fetal heart rate patterns [31,34], were
not distinguished.

1.2 Non-invasive fetal heart rate recording

To perform spectral analysis on the fetal heart rate, the methods for spectral ana-
lysis are subject to certain criteria. Firstly, the fetal heart rate recordings should be
obtained non-invasively, allowing for measurement throughout the entire pregnancy.
Secondly, the heart rate needs to be measured on a beat-to-beat basis to ensure accu-
rate and reliable spectral analysis [35, 36]. Currently, Doppler ultrasound (US), the
magnetocardiogram (MCG) [37, 38] and the fECG [39, 40] are the most important
methods to determine the heart rate non-invasively. Of these methods, US is already
widely used in clinical practice [41]. Unfortunately, US is unsuited for frequency ana-
lysis because the heart rate is averaged over 2.5 seconds. This in particular obscures
the high frequency parameters [42]. Furthermore, US cannot be used for prolonged
measurements since this technique transmits energy into the fetal body, potentially
endangering the fetal health.

Recordings of the fetal MCG and ECG both have the possibility to measure the
heart rate on a beat-to-beat basis and have the potential to provide a fetal cardiogram
for a morphological analysis [43]. ECG measure the electric activity of the fetal heart
on the skin and MCG measures the magnetic fields generated by the electric currents
within the fetal heart [43]. The main advantage of using the magnetic over the electric
signals is that it does not suffer from the isolating effect of the vernix caseosa, an
isolating layer surrounding the fetus that forms between the 28th and 32 week of
GA [44, 45]. However, MCG requires a heavy magnetically shielded room [43] and
cannot easily be used in clinical practice. In contrast to MCG, the measurement of the
ECG only needs a small recording device [46], making it most suited for longitudinal
studies and perhaps even for usage outside a clinical environment [46, 47].
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Figure 1.2 – Example of an abdominal recording that is severely contaminated by arti-
facts. The (at times incorrectly) detected mECG complexes are displayed in red circles.
Note, that the artifacts already disturbs detection of the relatively large maternal ECG
and this disturbance will be even more prominent for the fECG detection.

The non-invasive ECG recordings used throughout this thesis are obtained from
electrodes attached to the abdominal surface. The monitoring system is called Non-
invasive Electrophysiological Monitor for Obstetrics (NEMO) and was developed at
the Maxima Medical Center (MMC), in collaboration with the Eindhoven University
of Technology (TU/e) and Maastricht Instruments BV. From these recordings, it is
not possible to extract the fECG information directly, due to strong contamination by
unwanted electrical signals and low Signal-To-Noise-Ratio (SNR) of the fECG com-
plexes. Ever since the initial development of the NEMO, numerous improvements
have been made regarding artifact reduction [48], SNR [49], and correct detection of
the ECG-complexes [50, 51].

Despite these efforts, there is still a relatively large percentage of falsely detected
ECGs [49]. The reason for this is that current ECG detection methods assume that
the ECG signal is detectable at all times. Although this assumption is reasonable
in thoracic recordings, this is different for abdominal recordings. The latter are of-
ten contaminated with large amplitude artifacts that even exceed the maternal ECG
(mECG) amplitude (Fig. 1.2). This is even more the case for fECG detection, since
the noise amplitude is of the same order of magnitude as the fECG amplitude. Hence,
the fECG will often be overshadowed by artifacts, in which case no reliable heart rate
data can be obtained. Furthermore, part of the recordings does not contain any mea-
surable fECG information because the electric signal produced by the fetal heart is
to weak to reach the abdominal surface, either due to immaturity of the heart or the
presence of the vernix caseosa.
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1.3 Goals of this thesis

The first goal of this thesis is to optimize all signal processing techniques that aim
to extract fetal heart rate from non-invasive fECG recordings. Secondly, the individ-
ual techniques have to be combined into a single algorithm that enables automated
extraction of the fetal heart rate information. This algorithm should be able to dis-
tinguish between usable signal and signal that is severely contaminated by artifacts
or signal in which the fECG is virtually absent. The final goal is to obtain spectral
parameters in a large follow-up study group to investigate maturation effects of the
ANS on the fetal HRV.
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Chapter 2

Physiological background

Before explaining the details of the signal processing techniques used for the extrac-
tion of the fetal heart rate this section covers the basic physiological background of
the origin of the ECG signal. Besides a brief introduction in the physiology of the
heart, this section also provides information on the physiological principles behind
the heart rate regulation.

2.1 Adult heart

The heart functions as a pump to provide all vital organs and peripheral tissue with
blood. The cardiovascular system in human adults consists of two parts, the pul-
monary and the systemic circulation. In the pulmonary circulation, oxygen-depleted
blood is pumped from the right side of the heart into the pulmonary arteries, to the
lungs. The oxygenated blood is then returned back to the left size of the heart via
the pulmonary veins. In the systemic circulation, oxygenated blood is pumped from
the left side of the heart into the aorta, through the peripheral organs, and returns
depleted blood to the right side of the heart via the vena cava [52, 53] (Fig. 2.1a).
Each side of the heart consists of two chambers, the atrium and the ventricle. The
function of the atrium is to regulate the blood flow into the ventricle. In its turn, the
ventricle is the main pump and has to supply sufficient pressure for the blood to flow,
either through the pulmonary or the systemic circulation [52,53]. Since the systemic
circulation is larger than the pulmonary circulation, the left ventricle has to generate
a larger pressure and requires a larger muscular mass compared to the right ventricle.

The contraction of the heart is regulated by a specialized nervous system that
conducts electrical impulses (action potentials) rapidly throughout the myocardium,
the muscular layer of the heart [52], as shown in Fig. 2.1b. This system functions
such that the atrial contraction takes place prior to the ventricular contraction. This
ensures that the ventricles are entirely filled before they thrust the blood into the aorta
or pulmonary arteries. Secondly, to optimize the effective pressure generated by the
ventricular contraction, all parts of the ventricles need to contract almost simultane-
ously.
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(a) (b)

Figure 2.1 – (a) Schematic representation of an adult heart. (b) Electric conduction
system of the heart.

The impulses that cause cardiac contractions are generated by self-excitation of
the cardiac muscle cells. In theory, because all of these cells are capable of self-
excitation, any cardiac muscle cell can initiate a contraction. Of these cells, the
pacemaker cells, located in the sinoatrial (SA) node, have the highest self-excitation
rate and, hence, determine the heart rate [52]. After each excitation, the cells exhibit
a refractory period, in which no new impulses can be generated or propagated.

The action potentials generated in the SA-node first propagate through both atria,
causing them to contract. Before the ventricles contract, the central fibrous body,
tissue located between the atria and the ventricles, prevents the direct spread of the
action potentials into the ventricles. This oblies the propagation of the action poten-
tials to proceed through the atrioventricular (AV) node, into the bundle of His [53].
The delay in propagation caused by the AV node and the bundle of His, allows the
atria to empty their content into the ventricles, before ventricular contraction occurs.
After the bundle of His, the nerve fibers split into left and right bundle branches and
continue towards the left and right ventricle respectively [52, 53]. Finally, these bun-
dle branches break down into the Purkinje fibres that connect to the cardiac muscle
cells in the ventricles. To produce maximal effective pressure during ventricular con-
traction, the action potentials have to reach the cardiac muscle cells simultaneously.
For this purpose, the Purkinje fibers are relatively large compared to the cardiac mus-
cle fibers and the action potentials are transmitted at approximately six times the
transmission velocity of the transmission through the cardiac muscle fibers [52].
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Figure 2.2 – Schematic representation of a fetal heart. Foramen ovale and ductus ar-
teriosus are indicated. Also the connections of the parasympathetic (vagus nerves) and
sympathetic nerve system to the fetal heart are indicated.

2.2 Fetal heart

The fetal cardiovascular circulation differs from the adult circulation [54–56]. In
contrast to adults, the intake of oxygen and the secretion of carbon-dioxide does
not takes place in the lungs, but in the placenta [57]. In this case, the blood from
the right ventricle is not pumped into the lungs to acquire oxygen and instead both
ventricles pump the blood through the entire body (including the lungs) [58]. For
this purpose, two interconnections, the foramen ovale and the ductus arteriosus, link
the atria and the outgoing arteries of both the ventricles [57], as illustrated in Fig.
2.2. Since both the left and right ventricle have to generate equal pressure, their
muscular mass is approximately equal. Often, the mass of the right ventricle is even
slightly larger [54,56]. Despite these differences in mechanical function between the
adult and fetal heart, the fetal nervous system causing the propagation of the action
potentials is rather similar to that of adults.

2.3 Electric activity

The membrane of cardiac muscle cells exhibits a potential difference between in-
tracellular and extracellular fluid, mainly controlled by the distributions of Sodium
(Na+), Potassium (K+) and Calcium (Ca2+) ions [52, 53]. At rest, the membrane
potential is -90mV with respect to the extracellular fluid. The presence of an action
potential can increase the membrane potential up to -60mV, initiating a cycle to ac-
tivate the cell. The membrane potential as a function of time during such a cycle is
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Figure 2.3 – The membrane potential versus time during cell depolarization and repo-
larization. The membrane potential is initially at rest of -90 mV (0). By the presence
of an action potential the membrane potential increases to above a threshold potential
of -60 mV, followed by depolarization (1). After depolarization, the membrane poten-
tial initially remains at a plateau (2) and finally repolarizes to rest membrane potential
(3). [59]

shown in Fig. 2.3. At first, the increased membrane potential will increase the Na+

permeability through the cell membrane. This generates a rapid influx of Na+ that
inverses the membrane potential (depolarization). Besides an increased Na+ perme-
ability, also a more graduate inflow of Ca2+ and an outflow of K+ takes place. The
exchange of Ca2+ and K+ causes the membrane potential to remain at a plateau. Fi-
nally, the membrane potential returns to its rest value due to persisting outflow of the
K+ (repolarization). When the cell has returned to its rest phase, the Na+ ions will
leave the cell, while the K+ ions re-enter.

The actions potentials are able to propagate from cell to cell during the depo-
larization phase [60]. There are two mechanisms at hand that enable this intercellu-
lar propagation. Firstly, gap-junctions, interconnections between the cardiac muscle
cells, provide channels for the transportation of positive ions from the activated cell to
adjacent rest cells. Secondly, the depolarization of a cell will locally lower the con-
centration of positive ions in the extracellular fluid. Both these mechanisms lower
the membrane potential of the neighboring rest cells and initiate the depolarization
in these cells. As a consequence of this cell-to-cell activation, the stimulus is able to
propagate in any given direction and creates activation waves. At the wavefront, the
depolarized cells will have an increased potential compared to the rest cells and the
boundary between these cells will act as a dipole.

The actual contraction of the cardiac muscle originates from the conversion of an
action potential into mechanical activity inside the cardiac muscle cells [53]. First,
the action potential causes a chemical process to release large amounts of Ca2+ ions.
In turn, the large concentration of Ca2+ ions initiates an attractive force inside the
cardiac muscle cell, causing it to contract.
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Figure 2.4 – The VCG is shown in green. The biggest loop represents the QRS complex,
and the two smaller loops the P and T wave. The ECG obtained by projection of the VCG
onto the leads of the traditional Einthoven triangle [65] are displayed in black. [63]

2.4 The vectorcardiogram

The tissue surrounding the cardiac muscle acts as a conductor, allowing for a spread
of the electrical currents generates by the individual dipoles. The coherent activation
of numerous cells at the dipole wavefront will generate electrical fields that, due to the
impedance of the skin, result in measurable potential differences at the body surface
[61]. In a first order approximation, the entire electrical activity can be described by a
single field vector [62,63] and the time path of this vector in three-dimensional space
is called the vectorcardiogram (VCG) [64].

The characteristic VCG of an adult consists of three closed loops, as displayed in
Fig. 2.4 [66]. The first loop is associated with atrial depolarization, followed by the
largest loop which is associated with ventricular depolarization. Since atrial repolar-
ization and ventricular depolarization occur simultaneously, the atrial repolarization
is obscured. The third loop is associated with repolarization of the ventricles. The
repolarization wave of the ventricles propagates in opposite direction compared to its
depolarization wave and has inverted sign. Therefore, the associated path is oriented
in similar direction as the depolarization loop of the ventricles. The maximum am-
plitude of the VCG is seen during the ventricular depolarization because the largest
simultaneous activation of the muscles fibers is involved in the ventricular contrac-
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Figure 2.5 – If the amplitude of the VCG at a particular point in time is positive in the
direction of the lead vector the recording will be positive and visa versa. The amplitude
is also correlated with the amplitude on the recording.

tion. The electrical axis of the heart is then defined in the direction of the maximum
amplitude of the VCG [52] and, for the adult heart, points towards the left ventricle.
The VCG of the fetal heart looks slightly different due to the difference in mechanical
function of the heart, as explained in section 2.2. Since the muscular mass of the right
ventricle is larger than that of the left ventricle, the electrical axis points towards the
right ventricle [50, 55].

2.5 The electrocardiogram

Despite its conceptual simplicity to visualize the activation of the myocardium, the
VCG cannot be measured directly. The created potential differences, however, can be
detected by means of electrodes on the skin. The representation of these potential dif-
ferences as a function of time is called the electrocardiogram (ECG) [52]. The ECG
can be regarded as a one-dimensional projection of the three-dimensional field vector
(described by the VCG) onto the lead vector of two electrodes [63]. An example of
the VCG projections onto the lead vectors of the traditional Einthoven triangle [65]
is displayed in Fig. 2.4.

A typical ECG consists of a PQRST-complex [52,53], as schematically illustrated
in Fig. 2.5. The initial wave, the P-wave, is associated with the depolarization of the
atria (first loop in the VCG). This is followed by the QRS-complex caused by the
depolarization of the ventricles and, finally, the T-wave that is associated with the re-
polarization of the ventricles [52,53]. As mentioned in section 2.4, the repolarization
of the atria occurs simultaneous with the depolarization of the ventricles and cannot
be distinguished in the ECG. Furthermore, in the same manner as for the VCG, the
T-wave will have the same polarity as the QRS-complex.

Before the fetal heart signal reaches the abdominal skin, the signal has to prop-
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agate through several layers of tissue, which together determine the overall conduc-
tivity [67]. Changes in composition of these layers throughout the gestation (e.g.
increase in amniotic fluid [68, 69], placenta and fetal volume [70]) directly influence
the overall conductivity. In particular the formation of the low conductive vernix
caseosa layer, during the 28th and the 32th week of gestation [44,45,66], is expected
to strongly attenuate the signal. This layer will slowly dissolve in the 37th week to
the 38th week [58, 71].

2.6 Heart rate variability

The fetal response to oxygen deficiency and other changes in circumstances is under
regulation of the autonomic nervous system (ANS), and entails several protective
mechanisms [52]. The goal of these mechanisms is to maintain sufficient oxygen
supply to the central organs.

The initial stage of oxygen deficiency is hypoxemia and the typical fetal response
is to optimize oxygen uptake in the placenta. If oxygen deficiency persists, the fe-
tal activity is reduced [1, 12]. In case of long-lasting hypoxemia the growth rate is
reduced and the development of the organ system is affected. The fetus is able to
handle hypoxemia for several weeks. In case the oxygen level further decreases, the
fetus may enter the hypoxia state. In this state, vasoconstriction, the narrowing of the
blood vessels, reduces the blood flow to peripheral tissue and the blood circulation
is redistributed to the central organs [72–75]. In addition, the heart rate increases to
maintain cardiac output and umbilical blood flow [75,76] and anaerobic metabolism,
the creation of energy through combustion of carbohydrates in the absence of oxy-
gen, occurs in the peripheral tissue [72, 77, 78]. Finally, the fetus enters the state of
asphyxia, in which metabolic acidosis and anaerobic metabolism might also occur in
the central organs.

Throughout the pregnancy, the fetus develops mechanisms that protect the fetus
against hypoxemia and hypoxia. The ability of the fetus to respond to the hypoxemia
and hypoxia experienced during labor, strongly depends on the development of these
protective mechanisms. If these mechanisms have already been used or have not been
fully developed, e.g. due to long-lasting hypoxemia prior to labor, the risks of fetal
morbidity and mortality are significant. The fetal heart rate variability (HRV) might
provide information on the activity and development of the fetal ANS, and its ability
to respond to the stress experienced during labor.

2.6.1 Autonomic cardiac control

The autonomic nervous system consists of two essentially different parts, the parasym-
pathetic nervous system (PSNS) and the sympathetic nervous system (SNS) [79]. The
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stimulation of the PSNS has a direct effect on the heart rate and this allows for a beat-
to-beat variation. This beat-to-beat variation is not possible for the relatively slow
stimulation of the SNS. For this reason, high frequency fluctuations (0.15-1.5Hz) of
the heart rate are solely associated with PSNS control, whereas low frequency fluc-
tuations (0.04-0.15Hz) are associated with both PSNS and SNS control [25, 80].

Both the SNS and the PSNS are composed of preganglionic and postganglionic
neurons. The cell bodies of the preganglionic neurons is located in the Central-
Nervous-System (CNS) and they synapse, electrically connect, with the post gan-
glionic neurons that are located close to or are embedded in their target organs. The
postganglionic neurons in turn, synapse with the effectors of the target organs [79].

The transmission of action potentials along the ganglia of the PSNS and SNS is
governed by different neurotransmitters. For the PSNS both the transmission from
the pre- to postganglionic neurons and the transmission from postganglionic nerves
to the effectors of the target organ is governed by acetylcholine (ACh). In case of the
SNS, the transmission from pre- to postganglionic nerves is also mediated by ACh,
however, now the activation of the target synapse is mediated by either noradrenaline
or adrenaline.

The postganglionic cells of the PSNS used in cardiac regulation are located ei-
ther on the epicardial surface, the outer surface of the heart, or within the walls of
the heart. Most of their associated cardiac target cells are located near the SA node
and the AV node (Fig. 2.2). The activation of the PSNS has a direct effect on the
heart rate. The ACh, the neurotransmitter used for propagation from PSNS postgan-
glionic cells to its target cells, directly influences the permeability of K+ ions in the
membranes of the cardiac cells. Furthermore, the effect of PSNS stimulation decays
relatively quick because the SA and AV node are rich in cholinesterase, an enzyme
that breaks down ACh. This direct control mechanism enables the PSNS to exert a
beat-to-beat control on the heart rate.

The pre- and postganglionic nerves of the SNS synapse in the stellate ganglia, in
front of the neck of the first rib. The postganglionic fibers are distributed to the vari-
ous chambers of the heart (Fig. 2.2). Activation of the SNS increases the myocardial
contractility and the heart rate [81].

In comparison to the rapid decay and stimulation due to parasympathetic acti-
vation, the effect of sympathetic activation is slow. The release of norepinephrine,
the neurotransmitter involved in activation of the SNS target cells, is relatively slow
and the effect of the norepinephrine on the cardiac cells is indirect. Additionally, the
decay of the sympathetic activity is also relatively slow, since the concentration of
norepinephrine is only reduced by either absorption in the target nerve terminals or
by the blood stream.
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2.6.2 Changes in fetal autonomic regulation due to maturation

The contributions of the PSNS and the SNS to the cardiovascular control change
throughout the pregnancy due to the maturation of the fetal ANS [30–32]. Early in
the pregnancy, the heart has not yet been fully developed and the heart rate is auto-
regulated [82, 83]. In sheep studies, it has been shown that the cardiac SNS becomes
functional prior to the PSNS [84,85] and the SNS is expected to dominate the control
of the cardiovascular functions while the fetus is inside the uterus.

Besides the effect of maturation on the heart rate regulation, fetal activity also
influences the heart rate. Whereas spontaneous body movement can be observed
randomly over time from 7 weeks of gestation [86], these fetal movements become
clustered in rest-activity cycles from 23 weeks of gestation onwards [33]. During the
second half of the pregnancy, rest-activity episodes become increasingly associated
with fetal heart rate patterns and eye movements, and eventually result in behavioral
states. After 34 weeks of gestation, these behavioral states are fully developed [87]
and their presence is seen as an indication of maturity of the ANS [88].

Behavioral states are commonly classified into four groups [89]. The first state
(1F) is the quiet sleep, or non-REM sleep. In this stage, no body or eye movements
occur and the fetal heart rate is stable with a relatively small oscillation bandwidth.
The second state (2F) is active sleep, or REM-sleep, in which repeated body move-
ments and continues eye movements are present. The heart rate pattern now shows
large fluctuations under influence of rapid changes in ANS activity. The final two
states, the quiet awake (3F) and the active awake (4F), are of less importance since
they seldom occur [90, 91] and will not further be discussed.

2.7 Summary

In this chapter, the physiological background of the fetal heart and the electrical car-
diac activity have been discussed. In the next chapter, state-of-the-art signal process-
ing techniques are discussed that exploit these physiological properties to extract the
fetal heart rate from non-invasive abdominal recordings.
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Chapter 3

Technical background

The abdominal recordings are strongly contaminated by unwanted electrical signals,
such as the mECG, the electrical activity of the abdominal muscles and uterus, power
line interference, and noise. The low amplitude of the fECG with respect to amplitude
of these disturbances makes the extraction of the fECG difficult.

Of the interferences in the abdominal recordings, the dominant interference is
the mECG. The separation of the mECG and the fECG is the first important signal
processing step. The separated fECG still contains other corruptions and, due to the
small amplitude of the fECG, the SNR is often insufficient for direct extraction of
the fECG [92,93]. Therefore, additional processing steps are required to enhance the
SNR. This chapter explains the state-of-the-art processing techniques that concern
extraction of the fECG from the abdominal recordings [48–51] and their limitations.

3.1 Maternal ECG subtraction

In the literature, several techniques have been proposed for suppression of the mECG
from abdominal recordings, as briefly summarized in [48]. The majority of these
techniques uses a template, an estimation of a mECG complex that can vary in time.
This template is used to subtract the mECG from the recordings. However, for these
template subtraction techniques, correct estimation of the mECG is important. Inac-
curacies in the template result in residuals of the mECG in the recordings that easily
exceed the amplitude of the fECG.

The challenge for these template subtraction methods lies in correct estimation
of the strong variations in the waveform of the mECG. Respiration of the mother
causes motion of the maternal abdomen and the orientation of the lead vectors of
the electrodes relative to the cardiac electric field vary over time. This results in
variations in the typical waveform of the ECG.

In the technique called Weighted Averaging of mECG Segments (WAMES) [48],
a mECG template is generated for each individual wave (the P-, QRS-, and T-wave).
By generating a template for the individual waves, the morphological variability can
be accounted for more accurately. Furthermore, the accuracy of template subtraction
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Figure 3.1 – The subtraction of the mECG from the abdominal recordings by WAMES.
(a) The raw abdominal recording. (b) Abdominal recording after pre-processing by
means of linear filtering. (c) Pre-processed abdominal recording (black) and estimated
mECG (red). (d) Remaining fECG after maternal subtraction.

often suffers from artifacts and the presence of fECG complexes. For this purpose,
WAMES only includes preceding waves in the averaging that are not contaminated
with artifacts. An example of the mECG suppression by WAMES is shown in Fig
3.1.

WAMES has been shown to be superior to other existing techniques and is chosen
as the method for the subtraction of the mECG throughout this thesis [48]. It is
important to note that since the publication of the algorithm, a newer version has
become available that is less computationally complex. Although this is not part of
the work done in this thesis, the description of WAMES is discussed in more detail
in the next section and slightly differs from the description in [48].
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WAMES
In the first step of the mECG subtraction, other unwanted interferences are suppressed
by filtering. First, the power line interference (50 Hz) is filtered by means of a fourth
order Butterworth band-stop filter with stop-band between 49 and 51 Hz. The low
frequency motion artifacts are suppressed by a fourth order Butterworth high-pass
filter with cutoff frequency of 1.5 Hz. Finally, a fourth order Butterworth low-pass
filter with cutoff frequency of 70 Hz is used to suppress higher harmonics of the
power-line interference and part of the noise that originates from muscular activity.
The low-pass cutoff value is chosen equal to the upper limit of the spectral content of
the fECG [94].

The next step in the WAMES algorithm is to dynamically estimate a template of
the mECG. In the template, each individual wave Zi (with Z = {P,QRS,T}) is esti-
mated individually by the weighted averaging of the waves of n preceding mECG
complexes (Zi−k). Before the averaging, the mECG complexes are synchronized
based on their R-peak location. Since the R-peak has the highest amplitude in the
ECG-complex, it is easiest to detect.

First, the part of the signal at the location of the new mECG complex is deter-
mined based on the R-peak location. Note that, besides the mECG complex Zi, this
part also contains disturbances from noise and the fECG. The goal is to only subtract
complex Zi from the recording.

A sanity check is then performed for each preceding mECG complex Zi−k, to
determine wether it is not too severely corrupted by noise. This is done by calculation
of the mean difference between Zi−k and the newly found Zi

Dk = (Zi−Zi−k)2 (3.1)

If a waveform of Zi−k strongly deviates from the new complex, it is excluded from
further estimation of the template.

After these strongly corrupted complexes have been excluded, an initial estimate
of Zi is obtained (Zave), defined as the average of the remaining preceding complexes.
This allows for the detection of possible artifact samples within the new complexes
Zi. Artifact samples are identified with the Mean Squared Error (MSE) between Zi

and the average Zave

E( j) =
1
M

M

∑
j
(Zi, j−Zave, j)

2 (3.2)

where E( j) is the MSE in the jth sample and M the length of wave. If the error of a
sample j exceeds 1.5 times the mean error, that sample is indicated as an artifact and
is not taken into account for further calculation.

Besides artifacts in the preceding complexes and within the new complex, respi-
ration causes changes in the DC component and amplitude of Zi with respect to the
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DC component and amplitude of Zi−k. Correct estimation of the mECG is further
limited by the finite sampling frequency. As a solution to this problem, time-shifts
smaller than this frequency are compensated for by interpolation. For these reasons,
the initial estimate Zave has to be scaled (a), time-shifted (b), and DC offset compen-
sated (c). The optimized waves Ztemp is found by minimizing the MSE between Zi

and Zave, with respect to the parameters a,b, and c:

~∇(
1

M′ ∑
j∈Fi−k

(Zi, j−aZave, j+b + c)2) = 0 (3.3)

with ~∇ the gradient ( ∂

∂a ,
∂

∂b ,
∂

∂c), Fi−k the set of samples that do not contain artifacts,
and M′ the number of samples in Fi−k.

Finally, the individual waves of Ztemp are combined into one template of the entire
ECG complex and the template is subtracted from the recordings.

3.2 Fetal ECG optimization

After subtraction of the mECG, the recordings are still unsuited for direct fECG ex-
traction. Besides residuals of the mECG, the recordings are also corrupted by other
interferences and noise that easily exceed the low amplitude fECG. To enable detec-
tion of the QRS complexes, additional processing steps are required.

Several techniques have been proposed to exploit the spatial correlation between
the electrode leads to enhance the SNR of the fECG [49, 95, 96]. Of these tech-
niques, [95, 96] are purely mathematical techniques in which the fECG signals are
combined in such a way that the resulting combinations exhibit either maximum vari-
ance (Principal Component Analysis, PCA) or maximum statistical independency
(Independent Component Analysis, ICA). Important to remember is that in these
techniques, no a priori knowledge on the physiology of the system is necessary and
they are so called Blind-Source-Separation (BSS) techniques. Due to this lack of
physiological basis, BSS techniques are less effective in separating the fECG from
the noise in case of low SNR. Hence, it frequently occurs that the BSS techniques are
not capable of extracting the fECG. As an alternative to the BSS techniques, Vullings
et al. proposed a physiological-based source separation (PBSS) technique [49].

The PBSS has shown to perform equally as good or better compared to the BSS
techniques and is used throughout this thesis. However, despite its relative good
performance compared to the other techniques, the PBSS still resulted in numerous
mis-detections. These mis-detections have a negative influence on the spectral ana-
lysis of the fetal heart rate and hence improvement of the PBSS technique is required.
For the explanation of these improvements, a good understanding is required of the
PBSS technique.
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PBSS
The PBSS spatially combines the abdominal fECG, based on knowledge about the
positions of the recordings electrodes. This information can be used to obtain the
three-dimensional (3D) VCG (section 2.4). As schematically shown in Fig. 2.4, the
typical time-path of the VCG during on cardiac contraction is of elliptic shape, with
the highest amplitude pointing in the direction of the electrical heart axis. Since the
ECG can be seen as the projection of the VCG onto a certain lead, projection along
the direction of the electrical axis is expected to exhibit the largest amplitude of the
QRS complex.

In the PBSS technique, the signals of the individual leads are combined into the
VCG after which an ellipse fit is used to determine the direction of the electrical heart
axis. Then, all information of the VCG is projected onto this axis to enhance the QRS
complexes. An example of the processing steps in the PBSS is displayed in Fig. 3.2.

In the original PBSS technique, as described in [49], calculation of the VCG is
done in 3D space. Instead, this thesis only uses a 2D representation of the VCG (in
the coronal plane). Although the use of a 2D representation inevitably leads to a
loss of some spatial information, it simplifies the calculation and makes the ellipse fit
(hence the estimation of the electrical heart axis) less susceptible to artifacts.

For future reference, the VCG is represented by the [2×T ] matrix S. The rows
represent the VCG of length T in the Right-Lateral direction (RtLat, ~x) and the
Inferior-Superior direction (IS, ~y). The N abdominal fECG recordings are repre-
sented by the [N × T ] matrix V (Fig. 3.2a). Since V is measured, the goal is to
determine S based on V. The relation between S and V is given by:

V = DS (3.4)

with transformation matrix D the [N×2] matrix that contains all spatial information
concerning the electrode configuration. The values of the D are estimated by means
of a photograph of the electrode positions. Furthermore, the elements of D are nor-
malized to make D invariant under transformation of coordinate system. Since D is
not a square matrix, it cannot be inverted directly. The matrix is squared by multiply-
ing both sides with the transpose of D

DT V = DT DS (3.5)

The matrix S can now be expressed in terms of V

(DT D)−1DT V = (DT D)−1DT DS (3.6)

(DT D)−1DT V = IS (3.7)

D†V = S (3.8)
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where I is the unity matrix and D† represents the Moore-Penrose inverse of the matrix
D [97]. An example of the 2D representation of the VCG is shown in Fig. 3.2b.

Since only 10% of the data contains information about the QRS complex (as-
suming a QRS complex of about 40ms [98] and a heart rate of 150 beats per minute),
not all data should be included in the ellipse fittings. Therefore, the top 10% of the
data points of the VCG are retained (Fig. 3.2c). Furthermore, to prevent potentially
present artifacts from affecting the ellipse fit, the upper 1% is also omitted. The 10%
and 1% boundary are determined based on the distance from the origin as the

√
S2.

The ellipse fit used to find the electric heart axis is based on a least square fitting.
Although this does not guarantee an optimal fit [99], other methods require an itera-
tive approach and have significantly larger computation times. In the used approach,
the ellipse is described by the conic equation in 2D:

f (~x,~a) = a1x2 +a2xy+a3y2 +a4x+a5y+a6 = 0 (3.9)

Only for points ~xi that lie exactly on the ellipse, Eq. 3.9 will be zero. Any
deviation will yield a measure for the error, ε, in the ellipse fit. Minimizing ε gives
the optimal estimate of~a (Fig. 3.2c).

ε =
1
T

T

∑
i=1

(a1x2 +a2xy+a3y2 +a4x+a5y+a6)
2 (3.10)

In the final step of the algorithm, S is projected onto the long axis of the ellipse.
The mixing matrix MPBSS, that maps the abdominal fECG onto the long axis can be
expressed as

MBPSS =~rlongD† (3.11)

with ~rlong the vector in the direction of the long ellipse axis. The vector ~rlong is
determined as the furthest point on the ellipse measured from the ellipse center. From
this, the SPBSS is subsequently directly obtained from V by (Fig. 3.2d)

SPBSS = MBPSSV (3.12)

Since SPBSS exhibits an improved SNR compared to the fECG in the individual
leads, SPBSS can be used for further analysis of the fetal heart rate. For this pur-
pose, the fetal R-peak locations are detected in SPBSS. There are several algorithms
available and these will be discussed in the next section.
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Figure 3.2 – Processing steps of the PBSS technique are displayed. (a) The fECG in all
individual leads. (b) The signals in the individual leads are combined into the 2D VCG
with Eq. 3.8. The red circles indicate the 90% and 99% boundaries. (c) Before ellipse
fitting, part of the data points are omitted. The electrical heart axis is determined as the
long axis (blue) of the ellipse fit (green). (d) All data of the VCG are projected onto the
elliptic long axis with Eq. 3.12.
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3.3 R-peak detection

The importance of correct R-peak detection for mECG subtraction becomes clear
from the fact that the mECG complexes, used for the template estimation, are syn-
chronized on their R-peak position. Incorrect detection, thus incorrect mECG sub-
traction, results in remaining artifacts in the fECG. Besides accurate peak detection
in the mECG, the spectral analysis of the heart rate of the fECG also requires accu-
rate peak detection [100]. An overview of different algorithms for peak detections is
provided in [101], of which the most promising are summarized in [51].

Typically, peak detection algorithms consist of two parts. First, the QRS com-
plexes are optimized based on linear and/or non-linear filtering. These filtering tech-
niques usually use some a priori knowledge about the properties of the QRS com-
plexes. The optimization is followed by a decision phase, in which the actual peaks
are detected in the filtered signal using certain criteria, e.g. a threshold amplitude.

This section briefly discusses the peak detection algorithm proposed by Vullings
et al. (used in WAMES and PBSS) [50] and the algorithm proposed by Rooijakkers
et al. [51]. The latter is of interest, since it has shown to outperform other algorithms
for both maternal and fetal QRS-peak detection.

3.3.1 Vullings

For the optimization phase, Vullings et al. uses a length-transformation that exploits
knowledge about the amplitude, gradient, and length of the QRS complex. The in-
teresting part of the algorithm is the decision phase, in which an optimal threshold
amplitude is estimated, based on the statistical properties of the signal. The threshold
value is derived analytically, using Bayesian probability theory. Due to this analytic
approach, no information about the actual QRS peak position is required.

Signal optimization

Prior to the detection of the QRS complexes, the SNR of the ECG is enhanced using
known properties of the QRS complexes. Firstly, the ECG is band-pass filtered ex-
ploiting knowledge about the frequency content of the QRS complex. The dominant
frequency band for the maternal QRS complex is 10-25 Hz, while for the fetus this
is 10-30 Hz [94]. Secondly, due to the physiological origin of the QRS complex,
its amplitude and gradient are expected to be large compared to those of other parts
of the ECG. Additionally, the length of the QRS complexes (90 ms in adults and 45
ms in fetuses [102]) distinguishes them from most artifacts that generally last much
shorter.

In order to enhance the QRS complexes and to suppress the noise, a length trans-
formation is used. In this transformation, the ECG (V [i]) is differentiated. Then, the
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absolute values of the gradient of the V [i] are summed, by using an integrating win-
dow with the length that corresponds to the length of the QRS complex. This exploits
the relatively large amplitude of the QRS complex. The resulting signal is commonly
known as the sum of absolute differences (SAD) [103]:

S[n] =
MQRS

∑
i=1
|V [i+1]−V [i]| (3.13)

with S[n] the SAD at sample n and MQRS the time window that corresponds to the
length of a QRS complex.

Bayesian thresholding

QRS detection is usually based on an amplitude threshold value. The R-peak loca-
tions are identified by the part of the signals that exceed this threshold. The ampli-
tude of the QRS-complexes can vary substantially and abruptly, hence the use of a
dynamic threshold is favored over a fixed threshold.

The goal of the Bayesian approach is to design an adaptive threshold, of which
the amplitude is updated according to the previous and new statistical information
provided by the SAD. The instantaneous threshold (ξi,t), that is determined directly
from the instantaneous statistical information provided by the SAD at each instant t,
is defined by:

ξi,t = gmax{|SADτ|}− (1−g)min{|SADτ} (3.14)

with |SADτ| = |SAD[t − τ]|, ...|SAD[t]|, τ a time interval that contains at least one
heart beat and g a constant that is experimentally determined. This instantaneous
threshold, however, is based on the SAD that is most likely corrupted by noise. Fur-
thermore, this non-optimal threshold does not use any prior information of previously
determined thresholds. Therefore, in this Bayesian approach, an optimized threshold
(ξo,t) is estimated using the statistical instantaneous and previous information of the
signal.

The connection between the instantaneous threshold ξi,t and the optimal threshold
ξo,t can be described by the following state-space model (Fig. 3.3){

ξo,t+1 = ξo,t +νt

ξi,t+1 = ξo,t+1 +ηt+1

Here, νt represents the variation between the optimized threshold values ξo,t+1 and
ξo,t , and ηt+1 describes the contribution of artifacts to the instantaneous threshold
ξi,t+1. In order to create an analytic solution and small computational complexity for
the threshold, both νt and ηt+1 are assumed Gaussian distributed with zero mean and
variances σ2

ν,t and σ2
η,t+1 respectively.
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Figure 3.3 – Illustration of the state-space model that describes the evolution of the
optimized threshold for QRS detection.

The goal is to estimate the new optimal threshold value ξo,t+1, given the available
statistical information of the SAD (ξo,t , σ2

ν,t , σ2
η,t+1, and ξi,t). The solution to these

type of problems, can be found by Bayesian probability theory. The details of this
derivation are found in Appendix A and this section only discusses the results. Due
to the Gaussian behavior of νt and ηt+1, the estimation of the optimized threshold
can be derived as

ξ̂o,t+1 = ξ̂o,t +Kt(ξi,t+1− ξ̂o,t) (3.15)

in which ξ̂o,t+1 represents the estimation for ξo,t+1. The variance of this estimation is
given as

σ
2
ξ̂o,t+1

= σ
2
ξ̂o,t

+σ
2
ν,t −Kt(σ

2
ξ̂o,t

+σ
2
ν,t) (3.16)

The evolution of Eq. 3.15 and 3.16 is described by the Kalman gain Kt :

Kt =
σ2

ξ̂o,t
+σ2

ν,t

σ2
ξ̂o,t

+σ2
ν,t +σ2

η,t+1
(3.17)

Equations 3.15-3.17 allow to intuitively understand the behavior of the threshold
ξo,t . If the signal is under influence of large artifacts, this results in a relatively large
σ2

ηt+1 compared to σ2
ξ̂o,t

and σ2
ν,t . Therefore, the value of Kt will be low. As a conse-

quence, the new estimated threshold value ξ̂o,t+1 in Eq. 3.16 is mainly determined by
ξ̂o,t and not by the instantaneous threshold ξi,t+1 (which is corrupted by the large ar-
tifact). On the other hand, if the noise level is low, σ2

ηt+1
is low compared to σ2

ξ̂o,t
and

σ2
ν,t . Hence, the resulting Kt will be approximately one. In this case, the new estimate

threshold ξ̂o,t+1 will solely be determined by the instantaneous threshold value ξi,t+1
(which is not influenced by noise).

3.3.2 Rooijakkers et al.

Alternative to the length transformation, Rooijakkers et al. uses a wavelet transforma-
tion to enhance the QRS complex. The wavelet transformation, in particular the con-
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tinuous wavelet transformation (CWT), has already shown promising results [104].
The wavelet used by Rooijakkers et al. is specifically chosen to match the form of the
QRS complex. After optimization by the wavelet transformation, the decision phase
is based on information about the heart rate, the amplitude of previously found QRS
complexes, and the local SNR.

Continuous Wavelet transformation

The fundament of the wavelet transformation lies in the use of wavelet functions.
Throughout this thesis, only real wavelets will be used. A real function ψ can be
classified as a wavelet if certain mathematical criteria are satisfied [105]:

1. A wavelet must have finite energy. Hence, the energy E

E =
∫

∞

−∞

|ψ|2dt ≤ ∞ (3.18)

2. A wavelet has no zero frequency component. In other words, the mean of the
wavelet ψ(t) is zero.

Typically, a wavelet is defined as a mother wavelet ψ, with a family of daughter
wavelets ψτ,s. These daughter wavelets are obtained by scaling and translating the
mother wavelet

ψτ,s ≡
1√
s
ψ
∗(

t− τ

s
) (3.19)

The parameter τ is the translational parameter that gives the location of the wavelet
in time, and the parameter s is the dilation parameter that scales the wavelet. The
mother wavelet is contracted and dilated by changing the scale parameter s. The
factor 1√

s is a normalization factor, that ensures the energy of the wavelet remains
constant for all scales. An example of a wavelet is shown in Fig. 3.4.

A mother wavelet function has its own characteristic frequency content and peak
frequency fp. This peak frequency is defined as the frequency at which the Fourier
transform of the mother wavelet Ψω is maximal. The relation between the peak
frequency fc (hence the frequency content) of a daughter wavelet at scale s is given
by

fc =
fp

s
(3.20)

Intuitively this can be understood from the fact that a large scale corresponds to a wide
wavelet, thus a low frequency. On the other hand, a high scale wavelet corresponds
to a narrow wavelet and high frequencies.
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Figure 3.4 – (a) Plot of three Mexican Hat daughter wavelets. The associated peak
frequencies are 18 (blue), 24 (red), and 30 (black). As can be seen from the figure, the
central frequency determines the width and scale (and thus the frequency content) of the
daughter wavelet. (b) The frequency response (upper graph) and phase shift (bottom
graph) of the Maxican Hat with Fc = 30.

The frequency content of each daughter wavelet is thus associated with a certain
frequency band. The wavelet transformation uses this property, by comparing a cer-
tain daughter wavelet ψτ,s with a signal x(t). The CWT of x(t) is defined as [105–107]

Wx;ψ(τ,s) =
1√
s

∫
∞

−∞

x(t)ψ∗(
t− τ

s
)dt (3.21)

with Wx;ψ(τ,s) the wavelet transformed signal and ψ∗ the complex conjugate of the
wavelet. Note that the used wavelets are real and the ∗ indication will be left out for
further calculations. As a consequence of this convolution, the wavelet transforma-
tion defined in Eq. 3.21 can be seen as a band-pass filter.

In digital processing, the discrete-time continuous wavelet transform (DT-CWT)
is used. Based on Eq. 3.21, the DT-CWT of a discrete signal x[n] is given by

DTCWTx;ψ[τ,s] =
1√
s

inf

∑
n=− inf

x[n]ψ[
n− τ

s
] (3.22)

Similar to Eq. 3.21, ψ[n−τ

s ] describes the mother wavelet, τ is the translational
parameter, and s the dilation parameter.

Thinking of the wavelet transformation as a convolution of the mother wavelet
with the ECG, the wavelet that mimics the waveform of the QRS complex is expected
to perform optimal. Typically, the QRS complex exhibits a waveform similar to a
Mexican Hat (Fig. 3.4). The use of a Mexican Hat wavelet as an optimal filter was
confirmed by Rooijakkers et al. [51]. The Mexican Hat wavelet is described by the
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function

ψ[n] = (1−n2)e−
1
2 n2

(3.23)

The scaling parameter fully determines the frequency content of the Mexican Hat
wavelet and thus its filter properties. The choice of the daughter wavelet, defined
by s, depends on the frequency content of the maternal and fetal QRS complexes.
The optimized signal is then obtained by convolution of the created wavelet with the
(maternal or fetal) ECG.

Peak detection

The detection algorithm proposed by Vullings et al. does not require any information
about the actual peak locations. In contrast, Rooijakkers et al. take the peak location,
peak amplitude and local SNR into account for the calculation of a threshold. The
R-peaks are detected in an iterative manner that consist of four consecutive stages: 1)
segment selection, 2) threshold determination 3) peak detection 4) SNR estimation.

The segment selection in each iteration is chosen such that it is expected to con-
tain exactly one R-peak. The limits of the next segment (δS) are related to the previ-
ously found R-peak positions and a prior assumptions on the physiologically possible
heart rate (for adults 32-210 beats per minute (BPM), for fetuses 50-255 BPM). The
start of the segment (δSs) is defined by the previous peak p[n−1] and the minimum
RR-interval (interval between two QRS complexes, calculated as 60

BPM )

δSs[n] = p[n−1]+RRmin (3.24)

The end of the segment (δSe) is chosen variable, based on the previous RR-interval
(RRprev) and is updated when no peak is found. The segment end is upper limited by
the maximum RR-interval (RRmax)

δSe[n] = δSs +min{βRRprev,RRmax} (3.25)

where the factor β is empirically determined to 1.7, in order to reduce to number of
false positive detections.

A threshold value (T ) is determined for each segment δS, based on the previous
threshold value (Tprev) and a new estimate threshold (T̂ ). This threshold is defined
as [51]

T = αT̂ +(1−α)Tprev (3.26)

with α describing the contribution of T̂ and Tprev to the new threshold. The estimation
threshold T̂ is based on the local noise level

T̂ = NlSmax (3.27)
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in which Nl is the estimated local noise level and Smax the maximum value in the
current preprocessed signal segment.

The definition of SNR in a classical sense is determined by

SNR = 10log10 (
Ps

Pn
) (3.28)

with Ps the signal power and Pn the noise power. In Rooijakkers et al., Ps is defined as
the maximum power within fixed windows around a detected R-peak, and Pn as the
maximum power in the segments between consecutive R-peaks. Since these powers
are not measured in the same region, Eq. 3.28 does not measure the actual SNR.
However, Eq. 3.28 does provide for a measure of the signal quality in the surrounding
of a QRS complex and, hence, will be further denoted as Surrounding-Signal-Quality
(SSQ). The parameter Nl in Eq. 3.27, is defined as [51]

Nl =
6−SSQ

8
(3.29)

A peak is identified as the part of the wavelet transformed ECG that exceeds the
threshold. If no peak is found, the segment end δSe is extended and the threshold
value T is lowered for up to two more iterations. The segment end is updated by

δSe =

{
δSs +

βRRprev+RRmax
2 ;2nd iteration

δSs +RRmax ;3nd iteration

and the threshold value by

T = αT̂ +(1−α)
Tprev

2
(3.30)

If after three iterations still no peak is found, a new search is started in a segment δS,
which is moved forward by 1s.

3.4 Spectral analysis of fetal heart rate variability

In order to analyse the fetal HRV, the spectral content of extracted fetal heart rate
signal is evaluated. Traditionally, studies used the Fourier-Transformation (FT) for
this purpose [28, 29, 108, 109].However, for reasons that will be explained in section
3.4.3, the use of FT does not seem satisfactory for the analysis of the HRV.

Recently, a new technique is developed based on the Continuous Wavelet Trans-
formation (CWT) [100], which is already briefly introduced in section 3.3.2 for R-
peak detection. The CWT allows for multi-resolution time frequency analysis and
has been successfully applied for the analysis of the heart rate variability [110–112].
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In [100], a comparison was made between the STFT and CWT for artifact cor-
rected heart rate signals. The results indicated that, to obtain reliable spectral infor-
mation, the STFT allowed only 5% percent artifact correction and the CWT up to
20% artifact correction. Although this result advocates the use of CWT over STFT,
the study of [100] assumes that locations of artifacts within the heart rate signals
are known. Besides known artifacts, the heart rate signals are also contaminated by
unknown mis-detections. Furthermore, [100] does not discuss the influence of pro-
longed interpolation in the heart rate signal. In this thesis, a study is performed to
examine the influence of undetected artifacts and consecutive interpolation on the
performance of the STFT and the CWT (section 4.4). For this reason, both analysis
techniques are discussed here.

3.4.1 Preprocessing of the heart rate signals

The signal that needs to be analyzed consists of the R-R intervals, the distance be-
tween two consecutive R-peaks. These heart rate values can only be determined at
times at which a heartbeat occurs. Due to this, measured heart rate values are not
equidistantly distributed in time. In order to perform any spectral analysis, the set
of determined heart rate values has to be transformed into an equidistant set of data
points. The resampling technique employed in this work is based on the method
already used in [28, 29, 100, 108, 109, 113]. In this method, interpolation is used to
create heart rate values equidistantly distributed in time. This technique simply keeps
a certain RR value until it encounters a new value and then holds this value. To ob-
tain a continuous function, the interpolated RR values are convoluted with a square
function.

3.4.2 Fourier Transformation

The Fourier Transformation is the most commonly known method to analyze a time
signal for its frequency content. In the FT, the time signal is decomposed into trigono-
metric basis functions. The transformed signal XFT ( f ) gives the frequency distribu-
tion of the time signal x(t) as follows

XFT ( f ) =
∫

∞

−∞

x(t)exp−i2π f tdt (3.31)

In case of discrete time signals (as is the case in our signal processing) the discrete
FT becomes

XDFT [ f ] =
1
N

N−1

∑
k=0

x[k]exp−i2πk∆T (3.32)
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(a) (b)

Figure 3.5 – (a) Constant resolution in the Time-frequency plain of the STFT. (b) Multi-
resolution time frequency plane of the wavelet transformation.

in which N is the number of samples of the time signal and ∆T the time of each
sample.

Since the FT retrieves the global frequency content, it is only useful for stationary
and pseudo-stationary signals. In order to obtain more local information, the Short
Time Fourier Transformation (STFT) can be used. The STFT is able to retrieve both
frequency and time information from a signal. The STFT calculates the FT of a
windowed part of the original signal, where the window g(t) shifts along the time
axis. A FT is taken of the windowed signal which gives the frequency content in the
windowed time interval. In order to prevent spectral leakage in the windowed time
interval, a window-function is used. The STFT is denoted as

XST FT (τ, f ) =
∫

∞

−∞

x(t)g∗(t− τ)exp−i2π f tdt (3.33)

with (∗) indicating the complex conjugate of g and τ the center of the window.
The resolution in time and frequency is determined by the Heisenberg inequality

[114], which states that

∆t×∆ f ≥ 1
4π

(3.34)

A time-frequency plot will hence be divided into block of equal size ∆t×∆ f , as
shown in Fig. 3.5a. The total frequency power is obtained by integration over time
and frequency.
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3.4.3 Wavelet Transformation

The constant resolution shown in Fig. 3.5(a) does not seem satisfactory for the cur-
rent study. Low frequency components usually last a long period of time, so a low
time resolution can be obtained. High frequency components on the other hand often
appear as short bursts, invoking the need for a higher time resolution. Besides, the
artifacts in the heart rate signals mainly affect the higher frequencies. Therefore, a
higher time resolution in the high frequencies would limit the duration of the influ-
ence of artifacts. Hence, the need for multi-resolution analysis.

A technique that allows for multi-resolution analysis is the wavelet transforma-
tion. The wavelet analysis calculates the correlation between the signal and a wavelet
function ψ(t). The similarity between the signal and the analyzing wavelet function
is computed separately for different time intervals, resulting in a two dimensional
representation called a scalogram. An example of a scalogram is shown in Fig. 3.5b.

The properties of a wavelet function have already been discussed in section 3.3.2.
The CWT of a function x(t) is given by

Wx;ψ(τ,s) =
1√
s

∫
∞

−∞

x(t)ψ∗(
t− τ

s
)dt (3.35)

Each of the daughter wavelets ψ∗( t−τ

s ) is a scaled and time shifted version of the
mother wavelet. The relation between the peak frequency of the mother wavelet ( fp)
and the peak frequency of a scaled daughter wavelet ( fc) is given by

fc =
fp

s
(3.36)

Besides that scaling changes the central frequency of the wavelet, it also affects
the length of the wavelet and thus the length of its analyzing window. Since the
Heisenberg inequality of Eq. 3.34 still has to hold, the time resolution (determined
by the length of the wavelet) limits the width of the frequency band. A long wavelet
(low time resolution) imposes a high resolution in the frequency band, whereas a
short wavelet (high time resolution) imposes a low frequency resolution.

In case discrete values are used for τ and s, each daughter wavelet can thus be
associated with a Heisenberg box. The width in time and frequency are determined by
the scaling parameter. All boxes have equal surfaces due to the Heisenberg inequality.

Due to the scalable time and frequency resolution of the CWT, it qualifies for
analysis of non-stationary signals and therefore has been successfully applied for the
analysis of the heart rate variability [110–112]. In analogy with the FT, the scalogram
allows to determine the power content in each Heisenberg box and the frequency
power is calculated by integration over time and frequency.



34 Technical background

0 2 4 6 8 10 12 14 16 18 20
0

100

200
H
ea
rt

ra
te

(B
P
M
)

Time (min)

Figure 3.6 – An example of the extracted fetal heart rate of a 20 minute measurement
after processing with PBSS in combination with the peak detection algorithm of Rooi-
jakkers et al. Only around 12 minutes some potentially reliable heart rate is seen.

3.5 Limitation of existing algorithms

The WAMES [48] and PBSS [49] technique have shown to outperform other tech-
niques for the subtraction of the mECG and Source-Separation of the fECG in multi-
lead abdominal recordings. The main improvement compared to other techniques is
that both WAMES and PBSS are designed to exploit physiological knowledge of the
mECG and the fECG. Besides WAMES and PBSS, the peak detection algorithm of
Vullings et al. [50] and Rooijakkers et al. [51] have shown promising results regard-
ing the maternal and fetal R-peak detection.

Although PBSS and the peak detection algorithms have improved extraction of
the fetal heart rate considerably, the combined use of these state-of-the-art techniques
still frequently results in unreliable fetal heart rates. An example of such an unreliable
extracted fetal heart rate from a 20 minute abdominal recoding after processing by
WAMES, PBSS and Rooijakkers et al. is shown in Fig. 3.6. This section discusses
the main limitations of the PBSS and the peak detection algorithms that cause to the
unreliable extraction of the fetal heart rate.

PBSS In order to extract the fECG from abdominal recordings, using PBSS, correct
estimation of the electrical heart axis is crucial since this is directly related to the
quality of the QRS complexes in the projected signal (SPBSS, Eq. 3.12). The ellipse
fit, and thus the estimation of the electrical heart axis, does assume some level of the
quality of the fECG. Firstly, PBSS operates under the assumption that, by combining
the lead signals V into the VCG, the noise is inhibited and the QRS complexes are
enhanced such that the amplitude of the QRS complexes exceeds the amplitude of the
noise in the VCG. Hence, the noise is assumed to only appear in the lower 90% of the
VCG. Secondly, artifacts of amplitude larger than the QRS complexes are assumed
to occur less than 1% of time. If either one of these assumptions is false, e.g. due to
a relatively large noise amplitude in the VCG or the presence of numerous artifacts,
the estimation of the electrical heart axis will deviate from the actual electrical heart
axis and the SNR of the QRS complexes in SPBSS is lowered. Fig. 3.7 displays the
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Figure 3.7 – The effect of incorrect estimation of the electrical heart axis on the presen-
tation of the QRS complexes in SPBSS. The left graph display the VCG with the correct
projection axis, and the projection axis rotated by 45◦ and 90◦. The graphs on the right
show SPBSS corresponding to the different orientations of the projection axes.

effect of incorrect estimation of the electrical heart axis on SPBSS by projecting V2 on
projection axes with different orientations.

Peak detection The peak detection algorithms of Vullings et al. and Rooijakkers
et al. are both based on amplitude thresholding, and the part of the optimized signal
(Sopt , either the SAD in Eq. 3.13 or the wavelet-transformed in Eq. 3.21 mECG or
fECG) that exceeds the threshold amplitude is identified as a R-peak. For the mECG,
the R-peak practically always exceeds the noise amplitude. Besides, large and rapid
fluctuations can be seen in the maternal heart rate, since the adult ANS is fully de-
veloped. For these reasons, R-peak detection based on an amplitude threshold in
combination with allowance of a wide spread in consecutive heart rate values seems
the appropriate choice.

In contrast to the mECG, the R-peak amplitude of the fECG is of the same order
of magnitude as the noise amplitude. Therefore, it is more likely that noise over-
shadows the fetal R-peak. An example of the effect of noise on the mECG and the
fECG is displayed in Fig. 3.8. Current R-peak detection algorithms operate under the
assumption that it is always possible to detect the fetal R-peak. In practice, however,
the fetal R-peak amplitude is not always large enough to be detected. The appearance
of noise that exceeds the R-peak and the presence of artifacts, often leads to a large
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number of mis-detections of R-peaks and thus disturbances in the heart rate signal.
An important limitation of current R-peak detection algorithms is the absence of

an analysis of the legitimacy of the detected R-peaks and their corresponding QRS
complexes. Although usually some sanity check is performed on the location of a
newly found R-peaks, this is only based on previously found R-peaks and a wide
expectation region is allowed for a new R-peaks to occur (as for the maternal R-peak
detection). As a consequence, numerous noise peaks with an amplitude larger than
the fECG are incorrectly identified as an R-peak.
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Figure 3.8 – The effect of noise interference on the mECG and the fECG. Whereas the
noise is insignificant for mECG detection (a), it severely disturbs the fECG (b).

3.6 Summary

Despite numerous improvements of newly developed processing techniques that re-
gard the extraction of fECG from abdominal recordings, at present, these techniques
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are unsuited for automated fECG extraction due to the limitations that are discussed
in section 3.5. In this thesis, an attempt is made to overcome these limitations by
improved implementation of the existing techniques. Furthermore, a new algorithm
is developed that ensures reliable extraction of the fECG by a combination of the
improved existing techniques and newly additionally developed techniques.
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Chapter 4

Materials and methods

In the previous chapter, state-of-the-art techniques in the field of fECG extraction
have been discussed. Despite the numerous improvements of these techniques, they
still do not allow for reliable automated fECG extraction. This chapter discusses
the work done in this thesis regarding the development of a new algorithm that is
meant to overcome the limitations of the current techniques and that enables reliable
automated fECG extraction. The outline of this chapter is illustrated by the flow
chart in Fig. 4.1. Firstly, the acquisition of the data used to optimize and evaluate the
algorithms developed in this thesis is explained. Secondly, improvements to existing
techniques and the newly developed algorithms that are used for extraction of the
fECG from the acquired data is explained. This chapter also includes a description of
the methodology for the implementation and evaluation of the developed algorithms.
Finally, criteria for fetal heart rate signals are determined that ensure reliable spectral
parameters for STFT and CWT. The clinical study of the spectral parameters of the
fetal HRV is not discussed in this chapter but is discussed separately in chapter 7.
The end of this chapter also contains an intermezzo that discusses a feature of the
developed algorithm, regarding the detection of arrhythmias of the heart rate.

Data acquisition Signal processing Spectral analysis

V1 R-peaks LF, HF

NxT

Figure 4.1 – Schematic illustration of the outline of this chapter. First, the acquisition of
the data used throughout this thesis is explained. The output V1 are the N lead abdominal
recordings of length T . After the data acquisition, the newly developed algorithm for
fECG extraction is explained in the signal processing. The found fetal R-peak locations
by the fECG extraction algorithm are used for spectral analysis. In the final section of
this chapter, the criteria that enable reliable spectral analysis of STFT and CWT are
determined.
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(a) (b)

Figure 4.2 – (a) Schematic illustration of the electrode configuration on the maternal
abdomen used for the IHDB. (b) The NEMO system used to perform the abdominal
measurements

4.1 Data acquisition

Throughout this thesis, an in-house database (IHDB) is used to evaluate the perfor-
mance of the developed algorithms. The IHDB consists of abdominal recordings in a
longitudinal study conducted throughout the pregnancy. The study was approved by
the Medical Ethics Committee of the MMC and patients were included in the study
after informed consent. Inclusion criteria for the patients were healthy women above
18 years of age with an uncomplicated singleton pregnancy of at least 14 weeks of
gestation. In total 41 patients were included in the study.

Measurements were conducted around 14, 18, 22, 24, 26, 30, 34, 36, 38, 40, 41
and 42 weeks of gestation. However, for some women, not all measurements were
performed due to various reasons. The recording time for each measurement varied
from about 45 minutes to 60 minutes. In total, 304 measurements were performed
with a total measurement time of approximately 236 hours. Due to memory issues
concerning the mECG subtraction each measurement is divided into recordings of 15
minutes, resulting in 1076 files for analysis.

The recordings of the IHDB consist of 8 bipolar signals with the electrodes in a
circular configuration and the reference electrode in the center, as displayed in Fig.
4.2a. The electrode configuration is chosen such that the entire uterine area can be
monitored. The configuration ensures that, independent of the fetal position within
the uterus, at least some electrodes are close to the fetal heart and thus record the
fECG with sufficient amplitude. The abdominal signals are recorded at a sample
frequency of 1 kHz by the NEMO system, shown in Fig. 4.2b.
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Figure 4.3 – Flow chart of the algorithm used to extract the fECG from abdominal
recordings. The mECG is subtracted with WAMES, prior to processing steps used for
fECG extraction.

4.2 Signal processing: Fetal ECG extraction

The algorithm developed to extract the fECG consists of a combination of existing
processing techniques and additional processing techniques developed in this thesis.
The used existing techniques (WAMES, PBSS, and the peak detection algorithms of
Vullings et al. and Rooijakkers et al.) are chosen based on their performance and
have been explained in the technical background. The new additional processing
algorithms are developed to overcome the limitations of these existing techniques. A
flowchart of the entire algorithm is displayed in Fig. 4.3. Each block of the flow-
chart is discussed in a separate section, with headers that correspond to the name of
the blocks.

First, WAMES (section 3.1) is used to subtract the mECG from the abdominal
recordings (V1). The remaining abdominal signals after the mECG subtraction (V2)
are then spatially combined by Source-Separation-techniques into S (Eq. 3.8) to en-
hance the SNR of the fECG. For this purpose, the PBSS technique of section 3.2 is
used in combination with a newly developed improved extension of the PBSS tech-
nique. Peak detection is performed on S by either the algorithm of Vullings et al. or
Rooijakkers et al., depending on their performance (discussed in section 4.3). Finally,
an analysis algorithm is developed that evaluates the found R-peaks based on their
corresponding QRS complexes.

4.2.1 Source separation

After WAMES is used to subtract the mECG from V1, PBSS is used to combine the
leads recordings of V2 in order to enhance the fECG. The strength of PBSS lies in
the fact that V2 is combined based on physiological principles and that, therefore,
PBSS is more effective in case of low SNR compared with Blind-Source-Separation
techniques [49].
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In order to extract the fECG from the measurements, using PBSS, correct estima-
tion of the electrical heart axis is crucial since this is directly related to the quality of
the QRS complexes in the projected signal (SPBSS, Eq. 3.12). To account for changes
in the orientation of the electrical heart axis due to fetal movement, the implementa-
tion of the algorithm described by the flow-chart is done in an iterative manner. In
this iterative process, a buffer segment V2,bu f is defined with a length of 30 seconds
and in each iteration two seconds of new data is evaluated. Note that the length of the
buffer and the update rate are chosen such as to match the buffer length and the up-
date rate used in WAMES, and only the final 15 seconds of V2,bu f f is used to compute
the VCG.

The main limitation of PBSS regards incorrect estimation of the electrical heart
axis as a result of a relatively large noise amplitude or artifact disturbances in the
VCG, as is described in section 3.5. To overcome this limitation, improvements are
developed as an extension to the PBSS. The improved PBSS is further denoted as
PBSSi.

PBSSi

Since PBSS does not require any prior information about the location of fetal QRS
complexes, this technique is used for estimation of the electric heart axis in case no
QRS complexes have been identified. However, once sufficient QRS complexes have
been identified, these QRS complexes can be used to improve the estimation of the
electrical heart axis, in particular if the noise amplitude exceeds the QRS amplitude
in the VCG or numerous artifacts disturb the VCG.

In PBSSi, previously found QRS complexes are used to produce the VCG and
to generate the projection signal SPBSSi. The width of a QRS-complex is assumed
50ms [?], and the QRS complex (Zi) is defined based on its R-peak location (Pi) as

Zi = {Pi−25ms, ...,Pi +25ms} (4.1)

Due to the dependency of PBSSi on QRS complexes, PBSSi is only activated after
sufficient QRS complexes have been identified by an initialization phase (explained
in section 4.2.3). Furthermore, if no QRS complex is identified for a prolonged period
of time, the information of previously found QRS complexes about the orientation of
the electrical heart axis might be outdated due to fetal movement. Therefore, if any of
the QRS complexes used for the estimation of the electrical heart heart axis is located
prior to the start of V2,bu f , the traditional PBSS is again used as Source-Separation
technique. The potential feedback from previously found QRS complexes to the
Source-Separation is indicated as a dotted line in the flow chart of Fig. 4.3.

As a second improvement of the original PBSS technique, the movement of the
projection axis in each iteration (~̂r[n+1]) is damped with respect to the orientation of
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the projection axis in the previous iteration (~̂r[n]). In order to provide a more robust
estimation of the electrical heart axis, damping is implemented by means of a learning
rate CLR. The learning-rate imposes a damping on the step-size of the orientation of
the new projection axis. The orientation of the new projection axis is given by

~̂r[n+1] = R(CLR ·θ)~̂r[n] (4.2)

with R(x) the (2D) rotation-matrix of x radians. In Eq. 4.2, θ describes the angle
between ~̂r[n] and the newly found projection axis~r[n+1]. An example of the effect
of CLR is shown in Fig. 4.4a. The introduction of CLR ensures that the projection
axis only fully rotates towards the new orientation if this orientation lasts for several
iterations. The value of CLR is a trade-off between sensitivity to fetal movement and
robustness against artifacts, and is chosen 1

3 .
Finally, it can occur that the amplitude of the R-peak in the VCG is equal to

the amplitude of the S- or Q-peak in the VCG. This might cause the orientation of
~r[n+ 1] to be in opposite direction with respect to that of ~̂r[n] (θ ≥ 90◦, Fig. 4.4).
As a result, if the VCG were to be projected onto~r[n+1], the sign of the new SPBSS

would be inverted with respect to the SPBSS of the previous iteration. Although this
does not influence the peak detection, an estimation of the average QRS waveform
(used in the QRS analysis in section 4.2.3) is no longer possible because this average
QRS complex will tend to zero. Therefore, if θ exceeds 90◦,~r[n+1] is inverted, after
which ~̂r[n+1] is calculated with Eq. 4.2.

An example of the VCG and a corresponding SPBSS and SPBSSi is shown in Fig.
4.5.

4.2.2 Peak detection

In the original implementation of WAMES and PBSS, the peak detection algorithm
of Vullings et al. is used for both maternal and fetal R-peak detection. In a recent
study of Rooijakkers et al., however, an algorithm is developed that has shown to
outperform the peak detection algorithm of Vullings et al. for both maternal and
fetal R-peak detection [51]. Despite these promising results of Rooijakkers et al., it
came to the authors attention the implementation of the peak detection algorithm of
Vullings et al. in previous studies [48,49,51] deviates from its theoretical description
and does not perform optimal.

As explained in section 3.3.1, the estimated optimal threshold value is determined
by means of Eq. 3.15, 3.16 and 3.17. In previous studies, however, the variance
σ2

ν,t is not taken into account. Due to this different implementation, the estimated
threshold ξ̂o,t is unable to rapidly decrease back to normal values after an artifact
with an amplitude higher than the R-peak amplitude has occurred. This is effect is
shown in Fig. 4.6. The exact reason why the optimized threshold is unable to rapidly
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Figure 4.4 – Both graphs display the orientation of the projection axis for consecutive
iterations. (a) The effect of damped movement of the projection axis by the learning rate
CLR. (b) If the angle between ~̂r[n] and~r[n+1] is over 90◦, the orientation of~r[n+1] is
inverted.

decreased back to normal values with this previous implementation is explained in
Appendix A.3.

To allow for a rapid adaptation of the optimized threshold after a large artifact, the
variance σ2

ν,t is included in the implementation. Since in Eq. 3.3.1 the parameter ν

represents the change in consecutive optimized thresholds ξo,t (i.e. the first derivative
of ξo,t), the variance of ν is estimated as the second derivative of ξo,t . After imple-
mentation, the optimized threshold value is able to adjust rapidly after an artifact, as
shown in Fig 4.6.

Due to the improved implementation of the peak detection algorithm of Vullings
et al., the performance of the peak detection algorithms of Vullings et al. and Rooi-
jakkers et al. has to be reevaluated for maternal and fetal R-peak detection, as will be
discussed in section 4.3. The best performing detection algorithm for maternal and
fetal R-peak detection is used for mECG subtraction and fECG extraction, respec-
tively.

4.2.3 QRS analysis

Despite the improved implementation of the peak detection algorithm of Vullings et
al., both Vullings et al. and Rooijakkers et al. are limited regarding the reliability
of detected peaks, in particular for the fetal R-peak detection. This limitation is
explained in detail in section 3.5 and mainly arises from the fact that these peak
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Figure 4.5 – Comparison between PBSS (a) and PBSSi (b) for the estimation of the
electrical heart axis. The left graphs show the VCG and the estimated electrical heart
axis with PBSS and PBSSi. The corresponding SPBSS and SPBSSi are displayed on the
right. The difference in amplitude of the VCG of PBSS compared to PBSSi is caused by
an artifact (not displayed) that disturbs the VCG in PBSS. The presence of the artifact
does not disturb the VCG of the PBSSi. The combined effect of using only QRS com-
plexes for the estimation of the electrical heart axis and the damping of the movement
of the electrical heart axis, results in improved quality of the QRS complexes in SPBSSi
with respect to the QRS complexes in SPBSS. The angle between the estimated projection
axis of PBSS and PBSSi is 43◦.

detection algorithms operate under the questionable assumption that it possible to
detect the fetal R-peak at all times.

To overcome this limitation, an automated QRS analysis algorithm is developed.
This algorithm analyses a newly found QRS complex Zi+1 based on the quality of the
optimized signal (Sopt) in the surroundings of Zi+1 (SSQ, determined with Eq. 3.28),
and compares the R-R interval and the QRS waveform of Zi+1 to a running average
of the R-R interval and the QRS waveform (Zave).

In the QRS analysis, if either the R-R interval, the QRS waveform or the QRS
energy content of Zi+1 deviates too strongly from the running average of these values,
Zi+1 is regarded as incorrect. To evaluate the QRS waveform of Zi+1, the inproduct
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Figure 4.6 – The effect of an artifact on the original and improved threshold ξo,t of the
peak detection algorithm of Vullings et al. In the implementation of previous studies, ξo,t
is unable to rapidly return to the basal threshold value after the artifact (rigid line). After
correct implementation, ξo,t is able to rapidly return to basal threshold value (dotted
line).

of Zi+1 is taken with Zave. Furthermore, the energy of Zi+1 is compared to the energy
of Zave. The maximum allowed deviation from the average R-R interval is denoted
as CRR, the minimum required inproduct with Zave as CI , and the maximum allowed
deviation from the energy of Zave as CE . Since little is known in the literature about
the values of CRR, CI , and CE , and the latter two are dependent on the used Source-
Separation technique, these values have yet to be determined. The estimation of these
values is discussed in more details in section 4.3.3.

The R-R interval and the QRS waveform in S might strongly vary per measure-
ment and throughout a measurement. Since this information is not a priori known, an
initialization phase is required to obtain a first estimation of the average R-R inter-
val and Zave. The initialization phase searches for m consecutive peaks for which all
individual R-R intervals are within the physiological R-R boundaries (50-255 BPM
in accordance with the values used in [51]) and no R-R interval exceeds over CRR

percent of their average value. After m QRS complexes have been identified, these
QRS complexes are stored in a buffer. The buffer QRS complexes are then used to
generate SPBSSi, after which Zave is determined. If no m QRS complexes are found
that meet these criteria in an entire measurement, the measurement is not used for
subsequent (spectral) analysis. The choice for the value of m is a trade-off between
rapid activation of PBSSi on the one side and robustness against mis-detections on
the other side, and is chosen 15.

After m buffer QRS complexes are found by the initialization, the first of the
buffer QRS complexes is used as a starting point for further analysis. If a new legit-
imate QRS complex Zi+1 is identified by the QRS analysis, Zi+1 replaces the oldest
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buffer QRS complex in order to update the average R-R interval and Zave.
Each newly encountered QRS complex is first evaluated for its waveform and

energy content. To compare the waveform of Zi+1 to Zave, both Zi+1 and Zave are
normalized and base-line fluctuations are is suppressed by a fourth order Butterworth
high-pass filter with cutoff frequency of 1.5 Hz. The pre-processed QRS complexes
Ẑi+1 and Ẑave are then compared by means of their inproduct:

Ii+1 = |Ẑi+1 · ẐT
ave| (4.3)

Due to the normalization of Zi+1, any information regarding the energy content
is lost in Ẑi+1. Therefore, besides the inproduct, a separate evaluation is performed
for the energy of Zi+1. If Ii+1 is less than the minimum required inproduct CI , or the
energy of Zi+1 is either larger than CE or smaller than 1

CE
times the energy of Zave,

the complex Zi+1 is marked as false and is discarded.
Besides a sanity check of the QRS waveform and QRS energy, an expectation re-

gion is defined in which a new QRS complex should be present based on the location
of the last previously determined correct QRS complex Zi. The width of this expec-
tation region is chosen as a percentage of the average R-R interval and is dependent
on the Surrounding-Signal-Quality (SSQ in Eq. 3.29) in Sopt of the detected QRS
complex Zi+1. The effect of a variable expectation region is schematically shown in
Fig. 4.7a and b. If the SSQ is high (Nl ≤ 6/8 [51]), a wide expectation region can
be used, since it is fairly certain that the fetal R-peak exceeds the noise and hence
Zi+1 is a legitimate QRS complex. On the other hand, if the SSQ of Zi+1 is low
(Nl ≥ 6/8 [51]), it is much more likely that noise exceeds the fetal R-peak and causes
a mis-detection. In this case a narrow expectation region is chosen. Note that the SSQ
might also be high in case an artifact is detected as R-peak, however, these artifact
peaks have already been discarded in an earlier stage by the energy evaluation.

To determine the width of the expectation region, two average R-R intervals are
used. The first average is the temporal R-R interval (RRtemp), defined as the average
R-R interval of the last 5 buffer complexes. The second average is the base-line R-
R interval (RRbase), defined as the average R-R interval of all m buffer complexes.
The temporal character of RRtemp allows for a good sensitivity to rapid heart rate
fluctuation, however, RRtemp is also strongly influenced by mis-detections that causes
incorrect estimation of the actual heart rate. In case RRtemp increases over two times
the actual average R-R interval due to mis-detections, two R-peaks could be present
within the expectation region, leading to a missed R-peak. To prevent RRtemp to
exceed over two times the actual average R-R interval, RRbase is used to provide an
upper boundary for RRtemp.

The start (δSs) and end (δSe) of the expectation region are given then by

δSs = Zi +max{(1−βCRR) ·RRtemp, RRmin} (4.4)
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Figure 4.7 – Schematic illustration of the QRS analysis algorithm. The region that
has already been analysed is indicated in black and the region to be analysed in gray.
(a) The next QRS complex Zi+1 is located within the expectation region and the QRS
analysis continues using Zi+1 as a starting point. (b) The SSQ of Zi+1 is low (Nl ≥ 6/8)
and a narrow expectation region is used. (c) Zi+1 is located prior to δSs, either due
to an extra-systole or due to a mis-detection. (d) Zi+1 is located after δSe. A future
correct QRS complex Z j is found, and the region between Zi and Z j is investigated for
an arrhythmia or a missed peak.

δSe = Zi +min{(1+βCRR) ·RRtemp, (2−CRR) ·RRbase, RRmax} (4.5)

where RRmin and RRmax are the minimal and maximal physiologically possible R-R
intervals (based on 50−255 BPM). The factor β depends on SSQ and is set to

β =

{
1 ; Nl ≥ 6/8
2 ; Nl ≤ 6/8

The following scenarios can occur: either the next QRS complex Zi+1 is found
before, within or after the expectation region (Fig. 4.7 c, a, and d respectively). Note
that both peak detection algorithms of Vullings et al. and Rooijakkers et al. already
assume a minimal R-R interval from the refractory period of the pacemaker cells and
it is impossible that multiple peaks are found within the expectation region.

• In case Zi+1 is found within the expected region, it is identified as legitimate
and the QRS complex is added to the buffer. The location of Zi+1 is sub-
sequently used as the last previous correct QRS complex and the analysis is
repeated with Zi+1 as a new starting point.
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• If the location of Zi+1 is in front of δSs, this could be due to an extra-systole,
which is discussed in the intermezzo concerning arrhythmias at the end of this
chapter. If Zi+1 is not an extra-systole, it is discarded and Zi is again used as
starting point.

• In case Zi+1 is found after δSe, this can either be due to an abnormal increase
of the RR interval or due to a missed peak. The case of a sudden substantial
increase in R-R interval is already described by Van Leeuwen et al. [115] and is
discussed in the intermezzo concerning arrhythmias at the end of this chapter.

Despite the possibility of arrhythmia, the cause for an abnormal increase in R-R
interval are most likely missed QRS complexes. Since either multiple QRS com-
plexes might have been missed or the HRV in the region is high, the distance between
Zi and Zi+1 may significantly deviate from a ·RRtemp, with a an integer. Therefore,
little is known about the correctness of the position of Zi+1 and, before a local search
for missed QRS complexes, the algorithm searches for a new future correct QRS
complex (Z j). The complex Z j has to meet the criteria that, besides correct waveform
and energy, both the R-R interval prior to Z j and the R-R interval after Z j are within
CRR percent of RRbase. This is schematically shown in Fig. 4.7d. Although defining
the Z j extends the region that needs to be examined for missed QRS complexes (since
j≥ i+2), this does ensures that the analysis eventually resumes at a correct location.
If no Z j is found within V2,bu f , V2,bu f is updated.

For the residual region between Zi and Z j a search for local maxima in Sopt .
The window of the local search is based on a multiple of RRtemp and the width of
the window is chosen CRR ·RRtemp. For each potentially missed QRS complex, the
waveform and energy is compared to Zave. If no legitimate QRS complex is found, a
peak is interpolated on the expected location of the missed QRS complex. Any QRS
complex that is identified as a legitimate QRS complex but is located in between two
interpolated QRS complexes, is discarded. After the entire region between Zi and Z j

is examined, Z j is used as starting point for further analysis.

4.3 Methodology of implementation and evaluation of de-
veloped algorithms

This section discusses the implementation and evaluation of the peak detection algo-
rithms of Vullings et al. and Rooijakkers et al., the QRS analysis, and the PBSSi.
Since annotation is used for both the implementation and the evaluation of all devel-
oped algorithms, this section first discusses the annotation procedure and the used
evaluation criteria. Then, the implementation of the peak detection algorithms and
QRS analysis is discussed. Finally, the methodology of evaluation of each of the
developed algorithms is discussed separately.
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4.3.1 Annotation and inter-observer variability

The annotation of two databases is described here. The first database is used for the
optimization and evaluation of peak detection algorithms for maternal R-peak detec-
tion and consists of the adult ECG recordings of the MIT/BIH arrhythmia database
(MITDB) [116]. The second database is used for the implementation and evaluation
of the algorithms involved in fECG extraction and consists annotated fECG record-
ings of a subset of the IHDB (section 4.1).

MITDB The MITDB consists of 48 visually annotated thoracic measurements of
30 minutes and contain a two lead adult ECG. Of these two leads, only the first
lead is used in the our evaluation. The heart rate in the MITDB are assumed to be
representative for the maternal heart rate. In the MITDB, annotation is performed
independently by multiple cardiologists and disagreements were resolved to obtain
approximately 110,000 annotations. The heart rates in the MITDB are assumed to be
representative for the maternal heart rates

Subset of the IHDB The second annotation set consists of a subset of the IHDB.
To ensure that the fECG for all gestational ages is present in the subset, measure-
ments of the entire IHDB are divided into six groups, based on the weeks of gestation
(weeks+days of gestation):

• group 1: 17+0 - 20+6

• group 2: 21+0 - 24+6

• group 3: 25+0 - 28+6

• group 4: 29+0 - 32+6

• group 5: 33+0 - 36+6

• group 6: 37+0 - 40+

Per group four patients are randomly selected, with the additional criteria that of each
patient only one measurement can be included in the subset. From each measurement,
a segment of 200 seconds is randomly selected and used for annotation. Hence, the
subset consists of 24 recordings with a total length of 80 minutes. The observer is
unaware of the patient or the weeks of gestation.

For the entire subset, the mECG is subtracted from the data by WAMES and
PBSS is used to generate the projected signal SPBSS. Annotation is performed in
three stages by an single observer that is familiar with the fECG in the abdominal
recordings. A flow chart of the annotation process is displayed in Fig. 4.8. Firstly,



4.3 Methodology of implementation and evaluation of developed algorithms 51

SPBBS

V2 SPBBSi

PS

PV2 PSiPeak 

annotated?

No

Yes

PV2i 

Yes

Peak 

annotated?

No

Figure 4.8 – Flow chart of the annotation process. A first annotation is performed in
the projection signal generated by PBSS. These peaks are denoted as PS. In regions
where no PS is found, annotation is performed in the lead signals V2. Peaks in the lead
signals are denoted as PV2 . A final annotation is also performed in the projection signal
generated by PBSSi, in the regions where no peak is found in SPBSS. The peaks that are
found in SPBSSi and not in SPBSS are denoted as PSi.

an entire segment is annotated in SPBSS. Peaks found in SPBSS are denoted as PS.
Secondly, for any residual regions where no PS was found, annotation is performed in
V2. The peaks that are found in V2 are denoted as PV2 . A final annotation is performed
in the projection signal generated by PBSSi, in the regions where no PS is found. The
peaks annotated in SPBSSi in the final annotation are denoted as PSi and the peaks that
are still only found in V2 as PV2i . The reason for this annotation procedure becomes
clear from the used evaluation criteria that are explained in section 4.3.2.

To determine the inter-observer variability for the annotation of the subset of
the IHDB, the SPBSS of 12 of the 24 segments are annotated by a second independent
observer. Whereas the first observer is already familiar with the abdominal recordings
and the processing techniques, the second observer is an expert in neonatology. The
Cohen’s Kappa test is used to evaluate the inter-observer agreement. The details of
this statistical test are explained in Appendix B.

4.3.2 Evaluation criteria

The criteria used to evaluate all developed algorithms are discussed in separate para-
graphs. Which of these criteria are used for the evaluation of each individual algo-
rithm, is discussed in section 4.3.4.

Peak location The performance of the developed algorithms is described by the
number of True-Positives (nTP, correctly detected peaks), False-Positives (nFP, falsely
detected peaks) and False-Negatives (nFN, missed peaks). In line with previous stud-
ies [51, 117, 118], a peak is considered to be correct if it is located within a 100ms
interval around an annotated peak.

To quantify the performance, three measures are used: the Sensitivity (Se), the
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Positive-Predictive-Value (PPV) and the Error-Rate (De)

Se =
nT P

nT P+nFN
(4.6)

PPV =
nT P

nT P+nFP
(4.7)

De =
nFP+nFN
nT P+nFN

(4.8)

The Se is a measure for the number of missed peaks, whereas the PPV is a measure
for the number of falsely detected peaks. The De provides a measure for the overall
performance of the algorithm, as it gives the ratio between the total number of false
detections (FP and FN) and the total number of annotated peaks (TP and FN). High
Se and PPV , and low De indicate good performance.

WAMES processing errors Although the annotation of the MITDB provides ob-
jective measure for the performance of peak detection algorithms for features of the
mECG (e.g. heart rate variations), the thoracic recordings of the MITDB are not
necessarily representative for the characteristics of the abdominal recordings of the
IHDB (e.g. SNR and artifacts). Since processing errors involving the mECG subtrac-
tion in WAMES typically originate from non-physiological values that are caused by
incorrect maternal R-peak detection, the number of processing errors in WAMES is
used as an objective measure for the performance of peak detection algorithms for
the maternal R-peak detection in the IHDB.

Annotation of PV2 Due to the limitation of visual annotation in the subset of the
IHDB, some peaks that are not annotated in SPBSS and only in V2 might have been
found by a developed algorithm. Since the number of found PV2 might differ per
algorithm, found PV2 cannot be accounted for to obtain an objective measure of Se,
PPV , and De. In the calculation of the Se, PPV , and De, these peaks are thus identified
as FPs if the developed algorithms are compared to PS, although they are actually TPs.
Therefore, the number of found PV2 is displayed separately in the results.

Annotation of PSi The number of PV2 that is initially not annotatable in SPBSS but
that is annotatable in SPBSSi is a directly related to the improvements on the Source-
Separation.

SNR Improvements on the Source-Separation can also be quantified by the SNR.
The exact SNR is difficult to measure. For example, Rooijakkers et al. defined the
SNR as the ratio between the R-peak amplitude and the maximum amplitude in the
surroundings of the R-peak [51] in the wavelet-transformed fECG. This, however,
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is not a true measure of SNR, since the amplitudes are determined in a transformed
signal. Besides, with this method, an artifact that is falsely identified as an R-peak
and has a large amplitude compared to an actual fetal R-peak, will give a high SNR,
although this is obviously not true.

Vullings et al. measure SNR by comparing an running average QRS complex Ẑave

in SPBSS to the individual QRS complexes Ẑi in SPBSS [48]. This measures the actual
ratio between SPBSS with and without the QRS complexes. In case of a mis detection,
the false QRS complex does not correlate well with the average QRS complex and a
low SNR is obtained. Since this measurement is more related to the true SNR, this is
used to calculate the SNR. The SNR of Zi (ΨSNR,i) is calculated as

ΨSNR,i(dB) = 10log
Ẑave · ẐT

ave

(Ẑi− Ẑave)(Ẑi− Ẑave)T
(4.9)

4.3.3 Implementation of developed algorithms

The implementation of the peak detection algorithms of Vullings et al. and Rooi-
jakkers et al., and the QRS analysis requires to experimentally determine multiple
parameters. This section discusses the parameters of interest and the method used to
determine their values.

Parameter optimization for peak detection

Optimal settings for the peak detection algorithms of Vullings et al. and Rooijakkers
et al. are found by minimization of De. Due to the difference in features of the mECG
and the fECG, optimal settings for the peak detection algorithms are determined sep-
arately for the maternal and fetal R-peak detection. To find the optimal settings for
maternal R-peak detection, the peak detection algorithms are compared to the an-
notation of the MITDB. Optimal settings for fetal R-peak detection are found by
comparing the peak detection algorithms to PS of the annotated subset of the IHDB.

The parameters that need to be optimized the algorithm of for Vullings et al. for
the length-transformation are the length of the integrating window MQRS, the cutoff
value of the high-pass filter HP, and the cutoff value for the low-pass filter LP. The
parameters of the Bayesian thresholding are the constant g used to calculate the in-
stantaneous threshold, and the lower and upper limit of the Kalman Gain Kmin and
Kmax. All starting values of the optimization parameters are displayed in Table 4.1. To
limit the number of iteration required to simulate all combinations of these parame-
ters, the optimal settings for the length-transformation are estimated first, while using
the literature values for thresholding parameters (g= 0.3, Kmin = 0.3 and Kmax = 0.7).
The best performing values for the parameters of the length transformation are then
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Table 4.1 – Parameters used for the optimization of the peak detection algorithm of
Vullings et al. In total, 531 and 423 combinations of starting values are used for the
optimization of Vullings et al. for maternal and fetal R-peak detection, respectively.

Vullings Maternal Fetal Step size
MQRS 40-80 ms 30-60 ms 5 ms
HP 2.5-15 Hz 2.5-15 Hz 2.5 Hz
LP 20-40 Hz 50-70 Hz 2.5 Hz
g 0.1-0.9 0.1-0.9 0.1
Kmin 0.1-0.5 0.1-0.5 0.1

Table 4.2 – Parameters used for the optimization of the peak detection algorithm of
Rooijakkers et al. In total, 99 and 189 combinations of starting values are used for the
optimization of Rooijakkers et al. for maternal and fetal R-peak detection, respectively.

Rooijakkers Maternal Fetal Step size
Fc 15-25 Hz 30-50 Hz 1 Hz
α 0.1-0.9 0.1-0.9 0.1

used to find the optimal settings for the thresholding. Furthermore, Kmax is chosen as
1−Kmin.

For Rooijakkers et al. the central frequency Fc of the wavelet and the threshold
constant α have to be optimized (Table 4.2).

Parameters for QRS analysis

In the literature, little is known about the parameters that are involved in the QRS
analysis (CRR, CI and CE), and part of these parameters depends on the used Source-
Separation technique. The optimal values of CRR, CI and CE are, therefore, experi-
mentally obtained from the annotated subset of the IHDB.

Using the annotation of the subset of the IHDB, distributions are obtained for the
ratio between the R-R interval and a running average R-R interval, the inproduct of
individual QRS complexes with a running average QRS complex, and the ratio of the
energy an individual QRS complex and a running average QRS complex. The values
of CRR, and CE are estimated based on the 5% and 95% interval of the corresponding
distributions. The value of CI is estimated based on the 5% interval of the distribution
of the absolute inproduct values.

Note that annotation of the subset of the IHDB is performed in the untransformed
fECG recording (either in SPBSS, V2, or SPBSSi), in contrast to the peak detection al-
gorithms that use a transformed fECG (either SAD or wavelet-transformed). As a
result, the annotation requires a certain quality of the shape of a QRS complex which
might not be necessary in the algorithmic detection. In order to include correctly
detected peaks that are difficult to identify visually in the untransformed fECG but
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might become distinct in the transformed ECG, the values for CRR, CI , and CE are
chosen more flexible than the found 5% and 95% values in the distributions.

To obtain a distribution for the ratio between the R-R interval of individual com-
plexes and a running average of the R-R interval, the average of 5 consecutive an-
notated peaks is calculated (based on RRtemp). R-R intervals that exceed 430ms
(140BPM) by at least 80% are not taken into account for calculation of RRtemp. To
obtain a distribution for the absolute value of the inproduct, 15 consecutive QRS com-
plexes are used to generate the running average QRS complex (Zave). The absolute
value of the inproduct of each annotated QRS complex with Zave is then calculated.
Zave is also used to obtain a distribution for the ratio of the energy of an individual
QRS complex and the energy of Zave.

4.3.4 Evaluation of the developed algorithms

After settings are determined for the peak detection algorithms of Vullings et al. and
Rooijakkers et al., and the QRS analysis, the performance of all developed algorithms
is evaluated. Since different evaluation criteria and methods are used for different
algorithms, these are discussed individually for each algorithm.

Peak detection The performance of the peak detection algorithms of Vullings et
al. and Rooijakkers et al. for maternal R-peak detection is based on the Se, PPV ,
and De in the MITDB. Besides the Se, PPV , and De, the number processing errors
in WAMES serves as a second measure for the performance of the peak detection
algorithms for maternal R-peak detection, and, therefore, both Vullings et al. and
Rooijakkers et al. are used in WAMES to subtract the mECG from all the abdominal
recordings of the IHDB.

For fetal R-peak detection, peak detection algorithms are compared to PS of the
subset of the IHDB and performance is based on the Se, PPV , and De. Besides, the
number of found PV2 by the detection algorithms is also considered in the results.

QRS analysis Similar to the performance of the peak detection algorithms for fetal
R-peak detection, the performance of the QRS analysis is evaluated with respect to
PS (using the Se, PPV , De) and the number of found PV2 .

Source-Separation A first measure to compare the performance of PBSSi to PBSS
is provided by the number of PSi. As a second measure, a comparison is made be-
tween the SNR of the QRS complexes in SPBSS and SPBSSi. The SNR is only cal-
culated for QRS complexes that are both annotated and detected by the algorithm.
Note that PBSSi is always used in combination with QRS analysis and only becomes
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operative after initialization. Hence, the comparison of PBSS and PBSSi is only per-
formed in regions after these m consecutive peaks are identified by the initialization.

fECG extraction algorithm The goal of the fECG extraction algorithm developed
in this thesis (illustrated by the flowchart in 4.3) is to detect all R-peaks, regardless
whether peak are annotated in SPBSSi or PV2 . Therefore, unlike the evaluation of the
peak detection algorithms and the QRS analysis, the performance of the fECG ex-
traction algorithm is evaluated with respect to both PSi and PV2i .

4.4 Performance of STFT and CWT

In [100], a comparison is made between the STFT and the CWT for the influence of
artifact correction on the heart rate signal with interpolation. This study shows that
the STFT only allowed for 5% interpolation, whereas CWT is still reasonably accu-
rate for 20% interpolation. However, this study is limited to simulations of artifact
corrections and assumes that the location of an artifact is known. Since, in practice,
mis-detections often remain unidentified an disturb the heart rate signal, the influ-
ence of these mis-detections on the spectral parameters should also be addressed.
Besides the influence of a mis-detection on the spectral parameters, [100] gives no
indication about the influence of consecutively interpolated R-R intervals. In this
thesis, the performance of STFT and CWT for heart rate signals that contain simu-
lated mis-detections and heart rates with consecutively interpolated R-R intervals are
evaluated.

To investigate the influence of unidentified mis-detections and consecutively in-
terpolated R-R intervals on the spectral parameters of the STFT and the CWT, 10
artifact free fetal heart rate signals of 64 seconds are selected. The length of 64 sec-
onds is based on the length of heart rate signals used in previous studies to determine
spectral parameters of the fetal HRV [119].

The influence of one mis-detection in a 64 second segment is simulated by devi-
ating one randomly selected peak from its actual position (Fig. 4.9a). The deviation
is varied from -80ms to +80ms with a step size of 10ms. For each segment, this pro-
cedure is repeated 10 times with a different randomly selected artifact peaks. Hence,
for each deviation value a total of 100 spectral values are obtain (10 iteration in 10
different files).

Besides the influence of one mis-detection, the influence of multiple mis-detection
is investigated for up to 5 mis-detections (Fig. 4.9b). The deviation from the actual
position of each mis-detection is randomly generated between±50ms (minimum de-
viation of ±10ms). This is simulated 10 times for each segment. Hence, for each
number of mis-detections, 100 values are obtained.
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The influence of the number of consecutively interpolated R-R intervals is inves-
tigated for up to 15 consecutive R-R intervals (Fig. 4.9c). This procedure is repeated
10 times for each segment. Hence, for each number of consecutive interpolated R-R
intervals, there are 100 simulations.

If either the 25th or the 75th percentile of the relative deviation of the spectral
parameters exceeds 5% of the spectral parameters of the artifact free heart rate signal,
this is defined as unacceptable.

Intermezzo: Arrhythmias

This intermezzo describes the detection of arrhythmias by means of the QRS ana-
lysis. There are numerous types of arrhythmias some of which are associated with
pathological conditions. Arrhythmias, however, are beyond the scope of this thesis,
and this intermezzo is only meant to show the potential for QRS analysis to detect
arrhythmias. In this intermezzo two frequently occurring arrhythmias are discussed.
Both of these arrhythmias occur in healthy fetuses and are not associated with any
pathological condition. The first of the arrhythmia discussed here are extra-systole
beats and the second is a sudden substantial increase in R-R interval. Criteria cho-
sen in this preliminary detection of arrhythmias are experimentally determined and
further study is required to obtain more accurate criteria.

The typically low SNR of the fECG does not always allows for the detection of
arrhythmias, since mis-detections often show an R-R pattern similar to arrhythmias.
To prevent false identification of arrhythmias, arrhythmias are only identified if cer-
tain conditions hold. To ensure that the starting point for the arrhythmia detection is
a legitimate QRS complex (Zi), a low HRV prior to the arrythmia is required (similar
RRtemp and RRbase). Furthermore, the SSQ in the surrounding of all QRS complexes
needs to be high (hence β is 2), all QRS complexes need to have a correct wave-
form and energy content, and no R-R interval between consecutive QRS complexes
is allowed to exceed physiological boundaries of RRmin and RRmax. Imposing these
conditions ensures a low probability of false identification of an arrhythmia, although
it might also resolve in a lower sensitivity to detect arrhythmias.

Extra-systoles are caused by early muscular contraction of the ventricles, e.g.
due to excitation in the AV-node [52]. Little is known about the exact sequence of
extra-systoles and parameters for the detection of extra-systoles are hence chosen
experimentally. A typical sequence of an extra-systole is a substantial decrease in R-
R interval compared to a previous R-R interval (RRre f ), followed by a slight increase
in R-R interval relative to RRre f .

To identify a QRS complex Zi+1 as an extra-systole, the R-R interval between
Zi−1 and Zi is used as RRre f . An extra-systole is defined if the R-R interval between
Zi and Zi+1 is less than (1−CRR) ·RRre f and the R-R interval between Zi+1 and Zi+2
is larger than RRre f . As a final condition, the decrease in R-R interval prior to the
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extra systole needs to be at least a factor 1.2 larger than the increase in R-R interval
(compared to RRre f ) after the extra systole. A case study of an heart rate contaminated
with numerous extra-systoles is shown in Fig. 4.10.

Besides extra-systoles that are characterized by an abnormal decrease in R-R
interval followed by a slight increase, an arrhythmia might also present itself as a
sudden substantial increase in R-R interval. This sudden increase in R-R interval
(over (1+βCRR) ·RRtemp) is followed by a gradual decrease to the basal R-R interval
and is thought to be caused by a block in the SA node. An example of such a sequence
is displayed in Fig. 4.11.

Due to the characteristic gradual decrease to the basal R-R interval, these ar-
rhythmias are easiest detected in a backwards manner. In the backwards analysis, the
expectation region is defined in front of a previously analyzed QRS complex Zprev.
The start and end of the expectation regions are now given by

δSs = Zprev−min{(1+βCRR) ·RRprev, ,(2−βCRR) ·RRtemp, ,RRmax} (4.10)

δSe = Zprev−RRmin (4.11)

with RRprev the R-R interval of Zprev. By defining δSs and δSe as a percentage of
RRprev instead of as a percentage of RRtemp, the R-R interval is able to rapidly in-
crease. Furthermore, δSs is not allowed to exceed over two times the temporal RRtemp,
since the risk still exists that QRS complexes are missed.
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Figure 4.9 – (a) Heart rate of an artifact free segment of 64 seconds. (b) The effect
of a simulated mis-detection with a deviation of 40ms. (c) The effect of 3 simulated
mis-detections with a deviation of -24ms, 37ms, and 41ms. (d) The heart rate with 10
consecutive interpolated peaks.
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Figure 4.10 – An example of a measurement that is contaminated with numerous extra-
systolic beats (indicated in green). The upper graph displays the R-R interval of the
measurement. An example of an extra-systole and its effect on the R-R interval is dis-
played in the bottom graphs.
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Figure 4.11 – An example of a measurement that contained multiple SA-blocks (indi-
cated in blue). The upper graph shows the R-R interval of the entire measurement. An
example of an SA-block and the effect on the R-R interval is displayed in the bottom
graphs.
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Chapter 5

Results

In this chapter the results are shown of the implementation and evaluation of the de-
veloped algorithms. Since annotation is used for the implementation and evaluation,
the results of the annotation and the inter-observer variability are shown prior to the
results of the implementation and evaluation. After the evaluation of the developed
algorithms, the influence of simulated mis-detections and consecutively interpolated
R-R intervals on the spectral parameters of the STFT and the CWT are displayed.

5.1 Annotation and inter-observer variability

To determine the inter-observer variability in the annotation of the subset of the
IHDB, two observers have annotated 12 out of 24 files. The inter-observer agree-
ment is quantified by the Cohen’s Kappa test. The values used for the Cohen’s Kappa
test are shown in Table 5.1 and κ is found to be 0.73. According to the literature this
means a good inter-observer agreement [120, 121]. Therefore, for further evaluation,
the annotation of the observer that annotated all 24 files is used as the reference.

In the 24 recordings of the subset of the IHDB, in total 6377 peaks are annotated
by observer one. Of these 6377 peaks, 4872 (76.4%) are annotated in SPBSS and 1505
(23.6%) in the V2. In 9 out of 24 (37.5%) files, less than 25 peaks are annotated (either
PS or PV2). The 15 files with more than 25 PS are from here on denoted as reliable. In
2 (8.3%) files peaks are only found in the V2 and not in SPBSS. The distribution of the
number of annotated peaks per GA group is displayed in Fig. 5.1.

5.2 Peak detection: results

5.2.1 Peak detection: implementation and optimization

To determine optimal settings for the maternal R-peak detection the entire MITDB
is used, except for recording 207, which contains ventricular flutter episodes (heart
rates over 200 BPM) [117] and is not representative for maternal heart rate patterns
during pregnancy.
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Table 5.1 – Result of the annotation of 12 recordings of the subset of the IHDB per-
formed by two observers. The values are used to determine the inter-observer agree-
ment.

observer 2: Peak observer 1: No peak
observer 1: Peak 2308 646
observer 1: No peak 105 2521

17−21 21−25 25−29 29−33 33−37 37−40+
0

500

1000

1500

2000

Weeks of gestation

#
P
ea
k
s

 

 

PS
PV2

Figure 5.1 – Distribution of the number of annotated peaks per weeks of gestation. Dark
gray indicates peaks that are found in SPBSS and light gray indicates the number of peaks
that are only found in V2.

To determine optimal settings for the fetal R-peak detection, only reliable files
are used. The optimal parameters for the peak detection algorithms of Vullings et
al. and Rooijakkers et al. are displayed in Table 5.2. The literature value of each
parameter is displayed between brackets after the found parameter in this thesis.

No difference is seen for changes in the value of Kmin in the peak detection algo-
rithm of Vullings et al. The value of Kmin is, therefore, chosen equal to the literature
value of 0.3.

5.2.2 Peak detection: evaluation

The peak detection algorithms for maternal R-peak detection are evaluated using
the MITDB as reference. In addition, the number of processing errors in WAMES
for mECG subtraction in the IHDB, as explained in section 4.3.4. The Se, PPV ,
and De for the MITDB are shown in Table 5.3. Of the 1076 files in the IHDB,
WAMES is unable to subtract the mECG in 121 (11.25%) files with the original
implementation of Vullings et al. With the improved implementation of the peak
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Table 5.2 – Optimal settings found for the peak detection algorithm of Vullings et al.
(left) and Rooijakkers et al. (right). Literature values are displayed between brackets.
For the peak detection of Vullings et al. no difference is found for changing Kmin in
both the maternal and fetal R-peak detection. Furthermore no difference is found for
changing LP between 60 and 70Hz for fetal R-peak detection.

Vullings Maternal Fetal
MQRS 60 ms (65ms) 40 ms (40ms)
HP 2.5 Hz (2.5Hz) 12.5 Hz (20Hz)
LP 25 Hz (25Hz) 60-70 Hz (60Hz)
g 0.3 (0.3) 0.6 (0.3)
Kmin 0.1-0.5 (0.3) 0.1-0.5 (0.3)

Rooijakkers Maternal Fetal
Fc 19 Hz (18Hz) 41 Hz (44Hz)
α 0.3 (0.3) 0.5 (0.3)

detection of Vullings et al., 94 (8.74%) files could not be processed and with the peak
detection of Rooijakkers et al. 89 (8.27%) files could not be processed.

For the evaluation of the peak detection algorithms for fetal R-peak detection, the
annotated subset of the IHDB is used. The Se, PPV , and De for the IHDB are shown
in Table 5.4. The results if only reliable files are used are shown in the upper row and
the results if all files are used in the bottom row. The number of PV2 that are found by
the detection algorithms is displayed in the right column.

The best performance for maternal R-peak detection is seen for Rooijakkers et al.,
because of the lowest De in the MITDB and the lowest number of processing errors in
WAMES. Therefore, Rooijakkers et al. is chosen for mECG subtraction. Any resid-
ual processing error in WAMES is caused by the occurrence of non-physiological
values in the estimation of the mECG due to the presence of artifacts. All process-
ing errors are manually resolved in WAMES, leading to 0% processing errors in the
mECG subtraction.

Besides the maternal R-peak detection, Rooijakkers et al. also performed best for
the fetal R-peak detection if only the reliable files are accounted for and, hence, is
used for fetal R-peak detection.
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Table 5.3 – Results for peak detection in the MITDB using the optimal settings of Table
5.2 for the original and improved implementation of Vullings et al., and Rooijakkers
et al. The percentage of processing error in WAMES for the mECG subtraction in the
IHDB is displayed in the right column.

MITDB De(%) Se(%) PPV (%) Error WAMES (%)
Vullings et al. original 0.66 99.57 99.76 11.25
Vullings et al. improved 0.60 99.62 99.78 8.74
Rooijakkers et al. 0.24 99.87 99.89 8.27

Table 5.4 – Results for peak detection in the IHDB using the optimal settings of Table 5.2
for Vullings et al. and Rooijakkers et al. The peak detection algorithms are compared to
PS. The number of found PV2 in addition to these results is shown in the right column.

IHDB De(%) Se(%) PPV (%) found PV2 (%)

reliable
Vullings et al. 20.45 90.48 89.22 32.22
Rooijakkers et al. 15.89 95.71 89.19 38.19

all
Vullings et al. 54.62 90.48 66.73 27.31
Rooijakkers et al. 57.44 95.69 64.30 32.89

5.3 QRS analysis: results

5.3.1 QRS analysis: implementation

The values of CRR, CI , and CE for the QRS analysis are estimated based on the dis-
tributions in Fig. 5.2. Note that the values for CI and CE are chosen more flexible
compared to the values from the corresponding distributions for reasons explained in
section 4.3.3.

The distribution of the R-R interval with respect to RRtemp is displayed in Fig.
5.2a, with a median (range: 5-95%) of 1.00 (range: 0.90-1.12). Based on the 5-95%
interval, the value for CRR is chosen as 10% of RRtemp.

The distribution of the absolute value of the inproduct of the individual QRS
complexes with Ẑave is displayed in Fig. 5.2b, with a median (range: 5-95%) of 0.97
(range: 0.70-1.00). Based on the 5% boundary, to value is of CI is chosen 0.6.

Finally, the distribution of the energy ratio of individual QRS complexes and Ẑave

is displayed in Fig. 5.2c, with a median (range: 5-95%) of 1.14 (range: 0.53-3.03).
Based on the 5-95% interval CE is chosen 4.

5.3.2 QRS analysis: evaluation

The performance of the QRS analysis in addition to PBSS and Rooijakkers et al. is
shown in Table 5.5.

Overall, the performance of QRS analysis in addition to Rooijakkers et al. for
the reliable files is almost similar to Rooijakkers et al. However, it seems as if the
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Figure 5.2 – Distributions based on the peaks annotated in SPBSS. a) Distribution of
the ratio of the R-R interval of individual QRS complexes with a running average R-R
interval. b) The inproduct of individual QRS complexes with Zave. c) The ratio between
the energy content of individual QRS complexes and the energy content of Zave.

Table 5.5 – Performance of the QRS analysis in addition to Rooijakkers et al. Results
are compared to PS and the number of found PV2 in addition to these results is displayed
in the right column.

IHDB De(%) Se(%) PPV (%) found PV2 (%)
reliable QRS analysis 16.73 95.80 88.43 44.51

all QRS analysis 19.63 95.78 86.14 28.50

PPV has decreased and the Se has slightly increased with respect to the results of
Rooijakkers et al. for reliable files, despite the implementation of more restrictions
by the QRS analysis. This decrease in PPV is caused by the increase in the percentage
of PV2 found by QRS analysis, which is not taken into account in the calculation of
the De, Se, and PPV . If the number of found PV2 is accounted for, the De is also
slightly lower for the reliable files compared to Rooijakkers et al. (8.25% and 8.59%,
respectively). The true contribution of the QRS analysis, however, becomes clear if
all files of the subset of the IHDB are used, for which the De is substantially lower.



66 Results

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

SNR

#
p
ea
k
s

 

 

PBSS
PBSSi

Figure 5.3 – Distribution of the SNR for annotated peaks in SPBSS and SPBSSi. The
distribution only contains peaks that are both annotated and detected by the algorithm.

5.4 Source-Separation: results

The improvements of PBSSi compared to PBSS are quantified by two measures. In
the regions after the initialization phase of the QRS analysis, 725 PV2 are annotated
in the first annotation. Of these, 559 (77.10%) are found in the SPBSSi in the second
annotation. The SNR distribution for both the annotated peaks in SPBSS and SPBSSi

are displayed in Fig. 5.3. The median (range: 5-95%) of PBSS is 8.16 (range: −6.0-
18.3) and for PBSSi 12.3 (range: 3.6-20.6).

The improvements of PBSSi compared to PBSS changes the distribution of the
inproduct values of the individual QRS complexes and a running average QRS com-
plex (not displayed). The new median (range: 5-95%) of the distribution of the in-
product for QRS complexes in PBSSi is 0.99 (range: 0.90-1.00). The value for CI is,
therefore, chosen 0.8.

5.5 fECG extraction algorithm: results

An example of the extracted fetal heart rate of a 20 minute recording that is processed
by the state-of-the-art techniques of PBSS in combination with Rooijakkers et al.
(also shown in Fig. 3.6), is shown in the upper graph of Fig. 5.4. The bottom graph
displays the result of the same recording, processed by the fECG extraction algorithm
developed in this thesis.

The performance of the PBSS in combination with Rooijakkers et al. and the per-
formance of the algorithm developed in this thesis are shown in Table 5.7. Detected
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Figure 5.4 – Example of the extracted fetal heart rate of the 20 minute measurement
(also displayed in Fig. 3.6). (a) The result after processing with PBSS in combination
with the peak detection algorithm of Rooijakkers et al. (b) The result after processing
with the fECG extraction algorithm developed in this thesis.

Table 5.6 – Performance of the state-of-the art techniques (PBSS in combination with
Rooijakkers et al.) and the algorithm developed in this thesis. Results are compared to
both PSi and PV2 of the second annotation.

New Anno IHDB De(%) Se(%) PPV (%)

reliable
PBSS + Rooijakkers 17.21 87.64 94.76
This work 6.52 94.02 99.44

all
PBSS + Rooijakkers 51.56 81.27 71.23
This work 17.92 86.58 95.05

peaks are compared to PSi and PV2i .

5.6 Performance of STFT and CWT

The relative deviations of the spectral parameters for one simulated mis-detection,
for multiple mis-detections, and for consecutively interpolated peaks in a 64 second
segment are shown in Fig. 5.5, 5.6, and 5.7 respectively. The influence on the abso-
lute and normalized LF power is displayed in the upper graphs, and the influence on
the absolute and normalized HF power is displayed in the bottom graphs. The central
point in each box is the median, the edges of the boxes in the graphs indicate the 25th
and 75th percentiles, and the whiskers extend to the most extreme data points that are
not considered outliers. Outliers are defined as data points that lie outsize ±2.7σ (or
99.3%) when the data would be assumed normally distributed. Outliers are not dis-
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Table 5.7 – Table presentation.

Technique Se(%) PPV (%)

Existing techniques 81.27 71.23
Newly developed algorithm 86.58 95.05

played. Furthermore, since the relative deviation of the HF and normalized HF power
in Fig. 5.5 and 5.6 are of a different order of magnitude than the relative deviation of
the LF and normalized LF power of the other graphs, the axes for HF and normalized
HF are scaled differently with respect to the axes for LF and normalized LF.

For one mis-detection, the 25th or 75th percentile of the relative deviation of the
spectral parameters with STFT does not exceed 5% for the absolute LF power. For
the absolute HF power the 5% boundary is exceeded after a mis-detection of 10ms,
for the normalized LF after 20ms, and for the normalized HF after 10ms. If CWT is
used, the 25th or 75th percentiles of the relative deviation of the absolute LF power
only exceed 5% for a mis-detection of 80ms. The 25th and 75th percentiles for all
other spectral parameters are less than 5%.

For multiple mis-detections, the 25th or 75th percentile of the relative deviation
of the spectral parameters with STFT does not exceeds 5% for the absolute LF power.
For the other spectral powers this occurs after 1 mis-detection. If CWT is used, the
25th or 75th percentiles of the relative deviation exceed 5% after 4, 3, 3, and 3 mis-
detections for the absolute LF and HF, and the normalized LF and HF, respectively.

For consecutively interpolated peaks, the 25th or 75th percentile of the relative
deviation of the spectral parameters with STFT, exceed 5% for 11, 5, and 5 consec-
utively peaks for the respective absolute LF, absolute HF and normalized HF power.
For the normalized LF power, the 25th or 75th percentile does not exceed 5% relative
deviation. For the CWT, the 25th or 75th percentile of the relative deviation of the
spectral power exceed 5% after 10, 10, and 15 consecutively interpolated peaks for
the respective absolute LF, normalized LF, and normalized HF. The 25th and 75th
percentiles for the absolute HF and the normalized LF are all less than 5%.
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Figure 5.5 – Deviation of the STFT and CWT spectral parameters for one mis-detection.
The simulated deviation of the mis-detection from its original position is displayed on
the x-axis.
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Figure 5.6 – Deviation of the STFT and CWT spectral parameters for multiple mis-
detections. The x-axis displays the number of mis-detections.
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Figure 5.7 – Deviation of the STFT and CWT spectral parameters for consecutively
interpolated R-R intervals. The x-axis displays the number of consecutively interpola-
tions.
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Chapter 6

Discussion

In this thesis, an algorithm is developed that enables reliable automated fECG extrac-
tion from abdominal recordings obtained throughout the pregnancy. For this purpose,
the best performing techniques in the literature have been selected and optimized.
Besides the use of the best performing techniques as a fundament for the developed
fECG extraction algorithm, additional processing techniques have been developed
to overcome the limitations of the existing techniques. Similar to the order used in
chapter 5, this chapter first discusses the annotation, then the implementation and
evaluation of developed algorithms, and finally the performance of STFT and CWT.

6.1 Annotation and inter-observer variability

In present research, annotation is used as the gold standard for the optimization and
evaluation of algorithms that concern the detection of maternal or fetal ECG com-
plexes. Although visual annotation is suited for this purpose since it allows to reeval-
uate and debate any found ECG complex, the annotation process is time consuming
and subjective. Furthermore, in particular for the fECG, it is often difficult to visually
distinguish the ECG complex from noise in a reliable manner. For these reason, an
algorithmic approach seems more suited for standardized analysis of ECG databases.
Annotation should be used to optimize and evaluate these algorithms.

Standardized annotated databases, such as the MITDB, can be used to some ex-
tend to objectively measure the performance of algorithms. Unfortunately such stan-
dardized databases are only available for the mECG and not for the fECG. Besides,
these standardized databases are useful to evaluate the performance of an algorithm
for the features of the mECG or the fECG (e.g. heart rate variations), however, they
are not necessarily representative for the characteristics of the recordings themselves
(e.g. quality of the recordings).

Unlike for the mECG, no standardized annotated database exists for fECG record-
ings throughout the pregnancy. Therefore, a randomized subset of the IHDB is gen-
erated for which the mECG is subtracted from the recordings with WAMES. Since
the quality of the fECG and the fetal HRV have been reported to change throughout
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the pregnancy [?, ?, 30–32, 50, 119], the randomized subset is generated such that
fECG of the second and third trimester of the pregnancy is represented. To asses
the inter-observer variability of the annotation of the subset of the IHDB, part of the
subset is annotated by a second observer. The second observer is unfamiliar with the
abdominal fECG recordings, however, is a specialist in neonatology.

The inter-observer agreement is established by means of the Cohen’s Kappa test
and a κ of 0.73 was found. In the literature this κ value is regarded as substantial
[120] to good [121]. Whereas observer one had a one year experience with non-
invasive fECG recordings as an engineer, observer two was an expert in neonatology.
Note that the annotation is no performed by a gynaecologist, who might be more
familiar with the fECG compared to a neonatologist. However, a gynaecologist is
most presumably also unfamiliar with the non-invasive fECG recordings used in this
thesis. Differences between observer 1 and 2 are mainly caused by the fact that
observer 2 was unfamiliar with the quality of the fECG recordings and, hence, was
more conservative in the identification of the fECG complexes. These differences,
however, emphasize the need for an objective algorithmic approach over subjective
annotation.

6.2 Peak detection: discussion

In the literature, numerous peak detection algorithm have been developed that per-
form reasonably well, among which [50, 51, 104, 122]. Of these, two promising de-
tection algorithms have been evaluated in this thesis. The detection algorithm of
Vullings et al. uses Bayesian probability theory to estimate an optimized threshold
based on the statistical properties of the ECG recording and is used in both WAMES
and PBSS. After the publication of WAMES and PBSS, a new detection technique
has been developed by Rooijakkers et al., that has shown to outperform other peak
detection algorithms [51]. In this thesis, however, it was found that the implementa-
tion of the peak detection algorithm of Vullings et al. in previous studies [48, 49, 51]
deviated from its theoretical description and did not perform optimal. Furthermore,
the evaluation of both peak detection algorithms for fetal R-peak detection in [51] is
only performed on recordings at term, in contrast to the recordings in this thesis that
are measured during the second and third trimester. For these reasons, both the im-
proved peak detection algorithm of Vullings et al. and the peak detection algorithm
of Rooijakkers et al. are reevaluated for maternal and fetal R-peak detection.

6.2.1 Peak detection: implementation and optimization

The literature values of the parameters for the transformation (SAD or wavelet-
transformed) of the ECG (HP, LP, and MQRS for the detection algorithm of Vullings
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et al., and Fc for the detection algorithm of Rooijakkers et al.) are mostly based on
the common features of the mECG and the fECG. The literature values of the param-
eters for the dynamic behavior of the threshold (g, Kmin, and Kmax for the detection
algorithm of Vullings et al., and α for the detection algorithm of Rooijakkers et al.)
are experimentally determined and dependent on the used database. Since all param-
eters are expected to influence each other, in this thesis the optimal combination of
settings is determined for the peak detection algorithm of the improved version of
Vullings et al. and Rooijakkers et al. for the maternal and fetal R-peak detection.

Settings for the peak detection algorithms for fetal R-peak detection are deter-
mined base on all annotated files of subset of the IHDB and used for peak detection
in all measurements of the IHDB, regardless of their GA. However, the quality of
the fECG is expected to be dependent on the GA of the measurement. Early in the
pregnancy the quality is reduced due to the small size of the fetal heart, whereas from
28-32 weeks of gestation the quality is reduced due to the presence of the vernix
caseosa [44, 45]. Therefore, future research should aim to obtain optimal settings for
the peak detection algorithms that are specific for different GA.

Overall, the optimal settings found in this thesis for the maternal and fetal R-peak
detection algorithms of Vullings et al., and Rooijakkers et al. are in good coherence
with the literature values [50, 51], as shown in Table 5.2. The found value for the
HP and LP in the peak detection algorithm of Vullings et al. and the Fc in the peak
detection algorithm of Rooijakkkers et al. is supported by the frequency bands in
which most spectral energy of the maternal and fetal QRS complex is contained (10-
25Hz [101] and 20-60Hz range [94], respectively). The difference in the length of
the integrating window in the length transformation for maternal and fetal R-peak
detection is explained by the difference in the duration of the maternal and fetal QRS
complex.

Besides the parameters concerning the transformation of the mECG and fECG,
the optimal settings for the parameters of the dynamic behavior of the threshold con-
stants g and α for maternal peak detection are also similar to the found literature
values. For the fetal R-peak detection, however, the optimal setting for the g and
α differs from their corresponding value found in the literature. These differences
might be explained by the use of a different database. Whereas the database used
in [51] only consisted of fECG recordings at term (all recordings around 40 weeks
of gestation), the current studies used fECG recordings of the fetus during the entire
second half of the pregnancy.

The increase in g of Eq. 3.14 results in an increase of the value of the instanta-
neous threshold ξi with respect to the noise value. Compared to the database used
in [51], the R-peak amplitude is expected to be closer to the noise level in certain pe-
riods of the pregnancy than it is at term, e.g. due to the presence of the vernix caseosa
which is mostly dissolved at term. Since the R-peak amplitude is less distinct from
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the noise amplitude, a higher value g is required for the fetal R-peak detection for
recordings throughout the entire pregnancy.

The increase in α of Eq. 3.26 compared to the value found in the literature can
also be explained as a result of a decreased quality of the fECG during the pregnancy.
A larger value for α results in a smaller influence of a previously determined threshold
value Tprev on a new threshold value T . In case the fECG is of less quality, it is more
difficult to correctly estimate the electrical heart axis with PBSS or PBSSi. As a
result, the appearance of the QRS complex, and thus the amplitude of the R-peak, in
SPBSS or SPBSSi changes more frequently than for fetuses at term. Furthermore, less
fetal movements are seen at term, leading to a more constant appearance of the QRS
complex in SPBSS and SPBSSi. A combination of these effects might explain the higher
value of α found in this thesis compared to the value found in [51].

For the implementation of the peak detection algorithm of Vullings et al. little
influence is seen of changing the parameter of Kmin on the De, both for the maternal
R-peak detection in the MITDB and the fetal R-peak detection in the subset of the
IHDB. The reason for the small influence of the value of Kmin on the De is because
differences due to changes in Kmin only become effective after the infrequent event
of a large artifact that disturbs the ECG recording. The value of Kmin is, therefore,
chosen based on the literature value and is set to 0.3, implying a value of 0.7 for Kmax.

6.2.2 Peak detection: evaluation

If the original and the improved implementation of the peak detection algorithm of
Vullings et al. are used for the MITDB, little difference is seen in the De. This
is mainly because the influence of the improved implementation only establishes it-
self after the event of a large amplitude artifact has occurred, as explained in section
4.2.2. Since such a large artifact occurs infrequently in the MITDB, the improved
implementation hardly influences the De. The true gain of the new implementation,
however, can be seen from the reduced percentage of processing errors in WAMES.
Solely by correct implementation of the detection algorithm, the number of process-
ing errors has reduced by 22%.

The De found in this thesis for the MITDB with the original peak detection algo-
rithms of Vullings et al. (0.66%) and the peak detection algorithm of Rooijakkers et
al. (0.24%) are similar to the values found in Rooijakkers et al. (0.56% and 0.23%, re-
spectively). Based on the results displayed in Table 5.3, Rooijakkers et al. showed the
lowest De for the MITDB and the lowest number of processing errors for WAMES.
Besides the better performance for the maternal R-peak detection for the MITDB and
in WAMES for the IHDB, the main advantage of Rooijakkers et al. over Vullings et
al. is that the peak detection algorithm of Rooijakkers et al. is specifically designed
to have a low computational complexity [51]. Although computational complexity is
not subject of this thesis, this does support the choice for Rooijakkers et al. for the
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maternal R-peak detection.
In contrast to recordings of the mECG, no standardized annotation database exists

for fECG recordings to compare the performance of detection algorithm for fetal R-
peak detection to literature values. The De found in [51] are based on a database of
fECG recordings for which only (manually selected) files are included that contain a
reliable fECG. Therefore, the De in Rooijakkers et al. should be compared to the De

found in this thesis for reliable files.
The De values found in this thesis for reliable files for the peak detection algo-

rithm of Vullings et al. (20.45%) and Rooijakkers et al. (15.89%), are slightly higher
compared to the values found in [51] (19.23% and 9.42%, respectively). These differ-
ences, however, are presumably due to a different definition for reliable files. Despite
the higher De for both detection algorithms, Rooijakkers et al. outperforms Vullings
et al. for the IHDB and is, therefore, chosen for fetal R-peak detection.

6.3 QRS analysis: discussion

Peak detection algorithms developed in the literature mainly operate under the as-
sumption that the fECG can be reliably detected at all times during a measurement.
Although the fECG is always present in the recordings, the quality of the fECG dif-
fers over the course of the pregnancy and even throughout a measurement. The de-
crease in fECG quality in measurements early in the pregnancy is mainly caused
by immaturity of the fetal heart, whereas the decrease in fECG quality later in the
pregnancy is mainly due to the presence of the isolating layer of the vernix caseosa.
Besides reduced fECG quality throughout the pregnancy, the fECG quality in SPBSS

might also differ throughout a measurement, e.g. due to incorrect estimation of the
electrical heart axis in PBSS. Hence, even if part of the measurement has shown to
contain a good quality fECG, there is no guarantee that the fECG remains detectable
throughout the entire measurement.

The assumption current detection algorithms [50, 51, 104, 122] that the fECG
is detectable at all times, results in numerous mis-detections in regions where the
quality of the fECG is reduced. For this reason, the heart rates extracted from the
IHDB with these detection algorithms all require a (subjective) manual selection of
usable fetal heart rate segments [119, 123] (as seen in Fig. 3.6).

Another limitation of current peak detection algorithms arises from the fact that
the fetal R-peak is of the same order of magnitude as the noise amplitude. As a
result of the relatively low amplitude of the fetal R peak, it frequently occurs that the
noise amplitude exceeds the fetal R-peak amplitude in the transformed fECG, even in
case of a high fECG quality. Since in peak detection algorithms no extensive sanity
check is performed on the identified QRS complexes, this inevitably leads to mis-
detections that disturb extracted fetal heart rate signals that are potentially usable for
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the spectral analysis. Although these individual mis-detections do not disturb visual
pattern recognition of the fetal heart rate, a substantial influence is seen on the spectral
parameters of the fetal HRV (Fig. 5.5).

Finally, curent detection algorithms assume that the fetal R-peak always repre-
sents itself as the highest peak in the transformed fECG. However, since the fetal
R-peak is often overshadowed by a noise peak in the vicinity of the actual R-peak,
numerous R-peaks are missed.

To overcome the limitations of the current detection algorithms described above,
a QRS analysis algorithm has been developed. First, this section discusses the choice
for the parameters of the QRS analysis (CRR, CI , and CE), after which the performance
of the QRS analysis in addition to current peak detection algorithms is discussed.

6.3.1 QRS analysis: implementation

The values of CRR, CI , and CE are estimated experimentally from the annotated subset
of the IHDB. Since little is known about the exact value of these parameters and
the value of CI and CE depends on the used Source-Separation technique, the found
values cannot be related to literature values.

The choice of the value of CRR is difficult. Namely, the value of CRR is related to
the width of the expectation region of consecutive QRS complexes (Eq. 4.4 and 4.5)
and is, thus, directly related to the allowed beat-to-beat variation in the extracted fetal
heart rate. Since the beat-to-beat variations influence the obtained spectral parameters
(mainly HF), the choice of CRR might cause a bias in the obtained spectral parameters.
On the one hand, a small expectation region is desirable to minimize the probability
of a mis-detection, on the other hand, a small expectation region could also result in a
reduced variability of the extracted heart rates. Therefore, the limitation of the beat-
to-beat variability is related to the SSQ (by means of the term β in Eq. 4.4 and 4.5).
This ensures that, in general, larger fluctuations are allowed than have been found in
the annotated files, except if the probability of a mis-detection is high. Note that the
bias to obtain a low HRV in case of low SSQ is minimal, since the value of CRR for
low SSQ is based on the 5-95% interval. Therefore, 90% of the fluctuations found
in the annotation can still be detected, even in case of low SSQ. Further research is
required to examine the exact influence of CRR on the obtained spectral parameters.

For the QRS complexes in PBSSi, it was found that the distribution of the abso-
lute inproduct between the individual QRS complexes and an average QRS complex,
differs substantially from the distribution in PBSS. The change in the distribution is
explained from a more robust estimation of the electrical heart axis in PBSSi. The
occurrence of incorrect estimations of the electrical heart axis in PBSS influences the
appearance of the QRS complex in SPBSS and results in a lower inproduct value of
these QRS complexes with a running average QRS complex. Due to the more ro-
bust estimation of the electrical heart axis in PBSSi, these fluctuations in the QRS



6.3 QRS analysis: discussion 79

waveform that correspond to the lower inproduct values are seen less frequently.
Although the distribution of the ratio of the energy content of individual QRS

complexes and a running average QRS complex is also related to the QRS waveform,
this distribution remains unchanged after introduction of PBSSi. No difference, how-
ever, is expected in the energy content of the QRS complexes in SPBSSi with respect
to SPBSS, since both are based on the same fundamental principles.

6.3.2 QRS analysis: evaluation

The additional value of the QRS analysis with respect to current peak detection algo-
rithms is discussed in the light of the limitations that are described in the introduction
of this section.

The inability of current R-peak detection algorithms to distinguish between high
and low quality fECG becomes clear from the substantial increase in De for all files
of the subset of the IHDB (54.62% and 57.44% for the peak detection algorithm of
Vullings et al. and Rooijakkers et al., respectively), compared to the De for reliable
files (20.45% and 15.89% for the peak detection algorithm of Vullings et al. and
Rooijakkers et al., respectively). In contrast to this substantial increase, only a minor
increase is seen in De if the QRS analysis is used (from 16.73% to 19.63%) compared
to the substantial increase in De for Vullings et al. and Rooijakkers et al. (from
20.45% to 54.62% and from 15.89% to 57.44%, respectively). The relatively small
increase in De found for QRS analysis shows the ability of the QRS complex to
distinguish between high and low quality fECG.

The QRS analysis also enables to identify individual mis-detection in a high qual-
ity fECG. Since the number of the individual mis-detection relative to the total num-
ber of peaks is insignificant, this improvement is not reflected in a decrease in De.
These small corrections, however, do ensure more usable fetal heart rate for spectral
analysis.

Finally, the local search performed in the QRS analysis has resulted in a reduction
of the number of missed peaks. This can be seen from the fact that the number of
found PV2 has increased. Since QRS analysis is performed in addition to the R-peak
detection, any additionally identified QRS complex is due to the local search for
missed peaks of the QRS analysis. Note that, as explained in section 4.3.2, all found
PV2 are identified as FP in the calculation for the De and an increase in found PV2

results in a lower PPV , while this is actually an improvement. For this reason, the
De for reliable files with QRS analysis is higher compared to the De without QRS
analysis. If the number of found PV2 is accounted for as True-Positive (TP), the De

for reliable files is also lower with QRS analysis.
Despite a substantial improvement in De, the QRS analysis in combination with

the peak detection algorithm of Rooijakkers et al. is limited for measurements below
20 weeks of gestation. In these measurements, the magnitude of the fetal R-peak is
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Figure 6.1 – (a) Example of a detected Q-peak in stead of the R-peak in a measurement
below 20 weeks of gestation. (b) The influence of the mis-detected Q-peak on the R-R
interval.

often small and not always distinguishable from the Q-, or S-peak in the absolute
wavelet transformed fECG which is used for the R-peak detection of Rooijakkers et
al. If either the absolute value of the Q-, or the S-peak is larger than the R-peak, one of
these peaks is identified instead of the R-peak, as is shown in Fig. 6.1a. These small
mis-detections might cause disturbances in the estimation of a running average QRS
complex and, as a result, reduce the value of the inproduct of any QRS complex with
the running average QRS complex. Furthermore, a minor influence is also seen on
the extracted heart rate (Fig. 6.1b) and the consecutively obtained spectral parameters
as is seen in Fig. 5.6.

Since annotation of the QRS complexes this early in pregnancy was found diffi-
cult (seen in the relatively low number of annotated peaks in the group of 17-20+6
weeks of gestation in Fig. 5.1) and a peak is considered a TP if it is located within
a 100ms interval around an annotated peak, these small mis-detections are not noted
for the QRS analysis is compared to the annotation of the subset of the IHDB. Fu-
ture research should aim to improve the QRS analysis algorithm such that it is robust
against these mis-detections within a QRS complex. Besides improvements on the
QRS analysis, this limitation emphasizes the need to obtain values for CRR, CI , and
CE that are specified for measurements of different gestational ages.

6.4 Source-Separation: discussion

In this thesis, a physiologically-based technique is chosen for the Source-Separation
of the fECG recordings [49]. The PBSS technique has shown to outperform Blind-
Source-Separation techniques [95, 96], in particular for fECG recordings that exhibit
a low SNR [49]. Despite a relatively good performance, the main limitation of the
PBSS establishes itself in inaccuracies of the estimation of the electrical heart axis.

Since correct estimation of the electrical heart axis is directly related to the quality
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of the QRS complexes in the generated projection signal, improvements that are de-
veloped in this thesis mainly aim to provide a more robust estimation of the electrical
heart axis. Improvements on the estimation of the electrical heart axis are governed
by the use of previously identified QRS complexes for the computation of the VCG
and by damping of the movement of the estimated electrical heart axis.

The advantage of the unrestricted orientation of the projection axis is that, in
theory, for any orientation of the fetus the electrical heart axis can be estimated and,
thus, the optimal SNR for the QRS complexes in SPBSS can be obtained. However,
the unrestricted orientation is also susceptible to artifacts. Therefore, the damping on
the movement of the projection axis is introduced, which ensures that the projection
axis only fully rotates towards a new orientation if that new orientation hold for a
prolong period. Although the damping causes the estimation of the electrical heart
axis to be more robust against artifacts, the damping also reduces the sensitivity to
fetal movement. However, the damped movement of the projection axis is still able
to follow the movement of the electrical heart axis to some extend and changes in the
QRS waveform in SPBSS are minimal. Therefore, the damping does not influence the
performance of the algorithm is in the presence of fetal movement.

The performance of the original PBSS is compared to its improved version, PB-
SSi, by two quantitative measures. Firstly, the number of PV2 that are not annotatable
in SPBSS but are visible in SPBSSi and, secondly, the SNR of the annotated QRS com-
plexes.

Although the increase in the number of PV2 that are annotatable in SPBSSi is a
subjective measure and could also be ascribed to a learning rate of the observer, this
provides an intuitive measure for the improved performance of the PBSSi. The SNR
on the other hand, is less intuitive, however, it does provide a quantitative measure.

Based on the large percentage of PV2 that has become annotatable in SPBSSi (77%)
and the substantial increase in the SNR of the QRS complexes in SPBSSi compared to
the median (range: 5-95%) of the SNR of the QRS complexes in SPBSS (8.2 (range:
-6.0-18.3) for PBSS and 12.3 (range: 3.6-20.6) for PBSSi), it is concluded that the
estimation of the electrical heart axis has improved with PBSSi.

6.5 fECG extraction algorithm: discussion

The algorithm developed in this thesis that consists of peak detection, QRS ana-
lysis, and PBSSi, is meant to detect all peaks in the abdominal recordings, regardless
whether peaks are annotated in SPBSSi or V2. Furthermore, the algorithm is designed
such that it is able to distinguish between high and low quality fECG. Therefore,
the performance of the developed algorithm is evaluated using all annotated peaks
(both PSi and PV2i) and all files. The performance is compared to the state-of-the-art
techniques of PBSS in combination with Roojakkers et al.
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From Table 5.7 it is becomes clear that the developed algorithm outperforms
PBSS in combination with Rooijakkers et al., regardless whether only reliable files
or all files of the annotated subset of the IHDB are used. The decrease in De for
all files (17.92% for the developed algorithm and 51.56% for PBSS combined with
Rooijakkers et al.) is more substantial compared to the decrease in De for reliable
files (6.52% for the developed algorithm and 17.21% for PBSS combined with Rooi-
jakkers et al.). Since the algorithm can also cope with a less reliable recording of
the fECG, a clinical application, such as real-time monitoring of the fECG, becomes
more reliable.

The increase in De of the developed algorithm if all files are used compared to
the De if only reliable files are used (from 6.52 to 17.92%), is caused by an decrease
in both PPV and Se.

The decrease of the PPV for all files compared to the PPV of reliable files (from
99.44% to 95.05%), is due to an increase in falsely identified peaks (nFP). The algo-
rithms used in this thesis have, however, already shown to occasionally outperform
the annotation in SPBSS or SPBSSi, as can seen by the percentage of found PV2 . For
this reason, in combination with the high PPV for reliable recordings (99.44%), the
decrease in PPV for all files might be partially ascribed to limitations of manual
annotation in the recordings with a low fECG quality. In future research, a more ex-
tensive annotation database should be obtained in which the annotation is performed
by multiple gynaecologists.

The decreased Se (from 94.02% to 86.58%) is mainly the result of two recordings
for which no peak is annotated in SPBSS, although numerous peaks are found in V2.
One of these recordings is in the group of 17-20+6 weeks of gestation and the other
in the group of 37-40+ weeks of gestation. The reason that peaks are only found in
V2 and not in SPBSS in these two recordings, is that a good quality of the fECG was
only present in two out of the eight leads.

Depending on period in the pregnancy, there might be two explanations for this
distribution of the quality of the fECG. In the period from 17-20+6 weeks of gestation
it could occur that the fetus is located more closely to part of the electrodes, due to the
small size of the fetus. This, in combination with the relatively weak fECG for these
immature fetuses, could result in a high quality fECG in only part of the electrodes.
In the period from 37-40+ weeks of gestation, the fECG is mostly visible through
cracks arising in the vernix caseosa which could also explain the spatial differences
in the fECG quality.

Since both PBSS and PBSSi assume an equal quality fECG distribution, all lead
signals are used to generate the VCG. If the majority of the leads, however, only
contribute noise to the VCG, the estimation of the electrical heart axis is severely
disturbed.

As a solution to the limited Se of the developed algorithm for recordings with a
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high quality fECG in only part of the leads, a selection of the leads could be used
for the estimation of the electrical heart axis. A techniques that allows for selection
of leads is described in [124]. This method ranks the leads based on the contribu-
tion of the fECG in each lead to the combined VCG. Further research is required to
implement this technique in a reliable manner.

If for these two recordings the leads that contain a good quality fECG are manu-
ally selected, the overall Se increases to 93.80%, which is similar to the Se for reliable
files.

6.6 Performance of STFT and CWT

The results of the effect of simulated mis-detection on the outcome of the spectral
parameters of the STFT and the CWT clearly advertise the use of CWT over STFT.
The absolute LF and HF, and the normalized LF and HF are hardly influenced for
CWT. In contrast, for STFT a large effect is already seen after a small mis-detection
on the obtained absolute HF, normalized LF and normalized HF.

The difference in the effect on the HF power of STFT and CWT can be un-
derstood from the use of different base functions (sinuses for STFT and wavelets
for CWT). For CWT, the HF component of the heart rate is analyzed with daughter
wavelets that exhibit a high time resolution. As a result, a mis-detection only has
a brief effect in time on the HF power and little influence is seen on the HF power
of an entire 64 seconds. In contrast to the high time resolution of the CWT for the
HF, the time resolution of the sinuses in the STFT is limited by the window length
used by the STFT. Since the minimum window length of the STFT is determined by
two times the wavelength of the lowest frequency of interest (0.04Hz), the minimum
window length for the STFT is 64 seconds. Hence, a mis-detection influences the
obtained HF power by STFT of the entire 64 seconds.

The number of consecutive interpolated peaks only appears to have a minor in-
fluence on the spectral parameters of both STFT and CWT. This can be understood
from the fact that the interpolations mainly influences the LF. The LF is, per defini-
tion, mostly determined by slow changes in the heart rate and an effect is, thus, only
seen on the LF power after numerous consecutive interpolations.

To ensure reliable results for the spectral parameters of the fetal HRV, CWT is
chosen as the method for spectral analysis. Heart rate signals are included with a
minimum length of 64 seconds, maximally 20% interpolated R-R intervals [100],
and maximally 9 consecutively interpolation peaks.
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6.7 conclusion

The developed algorithm has shown to outperform state-of-the-art techniques for re-
liable extraction of the fECG. Furthermore, the developed algorithm allows for auto-
mated fECG extraction, without the need for consecutive manual selection of usable
fetal heart rate. Based on the comparison between the STFT and the CWT, CWT is
chosen for the analysis of the fetal HRV. In the next chapter, the developed algorithm
is used in combination with CWT to obtain spectral parameters of the fetal HRV from
a longitudinal follow-up study.
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Chapter 7

Clinical study

Using a previous implementation, we performed a clinical study as presented in Ap-
pendix C and the results are submitted for publication in The Journal Of Physiology.
The percentage of usable fetal heart rate in this study is still limited. Following the
optimization explained in this thesis, the study was repeated and the results are dis-
played in this chapter.

7.1 Introduction

One of the great challenges for obstetrician units these days is timely recognize fe-
tal distress throughout the pregnancy and during labor. At present, CTG is used as
the worldwide standard for fetal monitoring during labor. However, due to its poor
specificity [7], the introduction of the CTG in the clinic has lead to an increased
rate of unnecessary operative interventions, without a noticeable improvement on
the fetal outcome [7]. As additional diagnostic tests to provide information in case
of abnormalities in the CTG, FBS and STAN [9] have been introduced. Unfortu-
nately, these additional techniques have only been reported to provide limited sup-
port [7, 11, 17, 18, 88]. Furthermore, these techniques are invasive and can only be
used during labor.

Besides FBS and STAN, valuable information might be obtained from the fetal
HRV [20–23]. Since cardiac regulation is controlled by the sympathetic and parasym-
pathetic nervous system, fetal HRV might indirectly reflect fetal wellbeing [21]. To
objectively quantify changes in the fetal HRV, spectral analysis can be used. Recent
studies have already shown that spectral parameters of the HRV might be indicative
for fetal distress in an early stage of labor [28, 29]. In order to use spectral analysis
of the fetal HRV as a diagnostic test, more insight is required in the development of
the spectral parameters throughout the pregnancy [34].

In the literature, limited research has been done on the spectral parameters of the
fetal HRV during the second and third trimester of the pregnancy [30–32, 119, 123].
In these studies an increase is seen in the overall frequency power of the fetal HRV
with proceeding pregnancy, which is thought to be a result of maturation of the fetal
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autonomic nervous system (ANS) [30, 31]. However, the studies are in disagreement
concerning changes in the spectral parameters of the HRV.

Of these studies, the study of Karin et al. [32] and David et al. [31] are limited
regarding the developmental aspect, since no follow up study is performed. In these
studies only two [32] and three [31] measurement points are obtained throughout the
pregnancy, of which non before 22 weeks of gestation.

In contrast to [31, 32], the studies Peters et al. [119], Van Laar et al. [123], and
Van Leeuwen et al. [30] do examine the spectral parameters of the fetal HRV through
the entire second and third trimester of the pregnancy.

In Van Leeuwen et al. [30], magnetocardiography (MCG) is used to examine fetal
HRV throughout the second and third trimester of the pregnancy. To obtain spectral
parameters of the fetal HRV, Van Leeuwen et al. uses 5 minutes recordings and
Fourier-Transformation. Although the use of 5 minutes segments does not necessarily
imply a limitation, Van Leeuwen et al. did not distinguish between fetal behavioral
states. Since fetal behavioral states are associated with the spectral parameters of the
fetal HRV [31, 34], the spectral parameters obtained in a 5 minute segment might
not be representative for the fetal condition. Furthermore, the adult HF frequency
band (0.2-0.4Hz) is used for the HF frequency band for the fetal HRV, which is based
on breathing movements. Since adult breathing movements are unrelated to fetal
breathing movement, this choice for the HF frequency band seem inappropriate [31].
In accordance with [31], this thesis uses a HF frequency band of 0.4-1.5Hz.

In the previous studies performed by our group of Peters et al. [119] and Van
Laar et al. [123], the same database of abdominal ECG recordings is used, that is
used in this thesis (described in section 4.1). However, due to the use of less op-
timal fECG extraction algorithms at that time, usable fetal heart rate for spectral
analysis is only extracted in 15.79% [119] and 19.74% [123] of the measurements of
the IHDB. In these studies, the found trends observed for the obtained spectral pa-
rameters are in accordance with those seen in animal studies and previous literature.
Despite these promising results, mostly statistically insignificant trends are observed
and both studies concluded that this is probably due to insufficient extracted usable
fetal heart rate [119, 123].

The final goal of this study is to obtain spectral parameters of the fetal HRV in the
large follow-up study to investigate maturation effects of the ANS on the fetal HRV.

7.2 Materials and Methods

The inclusion criteria for patients in this longitudinal study of the IHDB have been
described previously in [123] and briefly discussed in section 4.1. In chapter 4, the
new algorithm for fECG extraction that is used in this clinical study is extensively
discussed and is represented by the flowchart in Fig. 4.3.
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Prior to the spectral analysis, extracted heart rate signals are resampled to obtain
an equidistant set of data points by the process explained in section 3.4. The CWT
is used for the spectral analysis, since it has shown to be more reliable compared to
STFT 5.6. Spectral parameters are obtained from fetal heart rate signals that have
a minimum length of 64 seconds, maximally 20% interpolated R-R intervals [100],
and maximally 9 consecutively interpolation peaks. The choice for these criteria is
based on the analysis presented in section 5.6 and allows for reliable spectral analysis
in short heart rate segments.

If a measurement contains multiple usable heart rate segments that meet the above
criteria, the spectral parameters of that measurement are represented by their median
values of all usable heart rate segments. To calculate the median values of the spectral
parameters of a measurement, the heart rate segments within the measurement are
accounted for weighted by the length of the segment.

Trends of the spectral parameters throughout the pregnancy, the measurements of
the IHDB are divided into groups according to the weeks of gestation:

• group 1: ≤17+0

• group 2: 17+0 - 19+6

• group 3: 20+0 - 22+6

• group 4: 23+0 - 25+6

• group 5: 26+0 - 28+6

• group 6: 29+0 - 31+6

• group 7: 32+0 - 34+6

• group 8: 35+0 - 37+6

• group 9: 38+0 - 40+

Note that the length of the usable fetal heart rate extracted from a measurement
might differ between measurements. Despite these differences in length of the usable
fetal heart rate in each measurement, all measurements contribute equally for the
calculation of median values in each gestational age group.

In this study, we focus on a first presentation of observed trends and no statistical
tests is used to support obtained results. In order to estimate whether observed trends
are patient independent, two randomized subset of the entire IHDB are generated
and spectral parameters of the two randomized subgroups are compared to the trends
observed in the entire IHDB.
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Figure 7.1 – Results are shown for the previous study of Van Laar et al. [123] (dark
gray) and the current work (gray). (a) Percentage of files that contain at least 64 seconds
of usable fetal heart rate signal. (b) Percentage of usable measurement time.

7.3 Results

Of the 304 measurements of the IHDB, in 135 (44.41%) measurements fetal heart
rate could be extracted that meets the criteria described in the section 7.2. Of the
total measurement time of 236 hours, in 53.4 (22.63%) hours usable heart rate signal
was obtained. An overview of the percentage of usable heart rate distributed over
the pregnancy for the previous study of Van Laar et al. [123] and the current work,
is shown in Fig. 7.1. The median(25%-75%) of the length of the usable heart rate
signals for all measurement is 24(12-35) minutes and only two measurements are
included with less than 3 minutes of usable heart rate signal.

The results for the absolute LF and HF, and the normalized LF and HF for the
two randomized subsets of the IHDB are used are shown in Fig. 7.2. The results for
the entire IHDB are displayed in Fig. 7.3. Only results are shown for groups that
contain three or more patients with usable fetal heart rate.

The absolute HF of the group 17-19+6 weeks of gestation appears to be larger
compared to the absolute HF in later periods of the pregnancy. This increased abso-
lute HF is caused by an increase in mis-detections within a QRS complex for young
fetuses, as is described in section 6.3.2 and displayed in Fig. 7.4. These small mis-
detection cause for corruption in the heart rate signals and result in an increased
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Figure 7.2 – Trends of the spectral parameters throughout the pregnancy for the two
randomized subsets of the IHDB.
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Figure 7.3 – Trend of the spectral parameters throughout the pregnancy of the entire
IHDB.
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Figure 7.4 – (a) Original heart rate signal of a fetus of 17+6 (absolute HF 3.3). (b) The
same heart rate signal, corrected for mis-detected Q-, and S-peaks instead of R-peaks
(absolute HF 1.4).

absolute HF.

An example of this effect on the extracted heart rate of a fetus of 17+4 weeks of
gestation is shown in Fig. 7.4. By visually correcting these corruption, the median
absolute HF of the group 17-19+6 weeks of gestation decreases from 3.8 to 2.7,
which value is similar compared to the median absolute HF of the other groups. The
corrected results for the absolute LF and HF, and the normalized LF and HF are not
displayed.

Since in measurements below 20 weeks of gestation usable fetal heart rate is only
extracted in three measurements, additional heart rates are extracted from other mea-
surements prior 20 weeks of gestation. In total, four extra annotated measurements
are included. The results for the absolute LF and HF, and the normalized LF and
HF including these additionally annotated measurements are displayed in Fig. 7.5.
Note that, to obtain multiple data points in the region below 20 weeks of gestation,
the groups of 13-16+6 and 17-19+6 weeks of gestation are split into 13-15+6, 16-
17+6, and 18-19+6 weeks of gestation. Despite the additional annotation measure-
ments, no measurements are obtained in the group of 13-16+6 weeks of gestation.
Furthermore, only two measurement are obtained in the group of 16-17+6 weeks of
gestation. These measurements are displayed as red markers in the graphs.
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Figure 7.5 – In addition to the usable heart rate segments found by the developed algo-
rithm, the heart rate signals of four extra annotated measurements of below 20 weeks
of gestation are included. The groups of 13-17 and 17-20 weeks of gestation are split
into 13-16, 16-18, and 18-20 weeks of gestation. Since in group 16-18 weeks only two
measurements are obtained, these are displayed as red markers.
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7.4 Discussion

In this thesis spectral parameters are obtained of the fetal HRV throughout the preg-
nancy. For this purpose, a longitudinal follow up study consisting of non-invasive
fECG measurements is performed throughout the second and third trimester of the
pregnancy. In this thesis a new algorithm is designed that enables reliable automated
extraction of the fetal heart rate heart rate from the abdominal fECG recordings.

First, the percentage of extracted fetal heart rate by the developed algorithm is
discussed. Then, the results of the obtained spectral parameters are discussed sep-
arately for the very preterm period (16-32 weeks of gestation) and the near term
(32-40+ weeks of gestation), similarly to [123].

7.4.1 Usable extracted fetal heart rate

The previous studies of our group of Peters et al. [119] and Van Laar et al. [123]
are used as reference framework, since the same database is used in these studies.
Although both Peters et al. and Van Laar et al. require a minimum length of 64
seconds for the heart rate signal, Van Laar et al. uses STFT for the spectral analysis
in contrast to the CWT that used in Peters et al. and the present work. Consequently,
only 5% interpolation is allowed for heart rate segments in Van Laar et al. in contrast
to the 20% interpolated allowed in Peters et al. and the present work. The use of
STFT, however, is seen as a limitation of the study and Van Laar et al. is thus also
used as a reference study.

In both the study of Peters et al. and Van Laar et al. usable fetal heart rate needed
to be selected manually and usable heart rate is extracted in 15.8% and 19.7% of
all measurements, respectively. Of the total measurement time of the IHDB (236
hours), Peters et al. subtracted fetal heart rate in 8.56% and Van Laar et al. in only
3.7%. Despite the higher percentage of measurements in which reliable heart rate
was extracted by Van Laar et al., the percentage of the length of extracted fetal heart
rate compared to the total measurement time is less compared to Peters et al. This
reduction is mainly due to the strict criteria associated with the STFT in Van Laar et
al..

In contrast to the low percentage of usable fetal heart rate obtained in the studies
of Peters et al. and Van Laar et al., the algorithm developed in this thesis extracted
fetal heart rate in 44.4% of all measurements and 22.6% of the total measurement
time is usable for the spectral analysis. Besides the substantial increase in extracted
fetal heart rate for the spectral analysis, the developed algorithm does not require
manual selection of usable heart rate segments.

Despite the increase in usable extracted heart rate, no usable fetal heart rate is
extracted for measurements prior to 16 weeks of gestation. This result is in line with
the results of literature studies of Van Leeuwen et al. [30], that also was unable to
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extract reliable heart rate in these recordings despite the use of fMCG.
A low percentage of usable fetal heart rate is also seen for measurements from

16 to 19+6 weeks of gestation. Although fetal heart rates that are extracted by the
algorithm developed in this thesis are less contaminated by residual mis-detections
due to the constrains imposed by the QRS analysis, these constrains result in a low
percentage of usable fetal heart rate for measurements from 16 to 20 weeks of gesta-
tion.

After 20-22+6 week of gestation, a gradual decrease is seen in the percentage of
usable fetal heart rate, due to reduced quality of the fECG probably as a result of the
appearance of the isolation layer of the vernix caseosa. After 32 weeks of gestation,
a gradual increase is seen in the percentage of usable fetal heart rate which is could
be related to the appearance of cracks in the vernix caseosa [67, 71].

Improvement to the QRS analysis and PBSSi that are suggested in section 6.3.2
and 6.5 might result in an increased percentage of usable fetal heart rate in the periods
periods with a low quality fECG, however, further research is required to maintain
reliability for the extracted heart rates.

7.4.2 Spectral analysis of the fetal HRV

In general, the absolute LF power displays a graduate increase in the median value
and the spread for proceeding GA. The absolute HF is small, regardless of the GA
and no trend is seen. The normalized LF is large compared to the normalized HF for
all GA except for measurements below 20 weeks of gestation, and no trend is seen in
normalized LF and HF.

Based on the similar trends observed in both subgroups for all spectral powers,
it is assumed that the observed trends for the entire IHDB are patient independent.
Results of the observed trends in the spectral parameters are further discussed based
on Fig. 7.5.

Very preterm period (16 to 32 weeks of gestation)

For the very preterm period an increasing trend is seen in absolute LF with progress-
ing pregnancy. No trend is observed in absolute HF. We hypothesise that the increase
in absolute HF increase is mainly due to an increased in sympathetic modulation of
the fetal heart as a result from maturation of the fetal autonomic nervous system. As
explained in section 2.6.1, the PSNS is able to afflict both rapid and graduate changes
on the heart rate, whereas the SNS is only able to afflict graduate changes. Therefore,
activation of the PSNS is associated with both LF and HF power and activation of the
SNS only with LF power [25, 80]. Since an increasing trend is mainly observed in
the LF power and not in the absolute HF power, the increase is absolute LF can thus
be associated with an increased activation of the SNS.



7.4 Discussion 95

It is unlikely that the observed increase in absolute LF prior to 32 weeks of gesta-
tion is caused by changes in the behavioral states of the fetus. In the period from 24
to 28 weeks of gestation, a healthy fetus on average makes 150-200 movements per
hour [87] and no behavioral states are observed prior to 30 weeks of gestation [89].
Therefore, it can be assumed that most extracted fetal heart rate in measurements
prior to 32 weeks of gestation are measured during fetal activity.

Except for the measurements prior to 20 weeks of gestation, the absolute LF
power is large compared to the absolute HF power. This is reflected in the relatively
large value of the normalized LF power compared to the normalized HF power, and
might be due to a relatively dominant SNS in premature fetuses which is in accor-
dance with animal studies [84, 85].

For measurement prior to 20 weeks of gestation the absolute LF power is of the
same order of magnitude as the absolute HF power. As a result a substantially lower
normalized LF power is seen in the group of 18-19+6 weeks of gestation compared to
later in the pregnancy. Furthermore, the large difference that is seen for the normal-
ized LF power of the two measurements in the group of 16-17+6 weeks of gestation
is also explained from the fact that the absolute LF and HF power are both of the
same order of magnitude. This early in the pregnancy, both absolute LF and absolute
HF are practically zero. As a result, the normalized LF and normalized HF can have
any value between zero and one, depending on which of the two happens to be larger.
The low values of the absolute LF and HF might be due to a low regulation of the
fetal ANS. Further research is required to obtain more spectral measurements this
early in the pregnancy.

The (near) term period (32 to 40+ weeks of gestation)

For the (near) term fetuses no increasing trend is observed in absolute LF and absolute
HF power. However, the median value and the spread in absolute LF power have
increased considerably compared to the median value and the spread in absolute LF
power for the very preterm period.

After 34 weeks of gestation, fetal behavioral states are fully developed [87]. In
the near term period, a fetus is mostly either in active and quiet sleep (approximately
in 90% of the behavior of term fetuses [91]). Since these behavioral states are par-
tially defined based on HRV, large differences could be seen between the spectral
parameters during active an quiet sleep. The hypothesis that the large spread in ab-
solute HF is due to the appearance of behavioral states in the third trimester of the
pregnancy is further by the high absolute LF power during active sleep compared to
quiet sleep found by Van Laar et al. [123].

An illustrative example of the difference in heart rate pattern for active and quiet
sleep is shown in Fig. 7.6. The absolute LF values corresponding to the heart rate
during active sleep and quiet sleep was 77.2 and 17.0, respectively. This large spread
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Figure 7.6 – Two extracted fetal heart rate segments from one measurement at 36+0
weeks of gestation. The heart rate patterns are identified by a gynaecologist as (a)
during active sleep and (b) during quiet sleep. The corresponding values for the absolute
LF for the active and quiet sleep are 77.2 and 17.0 ms2, respectively.

in absolute LF within a measurement emphasizes the need to distinguish between dif-
ferent behavioral states. Note that, because of the large differences that are observed
for the spectral parameters during active and quiet sleep, there is no use to examine
trends in the spectral parameters within each patient.

In order to explain trends observed in the near term period and trends within each
patient, future research should aim to relate fetal behavioral states to the obtained
spectral parameters. After behavioral states have been identified, observed changes
might be correlated to literature studies on invasive measurements during labour at
term.

7.5 conclusion

The algorithm developed in this thesis enables reliable automated extraction of the
fECG in non-invasive fECG recordings during the very preterm and term period.
Improvements of signal processing might result in a larger percentage of extracted
fetal heart rate for recordings with a low quality fECG. The observed changes of the
spectral parameters of the fetal HRV are in accordance with those seen in animal
studies. However, in order to explain trends observed in the near term period, future
research should aim to relate fetal behavioral state to the obtained spectral parameters.
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Chapter 8

Conclusions

In this thesis, a new algorithm is developed that allows for reliable extraction of the
fetal heart rate from non-invasive fECG recordings. At present, no algorithm ex-
ists that enables reliable extraction of the fECG from abdominal recordings, despite
the numerous improvements of previous studies by implementation of new signal
processing techniques. For this purpose, the best performing state-of-the-art signal
processing techniques have been selected and optimized. In addition, to overcome
the limitations of these techniques, additional processing techniques have been im-
plemented.

Processing errors occurring in the mECG subtraction of WAMES are resolved
by implementation of improved peak detection algorithms. In order to provide a ro-
bust Source-Separation technique (based on PBSS) to enhance SNR for the fECG,
an improved version of the PBSS is implemented. To increase the sensitivity and
positive-predictive-value of the current peak detection algorithms, an automated QRS
analysis is introduced. Finally, the performance of techniques for spectral analysis
(STFT and CWT) is investigated for simulated mis-detections and consecutively in-
terpolated R-R intervals. Based on the performance, criteria for fetal heart rate signals
are determined that enable reliable spectral analysis.

The developed algorithm has shown to outperform state-of-the-art techniques for
the extraction of the fetal heart rate from non-invasive recordings. The improved
algorithm enables reliable automated extraction of the fetal heart rate and is used in
a large longitudinal follow up study to obtain spectral parameters of the fetal HRV
throughout the second and third trimester of the pregnancy. Due to the improvements
of signal processing, sufficient fetal heart rate is extracted from the database and
clear trends can be observed in the spectral parameters. The observed changes in the
spectral parameters are in accordance with those seen in animal studies.
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Chapter 9

Future directions

Timely recognition of fetal distress during labor is challenging. At present, car-
diotocography (CTG) is used as the worldwide standard for fetal monitoring dur-
ing labor. In case of abnormalities in the CTG, fetal scalp blood sampling (FBS)
and analysis of the ST-segment (STAN) are used to provide additional information.
Unfortunately, these techniques have only been reported to provide limited support.

Besides FBS and STAN, additional information about fetal well-being might also
be provided by fetal cardiac activity. The mean interest in this thesis has been to re-
liably obtain spectral parameters of fetal heart rate variability (HRV). Recent studies
have already shown that spectral parameters might be indicative for fetal distress in
an early stage of labor [28, 29]. Besides the spectral parameters of the fetal HRV,
morphological changes in the fECG waveform might also provide information [50].
Finally, real time tracking of the fECG could provide obstetricians with up to date
information about fetal well being. Before any of these applications can be used as a
diagnostic tool, further research is required regarding signal processing and clinical
implications.

9.1 Technological assessment and recommendations

The most important recommendations regarding signal processing steps are discussed
in this section. The performance of the algorithm has to be optimized for recordings
that contain a low quality fECG in order to extract a larger percentage of usable fetal
heart rate.

• Settings that are used in the developed algorithm for the peak detection and
the QRS analysis currently are unrelated to different periods in the pregnancy.
Future research should aim to optimize the settings for the peak detection and
the QRS analysis based on the period in the pregnancy. This might result in an
increase in usable fetal heart rate in periods where the quality of the fECG is
reduced (prior to 20 weeks of gestation and from 28-32 weeks of gestation).



100 Future directions

• The used Source-Separation technique assumes an equal fECG distribution
over all leads, resulting in a reduced performance for recordings in which the
fECG is not equally distributed. A solution to this problem could be obtained
by implementation of a channel selection algorithm, such as the selection al-
gorithm proposed in [124].

• The peak detection algorithm used in this thesis currently does not perform op-
timal in combination with the QRS analysis in measurements where the fetal
R-peak is difficult to distinguish from the fetal Q-, or S-peak in SPBSS. Imple-
mentation of a local search for the true R-peak could provide a solution.

• The algorithm is implemented in an iterative manner, mainly to enable accurate
estimation of the electrical heart axis. This iterative implementation, however,
also enables semi-online extraction of the fECG. In the current implementa-
tion, a buffer signal of 30 seconds is analysed during each iteration and the
buffer is updated by a 2 second update rate. The buffer length and the update
rate are chosen such as to match the buffer length and the update rate used for
the mECG extraction of WAMES. As a consequence, the developed algorithm
can be directly implemented in addition to WAMES. Since the developed algo-
rithm is able to distinguish reliable and unreliable fECG, the extracted fECG
could be clinically used. To enable real-time processing, future research should
aim to decrease the computational complexity and fully implement the fECG
extraction algorithm in an online manner.

• Besides real-time monitoring of the fECG, the QRS analysis enables detection
of arrhythmias in the fetal heart rate. This feature of the QRS analysis is al-
ready shown in the intermezzo at the end of chapter 4, although the discussed
arrhythmias are not related to pathological conditions. Future research should
aim to define exact conditions for the detection of arrhythmias and examine
whether certain arrhythmias might have diagnostic value.

9.2 Recommendations for clinical assessment

The main focus of this thesis has been to reliably extract fetal heart rate from non-
invasive recordings and to gain more insight in the change of the spectral parameters
throughout the pregnancy for normal fetuses. The results represented in the clinical
study in chapter 7 are only meant as a first presentation of observed trends for the
spectral parameters. For clinical diagnostic value, several aspect should be further
investigated. Besides the spectral parameters of the fetal HRV, future research could
also focus on evaluation of other possibly diagnostic information that is present in
the fECG.
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• The length of the extracted fetal heart rate differs per measurement. In the
study presented in chapter 7, these differences are not accounted for to present
the trends in the spectral parameters. In order to obtain statistical values for the
observed trends, differences in the length of the extracted heart rate should be
accounted for. Furthermore, observed trends should be supported by statistical
evaluation.

• To explain observed trends in the near term period, fetal behavioral states
should be related to the obtained spectral parameters. Ultra-Sound (US) mea-
surements that have been acquired simultaneously with the non-invasive record-
ings can be used to identify and relate fetal behavioral states to the obtained
spectral parameters. This is already done in our previous study [123] and
should also be performed for the results in chapter 7.

• An interesting aspect of the acquired IHDB is the longitudinal follow up for
all patients. In previous studies of our group [119, 123], the low percentage
of measurements that contained usable fetal heart rate (15.79% and 19.74%,
respectively) did not allow to examine the fetal ANS development of individual
patients. With the developed algorithm in this thesis, fetal heart rate is extracted
in a larger percentage of the measurements (44.41%), which should be suitable
for a longitudinal study. For this purpose, the identification of fetal behavioral
states is required, since different fetal behavioral states cause a spread within a
measurement that is equal to the spread found in the entire IHDB.

• The main focus on the clinical aspect of this thesis has been to obtain spectral
parameters of the fetal HRV for healthy fetuses. In addition to the spectral
parameters of the fetal HRV, one should also assess the spectral parameter in
growth restricted fetuses.

• The information that is contained within the non-invasive fECG recordings
is not limited to the fetal HRV. From the non-invasive recordings it is also
possible to obtain morphological information of the fECG. In clinical practice,
STAN already analyses changes in the ST-segment of the fECG during labor.
The STAN, however, invasively records the fECG by an electrode attached to
the fetal scalp and can only be used during labor. In contrast, the non-invasive
fECG can be used throughout the entire pregnancy. Further research is required
to examine the additional diagnostic value of morphological changes in the
fECG throughout the pregnancy.
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Appendix A

Bayesian thresholding

A.1 Introduction into Bayesian probability

The basis of Bayesian probability lies in the dependence of two variables A and B.
It enables to calculate the probability that A is true, given the occurrence of variable
B. This probability is represented as P(A|B). The chance that both A and B are true
P(A&B), is thus given by two equations:

P(A&B) = P(A|B)P(B) (A.1)

P(A&B) = P(B|A)P(A) (A.2)

From this set of equations, Bayes’ theorem is then deduced as

P(B|A)P(A) = P(A|B)P(B) (A.3)

P(B|A) =
P(B)P(A|B)

P(A)
(A.4)

For the current study, a different interpretation of Bayes’ theorem is of impor-
tance. In this interpretation, the plausibility of a certain hypothesis (H) on an ex-
perimental outcome, is estimated based on the information of the outcome of the
experiment (E). Bayes’ theorem allows to calculate this probability, and Eq. A.4
becomes

P(H|E) = P(H)P(E|H)

P(E)
(A.5)

meaning, the probability of hypothesis H given the measurement E, expressed in
the probability on E given hypothesis H. The probability P(H) is called the prior
and contains all a priori information about the system. P(E|H) is the likelihood and
describes the probability on E given the prior knowledge H and I. Finally, the factor
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P(E) is a normalization factor, describing the total probability on measurement E
given all hypotheses. P(E) is given by

P(E) = ∑
i∈M

P(Hi)P(E|Hi) (A.6)

with M all possible hypotheses. Since P(E) is a normalization constant, this is typi-
cally left out in further calculations. In this context, P(.) then describes the likelihood
in stead of the probability.

P(H|E) ∝ P(H)P(E|H) (A.7)

A.2 Bayesian probability for threshold estimation

QRS detection is usually determined based on an amplitude threshold value. The
R-peak locations are identified by the signals that exceed this threshold. The ampli-
tude of the QRS-complexes can vary substantially and abruptly, hence the use of a
dynamic threshold is favored over a fixed threshold.

The goal of this Bayesian approach is to design an adaptive threshold, which
value is updated according to the previous and new statistical information provided
by the signal. The instantaneous threshold (ξi,t), that is determined directly from the
instantaneous information provided by the signal at each instant t, is defined by:

ξi,t = gmax{|SADτ|}− (1−g)min{|SADτ} (A.8)

with |SADτ| = |SAD[t− τ]|, ...|SAD[t]|, τ the time corresponding to the RR interval
and g a constant that is experimentally determined. This instantaneous threshold,
however, is based on ECG signal that is most likely also corrupted by noise. Further-
more, this non-optimal threshold does not uses any prior information of previously
determined thresholds. Therefore, in this Bayesian approach, an optimized threshold
(ξo,t) is estimated using the statistical instantaneous and previous information of the
signal.

The connection between the instantaneous threshold ξi,t and the optimal threshold
ξo,t can be described by the following state-space model (Figure A.1){

ξo,t+1 = ξo,t +νt

ξi,t+1 = ξo,t+1 +ηt+1

Here, νt represents the variation between the optimized threshold values ξo,t+1 and
ξo,t , and ηt+1 describes the contribution of artifacts to the instantaneous threshold
ξi,t+1. In order to create an analytic solution and small computational complexity for
the threshold, both νt and ηt+1 are assumed gaussian distributed with zero mean and
variances σ2

ν,t and σ2
η,t+1 respectively.
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Figure A.1 – Illustration of the state-space model that describes the evolution of the
optimized threshold for QRS detection.

The goal is to estimate the new optimal threshold value ξo,t+1, given the available
information of the signal (ξo,t , σ2

ν,t , σ2
η,t+1, and ξi,t). The solution to this type of

problems, can be solved by Bayesian probability. Bayes’ theorem states that the
probability of a certain hypothesis H (in this case ξo,t+1) to be true, given the actual
measurement E (in this case ξi,t) and the input information I (ξo,t , σ2

ν,t , and σ2
η,t+1),

is calculated by

p(ξo,t+1|ξi,t+1) =
p(ξo,t+1)p(ξi,t+1|ξo,t+1)

p(ξi,t+1)
(A.9)

In this equation, the posterior is given by the left hand side of the equation and
the prior and the likelihood by the last two terms in Eq. A.10 respectively. As in
section A.1 p(ξi,t+1 is only a normalization factor and Eq. A.9 can be written as

p(ξo,t+1|ξi,t+1) ∝ p(ξo,t+1)p(ξi,t+1|ξo,t+1) (A.10)

From the first equation in the state-space representation in Eq. A.2 the prior can
be determined. Since ξo,t+1 is independent of σ2

η,t+1 and σ2
ν,t is assumed gaussian,

the prior can be written as a gaussian distribution

p(ξo,t+1) = N (ξ̂o,t ,σ
2
ξ̂o,t

+σ
2
ν,t) (A.11)

in which ξ̂o,t represents the mean of the distribution of ξo,t and σ2
ξ̂o,t

the variance.

The notation N (x,y) stands for a gaussian distribution with mean x and variance y.
In the same manner, now using the second equation in the state-space representation
in Eq. A.2 and assuming a gaussian distribution of σ2

ηt+1
, the likelihood can also be

described by a gaussian

p(ξi+1,t+1|ξo,t+1) = N (ξ̂o,t ,σ
2
η,t+1) (A.12)

Substituting Eq. A.11 and A.12 into Eq. A.10 gives

p(ξo,t+1|ξi,t+1) = N (ξ̂o,t ,σ
2
ξ̂o,t

+σ
2
ν,t)N (ξ̂o,t ,σ

2
η,t+1) (A.13)
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Since the product of two Gaussians is again a Gaussian, the posterior can thus again
be written as

p(ξo,t+1|ξi,t+1) = N (ξ̂t+1,σ
2
ξ̂o,t+1

) (A.14)

for which the mean is given by

ξ̂o,t+1 = ξ̂o,t +
σ2

ξ̂o,t
+σ2

ν,t

σ2
ξ̂o,t

+σ2
ν,t +σ2

η,t+1
(ξi,t+1−ξo,t) (A.15)

and the variance

σ
2
ξ̂o,t+1

=
(σ2

ξ̂o,t
+σ2

ν,t)σ
2
η,t+1

σ2
ξ̂o,t

+σ2
ν,t +σ2

η,t+1
(A.16)

Rewriting the terms and introducing the Kalman gain Kt gives

ξ̂o,t+1 = ξ̂o,t +Kt(ξi,t+1− ξ̂o,t) (A.17)

σ
2
ξ̂o,t+1

= σ
2
ξ̂o,t

+σ
2
ν,t −Kt(σ

2
ξ̂o,t

+σ
2
νo,t

) (A.18)

with Kt

Kt =
σ2

ξ̂o,t
+σ2

ν,t

σ2
ξ̂o,t

+σ2
ν,t +σ2

η,t+1
(A.19)

The interpretation o Eq. A.17 and Eq. A.18 can be found in section 3.3.1.

A.3 Incorrect implementation of Vullings et al. in previous
studies

In previous studies [48,49,51], the implementation of the peak detection algorithm of
Vullings et al. deviates from its theoretical description and does not perform optimal.
As explained in Appendix A.2, the estimated optimal threshold value is determined
by means of Eq. A.17, A.18 and A.19. In previous studies, however, the variance
σ2

ν,t is not taken into account. Due to this different implementation, the estimated
threshold ξ̂o,t is unable to rapidly decrease back to normal values after an artifact with
an amplitude higher than the R-peak amplitude has occurred. This is effect is shown
in Fig. A.2a. The exact reason why the optimized threshold is unable to rapidly
decreased back to normal values with this previous implementation is explained here.
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In the implementation of previous studies Eq. A.18 simplified to

σ
2
ξ̂o,t+1

=
σ

2

ξ̂o,t
σ2

η,t+1

σ2
ξ̂o,t

+σ2
η,t+1

(A.20)

and the Kalman Gain of Eq. A.19 to

Kt =
σ2

ξ̂o,t

σ2
ξ̂o,t

+σ2
η,t+1

(A.21)

Furthermore, the value of Kt was bounded by an experimentally determined lower
limit (Kmin) and upper limit (Kmax) of 0.3 and 0.7, respectively.

In previous implementations, the variance σ2
ξ̂o,t

in Eq. A.20 would always de-

crease. If σ2
ξ̂o,t

is much larger than σ2
η,t+1, Eq. A.20 becomes

σ
2
ξ̂o,t+1
∼ σ

2
η,t+1 (A.22)

and σ2
ξ̂o,t+1

decreases, since σ2
η,t+1 ≤ σ

2

ξ̂o,t
. On the other hand, in case σ

2

ξ̂o,t
is much

smaller than σ2
η,t+1, Eq. A.20 becomes

σ
2
ξ̂o,t+1
∼ σ

2

ξ̂o,t
(A.23)

and σ2
ξ̂o,t+1

again decreases, since now σ
2

ξ̂o,t
≤ σ2

η,t+1. Both scenarios are displayed in
Fig. 4.6b and c respectively.

As a consequence, σ2
ξ̂o,t

is practically always smaller than σ2
η,t+1 and, hence, Kt

in Eq. A.21 is always small. The amplitude of the optimized threshold, ξ̂o,t+1 in Eq.
A.17 is thus mostly determined by the previous optimized threshold ξ̂o,t .

In case a large artifact disturbs the fECG, σ2
η,t+1 is large. The lower limit Kmin

allows the threshold value to adapt to the noise amplitude, as shown in Fig. A.2a.
Due to the high value of σ2

η,t+1, the new value of σ2
ξ̂o,t+1

is, however, even further

decreased. Therefore, the value of K still remains Kmin in the period after the large
artifact where the signal has returned to its normal value. The new (normal) value of
ξ̂o,t+1 is thus still mostly determined by the old (artifact) value ξ̂o,t and the threshold
is only returned to its normal value slowly.

To allow for a rapid adaptation of the optimized threshold after a large artifact,
the variance σ2

ν,t is included in the implementation. Since in Eq. A.2 the parameter
ν stands represents the change in consecutive optimized thresholds ξo,t (i.e. the first
derivative of ξo,t), the variance of ν is estimated as the second derivative of ξo,t .
After implementation, the optimized threshold value is able to adjust rapidly after an
artifact, as shown in Fig A.2.
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Appendix B

Cohen’s kappa test

The Cohen’s kappa coefficient is a statistical measure for the inter observer agree-
ment. The test requires a measure for the occurrence that both observers annotate
a peak (Nyy), one of the two observers annotates a peak (Nyn and Nny), and both
observers do not annotate a peak (Nnn), as indicated in Table B.1. To obtain these
values, all 12 annotated recordings are divided into intervals of length 430ms (as-
suming an average heart rate of 140BPM) and each interval is assumed to contain
approximately one heart beat. In total 5580 are obtained for the Cohen’s Kappa test.
It is then determined for each interval whether a peak was annotated by an observer.

The κ value is calculation by correcting the percentage of agreement (Po), with
the random probability of that agreement (Pe)

κ =
Po−Pe

1−Pe
(B.1)

The percentage of agreement is given by

Po =
Nyy +Nnn

Ntot
(B.2)

In which Ntot is the total number of annotations. The random probability that both
observers give the same value is calculated as

Pe =
Nyy +Nyn

Ntot

Nyy +Nny

Ntot︸ ︷︷ ︸
P(both correct)

+
Nyn +Nnn

Ntot

Nny +Nnn

Ntot︸ ︷︷ ︸
P(both incorrect)

(B.3)

Table B.1 – Values used for the Cohen’s kappa test.

observer2: Peak observer1: No peak
observer1: Peak Nyy Nyn

observer1: No peak Nny Nnn
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Appendix C

Journal paper submitted to The Journal
of Physiology

Fetal heart rate variability in frequency-domain during preg-
nancy, obtained from non-invasive electrocardiogram record-
ings
J.O.E.H. van Laar, G.J.J. Warmerdam, R. Vullings, C.H.L. Peters, S. Houterman, P.F.F. Wijn,
P. Andriessen, C. van Pul and S.G. Oei. Submitted for publication
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Chapter 9

Abstract

Objective: First, to study the relation between gestational age and spectral estimates of 
fetal heart rate variability, determined by non-invasive electrocardiogram. Second, to 
study the influence of fetal rest-activity state on spectral estimates.

Design: Prospective longitudinal study.

Setting: Tertiary-care teaching hospital.

Population: 35 healthy women, with an uneventful pregnancy.

Methods: A new method was developed to measure the fetal electrocardiogram non-
invasively. Measurements were performed at regular time intervals (2 to 4 weeks) 
from a gestational age of 14 up to 41 weeks. Simultaneous ultrasound measurements 
were performed to assess fetal rest-activity state. From the fetal electrocardiogram 
measurements beat-to-beat heart rate was obtained for spectral analysis. 64-second 
segments of fetal heart rate were selected. Absolute and normalised power in the low 
(0.04-0.15 Hz) and high frequency band (0.4-1.5 Hz) were obtained, using a Fourier 
transform. Median values of spectral estimates, of the available segments from each 
measurement, were calculated. Data were analysed using linear regression for the periods 
below and above 30 weeks separately. For comparison between active and quiet state an 
independent t test was used. 

Main outcome measures: First, spectral estimates as a function of gestational age. 
Second, spectral values during the active and the quiet state.  

Results: The percentage of successfully retrieved heart rate data depend on gestational 
age. Before 18 and between 30 and 34 weeks no segments could be retrieved. During 
21 to 30 weeks a significant increase in absolute low and high frequency power was 
observed, while no change in normalised spectral estimates was observed. During 34 to 
41 weeks a (non-significant) decrease in absolute and normalised low frequency power 
and a (non-significant) increase in absolute and normalised high frequency power were 
observed. During the active state (near) term, absolute and normalised low frequency 
power were significantly higher and normalised high frequency power was significantly 
lower compared to the quiet state. 

Conclusions: The observed increase in absolute spectral estimates, in preterm fetuses, 
was probably due to increased sympathetic and parasympathetic modulation and might 
be a sign of autonomic development. The observed non-significant changes in spectral 
estimates in (near) term fetuses might be associated with changes in behavioural state 
and increased parasympathetic modulation. However, more research is needed to confirm 
this. We found sympathetic predominance during the active state in (near) term fetuses. 
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Fetal heart rate variability in frequency-domain during pregnancy, obtained from non-invasive ECG

Introduction

Cardiotocography is the widespread method for fetal monitoring despite its poor 
diagnostic value to detect fetal distress1. Poor specificity of this method has resulted in 
increased rates of operative deliveries without a significant improvement of long term 
fetal outcome1. Additional ST-waveform analysis of the fetal electrocardiogram (ECG; 
STAN®, Neoventa Medical, Moelndal, Sweden) and fetal scalp blood sampling (FBS), 
applied in case of a non-reassuring CTG, have limited capability to improve neonatal 
outcome or to reduce unnecessary interventions1,2,3,4. Besides, these techniques can only 
be used during labour at term due to their invasiveness. Therefore, an urgent need exists 
to develop non-invasive methods that provide complementary information on fetal 
wellbeing and enable intra- and antepartum use during the term and preterm period. 

The analysis of variations in beat-to-beat heart rate is an established non-invasive 
technique for investigating the autonomic cardiac control system5. In human adults, 
heart rate variability (HRV) estimated by spectral analysis reflects the modulation of 
the sympathetic and parasympathetic limbs of the autonomic nervous system5. The 
low frequency (LF) cardiovascular fluctuations are ascribed to the baroreceptor reflex 
and are under sympathetic and parasympathetic control, whereas high frequency (HF) 
fluctuations are associated with respiration and are under parasympathetic control 
only5,6. 

As in human adults, quantifying the variations in beat-to-beat fetal heart rate by spectral 
analysis can be used to monitor autonomic nervous system modulation and may provide 
an early diagnostic tool for detection of fetal distress7. Spectral analysis during labour 
was previously performed on beat-to-beat heart rate, obtained from direct fetal ECG 
recordings by scalp electrode7,8,9,10. Our previous studies during labour showed that 
spectral estimates are associated with severe metabolic acidosis at birth8 and might 
predict fetal distress in an early stage9. In addition, spectral estimates are related to fetal 
behavioural state and gestational age (GA) during labour at term10. 

Before using spectral analysis for fetal monitoring, more insight needs to be gained 
into normal autonomic development. However, at present, limited research has been 
done on human fetal HRV in frequency-domain, during the second and third trimester of 
pregnancy, and thus during the development of autonomic reflex mechanisms11,12,13. In 
order to measure spectral estimates during gestation, beat-to-beat fetal heart rate should 
be obtained non-invasively. Van Leeuwen et al. used magnetocardiography to measure 
fetal beat-to-beat heart rate11. Although this method produces a high quality fetal cardiac 
signal, it cannot be used in clinical practice due to the need of heavy magnetically shielded 
rooms. David et al. and Karin et al., measured beat-to-beat heart rate non-invasively from 
fetal ECG recordings12,13. However, both studies are limited considering developmental 
aspects, since no longitudinal follow up was performed during pregnancy. The three 
aforementioned studies reported conflicting results concerning changes in spectral 
estimates during the course of pregnancy. Two studies found an increase in LF and HF 
spectral estimates of HRV during the second and third trimester of pregnancy11,12, while 
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one study found a decrease in spectral estimates of HRV in mature fetuses compared with 
immature fetuses13. This discrepancy might be explained from the fact that these studies 
did not account for fetal movement during the third trimester. Changes in fetal HRV due 
to fetal rest-activity state occur after 30 weeks of gestation14. Since spectral estimates of 
fetal HRV are known to be associated with rest-activity states at term gestation10,12, it is 
difficult to interpret spectral values without classifying fetal movements. 

By measuring LF and HF spectral power at regular time intervals during gestation, the 
development of the fetal autonomic cardiac control can be examined. We developed a 
new method to obtain the fetal ECG non-invasively from the maternal abdomen15,16. This 
method allows for beat-to-beat detection of the fetal R-waves and provides fetal beat-
to-beat heart rate and spectral estimates non-invasively. The feasibility of this method 
to study the development of fetal autonomic cardiac control during gestation has not yet 
been investigated before. 

The first objective of the current study is to present a non-invasive method for fetal ECG 
and beat-to-beat heart rate detection and to evaluate its clinical feasibility. The second 
objective is to study the relationship between GA and spectral estimates of fetal HRV 
and to study the influence of fetal rest-activity states on spectral estimates after 30 weeks 
of gestation.

Methods
 
Subjects
A prospective longitudinal study was performed in a tertiary-care teaching hospital. 
The study protocol was approved by the institutional review board at the Máxima 
Medical Centre, Veldhoven, the Netherlands. Patients were recruited consecutively 
from a healthy population, undergoing routine pregnancy follow up during one of the 
first outpatient visits. Only healthy women with an uneventful singleton pregnancy, 
not taking medication other than iron tablets or vitamins, were asked to participate 
before a GA of 12 weeks. Exclusion criteria were women under the age of 18 years 
and multiple pregnancies. Participants were included after a written informed consent 
form was signed. Pregnancy duration was determined from the last menstrual period 
and confirmed by crown rump length at 10 to 12 weeks of gestation. Pregnancies 
complicated by hypertension, preeclampsia, fetal growth restriction, premature labour, 
diabetes mellitus, or fetal congenital malformations after inclusion were excluded. Only 
pregnancies which progressed uneventfully resulting in the delivery of a healthy infant 
with a birthweight above the 10th percentile corrected for GA, maternal parity and fetal 
sex17 were included in the data analysis. 

Data acquisition and signal processing
Non-invasive fetal ECG measurements were repeatedly performed antenatally. A 
non˗invasive electrophysiologic monitor for obstetrics (NEMO), shown in Figure 9.1, 
was used to record and store the electrical activity on the maternal abdomen. 
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Figure 9.1. Prototype of the NEMO system.

The NEMO system was developed in the Máxima Medical Centre in cooperation with the 
Eindhoven University of Technology and Maastricht Instruments BV. The system was 
approved by the Medical Technical Service Department of the Máxima Medical Centre. 
Recordings were performed at approximately 14, 18, 22, 24, 26, 30, 34, 36, 38, and 40 
weeks of gestation. Before starting a measurement, the woman’s skin was prepared to 
reduce impedance by gentle excoriation of surface skin cells and by cleaning the skin 
with alcohol. Measurements were performed non-invasively using eight self-adhesive 
electrodes and one reference and one ground electrode on the maternal abdomen. The 
electrode configuration is shown in Figure 9.2.

Figure 9.2. Electrode configuration for antepartum fetal ECG recording. GND: ground 
electrode. REF: reference electrode. 

Fetal heart rate variability in frequency-domain during pregnancy, obtained from non-invasive ECG
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Each recording session took place between 8:00 h and 18:00 h, with the patient lying 
comfortable in a bed in semi recumbent position. During this time period, no important 
fluctuations in fetal HRV due to differences in time of the day were expected18. The 
electrode impedances were checked to ensure that they did not exceed 5 kΩ. The duration 
of recordings was approximately 45 minutes. Simultaneous ultrasound recordings (Aloka 
SSD-1000, Hitachi Aloka Medical, Tokyo, Japan) were performed to assess the fetal rest-
activity state. Each fetus was visualised in a parasagittal plane. With the transducer in 
this position most of the fetal head and trunk and one or more limbs could be viewed. 

Figure 9.3. Filtered abdominal signal containing both maternal ( ) and fetal 
ECG ( ). 

The abdominal data were analysed off-line. The eight input signals were recorded with 
a sample frequency of 1000 Hz. The signals were bandpass filtered between 1.5 and 
70 Hz in order to suppress high frequency noise and low frequency electronic drift. 
A 50 Hz notch filter was used to suppress power line interference. The maternal ECG 
waveform was estimated and subtracted from the signals, without affecting present fetal 
ECG complexes. This was done using a novel method that removed the maternal ECG 
by means of weighted averaging of maternal ECG segments19. Figure 9.3 shows an 
example of a filtered abdominal signal containing both maternal and fetal ECG. Figure 
9.4 shows the signal after maternal ECG subtraction. 
 
The eight resulting fetal ECG traces were processed to detect the beat-to-beat fetal heart 
rate. The signal˗to˗noise ratio of these signals is enhanced by spatially combining the 
signals20. R˗peaks in the fetal ECG are detected and used to create the fetal beat˗to˗beat 
heart rate signals as described previously20.  
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Figure 9.4. Filtered abdominal fetal signal after subtraction of the maternal ECG.

Spectral analysis
To prevent incorrect RR-intervals from dominating the spectrum, an RR-interval was 
automatically excluded if it exceeded the range of 0.2 to 1.3 seconds (46 to 300 beats 
per minute) or deviated more than 12% from preceding successive RR-intervals9. These 
incorrect RR-intervals were removed from the dataset and replaced by linear interpolation 
between the last preceding and the first succeeding correct RR-interval. From the beat-to-
beat fetal heart rate data, 64-second segments were selected consecutively. To minimise 
the effect of artefact correction on the calculated spectral estimates, only segments with 
less than 5% artefact correction were included for analysis21. Visual inspection by an 
expert was performed to check for remaining artefacts, originating from misdetection 
of fetal R-peak. When a segment still contained an artefact, it was excluded for further 
analysis. 

Spectral information about fetal beat-to-beat heart rate was obtained by using a Fourier 
transform. Beat-to-beat RR-intervals were resampled at 4 Hz and 256-point Fourier 
transforms were calculated for intervals of 64 seconds22. The direct current component 
was subtracted before calculating the Fourier transform. To reduce spectral leakage, 
the signal was multiplied with a Parzen window function. Based on previous studies23, 
as well as the physiological range of fetal heart and respiratory movement rate, the 
following frequency bands were chosen: total frequency band: 0.04 to 1.5 Hz, LF: 0.04 
to 0.15 Hz and HF: 0.4 to 1.5 Hz. Absolute spectral power values were expressed in 
squared milliseconds. After calculating the spectral power of fetal heart rate variability 
in these frequency bands, normalised values were calculated by dividing LF and HF 
power by total power. 
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Fetal rest-activity state
For each selected 64-second segment of fetal heart rate data, the corresponding ultrasound 
segment was analysed. All segments were divided into quiet sleep and active sleep, by 
visual inspection by a single observer with 8 years obstetric ultrasound experience. 
Assessment of fetal rest-activity states was based upon the presence or absence of fetal 
body movements. Body movements comprised the collective trunk, limb and head 
movements. When, after 34 weeks of gestation, the fetal rest-activity state could not 
be determined by ultrasound, the behavioural state was determined based on visual 
inspection of the fetal heart rate pattern as described by Nijhuis et al.24. In healthy fetuses 
from this GA, the relation between fetal movements and CTG pattern is so strong that 
the different states can be assessed reliably by visual identification of heart rate patterns 
alone14. 

Statistical methods
For each patient, for all available 64-second segments of heart rate data per GA group, 
median values were calculated for the absolute and normalised spectral power in the 
LF and the HF band. It is known that fetal ECG measurements are extremely difficult 
to obtain around 30 weeks of gestation due to the presence of the vernix caseosa, which 
electrically shields the fetus from its surroundings25. Since changes in fetal heart rate 
variability due to fetal rest-activity state only occur after 30 weeks of gestation14, data 
were analysed separately for the periods below and above 30 weeks of gestation. The 
median spectral estimates were plotted as a function of GA. The median spectral values 
were normally distributed. Simple linear regression was used to study changes in spectral 
estimates over GA. 

For the GA group above 30 weeks, analysis was repeated with restriction to fetal rest and 
activity, to examine the effect of fetal rest-activity state on the relation between spectral 
estimates and GA.

In addition, for the GA group above 30 weeks, the mean values of the median spectral 
estimates were compared during the active and quiet fetal state. For comparison between 
the active and quiet state an independent t test was used. 

Statistical significance was assumed at an α level of 0.05. 

Results 

40 women were studied longitudinally during pregnancy. Measurements were performed 
from November 2006 up to August 2009. From the 40 patients under study, three patients 
were excluded because pregnancy was complicated by pregnancy induced hypertension. 
In addition, two patients were excluded because of preterm labour at a gestational age 
of respectively 31 and 32 weeks. The neonate born at 32 weeks of gestation was growth 
retarded (5th percentile for parity, GA and fetal sex) and had an anal atresia. From the 
remaining data, 330, 64-second segments of beat-to-beat heart rate data (2.75%) could 
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be used for spectral analysis. Figure 9.5 shows the percentage of usable segments, for 
the different GA groups. 

Figure 9.5. Percentage of 64-second segments, of beat-to-beat fetal heart rate data, that 
could be retrieved for Fourier transform, for each GA group.

The period between 17 and 21 weeks of gestation was excluded for further analysis since 
only five 64-second segments of heart rate data could be retrieved. Furthermore, no 
segment could be retrieved in the period between 30 and 34 weeks of gestation. In total, 
325 segments remained for final analysis.

From the included 35 women, ten women were excluded because no good-quality 
fetal beat-to-beat heart rate could be retrieved from the abdominal recordings. For the 
remaining 25 women included for analysis, in total 213 abdominal measurements were 
performed (from which 325 segments could be used for analysis). The mean number 
of measurements per patient was 9 (standard deviation (sd) 1.6). The mean duration of 
each measurement was 42 minutes (sd 9). All mothers delivered at term. All neonates 
had a birthweight above the 10th percentile corrected for parity, GA and fetal sex. All 
neonates had an Apgar score of at least eight at 1 minute and at least nine at 5 minutes. 
All neonates had an umbilical artery pH > 7.05 and an umbilical artery base deficit ≤ 10. 
Patients’ characteristics are shown in Table 9.1. 

Figure 9.6 shows the absolute LF and HF power as a function of GA, for the GA period of 
21 to 30 and 34 to 41 weeks. Linear regression lines were fitted to the data. A significant 
increase was seen in absolute LF and HF power, from 21 to 30 weeks of gestation. A 
non-significant decrease in LF and a non-significant increase in HF power were seen 
from 34 to 41 weeks of gestation.
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Table 9.1. Characteristics of the patients included for analysis
% or mean (standard deviation)

Maternal body mass index before pregnancy 23.6 (4.0)
Nulliparous 64%
Maternal age at birth (years) 32 (4)
Gestational age at birth (days) 279 (10)
Birthweight (grams) 3561 (543)
Apgar score at 5 minutes 10 (0.3)
Umbilical artery pH at birth 7.22 (0.08)
Umbilical artery base deficit at birth 7.3 (2.7)

Figure 9.6. The association between absolute LF and HF power and GA, for the 
period of 21 to 30 and 34 to 41 weeks of gestation. a) R2: 0.20 (P = 0.009), b) R2: 0.08 
(P = 0.26), c) R2: 0.37 (P = 0.0004) and d) R2: 0.12 (P = 0.15). 
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Figure 9.7 shows the normalised LF and HF power as a function of GA, for the GA 
period of 21 to 30 and 34 to 41 weeks. Linear regression lines were fitted to the data. For 
the normalised power, no significant trend was observed.  

Figure 9.7. The association between normalised LF and HF power and GA, for the 
period of 21 to 30 and 34 to 41 weeks of gestation. a) R2: 0.04 (P = 0.28), b) R2: 0.06 (P 
= 0.31), c) R2: 0.003 (P = 0.76) and d) R2: 0.09 (P = 0.21). 

From the available segments below 30 weeks of gestation, fetal rest-activity state could 
be determined based on ultrasound for 85 segments (43%). Of these, 86% was retrieved 
during the active state, while 14% was retrieved during the quiet state. 

In the GA group of 34 to 41 weeks of gestation, rest-activity state could be classified 
based on ultrasound for 69 segments (54%). For the remaining 58 segments (46%), the 
state was assessed based on fetal heart rate pattern. From the selected segments, 38% 
was retrieved during active sleep and 62% during quiet sleep. Table 9.2 displays, the 
percentage of the selected segments in active sleep and quiet sleep for the different GA 
groups after 30 weeks of gestation. 
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Table 9.2. Percentage of segments with the fetus in the active state and in rest, for the 
GA groups after 30 weeks of gestation

GA Active sleep Quiet sleep

34-36 70% 30%

36-38 43% 57%

38-40 32% 68%

40-41 28% 72%

Table 9.3 shows the mean values of the median absolute and normalised LF and HF 
power, for the active and quiet state, for 34 to 41 weeks of gestation. During the active 
state, absolute and normalised LF power were significantly higher compared to the 
quiet state. During the quiet state, normalised HF power was significantly higher. To 
guarantee no bias was introduced by assessment of fetal rest-activity state by fetal heart 
rate pattern, the analysis was repeated for segments for which rest-activity state was 
solely assessed based on ultrasound. The results (not shown) were highly comparable 
and remained significant. 

Table 9.3. Mean values of the median absolute and normalised LF and HF power for the 
active and quiet sleep state for the GA period of 34 to 41 weeks

Active sleep Quiet sleep P-value

Absolute LF (ms2) 555 151 0.002

Absolute HF (ms2) 62 38 0.09

Normalised LF 0.77 0.59 0.005

Normalised HF 0.10 0.26 0.002

To study the effect of fetal behaviour on spectral estimates, the association between 
spectral estimates and GA was studied for rest and activity separately, for the GA period 
above 30 weeks. Figure 9.8 shows the absolute LF and HF power as a function of GA for 
the active and quiet sleep state. Linear regression lines were fitted to the data.

During the active sleep state, a non-significant increase in absolute LF and HF power was 
observed with progress of pregnancy. No (significant) trend was observed in normalised 
values during the active sleep state (results not shown). During the quiet sleep state, a 
non-significant decrease in absolute LF power and a non-significant increase in absolute 
HF power were observed. For the normalised values during the quiet sleep state a 
comparable (non-significant) trend was shown as for the absolute values (results not 
shown). 
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Figure 9.8. The association between the absolute LF and HF power and GA, for the 
active and quiet sleep state, for the period of 34 to 41 weeks of gestation. a) R2: 0.08 (P 
= 0.41), b) R2: 0.04 (P = 0.44), c) R2: 0.23 (P = 0.14) and d) R2: 0.10 (P = 0.22). 

 
Discussion

Our group has developed a new method for non-invasive fetal ECG measurement19,20. 
This new method can be used during periods in pregnancy, in which other (invasive) 
techniques cannot be used for monitoring. Our results in a large study group showed 
that it is possible, yet difficult, to retrieve fetal beat-to-beat heart rate from non-invasive 
abdominal fetal ECG measurements. Spectral analysis was feasible in approximately 3% 
of abdominal data and thus further improvements need to be made in signal processing. 
We were not capable of retrieving fetal beat-to-beat heart rate from the abdominal 
measurements before 18 weeks and between 30 and 34 weeks of gestation. Below 18 
weeks this was probably due to the small size of the fetal heart. This results in very 
low amplitude of the fetal ECG, rendering it undetectable on the maternal abdomen. 
Between 30 and 34 weeks of gestation, the presence of the vernix caseosa, which 
electrically isolates the fetal heart25, probably caused for significant attenuation of the 
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ECG signal. During the very preterm period (21 to 28 weeks), approximately 5% of 
data was suitable for spectral analysis. At term, approximately 7% of data was suitable 
for spectral analysis. Probably, during the term period the disappearance of the vernix 
caseosa and the relatively large fetal heart, made it easier to detect the fetal signal from 
the combined fetal-maternal signals measured on the maternal abdomen. 

Very preterm period (21 to 30 weeks of gestation)
For the very preterm period we observed a significant increase in absolute LF and HF 
power of fetal heart rate variability with progressing pregnancy. We hypothesise that this 
increase was due to increased sympathetic and parasympathetic modulation of the fetal 
heart resulting from maturation of the fetal autonomic nervous system. This is in accordance 
with animal studies that showed an increase in sympathetic and parasympathetic cardiac 
modulation in premature fetuses compared to immature fetuses26. 

It is unlikely that that the observed changes in spectral estimates before 30 weeks 
of gestation were due to changes in fetal breathing movements or rest-activity state. 
Although fetal breathing movements occurred as early as 10 weeks of gestation27, the 
high frequency peak that was observed during breathing at term28, could not be observed 
at 26 weeks of gestation29. In addition, the incidence of fetal breathing movements did 
not change between 24 and 28 weeks of gestation30. The incidence of fetal movements 
decreased as pregnancy progresses31. From 24 to 28 weeks of gestation a healthy fetus 
on average made 150 to 200 movements each hour31. Therefore, it was expected that 
most selected 64-second segments of heart rate data below 30 weeks were measured 
during fetal activity, as was confirmed by our analysis of the corresponding ultrasound 
measurements. In addition, in term fetuses during the active state, LF power was high 
compared to quiescence10. Although short rest-activity cycles were first noticed at 23 
weeks of gestation, fetal heart rate variability was similar during fetal activity and rest 
up to 30 weeks of gestation14 and behavioural states could not be observed32. 

The observed increase in absolute LF and HF power was not reflected in the normalised 
values during the very preterm period. This might be due to a comparable relative 
increase in both absolute LF and HF power and to the relatively dominant sympathetic 
system in premature fetuses. This was reflected in the high normalised LF power and is in 
accordance with animal studies that have shown that the sympathetic tone predominates 
over the parasympathetic tone during the intrauterine life26. 

The (near) term period (34 to 41 weeks of gestation)
For the (near) term fetuses a non-significant decrease in absolute LF and a non-significant 
increase in absolute HF power were observed. A LF power decrease, after 30 weeks was 
also described by David et al.12. Fetal activity is known to increase fetal HRV from 
approximately 30 weeks of gestation onwards14, and a decrease in fetal movements with 
GA was reported31. Therefore, a LF power decrease after 30 weeks, is expected to occur 
due to a decrease in fetal movements. Later in pregnancy, starting in the 34th week of 
gestation, fetal behavioural states appear33. As these states are partly defined on the basis 
of HRV, it seems relevant to consider them in the interpretation of HRV measures. 
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Furthermore, absolute and normalised LF power were found significantly higher and 
normalised HF power significantly lower during fetal activity compared to rest. A non-
significant increase in absolute HF power was observed during the active state. These 
results were similar to those obtained with invasive measurements during labour at 
term10. 

If analysis was repeated with restriction to periods of fetal rest and activity (as shown in 
Figure 9.8), LF power increased non-significantly as a function of GA during activity, 
while LF power decreased non-significantly during rest. Since for the selected segments 
the time spent in rest increased with GA during the (near) term period (as shown in 
Table 9.2), a decrease in fetal activity might explain the overall decrease in LF power as 
pregnancy progresses.  

During fetal activity, the observed non-significant increase in absolute LF power, with 
advancing gestational age, might be due to a more mature autonomic nervous system, 
which is capable of adapting to increased metabolic demands during fetal activity. This 
might be a sign of autonomic functional development. However, since the trend was 
not significant, probably due to the limited number of usable segments, further study is 
necessary to confirm this hypothesis.  

An increase in absolute and normalised HF power was found, in our studies, for invasive 
measurements during the term period during labour10. We observed a similar trend 
towards increased absolute and normalised HF power near term, in the present study. 
Because this trend was independent of fetal rest-activity state, it cannot be explained 
by changes in fetal behaviour. This trend might suggest continuing parasympathetic 
maturation during the term period and increasing influence of the vagal system. This is 
in line with Assali et al., who found a marked rise in parasympathetic tone during the 
neonatal period and up until the adult state26. 

For the selected segments of heart rate data in the current study, for the (near) term fetuses, 
62% was in quiet sleep and 38% was in active sleep. Previous studies reported that the 
quiet sleep state accounts for approximately 30% and the active sleep state for 60% of 
the behaviour of term fetuses and that awake states appear rarely34. Therefore, it seems 
that fetal heart rate detection is more successful during rest, due to fewer disturbances 
caused by motion artefacts. 

Limitations
The main limitation of the presented study is the very small percentage of available 
signals suitable for analysis. However, our new method is one of the first by which fetal 
HRV studies can be performed non-invasively based on indirect fetal ECG measurement. 
In addition, we prefer to obtain good-quality data over a high quantity of data to make 
sure reliable results are obtained. Improvement of both equipment and algorithm is still 
necessary to obtain more good-quality data. Furthermore, due to the limited amount of 
data for analysis, we were unable to analyse inter- and intraindividual variation in the 
relation of spectral estimates with GA, although the study set-up was longitudinal. In 
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addition, due to missing data and large ranges of individual spectral estimates, statistical 
significance was often not reached. Therefore, we were careful in drawing conclusions 
on maturational aspects, although trends were visible. 

Conclusions

Our non-invasive fetal ECG method enables to measure fetal HRV in frequency-domain 
during the very preterm and the term period. The observed changes during the premature 
period are in accordance with those seen in animal studies and our results in the (near) 
term period are fully in accordance with the previous literature on invasive measurements 
during labour at term. This is the first study that measures spectral estimates longitudinally 
and relates spectral estimates to fetal state. Further progress in signal processing will 
enable improved study of the relation between spectral estimates and GA and allow for 
longitudinal analysis.
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