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Summary

The interest in automation of vehicles is increasing over the past few years. By using Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication, fully automated road vehicles can
potentially reduce fuel consumption and emmission, improve traffic safety and increase road capacity.
This will result in complex vehicular networks in which automated vehicles must be able to respond
to other vehicles, change lanes, merge, etc.
Vehicles driving on a road can be interpreted as an interconnection of dynamical systems through
an underlying communication/sensing network. Therefore, the vehicular network control problem
seems to fit well within the proposed frameworks for distributed control of cooperative agents, e.g.,
consensus seeking, flocking, formation control, etc. In this thesis, a novel distributed consensus con-
trol approach for platooning of vehicles is proposed.
In the existing literature on the topic of distributed consensus control for vehicle platooning, unreal-
istic assumptions are made. For example, a simplistic vehicle model is used, or ideal communication,
having unlimited range and zero latency, between the vehicles is assumed. Also, in many of the ex-
isting research, a constant spacing-policy between consecutive vehicles is assumed. However, in the
scope of traffic throughput and safety, it is desired to have a spacing-policy depending on the vehicle’s
velocity. Another important property of an interconnected vehicle platoon (or string of vehicles) is
disturbance attenuation, since it is undesired to amplify disturbances along the vehicle platoon. This
property is named string stability and can be interpreted as a performance criterion, in addition to the
normal stability property of a string of interconnected systems. In most research regarding distributed
consensus control applied to vehicle platooning, the property of string stability is mostly ignored in
the (performance) analysis of the proposed designs.
In this thesis, a literature survey, regarding the existing and relevant research on the topic of dis-
tributed consensus control in vehicle platooning is given. Based on this, a distributed consensus con-
trol approach, which covers the aforementioned properties, is developed. Thus, within the approach,
a realistic model is used for modeling the longitudinal dynamics of a vehicle. A velocity-dependent
inter-vehicle spacing policy is established by using a distributed control method in which only local
information of other vehicles is used. Within this distributed control method, the interaction between
the vehicles can be of bidirectional nature, depending on the chosen communication/interaction topol-
ogy. Also, the string stability properties of the developed distributed consensus control approach are
evaluated. Finally, the platoon coherence is assessed by introducing a constraint on the velocity of one
of the vehicles in the platoon.
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Chapter 1

Introduction

Recent developments in computation, sensing and communication technology have spurred an in-
creasing interest in the development of automated highway systems. Potentially, automated vehicles
can reduce traffic congestion, reduce overall exhaust emission and increase traffic safety. An example
of such an automated highway system is Cooperative Adaptive Cruise Control (CACC), of which ex-
amples are presented in Ploeg et al. (2014a,b). In a CACC system, inter-vehicle data exchange through
wireless Vehicle-to-Vehicle (V2V) communication, in addition to radar or lidar measurements, is used
to control the longitudinal motion of vehicles in a platoon. A CACC system allows for small time gaps
between two consecutive vehicles, such that an increase in traffic throughput can be realized. When
vehicles cooperate in a platoon, the aerodynamic drag is reduced, especially for fleets of heavy-duty
vehicles, thereby increasing fuel economy and reducing emissions (Ramakers et al., 2009). In gen-
eral, in a CACC controlled platoon, as suggested in Ploeg et al. (2014a,b), the interaction between the
vehicles in a platoon is of unidirectional nature, characterized by a look-ahead communication/sens-
ing topology. In the remainder of this thesis, the CACC method as described in Ploeg et al. (2014b)
is referred to as a conventional CACC method. As a result of this unidirectional nature, a platoon (as
a whole) cannot respond to a possible (temporary) actuation fault occurring in one of the vehicles in
the platoon. For example, a (temporary) saturation on velocity or acceleration. Hence, the platoon will
break up if such an event occurs.
Inclusion of information of follower vehicles in the vehicle’s motion controller could potentially im-
prove the platoon coherence, such that it does not break up when such a vehicle fault occurs. Also, in
the scope of maneuvering, e.g., merging into a platoon or splitting from a platoon, taking follower ve-
hicles into account can be useful. As a result, the desired interaction between the vehicles in a platoon
will be of bidirectional nature.

A platoon of vehicles can be interpreted as an interconnection of dynamic systems through an un-
derlying communication/sensing network. Therefore, the platoon control problem seems to fit well
within the proposed frameworks for distributed control of cooperative agents, e.g., consensus seek-
ing (Olfati-Saber and Murray, 2004), flocking (Olfati-Saber, 2006), formation control (Gouvea et al.,
2013), etc. However, the adaptation of the platoon control problem to match any of the above men-
tioned frameworks is not straightforward, as is explained below.
In some recent works (Bernardo et al., 2014; Montanaro et al., 2014; Zheng et al., 2014), attempts are
made to fit the platoon control problem into a distributed consensus control framework, which is a
decentralized control framework and is used in multi-agent networked systems. However, in most of
the above mentioned research works, a constant distance spacing-policy between consecutive vehicles
in the platoon is considered, which is not the most ideal spacing-policy in the scope of traffic through-
put, safety and disturbance attenuation, as will be discussed later on. Another assumption that is
made in some research works, is that a vehicle’s dynamics can be represented by a simplistic model,
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CHAPTER 1. INTRODUCTION

such as double integrator dynamics. However, such a model does not describe the dynamical behav-
ior of a vehicle accurately. Also, in most research regarding distributed consensus control applied to
vehicle platooning, string stability properties are mostly ignored in the (performance) analysis of the
proposed designs. String stability (Middleton and Braslavsky, 2010; Ploeg et al., 2014a) can be seen as
a performance criterion regarding input disturbance attenuation along the string of systems/vehicles,
in addition to the normal stability property of a string of interconnected systems/vehicles.

1.1 Problem statement

The aim of this master thesis is to develop a distributed consensus control framework which covers
many of the following desired properties in vehicle platooning. First, a realistic dynamical model must
be used for modeling the longitudinal dynamics of a vehicle, thus representing an actual vehicle’s
dynamics. Second, the desired spacing-policy between two consecutive vehicles should be velocity-
dependent. Third, due to limited or non-ideal communication channels, only local information can
be exchanged between vehicles. Thus, as an example, the desired platoon cruising velocity vdes is
only known to a (possible) leading vehicle and is not communicated to all other vehicles in the pla-
toon. Finally, string stability properties of the designed framework must be evaluated to see how the
disturbances acting on the platoon are influencing the platoon behavior. In addition, due to possible
bidirectional interaction, one could improve a platoon’s coherence such that it does not break up when
a platoon member experiences a (possibly temporary) fault, e.g., saturation on velocity or acceleration.

1.2 Outline

This thesis is organised as follows. First, background information regarding distributed consensus
control and the definition of a vehicle platoon is given in Chapter 2. Thereafter, an overview of the
most relevant findings regarding distributed consensus control in multi-agent systems, and more
specifically consensus control applied to vehicle platooning, is given in Chapter 3. In Chapter 4, the
development of a distributed consensus control approach, which is the main result of this master
thesis, is described. Hereafter, in Chapter 5, the platoon coherence is investigated in case the platoon
involves a vehicle with a (temporary) constraint on the velocity. An additional control law is introduced
to ensure coherence of the platoon. The string stability properties of the distributed consensus control
approach are evaluated in Chapter 6. Finally, the conclusions and recommendations are presented in
Chapter 7.
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Chapter 2

Background and Preliminaries

In general, consensus control theory is applied to a group of dynamical systems (or agents) which
interact. When all agents in the group agree on the value of the variable(s) of interest, they are said to
have reached consensus. For example, when one single state of the state vector of a system is the vari-
able of interest, all systems in a network reach consensus when this particular state of those coupled
systems converge to a common value. A tool commonly used to analyse consensus control strategies
is graph theory, in which network topologies, indicating potential interaction between neighbouring
agents, are described by graphs. The algebraic properties of those graphs correspond to properties of
the network topology it describes.
The principles of graph theory are briefly described in Section 2.1. Hereafter, the principles of a general
distributed consensus control law, depending on the communication graph, for a group of identical
linear systems are explained in Section 2.2. The longitudinal vehicle dynamics, represented by a third-
order model, are defined in Section 2.3. Finally, in Section 2.4, a definition of a platoon of vehicles is
given.

2.1 Graph theory

A graph consists of a node (or agent/system) set V = {1, · · · , n}, an edge set E ∈ V × V , and an
adjacency matrix G = [gij ] ∈ Rn×n (Godsil and Royle, 2001). The adjacency matrix G of a graph is
defined such that the elements gij describe the edges of the graph E . As an example, for the network
shown in Figure 2.1.a, the adjacency matrix is defined as

G =

0 1 0

1 0 1

0 1 0

 . (2.1)

The adjacency matrix G has dimensions n × n, where n is the number of systems involved. If a
system j has a directed communication link to system i, then element gij is equal to one and system
j is considered to be in the neighbouring set Ni of system i. And if a system j does not have a
directed communication link to system i, then element gij is equal to zero and system j is not in the
neighbouring set Ni of system i. Another example of an adjacency matrix, for the network shown in
Figure 2.1.b, is defined as

G =

0 0 1

1 0 1

0 1 0

 . (2.2)

3



CHAPTER 2. BACKGROUND AND PRELIMINARIES

Furthermore, the diagonal elements of the adjacency matrix are all equal to zero, which is obvious
since a system does not communicate with itself. This could be verified by observing the adjacency
matrices in (2.1) and (2.2) and the associated networks in Figure 2.1.
In an undirected network, all communication links between the systems are bidirectional which results
in a symmetric adjacency matrix G. In a directed network, at least one communication link between a
pair of systems is unidirectional instead of bidirectional which results in a non-symmetric adjacency
matrix G (Godsil and Royle, 2001).

Another fundamental matrix in network or graph theory can be derived from the adjacency matrix G.
This matrix is called the Laplacian matrix L = [lij ] ∈ Rn×n and is in general defined as

lii =

n∑
j=1,j 6=i

gij and lij = −gij ∀i 6= j. (2.3)

The Laplacian matrix L always satisfies the conditions

lij ≤ 0 ∀i 6= j and
n∑
j=1

lij = 0 ∀ i ∈ V. (2.4)

1

2

3

(a) undirected network which is
connected.

1

2

3

(b) directed network which is
strongly connected.

1

2

3

(c) directed network which is
connected.

1

2

3

(d) directed network which con-
tains a directed spanning
tree.

Figure 2.1: Four different examples of a network consisting of three systems, having different communi-
cation topologies.
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2.2. DISTRIBUTED CONSENSUS CONTROL LAW

For the adjacency matrix given in (2.1), the Laplacian matrix is defined as

L =

 1 −1 0

−1 2 −1

0 −1 1

 . (2.5)

The Laplacian matrix L is a representation of the neighbouring sets Ni of all systems/agents i. Each
row of the Laplacian matrix corresponds to the links towards one system in a graph. The amount of
links that system i receives is indicated by the (i, i)th diagonal element of the Laplacian matrix. The
off-diagonal elements of each ith row indicate which systems are sending information to system i.
The neighbouring set Ni of system i contains all systems j for which lij = −1. For example, given
the Laplacian matrix L as in (2.5), the neighbouring sets for the three systems in the network would
be defined as

N1 = {2} , N2 = {1, 3} , N3 = {2} . (2.6)

The Laplacian matrix L is of same dimensions as the adjacency matrixG. The Laplacian matrix L is by
definition always positive semi-definite and has at least one eigenvalue equal to zero. This single, by
definition, zero eigenvalue of the Laplacian matrix L is associated with the eigenvector of the Laplacian
matrix L in the consensus (or equilibrium) state

wr := α[1, 1, · · · , 1]T , (2.7)

with α ∈ R. An undirected network is called connected if there is a path between any distinct pair of
systems via the communication links, possibly via other systems (Bondy and Murty, 2008; Ren and
Beard, 2008). The undirected network in Figure 2.1.a is an example of a connected network. Indeed,
from every system, there exists a path to each other system via the communication links. When an
undirected network is connected, only one single eigenvalue of the Laplacian matrix L is equal to zero.
For a directed network, a distinction is made between being connected and being strongly connected.
A directed network is called strongly connected if there exists a path between any distinct pair of systems
via the directed communication links. An example of a strongly connected directed network is shown
in Figure 2.1.b. A directed network is called connected, if there exists a path between any distinct
pair of systems when you replace all directed links in the graph by undirected links, an example is
given in Figure 2.1.c. For a directed network which is strongly connected it holds that only one single
eigenvalue of the Laplacian matrix L is equal to zero.
A directed network contains a so-called directed spanning tree if there is at least one system having a
directed path, via the communication links of the network, to all other systems. This system is called
a root. The networks in Figure 2.1.a,b,d are all examples of a network containing a directed spanning
tree. Eigenvalue zero is a simple eigenvalue of Laplacian matrix L and all of the other eigenvalues
of L have positive real parts if and only if a directed graph/network contains a directed spanning
tree (Bondy and Murty, 2008; Ren and Beard, 2008). For a directed network, containing a directed
spanning tree is a weaker condition than being strongly connected.

2.2 Distributed consensus control law

The most common continuous-time distributed consensus control law is designed for a group of
agents having simple integrator dynamics (Lin et al., 2004; Olfati-Saber and Murray, 2004). Consider
n identical systems having an m-dimensional state-space with single-integrator dynamics given by

q̇i(t) = ui(t) ∀i ∈ Sn, (2.8)

with qi(t) ∈ Rm, ui(t) ∈ Rm being, respectively, the position and input of agent i and Sn =
{i ∈ N | 1 ≤ i ≤ n} being the set of all systems in a group of size n ∈ N. A distributed consensus
control law could be defined as

ui(t) = −
∑
j∈Ni

(qi(t)− qj(t)) = −
n∑
j=1

gij(qi(t)− qj(t)) ∀i ∈ Sn, (2.9)

5



CHAPTER 2. BACKGROUND AND PRELIMINARIES

where Ni is the neighbouring set of agent i, gij is element (i, j) of the adjacency matrix G describing
the interaction (or communication) topology. Note that in (2.9) two expressions are given for the
same distributed control law. Suppose that the dimension of the state-space is one, i.e., m = 1. The
closed-loop dynamics of (2.8) given distributed consensus control law (2.9) is written in matrix form
as

q̇(t) = −Lq(t), (2.10)

where q(t) = [q1(t), · · · , qn(t)]T and L is the Laplacian matrix describing the interaction (or com-
munication) topology. Now if and only if the graph describing the network topology is designed such
that it contains a directed spanning tree, i.e., the Laplacian matrix L has only one single eigenvalue
equal to zero, the state qi(t) of each system will converge to a common consensus state qe at steady
state (Ren and Beard, 2008).

2.3 Longitudinal vehicle dynamics

In this section, the longitudinal vehicle dynamics are modeled. The longitudinal dynamics of a vehicle,
as used for the design of the consensus framework in this thesis, are modeled as a linear third-order
system:

ṗi(t) = Api(t) +Bui(t) ∀i ∈ Sn, (2.11)

where

pi(t) =

qi(t)vi(t)

ai(t)

 , A =

0 1 0

0 0 1

0 0 − 1
τ

 , B =

0

0
1
τ

 (2.12)

and where Sn = {i ∈ N | 1 ≤ i ≤ n} is the set of all vehicles in a platoon of length n ∈ N, and τ > 0 is
a constant representing the vehicle drive-line dynamics. The states qi(t), vi(t) and ai(t) are position,
velocity and acceleration, respectively. The input ui(t) is in fact the desired vehicle acceleration. First,
it is assumed that the platoon is homogeneous which results in the constant τ being equal for each
vehicle. In Naus et al. (2010); Ploeg et al. (2014b), it is shown that this model suits well for modeling
of longitudinal vehicle dynamics. It is identified that a drive-line dynamics constant τ = 0.1 suits well
for the Toyota Prius, used by TNO for testing, and therefore this value is used in the remainder of this
thesis. In fact, the full model also includes a drive-line dynamics time delay φ such that the full system
model is defined as

ṗi(t) = Api(t) +Bui(t− φ), ∀i ∈ Sn, (2.13)

with matrix A and B being defined as in (2.12), but for sake of simplicity this time delay is ignored
while designing the distributed consensus control law for the desired acceleration ui(t) of vehicle i.
Later on, the influence of this drive-line dynamics time delay φ is taken into account in the analysis of
the platoon’s response.

2.4 Vehicle platoon

In this section, the definition of a platoon is given. A platoon is considered to be a string of vehicles
having dynamics as defined in Section 2.3. Each vehicle in the string is assigned with an index increas-
ing in upstream direction, as can be seen in Figure 2.2, where Lv is the vehicle length, and qi(t) and
vi(t) are the position of the rear bumper and the velocity of vehicle i, respectively. The inter-vehicle
distance between vehicle i and vehicle i− 1 is defined as

di(t) = qi−1(t)− qi(t)− Lv ∀i ∈ Sn\ {1} . (2.14)

6



2.5. SUMMARY

Vi+1
i-1

Vi-1Vi
ii+1

didi+1 di-1

qi
qi-1

qi+1

Lv Lv Lv

Figure 2.2: Schematic overview of a string of vehicles.

2.5 Summary

In this chapter, the general principles of graph theory and distributed consensus control are explained.
Furthermore, the dynamical model describing the longitudinal vehicle dynamics is given and, in ad-
dition, the definition of a platoon of vehicles is introduced.
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Chapter 3

Literature Survey

Distributed consensus control is a topic which is well-covered in literature. Many research projects
are being executed on the topic of vehicle platooning as well. However, the application of distributed
consensus control to vehicle platooning is a rather new topic which is only covered in several recent
publications (Bernardo et al., 2014; Cao et al., 2013; Gowal et al., 2010; Iftekhar and Olfati-Saber, 2012;
Montanaro et al., 2014; Zheng et al., 2014). This chapter gives a summary of the most relevant find-
ings in literature regarding the design of a distributed consensus controllers for vehicle platooning.

The consensus algorithm from (2.9) is extended in various ways in the literature. For example, the
single-integrator consensus control law is extended to double-integrator dynamics in Xie and Wang
(2007) and Ren and Atkins (2007) and consensus is addressed with a time-varying reference state in
Yang et al. (2008), Ren and Beard (2008) and Ren (2007). The most relevant extensions on distributed
consensus control for single integrator dynamics are described in Section 3.1.
The dynamics of the motion of mechanical agents/systems in many cases can be modeled as a second-
order system, and research is done on the application of distributed consensus control to non-holonomic
mobile robots like unicycles or (kinematic) bicycle models. Such applications of a distributed consen-
sus control approach are described in Iftekhar and Olfati-Saber (2012) and Gowal et al. (2010), both de-
scribing an approach in which non-holonomic mobile robots form a rigid formation using consensus
control. In both publications, the agents/vehicles are modeled by a second-order model and a constant
spacing-policy is assumed, and therefore not directly relevant for the distributed consensus framework
pursued in this research, since a velocity-dependent (and thus state-dependent) spacing-policy is de-
sired in vehicle platooning. In the scope of traffic throughput and safety, the desired spacing-policy in
vehicle platooning is based on a time gap. In addition, in Swaroop and Hedrick (1999), it is shown that
a constant spacing-policy performs less in terms of disturbance attenuation along the vehicle string in
comparison with a time gap spacing-policy, i.e., a velocity dependent spacing-policy.
In Fax and Murray (2004), a framework for distributed consensus control for general linear systems is
proposed. This consensus framework for general linear systems is discussed in Section 3.2. Since the
longitudinal vehicle model, as presented in (2.3), is a third-order linear system, this framework seems
to offer opportunities for application to vehicle platooning. However, the proposed method does not
cover a velocity-dependent spacing-policy.

This brings us to the topic of the current thesis, namely distributed consensus control applied to vehi-
cle platooning, which has received very little attention in literature. In the scope of traffic throughput
and safety, the desired spacing-policy in vehicle platooning is based on a time gap h such that the de-
sired inter-vehicle distance increases with increasing velocity, as also addressed in Ploeg et al. (2014b).
Current literature on distributed consensus and formation control mainly focuses on a rigid forma-
tion, i.e., on a constant distance spacing-policy between agents. As a consequence, application of dis-
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tributed consensus control to vehicle platooning, with a desired velocity-dependent spacing-policy, is
not straightforward. This shortcoming on research on non-rigid formation control is explicitly stresses
in Cao et al. (2013).
Relevant research regarding distributed consensus control in vehicle platooning is described in Sec-
tion 3.3. In most publications, the vehicles are modeled as having double integrator dynamics, which is
not a realistic model of a passenger vehicle. Furthermore, in most research, a constant spacing-policy
between the vehicles in the platoon is considered. Consequently, none of the existing research does
cover all the desired properties of the distributed control framework pursued in this master thesis.
Finally, in Section 3.4 and Section 3.5, a short description on the concept of, respectively, string stability
and Cooperative Adaptive Cruise Control (CACC) is given.

3.1 Distributed consensus control for integrator dynamics

This section describes examples of distributed consensus control for systems having pure integrator
dynamics. Distributed consensus control for systems modeled by higher-order integrator dynamics
are described in Ren et al. (2006) and an example for a third-order integrator system including con-
stant relative position state deviation is described in Section 3.1.1.
As was mentioned above, the desired spacing between vehicles in a platoon is not constant but velocity-
dependent, and therefore the method described in Ren et al. (2006) is not directly applicable to vehicle
platooning. In Ren (2007), an extension is made to the standard distributed consensus algorithm to
be able to obtain a time-varying spacing policy between the agents which is described in Section 3.1.2.

3.1.1 Distributed consensus control for multiple-integrator dynamics

Consider n identical agents (or systems) with triple-integrator dynamics in an m-dimensional space
given by

q̇i(t) = vi(t)

v̇i(t) = ai(t)

ȧi(t) = ui(t)

∀i ∈ Sn, (3.1)

where qi(t) ∈ Rm, vi(t) ∈ Rm and ai(t) ∈ Rm are respectively, the position, velocity and acceleration
of the ith system, ui(t) ∈ Rm is the control input, and Sn = {i ∈ N | 1 ≤ i ≤ n} is the set of all
agents in a group of size n ∈ N. Initially, all systems are at a different position qi(t = 0) and move
with different velocity vi(t = 0) and acceleration ai(t = 0). Suppose that it is desired that all agents
move with similar velocity and acceleration and having a constant desired inter-agent spacing-policy. A
distributed consensus control law for (3.1) having a constant desired spacing-policy ∆ij is suggested
in Ren et al. (2006) and is defined as

ui = −
∑
j∈Ni

(γ0 ((qi − qj)−∆ij) + γ1(vi − vj) + γ2(ai − aj)) ∀i ∈ Sn, (3.2)

where γ0, γ1, γ2 are positive control gains (to be designed using Routh-Hurwitz criterion for a third-
order polynomial) and ∆ij is the desired constant spacing between vehicle i and vehicle j. Note that
the time-argument is omitted in (3.2) for the sake of readability.
If the communication graph described by a Laplacian matrix L contains a directed spanning tree and
the control gains are designed appropriately according to Routh-Hurwitz criterion, the control law in
(3.2) results in the group of agents (3.1) having an asymptotically stable equilibrium. In this equi-
librium (or consensus state) all n agents have a constant inter-agent spacing defined by ∆ij and a
common velocity ve(t) and common acceleration ae(t). The values of this common velocity ve(t) and
common acceleration ae(t) are a result of the initial conditions, i.e., initial velocity and acceleration, of
the agents in the platoon and are so-called consensus states. To drive these consensus states to desired
equilibrium values, i.e., desired velocity and/or desired acceleration, a reference agent can be intro-
duced which is described later on. The proof of the above mentioned distributed consensus protocol
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can be found in Ren et al. (2006) and is too elaborate to show here.
Note that no information about absolute position is needed given this distributed control law (3.2).
The actual position qi(t) is always used in combination with the actual position qj(t), such that only
relative position information is required. This is an important consideration since it is known that
global/absolute position information is not available in vehicle platooning due to low Global Posi-
tioning System (GPS) accuracy. Below it will become clear that some consensus protocols are not
applicable in practice due to this limitation.

3.1.2 Time-varying relative position spacing

Above, a distributed consensus control protocol resulting in a constant relative spacing is suggested.
However, in the scope of vehicle platooning, it is desired to have a velocity-dependent inter-vehicle dis-
tance. More specifically, the desired inter-vehicle distance between two consecutive vehicles depends
on the velocity of the following vehicle, which will be explained in more detail when the control objec-
tive is defined.

As was mentioned above, the topic of time-varying desired relative positioning, i.e., non-rigid for-
mation forming, is not well-covered in existing literature on distributed consensus control. In Ren
(2007), a distributed consensus control law is suggested for a group of n first-order dynamical sys-
tems described by

q̇i(t) = ui(t) ∀i ∈ Sn, (3.3)

where qi(t) ∈ Rm is the position and ui(t) ∈ Rm is the control input. The suggested control law is
defined as

ui(t) = δ̇i(t)−
∑
j∈Ni

γ0 ((qi(t)− qj(t))−∆ij(t)) ∀i ∈ Sn, (3.4)

where γ0 is a positive gain and

∆ij(t) = δi(t)− δj(t) ∀i 6= j (3.5)

denotes the desired time-varying separation between system i and system j. With (3.4) applied to
(3.3), it can be shown that (Ren, 2007)

qi(t)− qj(t)→ δi(t)− δj(t) ∀i 6= j, for t→∞, (3.6)

if and only if the information-exchange topology contains a directed spanning tree, i.e., the Laplacian
matrix L has only one single eigenvalue zero. The proof of this is given as follows. With control law
(3.4), the dynamics (3.3) can be written in matrix form as

˙̂q(t) = −γ0 (L⊗ Im) q̂(t), (3.7)

where q̂(t) = [q̂T1 (t), · · · , q̂Tn (t)] with q̂i(t) = qi(t)− δi(t), and L = [lij ] ∈ Rn×n being the Laplacian
matrix, Im being a m ×m identity matrix, and ⊗ represents the Kronecker product. Note that these
dynamics are of similar form as the dynamics in (2.9) (for m = 1), and thus asymptotic stability of the
consensus state is proven.

A drawback of this control law is the necessity of knowledge about the time-derivative of the desired
absolute position δ̇i(t), which is the desired absolute velocity. In vehicle platooning, it is assumed that
the desired velocity is not known to all vehicles in the platoon, only to a leading vehicle.
Additionally, even if this information is available, it is not straightforward to extend the distributed con-
trol law in (3.4) to systems having dynamics of higher-order. Also, having a time-dependent spacing-
policy is something different than having a velocity-dependent (or state-dependent) spacing-policy.
The latter could lead to an even more complex proof of stability.
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3.1.3 Behavior of a multi-agent system in presence of actuator faults

Another field of research regarding distributed consensus control for integrator dynamics is the behav-
ior of the agents in a group in presence of actuator faults. An actuator fault can be seen as a saturation
on the actuator input, which could be a saturation on an agent’s velocity or acceleration, depending
on the model of the agent. In Saboori et al. (2013), a distributed control law for a group of agents
having first-order integrator dynamics as in (3.3) is defined. Also, an upper- and lower-bound on the
control input ui(t) is defined. When such a bound on the control gain is reached during operation,
i.e., saturation occurs, it is said that an actuator fault occurs. It is shown that the agents can reach
consensus, on the position variable qi(t), even when some agents have partial actuation loss.
Furthermore, in Semsar-Kazerooni and Khorasani (2007), a distributed control approach to cope with
actuator faults is suggested, but for agents having second-order integrator dynamics described by

q̇i(t) = vi(t)

v̇i(t) = ui(t)
∀i ∈ Sn, (3.8)

where qi(t) ∈ Rm, vi(t) ∈ Rm are respectively, the position and velocity, and ui(t) ∈ Rm is the control
input. A control law for ui(t), which is obtained by minimization of individual cost functions by using
the available information from the neighboring sets Ni, is defined as

ui(t) = Γi

(
vi(t)−

∑
j∈Ni

vj(t)

|Ni|

)
∀i ∈ {i ∈ Sn|i 6= 1}

u1(t) = Γ1

(
v1(t)−

∑
j∈N1

vj(t)

|N1|

)
+ β1(v1(t)− vd),

(3.9)

where Γi and β1 are obtained by solving a Riccati equation, where |Ni| is the cardinality of the neigh-
bouring set Ni, and where vd is the desired group velocity. In normal operation, this control law
(3.9) leads to the agents reaching consensus on their position qi(t) and velocity vi(t). In addition, it
is shown that, given this distributed control law, if some agents fail to proceed in executing the dis-
tributed control law as defined in (3.9) due to actuator faults and instead a zero input is implemented
by these agents, i.e., ui(t) = 0, then the non-faulty agents will decrease their velocity in order to keep
team cohesion. However, the non-faulty vehicles do not fully adapt their velocity to the saturated ve-
locity of the faulty vehicle vf , but will all reach an intermediate velocity, i.e., vf < vi(t) < vd. This
means that the group of agents does break up if the vehicle fault or saturation of velocity is not solved
within a certain time.

3.2 Distributed consensus control for general linear systems

A direct extension of solutions of consensus problems for systems having single- or multiple-integrator
dynamics, is to solve consensus problems for systems having general linear dynamics (Fax and Mur-
ray, 2004; Qu et al., 2008). This research is mainly devoted to finding feedback control laws such
that consensus on the states (or at least a subset of them) can be achieved for a group of n general
mth-order linear systems as given by

ẋi(t) = Axi(t) +Bui(t)

yi(t) = Cxi(t)

ξij(t) = D(xi(t)− xj(t))

∀i ∈ Sn, (3.10)

where xi(t) ∈ Rm, ui(t) ∈ Rp are the system state vector and control input, respectively, yi(t) ∈ Rk
represent the internal state measurements, and ξij(t) ∈ Rl represents the external state measure-
ments relative to other systems.
The well-studied single-integrator kinematics and multiple-integrator dynamics are special cases of

12
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(3.10) for a proper choice of matrices A, B, C and D.
A distributed controller proposed in Fax and Murray (2004) is defined as

żi(t) = KAzi(t) +KByi(t) +KC

∑
j∈Ni

ξij(t)

ui(t) = KDzi(t) +KEyi(t) +KF

∑
j∈Ni

ξij(t)
∀i ∈ Sn, (3.11)

which maps the internal state measurements yi(t), and relative measurements ξij(t) to control input
ui(t) and has internal states zi(t) ∈ Rc.
As for the longitudinal vehicle dynamics model as given in Section 2.3, such a distributed consensus
control law for general linear systems seems to fit well. However, the velocity-dependent spacing-
policy, which is desired in vehicle platooning, does not directly fit into the framework as proposed
in the literature. The control framework (3.11) does allow for a time-varying vehicle agent/system
formation, but it does not allow for the case where the desired formation shape directly depends on
internal system states or measurements such as velocity.
The time-varying spacing-policy between the agents is established by defining a time-varying offset
function dij(t) ∈ Rm for each pair of agents (i, j). This offset function dij(t) is added to the relative
(position-)state measurement, such that

limt→∞ξij(t) = dij(t) ∀i 6= j. (3.12)

Only for a (uni-directional) single vehicle look-ahead structure in the communication topology of the
distributed control term in (3.11), a velocity-dependent spacing-policy is covered by the distributed
control framework in Fax and Murray (2004). In this case, a vehicle i only regulates its distance to its
preceding vehicle i − 1. Thus the controller of vehicle i only needs the actual velocity vi(t) of vehicle
i itself to establish a velocity-dependent spacing. Suppose that the state vector xi(t) and matrices A
and B of the linear system in (3.10) are defined as in the longitudinal vehicle dynamics model in
Section 2.3. Furthermore, suppose that the output matrix C is defined such that the velocity vi(t) is
an observable state. Then, the velocity-term of the velocity-dependent spacing-policy can be embedded
in the controller (3.11) through the second term on the right-hand side of the relation for ui(t) or the
relation for żi(t) in (3.11).

For a vehicle i, the desired distance to a following vehicle i + 1 depends on the velocity of this fol-
lowing vehicle vi+1(t), which cannot be embedded in the distributed controller given in (3.11).

3.3 Distributed consensus control in vehicle platooning

As was mentioned in the introduction of this chapter, the current literature on distributed consensus
control applied to vehicle platooning is rather limited and only addresses longitudinal platoon control.
In Le et al. (2012), a platoon control method for adjusting the distance between vehicles based on a
constraint function is proposed. Within the proposed method, the inter-vehicle distances are vehicle-
dependent and are defined by a vehicle-dependent weighting factor, but this does not suit well with the
velocity-dependent spacing policy pursued by this master thesis research. Furthermore, the research
only describes vehicle coordination in cyber-space (or discrete-time) and actual vehicle dynamics are
not considered.
Although there are some very recent works where distributed consensus control is applied to platoon-
ing of vehicles, these methods still lack certain desired properties. For example, in Bernardo et al.
(2014) the vehicles in the platoon are modeled as having double-integrator dynamics in longitudinal
direction, which is not a realistic assumption for a passenger car. A spacing-policy involving a time
gap hij is applied in the distributed consensus control law. However, this spacing policy is defined as

ddes,ij = hijv0 ∀i 6= j, (3.13)

where ddes,ij is the desired distance between vehicle i and vehicle j, hij is a constant desired time gap
and v0 is constant desired platoon velocity. Since the time gap hij and the desired platoon velocity v0
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are both assumed to be constant, the spacing-policy ddes,ij is actually not velocity-dependent but con-
stant. Also, in this approach, it is assumed that all vehicles in the platoon have knowledge about the
desired platoon cruise velocity. In the framework to be designed, it is assumed that only a (possible)
leading vehicle has information about the desired platoon cruise velocity and all other vehicles in the
platoon do not.

Also in Zheng et al. (2014), a distributed consensus control law is applied to vehicle platooning, how-
ever with a constant spacing policy assumption. Vehicles are modeled as a third-order linear system
similarly as defined in (2.11) and (2.12). The proposed distributed control law is of similar form as
the control law which is given in (3.2) and is defined as

ui(t) = −
∑
j∈Ni

(k1(qi(t)− qj(t)− ddes,ij) + k2(vi(t)− vj(t)) + k3(ai(t)− aj(t))) ∀i ∈ Sn,

(3.14)
where k1, k2 and k3 are control gains, ddes,ij is the desired constant spacing between vehicle i and ve-
hicle j, and where qi(t), vi(t) and ai(t) are defined as in (2.11) and (2.12). It is assumed that there is a
leading vehicle having a constant velocity, and tracking errors of each vehicle are defined with respect
to this leading vehicle having constant velocity. The tracking errors of all vehicles in the platoon are
lumped into one vector. The behavior of the distributed consensus controlled platoon is assessed by
analyzing the asymptotic stability of the closed-loop platoon error dynamics. It is shown that the error
dynamics are asymptotically stable for a proper design for both the control gains kT = [k1, k2, k3]
and the communication topology of the distributed controller.

Another example of application of a distributed controller to longitudinal platoon control is proposed
in Montanaro et al. (2014). A velocity-dependent spacing policy is realized which is defined as

ddes,i(t) = ri + hivi(t) ∀i ∈ Sn, (3.15)

where ddes,i(t) is the desired inter-vehicle distance between the ith and the preceding (i−1)th vehicle,
with ri being the required standstill distance and hi is desired time gap. To the best of the author’s
knowledge, this is the only research in which a velocity-dependent spacing policy is established in a
distributed consensus control framework applied to vehicle platooning. In this proposed framework,
vehicles are modeled as double-integrator dynamics and thus not (directly) applicable to the problem
defined in this master thesis.

3.4 String stability

String stability is another important property of interconnected systems, which is mostly ignored
in research work on application of distributed consensus control to vehicle platooning. A platoon
of vehicles is said to be string stable when disturbances acting on the platoon are being attenuated
(preferably in in both upstream direction as well as downstream direction), which is of course desired
in real on-road implementation. A more extended and specific definition of string stability will be
given in Chapter 6.
If the coupling between the controlled vehicles in a platoon is uni-directional and if each neighbouring
set Ni for each vehicle i only contains one vehicle, i.e., the dynamics of a vehicle only depends on its
predecessor (or following) vehicle, a transfer function between the motion of a vehicle with respect to
its preceding (or following) vehicle can easily be established and string stability can be evaluated. This
is due to the fact that the transfer function is the same for each pair of predecessor- and following
vehicles (in a homogeneous platoon).
However, when the control coupling between the vehicles in a platoon is bidirectional and/or the
neighbouring sets Ni contain more than one vehicle, i.e., the dynamics of a vehicle depends on more
than one other vehicle, the assessment of string stability is not so straightforward. In Bernardo et al.
(2014), string stability of a distributed consensus controlled platoon is being assessed, but indeed only
for a communication topology resulting in an uni-directionally coupled platoon involving the direct
preceding vehicle only. String stability will be further considered in Chapter 6.
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Figure 3.1: Schematic overview of conventional CACC controlled platoon. The distance to a preceding
vehicle di(t) is measured using radar and the desired acceleration of a preceding vehicle
ui−1(t) is obtained through wireless communication.

3.5 Cooperative Adaptive Cruise Control (CACC)

An example of a uni-directionally coupled platoon, which is developed by TNO and TU/e, is proposed
and examined in Ploeg et al. (2014b). Vehicles in a platoon are modeled as in (2.13). String stability
of a platoon controlled using the proposed CACC method, is evaluated. Within this framework, a
controller of a vehicle i uses the inter-vehicle distance to its preceding vehicle di(t) and feed-forward
information of its preceding vehicle i−1 to improve string stability properties of the platoon. Also, the
influence of the time gap h and a communication delay θ, involved with communication of the feed-
forward information, on the string stability property is investigated. Figure 3.1 shows an illustrative
example of such a CACC system. Vehicle i measures its distance with respect to its preceding vehicle
i−1 (using radar) and it receives feed-forward information of its preceding vehicle in terms of ui−1(t)
(via wireless communication), which is in fact the actual input (or desired acceleration) applied to
vehicle i− 1.

3.6 Summary

In summary, standard consensus algorithms normally guarantee agreement of a team of agents (or
systems) on some common state, without taking group formation into consideration. In vehicle
platooning, however, the spacing-policy (or desired formation) between two consecutive vehicles is
velocity-dependent, and therefore some extensions are necessary.
According to the literature, some extensions are made to be able to have a (time-varying) formation
between the agents in a group. However, except for Montanaro et al. (2014), all proposed methods in
the existing literature do not allow for this desired formation to depend on states of the agents in the
group, e.g. an agent’s velocity.
Also, in most research on distributed consensus control in vehicle platooning, vehicles are modeled
as having second-order (integrator) dynamics, which is also the case for Montanaro et al. (2014). This
is not a realistic representation of an actual road vehicle since drive-line dynamics cannot simply be
neglected. Furthermore, in some suggested consensus frameworks, it is assumed that information
about the desired group velocity and information about global position is available to all agents, which
are not realistic assumptions in the scope of vehicle platooning.
Finally, it is found that the use of feed-forward of the desired acceleration of a preceding vehicle can
improve string stability properties. However, analysis of string stability seems to become more com-
plex when the distributed control of a platoon is of a bidirectional nature.
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In this master thesis, it is aimed to develop a distributed consensus control framework which cov-
ers many of the desired properties in vehicle platooning. First, the longitudinal dynamics of a vehicle
must be modeled by the third-order linear system as given in Section 2.3 since this is a realistic repre-
sentation of actual longitudinal vehicle dynamics. Second, a velocity-dependent spacing-policy must
be accomplished by the distributed controller, where the desired gap from a vehicle i to vehicle i − 1
depends on the velocity of vehicle i. Third, due to limited or non-ideal communication channels,
only local information can be exchanged between vehicles. Thus, as an example, the desired platoon
cruising velocity vdes is only known to a (possible) leading vehicle and is not communicated to all
other vehicles in the platoon. Finally, string stability properties of the designed framework must be
evaluated since disturbances acting on the platoon should be attenuated.
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Chapter 4

Distributed Consensus Control
Framework

In this chapter, a distributed controller for single-lane platooning is designed. The method is based on
defining distance errors and their derivatives as system states. The introduction of a pinning constraint
(Wang et al., 2010) guarantees that all errors go to zero at steady state. In Zheng et al. (2014), a similar
approach is applied, however for a platoon having constant inter-vehicle spacing-policy. In addition to
a velocity-dependent spacing-policy, the second key difference with respect to the method developed
in Zheng et al. (2014) is the use of feed-forward of the desired acceleration. This feed-forward is incor-
porated by introduction of a controller having internal dynamics. With this feed-forward, it is aimed
to improve string stability properties of the controlled platoon, which will be evaluated later on.
First, the platoon control objective is given in Section 4.1. Hereafter, in Section 4.2, the definition of
an error state vector is given. Also, a control filter, having a new (to be defined) input, is introduced,
and the resulting platoon dynamics are given. In Section 4.3, a distributed control law for this new in-
put is developed. Furthermore, conditions for asymptotic stability of the resulting closed-loop platoon
dynamics are formalised in a theorem. Section 4.4 describes two examples of communication topolo-
gies for the distributed control law for the new input of the control filter. Finally, simulation results are
given in Section 4.5 to illustrate the closed-loop platoon response for the developed distributed control
approach.

4.1 Platoon control objective

The control objective of the single lane platoon is to track a certain desired velocity vdes while main-
taining a formation governed by a velocity-dependent spacing-policy between any two consecutive
vehicles. The spacing-policy is defined as

ddes,i(t) = r + hvi(t) ∀i ∈ Sn, (4.1)

where ddes,i(t) is the desired distance from vehicle i to its preceding vehicle i− 1, vi(t) is the velocity
of vehicle i, constants r and h represent a standstill distance and time gap, respectively, and Sn =
{i ∈ N | 1 ≤ i ≤ n} is the set of all vehicles in a platoon of size n ∈ N. A homogeneous platoon is
assumed such that standstill distance r and time gap h are the same for each vehicle in the platoon.
Given spacing-policy (4.1) and by using the definition of a vehicle platoon as shown in Figure 2.4, the
tracking error of each vehicle is defined as

ei(t) = qi−1(t)− qi(t)− (Lv + r + hvi(t)) ∀i ∈ Sn, (4.2)
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with qi(t) being the rear-bumper position of vehicle i and Lv being the vehicle length. The vehicle
following objective can be defined as

limt→∞ei(t) = 0 ∀i ∈ Sn. (4.3)

In addition, the internal platoon dynamics must be asymptotically stable.
Since the first vehicle of the platoon does not have a preceding vehicle, a virtual reference vehicle is
defined. The dynamics of the virtual reference vehicle are similar to the third-order dynamics of the
actual vehicles in the platoon and are described by

ṗ0(t) = Ap0(t) +Bu0(t), (4.4)

where

p0(t) =

q0(t)

v0(t)

a0(t)

 , A =

0 1 0

0 0 1

0 0 − 1
τ

 and B =

0

0
1
τ

 . (4.5)

For u0(t) = 0, the constant velocity equilibrium of the virtual reference vehicle is defined as

limt→∞p0(t) = [q̄0(t), v̄0, 0]T , (4.6)

where v̄0 is a constant velocity depending on the initial state of (4.4). As one can see in (4.2), the
virtual reference vehicle state vector p0(t) is only used in determining the error of the first vehicle
e1(t). For now, it is assumed that the virtual reference vehicle is uncontrolled and has a constant
velocity defined by

v̄0 ≡ vdes, (4.7)

which can be achieved by taking
p0(0) = [q̄0(0), v̄des, 0]T . (4.8)

This means that when the controlled platoon satisfies the objective defined in (4.3) it also satisfies

limt→∞vi(t) = vdes ∀i ∈ Sn. (4.9)

The main control objective for single-lane platooning as defined in (4.3) and (4.9) is also established by
conventional (uni-directional) CACC (Ploeg et al., 2014b). However, inclusion of looking-back in the
communication topology is a means to realize a certain objective such as improved platoon coherence,
as explained in Chapter 1.
Note that, in practice, this virtual reference vehicle is a vehicle model which runs on software of the
first vehicle in the platoon.

4.2 State definition

Suppose we have a platoon of n vehicles described by the dynamics (2.11) and (2.12). The inter-vehicle
distance error state of vehicle i is defined as

ei(t) = di(t)− (r + hvi(t)) = qi−1(t)− qi(t)− (r + hvi(t)), (4.10)

which is in fact the error of the inter-vehicle distance between vehicle i and vehicle i − 1 as defined
in (4.2), but with the assumption that the vehicle length Lv is equal to zero. This simplification does
not influence stability properties since the vehicle length Lv is constant. For now, some of the time
arguments are omitted for the sake of readability. The first and second time-derivatives of ei(t) can be
obtained by differentiation of (4.10) with respect to time:

ėi = vi−1 − vi − hai, (4.11)
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and by using the relation in (2.11) and (2.12) for ȧi(t):

ëi = ai−1 − ai − h(−1

τ
ai +

1

τ
ui) = ai−1 +

h− τ
τ

ai −
h

τ
ui. (4.12)

The error state vector for vehicle i is defined as

xi =

eiėi
ëi

 . (4.13)

Note that this error state vector xi(t) is the error state vector belonging to vehicle i, but actually also
depends on the vehicle states of vehicle i − 1, in terms of qi−1, vi−1 and ai−1. The time-derivative of
the third state of xi(t) is derived as

...
e i = −1

τ
ai−1 +

1

τ
ui−1 +

h− τ
τ

(
−1

τ
ai +

1

τ
ui

)
− h

τ
u̇i

= −1

τ
ëi +

1

τ
ui−1 −

1

τ
ui −

h

τ
u̇i

= −1

τ
ëi +

1

τ
ūi, (4.14)

where ūi is a new input defined as
ūi := ui−1 − ui − hu̇i, (4.15)

which can be rewritten as the filter

u̇i = − 1

h
ui +

1

h
(ui−1 − ūi) . (4.16)

This dynamic control law determines the desired acceleration ui(t) for each vehicle i, based on the new
input ūi(t) and the desired acceleration ui−1(t) of the preceding vehicle. It can be observed that this
is a stable filter since it has a pole at − 1

h with h > 0. As was mentioned above, it can be observed that
the desired acceleration of the preceding vehicle ui−1(t) appears in the relation for u̇i(t). To be able
to apply this in practice, the desired acceleration of a preceding vehicle is obtained through wireless
communication. This ui−1(t)-term in the controller defined in (4.16) is from now on referred to as the
feed-forward term. In Ploeg et al. (2014b), it is shown that the use of this feed-forward-term ui−1(t)
can positively contribute to the string stability properties of a platoon and therefore from now on it is
assumed that the feed-forward-term ui−1(t) is always available for vehicle i.
A distributed consensus control law for the new input ūi(t) in (4.16) will be defined below. The
error-dynamics for vehicle i can now be expressed as

ẋi(t) = Axi(t) +Būi(t), (4.17)

where xi(t) is defined as in (4.13) and

A =

0 1 0

0 0 1

0 0 − 1
τ

 , B =

0

0
1
τ

 . (4.18)

The dynamics of the entire platoon is now described by[
ẋi(t)

u̇i(t)

]
=

[
A O3×1

O1×3 − 1
h

][
xi(t)

ui(t)

]
+

[
B

− 1
h

]
ūi(t) +

[
O3×1

1
h

]
ui−1(t) ∀i ∈ Sn, (4.19)

where vector O1×3 = [0, 0, 0] and O3×1 = OT1×3. A distributed consensus control law for ūi(t) will
be defined below. The virtual reference vehicle as defined in (4.4) and (4.5) is embedded in the error
state of the first vehicle x1(t). Therefore, (4.19) also, implicitly, includes the virtual reference vehicle
dynamics. After implementing the distributed control for ūi(t), the only external input to the platoon
is the desired acceleration of the virtual reference vehicle u0(t).
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4.3 Distributed control law and closed-loop platoon dynam-
ics

The following distributed control law is suggested for the input ūi(t) in (4.19)

ūi(t) = −
∑
j∈Ni

kT (xi(t)− xj(t)) ∀i ∈ Sn, (4.20)

where the positive controller gain vector k is defined as kT = [k1, k2, k3], the neighbouring sets
Ni ∀i ∈ Sn are defined by an arbitrary communication topology which is described by a Laplacian
matrix L.
Let a lumped state vector X(t) being defined as

XT (t) = [xT1 (t), xT2 (t), · · · , xTn (t)] (4.21)

and a lumped vector U(t) of the desired acceleration ui(t) being defined as

U(t) = [u1(t), u2(t), · · · , un(t)]T . (4.22)

Substitution of expression (4.20) into (4.19), results in the following closed-loop platoon dynamics[
Ẋ(t)

U̇(t)

]
=

[
In ⊗A− L⊗BkT O3n×n

L⊗ kT

h
1
h (I(−1),n − In)

][
X(t)

U(t)

]
+

[
O3n×1
Bu

]
u0(t), (4.23)

where ⊗ denotes the Kronecker product, matrix In is an n × n identity matrix, matrix I(−1),n is an
n× n matrix defined as

I(−1),n =



0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0


(4.24)

and Bu ∈ Rn×1 being defined as

Bu =

[
1

h
, 0, · · · , 0

]T
. (4.25)

Furthermore, all entries of 3n× 1 vector O3n×1 and 3n× n matrix O3n×n are equal to zero.

Due to the lower block triangular structure of (4.23), stability can be analysed by analyzing stabil-
ity of the block-diagonal subsystems. First, the subsystem regarding the lumped error state vector
X(t) is isolated

Ẋ(t) = AcX(t) =
(
In ⊗A− L⊗BkT

)
X(t). (4.26)

It is known that (A,B) is controllable. Now suppose that the communication topology described by the
Laplacian matrix L contains a directed spanning tree, i.e., the Laplacian matrix L is positive-definite
having only one single zero eigenvalue, and the controller gain vector k are designed appropriately,
such that the dynamics (4.26) is asymptotically stable. Which controller gain vector k satisfies this
assumption will become clear below.
Based on consensus theory for higher-order systems (Ren et al., 2006), it is known that in this case, a
common consensus state vector xe(t) exists, which is also an asymptotically stable equilibrium. Thus
it is know that all state vectors converge to this common consensus state vector, i.e.,

limt→∞xi(t) = xe(t) ∀i ∈ Sn. (4.27)
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A formal proof of this is not given here since this result is not used as such. Below a more formal
proof will be given for a specific case of common consensus state vector xe(t), namely the zero vector.
Second, the subsystem of (4.23) regarding state vector U(t) is isolated

U̇(t) =

(
L⊗ kT

h

)
X(t) +

1

h

(
I(−1),n − In

)
U(t). (4.28)

Hereby, it is assumed that the external input u0(t) equals zero. As was defined in (2.4), the rowsum of
the Laplacian matrix L is by definition equal to zero. By using this result and the result of (4.27), it is
known that the first term on the right hand-side of (4.28) is equal to zero in steady state. It can easily
be seen that the matrix in the last term on the right hand-side of (4.28) has only one single eigenvalue
with algebraic multiplicity n, i.e.,

λi

{
1

h

(
I(−1),n − In

)}
= − 1

h
∀i ∈ Sn, (4.29)

and therefore the platoon dynamics have an asymptotically stable equilibrium.
At this point, the consensus state vector xe(t) in this equilibrium is not necessarily the desired con-
sensus state equilibrium. The state vector xi(t) contains the inter-vehicle distance error ei(t) and its
first and second time-derivative, which are of course desired to be zero. Therefore, the zero vector

x̄e = [0, 0, 0]T (4.30)

is the desired consensus state equilibrium. To ensure that the consensus state vector xe(t) equals the
desired consensus state vector as defined in (4.30), a pinning constraint is introduced. This pinning
constraint can be defined by a n× n pinning matrix

P =


p11 0 · · · 0

0 p22
. . .

...
...

. . .
. . . 0

0 . . . 0 pnn

 . (4.31)

All pinning elements pii are equal to zero, except for one vehicle i it holds that pii = 1. In general,
this pinning constraint will be applied to the first or the last vehicle in the platoon. By this addition of
a pinning constraint, the distributed control law for ūi(t) is defined as

ūi(t) = −
∑
j∈Ni

[kT (xi(t)− xj(t))]− piikTxi(t) ∀i ∈ Sn. (4.32)

Note that the controller gain vector k is the same for the distributed term as for the pinning constraint
term, which is designed as such to have uniformity. In principle, these controller gains could be
designed differently, but in the remainder of this thesis these are assumed to be the same, as shown
in (4.32).
Substitution of this new definition for the distributed control law (4.32) into (4.19) results in the
following closed-loop platoon dynamics[

Ẋ(t)

U̇(t)

]
=

[
In ⊗A− L̂⊗BkT O3n×n

L̂⊗ kT

h
1
h (I(−1),n − In)

][
X(t)

U(t)

]
+

[
O3n×1
Bu

]
u0(t), (4.33)

with matrix L̂ = L + P being an n × n matrix, where L is the Laplacian matrix and P is the pinning
matrix.
Due to the lower block triangular structure, asymptotic stability of the equilibrium of (4.33) can be
assessed by evaluation of the eigenvalues of the individual diagonal block matrices. As was shown
in (4.29), all eigenvalues of the right-lower block matrix of (4.33) are in the left-half plane. What
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remains is to show under which conditions the eigenvalues of the left-upper block matrix in (4.33) are
in the left-half plane, i.e the dynamics of the subsystem regarding lumped error state vector X(t) is
asymptotically stable. The dynamics of this subsystem is given by

Ẋ(t) = AdX(t) =
(
In ⊗A− L̂⊗BkT

)
X(t). (4.34)

Now conditions on the controller gain vector k, depending on the chosen communication topology
described by the Laplacian matrix L, are derived by using Lemma 4.1 and the Routh-Hurwitz stability
theorem (Hurwitz, 1964).

Lemma 4.1: The origin is an asymptotically stable equilibrium of the dynamics in (4.34) if and only if
all matrices

A− λiBkT ∀i ∈ Sn (4.35)

are Hurwitz, where λi is the ith eigenvalue of the square n× n matrix L̂.

By using Schur triangulation (Horn and Johnson, 1988), a proof of the above stated Lemma 4.1 is
derived and shown in Appendix A. In Fax and Murray (2004), a theorem of asymptotic stability of
similarly interconnected system dynamics is also found, but is less elaborate.

Theorem 4.1: The closed-loop platoon dynamics (4.33), with the communication topology defined
by L̂ = L+ P , with λi ∈ R+, where λi is the ith eigenvalue of matrix L̂, have an asymptotically stable
equilibrium (for limt→∞u0(t) = 0) if and only if the controller gain vector kT = [k1, k2, k3] of the
controller defined by (4.16) and (4.32) satisfies

k1 > 0

k2 >
k1τ

min{λik3+1}
k3 > − 1

max{λi}

∀i ∈ Sn. (4.36)

Proof: It directly follows from (4.33) that the origin is an equilibrium of the lumped state vectorX(t),
and thus corresponds to the desired consensus equilibrium state xe(t) in (4.30). Asymptotic stability
of this equilibrium can be evaluated by using Lemma 4.1. The characteristic polynomial of matrix
(4.35) is given by

|µI3 −
(
A− λiBkT

)
| = µ3 +

λik3 + 1

τ
µ2 +

λik2
τ

µ+
λik1
τ

, (4.37)

where I3 is a 3 × 3 identity matrix and µ is an eigenvalue of matrix (4.35). By using the fact that the
eigenvalues of matrix L̂ are positive and real, i.e.,

λi ∈ R+ ∀i ∈ Sn, (4.38)

and τ > 0, the following conditions on the controller gain vector k are derived for asymptotic stability
(Zheng et al., 2014) 

k1 > 0

k2 >
k1τ

λik3+1

k3 > − 1
λi

∀i ∈ Sn. (4.39)

This result, in addition to the result in (4.29), proves asymptotic stability of the platoon dynamics
(4.33). Hence, Theorem 4.1 is proven.

As was mentioned above, the Laplacian matrix L of a communication topology which contains a di-
rected spanning tree is positive semi-definite having one single eigenvalue being equal to zero. From
now on, it is assumed that the communication topology, defined by the Laplacian matrix L, indeed
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contains a directed spanning tree. Then, by using the Geršgorin Disk Criterion, it can be derived that
all eigenvalues of matrix L̂ = L+P are located in the open right-half plane (Zheng et al., 2014). If, in
addition, the communication topology is of a certain type, as further explained hereafter, it is known
that the eigenvalues of matrix L̂ are real, thus satisfying (4.38).
Examples of communication topologies which result in the eigenvalues of L̂ being real are:

• The communication topology of the platoon described by Laplacian matrix L is undirected and
connected (Godsil and Royle, 2001). An example of such a topology was shown in Figure 2.1.a.

• Vehicles in the platoon are of look-ahead type, i.e., each vehicle i uses the state (vector) xj(t) of
w preceding vehicles, where w is a positive constant. This is an example of a directed network
containing a directed spanning tree, of which an example was shown in Figure 2.1.d, for w = 1.

Remark 4.1: For conventional CACC as described in Ploeg et al. (2014b), a similar filter as in (4.16) is
applied for ui(t), however with

ūi(t) = −kTxi(t) ∀i ∈ Sn. (4.40)

Note that in the scope of the consensus framework described in this chapter, this would mean that
there are no communication links for the error states xi(t) at all. Only the desired acceleration ui−1(t)
of vehicle i − 1 is communicated to its following vehicle i. The entire closed-loop platoon dynamics
can then be described by (4.33) with matrix L̂ being replaced by an n× n identity matrix.
The eigenvalues of the identity matrix satisfy the condition in (4.38), thus by replacing L̂ by the
identity matrix, Theorem 4.1 can also be applied for conventional CACC. The identity matrix has only
one eigenvalue equal to one, with algebraic multiplicity n, which means that the conditions in (4.36)
result in 

k1 > 0

k2 > k1τ/(k3 + 1)

k3 > −1

. (4.41)

This corresponds to the conditions on the controller gain vector kT = [k1, k2, k3] which guarantee
asymptotically stable platoon error dynamics for conventional CACC, as derived in Ploeg et al. (2014b).

The result of the origin being an asymptotically stable equilibrium of (4.33), and thus the error state
vector xi(t) converging to zero for every vehicle i, can be expressed as

limt→∞xi(t) = limt→∞

qi−1(t)− qi(t)− (r + hvi(t))

vi−1(t)− vi(t)− hai(t)
ai−1(t) + h−τ

τ ai(t)− h
τ ui(t)

 =

0

0

0

 ∀i ∈ Sn. (4.42)

Note that the origin being an asymptotically stable equilibrium of (4.33) implies that the vehicle fol-
lowing objective in (4.3) is achieved.
From (4.33), it directly follows that, for u0(t) = 0, the origin is the equilibrium of the U(t) dynamics.
Thus it is known that

limt→∞ui(t) = 0 ∀i ∈ Sn. (4.43)

As a result, according to (2.11) and (2.12), the vehicle acceleration ai(t) also converges to zero, i.e.,

limt→∞ai(t) = 0 ∀i ∈ Sn. (4.44)

By using (4.42), (4.43) and (4.44), one can state that

limt→∞

[
ei(t)

ėi(t)

]
= limt→∞

[
qi−1(t)− qi(t)− (r + hvi(t))

vi−1(t)− vi(t)

]
=

[
0

0

]
∀i ∈ Sn. (4.45)

From (4.45), it can be observed that the velocity difference between vehicle i−1 and vehicle i converges
to zero. This in turn implies that the velocity difference between each vehicle i and the virtual reference
vehicle converges to zero, i.e.,

limt→∞ (v0(t)− vi(t)) = 0 ∀i ∈ Sn. (4.46)
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As was stated in (4.7), the velocity of the virtual reference vehicle v0(t) is defined to be equivalent
to the desired platoon velocity vdes. Then, it is established that the velocity vi(t) of every vehicle i
converges to this desired velocity vdes. Hence, the control objective (4.9) is achieved.

4.4 Communication topologies

For conventional CACC, the desired acceleration ui−1(t) of vehicle i − 1 is communicated to the fol-
lowing vehicle i, as was explained in Section 3.5 and schematically shown in Figure 3.1. Similarly, in
the distributed consensus control approach described above, this desired acceleration ui−1(t) is also
used in the controller of the following vehicle vehicle i, as can be seen in (4.19).
For the distributed consensus control approach, in addition, a distributed consensus control law is
designed for the input ūi(t). As was mentioned above, this distributed control law has a communica-
tion topology which can be described by a Laplacian matrix L, and in addition, a pinning constraint
described by a pinning matrix P . In this section, two communication topologies and corresponding
Laplacian matrices, which are treated later, are now shown to give some insight.

Suppose the communication topology, described by the Laplacian matrix, is defined by the Laplacian
matrix

L1 =



1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1


. (4.47)

The corresponding communication topology would look like as depicted in Figure 4.1, indicated by
the green arrows. The blue arrows indicate the communication of the desired acceleration ui−1(t) as
explained above. When comparing Figure 4.1 and Figure 3.1, one can see this similarity in communi-
cation of this desired acceleration ui−1(t) between conventional CACC and the designed distributed
consensus control approach.
When the communication topology of the distributed consensus controller for ūi(t) is defined by
Laplacian matrix L1, the neighbouring sets Ni for the vehicles in the platoon would be defined as

N1 = {2} , Ni = {i− 1, i+ 1} ∀i ∈ {i ∈ Sn|1 < i < n} and Nn = {n− 1} . (4.48)

Vi+1
i-1

Vi-1Vi

wireless
communication

ii+1

didi+1 di-1

radar

u i-1u i

xi xi+1 xi-1 xi xi-2
wireless

communication

u i-2

xi-1

Figure 4.1: Schematic overview of communication topology for feed-forward control (blue) and commu-
nication topology for distributed consensus control given Laplacian matrix L1 (green).
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Vi+1

i-1
Vi-1Vi

wireless
communication

ii+1

didi+1 di-1

radar

u i-1u i

xi+1 xi

wireless
communication

u i-2

xi-1

Figure 4.2: Schematic overview of communication topology for feed-forward control (blue) and commu-
nication topology for distributed consensus control given Laplacian matrix L2 (green).

Note that this neighbouring set Ni describes the set of vehicles of which the error state vectors xj(t)
are used in the distributed controller for ūi(t) of vehicle i.
The communication topology described by Laplacian matrix L1 is referred to as Topology 1. Given this
topology, each vehicle i receives the error state vector of its follower xi+1(t) and the error state vector
of its preceding vehicle xi−1(t), unless it is the first or last vehicle in the platoon since those vehicles
have no (actual) preceding or following vehicle, respectively.

Another possible communication topology is defined by Laplacian matrix

L2 =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 1 −1

0 · · · 0 0 0


. (4.49)

The neighbouring sets, given Laplacian matrix L2, are defined as

Ni = {i+ 1} ∀i ∈ {i ∈ Sn|1 ≤ i < n} and Nn = ∅. (4.50)

The communication topology described by the Laplacian L2 is referred to as Topology 2. For this
communication topology, the controller of each vehicle uses the error state vector of its following
vehicle xi+1(t), in addition to its own error state vector xi(t). Except for the last vehicle which receives
no error state vector of any vehicle, since it has no following vehicle. Also, the controller of each
vehicle i uses the desired acceleration ui−1(t) of its preceding vehicle, as was mentioned before. This
communication topology is schematically presented in Figure 4.2.
The communication topologies described above are just two possible communication topologies for
the distributed controller for ūi(t), but there are various communication topologies for the distributed
control which, in combination with appropriately designed controller gains k, result in asymptotically
stable platoon dynamics (4.33).

4.5 Simulation results

The consensus controller as designed in Section 4.3 is simulated using MATLAB. The simulation
results of a platoon having size n = 10 vehicles are shown and analysed below. Each vehicle, modeled
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Table 4.1: Eigenvalues of matrix L̂ = L+ P given Topology 1 and 2.

λi Topology 1 λi Topology 2
0.0223 1

0.1981 1

0.5339 1

1.0000 1

1.5550 1

2.1495 1

2.7307 1

3.2470 1

3.6525 1

3.9111 1

as defined in (2.11) and (2.12), is controlled using the controller as defined by (4.16) and (4.32).
First, the communication topology is chosen according to Topology 1, which is defined in Section 4.4.
Additionally, only the first vehicle in the platoon is subjected to the pinning constraint, i.e.,{

p11 = 1

pii = 0 ∀i ∈ {i ∈ Sn|i 6= 1} . (4.51)

Given Topology 1, the neighbouring sets Ni are defined as in (4.48). Each vehicle uses its own error
state vector xi(t), obtained by radar measurements, and the error states of its preceding and follow-
ing vehicle xi+1(t) and xi−1(t), respectively, obtained via wireless communication. Note that the first
and the last vehicle in the platoon only use the error state vector of its following or preceding vehicle,
respectively. In addition, the desired acceleration of a preceding vehicle ui−1(t) is also obtained by a
vehicle i via wireless communication.
Given Topology 1 and pinning constraint (4.51), the resulting closed-loop platoon dynamics are de-
fined as in (4.33) with matrix L̂ = L+ P , where Laplacian matrix L is defined as L1 in (4.47) and the
elements of pinning matrix P are defined as in (4.51).

The eigenvalues of matrix L̂ representing this topology are shown in the left column of Table 4.1.
All eigenvalues of matrix L̂ satisfy the conditions defined in (4.38), and therefore the conditions on
the controller gain vector k = [k1, k2, k3] stated in Theorem 4.1 in (4.36) do guarantee asymptotic
closed-loop platoon stability.

For Topology 1, upper and lower bounds on the smallest eigenvalue of L̂ can be defined as (Zheng et
al., 2014)

1

n2
≤ min
i∈Sn

{λi} ≤
π2

n2
. (4.52)

Note that the smallest eigenvalue of L̂ converges to zero as the platoon length n increases. As a
result, according to the characteristic polynomial as given in (4.37), the minimum eigenvalue of matrix
A− λiBkT converges to zero, i.e.,

limn→∞σlst

{
A− min

i∈Sn

{λi}BkT
}

= 0, (4.53)

where σlst {W} is the minimum eigenvalue of matrix W . This leads to the origin becoming a
marginally stable equilibrium of the closed-loop platoon error system (4.34), as the platoon length
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n goes to infinity. In practice, each platoon has a finite length such that a larger platoon length n will
only result in an expontially slower transient response.

Next, asymptotic stability of the entire platoon dynamics, for both Topology 1 as well as Topology
2, is verified by time-simulations. The controller gain vector, for the simulated platoon, is designed to
be kT = [0.2, 1.0, 0], such that the conditions in (4.36) are satisfied.
Note that controller gain k3 is designed to be k3 = 0 for all controllers described in this thesis. This
design is due to the fact that, in the scope of practical implementation, it is not feasible to apply feed-
back of the jerk due to measurement noise. In theory, controller gain k3 can have any value as long as
the conditions in (4.36) are satisfied.
The drive-line dynamics constant is τ = 0.1. The desired standstill distance and time gap are set to
r = 2 m and h = 0.6 s. The initial position, velocity and acceleration of all vehicles i are perturbed,
i.e., the platoon is not in steady state at t = 0 s. The initial velocity of all vehicles in the platoon slighly
differs and the average initial platoon velocity is chosen as

n∑
i=1

vi(0)

n
= 17m/s. (4.54)

The initial velocity of the virtual reference vehicle v0(t) is set to the desired velocity vdes = 22 m/s,
i.e., v0(0) = vdes. The velocity of the virtual reference vehicle v0(t) does not change because u0(t) = 0
and a0(0) = 0 is chosen. The resulting platoon response is shown in Figure 4.3. It can be observed
that the vehicle velocity vi(t) starts at approximately 17 m/s and converges to 22 m/s for each vehicle
i. For the first six vehicles, the overshoot on velocity increases, which is undesired behavior. However,
it can be observed that for vehicle i = 7 to i = 10 the overshoot on velocity decreases, which is desired.
Furthermore, the vehicle acceleration ai(t) and desired acceleration ui(t) both converge to zero for
each vehicle i. And, in addition, a decreasing trend in the maximum amplitude of the acceleration
ai(t) and the desired acceleration ui(t) in upstream direction can be observed. This indicates that a
fast acceleration executed in the front of the platoon attenuates in upstream direction, which is de-
sired behavior. One can also observe that the inter-vehicle distance error ei(t) converges to zero, thus
illustrating that the origin is indeed a asymptotically stable equilibrium of (4.33).

Another topology which seems to offer nice properties is the single vehicle look-back communication
topology for the distributed consensus controller for ūi(t). This topology is referred to as Topology 2
in Section 4.4 and is represented by Laplacian matrix L2 in (4.49). Note that notion of look-back only
relates to the distributed controller for ūi(t), which means that vehicle i + 1 is the only vehicle in the
neighbouring set Ni of vehicle i.
The first nice property for Topology 2 is the fact that the minimum eigenvalue does not converge to be
marginally stable for increasing platoon length n, as is shown in Table 4.1. And secondly, this topology
seems to have a structure which is usefull for improving a platoons coherence, but this will become
clear in Chapter 5.
Given this control topology, a vehicle i thus receives the desired acceleration of the preceding vehicle
ui−1(t) and the error state vector xi+1(t) of its following vehicle, both via a communication network.
The controller of vehicle i uses this information received via the communication network in addition
to its own state vector xi(t) (determined using radar measurements). Additionally, only the last vehicle
in the platoon is subjected to the pinning constraint, i.e.,{

pii = 0 ∀i ∈ {i ∈ Sn|i 6= n}
pnn = 1.

(4.55)

The fact that the last vehicle is subjected to the pinning constraint can be understood by having a look
at the Laplacian matrix for Topology 2 in (4.49). All entries of the last row of the Laplacian matrix L2

are zero since the vehicle i = n has no following vehicle to receive an error state vector xn+1(t) from.
In fact, given that the last vehicle is subjected to the pinning constraint, the last vehicle i = n is con-
trolled by a conventional CACC controller as described in Ploeg et al. (2014b). As a result of this and
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Figure 4.3: The velocity vi(t), acceleration ai(t), desired acceleration ui(t) and inter-vehicle longitudinal
distance error ei(t) of each vehicle i versus time. The legend shown in the velocity plot also
applies for the acceleration ai(t) and desired acceleration ui(t). Distributed controller with
Topology 1 and controller gain vector kT = [0.2, 1.0, 0].

the single vehicle look-back topology in the distributed consensus controller (4.32), the origin is an
asymptotically stable equilibrium of the error dynamics of each vehicle i, under the assumption that
the control gains are designed appropriately.
Topology 2 is also very intuitive, since the controller of each vehicle i uses the difference of the inter-
vehicle distance error of the ith vehicle ei(t) and the inter-vehicle distance error of the vehicle directly
behind, i.e., ei+1(t). Therefore each vehicle i individually regulates its position to the center of the
distance gap between its preceding and following vehicle and, due to the last vehicle regulating its
inter-vehicle distance error en(t) to zero, all inter-vehicle distance errors ei(t) converge to zero.

As was mentioned above, for Topology 2, the eigenvalues of matrix L̂ are displayed in the second
column of Table 4.1. All eigenvalues λi of matrix L̂ are equal to 1 and do not depend on the platoon
length n, as is the case for Topology 1. For Topology 1, all eigenvalues λi change with changing platoon
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length n.
Due to all eigenvalues λi of matrix L̂ being equal to 1, for Topology 2, the conditions on the controller
gain vector k guaranteeing asymptotic closed-loop stability are similar as for conventional CACC as de-
fined in (4.41). As was mentioned before, Topology 2 also offers opportunities for design of a control
law for the virtual reference vehicle to improve the platoon coherence, as will be explained in Chapter
5.

Figure 4.4 shows the platoon response given Topology 2 for the distributed consensus controller.
The initial conditions, standstill distance r, time gap h and controller gain vector k are the same as
described above for the simulation with Topology 1. The controller gain vector kT = [0.2, 1.0, 0] sat-
isfies the conditions in (4.36). It can again be observed that the vehicle velocity vi(t) converges to the
desired velocity vdes = 22 m/s, the vehicles acceleration ai(t) and desired acceleration ui(t) converge
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Figure 4.4: The velocity vi(t), acceleration ai(t), desired acceleration ui(t) and inter-vehicle longitudinal
distance error ei(t) of each vehicle i versus time. The legend shown in the velocity plot also
applies for the acceleration ai(t) and desired acceleration ui(t). Distributed controller with
Topology 2 and controller gain vector kT = [0.2, 1.0, 0].
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to zero for each vehicle i. The inter-vehicle distance error ei(t) also converges to zero for each vehicle
i. It can be observed that the inter-vehicle distance error of the first vehicle e1(t) has a large initial
increase. This is due to the fact that the initial velocity of the virtual reference vehicle is much higher
than the platoon velocity. This inter-vehicle distance error e1(t) is a virtual distance error and therefore
not relevant in the sense of a possible collision or increased road usage.

When comparing both platoon responses for Topology 1 and Topology 2, it can be observed that both
platoon responses are quite similar. However, one can see that for Topology 2, the damping of the
inter-vehicle distance errors ei(t) is much better since all inter-vehicle distance errors are approxi-
mately zero after 30 seconds. In comparison, for Topology 1, the inter-vehicle distance errors ei(t) are
still oscillating after 100 seconds.
This difference in convergence rate originates from the algebraic connectivity of the communication
graph (Olfati-Saber and Murray, 2004). The algebraic connectivity of a graph is the second small-
est eigenvalue of the Laplacian matrix L. As can be seen by comparing the eigenvalues in Table 4.1,
the second smallest eigenvalue is smaller for Topology 1, resulting in a lower convergence rate. Note
that in Table 4.1, the eigenvalues of matrix L̂ are displayed, but these are of comparable order as the
eigenvalues of the Laplacian matrix L.

4.5.1 Controller gain k1 = 0 for first vehicle
In the control framework described above, homogeneity is assumed for the controller gains k and
therefore the inter-vehicle distance error of the first vehicle e1(t) is also controlled to zero, according
to the first control objective, which is defined in (4.3). However, as was mentioned above, the inter-
vehicle distance error of the first vehicle e1(t) is a virtual distance error and therefore not physically
relevant in the sense that it must converge to zero. The time-derivative of this inter-vehicle distance
error of the first vehicle ė1(t), however, is relevant, since it is desired to drive this time-derivative of
the inter-vehicle distance error ė1(t) to zero, such that the velocity of the first vehicle converges to the
velocity of the virtual reference vehicle, i.e., the second control objective (4.9) is satisfied.

For practical implementation, controlling this virtual inter-vehicle distance error e1(t) to zero can
indeed be undesired. Suppose that the position of the virtual reference vehicle is a kilometer in front
of the first vehicle in the platoon. The first vehicle then tries to close this virtual gap which is not nec-
essary. It is only desired to drive the velocity of the first vehicle to the velocity of the virtual reference
vehicle.
Given Topology 2, described by Laplacian matrix L2, and the pinning constraint defined in (4.55), the
control gain k1 of the controller of the first vehicle in the platoon can be set equal to zero. As a result,
the (virtual) inter-vehicle distance error e1(t) of the first vehicle will not converge to zero. Given this
fact, the platoon equilibrium is defined as

limt→∞X(t) =
[
ē1, O1×2, O1×3, · · · , O1×3

]T
, (4.56)

where scalar ē1 is an equilibrium value depending on the initial conditions, and vectors O1×2 and
O1×3 have all zero elements.
The simulation for Topology 2, of which the simulation results where shown in Figure 4.4, is repeated,
with the only difference being the control gain k1 for the first vehicle, which is defined as k1 = 0, and
the initial inter-vehicle distance error for the first vehicle is defined as e1(0) = 25 m. Setting the
control gain k1 to zero for the first vehicle can only be done when vehicle i = 1 is not present in the
neighbouring set Ni of any other vehicle i in the platoon, and the communication graph described
by the Laplacian matrix L contains a directed spanning tree with vehicle i 6= 1, which is subjected
to the pinning constraint, being the root of this directed spanning tree. If the communication graph
described by the Laplacian matrix L satisfies the aforementioned conditions, setting the control gain
k1 = 0 to zero for vehicle i = 1 only leads to one eigenmode of the error dynamics to become
marginally stable, i.e., eigenvalue equal to zero. This eigenmode is only associated with virtual inter-
vehicle distance error e1(t).
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Figure 4.5: The velocity vi(t), acceleration ai(t), desired acceleration ui(t) and inter-vehicle longitudinal
distance error ei(t) of each vehicle i versus time. The legend shown in the velocity plot
also applies for the acceleration ai(t) and desired acceleration ui(t). Distributed controller
with Topology 2 and the controller gain vector being kT = [0.2, 1.0, 0] for vehicle i ∈
{i ∈ Sn|i 6= 1}, and being kT = [0, 1.0, 0] for vehicle i = 1.

In the case of Topology 2 in combination with the pinning constraint (4.55), the last vehicle i = n is
subjected to the pinning constraint and this last vehicle is the root of a directed spanning tree in the
communication topology. Also, vehicle i = 1 is not present in the neighbouring set Ni of any other
vehicle in the platoon, such that all abovementioned controller conditions are satisfied and thus k1 can
be set to zero for vehicle i = 1.
The results for this simulation are shown in Figure 4.5. It can be observed that, indeed the inter-
vehicle distance error of the first vehicle does not converge to zero, but all other inter-vehicle distance
errors do. Furthermore, the velocity of the vehicles in the platoon converges to the desired velocity
v0(t) = vdes = 22 m/s. It can be seen that the large initial (virtual) inter-vehicle distance error e1(0)
does not really affect the platoon response. If the control gain k1 is defined similar as for the rest of
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the vehicles in the platoon, this large initial (virtual) inter-vehicle distance error e1(0) would result in
a larger acceleration for the first vehicle and as a result for all vehicles in the platoon. Furthermore,
as was mentioned above, in many situations it would not make sense to regulate this inter-vehicle
distance error with respect to a virtual reference vehicle to zero, since only a certain platoon cruising
velocity is desired.
Note that this is only a practical solution. Thus in the remainder of this thesis, homogeneity is as-
sumed such that the controller gain vector k is the same for all vehicle in the platoon, including the
first vehicle i = 1.

4.5.2 Drive-line dynamics delay φ and communication delay θ

As was already mentioned in Section 2.3, the full model of the longitudinal vehicle dynamics also
contains a drive-line dynamics time delay φ. It is known that for the TNO Prius test vehicles this
drive-line dynamics time delay can be best approximated by φ = 0.2 s (Ploeg et al., 2014a).
All information which is transferred via a communication network suffers from communication delay.
Therefore, also a communication delay θ is introduced of which it is known that this communication
delay can be best approximated by θ = 0.02 s for the TNO wireless communication equipment (Ploeg
et al., 2014a). Both the drive-line dynamics delay and communication delay are modeled using a
third-order Padé approximation yielding a sufficiently accurate phase and magnitude approximation
in the frequency interval of interest (Ploeg et al., 2014a). It is not straightforward to analyse the
influence of these delays on the position of the poles of the closed-loop platoon (error-)dynamics as
presented in (4.33). Amongst others, this is due the fact that the actuator delay φ is a delay between the
desired acceleration ui(t) and the acceleration ai(t) and thus is a delay in the second time-derivative
of the inter-vehicle distance error state ëi(t), as can be seen in (4.12). To verify the influence of these
delays on the platoon’s stability, simulations including these delays are executed. Given this drive-line
dynamics delay φ, the full vehicle model is described by

ṗi(t) = Api(t) +Bui(t− φ), ∀i ∈ Sn, (4.57)

where

pi(t) =

qi(t)vi(t)

ai(t)

 , A =

0 1 0

0 0 1

0 0 − 1
τ

 , B =

0

0
1
τ

 . (4.58)

The full general controller model, including communication delay θ, is described by

u̇i(t) = − 1

h
ui(t) +

1

h

ui−1(t− θ) +
∑
j∈Ni

[kT (xi(t)− xj(t− θ))] + piik
Txi(t)

 . (4.59)

The controller gain vector kT = [0.2, 1.0, 0] and platoon parameters, such as time gap h = 0.6 s and
standstill distance r = 2 m, are the same as for the simulations described above. Topology 2 is used
for the distributed controller.
The platoon response is shown in Figure 4.6. When comparing the platoon responses in Figure
4.6 with the platoon responses in Figure 4.4, one can see that the responses are quite similar. The
transients are slightly different, but the vehicle platoon arives at steady state after approximately t = 30
s for both situations. Thus it seems that the introduction of the drive-line dynamics delay φ = 0.2 s
and the communication delay θ = 0.02 s does not lead to unstable closed-loop platoon dynamics.
A significant increase of the values of these delays will lead to unstable platoon behavior. For example,
suppose that the actuator delay is defined as φ = 0.2 seconds. It is numerically determined that the
platoon dynamics becomes unstable when the communication delay θ is larger than 0.38 seconds.
Now, on the other hand, suppose that the communication delay is defined as θ = 0.02 seconds. It is
numerically determined that the platoon dynamics becomes unstable for a actuator delay φ which is
larger than 0.70 seconds.
For the TNO Toyota Pruis fleet, it is known that these delays are approximately φ = 0.2 and θ = 0.02
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Figure 4.6: The velocity vi(t), acceleration ai(t), desired acceleration ui(t) and inter-vehicle longitudinal
distance error ei(t) of each vehicle i versus time. The legend shown in the velocity plot also
applies for the acceleration ai(t) and desired acceleration ui(t). Distributed controller with
Topology 2 and controller gain vector kT = [0.2, 1.0, 0]. Drive-line dynamics delay and
communication delay are φ = 0.2 s and θ = 0.02 s, respectively.

seconds, thus a slight increase of the network latency θ or actuator delay φ does not lead to instability
of the platoon.

4.6 Summary

In this chapter, the development of a distributed consensus control strategy for longitudinal vehicle
platooning is presented. Conditions on the controller gain vector k, depending on the chosen commu-
nication topology defined by a Laplacian matrix L and guarenteeing closed-loop stability of the platoon
dynamics, are derived. The conditions for stability are formulated in a general fashion such that these
are valid for various communication topologies. Feedforward of the desired acceleration of the pre-
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ceding vehicle is included, with the aim of a positive contribution to the string stability properties of
the platoon. The analytical result is verified using time simulations for two different topologies for the
distributed control input ūi(t). Communication Topology 1 is defined such that a vehicle i uses the
error state vector xi−1(t) of its predecessor and the error state vector xi+1(t) of its following vehicle, in
addition to its own error state vector xi(t). Communication Topology 2 is defined such that a vehicle i
uses the error state vector xi+1(t) of its following vehicle, in addition to its own error state vector xi(t).
It is found that for Topology 2, for similar controller gains, the convergence of the inter-vehicle dis-
tance error ei(t) is much faster than for Topology 1. Furthermore, Topology 2 leaves the possibility for
setting the control gain k1 of the first vehicle equal to zero, which makes more sense in practice. Also,
it is analysed that the influence of the drive-line dynamics delay φ = 0.2 s and the communication
delay θ = 0.02 s do not compromise stability.
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Chapter 5

Platoon Coherence

In the framework designed in the previous chapter, the vehicles in the platoon can respond to the dy-
namics of preceding as well as following vehicles, depending on the chosen communication topology.
One of the possible functionalities that could arise from inclusion of look-back in the communication
topology is that a platoon can adapt to (temporary) limited functionality of one of its vehicle members
in the platoon. For example, the maximum velocity vmax (and/or maximum acceleration amax) of a
heavily loaded truck, in a platoon of trucks, can be slightly lower than the velocity (and/or acceleration)
of the leading, less loaded, truck. In conventional CACC, with only look-ahead sensing and commu-
nication, this would result in the platoon to break up.
The controller structure which is used in this chapter is as described in Section 4.3, such that the
desired acceleration input ui(t) applied to each vehicle is determined using the controller defined by
(4.16) and (4.32). The platoon responses for both Topology 1 as well as Topology 2, which were both
introduced in Section 4.4, are analysed in this chapter.
In Section 5.1, it is shown that when the virtual reference vehicle is uncontrolled, i.e., having a constant
velocity

v0(t) ≡ vdes > vmax, (5.1)

the steady-state solution of the platoon is not an equilibrium when there is a vehicle in the platoon
which has a maximum velocity of vmax. Similar as for conventional CACC, this results in the platoon
to break up. To enhance platoon behavior such that the platoon stays coherent in case a velocity
saturation occurs in one of the vehicles, in Section 5.2, a control law for the virtual reference vehicle
is designed. As a result of this additional control law, the platoon automatically adapts its velocity,
such that the platoon does not break up in the case of a present faulty (or slow) vehicle. Thereafter,
in Section 5.3 and Section 5.4, additional conditions for asymptotic closed-loop platoon stability, for
a vehicle platoon subject to this designed controller for the virtual reference vehicle, are given. In
Section 5.5, for Topology 2, using time-simulations it is shown that the platoon indeed adapts its
velocity to a vehicle (temporarily) having a lower maximum velocity. Finally, in Section 5.6, the steady-
state response for Topology 1 is evaluated.

5.1 Platoon steady state

Suppose the topology of the distributed consensus controller is designed to be as Topology 2 as de-
scribed in Section 4.5, i.e., the neighbouring sets Ni are defined as

Ni = {i+ 1} ∀i ∈ {i ∈ Sn|1 ≤ i < n} and Nn = ∅, (5.2)
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and the pinning constraint being defined as{
pii = 0 ∀i ∈ {i ∈ Sn|i 6= n}
pnn = 1.

(5.3)

Given this, the relation for the control of the vehicles in the platoon is defined asu̇i(t) = − 1
hui(t) + 1

hui−1(t) + 1
hk

T (xi(t)− xi+1(t)) ∀i ∈ {i ∈ Sn|i 6= n}

u̇n(t) = − 1
hun(t) + 1

hun−1(t) + 1
hk

Txn(t).
(5.4)

Given this control structure, the resulting closed-loop platoon dynamics can be expressed as defined
in (4.33) with matrix L̂ = L2 + P being defined as

L̂ =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1 −1

0 · · · · · · 0 1


. (5.5)

In Chapter 4, it is shown that the distributed control law as defined in (5.4) results in asymptotically
stable closed-loop platoon dynamics (4.33) when the controller gain vector kT = [k1, k2, k3] is de-
signed appropriately according to Theorem 4.1 for a homogeneous platoon. Next, a faulty (or slow)
vehicle is introduced, similar as done in Semsar-Kazerooni and Khorasani (2007), and the platoon
dynamics after introducing this slow vehicle are analysed.
Now suppose that the maximum velocity of the f th vehicle (i = f ) in the platoon is defined as vmax
such that

vf (t) ≤ vmax ∀t. (5.6)

Some additional definitions are given to model this saturation on the velocity of vehicle i = f cor-
rectly. When vehicle i = f reaches its maximum velocity, i.e., vf (t) = vmax, then by definition, the
acceleration af (t) and desired acceleration uf (t) are equal to zero, i.e., af (t) = 0 and uf (t) = 0. Only
when u̇f (t) resulting from the relation

u̇f (t) = − 1

h
uf (t) +

1

h
uf−1(t) +

1

h
kT (xf (t)− xf+1(t)) (5.7)

becomes negative, then uf (t) 6= 0 and uf (t) is again determined using relation (5.7). This can be
seen as a kind of switching between two modes. With Mode 1 being normal platoon operation with
continuous dynamics as treated in Chapter 4, and Mode 2 being the fixed velocity for vehicle f and
normal operation with continuous dynamics for all other vehicles in the platoon.

For the analytical derivation of the steady state, it is assumed that when vehicle f goes in saturation,
i.e., switches from Mode 1 to Mode 2, it stays in Mode 2. This assumption ensures that no switching
back and forth between the two modes occurs. As a result of the velocity of vehicle f being satu-
rated and the particular (single vehicle look-back) structure of Topology 2, the platoon dynamics can
be divided into two subgroups. The first group contains all vehicles which drive behind the saturated
vehicle, i.e., all vehicles i ∈ {i ∈ Sn|i > f}, and the second group contains all vehicles in front of the
saturated vehicle and the saturated vehicle itself, i.e., all vehicles i ∈ {i ∈ Sn|i ≤ f}.
As can be seen in (5.4), for this particular topology (5.2) for the distributed controller in combination
with the pinning constraint (5.3), the last vehicle i = n in the platoon is controlled using conventional
CACC as presented in Ploeg et al. (2014b). This means that the origin is an asymptotically stable
equilibrium of the error state vector xn(t) of vehicle i = n, under the condition of a properly designed
controller gain vector k according to the conditions in (4.41).
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Theorem 5.1: The closed-loop platoon dynamics (4.33), with the communication topology defined
by L̂ = L+ P as in (5.5), do not have an asymptotically stable equilibrium in the reachable subspace
if v0(t) and vf (t) ≤ vmax satisfy (5.1).

Proof: First, the dynamics of the vehicles behind vehicle i = f are evaluated, i.e., the vehicles
i ∈ {i ∈ Sn|i > f}. Let Xb(t) and Ub(t) be a lumped error state vector and lumped desired accel-
eration vector, respectively, which are defined as

XT
b (t) = [xTf+1(t), · · · , xTn (t)] , Ub(t) = [uf+1(t), · · · , un(t)]T . (5.8)

Thus Xb(t) ∈ R3g×1 and Ub(t) ∈ Rg×1, where g = n − f , contain the states of all vehicles i ∈
{i ∈ Sn|i > f}. The dynamics of this subsystem of the platoon can be described by[

Ẋb(t)

U̇b(t)

]
=

[
Ig ⊗A− L̂b ⊗BkT O3g×g

L̂b ⊗ kT

h
1
h (I(−1),g − Ig)

][
Xb(t)

Ub(t)

]
+

[
O3g×1
Bb

]
uf (t), (5.9)

with L̂b ∈ Rg×g being a sub-matrix of matrix L̂ as defined in (5.5), i.e.,

L̂b =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1 −1

0 · · · · · · 0 1


, (5.10)

and where Bb ∈ Rg×1 is defined as

Bb =

[
1

h
, 0, · · · , 0

]T
. (5.11)

When vehicle i = f is in saturation, it holds that uf (t) = 0. In Chapter 4, it is already shown that
the origin is an asymptotically stable equilibrium of a system having a structure as in (5.9), under
the condition that the controller gain vector k is designed properly. Thus for the vehicles behind the
saturated vehicle it still holds that

limt→∞xi(t) =

0

0

0

 ∀i ∈ {i ∈ Sn|i > f} . (5.12)

Thus the inter-vehicle distance errors ei(t) of all vehicles behind vehicle i = f converge to zero. Hence,
for this particular topology, the stability properties of the interconnected vehicles i ∈ {i ∈ Sn|i > f}
are identical to those of a platoon without a saturated vehicle.

Second, an equilibrium analysis is executed to evaluate what happens for the inter-vehicle distance
error states of the saturated vehicle i = f and all vehicles in front of this vehicle, i.e., the vehicles
i ∈ {i ∈ Sn|i ≤ f}. In an equilibrium, all time-derivatives of a system are equal to zero. For the
second time-derivative of ei(t), this equilibrium can be expressed as

ëi(t) = ai−1(t) +
h− τ
τ

ai(t)−
h

τ
ui(t) = 0 ∀i ∈ {i ∈ Sn|i ≤ f} . (5.13)

As was stated above, the (desired) acceleration of vehicle i = f is equal to zero when it is in saturation,
i.e., uf (t) = 0 and af (t) = 0. Also, it is assumed that there are no restrictions (or saturations) on
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the vehicle acceleration ai(t) or on the desired acceleration ui(t). Therefore, equilibrium (5.13) is an
equilibrium in the reachable subspace. By using this, and the known relation between the desired
acceleration ui(t) and the actual acceleration ai(t) (2.11), it can be derived that the acceleration ai(t)
and desired acceleration ui(t) are equal to zero for each vehicle i ∈ {i ∈ Sn|i ≤ f} when (5.13) holds.
For the first time-derivative of ei(t), the equilibrium can be expressed as

ėi(t) = vi−1(t)− vi(t)− hai(t) = 0 ∀i ∈ {i ∈ Sn|i ≤ f} . (5.14)

As was mentioned above, vehicle acceleration ai(t) is equal to zero for each vehicle i when the platoon
is in steady state. Employing this, the equilibrium in (5.14) results in

ė1(t) = v0(t)− v1(t) = 0

ėi(t) = vi−1(t)− vi(t) = 0 ∀i ∈ {i ∈ Sn|1 < i < f}
ėf (t) = vf−1(t)− vf (t) = 0

. (5.15)

It is assumed that the velocity of the virtual reference vehicle v0(t) ≡ vdes and the velocity of the f th

vehicle in saturation vf (t) = vmax satisfy (5.1), and therefore the equilibrium in (5.15) cannot be
reached. As a result, the platoon dynamics do not have an equilibrium. The inter-vehicle distance
error ei(t) keeps increasing for the vehicles i ∈ {i ∈ Sn|i ≤ f}, even when the platoon is partially at
steady state, i.e., acceleration is zero. Hence, Theorem 5.1 is proven.

5.1.1 Simulation results
In this section, the platoon response for two different topologies is analysed, namely for Topology 1 an
Topology 2, with the presence of a saturated (or faulty) vehicle, as introduced above.
A platoon of size n = 10 vehicles, the longitudinal dynamics of which are modeled as in Section 2.3
(with actuator delay φ = 0 s), is simulated. The desired standstill distance and time gap are r = 2 m
and h = 0.6 s, respectively. First, the platoon response is shown where communication Topology 2 in
combination with the pinning constraint in (5.3) is used for the distributed controller. Given this, the
control input applied to the vehicles in the platoon is as expressed in (5.4). The controller gain vector
is designed to be kT = [0.1, 1.2, 0]. These controller gains satisfy the conditions in Theorem 4.1 . The
desired platoon velocity is set equal to vdes = 25 m/s. The virtual reference vehicle is uncontrolled,
i.e., u0(t) = 0, such that the velocity of the virtual reference vehicle is constant v0(t) = vdes = 25 m/s.
During the entire simulation, the fifth vehicle (f = 5) in the platoon has a maximum velocity vmax =
24 m/s. The platoon response is shown in Figure 5.1. At t = 0 s, all vehicles in the platoon have a
velocity around 20 m/s and all vehicles have a slightly different nonzero initial acceleration. Also, one
can observe that the initial inter-vehicle distance error ei(t) is non-zero for all vehicles.
It can be observed that, starting at t = 0 s, the velocity of the vehicles in the platoon increases. At t ≈ 7
s, vehicle i = 5 reaches its maximum velocity vmax = 24 m/s and it stays at this maximum velocity.
As a result, the velocity of all vehicles in the platoon do not converge to a common velocity, i.e., the
platoon does not reach an equilibrium. It can be observed that, only the velocity of the vehicles behind
the saturated vehicle converge to vmax, as was predicted in Section 5.1. Also, the inter-vehicle distance
error ei(t) converges to zero for those vehicles. This corresponds to the origin being an asymptotically
stable equilibrium for the vehicles behind vehicle i = f , as given in (5.12).
When observing the response of the inter-vehicle distance error ei(t), one can also see that the inter-
vehicle distances di(t) keep increasing in time for the vehicles in front of the saturated vehicle, i.e.,
ėi(t) is positive in steady state, which can be verified in Figure 5.1d. This is a result of the absence
of an equilibrium in the reachable subspace, as mentioned above. However, in Figure 5.1c, it can be
observed that the inter-vehicle distance errors ei(t) do converge to a common (increasing) value for
all vehicles i ∈ {i ∈ Sn|i ≤ f}. Thus the vehicles i ∈ {i ∈ Sn|i ≤ f} reach consensus on the inter-
vehicle distance error ei(t), but due to the influence of the faulty vehicle, this consensus value is not
zero for those vehicles.

Second, the simulation as described above is repeated, but now communication Topology 1 in combi-
nation with the pinning constraint (4.51) is used for the distributed controller. The controller applied
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ė i
(t

)
[m

/s
]

(d) time-derivative of the inter-vehicle distance error ėi(t)

Figure 5.1: The velocity vi(t), desired acceleration ui(t), inter-vehicle distance error ei(t) and its time-
derivative ėi of each vehicle i versus time. The legend shown in the desired acceleration
plot also applies to the velocity vi(t) and the legend shown for the inter-vehicle distance
error ei(t) also applies to its time-derivative ėi(t). The communication topology is chosen
as Topology 2 in combination with the pinning constraint (4.55). Vehicle i = 5 (indicated
with dashed line) goes in saturation at t ≈ 7 seconds.

to the vehicles in the platoon is then defined as
u̇1(t) = − 1

hu1(t) + 1
hu0(t) + 1

hk
T (2x1(t)− x2(t))

u̇i(t) = − 1
hui(t) + 1

hui−1(t) + 1
hk

T (2xi(t)− xi−1(t)− xi+1(t)) ∀i ∈ {i ∈ Sn|1 < i < n}

u̇n(t) = − 1
hun(t) + 1

hun−1(t) + 1
hk

T (xn(t)− xn−1(t)).

(5.16)

The platoon response, with this distributed controller applied to it, is shown in Figure 5.2. Again,
starting from t = 0 s, the velocity of the vehicles in the platoon starts to increase. At t ≈ 7 s, vehicle
i = 5 reaches its maximum velocity vmax. It can be observed that, for all vehicles i ∈ Sn, the velocity
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Figure 5.2: The velocity vi(t), desired acceleration ui(t), inter-vehicle distance error ei(t) and its time-
derivative ėi(t) of each vehicle i versus time. The legend shown in the desired acceleration
plot also applies to the velocity vi(t) and the legend shown for the inter-vehicle distance
error ei(t) also applies to its time-derivative ėi(t). The communication topology is chosen
as Topology 1 in combination with the pinning constraint (4.51). Vehicle i = 5 (indicated
with dashed line) goes in saturation at t ≈ 7 seconds.

vi(t) converges to a different velocity. For the vehicles in front of the saturated (or faulty) vehicle, the
velocity converges to an intermediate velocity, i.e., in between the desired velocity vdes = 25 m/s and
the maximum velocity vmax = 24 m/s of vehicle i = f . For the vehicles behind the saturated vehicle,
the steady-state velocity converges to a velocity lower than vmax.
As can be observed in Figure 5.2c, similar as for Topology 2, the inter-vehicle distance error ei(t) for
the vehicles i ∈ {i ∈ Sn|i ≤ f} keeps increasing, such that the entire platoon does not end up in
an equilibrium. Furthermore, it can be seen that, for Topology 1, even for the vehicles behind the
saturated vehicle, i.e., the vehicles i ∈ {i ∈ Sn|i > f}, the inter-vehicle distance di(t) increases.

Now, we aim to derive an additional control law for the dynamics of the virtual reference vehicle, which
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is previously assumed to have a constant velocity, such that the inter-vehicle distance error e1(t) of the
first vehicle goes to zero. As a result, the inter-vehicle distance errors of all vehicles i ∈ Sn go to zero.
This control law for the virtual reference vehicle has two objectives. On the one hand, it must aim
to drive the platoon velocity to a desired velocity vdes. On the other hand, it should ensure that the
platoon does not brake-up when there is a vehicle in the platoon having a maximum velocity vmax
which is lower than the desired velocity vdes.
After analysing the platoon response for various topologies, it is found that Topology 2, in combination
with pinning constraint (4.55), offers opportunities for the design of a control law for the input to the
virtual reference vehicle u0(t), such that the platoon can automatically adapt its velocity to the slowest
vehicle in the platoon, as will be explained below.

5.2 Closed-loop virtual reference vehicle

As was mentioned above, the aim for the design of a controller for the virtual reference vehicle is
to prevent the platoon from breaking up, even when there is a f th vehicle in the platoon which has
a maximum velocity vmax < vdes, i.e., to guarantee that the platoon has an asymptotically stable
equilibrium. The only input to the platoon is the desired acceleration of the virtual reference vehicle
u0(t) and therefore a control law is designed for this input u0(t). To arrive at a stable equilibrium, the
following control law is proposed for the virtual reference vehicle

u̇0(t) = − 1

h
u0(t) +

kv
h

(vdes − v0(t))− kT0
h
x1(t), (5.17)

where kv > 0 is the velocity control gain, kT0 = [kp, kd, 0] are proportional and derivative error
controller gains, and x1(t) is the error state vector of vehicle i = 1. One can observe that again a low-
pass filter is used having a pole at− 1

h , to have some relaxation effect, such that the desired acceleration
of the virtual reference vehicle changes less rapidly. The purpose of the velocity control term in (5.17)
is to drive the velocity of the virtual reference vehicle v0(t) to the desired platoon velocity vdes. The
error control term in (5.17) aims to drive the inter-vehicle distance error e1(t) to zero, since it has a
negative contribution to the desired acceleration of the virtual reference vehicle.
Given the control law for the virtual reference vehicle in (5.17), the velocity of the virtual reference
vehicle v0(t) is not fixed anymore, i.e., v0(t) 6≡ vdes. As a result, the equilibrium in (5.15) may be in
the reachable subspace. According to (5.15), when vehicle i = f is in saturation, in this equilibrium
it should hold that

v0(t) = vmax, (5.18)

which is the case, as will become clear below.

As was mentioned above, the platoon dynamics, given a vehicle having a maximum velocity, can be
divided into two modes which both must have an asymptotically stable equilibrium (or desired steady
state). The first mode is when vehicle i = f is not in saturation. This mode is named Mode 1. The sec-
ond mode is when vehicle i = f is in saturation, this mode is named Mode 2. For analytical derivation
of stability of the equilibrium, it is assumed that when vehicle i = f arrives at its maximum velocity,
i.e., vf (t) = vmax, the velocity of vehicle i = f stays at this maximum velocity. By this, it is assumed
that switching back and forth between the two modes does not occur. For this, it is required that vdes
is separated away from vmax. Note that the analysis of stability, when allowing unlimited switching
between the two modes, is beyond the scope of this master thesis.

5.3 Stability in Mode 1

In this section, asymptotic platoon stability, given control law (5.17) for the virtual reference vehicle,
in Mode 1 is assessed. An additional condition for asymptotic platoon stability is derived in Subsection
5.3.1. Also, the poles of the platoon dynamics are analysed, which is described in Subsection 5.3.2.
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5.3.1 Steady state

Below a representation of the entire platoon dynamics is given. This representation is based on the
platoon dynamics (4.33) and in addition the dynamics of the controlled virtual reference vehicle (4.4)
is added.

Ẋ(t)

U̇(t)

u̇0(t)

ṗ0(t)

 =


In ⊗A− L̂⊗BkT O3n×n O3n×1 O3n×3

L̂⊗ kT

h
1
h (I(−1),n − In) Bu On×3

BTu ⊗−kT0 O1×n − 1
h [0, − kv

h , 0]

O3×3n O3×n B A



X(t)

U(t)

u0(t)

p0(t)

+ · · ·


O3n×1
On×1
kv
h

O3×1

 vdes, (5.19)

with matrix A and vector B is as in (2.12), In being an n × n identity matrix, I(−1),n being an n × n
matrix having ones on the first lower off-diagonal and zeros elsewhere, and where matrix L̂ ∈ Rn×n
is as in (5.5) and vector Bu ∈ Rn×1 is as in (4.25).
As can be seen from the dynamical representation in (5.19), the closed-loop error dynamics, i.e., the
X(t)-dynamics, is asymptotically stable under the conditions of Theorem 4.1 , thus

limt→∞X(t) = O3n×1. (5.20)

From the entire platoon dynamics (5.19), it can be seen that only the error state vector X(t) acts as
an input to the dynamics of the virtual reference vehicle, i.e., the dynamics regarding the state vector
p0(t) and state u0(t). These dynamics are defined as follows

[
ṗ0(t)

u̇0(t)

]
=


q̇0(t)

v̇0(t)

ȧ0(t)

u̇0(t)

 =


0 0 1 0

0 0 0 1

0 0 − 1
τ

1
τ

0 −kvh 0 − 1
h



q0(t)

v0(t)

a0(t)

u0(t)

+


0

0

0

BTu ⊗−kT0

X(t) +


0

0

0
kv
h

 vdes,
(5.21)

where p0(t) and u0(t) are reordered to obtain a different structure. Since it is known that the origin
is an asymptotically stable equilibrium of the dynamics of the lumped error state vector X(t), asymp-
totic stability of the virtual reference vehicle dynamics can be assessed by evaluating the poles of the
subsystem matrix. The steady state of this subsystem, i.e., dynamics of the virtual reference vehicle, is
given by

limt→∞

[
p0(t)

u0(t)

]
=


q̄0(t)

vdes

0

0

 , (5.22)

where q̄0(t) is the position of the virtual reference vehicle in steady state. What remains is to check
under which conditions this steady state is asymptotically stable. One pole of the subsystem is equal
to 0, which is associated with the position state q0(t). The stability of the steady-state solution can be
assessed by evaluating the poles of the subsystem of (5.21) regarding the states v0(t), a0(t) and u0(t)
The characteristic polynomial of the system matrix of this subsystem is defined as

λ3 +

(
1

τ
+

1

h

)
λ2 +

1

hτ
λ+

kv
hτ

= 0. (5.23)
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Using Routh-Hurwitz stability criterion (Hurwitz, 1964) it is determined that the subsystem has an
asymptotically stable equilibrium under the condition that the velocity control gain satisfies the fol-
lowing condition

kv <

(
1

τ
+

1

h

)
. (5.24)

And as a result, the steady state in (5.22) is stable.
What remains is to check the stability of the subsystem of (5.19) regarding the control inputs in U(t),
i.e, the subsystem

U̇(t) =
1

h

(
I(−1),n − In

)
U(t) + L̂⊗ kT

h
X(t) +Buu0(t). (5.25)

Again, it is known that all inputs of this subsystem converge to zero, i.e., X(t) and u0(t) converge to
zero. Furthermore, matrix 1

h

(
I(−1),n − In

)
is a Hurwitz matrix having one eigenvalue

λ1 = − 1

h
, (5.26)

with algebraic multiplicity n. Using this result, it is known that the origin is an asymptotically stable
equilibrium of the U(t)-dynamics, thus

limt→∞U(t) = On×1. (5.27)

Thus when condition (4.36) of Theorem 4.1 and condition (5.24) are satisfied, it is shown that the
steady state of the entire platoon dynamics (5.19) is asymptotically stable in Mode 1, regardless of the
platoon length n. Note that this is called a steady state and not an equilibrium since the state q0(t) is
not constant in this steady state of the platoon dynamics.

5.3.2 Analysis of closed-loop poles depending on platoon length

Let the poles of the entire platoon dynamics in (5.19), with matrix L̂ being defined as in (5.5), be
stacked in the vector σ = [σi] ∈ R4(n+1)×1. Figure 5.3 shows the closed-loop poles of the entire
platoon dynamics (5.19) for different platoon lengths, namely n = 4, n = 9 and n = 12 vehicles. As
expected, it can be observed that, for all three different platoon lengths, all poles lie in the closed left
half-plane. It can be seen that for all three platoon lengths, only one pole lies exactly on the imaginary
axis. This is the pole at zero, which is associated with position state q0(t) of the virtual reference
vehicle. Also, three other fixed poles, i.e., not shifting when changing the platoon length, regarding
the dynamics of the virtual reference vehicle can be observed, namely {−10.02, − 1.54, − 0.11} ∈ σ.
These four poles, regarding the dynamics of the virtual reference vehicle, are equal to the eigenvalues
of the system matrix in (5.21). Furthermore, n fixed poles at − 1

h = −1.67 can be observed in the pole
plot. These poles are related to the controller dynamics ui(t) ∀i ∈ Sn. The aforementioned poles of the
entire platoon dynamics (5.19) are all fixed and do not shift with changing platoon length. However,
there are 3n poles which are influenced by the platoon length. For a platoon of length n = 4 vehicles,
by approximation, the poles {−8.90, − 0.83, − 0.27} ∈ σ can be observed, all having a multiplicity
of n = 4. By approximation it is meant that the poles actually do have an imaginary part, but this is
negligible. Those three poles are (by approximation) equal to the eigenvalues of the matrix in (4.35),
with λi = 1 ∀i ∈ Sn, which are the eigenvalues of matrix L̂ in (5.5).
When increasing the platoon length, it can be seen that also pairs of complex conjugate poles start to
appear, i.e., the imaginary part increases and the poles shift from the real axis into the complex plane.
Note that when the platoon length increases, the number of poles of the entire platoon dynamics
also increases. As a result of an increasing number of poles having an increasing imaginary part
magnitude, oscillations during transient behavior will also amplify by a platoon length increase. For
large platoon lengths n, this could lead to large oscillations in the platoon.
This is a drawback which does not appear in a conventional one-vehicle look ahead CACC approach.
In the conventional CACC approach, the poles do not shift at all by changing the platoon length n,
which is logical since each vehicle only depends on its predecessor. Thus the interaction between each
pair of predecessor-follower vehicle is the same.
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Figure 5.3: The poles of platoon dynamics (5.19), with matrix L̂ being defined as in (5.5), for three
different platoon lengths, namely n = 4, n = 9, and n = 12 vehicles. The controller gain
vector is designed to be kT = [0.2, 1.0, 0], kv = 0.1 and kT0 = [0.05, 1.0, 0]. The desired
time gap h = 0.6 s.

5.4 Stability in Mode 2

In this section, first, the steady state of the platoon dynamics in Mode 2 is evaluated in Subsection
5.4.1. Hereafter, in Subsection 5.4.2, asymptotic stability of this steady state is assessed using a pole
analysis.

5.4.1 Steady state
In Mode 2, the velocity of vehicle i = f is constant, i.e., vf (t) = vmax. As was shown in Section 5.1,
for Topology 2, the origin is an asymptotically stable equilibrium of the dynamics (5.9) of all n − f
vehicles behind vehicle i = f . Thus, for assessment of stability, it can be assumed that vehicle i = f
is the last vehicle in a platoon, i.e. f = n. Below the dynamics of such platoon is evaluated.

In Mode 2 the velocity vf (t) is constant, thus the acceleration and desired acceleration of vehicle
i = f satisfy: af (t) = 0, uf (t) = 0 and u̇f (t) = 0.
Since the velocity of the f th vehicle is now fixed, it can be seen as a constant input to the entire pla-
toon. In the previous section, the platoon dynamics was represented by error state vectors xi(t) =
[ei(t), ėi(t), ëi(t)]

T ∀i ∈ Sn, controller state ui(t) ∀i ∈ Sn, and the states of the virtual reference
vehicle p0(t) and u0(t). However, to be able to write the velocity vmax of vehicle i = f as a fixed
input to the platoon, the entire platoon dynamics must be represented in a different way. In this new
representation of the platoon dynamics, the vehicles’ states are defined to be the inter-vehicle distance
error ei(t), the vehicle velocity vi(t) and acceleration ai(t), instead of the error states ei(t), ėi(t) and
ëi(t). Given this state definition, the dynamics of a single (uncontrolled) vehicle i is defined as follows

χ̇i(t) = A1χi(t) +A2χi−1(t) +Bui(t) ∀i ∈ Sn, (5.28)

where

χi(t) =

ei(t)vi(t)

ai(t)

 , A1 =

0 −1 −h
0 0 1

0 0 − 1
τ

 , A2 =

0 1 0

0 0 0

0 0 0

 , B =

0

0
1
τ

 (5.29)
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and ui(t) is the desired acceleration of vehicle i. Again the states of the vehicles in the platoon can be
stacked in a lumped state vector. Let χ(t) and U(t) be the lumped state vectors being defined as

χT (t) = [χT1 (t), · · · , χTf (t)] , U(t) = [u1(t), · · · , uf (t)]T . (5.30)

Now let the platoon dynamics in (5.19) be expressed by

ξ̇1(t) = AHξ1(t) +BHvdes(t), (5.31)

where state vector ξ1(t) is thus defined as

ξ1(t) = [X(t), U(t), u0(t), p0(t)]T , (5.32)

and matrix AH and vector BH are defined as in (5.19). Let a second state vector ξ2(t) being defined as

ξ2(t) = [χ(t), U(t), u0(t), p0(t)]T . (5.33)

Since the platoon dynamics (5.19) represent a linear time-invariant system, it is known that there
exists a similarity transformation matrix Tf , such that

ξ2(t) = Tfξ1(t). (5.34)

This similarity transformation matrix Tf can be found in (B.15) in Appendix B (for f = 3). Applying
this similarity transformation to (5.31) results in

ξ̇2(t) = TfAHT
−1
f ξ2(t) + TfBHvdes(t). (5.35)

As was mentioned above, it is known that the acceleration af (t) and desired acceleration velocity uf (t)
of vehicle i = f are both equal to zero. Furthermore, it is known that the velocity vf (t) = vmax is
constant, and as a result, the inter-vehicle distance error dynamics of vehicle i = f is given by

ėf (t) = vf−1(t)− vmax. (5.36)

The states vf (t), af (t) and uf (t) are removed from the state space in (5.35), such that the state vector
of the platoon dynamics is defined as

ξ3(t) = [χT1 (t), · · · , χTf−1(t), ef (t), UTr (t), u0(t), pT0 (t)]T , (5.37)

where Ur(t) = [u1(t), · · · , uf−1(t)]T . Thus the order of the entire platoon dynamics (5.35) is re-
duced with order three. Given this, the platoon dynamics can be represented by

ξ̇3(t) = ARξ3(t) +BR,1vmax +BR,2vdes(t), (5.38)

where system matrix AR, vector BR,1 and vector BR,2 have a complex structure. And, therefore, are
not given here, but can be found in Appendix B. As can be seen in (5.38), the maximum velocity vmax
and the desired platoon velocity vdes(t) are now both written as external inputs to the platoon.

By setting all the time-derivatives equal to zero (except for q̇0(t)), it can be found that the steady state
of the dynamics in (5.38) is given by

ξ̄3 =


Q3 ⊗ [kvkp (vdes − vmax), vmax, 0]T

kv
kp

(vdes − vmax)

O(f−1)×1
0

[q̄0(t), vmax, 0]T

 , (5.39)
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with vector Q3 ∈ R(f−1)×1 being defined as

Q3 = [1, · · · , 1]T , (5.40)

and where q̄0(t) is the position of the virtual reference vehicle in steady state. Now suppose that the
steady-state solution in (5.39) is asymptotically stable. Whether the solution is indeed asymptotically
stable will be treated below. From the steady-state solution in (5.39), it can be seen that all vehicles
in the platoon have adapted their velocity to the maximum velocity vmax of vehicle i = f and all
inter-vehicle distance errors have a steady-state offset being defined as

ēi = limt→∞ei(t) =
kv
kp

(vdes − vmax) ∀i ∈ {i ∈ Sn|i ≤ f} . (5.41)

As was given in (5.12), if the length of the platoon n is larger than the index of the saturated vehicle
i = f , i.e., n > f , the steady-state error is zero for the vehicles i ∈ {i ∈ Sn|i > f}.
Note that this steady-state solution implies that the inter-vehicle distance error ei(t) is not zero for all
vehicles in the platoon, but has a positive offset for some vehicles. This means that in Mode 2 the
platoon performance in terms of traffic throughput is a little less, but since this steady-state offset is
positive, it does not compromise on safety.

The inter-vehicle distance errors ei(t) in steady state thus depend on the difference between the de-
sired velocity and maximum velocity of the saturated vehicle (vdes−vmax) and the value of the control
gains kv and kp. Thus it can be concluded that the ratio kv/kp should be small to reduce the inter-
vehicle distance error in steady state.
When the desired velocity of the leading vehicle is much higher than the maximum velocity of the
slowest vehicle i = f in the platoon, i.e., vdes � vmax, this can lead to large steady-state inter-vehicle
distance errors ēi. However, this is scalable by the ratio kv/kp.

Next, asymptotic stability of this steady state is evaluated. Due to the complex structure of the dynam-
ics in (5.38), the system matrix AR cannot be broken into smaller subsystems to evaluate asymptotic
stability, as was the case for the lumped error state vector X(t) in the dynamics in (5.19). There-
fore, asymptotic stability of the steady state of the platoon dynamics (5.38) can only be assessed by
evaluation of the poles of the system matrix AR.

5.4.2 Analysis of closed-loop poles depending on platoon length
Suppose that the poles of the entire platoon dynamics in (5.38) are stacked in a vector σ = [σi] ∈
R(4(f−1)+5)×1. The poles σ are shown in Figure 5.4, again for different platoon lengths, namely
n = f ∈ {4, 9, 12} vehicles. The first notion regarding the eigenvalues is the fact that now only one
pole is fixed and thus does not change with changing platoon length, compared to n + 4 fixed poles
for the dynamics in Mode 1, which where shown in Figure 5.3.
This one pole is the pole at zero, associated with the position q0(t) of the virtual reference vehicle.
All other poles of the dynamics (5.38) change (or shift) as a result of a change in the platoon length
n = f . The entire eigenvalue plot, shown in Figure 5.4a, shows two circles on which conjugate pairs of
eigenvalues are positioned. For increasing platoon length, more complex conjugate pairs of eigenval-
ues appear on these circles. As a result, for an increased platoon length n, at some point, eigenvalues
appear on the right hand-side of the imaginary axis. This can be observed in Figure 5.4b, which shows
an enlargement of the dashed region of the entire eigenvalue plot in Figure 5.4a. For the platoon
lengths n = 9 and n = 12, it can be seen that a complex conjugate pair appears in the right half-plane.
It is found that, for these particular controller gains for k, kv and kT0 , the platoon dynamics (5.38)
contains unstable modes for a platoon length n = f > 7. Of course, the threshold for platoon length
n, resulting in an unstable platoon, can be larger when the controller gains are designed differently.
For example, decreasing the proportional control gain kp results in this threshold to increase. How-
ever, decreasing the proportional control gain kp results in a larger steady-state error, as was shown in
(5.41). Therefore, increasing the damping control gain kd is a more convenient solution, since this
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Figure 5.4: The poles of platoon dynamics (5.38), with matrix L̂ being defined as in (5.5), for three
different platoon lengths, namely n = 4, n = 9, and n = 12 vehicles. The controller gain
vector is designed to be kT = [0.2, 1.0, 0], kv = 0.1 and kT0 = [0.05, 1.0, 0]. The desired
time gap h = 0.6 s.

also leads to this threshold for the platoon length to increase and does not influence the steady-state
offset, as was shown in (5.41).

Apparently, the introduction of a vehicle having a certain maximum velocity vmax has a major in-
fluence on the closed-loop stability of the entire platoon dynamics. In Mode 1, when vehicle f is not
in saturation, asymptotic stability of the platoon is not influenced by the (finite) platoon length n = f .
But in Mode 2, when vehicle f is in saturation, asymptotic stability of the platoon dynamics depends
in the platoon length n = f .

5.5 Simulation results

A simulation is executed to verify the results as derived above. A platoon consisting of n = 10 vehicles,
modeled as in Section 2.3, with actuator delay φ = 0 s, is simulated. The desired standstill distance
and time gap are r = 2 m and h = 0.6 s, respectively. The distributed controller applied to the
vehicles in the platoon uses Topology 2 and is thus defined as in (5.4), with controller gain vector
kT = [0.2, 1.0, 0]. The controller applied to the virtual reference vehicle is as in (5.17), with kv = 0.05,
kT0 = [0.08, 0.4, 0] and the desired platoon velocity is constant and equal to vdes = 22 m/s.
Initially, at t = 0 s, vehicle i = f = 5 in the platoon has a maximum velocity vmax = 20 m/s. At
t = 100 s, this saturation on the velocity of the fifth vehicle is removed such that its dynamics are
similar to the dynamics of all other unconstrained vehicles for t > 100 s.

The platoon response can be observed in Figure 5.5. The platoon is subjected to an initial conditions
perturbation. At t = 0 s, all vehicles in the platoon have a velocity around 17 m/s and all vehicles
have a slightly different nonzero initial acceleration. Also, one can observe that the initial inter-vehicle
distance error ei(0) is non-zero for all vehicles i.
As can be observed from the platoon response, first the platoon starts to accelerate as a result of the
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Figure 5.5: The velocity vi(t), acceleration ai(t), desired acceleration ui(t) and inter-vehicle longitudinal
distance error ei(t) of each vehicle i versus time. The legend shown in the velocity plot also
applies for the acceleration ai(t) and desired acceleration ui(t). The response regarding
vehicle i = f = 5 is indicated by a dashed line.

desired velocity imposed by the virtual reference vehicle being vdes = 22 m/s. It can be seen that the
inter-vehicle distance error ei(t) tends to go to zero during this acceleration phase. Then, at t ≈ 20 s,
vehicle i = 5 reaches its maximum velocity vmax, i.e., the platoon dynamics switches from Mode 1 to
Mode 2. The velocities of all vehicles behind the fifth vehicle, i.e., vehicles i ∈ {i ∈ Sn|i > f}, converge
to this maximum velocity vmax and also the inter-vehicle distance errors ei(t) quickly converge to zero
for these vehicles. For the vehicles in front of the fifth vehicle, i.e., vehicles i ∈ {i ∈ Sn|i < f}, some
overshoot is visible for the velocity. This can be understood as follows. The virtual reference vehicle
first tries to drive the platoon velocity to the desired velocity. Due to an increase in the inter-vehicle
distance e1(t) of the first vehicle, after some seconds, the virtual reference vehicle decelerates until its
velocity converges to the maximum velocity of the fifth vehicle vmax. At t ≈ 60 s, the entire platoon is
cruising at this maximum velocity vmax. Furthermore, for the inter-vehicle distance errors ei(t) of the
vehicles in front of the fifth vehicle, it can be seen that these converge to ēi = 1.25 m. This steady-state
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value corresponds to the analytically derived equilibrium given in (5.41). At t = 100 s, the saturation
constraint is removed from vehicle i = f = 5, i.e., the platoon dynamics switches from Mode 2 to
Mode 1 and the entire platoon starts to speed up to the desired velocity vdes = 22 m/s. Furthermore, it
can be observed that the inter-vehicle distance errors ei(t) also rapidly converge to zero after t = 100
s.

5.6 Steady state for Topology 1

Above, a steady-state analysis is described for the distributed consensus control approach by use of
Topology 2 for the distributed controller. For Topology 2, it is shown that when the velocity of a vehicle
i = f saturates, the steady state of the platoon is defined by (5.12) for vehicles i ∈ {i ∈ Sn|i > f} and
(5.39) for vehicles i ∈ {i ∈ Sn|i ≤ f}. Thus only the vehicles in front of the saturated vehicle will have
a positive steady-state error, whereas the vehicles behind the saturated vehicle will have a steady-state
error equal to zero.
In this section, a similar steady-state analysis is described, but for communication Topology 1 with,
in addition, the pinning constraint applied to the last vehicle. An elaborate pole analysis as described
above for Topology 2 is not described here, but it is analysed which parameters influence stability of
the platoon dynamics. Topology 1 is described by the Laplacian matrix L1 in (4.47), such that the
neighbouring sets for the distributed controller are defined as

N1 = {2} , Ni = {i− 1, i+ 1} ∀i ∈ {i ∈ Sn|1 < i < n} and Nn = {n− 1} . (5.42)

Now the last vehicle is subjected to the pinning constraint, i.e., the pinning constraint is defined as{
pii = 0 ∀i ∈ {i ∈ Sn|i 6= n}
pnn = 1.

(5.43)

Given this, the platoon dynamics are described by (5.19) with matrix L̂ = L1 + P being defined as

L̂ =



1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2


. (5.44)

Again suppose that there is a vehicle i = f , having a maximum velocity vmax, but this is not necessar-
ily the last vehicle, i.e., i = f is not per se equal to the platoon length n. The platoon must again have a
asymptotically stable steady state in Mode 1 and in Mode 2. Asymptotic stability in Mode 1 is ensured
when the conditions (4.36) in Theorem 4.1 and condition (5.24) for the virtual reference vehicle are
satisfied. Next, stability of the steady state in Mode 2 is analysed.

Let Un−1(t) be a vector, containing the desired acceleration ui(t) ∀i ∈ Sn, except for uf (t), being
defined as

Un−1(t) = [u1(t), · · · , uf−1(t), uf+1(t), · · · , un(t)]T . (5.45)

For now, again suppose that the dynamics has an asymptotically stable steady-state solution. This will
be evaluated below. For this topology, this steady state in Mode 2, which is the mode when vehicle
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i = f in in saturation, is defined as

limt→∞



χ1(t)
...

χf−1(t)

ef (t)

χi(t)

Un−1(t)

u0(t)

p0(t)


=



Q3 ⊗ [kvkp (vdes − vmax), vmax, 0]T

kv
kp

(vdes − vmax)[(
n+1−i
n+1−f

)
kv
kp

(vdes − vmax), vmax, 0
]T

O(n−1)×1
0

[q̄0(t), vmax, 0]
T


∀i ∈ {i ∈ Sn|f < i ≤ n},

(5.46)
where vector Q3 ∈ R(f−1)×1 is defined as in (5.40). It can be seen, that all vehicles have a velocity
equal to vmax in steady state. Furthermore, it can be observed that for the vehicles in front of the
vehicle i = f , the steady state is same as for Topology 2, which was shown in (5.41). The vehicles
behind vehicle i = f , however, have a different steady-state solution in comparison with Topology 2.
It was shown that, the inter-vehicle distance errors ei(t) where equal to zero for those vehicles, when
using communication Topology 2. For Topology 1 with the pinning constraint on the last vehicle, as
treated in this section, the steady-state offset for the inter-vehicle distance error for these vehicles is
defined as

ēi = limt→∞ei(t) =

(
n+ 1− i
n+ 1− f

)
kv
kp

(vdes − vmax), ∀i ∈ {i ∈ Sn|f < i ≤ n} . (5.47)

From this expression, it can be seen that this steady-state offset is a fraction(
n+ 1− i
n+ 1− f

)
(< 1), ∀i ∈ {i ∈ Sn|f < i ≤ n} (5.48)

of the steady-state offset for the vehicles in front of vehicle i = f . Thus it is known that the steady-state
offset for the vehicles i ∈ {i ∈ Sn|f < i ≤ n} is always smaller than the steady-state offset for the ve-
hicles i ∈ {i ∈ Sn|i < f}, which was given in (5.41). Similar as for Topology 2, stability of the steady
state depends on the position of the saturated vehicle in the platoon. There exists a threshold index
fmax, such that, if f > fmax, the platoon dynamics becomes unstable. The value for this threshold
again depends on the designed controller gains. It is found that, stability does not depend on the
platoon length n, but only on the index of the saturated vehicle i = f . Thus the amount of vehicles in
between the virtual reference vehicle i = 0 and the saturated vehicle i = f , together with the designed
controller gain vector k, determines platoon stability in Mode 2.

5.7 Summary

To summarize, a vehicle (temporarily) having a lower maximum velocity vmax is introduced. The pla-
toon dynamics, given this maximum velocity, are analysed analytically and by using time simulations.
It is observed that, both communication Topology 1 and Topology 2 seem to offer opportunities to be
able to automatically adapt the platoon velocity to a (temporary) slower vehicle. In communication
Topology 1, the error state vector of the preceding and following vehicle is used in the controller. In
communication Topology 2, the error state vector of only the following vehicle is used in the controller.
An additional control law, applied to the virtual reference vehicle, is designed and additional condi-
tions for stability are derived.
During operation, two modes can be distinguished. Mode 1 is the normal operation mode and Mode
2 is the mode where vehicle i = f is in saturation. Given the additional control law for the virtual
reference vehicle, the platoon dynamics in Mode 1 is asymptotically stable regardless of the position
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of the saturated (or faulty) vehicle in the platoon. However, in Mode 2, the position of the saturated
vehicle in the platoon affects asymptotic stability of the closed-loop platoon dynamics. For a fixed de-
signed controller, there is a limit fmax on the allowable index position of the saturated vehicle in the
platoon.

When comparing the steady state in Mode 2 for Topology 1 and Topology 2, both with the pinning
constraint on the last vehicle i = n, it seems that the steady state of Topology 2 is more desirable,
since the inter-vehicle distance error ei(t) equals zero in steady state for all vehicles behind vehicle
i = f , i.e., the vehicles i ∈ {i ∈ Sn|i > f}. In contrast, for Topology 1 this steady-state error is
nonzero, namely a fraction of the steady-state offset of the vehicle in front of vehicle i = f , as in
(5.47). However, when the value of this steady-state offset for the vehicles in front of vehicle i = f
is within an allowable margin, it is known that the steady-state offset for the vehicles behind vehicle
i = f will also be within this allowable margin. In addition, Topology 1 seems to offer better behavior
in terms of string stability, but this will be treated in detail in Chapter 6.

51





Chapter 6

String Stability

As was mentioned before, another desired property in vehicle platooning is string stability. In ad-
dition to the normal (asymptotic) stability property of interconnected systems, string stability can be
interpreted as a performance criterion regarding disturbance attenuation in a string of interconnected
systems. There are various definitions of string stability in literature, however in this analysis the def-
inition of Ploeg et al. (2014a) is considered.
In this chapter, first a definition of string stability is given in Section 6.1. In Section 6.2, string sta-
bility of a platoon controlled using the distributed consensus framework as described in the previous
chapters is assessed.

6.1 Definition of string stability

Suppose that the entire closed-loop dynamics of interconnected systems, i.e., a platoon of vehicles, is
given by

ρ̇(t) = Aρ(t) + Bν(t)

ηi(t) = Ciρ(t) ∀i ∈ Sn,
(6.1)

with ρ(t) ∈ Ra containing all the states of the interconnected systems, ν(t) ∈ Rb being the external
input and ηi(t) ∈ R being an output corresponding to states of vehicle i with output vector Ci defined
accordingly. The model in (6.1) can be seen as a general form of the closed-loop platoon dynamics in
(5.19) with a = 4(n+ 1) and b = 1, but extended with an output function ηi(t).
The following is a definition for so-called L2 string stability of an interconnected string of systems.

Definition 6.1 (L2 string stability) (Ploeg et al., 2014a): The system in (6.1), with a constant equi-
librium solution ρ̄ for ν(t) ≡ 0 without loss of generality, is L2 string stable if there exist class K
functions 1 α and β, such that, for any initial state ρ(0) ∈ Rb and any ν(t) ∈ L2, it holds that

||ηi(t)− Ciρ̄||L2 ≤ α(||ν(t)||L2) + β(||ρ(0)− ρ̄||) ∀i ∈ Sn and n ∈ N. (6.2)

If, in addition to (6.2), with ρ(0) = ρ̄ it also holds that

||ηi(t)− Ciρ̄||L2
≤ ||ν(t)||L2

∀i ∈ Sn and n ∈ N (6.3)

the system (6.1) is semi-strictly L2 string stable with respect to its input ν(t).

1A continuous function α : [0,a) → [0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0.
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Note that || · || denotes any vector norm and || · ||L2 denotes the signal 2-norm (Zhou et al., 1996).

Remark: Note that this definition of semi-strict L2 string stability is slightly different then the def-
inition of semi-strict L2 string stability as is given Ploeg et al. (2014a). The definition is altered to be
able to assess semi-strict L2 string stability for the bidirectionally coupled platoon, as described above.
This is due to the fact that the frequency-domain relation between the output of the first vehicle i = 1
and the output of another vehicle i ∈ {i ∈ Sn|i 6= 1} is not a meaningful transfer function, because of
the bidirectional nature of the distributed consensus control framework.

As one can see in (6.2) and (6.3), both conditions regarding (semi-strict) L2 string stability are defined
such that these should hold for each vehicle i in the platoon and for all possible platoon lengths n ∈ N.

The model (6.1) can be formulated in the Laplace-domain as follows:

η̂i(s) = Pi(s)ν̂(s) +Oi(s)ρ(0) i ∈ Sn (6.4)

with s ∈ C, ρ(0) ∈ Rb denotes the initial condition and Pi(s) = Ci(sI − A)−1B and Oi(s) =
Ci(sI −A)−1.
Now suppose that system (6.1) represents system (5.19). Thus state vector ρ(t) and input ν(t) are
defined as

ρ(t) ≡ [XT (t), UT (t), u0(t), pT0 (t)]T , ν(t) ≡ vdes(t). (6.5)

For this particular system, with a proper design of the controller gains and the communication topol-
ogy described by the Laplacian matrix L and a pinning constraint, the eigenmodes are typically asymp-
totically stable, with the exception for one marginally stable eigenmode associated with p0(t). Thus
system matrix A is not Hurwitz. In the remainder of this chapter, it is assumed that the pair (Ci,B) is
such that unstable and marginally stable modes are unobservable. This is verified for each designed
output vector Ci. Consequently, it holds that, for linear time-invariant systems, if the function α in
(6.2) exists, then also the function β exists. For assessment of string stability, it therefore suffices to
only analyse the input-output behavior, characterized by Pi(s). This is equivalent to assuming that the
system is initially in equilibrium, i.e., ρ(0) = ρ̄ in (6.4). To simplify the synthesis of string stability
conditions, ρ̄ = 0 is chosen without loss of generality. This can be chosen since there always exists a
coordination transformation yielding the origin as the equilibrium.

In the following, the condition for L2 string stability in Definition 6.1 and the condition for semi-strict
L2 string stability will be reformulated such that these can be easily verified in our specific application.

The derivation of the conditions given below is mainly based on the results presented in Ploeg et
al. (2014a), however, slightly altered to cover the bidirectional interconnection structure which is con-
sidered in this master thesis.
It can be shown (Zhou et al., 1996, p. 101) that ||Pi(s)||H∞ equals the L2 induced norm related to the
input ν(t) and the output ηi(t), i.e.,

||Pi(s)||H∞ = sup
ν(t)6=0

||ηi(t)||L2

||ν(t)||L2

, (6.6)

where the L2 norm is defined on the interval t ∈ [0,∞). Given this, it can be stated that

||ηi(t)||L2 ≤ ||Pi(s)||H∞ ||ν(t)||L2

≤ max
i∈Sn

||Pi(s)||H∞ ||ν(t)||L2 . (6.7)

As a result of (6.6), it is known that (6.7) is not conservative, in the sense that there always exists a
subsystem i ∈ Sn and specific signal ν(t) for which the equality holds. Now, according to Definition
6.1 and the assumption that marginally stable and unstable modes are unobservable, the existence of
max
i∈Sn

||Pi(s)||H∞ , for all possible platoon lengths n ∈ N, is a necessary and sufficient condition for L2
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string stability of the closed-loop interconnected system in (6.1).

Proposition 6.1: The closed-loop interconnected platoon (6.1) is L2 string stable, under the condi-
tion that marginally and unstable modes are unobservable, if and only if

sup
i∈Sn

||Pi(s)||H∞ <∞ ∀n ∈ N. (6.8)

Proposition 6.2: The closed-loop interconnected platoon (6.1) is semi-strictly L2 string stable with
respect to its input ν(t), under the condition that marginally and unstable modes are unobservable, if
and only if

max
i∈Sn

||Pi(s)||H∞ ≤ |P1(0)| ∀n ∈ N. (6.9)

Remark: In Ploeg et al. (2014a), an additional condition for semi-strict L2 string stability is given,
namely

||P1(s)||H∞ <∞. (6.10)

However, this condition is trivial since marginally and unstable modes are assumed to be unobserv-
able.

Note that |P1(0)| in (6.9) is equal to one, i.e., P1(s) has a static gain of 1, if the input ν(t) and the out-
put ηi(t) have the same units, for example, when the units of the input and output is both expressed
in meter per second.
The platoon dynamics satisfying the condition in (6.9) means that input disturbances through ν(t)
are not amplified to any vehicle i in the platoon, i.e., i ∈ Sn, for any platoon length n ∈ N.

In Ploeg et al. (2014a), a condition for strict L2 string stability is formulated, however, this condition is
based on the unidirectional (and single vehicle look-ahead) nature of the interaction topology which is
considered there. It requires the existence of a transfer function between the output of vehicle i − 1
and the output of vehicle i. Due to the bidirectional coupling between the interconnected vehicles in
the platoon, as considered here, such a transfer function is not meaningful and thus a condition for
assessment of strict L2 string stability cannot be stated for the distributed control approach designed in
this master thesis.

6.2 String stability analysis

In this section, by using Proposition 6.2, semi-strict L2 string stability of the distributed consensus
control approach described in Chapter 4 and Chapter 5 is assessed. The following platoon dynamics,
i.e., platoon dynamics during Mode 1, are analysed, since these are the platoon dynamics in normal
operation.

Ẋ(t)

U̇(t)

u̇0(t)

ṗ0(t)

 =


In ⊗A− L̂⊗BkT O3n×n O3n×1 O3n×3

L̂⊗ kT

h
1
h (I(−1),n − In) Bu On×3

BTu ⊗−kT0 O1×n − 1
h [0, − kv

h , 0]

O3×3n O3×n B A



X(t)

U(t)

u0(t)

p0(t)

+ · · ·


O3n×1
On×1
kv
h

O3×1

 vdes(t). (6.11)

Note that these platoon dynamics where also given in (5.19), where the variables are explained in
more detail. The state vector ρ(t) and input ν(t) of the interconnected system dynamics (6.1) are then
defined as in (6.5).

55



CHAPTER 6. STRING STABILITY

First, the actuator delay φ and communication delay θ are ignored, i.e., both φ and θ are assumed to
be equal to zero, such that the dynamics are actually represented by (6.11). As was mentioned above,
the input signal ν(t) is defined to be equivalent to the desired platoon velocity vdes(t). Therefore, it is
desired to define the vehicle velocity vi(t) as the output signal ηi(t).
The state vector ρ(t), as defined in (6.5), only contains the inter-vehicle distance error state vector xi(t)
and the desired acceleration ui(t) of all n vehicles, and the states of the virtual reference vehicle. The
output vector Ci ∈ R4(n+1) is designed as

Ci = [O1×(3n+i−1), 1, O1×(n−i+4)], (6.12)

where vectorO1×q ∈ R1×q is a zero vector, such that the output signal ηi(t) is equivalent to the desired
acceleration ui(t), i.e.,

Pi(s) =
η̂i(s)

ν̂(s)
=

ûi(s)

v̂des(s)
. (6.13)

With the output designed as such, the input and the output signal are not of the same type yet, since
the input vdes(t) is a velocity and the output is the desired acceleration ui(t) of vehicle i. The relation
between the Laplace transform ûi(s) of the desired acceleration and the Laplace transform v̂i(s) of the
velocity of each vehicle i can be derived from (2.11) and is given by

v̂i(s) = G(s)ûi(s) =
1

s(τs+ 1)
ûi(s) ∀i ∈ Sn. (6.14)

Using this relation, the transfer function from the platoon input vdes(t) to the vehicle velocity vi(t)
can be obtained, which is defined as

P̄i(s) =
v̂i(s)

v̂des(s)
= G(s)Pi(s) ∀i ∈ Sn. (6.15)

Now if the magnitude of the transfer function P̄i(s) is smaller than |P̄1(0)| for all frequencies, i.e.,
P̄i(s) satisfies (6.9), the closed-loop interconnected platoon (6.11) is semi-strictly L2 string stable with
respect to the input vdes(t),

Let the neighbouring sets Ni for the distributed controller be described by Topology 2, i.e., the neigh-
bouring sets are defined as

Ni = {i+ 1} ∀i ∈ {i ∈ Sn|1 ≤ i < n} and Nn = ∅, (6.16)

and in addition the pinning constraint on the last vehicle i = n as in (4.55), such that the entire
platoon dynamics are described by (6.11) with matrix L̂ being defined as

L̂ =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1 −1

0 · · · · · · 0 1


. (6.17)

Furthermore, let the desired time gap be defined as h = 0.6 s, whereas the controller gains are defined
as kT = [0.2, 1.0, 0], kT0 = [0.05, 0.2, 0], and kv = 0.05. For this configuration of the controller
gains and communication topology, the magnitude of the frequency response functions P̄i(jω) for
two different platoon lengths, namely n = 10 vehicles and n = 50 vehicles, are shown in Figure 6.1.

When observing Figure 6.1a, one can see that all transfer functions P̄i(s) satisfy the condition in
(6.9) for a platoon of length n = 10. Note that some transfer functions P̄i(s), namely for vehicle i = 6
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6.2. STRING STABILITY ANALYSIS

until vehicle i = 9, are not shown for the sake of readability of the plot. The transfer functions for all
vehicles, look like a complementary sensitivity. All transfer functions P̄i(s) have a static gain of one,
i.e., Pi(0) = 1. After the “cut-off" frequency, the slope of the transfer function P̄1(s) of the first vehicle
goes to −80 Db per decade. For all following vehicles, this slope decreases with 1, i.e., a slope of −100
Db per decade for vehicle i = 2, a slope of −120 Db per decade for vehicle i = 3, etc.
When observing the magnitude of the frequency response functions P̄i(jω) for a platoon of length
n = 50 vehicles in Figure 6.1b, it can be seen that the frequency response functions for the vehicles
i ∈ {1, 2, 3, 4, 5, 10} are the same as depicted in Figure 6.1a for a platoon of length n = 10 vehicles
and the slope decrease with 1 also still applies, i.e., −20 Db per decade extra for each consecutive
(following) vehicle.
This seemingly desired behavior is obtained because the actuator delay φ and the communication
delay θ are ignored. Especially the absence of a communication delay, which leads to a perfect feed-
forward, influences the shape of the transfer function. In fact, with these delays being equal to zero,
the transfer function P̄i(s) can be expressed as

P̄i(s) =
v̂i(s)

v̂des(s)
=

kv
(hs+ 1)i ((hs+ 1)(τs+ 1)s+ kv)

∀i ∈ Sn, (6.18)

which are thus the transfer functions as shown in Figure 6.1. The derivation of (6.18) is given in
Appendix C.
As can be seen in the entire platoon dynamics (6.11), the inter-vehicle distance error dynamics does
not depend on the states U(t), u0(t) and p0(t) nor on the input vdes(t). Therefore, in the case of zero
delay, the inter-vehicle distance error states and its time-derivatives in X(t) do not play a role in the
transfer function Pi(s) from the input vdes(t) to the desired acceleration ui(t), which similarly applies
to the transfer function P̄i(s) from the input vdes(t) to velocity vi(t). The inter-vehicle distance error
states and its time-derivatives in X(t) only play a role in the platoon dynamics through the frequency-
domain relation Oi(s) regarding the initial conditions, as in (6.4).
Given the transfer function in (6.18), and according to the plots in Figure 6.1, it is known that con-
dition (6.9) is satisfied and thus the closed-loop interconnected platoon (6.11) is semi-strictly L2 string
stable with respect to the input vdes(t). However, this perfect feed-forward due to zero communication
delay is of course unfeasible in practice.
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Figure 6.1: The magnitude of the frequency response functions P̄i(jω) for i ∈ Sn, for two different
platoon lengths n. The communication topology is of Topology 2 and the pinning constraint
is defined by (4.55).
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Next, the effect of the actuator delay φ and the effect of the communication delay θ is investigated.
First, the influence of the actuator delay φ is examined, while assuming that the communication delay
θ is equal to zero. It is known that the actuator delay φ, for a Toyota Prius, is approximately equal to
φ = 0.2 seconds. It is found that the magnitude plots, as shown in Figure 6.1, do not change much
due to this actuator delay φ = 0.2 seconds.
Hereafter, the influence of the communication delay θ = 0.02 seconds, in addition to the actuator
delay φ = 0.2 seconds, on the transfer functions P̄i(s) is analysed. Both the desired acceleration
of the preceding vehicle ui−1(t) as well as the error state vector used in the distributed controller
xj(t) ∀j ∈ Ni are subjected to this communication delay θ, resulting in the control law for the desired
acceleration ui(t) of vehicle i to be as defined in (4.59).

The magnitude plots of the frequency response functions P̄i(jω), for similar control configuration but
including both delays φ and θ, are shown in Figure 6.2, again for a platoon of length n = 10 vehicles
and n = 50 vehicles. For a platoon of length n = 10 vehicles, the influence of this communication de-
lay θ = 0.02 seconds on magnitude plot of the transfer function P̄i(s) is minor or even unnoticeable,
as can be seen by comparing Figure 6.2a and Figure 6.1a.
When increasing the platoon length n, an increasing amount of resonance peaks start to appear in
the magnitude plot of P̄i(s). Also, the height of these resonance peaks increases with increasing the
platoon length n. The magnitude of P̄i(s) for a platoon of length n = 50 is shown in Figure 6.2b.
For this platoon length, it can be observed that peaks above 1 appear, such that condition (6.9) is not
satisfied for a platoon of length n = 50 vehicles. For this particular control gain configuration and
for the delays being φ = 0.2 s and θ = 0.02 s, it is found that the condition in (6.9) is satisfied for a
platoon length n ≤ nmax = 35.
In contrast with the result without both the delays φ and θ, as was depicted in Figure 6.1, now the
transfer functions P̄i(s) are influenced by the platoon length n. This can be explained as follows. As
a result of the inclusion of the actuator delay φ and the communication delay θ in the platoon dynam-
ics in (6.11), the transfer function P̄i(s) cannot be expressed by the ideal transfer function in (6.18)
anymore. In fact, the transfer functions P̄i(s) now do depend on the dynamics of the inter-vehicle
distance error states and its derivatives in X(t).
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Figure 6.2: The magnitude of the frequency response functions P̄i(jω) (including actuator delay φ = 0.2
s and communication delay θ = 0.02 s) for i ∈ Sn, for two different platoon lengths n. The
communication topology is of Topology 2 and the pinning constraint is defined by (4.55).
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6.2. STRING STABILITY ANALYSIS

The result as shown in Figure 6.2 means that the closed-loop interconnected platoon, including the
actuator delay φ = 0.2 s and the communication delay θ = 0.02 s, cannot be said to be semi-strictly L2

string stable with respect to the input vdes(t), since for this, condition (6.9) should be satisfied for all
platoon lengths n ∈ N. The condition in (6.9) is only satisfied for a finite platoon length n, meaning
that disturbances through input vdes(t) are only being suppressed to each vehicle i ∈ Sn for a certain
maximum platoon length n.
For the same controller as used above and for an actuator delay φ = 0.2 s, Figure 6.3 shows the
maximum communication delay θmax that yields

max
i∈Sn

||P̄i(s)||H∞ ≤ |P̄1(0)|, (6.19)

as a function of the platoon length n. Again note that |P̄1(0)| = 1 when the input and the output have
the same units, e.g., meter per second. The curve is obtained by numerically checking whether the
condition in (6.19) is satisfied. For a small platoon length, i.e., n ≤ 16 vehicles, the upper-bound in
Figure 6.3 is determined by asymptotic stability of the platoon dynamics. If the communication delay
θ is above the dotted blue line, an unstable eigenmode occurs in the platoon dynamics. When the
platoon dynamics are unstable, the condition in (6.19) is by definition violated. For a larger platoon
length, i.e., n > 16 vehicles, this upper-bound on the communication delay θ in Figure 6.3 (indicated
by the red dots) is determined by violation of (6.19), however the platoon dynamics does not become
unstable when violating this bound.

Next, the influence of the chosen communication topology is investigated. Suppose the communica-
tion topology for the distributed controller is as Topology 1, such that the neighbouring sets are defined
as

N1 = {2} , Ni = {i− 1, i+ 1} ∀i ∈ {i ∈ Sn|1 < i < n} and Nn = {n− 1} . (6.20)
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instability and the red dotted part of the upper-bound originates from violation of condition
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Furthermore, the pinning constraint is on the last vehicle, as in (5.42). Given this, matrix L̂ in the
platoon dynamics in (6.11), is defined as

L̂ =



1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2


. (6.21)

For this Topology 1, but with the same controller gains k, k0 and kv as used before, the magnitude of
the frequency response functions P̄i(jω) are shown in Figure 6.4. It can be observed that for this
topology, the magnitude of the frequency response functions P̄i(jω) satisfies the condition in (6.19),
even for a platoon of length n = 50 vehicles. Also, when comparing Figure 6.4a and Figure 6.4b, the
figures do not show a trend of an increase in magnitude for increasing n, indicating that the condition
in (6.19) is satisfied for any platoon length n ∈ N, i.e., thus indicating semi-strict L2 string stability.

By comparing the magnitude plot of P̄i(s) for various communication topologies defined by a Lapla-
cian matrix L, plus in addition of a pinning constraint through matrix P , it is found that, when there
exists an eigenvalue of matrix L̂ = L+ P having a large geometric multiplicity, the peaks in the mag-
nitude plot of P̄i(s) appear/increase for increasing platoon length n, as was clearly visible in Figure
6.2b. Matrix L̂ = L+ P as given in (6.17) has only one eigenvalue equal to 1, which has a geometric
multiplicity equal to n. Matrix L̂ = L+ P as in (6.21) has n distinct eigenvalues.
Thus, in relation to the actuator and communication delay, for a platoon being semi-strictly L2 string
stable, i.e., disturbance rejection of input vdes(t) for any platoon length n, eigenvalues of matrix L̂
having a large geometric multiplicity should be avoided.
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6.3 Summary

In this chapter, a condition for semi-strict L2 string stability, i.e., disturbance rejection of input vdes(t),
based on results in Ploeg et al. (2014a) is defined. This condition is used in evaluation of the string sta-
bility properties of the distributed consensus control approach as designed in Chapter 4 and Chapter 5.
It is found that, when neglecting the actuator delay φ and the communication delay θ, the closed-loop
interconnected platoon is semi-strictly L2 string stable with respect to its input vdes(t).
In practice, these delays are never equal to zero. Therefore, a nonzero actuator delay φ and commu-
nication delay θ are introduced. Various communication topologies in combination with a pinning
constraint, described by a Laplacian matrix L and a pinning matrix P , are analysed. In particular,
the frequency response functions P̄i(jω) for Topology 1 and Topology 2 are discussed. It is found
that, for communication topologies of which the Laplacian matrix L has no eigenvalues having a large
geometric multiplicity, the distributed controlled platoon is semi-strictly L2 string stability with respect
to its input vdes(t). Which means that disturbances through the only exogenous platoon input vdes(t)
are attenuated for any platoon length n.
Furthermore, it is found that, for communication topologies of which the Laplacian matrix L has an
eigenvalue having a large geometric multiplicity, the distributed controlled platoon is cannot be said
semi-strictly L2 string stability with respect to its input vdes(t). For those communication topologies,
disturbances through input vdes(t) are only attenuated for a finite platoon length n ≤ nmax, depend-
ing on the designed controller gains and the value for the actuator- and communication delays. Thus
for such communication topologies, for a given actuator delay φ and communication delay θ, there is
an upper-bound nmax on the maximum allowable platoon length n.
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Chapter 7

Conclusions and recommendations

In this chapter, first conclusions regarding the results as presented in this master thesis are given.
Thereafter, recommendations for future work are suggested.

7.1 Conclusions

The objective of this master thesis was to find a distributed consensus control framework which covers
many of the desired properties in vehicle platooning, as was discussed in the problem statement in
the introduction of this thesis. To this end, the existing literature regarding distributed consensus and
formation control, also in application to vehicle platooning, is reviewed extensively. At first glance,
it seems that the existing literature covers the properties desired in vehicle platooning, e.g., use of a
realistic model of the vehicle’s longitudinal dynamics, a velocity-dependent spacing-policy, only local
information availability, string stability. However, non of the existing developed approaches covers all
of these desired properties at once.
A distributed consensus control approach for vehicle platooning was presented and, within this ap-
proach, the longitudinal vehicle dynamics are modeled as a third-order linear system. Furthermore,
a velocity-dependent spacing-policy, which is desired in vehicle platooning, is realised between con-
secutive vehicles. Within the proposed framework, the communication topology of the distributed
controller can be arbitrary, as long as the given conditions for asymptotically stable platoon dynamics
are satisfied. Depending on the chosen communication topology for the distributed controller, the in-
teraction between the vehicles in the platoon can be of bidirectional nature. In addition, feed-forward
control is included in the controller to improve string stability properties of the distributed controlled
platoon.
Bidirectional interaction between the vehicles in the platoon can improve the platoon’s coherence in
the sense that the platoon does not break up when there is a limitation on a vehicles’s velocity or
acceleration. A control law for a virtual reference vehicle is introduced and the platoon dynamical be-
havior, subject to this control law, is analysed. It is found that the controlled platoon is able to adapt its
cruising velocity when, at some moment, a saturation occurs on a (faulty) vehicle’s velocity. Moreover,
the platoon velocity will return to the desired cruise velocity when this saturation (or fault) is resolved.
This property only holds when the amount of vehicles in between the vehicle subjected to this satura-
tion and the leading vehicle is below some threshold value. The value of this threshold also depends
on the designed controller gains.
Finally, string stability properties of the resulting closed-loop dynamics are evaluated. String stability
is only evaluated for the situation when the platoon is in normal operation, i.e., when no fault oc-
curs. It is observed that, the distributed controlled platoon is semi-strictly L2 string stable with respect
to the platoon exogenous input vdes(t) when the Laplacian matrix L, describing the communication
topology, does not have an eigenvalue having a large geometric multiplicity.
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7.2 Recommendations

The control approach as designed in this master thesis seems to offer opportunities for various appli-
cations. However, more research is required. For example, the influence of the choice of the commu-
nication topology is investigated, but it is worthwhile to be explored more into depth. More specifically,
it is useful to investigate the influence of the geometric multiplicity of the eigenvalues of the Laplacian
L describing the communication topology on string stability properties.
Also, in the stability analysis for the vehicle velocity saturation, it is assumed that back and forth
switching between Mode 1 and Mode 2, i.e., saturation mode and normal mode, does not occur. In
future work, this stability analysis may be expanded by taking into account the switching between the
two modes.
Furthermore, string stability is an important property of a vehicle platoon because it allows for scala-
bility of the platoon with respect to its length. Semi-strict L2 string stability with respect to the platoon’s
only input vdes(t) is investigated. However, for a more thorough investigation regarding string stabil-
ity properties of a bidirectionally coupled vehicle platoon, the influence of additive disturbances should
be investigated. For example, additive disturbances δvi(t) can be added to the velocity vi(t) of each
vehicle i and semi-strict L2 string stability with respect to this disturbances δvi(t) can be evaluated.
In addition to distributed consensus control applied to longitudinal dynamics, an extension to lateral
dynamics can be made as to include tasks like splitting from or merging into a platoon. In many
lateral control techniques, constant longitudinal velocity is assumed, such that a linearised model for
lateral dynamics suffices. However, when combining both longitudinal and lateral dynamics, using
nonlinear dynamical models seems unavoidable, which makes stability (and string stability) analysis
more complex.

64



Bibliography

Bernardo, M. di, Salvi, A., and Santini, S. (2014). Distributed consensus strategy for platooning
of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans-
actions on Intelligent Transportation Systems.

Bondy, J.A. and Murty, U.S.R. (2008). Graph theory, volume 244 of Graduate Texts in Mathe-
matics. 2008.

Cao, Y., Yu, W., Ren, W., and Chen, G. (2013). An overview of recent progress in the study
of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics, 9(1), p.
427–438.

Fax, J.A. and Murray, R.M. (2004). Information flow and cooperative control of vehicle formations.
IEEE Transactions on Automatic Control , 49(9), p. 1465–1476.

Godsil, C.D. and Royle, G. (2001). Algebraic graph theory . 207. Springer New York.

Gouvea, J.A., Lizarralde, F., and Hsu, L. (2013). Formation control of dynamic nonholonomic mo-
bile robots with curvature constraints via potential functions. In American Control Conference
(ACC), 2013. p. 3039–3044, IEEE.

Gowal, S., Falconi, R, and Martinoli, A. (2010). Local Graph-based Distributed Control for Safe
Highway Platooning. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010. p. 6070–6076.

Horn, R.A. and Johnson, C.R. (1988). Matrix analysis. Cambridge university press.

Hurwitz, A. (1964). On the conditions under which an equation has only roots with negative real
parts. Selected papers on mathematical trends in control theory , 65, p. 273–284.

Iftekhar, L. and Olfati-Saber, R. (2012). Autonomous driving for vehicular networks with nonlinear
dynamics. In Intelligent Vehicles Symposium (IV), IEEE , 2012. p. 723–729, IEEE.

Le, Y.W., Ali, S., Yin, G., Pandya, A., and Zhang, H. (2012). Coordinated vehicle platoon control:
weighted and constrained consensus and communication network topologies. Proceedings of
CDC .

Lin, Z., Broucke, M., and Francis, B. (2004). Local control strategies for groups of mobile
autonomous agents. IEEE Transactions on Automatic Control , 49(4), p. 622–629.

Middleton, R.H. and Braslavsky, J.H. (2010). String instability in classes of linear time invariant
formation control with limited communication range. IEEE Transactions on Automatic Control ,
55(7), p. 1519–1530.

Montanaro, U., Tufo, M., Fiengo, G., di Bernardo, M., Salvi, A., and Santini, S. (2014). Extended
cooperative adaptive cruise control. In Intelligent Vehicles Symposium Proceedings, 2014. p.
605–610, IEEE.

65



BIBLIOGRAPHY

Naus, G.J.L., Vugts, R.P.A., Ploeg, J., Van de Molengraft, M.J.G., and Steinbuch, M. (2010).
String-stable CACC design and experimental validation: A frequency-domain approach. IEEE
Transactions on Vehicular Technology , 59(9), p. 4268–4279.

Neudecker, H. (1969). A note on Kronecker matrix products and matrix equation systems. SIAM
Journal on Applied Mathematics, 17(3), p. 603–606.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control , 51(3), p. 401–420.

Olfati-Saber, R. and Murray, R.M. (2004). Consensus problems in networks of agents with switch-
ing topology and time-delays. IEEE Transactions on Automatic Control , 49(9), p. 1520–1533.

Ploeg, J., Shukla, D.P., van de Wouw, N., and Nijmeijer, H. (2014a). Controller synthesis for
string stability of vehicle platoons. IEEE Transactions on Intelligent Transportation Systems,
15(2), p. 854–865.

Ploeg, J., van de Wouw, N., and Nijmeijer, H. (2014b). Lp string stability of cascaded systems:
Application to vehicle platooning. IEEE Transactions on Control Systems Technology , 22(2),
p. 786–793.

Qu, Z., Wang, J., and Hull, R.A. (2008). Cooperative control of dynamical systems with appli-
cation to autonomous vehicles. IEEE Transactions on Automatic Control , 53(4), p. 894–911.

Ramakers, R., Henning, K., Gies, S., Abel, D., and Max, H. (2009). Electronically coupled
truck platoons on German highways. In Systems, Man and Cybernetics. IEEE International
Conference on, 2009. p. 2409–2414, IEEE.

Ren, W. (2007). Consensus seeking in multi-vehicle systems with a time-varying reference state.
In American Control Conference, 2007. p. 717–722, IEEE.

Ren, W. and Atkins, E. (2007). Distributed multi-vehicle coordinated control via local information
exchange. International Journal of Robust and Nonlinear Control , 17(10-11), p. 1002–1033.

Ren, W. and Beard, R.W. (2008). Distributed consensus in multi-vehicle cooperative control .
Springer.

Ren, W., Moore, K., and Chen, Y.Q. (2006). High-order consensus algorithms in cooperative
vehicle systems. In Networking, Sensing and Control, 2006. ICNSC. Proceedings of the IEEE
International Conference on, 2006. p. 457–462, IEEE.

Saboori, I., Nayyeri, H., and Khorasani, K. (2013). A distributed control strategy for connec-
tivity preservation of multi-agent systems subject to actuator saturation. In American Control
Conference (ACC), 2013. p. 4044–4049, IEEE.

Semsar-Kazerooni, E. and Khorasani, K. (2007). Optimal performance of a modified leader-
follower team of agents with partial availability of leader command and presence of team faults.
In Proc. IEEE Conference on Decision and Control, December12–14 , 2007. p. 2491–2497.

Swaroop, D. and Hedrick, J.K. (1999). Constant spacing strategies for platooning in automated
highway systems. Journal of dynamic systems, measurement, and control , 121(3), p. 462–470.

Wang, X., Li, X., and Lu, J. (2010). Control and flocking of networked systems via pinning.
IEEE Circuits and Systems Magazine, 10(3), p. 83–91.

Xie, G. and Wang, L. (2007). Consensus control for a class of networks of dynamic agents.
International Journal of Robust and Nonlinear Control , 17(10-11), p. 941–959.

66



BIBLIOGRAPHY

Yang, Z., Liu, Z., Chen, Z., and Yuan, Z. (2008). Tracking control for multi-agent consensus
with an active leader and directed topology. In Intelligent Control and Automation, WCICA
7th World Congress on, 2008. p. 1037–1041, IEEE.

Zheng, Y., Li, S.E., Wang, J., Wang, L.Y., and Li, K. (2014). Influence of information flow topol-
ogy on closed-loop stability of vehicle platoon with rigid formation. In Intelligent Transportation
Systems (ITSC), IEEE 17th International Conference on, 2014. p. 2094–2100, IEEE.

Zhou, K., Doyle, J.C., and Glover, K. (1996). Robust and optimal control . Prentice Hall, NJ,
USA.

67





Appendix A

Proof of Lemma 4.1

In this appendix, the following lemma will be used in the proof of Lemma 4.1.

Lemma A.1 (Neudecker, 1969): The mixed-product property of a Kronecker product: If E, F , G and
H are matrices of such size that one can form the matrix products EG and FH , then

(EG)⊗ (FH) = (E ⊗ F )(G⊗H). (A.1)

The inverse of a Kronecker product is given by

(E ⊗G)−1 = E−1 ⊗G−1. (A.2)

Lemma 4.1: The origin is an asymptotically stable equilibrium of the dynamics in (4.34) if and only if
all matrices

A− λiBkT , ∀i ∈ Sn (A.3)

are Hurwitz, where λi is the ith eigenvalue of the square n× n matrix L̂.

Proof of Lemma 4.1:
The Schur decomposition (Horn and Johnson, 1988) of an n× n matrix L̃ is defined as

L̃ = V DV −1 (A.4)

with matrix D being an upper triangular matrix having the eigenvalues of matrix L̃ on its diagonal
and matrix V being an unitary matrix, thus satisfying

V InV
−1 = In. (A.5)

By using the relation in (A.4) and by using the property in (A.5), the system dynamics (4.34) can be
rewritten as

Ẋ(t) =
(
(V InV

−1 ⊗A)− (V DV −1 ⊗BkT )
)
X(t). (A.6)

By using the mixed-product property of Lemma A.1, the first term on the righthand-side of (A.6) can
be rewritten as follows

V InV
−1 ⊗A = V InV

−1 ⊗ ImA = (V ⊗ Im)(InV
−1 ⊗A)

= (V ⊗ Im)(InV
−1 ⊗AIm) = (V ⊗ Im)(In ⊗A)(V −1 ⊗ Im). (A.7)

Similarly, the second term of (A.6) can be rewritten:

V DV −1 ⊗BkT = V DV −1 ⊗ ImBkT = (V ⊗ Im)(DV −1 ⊗BkT )

= (V ⊗ Im)(DV −1 ⊗BkT Im) = (V ⊗ Im)(D ⊗BkT )(V −1 ⊗ Im). (A.8)
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Using the relations (A.7) and (A.8), the platoon error dynamics (A.6) can be written as

Ẋ(t) := AdX = {(V ⊗ Im)(In ⊗A−D ⊗BkT︸ ︷︷ ︸
Ã

)(V −1 ⊗ Im)}X(t) . (A.9)

Let us define the matrix Ṽ as
Ṽ = V ⊗ Im. (A.10)

Using the inverse property of Lemma A.1, matrix Ad in (A.9) can be written as

Ad = Ṽ ÃṼ −1. (A.11)

Let the eigenvalues of matrix Ad being defined as µi ∀i ∈ {1, 2, ..,mn}, and the corresponding eigen-
vectors being defined as ni ∀i ∈ {1, 2, ..,mn}. The eigenvectors ni have dimensions mn× 1.
These eigenvalues and -vectors thus satisfy

Ṽ ÃṼ −1ni = µini, i ∈ {1, 2, ..,mn} . (A.12)

Pre-multiplication of (A.12) with Ṽ −1 results in

ÃṼ −1ni = µiṼ
−1ni, i ∈ {1, 2, ..,mn} . (A.13)

From (A.13), it can be observed that the eigenvalues of matrix Ã are equal to the eigenvalues µi of
matrix Ad, with the corresponding eigenvector for matrix Ã being defined as Ṽ −1ni. Matrix Ã is an
upper-triangular block matrix of the following structure:

Ã =


A− λ1BkT Ã12 · · · Ãnn

0m×m A− λ2BkT
...

...
. . . Ã(n−1)n

0m×m · · · 0m×m A− λnBkT

 . (A.14)

Due to the upper-triangular structure, matrix Ã is Hurwitz if all matrices A − λiBk
T ∀i ∈ Sn are

Hurwitz (Horn and Johnson, 1988). The eigenvalues of matrix Ã are equivalent to the eigenvalues of
matrix Ad. Consequently, the origin is an asymptotically stable equilibrium of (4.34) if all matrices
A− λiBkT ∀i ∈ Sn are Hurwitz.

Note that according to the proof, the opposite also holds: if matrix Ad is Hurwitz, then all matrices
A− λiBkT ∀i ∈ Sn are Hurwitz. Hence, Lemma 4.1 is proven.
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Appendix B

Platoon dynamics state
transformation and reduction

In this appendix, a similarity transformation of the platoon dynamics is given. Also, given that one
vehicle i = f has a fixed velocity vmax, the platoon dynamics are reduced with order three, i.e., three
states are removed. Let the index i = f of the faulty (or saturated) vehicle be equal to the platoon
length n, i.e., f = n. Let xi(t) be defined as

xi(t) = [ei(t), ėi(t), ëi(t)]
T (B.1)

and let χi(t) be defined as
χi(t) = [ei(t), vi(t), ai(t)]

T . (B.2)

Matrix Tf describes the transformation from the platoon state vector

ξ1(t) =


X(t)

U(t)

u0(t)

p0(t)

 =



x1(t)
...

xf (t)

U(t)

u0(t)

p0(t)


(B.3)

to the platoon state vector

ξ2(t) =


χ(t)

U(t)

u0(t)

p0(t)

 =



χ1(t)
...

χf (t)

U(t)

u0(t)

p0(t)


, (B.4)

such that
ξ2(t) = Tfξ1(t). (B.5)

For a platoon length n = f = 3, this similarity transformation matrix Tf is defined as given in (B.15)
below. There is a repeating structure in this similarity transformation matrix T3, but a general expres-
sion for Tf for any platoon length is not given here.
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Let the platoon dynamics in (5.19) be expressed by

ξ̇1(t) = AHξ1(t) +BHvdes(t). (B.6)

Applying the similarity transformation results in

ξ̇2(t) = TfAHT
−1
f ξ2(t) + TfBHvdes(t). (B.7)

As defined in Section 5.4, when the platoon is in Mode 2, it is known that the acceleration af (t) and
desired acceleration velocity uf (t) of vehicle i = f are both equal to zero. Furthermore, it is known
that the velocity vf (t) = vmax is constant. Therefore, the states vf (t), af (t) and uf (t) are removed
from the state space in (B.7), such that the state vector of the platoon dynamics is defined as

ξ3(t) =



χ1(t)
...

χf−1(t)

ef (t)

Ur(t)

u0(t)

p0(t)


, (B.8)

where Ur = [u1(t), · · · , uf−1(t)]T . Given this, the platoon dynamics can be represented by

ξ̇3(t) = ARξ3(t) +BR,1vmax +BR,2vdes(t), (B.9)

where system matrix AR, vector BR,1 and vector BR,2 are defined as follows. Note that the structure,
especially of matrix AR, is complex, but this cannot be avoided. Also, the following expression for AR,
BR,1 and BR,2 only holds for matrix L̂ being defined as L̂ = L2 + P as in (5.5), thus not hold for any
L̂ in general. System matrix AR is defined as

AR =


I(f−1) ⊗A1 + I(−1),(f−1) ⊗A2 O3(f−1)×1 I(f−1) ⊗B O3(f−1)×1 Q1 ⊗A2

QT2 ⊗ [0, 1, 0] 0 O1×(f−1) 0 O1×3
V1 −k1h Q2 Lu

1
hQ1 Q1 ⊗ [0, k2h ,

k3
h ]

QT1 ⊗ [−kph , kdh , kd] 0 O1×(f−1) − 1
h [0, −

(
kd+kv
h

)
, 0]

O3×3(f−1) O3×1 O3×(f−1) B A

 ,
(B.10)

where matrices A, A1, A2, and vector B are as in (4.18) and (5.29), I(f−1) ∈ R(f−1)×(f−1) being the
identity matrix, I(−1),(f−1) ∈ R(f−1)×(f−1) being a matrix defined as in (4.24), vectorsQ1 ∈ R(f−1)×1

and Q2 ∈ R(f−1)×1 are defined as

Q1 = [1, 0, · · · , 0]T , Q2 = [0, · · · , 0, 1]T . (B.11)

Matrix V1 ∈ R(f−1)×3(f−1) is defined as

V1 = Le ⊗ [
k1
h
, 0, 0] + Lv ⊗ [0, − k2

h
, 0] + La ⊗ [0, 0, 1], (B.12)

where matrices Le ∈ R(f−1)×(f−1), Lv ∈ R(f−1)×(f−1) and La ∈ R(f−1)×(f−1) are defined as

Le = I(f−1) − I(1),(f−1)
Lv = 2I(f−1) − I(−1),(f−1) − I(1),(f−1)

La =

(
−k2 +

k3(h− 2τ)

τ

)
I(f−1) +

(
k2 −

k3(h− τ)

τ

)
I(1),(f−1) +

k3
h
I(−1),(f−1),
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with matrix I(1),(f−1) ∈ R(f−1)×(f−1) being a matrix having ones on all entries of the first upper
off-diagonal and zeros elsewhere, and matrix Lu ∈ R(f−1)×(f−1) in (B.10) is defined as

Lu =

(
− 1

h
− k3

τ

)
I(f−1) +

k3
h
I(1),(f−1) +

1

h
I(−1),(f−1). (B.13)

Vectors BR,1 and BR,2 are defined as

BR,1 =


O3(f−1)×1
−1
k2
h Q2

0

O3×1

 , BR,2 =


O3(f−1)×1

0

O(f−1)×1
kv
h

O3×1

 . (B.14)
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N
SFO

R
M
A
T
IO

N
A
N
D

R
E
D
U
C
T
IO

N



e1

v1

a1

e2

v2

a2

e3

v3

a3

u1

u2

u3

u0

q0

v0

a0



=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 −hτε 0 0 0 0 0 0 −h2ε 0 0 0 0 1 hτε

0 0 τε 0 0 0 0 0 0 hε 0 0 0 0 0 −τε
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 −h(τε− τ2ε2) 0 −1 −hτε 0 0 0 −h2(ε− τε2) −h2ε 0 0 0 1 h(τε− τ2ε2)

0 0 −τ2ε2 0 0 τε 0 0 0 −hτε hε 0 0 0 0 τ2ε2

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 −1 −h(τε− τ2ε2 + τ3ε3) 0 −1 −h(τε− τ2ε2) 0 −1 −hτε −h2(ε− τε2 + τ2ε3) −h2(ε− τε2) −h2ε 0 0 1 h(τε− τ2ε2 + τ3ε3)

0 0 τ3ε3 0 0 −τ2ε2 0 0 τε hτ2ε3 −hτε2 hε 0 0 0 −τ3ε3

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





e1

ė1

ë1

e2

ė2

ë2

e3

ė3

ë3

u1

u2

u3

u0

q0

v0

a0



= T3



e1

ė1

ë1

e2

ė2

ë2

e3

ė3

ë3

u1

u2

u3

u0

q0

v0

a0



, with ε =
1

h− τ . (B.15)
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Appendix C

Transfer function P̄i(s) for zero delay

In this appendix, the origin of the transfer function in (6.18) is explained. As was presented in (5.19),
the entire platoon dynamics are given by

Ẋ(t)

U̇(t)

u̇0(t)

ṗ0(t)

 = A


X(t)

U(t)

u0(t)

p0(t)

+ Bvdes(t)

=


In ⊗A− L̂⊗BkT O3n×n O3n×1 O3n×3

L̂⊗ kT

h
1
h (I(−1),n − In) Bu On×3

BTu ⊗−kT0 O1×n − 1
h [0, − kv

h , 0]

O3×3n O3×n B A



X(t)

U(t)

u0(t)

p0(t)

+ · · ·


O3n×1
On×1
kv
h

O3×1

 vdes(t), (C.1)

where the definition of all variables can be found in the main text. The system in (C.1) can be written
as a partitioned system as follows

Ẋ(t)

U̇(t)

u̇0(t)

ṗ0(t)

 =

[
A11 A12

A21 A22

]
X(t)

U(t)

u0(t)

p0(t)

+

[
B1
B2

]
vdes(t). (C.2)

The transfer function Pi(s) from input vdes(t) to the desired acceleration ui(t) of vehicle i in the
Laplace-domain is defined as

Pi(s) = Ci
(
sIa −

[
A11 A12

A21 A22

])−1 [
B1
B2

]
, (C.3)

where output vector Ci is defined as

Ci = [O1×(3n+i−1), 1, O1×(n−i+4)], (C.4)
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Ia ∈ R4(n+1)×4(n+1) is the identity matrix and s ∈ C. It can be seen in (C.1), that matrixA12 is a zero
matrix. Using this result, transfer function Pi(s) can be written as (Horn and Johnson, 1988)

Pi(s) = Ci
[

(sIb −A11)−1 O3n×(n+4)

(sIc −A22)−1A21(sIb −A11)−1 (sIc −A22)−1

][
B1
B2

]
, (C.5)

where Ib ∈ R3n×3n and Ic ∈ R(n+4)×(n+4) are both identity matrices.
Suppose that the output vector Ci is also partitioned, such that Ci = [Ci1 |Ci2], where Ci1 ∈ R3n and
Ci2 ∈ Rn+4. From (C.1), it is known that all elements in B1 are equal to zero. Therefore, it is known
that the transfer function Pi(s) from vdes(t) to ui(t) in the Laplace-domain is given by

ûi(s)

v̂des(s)
= Ci2(sIc −A22)−1B2. (C.6)

By using

v̂i(s) = G(s)ûi(s) =
1

s(τs+ 1)
ûi(s), (C.7)

matrix A22, vector B2 and vector Ci2, this results in

P̄i(s) =
v̂i(s)

v̂des(s)
=

kv
(hs+ 1)i ((hs+ 1)(τs+ 1)s+ kv)

. (C.8)

76


	Summary

