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Abstract

The Black-Scholes equation for option pricing is a famous model in financial mathematics. Given
a strike price and expiration date it tries to determine at what price an option should trade today.
Lots of research has been carried out in determining the validity of its suppositions, implementa-
tion details and extensions to accommodate for more realistic assumptions. Noting the equivalence
of the Black-Scholes equation to the heat transfer equation, reversing the time in this equation
leads to an ill-posed problem.
First, we present a way to treat this problem mathematically and numerically to forecast option
prices via the solution of a time inverse parabolic problem based on the work of Klibanov [29].
This model introduces new boundary and initial conditions and leaves behind traditional notions
like the strike price and expiration date of an option contract. We try to identify the most efficient
approach for the numerical solution of the problem.
Secondly, we aim to improve prediction quality by incorporating more realistic market volatility
data. In fact, obtaining volatility implied by today’s option price requires the solution of another
nonlinear inverse problem. Depending on the assumptions we impose on the dependence of volat-
ility on maturity and strike price the complexity of problems and methods used to solve them
varies greatly. Due to its computational simplicity we follow a linearization approach presented
by Bouchaev & Isakov [11, 21]. The reconstructed volatility surface resulting from this method
could then be used in the forecasting model and results be compared to the volatility function
used in Klibanov [29]. However, note that this is merely an experiment because convergence of
the approximate solution to the exact has not been proved yet in this case.
Next, we discuss a trading strategy based on the result of the time inverse model and back test
this strategy with real market data. We assert that trading only makes sense if the bid ask spread
of the option’s underlying is large enough and see this conjecture confirmed when back testing.
Finally, we are also interested in the prediction quality for different boundary conditions and the
impact of decision criteria on the strategy’s performance.

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility

iii





Preface

”A gift is pure when it is given from the heart to the right person at the right time and at the
right place, and when we expect nothing in return.”

The Bhagavad Gita

After five years of study across multiple disciplines and at two universities there are quite a few
people I feel indebted to. Let me start off by thanking my parents and my sister for their relentless
and subtle support all the way through my academic life. I appreciate that they allowed me to
follow my interests and never interfered with any of my plans.

Secondly, I would like to thank prof. Rohde in Stuttgart and prof. Pop in Eindhoven for super-
vising a self initiated project that did not fully match their field of expertise. However, prof. Pop’s
oversight allowed me to work with just the right specialists at TU/e. I want to express my thank-
fulness to dr. Michiel Hochstenbach for his help concerning inverse problems and to dr. Jan ten
Thije Boonkkamp for his insights on numerical aspects. Furthermore, I express my gratitude to
Mikhail Klibanov from the University of North Carolina at Charlotte for answering my questions
regarding his paper.

Thirdly, I have to express my special gratitude to all my fellow students in Stuttgart who I re-
member for their kind helpfulness and willingness to try to understand a problem by its root. I
largely enjoyed studying in groups and I will cherish these hours for the years to come. During my
stay in Eindhoven I have met some of the most amazing people from all around the world. Thank
you all for making this period of my life one of the most memorable experiences imaginable and
broadening my horizon manifold.
Finally, thanks to Joos Buijs and Thijs Nugteren for providing the LATEXtemplate for this thesis.

Jan-Philipp Wolf
Eindhoven, October 2015

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility

v





Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Preliminaries 5
2.1 Black-Scholes model (BSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 On implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Model shortcomings and criticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Time Inverse Parabolic Problem: Option Price Forecasting 9
3.1 In analogy to the heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Option price forecasting: Time inverse BSM . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Tikhonov regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Convergence results: Carleman estimates . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 Carleman estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Stability estimates and Regularization . . . . . . . . . . . . . . . . . . . . . 15
3.4.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.4 LSQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.5 Minimization via Conjugate gradient method . . . . . . . . . . . . . . . . . 22
3.4.6 Multifrontal Sparse QR factorization . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 The backward-time problem: Crank-Nicolson . . . . . . . . . . . . . . . . . 23
3.5.2 Verification test: time inverse heat solution . . . . . . . . . . . . . . . . . . 23
3.5.3 Assessment: How to include boundary conditions? . . . . . . . . . . . . . . 24
3.5.4 Bid-Ask spread requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.5 Choice of regularization parameter . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.6 Numerical instability of gradient method and lsqr algorithm . . . . . . . . . 28
3.5.7 Alternative Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Parameter Identification: Implied Volatility as an Inverse Problem 31
4.1 Ill-posedness of the inverse problem and literature overview . . . . . . . . . . . . . 32
4.2 Linearization approach by Isakov . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Continuous time formula: Dupire . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Linearization at constant volatility . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Uniqueness and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Numerical solution of the forward problem . . . . . . . . . . . . . . . . . . 35
4.2.5 Numerical tests: reconstruction of given volatility surfaces . . . . . . . . . . 36

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility

vii



CONTENTS

4.2.6 Towards a real world scenario: Smooth interpolation of market prices and
remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Putting everything into action: A large-scale real market data study 39
5.1 Option exchanges & BATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Trading strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Backtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5.1 Restriction on options with significant bid-ask spread: A Comparison . . . 41
5.5.2 Modification: Negativity of extrapolated ask price . . . . . . . . . . . . . . 41
5.5.3 Impact of boundary conditions and decision criterion . . . . . . . . . . . . . 42
5.5.4 Influence of volatility coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.5 Test on most actively traded options . . . . . . . . . . . . . . . . . . . . . . 42
5.5.6 Alternative one-day trading strategy . . . . . . . . . . . . . . . . . . . . . . 42
5.5.7 Forecasting with locally reconstructed implied volatility: Future work . . . 44

6 Conclusions 45

Bibliography 47

viii Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility



List of Figures

1.1 First known printed forward contract for a share in the Dutch West India Company
worth 500 Flemish pounds at 178.5% with a maturity of one year. This print dates
back to 1629. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Payoff and profit for a call option on the left respectively put option on
the right with strike price K = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Payoff and profit for a short call option on the left respectively short put
option on the right with strike price K = 1. . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Heat equation solved forward and backward . . . . . . . . . . . . . . . . . 10
3.2 Price of an option with strike price K = 50$, T = 5/12 years, in dependence of spot

price S. Verification of analytical solution as calculated by Matlab for call and
put vs. Crank-Nicolson scheme for call and put . . . . . . . . . . . . . 24

3.3 Heat equation solved backward with noise level δ = 10−3 , δ = 10−2 and
δ = 10−1 and true initial distribution ψ(x) for different terminal times Te. 25

3.4 Solution of price forecasting for set boundaries vs. free boundaries com-
pared to forward solution of the problem as obtained by Crank-Nicolson method

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 L-Curve in double logarithmic scale for options with different bid ask spreads of

the underlying: large spread ∆ = 2.6% sa+sb
2 vs. tight spread ∆ = 0.12% sa+sb

2
for regularization parameter λ ∈ (10−8, 1). . . . . . . . . . . . . . . . . . . . . 26

3.6 GCV function G(λ) for the full range of regularization parameters λ ∈ (10−8, 1) on
the left and zoomed in around the minimum on the right. . . . . . . . . . . . . . . 27

3.7 Solution as obtained using different methods: reference solution , Matlab’s back-

slash (Multifrontal QR) , Matlab’s LSQR and backslash solution of the

gradient system . Regularization parameter was set to λ = 0.1. . . . . . . . . . 29
3.8 Price using quadratic polynomial , +5%, , −5%, regression , +5%, ,

−5%, mean , +5%, , −5%, weighted average , +5%, , −5% . . . . . 29

4.1 Implied volatility surface for MSFT options. Data retrieved on 05.07.2015. . . . . . 31

4.2 Reconstructed volatility surface compared to prescribed volatility surface . 37
4.3 Price of put option for different strikes on MSFT stock with maturity date

17.06.2016 as observed on 14.09.2015 with smoothing spline . . . . . . . . . . . 38

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility

ix





List of Tables

5.1 Comparison between samples from all options versus samples from options with
significant bid-ask spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Effects of incorporating the modified trading rule mentioned in Section 5.5.2. . . . 42
5.3 Impact of different combinations of boundary conditions and decision criteria as

presented in Section 3.4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Experiment: Linear regression function as volatility. . . . . . . . . . . . . . . . . . 43
5.5 Experiment: Most actively traded options. . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Experiment: One-day trading strategy. . . . . . . . . . . . . . . . . . . . . . . . . . 43

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility

xi





Chapter 1

Introduction

Prediction is very difficult, especially if it is about the future.
Markus M. Ronner, 1918
Correct attribution is hard, especially for the past.
Doug Arnold, 2010

Since this thesis deals with the prediction of option prices we give a short overview over the
classes of market prediction techniques and their relation to the term market efficiency. Addition-
ally, we outline the history of option trading to better understand the usefulness of this financial
device to the world economy. Finally, modern day terminology and technical details are introduced
and instructive examples serve to understand the mechanics of options trading, the leverage effect
as well as some of the risks involved.
First of all, the question whether the prediction of market movement is possible at all hinges on
the question of market efficiency. A market is deemed efficient if all relevant information is always
incorporated into the current share prices. The efficient-market hypothesis then states that it
is consequently impossible for anybody to outwit the market and stock prices behave according
to the closely related random walk hypothesis which states that stock prices are governed by a
random walk and are therefore unpredictable. However, the joint hypothesis problem refers to the
fact that testing markets for efficiency is impossible because any such test would have to involve
an equilibrium asset pricing model which by definition is not able to capture anomalous behavior.
Any evidence for anomalous market behavior may therefore be the result of market inefficiency or
an insufficient model. In short, there is no way to tell where anomalies originate from if equilibrium
asset pricing models are used and therefore it is impossible to prove market efficiency. In fact,
there are now three forms of market efficiency in existence. Namely weak-form, semi-strong-form
and strong-form market efficiency. They vary in the degree to which information is incorporated
into current share prices and the speed in which they are incorporated. For more information on
these variations of market efficiency see e.g. Jones [23]. Behavioral finance or economics tries to
explain market inefficiencies by analyzing prevalently human factors like irrational decision mak-
ing, mental emotional filters and the like.
Stock market prediction has existed as long as modern day trading exists. The most important
accounts are made by Joseph de la Vega [47] who describes aspects of technical analysis in Dutch
markets as early as in the 17th century. There are three broad categories of prediction methods:
Fundamental analysis, technical analysis and alternative methods. Whereas fundamental tries to
make predictions based on an analysis of the stock issuing company technical analysis is concerned
with finding patterns in past prices using e.g. time series analysis. Statistical techniques as various
moving average methods and the use of candlesticks are widely applied as well. The third and
most recent development concerns machine learning i.e. making predictions using feed forward
neural networks.
This project is a challenging mathematical problem with a link to large real world data sets and
application to but not limited to finance. For future works there is a connection of the math-
ematical field of inverse problems to machine learning to be explored. However, this project is
based on a recent publication dealing with option price forecasting in connection with a classic
inverse problem by Klibanov [29]. The beauty of mathematics is that the methods used in this
topic are directly transferable to other inverse problems ranging from inverse scattering Au [4],
electrocardiography Sarikaya [41], precision measurement in chip production Soulan [44].

The previous section dealt with stock market prediction whereas this thesis is about option
price prediction. Let us clarify the terminology and connection between stocks and options now.

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility
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CHAPTER 1. INTRODUCTION

Figure 1.1: First known printed forward contract for a share in the Dutch West India Company
worth 500 Flemish pounds at 178.5% with a maturity of one year. This print dates back to 1629.

An option is the right but not the obligation to buy or sell an agreed upon amount of stock at a
certain point of time in the future at a predetermined price. The price paid for this right is called
the option premium. When one obtains the option to buy stock this is referred to as a call option
whereas when one obtains the right to sell stock this is referred to as a put option. Since the
value of an option depends on the underlying, stock options are derivatives i.e. they derive their
value from another financial product. Options are not restricted to stocks but are also available
on commodities, interest rates, foreign currencies and bonds.
To better understand the (original) purpose of this special instruments let us have a look at the
history of forward contracts and options. Forward contracts are closely linked to options with the
only difference being that the buying respectively selling is not optional but mandatory. Forward
trading of commodities as grain or salt had already appeared in medieval times. Indeed one of
the first option buyers was the Greek philosopher Thales of Miletus who bought the right to rent
olive presses in anticipation of a larger than usual olive harvest. When this harvest turned out to
be larger than usual indeed he rented out the spaces for a higher price, thus making him one of
the first option exercisers Saunders [42]. Even though forward contracts have also been found on
Mesopotamian clay tablets written in cuneiform scripture dating back as far as 1750 BC, there
are few records on how this form of financial instrument was traded among business men and how
prices were set. Insightful records are only available from the 17th century with Joseph Penso
de la Vega’s Confusion de confusiones [47] from 1688 being one of the most important resources
especially for the situation in the Netherlands. Around the year 1500 is the time when with the
rise of a system of periodical fairs trading in options became common for people who were not
directly involved in trading the underlying commodities. Venice became a city of regular fairs. The
first permanent markets were to be found in Antwerp, Belgium with foreign merchants settling
in the Scheldt port after 1500 Goetzmann [16]. Another milestone are the Dutch voyages to Asia
starting around 1590 which resulted in the emergence of companies like VOC, Dutch East and
West Company as well as in a spike in futures trading. One example of how such a contract looked
like at that time can be seen in Fig. 1.1. Furthermore, the public opinion regarding derivatives
had changed from a negative view influenced by the Roman laws under which it was regarded
as taking chances and therefore equated to betting to a more liberal one where regulation was

2 Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility
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Figure 1.2: Payoff and profit for a call option on the left respectively put option on the
right with strike price K = 1.

demanded rather than outright bans. For more information on the history of derivative trading
we refer to Goetzmann [16] from which lots of inputs for this section have been taken. As stated
in Haug [20] there were active option exchanges in London, Paris and New York as well as other
European markets in the late 1800 and early 1900. Furthermore there was a Foreign Exchange
Option Market from 1917 to 1921 as reported by Mixon [35]. There is proof that traders used
sophisticated techniques to price options in the American equity option in 1870 (see Kairys [24])
or on the Johannesburg Stock Exchange in the early 20th century (see Moore [36]). With the
installation of the first transatlantic telegraph cable in 1858 by Cyrus West Field and his Atlantic
Telegraph Company arbitrage trading emerged. From Haug [20]: ”Although American securities
had been purchased in considerable volume abroad after 1800, the lack of quick communication
placed a definite limit on the amount of active trading in securities between London and NewYork
markets, (see Weinstein, 1931). Furthermore, one extant source, Nelson (1904), speaks volumes:
an option trader and arbitrageur, S.A. Nelson published a book The ABC of Options and Arbit-
rage based on his observations around the turn of the twentieth century. The author states that
up to 500 messages per hour and typically 2000 - 3000 messages per day were sent between the
London and the New York market through the cable companies. Each message was transmitted
over the wire system in less than a minute. In a heuristic method that was repeated in Dynamic
Hedging by one of the authors, (Taleb, 1997), Nelson, describe in a theory-free way many rigor-
ously clinical aspects of his arbitrage business: the cost of shipping shares, the cost of insuring
shares, interest expenses, the possibilities to switch shares directly between someone being long
securities in New York and short in London and in this way saving shipping and insurance costs,
as well as many more similar tricks.”

Nowadays, options on stocks, commodities, foreign currencies, bonds and interest rates are
traded on exchanges all around the world. Along with options on different kinds of underlying
there are also different styles of options. The most common option is the European style option.
European options can only be executed on the day of maturity. On the contrary, American options
can be executed on or before the day of maturity. These two most common types of options are
also called vanilla options. Furthermore, there are binary options where the payoff is either a
fixed amount or nothing and all kinds of exotic options which could involve foreign exchange
rates as in quanto options, depend on multiple indexes as with basket options or depend on the
value of the underlying not only at maturity but also on multiple dates before maturity (Asian,
lookback, barrier, digital, spread options, etc). Note that these options are usually traded over

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility
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Figure 1.3: Payoff and profit for a short call option on the left respectively short put
option on the right with strike price K = 1.

the counter (OTC). To get a feel for the significance of this kind of trading note that in 2013
the Chicago Board Options Exchange (CBOE) which is the biggest American option exchange
reported a trading volume of 561.503.190.262$. To better understand the link between stock price
and option price and to understand how options work take a look at the payoff diagrams for a
call and put option with strike price K = 1$ in Fig. 1.2. The payoff in the left plot of a call
option is Pc = max (s−K, 0) = (s−K)+. The difference between payoff and profit is the option
premium, i.e. the amount the buyer pays to obtain the right to exercise the option. Conversely,
there is a payoff from a put option (plot on the right in Fig. 1.2) once the underlying price s at
maturity is lower than the strike price and one profits from this option once this differences is
greater than the premium payed to the put option seller. The profit from a put option is therefore
Pp = max (K − s, 0) = (K − s)+. From these quantities another vital relation can be derived.
The equality Pc − Pp = (s − K)+ − (K − s)+ = s − K is called the put-call parity providing a
direct link between the price of a put and the price of the corresponding call option. Furthermore,
this means that only either the call or the put has to be priced. Next consider the case of writing
call and put options. In the case of a short call this means that one sells the right to buy shares
respective in the case of a short put the right to sell shares to a second party. The payoff and
profit diagrams for these kinds of options are presented in Fig. 1.3. Note that short call options
are especially risky since there is no limit on possible losses. Finally, it is worth mentioning that
leverage can be created through options. Assume you have $ 1000 to invest. Instead of buying 10
shares of company ABC at $ 100 you could buy five option contracts at e.g. 200 a piece allowing
you to control 500 shares instead of 10. Note that one option contract is usually written on 100
shares. This example also reveals the risk associated with option trading.

4 Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility



Chapter 2

Preliminaries

The underlying model for all the considerations to follow is the option pricing model of Fischer
Black and Myron Scholes [8] from 1973. Therefore, we will explain the model’s assumptions and
simplifications, derive the model equation and a closed form solution for European style options 1.
Furthermore the model’s limitations will be analyzed and the reader will be made aware of possible
modifications improving the accuracy of results. In fact, one of the most delicate quantities in this
model is the volatility coefficient σ. Historical data reveals that constant volatility as assumed
in the standard Black-Scholes model can not reproduce real world market data. For this reason,
strategies to better model volatility will be presented. Finally, we deal with the criticism BSM
has received and we outline the similarities with older pricing options which have been used since
the 19th century (see e.g. Haug & Taleb [20]).

2.1 Black-Scholes model (BSM)

A short derivation of the Black-Scholes equation is given. The aim is to calculate a fair price of an
European option given the underlying does not pay dividends. A European call option is the right
to buy an asset at a specified strike price K in time T from today. In this case the option writer is
obliged to sell the asset. The price paid for the right to execute the deal by the buyer respectively
the money received by the option issuer is called the premium. In the case of a put option the
buyer of the option has the right to sell the asset at price K in time T whereas the option issuer
is obliged to buy the asset. In 1973 Fischer Black and Merton Scholes [8] proposed their famous
model on how to price European options with riskless interest rate r, where the underlying does
not pay dividends. The basic idea is to buy and short sell a certain amount of options at the same
time to eliminate risk. This is a list of assumptions on both assets and the market:

1. The risk-free rate of return is constant in time.

2. The underlying (i.e. the stock) does not pay dividends.

3. The logarithmic returns of the stock follow an infinitesimal geometric Brownian motion with
constant drift and volatility.

4. The market allows for no arbitrage.

5. Fractional buy and sell positions on the stock are possible at all times.

6. Fractional lending and borrowing at the riskless rate r is possible at all times.

7. Frictionless market: there are no transaction fees or costs.

We assume the price of an option’s underlying s follows a geometric Brownian motion:

ds

s
= µdt+ σdW. (2.1)

This signifies that the uncertainty is coming from the term Brownian motionW (t). In a geometric
Brownian motion the logarithm of the quantity (in this case s) follows a Brownian motion. Here,
µ is the expected return of the stock and σ is related to the standard deviation and is called

1European style: the option can only be exercised on the expiration date.

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility
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volatility of the log returns in percent per year. Since dW (t) is a Wiener process the following
properties hold:

E[dW ] = 0, E[dW 2] = dt. (2.2)

To understand the relation between the volatility σ and the variance of ds consider

E[ds] = E[sµdt+ σsdW ] = E[sµdt] + E[σsdW ] = sµdt+ σsE[dW ] = sµdt, (2.3)

V ar[ds] = E[ds2]− E[ds]2 = E[(sµdt+ σsdW )2]− (sµdt)2 = σ2s2E[dW 2]. (2.4)

Since the standard deviation is the square-root of the variance, the volatility σ is proportional

to
√

V ar[ds]

s
√
dt

. We now want to find a fair price u(s, t) for an option in dependence on the time t

and value of the underlying s, where we know the price at maturity u(s, T ). Since s follows a
stochastic process we introduce Ito’s lemma for two variables.

Lemma 1 Assume Xt is an Ito drift diffusion process satisfying

dXt = µtdt+ σtdBt, (2.5)

where Bt is a Brownian motion. Also assume that f ∈ C2. Then, in the limit dt→ 0 we have

df =

(
∂f

∂t
+ µt

∂f

∂x
+
σ2
t

2

∂2f

∂x2

)
dt+

∂f

∂x
dBt. (2.6)

For a proof see e.g. Karatzas [25].

We derive and apply Ito’s lemma to derive the Black-Scholes equation. The Taylor expansion
of u(t, s) is

du =
∂f

∂t
dt+

∂f

∂s
ds+

1

2

∂2f

∂x2
ds2 +O(dt2, ds3). (2.7)

Recalling equation (2.1) we substitute s (µdt+ σdW ) for ds:

du =

(
∂u

∂t
+
∂u

∂s

)
(sµdt+ sσdW ) +

1

2

∂2u

∂s2
(
s2

(
µ2dt2 + 2µdtσdW + σ2dW 2

))
+O(dt3, dW 3).

(2.8)
Forming the limit dt→ 0 and considering that dB2 is O(dt) we obtain

du =

(
∂u

∂t
+ sµ

∂u

∂s
+

1

2
σ2s2

∂2u

∂s2

)
dt+ σs

∂u

∂s
dW. (2.9)

We now consider a portfolio containing one short option and ∂u
∂s shares of the option’s underlying.

Let the value of this so-called delta hedge portfolio at time t be denoted by D(t) = −u+ ∂u
∂s s. Let

∆t > 0 be a time discretization and consider the portfolio’s change in value over the time interval
[t, t+∆t]:

∆D = −∆u+
∂u

∂s
δs. (2.10)

Discretizing equations (2.1) and (2.9) and inserting them into (2.10) gives

∆D =
(
− ∂u

∂t
− σ2

2
s2
∂2u

∂s2

)
∆t, (2.11)

where the Brownian motion dW has vanished. Taking the riskless interest rate r into account, we
have

∆D

∆t
= rD. (2.12)

Inserting (2.11) and D = −u+ ∂u
∂s s into this equation and transforming the discretized operators

into continuous ones we conclude with the famous Black-Scholes PDE:

∂u

∂t
+
σ2

2
s2
∂2u

∂s2
+ rs

∂u

∂s
− ru = 0. (2.13)
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The model is completed by boundary conditions

u(s = 0, t) = 0 ∀t u(s, t) → s for s→ ∞ (2.14)

and terminal condition
u(s, T ) = max{s−K, 0}. (2.15)

In the case of an European option (an option that can only be exercised at the maturity date)
Black and Scholes derived an analytical solution to the PDE. This can be done by transforming
the equation into a heat diffusion equation.

Lemma 2 The respective explicit formulas for the value of a call C(t, s) and put P (t, s) are

C(t, s) = sN(d1)−K exp(−r(T − t)N(d2)) (2.16)

P (t, s) = K exp(−r(T − t))N(−d2)− SN(−d1), (2.17)

where

d1 =
ln s/K + (r + σ2

2 )(T − t)

σ
√
T − t

(2.18)

d2 = d1 − σ
√
T − t (2.19)

with the cumulative standard distribution function

N(x) =

∫ x

−∞

1√
2π

exp
−z2

2
dz. (2.20)

This means that for every pair (K,T ) there is exactly one fair option price u.

2.2 On implied volatility

The most delicate parameter in the Black-Scholes model is the volatility coefficient σ. In financial
terminology volatility is defined as the standard deviation of the instrument’s yearly logarithmic
returns. To understand the concept of logarithmic returns let us first define the simple annual
return or simple annual rate of return of an investment with value V0 at the start of the year and
V1 at the end of the year as:

r =
V1 − V0
V0

. (2.21)

Furthermore, the relation between the return R over a period of time t can be converted to an
annualized rate or return r by the following relationship:

1 +R = (1 + r)t. (2.22)

The continuously compounded return or logarithmic return is then given by

Rl = ln
V1
V0
, (2.23)

with the logarithmic rate of return over a period t given by

rl =
Rl

t
. (2.24)

One of the reasons for the usage of logarithmic returns in financial modeling is related to the
definition of the cumulative returns ri (i ∈ {0, 1, 2, . . . , k}) over k + 1 periods of time i.e.

Rc = (1 + r0) · (1 + r1) . . . (1 + rk)− 1, (2.25)

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
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which can be represented as a simple sum if the returns ri are logarithmic:

Rc =

k∑
i=0

ri. (2.26)

Therefore, volatility is a measure for the magnitude of uncertainty regarding an instrument’s
(logarithmic) return. One distinguishes between two types of volatility namely actual and implied
volatility. Actual volatility is the volatility inferred from historical data with the most recent data
being today’s data. One also speaks of actual historical volatility if the last available data dates
from earlier than today and actual future volatility for the volatility of an instrument ending
at a point of time in the future. On the other hand there is an implied volatility analogon
for each of these types. Implied volatility is the volatility for which a financial model (such as
the Black-Scholes model) returns the actual observed market price. The volatility is therefore
”implied” by the model.
Recall that the volatility coefficient in BSM is a constant. In reality one observes a different
scenario though: depending on which market is considered different strike prices will result in
different volatility values. Usually options with very low or very high strike prices will imply
higher volatilities than near the money options. This phenomenon is called the smile effect.
Additionally, volatility does not seem to only depend on strike price but also on term structure
i.e. maturity dates. Taking the dependences on strike K and maturity T into account one will
end up with an implied volatility surface serving as a representation of the mapping

σ(K,T ) : R2 → R. (2.27)

A vast body of research is available on how to retrieve this volatility information from e.g. the
(modified) Black-Scholes model. Some of the methods will be presented, others will be mentioned
and references will be given in Chapter 4.

2.3 Model shortcomings and criticism

Haug & Taleb [20] also criticize that Black & Scholes use an academic and theoretical argument to
derive a formula that has been in practitioner’s hands for a long time. More specifically they cri-
ticize that the model is based on dynamic hedging meaning buying and selling fractional amounts
of securities at arbitrary times. In reality this is not possible due to technical restrictions. Fur-
thermore they argue that traders do not do valuation based on unknown probability distributions
but price options such that they are compatible with put-call parity and other instruments in the
market. As such the degrees of freedom are heavily restricted and pricing models like Black-Scholes
are unnecessary. Further points of critique concern some of the main assumptions of the model.
For example, the fact that the increments of the price of the underlying are modeled as normally
distributed does not make the model robust to large unexpected changes in the market regime.
Ultimately, that is what caused the decline of Scholes’ and Robert C. Merton’s LTCM hedge fund
which relied on dynamic hedging strategies. Losses totaled $4.6 billion within less than 4 months
in 1998 and resulted in a bailout initiated by the United States Federal Reserve, see Edwards [15].
Research also exists on modifying the Black-Scholes framework to accommodate for and study
the effects of transaction costs Amster [3], dividend payments and on incorporating non-constant
volatility.
Since we are not interested in pricing options directly but in obtaining a trend into which direction
an option might be trading in the future we think that it is still important to investigate whether
Black-Scholes’ model can be used for such purposes.

8 Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
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Chapter 3

Time Inverse Parabolic Problem:
Option Price Forecasting

The Black-Scholes model is a way of deriving a fair price of an option today given a future
expiration date T . The main idea of Klibanov [29] is to reverse the time t and calculate i.e.
forecast a future option price given today’s market data. First, we show why this inverse problem is
ill-posed in the sense of Hadamard using the analogy to the heat equation as an accessible example.
Next, the full model including new boundary and initial conditions is presented. Thereafter, we
present the most common numerical solution approaches and reproduce convergence results which
are based on Carleman estimates for one such class of procedures from Klibanov [29, 27]. The
regularization technique treating this ill-posed problem is the famous Tikhonov regularization
approach for the solution of ill-posed inverse problems. Some remarks on the role of data errors
and the inevitability of having estimates on the input data error for the successful construction
of regularization algorithms are made. Finally, some numerical experiments are carried out to
determine optimal regularization parameter, influence of different boundary criteria and preferable
numerical solution techniques.

3.1 In analogy to the heat equation

Recalling that the Black-Scholes is of the parabolic type let us consider the heat equation for a
moment. In its simplest form the heat equation can be written as

ut − uxx = 0 in Ω ⊂ R× (0,∞), (3.1)

u(x, 0) = f(x) for x ∈ Ω, (3.2)

u(·, t) = 0 on ∂Ω. (3.3)

For simplicity, let us consider the one-dimensional case and let the domain be bounded such that
x ∈ Ω = (0, π) and let the terminal time T > 0 be chosen such that t ∈ (0, T ) ⊂ (0,∞). It is
well known that there exists a unique solution to this initial boundary value problem which can
be represented by Fourier series.

Lemma 3 The solution of the one-dimensional heat equation (3.1) with initial and boundary
conditions (3.2)-(3.3) is given by the Fourier series

u(x, t) =

∞∑
k=1

fk sin(kx) exp(−k2t), (3.4)

with the Fourier coefficients fk, k = 1, 2, . . . ,∞ given by

fk =
2

π

∫ π

0

f(x) sin(kx)dx. (3.5)

Now, consider the time inverse problem

ut + uxx = 0 in Ω ⊂ R× (0,∞), (3.6)

u(x, 0) = f(x) for x ∈ Ω, (3.7)

u(·, t) = 0 on ∂Ω. (3.8)

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
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Figure 3.1: Heat equation solved forward and backward .

Again, consider the one-dimensional case with the bounded domain Ω = (0, π) and t ∈ (0, T ) ⊂
(0,∞).

Lemma 4 The solution of the time inverse heat equation (3.6) with initial and boundary condi-
tions (3.7))-(3.8) restricted to one space dimension is given by

u(x, t) =

∞∑
k=1

fk sin (kx) exp (k
2t). (3.9)

This representation is instructive in understanding why the inverse time problem is ill-posed.
Observe that for the solution (3.9) to exist the squares of the Fourier coefficients fk with respect
to k have to decay exponentially. Another typical problem in the context of inverse problems is
the instability of the solution to small fluctuations in e.g. initial data. Consider the norm of the
u(x, t)

‖u(x, t)‖2L2
=

∞∑
k=1

f2k exp2k
2t (3.10)

and remember that the Fourier coefficients are obtained via the convolution with the initial data
i.e. f(x) in our case. This means that small deviations in fk can result in large variations of
the solution u(t, x). From (3.10) we can also deduce that the problem becomes more unstable
as time t proceeds. To confirm these propositions and to get an impression for what this means
in terms of numerical aspects we solve the heat equation forwards and backwards using a naive
explicit solution scheme and plot the results in Fig. 3.1. For the purpose of demonstration we let
Ω = {(x, t)|x ∈ (−0.5, 0.5), t ∈ (0, 1)} and let

f(x) =

{
100 |x| < 1

10

10 else.
(3.11)

The result after t = 10 is plotted in Fig. 3.1 on the left. Applying the same scheme with time
reversed leads to oscillations and a non realistic result as seen in Fig. 3.1 on the right after
only 10 time steps. The discretization parameters dt, dx used fulfill the CFL condition: dt

dx2 =
10−4

( 1
60 )

2 = 0.36 < 1
2 . All numerical examples to appear from hereon have been executed with Matlab

R2015a.
Thus this problem belongs to a special class of inverse problems, namely ill-posed inverse

problems. According to Jacques Salomon Hadamard [18] a problem is well-posed if

1. A solution exits

10 Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
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2. The solution is unique

3. The solutions is depends continuously on the initial data.

A problem is ill-posed if any of these three stipulations does not hold.

The time reverse heat equation is a well-known and classic example for an inverse ill-posed
Cauchy problem. For an overview of methods applied to tackle such problems see e.g. Seidman [43].
Useful information on data errors, error estimation and the impossibility to construct solution
algorithms without any knowledge on the error level of the input data can be extracted from
Yagola [48]. Alternative techniques as in e.g. Marie [34] try to solve well-posed approximations
to the ill-posed problem rather than to solve the ill-posed problem.

3.2 Option price forecasting: Time inverse BSM

And now remains that we find
out the cause of this effect.
William Shakespeare, Hamlet

We use the model presented in Klibanov [29] which entails the Black-Scholes equation along with
special initial and boundary conditions as follows.

Lu :=
∂u

∂t
+
σ(t)2

2
s2
∂2u

∂s2
= 0 on QT , (3.12)

u(s, 0) = f(s) for s ∈ (sa, sb), (3.13)

u(sb, t) = ub(t), u(sa, t) = ua(t) for t ∈ (0, T ), (3.14)

where the domain is given as

QT = {(s, t)|s ∈ (sb, sa), t ∈ (0, T )} (3.15)

and with

f(s) =
ub − ua
sb − sa

s+
uasb − ubsa
sb − sa

. (3.16)

Note that f(s) is simply a linear interpolation between the option’s bid price ub and ask price ua.
In the general context it is not necessary for f to be linear though. As we will see later forecasting
is done for a rather short time horizon. This is why the boundary conditions in (3.14) namely
ub(t) and ua(t) are the extension of the quadratic interpolation polynomial of preceding bid and
ask prices in the time interval (−T, 0). The same goes for the volatility coefficients σ(t), which is
the extrapolation of the quadratic interpolation polynomial for the volatility in (−T, 0). Let the
Sobolev space Hk(QT ) be defined as follows.

Definition Let 1 ≤ p <∞ and k ∈ Z+. Suppose u ∈ Lp(QT ) and the weak derivatives ∂αu exist
for any multi-index α with |α| ≤ k such that

∂αu ∈ Lp(QT ), |α| ≤ k. (3.17)

We then say that u ∈W k,p and W k,p is called Sobolev space. For p = 2, we define Hk =W k,2.

For our case letH2,1 be similarly defined as the space of functions u ∈ L2(QT ) with ∂su, ∂ssu, ∂tu ∈
L2(QT ).
Deviations from the function

F (s, t) =
ub(t)− ua(t)

sb − sa
s+

ua(t)sb − ub(t)sa
sb − sa

∈ H2(QT ) (3.18)

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
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will be penalized and these relations hold

F (s, 0) = f(s), F (sb, t) = ub(t), F (sa, t) = ua(t). (3.19)

The fact that deviations of the solution u from the function F are penalized is already a regu-
larization technique. In the spirit of Tikhonov regularization a solution that solves the original
problem as well as possible but at the same time fulfills certain restrictions is searched for. Re-
member for example the noncontinuous dependence of the norm of u(x, t) in (3.10) on the Fourier
coefficients. In that case one could for example ask for an approximation to u(x, t) with bounded
norm. Something similar is done here: we want that equation (3.12) is fulfilled in the integral
sense while at the same time we demand that u is close to an interpolation of option prices F .
This gives rise to the Tikhonov functional

Jλ(u) =

∫ sa

sb

∫ T

0

(Lu)2dtdx+ λ ‖u− F‖H2(QT ) , (3.20)

where the regularization parameter λ ∈ R determines how much deviations of u from F are
penalized as well as how smooth the solution is.
In the following section the discretization of this model, the choice of the regularization parameter
λ and alternative regularization techniques are discussed. Furthermore, the convergence proof
for this Tikhonov functional is replicated from Klibanov [29] and some remarks on the iterative
solver for the resulting system of linear equations are made. Another important problem is the
way in which the model error can be estimated and the question how this error level relates to the
choice of the regularization parameter λ. The chapter is concluded with a handful of numerical
experiments in which the need for higher order Tikhonov regularization is debated and concrete
recommendations for the mesh size and regularization parameter λ for this problem are made.

3.3 Solution approaches

There are several techniques that are regularly applied to these types of inverse problems. We
will have a closer look at a method called Tikhonov regularization which will be used for this
problem. However, the general problem is sketched first and thereafter we define what a solution
of an ill-posed problem is in connection with perturbations in the input data.

3.3.1 Error estimation

Since we ultimately want to make statements on the convergence properties of regularized solutions
of ill-posed problems to the exact solution of the problem, an interesting question to address is
whether or not it is possible to estimate errors and if so, what a priori information is necessary to
do so? A precise and general survey on data errors and error estimation is given by Yagola [48]. In
general, a ”stable regularization method does not guarantee the possibility of an error estimation
or a comparison of convergence rates” [48]. Also, it is essential to include all a priori information
in the mathematical problem formulation before trying to solve it. Let us start by answering the
question whether it is possible to solve an ill-posed problem without knowledge of the data error?
Consider the operator equation

Ax = ū, x ∈ X, ū ∈ U. (3.21)

Here the unknown is x, X,U are Hilbert spaces and the operator A : X → U is bounded and
linear. Recalling Hadamard’s requirements for well-posed problems we assert that stability means
that if instead of the exact data (A, ū) we are given admissible data (Ah, uδ) with ||A−Ah|| ≤ h,
||ū − uδ|| ≤ δ, then the approximate solution converges to the exact one as h and δ approach
zero. The problems of existence and uniqueness of the problem are usually dealt with by taking a
generalized solution of the problem. In the case of non-uniqueness one usually takes the solution
which has the smaller norm or smaller distance from a fixed element that arises from a priori
knowledge. The main problem, however, is that the search for such a generalized solution can still
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be unstable with respect to errors of A and ū. This brings us to the definition of solution of an
ill-posed problem. Tikhonov [45], in his seminal paper on incorrectly formulated problems and
his regularization method, states that to solve an ill-posed problem there has to be a mapping
R(h, δ,Ah, uδ) which

• maps a regularized solution xh,δ = R(h, δ,Ah, uδ) to the data of the problem with h ≥ 0,
δ ≥ 0, Ah bounded and linear map, uδ ∈ U

• and guarantees convergence of xh,δ → x as h, δ → 0.

Note that not all ill-posed problems allow for the construction of such a regularizing algorithm
and are therefore termed ”nonregularizable ill-posed problems”. One interesting result is the fact
that it is impossible to construct stable regularizing algorithms without the knowledge of the error
level (h, δ); see Yagola [48] or Bakushinskii [7] for a proof.

3.3.2 Tikhonov regularization

Apart from giving this definition of the solution to an ill-posed problem Tikhonov also proposed a
regularization algorithm. The method searches for a minimum xλ = xλ(h, δ) ∈ X of the Tikhonov
functional

Tλ(x) = ||Ahx− uδ||2 + λ||x||2, (3.22)

selecting the regularization parameter λ such that convergence of the approximate solution xh,δ to
x̄ is ensured. We do not give any more general information on Tikhonov functionals here because
convergence properties of the Tikhonov-like functional for the case of our inverse problem (3.20)
will be proved in Section 3.4. For more details on the general case see e.g. Tikhonov [45, 46].

3.4 Convergence results: Carleman estimates

He was a genius! My older friends in Uppsala used to tell me about the wonderful years they
had had when Carleman was there. He was the most active speaker in the Uppsala Mathematical
Society and a well-trained gymnast. When people left the seminar crossing the Fyris River, he
walked on his hands on the railing of the bridge. Bo Kjellberg, 1995

To prove that the Tikhonov approach guarantees the existence of at most one solution to the
inverse problem and to establish convergence rates for the numerical minimization of the Tikhonov
functional Carleman estimates play a key role. Specifically, the Carleman estimate allows one to
obtain a logarithmic stability estimate (Theorem 1) which in turn guarantees uniqueness of the
solution to the parabolic problem and is needed to establish convergence rates of the Tikhonov
minimizer to a solution of this problem. The following theorems from Klibanov [27] are presented
for a general parabolic problem of the form

ut + Lparu = f in QT = Ω× (0, T ), u ∈ H2(QT ), (3.23)

u(s, 0) = g(s), (3.24)

u(s, t) = p(s, t) on ∂Ω× (0, T ) (3.25)

with

Lparu =

n∑
i,j=1

aij(s, t)uij +

n∑
j=1

bj(s, t)uj + b0(s, t)u, (3.26)

L0,paru =

n∑
i,j=1

aij(s, t)uij , A = ∂t + Lpar, (3.27)
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where uj =
∂u
∂sj

, aij ∈ C1(Q̄T ), bj, b0 ∈ B(Q̄T ). Here B(Q̄T ) is the space of bounded functions and

L0,par is the principal part of the parabolic operator for which the following ellipticity condition
holds: there exist two constants µ2 ≥ µ1 > 0 such that

µ1|η|2 ≤
n∑

i,j=1

aij(s, t)ηiηj ≤ µ2|η|2 ∀s ∈ Q̄T ,∀η ∈ Rn. (3.28)

Even though it sounds more natural to assume u ∈ H2,1(QT ) in (3.23), the extra smoothness
is needed to prove stability and convergence results later on and is specifically mentioned in e.g.
(3.37). This way problem (3.12) becomes a special case in which f = 0, g(s) = f(s) with f(s) as
defined in (3.13) and p(s, t) = ub(t) respectively p(s, t) = ua(t) as in (3.14). Let the lower order
terms of (3.26) be bounded by a constant M > 0:

‖bj‖C(Q̄T ) ≤M, j = 0, . . . , n. (3.29)

3.4.1 Carleman estimate

Since the following estimate is the key to proving convergence of the Tikhonov functional to a
unique solution of (3.23)-(3.25) we introduce the concept of Carleman estimates. For an intro-
ductory overview of the application of Carleman estimates for coefficient inverse problems see
Timonov [31] and Klibanov [27] for the application to ill-posed Cauchy problems. Let the con-
stant k > 0 be a number which will be chosen later. For λ > 1 the Carleman Weight Function
ϕλ(t) in our case is defined as

ϕλ(t) = (k + t)−λ, t > 0. (3.30)

The combination of the following two lemmata which originate from Klibanov [30] will yield the
Carleman estimate which will be used in the following proof.

Lemma 5 There exists a number λ0 > 1 and constant C > 0 both depending on µ1, µ2 and
maxi,j ‖aij‖C1(Q̄T ) such that for all λ ≥ λ0 and for all u ∈ C2,1(Q̄T ) the following estimate holds

for all (s, t) ∈ QT

(−ut − L0,paru)uϕ
2
λ ≥ µ1|∇u|2ϕ2

λ − λu2ϕ2
λ + divU1 +

∂

∂t
(−u2

2
ϕ2
λ), (3.31)

|U1| ≤ C|u||∇u|ϕ2
λ. (3.32)

Lemma 6 Additionally for λ0, C from Lemma 5, for all λ ≥ λ0 and for all u ∈ C2,1(Q̄T ) the
following estimate holds for all (s, t) ∈ QT

(ut + L0,paru)
2ϕ2

λ ≥ −C|∇u|2ϕ2
λ + λ(k + t)−2u2ϕ2

λ+ (3.33)

∂

∂t

(
λ(k + t)−1u2ϕ2

λ − ϕ2
λ

n∑
i,j=1

aijuiuj

)
+ divU2,

|U2| ≤ C|ut||∇u|ϕ2
λ. (3.34)

The combination of the preceding two lemmata yields the Carleman estimate we are looking for.

Lemma 7 (Carleman estimate) There exists a number a0 ∈ (0, 1) depending on µ1, µ2 and
maxi,j ‖aij‖C1(Q̄T ) ,M such that if k + T < a0, there exists a number λ1 depending on µ1, µ2,

constants C,C1 > 0 and θ depending on µ1, µ2 and maxi,j ‖aij‖C1(Q̄T ) ,M such that for all λ > λ1
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and for all u ∈ C2,1(Q̄T ) the following estimate holds for all (s, t) ∈ QT

(ut + L0,paru)
2ϕ2

λ ≥ 2

3
θµ1|∇u|2ϕ2

λ + Cλu2ϕ2
λ + divU (3.35)

+
∂

∂t

(
Cλ(k + t)−1(1− C1(k + t))u2ϕ2

λ − Cϕ2
λ

n∑
i,j=1

aijuiuj

)
,

|U | ≤ C(|ut|+ |u|)|∇u|ϕ2
λ. (3.36)

Proof The proof for this lemma is only outlined here.

3.4.2 Stability estimates and Regularization

Consider the family of functions uδ with δ ∈ (0, 1) satisfying∫
QT

(∂tuδ + Lparuδ)
2dsdt ≤ Nδ2, uδ ∈ H2(QT ), (3.37)

‖uδ(·, 0)‖L2(Ω) ≤
√
Nδ, (3.38)

uδ = 0, on ∂Ω× (0, T ), (3.39)

where N > 0 is a constant independent of δ.

Theorem 1 Let uδ satisfy conditions (3.37)-(3.39). Let T fulfill T > a0

2 with a0 from Lemma 7.
Then there exists a number δ0 = δ0(Lpar) ∈ (0, 1) and a number C10 > 0 such that the logarithmic
stability estimate holds for all uδ(s, T )

‖uδ(·, T )‖L2(Ω) ≤
C10√
ln(δ−1)

(1 + ‖uδ‖H2(QT )). (3.40)

For every ε ∈ (0, T/2) let β = β(ε) be defined as

β = β(ε) = − ln(1− ε/T )

2 ln(1− ε/(2T ))
∈ (0,

1

2
). (3.41)

Then also this Hölder estimate holds

‖∇uδ‖L2(QT−ε)
+ ‖uδ‖L2(QT−ε)

≤ C10(1 + ‖uδ‖H2(QT ))δ
β . (3.42)

Theorem 2 Uniqueness of the solution to problem (3.23)-(3.25) is a direct consequence of The-
orem 1.

With these estimates at hand the final step is to prove the existence of a solution to the minimiz-
ation problem arising with the Tikhonov regularization approach and to find an estimate for the
convergence rate in such a case. Assume that there exists a function F ∈ H2(QT ) satisfying

F (s, 0) = g(s), F = p(s, t) on ∂Ω× (0, T ). (3.43)

The Tikhonov functional corresponding to the (inverse) problem (3.23) is

Jλ,Lpar
(u) = ‖ut + Lparu‖2L2(QT ) + λ ‖u− F‖2H2(QT ) , u ∈ H2(QT ) (3.44)

subject to initial and boundary conditions (3.24)− (3.25) (3.45)

Since we are dealing with convergence analysis assume that there exists an exact solution u∗ ∈
H2(QT ) of (3.23)-(3.25).

‖g − g∗‖L2(Ω) ≤ δ, ‖f − f∗‖L2(QT ) , ‖F − F ∗‖H2(QT ) ≤ δ (3.46)
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The number δ can be interpreted as the error level in the input data. In the case of the forecasting
problem the intervals s and t are defined on are small and it is assumed that approximating the
exact F ∗ linearly in s and t by F (s, t) as defined in (3.19) results in a statement of the form (3.46)
with δ > 0 sufficiently small.

Theorem 3 (Existence) If there exists a function F ∈ H2(QT ) satisfying (3.43), then for every
λ > 0 there exists a unique minimizer uλ ∈ H2(QT ) of the functional (3.44) and the following
estimate holds

‖uλ‖H2(QT ) ≤
C11√
λ
(‖F‖H2(QT ) + ‖f‖L2(QT )). (3.47)

Proof Define H2
0 (QT ) = {v ∈ H2(QT ) : v|Γ = ∂nv = 0}. Letting v = u − F , one can argue

that the Tikhonov functional is a bounded linear functional on the space H2
0 (QT ). The aim is to

minimize the following functional subject to boundary conditions (3.24) and (3.25)

Ĵλ(v) = ||Av + (AF − f)||2L2(QT ) + λ||v||H2(QT ), v ∈ H2
0 (QT ). (3.48)

Assume the minimizer is given by vλ = uλ − F ∈ H2
0 (QT ) and note that due to the variational

principle it should satisfy

(Avλ, Ah) + λ[vλ, h] = (Ah, f −AF ), ∀h ∈ H2
0 (QT ), (3.49)

where (·, ·) denotes the scalar product in L2(QT ) and [·, ·] denotes the scalar product in H2(QT ).
Define

{v, h}λ = (Av,Ah) + λ[v, h], ∀v, h ∈ H2
0 (QT ). (3.50)

The expression {v, h} is a new scalar product on H2
0 (QT ) and its corresponding norm fulfills

√
λ||v||H2(QT ) ≤ {v}λ ≤ C11||v||H2(QT ). (3.51)

The norms {v}H2(QT ) and ||v||H2(QT ) are equivalent and we can rewrite

{vλ, h}λ = (Ah, f −AF ), ∀h ∈ H2
0 (QT ). (3.52)

This yields
|(Ah, f −AF )| ≤ C(||F ||H2(QT ) + ||f ||L2(QT )){h}λ. (3.53)

This shows that the right hand side of (3.52) is a bounded linear functional on H2
0 (QT ). Riesz’

theorem then implies a unique solution of the minimization problem. The Carleman estimate is
not used in this proof.

Theorem 4 (Convergence rate) Assume (3.46) holds and let λ = λ(δ) = δ2α with α ∈ (0, 1].
Also let T < a0/2 with a0 ∈ (0, 1), let ε, β and let the Carleman estimate be defined as before.
Then there exists a sufficiently small number δ0 = δ0(Lpar, a0, QT ) ∈ (0, 1) and constant C12 > 0

such that for all δ ∈ (0, δ
1/α
0 ) the following convergence rates hold true

∥∥uλ(δ)(·, T )− u∗(·, T )
∥∥
L2(Ω)

≤ C12√
ln(δ−1)

(1 + ‖u∗‖H2(QT )), (3.54)∥∥∇uλ(δ) −∇u∗
∥∥
L2(QT−ε)

+
∥∥uλ(δ) − u∗

∥∥
L2(QT−ε)

≤ C12(1 + ‖u∗‖H2(QT ))δ
αβ . (3.55)

Note that the stronger Hölder estimate (3.55) only holds for times close to T whereas the logar-
ithmic estimate (3.54) is valid on the whole of QT .

Proof Let v∗ = u∗ − F ∗, so v∗ ∈ H2
0 (QT ) and Av

∗ = f∗ −AF ∗. Consider

(Av∗, Ah) + γ[v∗, h] = (Ah, f∗ −AF ∗) + λ[v∗, h], ∀h ∈ H2
0 (QT ). (3.56)
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Subtraction of 3.49 and the definitions ṽλ = v∗ − vλ, f̃ = f∗ − f , F̃ = F ∗ − F yield

(Aṽλ, Ah) + λ[ṽλ, h] = (Ah, f̃ −AF̃ ) + λ[v∗, h],∀h ∈ H2
0 (QT ). (3.57)

The test function is set to h ≡ ṽλ and thus

||Aṽλ||2L2(QT ) + λ||ṽλ||H2(QT ) = (Aṽλ, f̃ −AF̃ ) + λ[v∗, ṽλ]. (3.58)

Application of Cauchy-Schwarz inequality gives

||Aṽλ||2L2(QT )+λ||ṽλ||
2
H2(QT ) ≤

1

2
||Aṽλ||2L2(QT )+

1

2
||f̃−AF̃ ||2L2(QT )+

λ

2
(||v∗||H2(QT )+||ṽλ||H2(QT )).

(3.59)
Using the a priori information (3.46) this means

||Aṽλ||2L2(QT ) + λ||ṽλ||2H2(QT ) ≤ C12δ
2 + λ||v∗||2H2(QT ). (3.60)

Noting that λ = δ2α with α ∈ (0, 1], we deduce δ2 ≤ λ and this is why (3.60) implies

||ṽλ||H2(QT ) ≤ C12(1 + ||v∗||H2(QT )) (3.61)

||Aṽλ||2H2(QT ) ≤ C12(1 + ||v∗||2H2(QT ))δ
2α (3.62)

(3.63)

For convenience denote wλ = ṽλ(1+ ||v∗||H2(QT )). Combining (3.61) and the Hölder estimate from

Theorem 1 imply ||wλ||H2(QT ) ≤ C12δ
αβ and

ṽλ||H1(QT+ε) ≤ C12(1 + ||v∗||H2(QT ))δ
αβ , ∀δ ∈ (0, δ0). (3.64)

Applying the triangle inequality onto ṽλ = (u∗−u)+ (F ∗−F ) and using (3.46) once again, yields

||ṽλ||H1(QT+ε) ≥ ||uλ − u∗||H1(QT+ε) − ||F ∗ − F ||H1(QT+ε) ≥ ||uλ − u∗||H1(QT+ε) − δ (3.65)

Putting the last two inequalities together and arguing that δαβ > δ since β, δ ∈ (0, 1) and α ∈ (0, 1]
we get the final result presented in the theorem above.

3.4.3 Discretization

The domain is given by QT = (sb, sa)× (0, T ) with T = 2τ , where τ ∈ (0, 14 ) is time in years. The
limitation on τ is due to the restriction on T in Theorem 1. Furthermore, sb < sa always holds. In
our case τ = 1/255 represents one day. The domain is discretized in tuples of the discretizations
of s and t. The stock prices s ∈ (sb, sa) are discretized into M equidistant points si = sb + i · ds,
i = 0, . . . ,M . Respectively time t ∈ (0, T ) is split into N equidistant points such that ti = i · dt,
i = 0, . . . , N . For all computations N =M = 100. Let un,m denote the option price corresponding
to a stock price sm at time tn, i.e. un,m ≈ u(sm, tn). The values un,m are formatted into a vector
of this form:

u = [u11u12 . . . u1M−1u1Mu21u22 . . . u2M−1u2M . . . uN−11uN−12 . . . uN−1M−1uN−1M

uN1uN2 . . . uNM−1uNM ]T ∈ RN×M (3.66)

The discretized version of the Tikhonov functional (3.20) can then be written as:

Ĵα(u) = dtds

NM−M∑
j=M+1

(uj+M − uj−M

2dt
+
σ(t(

⌊
j−1
M

⌋
+ 1))2

2
s(j − 1 (mod M) + 1)2

uj+1 − 2uj + uj−1

ds2

)2

+

αdsdt

NM−M∑
j=M+1

(uj − Fj)
2 +

( 1

2dt
(uj+M − uj−M − Fj+M + Fj−M )

)2

+

( 1

2ds
(uj+1 − uj−1 − Fj+1 + Fj−1)

)2

+
( 1

dt2
(uj+M − 2uj + uj−M − Fj+M + 2Fj − Fj−M )

)2

+( 1

ds2
(uj+1 − 2uj + uj−1 − Fj+1 + 2Fj − Fj−1)

)2

.

(3.67)
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For the discretization of the Sobolev norm second order finite differences are used to approx-
imate the derivatives. For the first derivatives a central differencing scheme is used such that the
time derivative at the m-th price sm is given by

∇tu:,m = Dt∗um +O(dt) (3.68)

with

Dt∗ =
1

dt



−1 1 0 . . . . . . . . . 0

− 1
2 0 1

2

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . − 1

2 0 1
2

0 . . . . . . . . . 0 −1 1


∈ RN×N . (3.69)

To assure correct approximations of the derivative on the boundaries, first order accurate forward
differences are used on the boundaries. Consequently the full set of derivatives is given by

∇tun,m = Dtun,m +O(dt) (3.70)

with

Dt = Dt∗ ⊗ IM (3.71)

and is only first-order accurate in total.

Definition The Kronecker product ⊗ is defined as follows. Let A ∈ Rm×n and B ∈ Rp×q, then
the Kronecker product A⊗B ∈ Rmp×nq is the block matrix defined as

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 . (3.72)

The procedure for the derivative with respect to s is analogous:

Ds∗ =
1

ds



−1 1 0 . . . . . . . . . 0

− 1
2 0 1

2

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1

2 0 1
2

0 . . . . . . . . . 0 −1 1


∈ RM×M (3.73)

Ds = IN ⊗Ds∗ (3.74)

For the second derivatives the following representation is obtained.

∆ttu:,m = Dtt∗u:,m +O(dt) (3.75)
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with

Dtt∗ =
1

dt2



1
2 −1 1

2 0 . . . . . . 0

1 −2 1 0
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 1 −2 1
0 . . . . . . 0 1

2 −1 1
2


∈ RN×N . (3.76)

Again note that in order to obtain reasonable approximations of the derivative on the boundary, the
first and last row ofDtt∗ are modified when compared to standard Toeplitz finite difference matrix.
The choice of the stencil ( 12 ,−1, 12 ) is in accordance with a first order accurate approximation of
the second derivative on the boundary. To see this, consider the following two Taylor series

u2 = u1 + dt
∂u1
∂t

+ dt2
∂2u1
∂t2

+O(dt3) (3.77)

u3 = u1 + 2dt
∂u1
∂t

+ 4dt2
∂2u1
∂t2

+O(dt3) (3.78)

Addition of (3.78)-2·(3.77) gives

∂2u1
∂t2

=
u1 − 2u2 + u3

2dt2
+O(dt). (3.79)

Consequently the full set of derivatives is given by

∆ttun,m = Dttun,m +O(dt) (3.80)

with
Dtt = Dtt∗ ⊗ IM (3.81)

Similarly for the second derivative with respect to s one obtains:

∆ssun,: = Dss∗un,: +O(ds) (3.82)

with

Dss∗ =
1

ds2



1
2 −1 1

2 0 . . . . . . 0

1 −2 1 0
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 1 −2 1
0 . . . . . . 0 1

2 −1 1
2


∈ RM×M . (3.83)

The derivation of the boundary conditions is completely analogous to the one for the Dtt∗ matrix
and the full set of derivatives is given by

∆ssun,m = Dssun,m +O(ds) (3.84)

with
Dss = Dss∗ ⊗ IN . (3.85)

Also, define the Sobolev matrix D

D = [I Dt Ds Dtt Dss]T . (3.86)
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The resulting approximation Ĵα of the Tikhonov functional Jα is then given by

Ĵα = dsdt ‖Au‖22+αdsdt
(
‖u− F‖22+‖Dt(u− F )‖22+‖Ds(u− F )‖22+‖Dtt(u− F )‖22+‖Dss(u− F )‖22

)
,

(3.87)
where A = Dt+RDss with R ∈ RMN×MN being a diagonal matrix with elements corresponding

to the factor σ(t)2

2 s2.

Incorporation of initial and boundary conditions

The boundary conditions (3.14) and initial condition (3.13) have to be considered as well. Since
the initial and boundary conditions are prescribed, they do not constitute degrees of freedom in
the problem of minimizing the Tikhonov functional (3.67), but they still have to influence the
solution in the right way. To achieve this the right hands side of Au = 0 is modified as follows.
Let ubd ∈ RMN be the vector containing the discrete boundary values and initial values in the the
entries corresponding to the boundaries and zeros otherwise. In order to eliminate the prescribed
nodes from system Au = 0, we subtract −b = Aubd which yields the new system Au = −Aubd.
The rows and columns corresponding to the free nodes can then easily be extracted using an index
vector. The resulting matrices are named Ā, D̄, ū. Considering that there are 2N +M set values
the minimization problem reduces slightly in dimension from NM to NM − (2N +M) unknowns
and from 5NM to 5NM − 5(2N + M) equations. This results in the following minimization
problem:

min

∥∥∥∥[ Ā√
αD̄

]
ū−

[
b̄√
αD̄F̄

]∥∥∥∥
2

, (3.88)

where A = Dt + RDss is the realization of the discretization of the first term in (3.67) and the
second set of equations in (3.88) corresponds to the discretization of the Sobolev norm in (3.67).
There are different ways to solve this minimization problem, namely applying the LSQR algorithm
for the solution of Sparse Linear Equations and Least Square Problems as published in Paige [37]
or solving the linear system resulting from the first order optimality condition on the gradient of
J or applying a sparse QR solver to the linear system (3.90). All methods are briefly described in
the next sections and one of them is chosen based on performance thereafter.

Alternative method

Another way of incorporating the initial and boundary conditions is to see them as free vari-
ables and introduce a penalty term in (3.44) penalizing deviations from the prescribed initial and
boundary values. This modified Tikhonov functional is given by

J̄λ = ||ut + Lparu||2L2(QT ) + λ||u− F ||2H2(QT ) + γ||u− ubd||2L2(QT ). (3.89)

However, note that there neither is proof for convergence of this functional towards the exact
solution nor results on how to choose the parameters α, γ. We mention this to point out that
there are certain slightly different formulations of the problem which might vary in the quality of
solution and might possess more or less favourable numerical properties. Furthermore, it serves
as a (numerical) test to determine the influence of the (incorporation of) boundary conditions on
the overall characteristics of the solution. The minimization problem to be solved transforms into

min

∥∥∥∥∥∥
 A
αD
γIF

u−

 0√
αDF
γubd

∥∥∥∥∥∥
2

, (3.90)

where IF ∈ RNM is a diagonal matrix containing ones in the entries corresponding to initial and
boundary values.
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3.4.4 LSQR

LSQR is an iterative method for the solution of sparse (asymmetric) linear equations and sparse
least square problems i.e. problems of the form Ax = b or min ‖Ax− b‖2 with A being large and
sparsely populated. Published in 1982 by Paige & Saunders [37] it is based on the bidiagonalization
procedure of Golub and Kahan. The algorithm is analytically equivalent to the standard conjugate
gradient method but achieves better numerical results.
We aim for a solution of the system Bx = b with B ∈ Rm×m symmetric and positive definite.
Briefly, the method is an orthogonal projection onto the Krylov space

Km(r0, B) = span{r0, Br0, B2r0, . . . , B
mr0}, (3.91)

where r0 = Bx0 − b is the initial residual. The Lanczos algorithm can be used to compute an
orthonormal basis of the Krylov space Km. In the process it generates a sequence of vectors vi
and scalars αi, βi, i > 0 such that B is reduced to tridiagonal form.

Lanczos process

β1v1 = b
for i = 1, 2, . . . do

wi = Bvi − βivi−1

αi = vTi wi

βi+1vi+1 = wi − αivi
end for,

where v0 = 0 and all βi ≥ 0 are chosen such that ‖vi‖ = 1. After k steps we have

BVk = VkTk + βk+1vk+1e
T
k , (3.92)

where Tk = tridiag(βi, αi, βi+1) and Vk = [v1, v2, . . . , vk]. Multiplying equation (3.92) by an
arbitrary vector yk we obtain

BVkyk = VkTkyk + βk+1vk+1ȳ, (3.93)

where ȳ is the last entry of yk. By definition Vk(β1e1) = b and we define

Tkyk = β1e1 (3.94)

xk = Vkyk.

Combining this with (3.92) we have Bxk = b + ȳβk+1vk+1 up to working precision. From
here it is possible to construct iterative methods that solve Bx = b. The main difference is the
way in which yk is being eliminated from (3.94). For conjugate gradients one uses the Cholesky
factorization Tk = LkDkL

T
k for example.

Let us now turn our attention to the damped least-squares problem of the form

min

∥∥∥∥[AλI
]
x−

[
b
0

]∥∥∥∥
2

(3.95)

with λ ∈ R. The solution to this system also satisfies[
I A
AT −λ2I

] [
r
x

]
=

[
b
0

]
(3.96)

where r = b−Ax. Applying the Lanczos algorithm to this system is the same as using a bidiagon-
alization procedure from Golub & Kahan [17]. Furthermore, the relations (3.94) can after 2k + 1
iterations be permuted to[

I Bk

BT
K −λ2I

] [
tk+1

yk

]
=

[
β1e1
0

]
,

[
rk
λI

]
=

[
Uk+1 0
0 Vk

] [
tk+1

yk

]
, (3.97)
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where Bk ∈ Rk+1×k is a lower bidiagonal matrix. One can see that yk is the solution of another
least-squares problem

min

∣∣∣∣∣∣∣∣ [Bk

λI

]
yk −

[
β1e1
0

] ∣∣∣∣∣∣∣∣
2

, (3.98)

which in turn can efficiently be solved using orthogonal transformations.

3.4.5 Minimization via Conjugate gradient method

Another way of minimizing the functional (3.67) with respect to the values of uλ at the grid points
is to form the partial derivatives of the discrete version of the functional with respect to the entries
of uλ ∈ RMN . The discrete analogon of (3.44) is (3.67).

Using the relation

∂uj
∂uj̄

= ujδjj̄ and

MN∑
j=1

ujδjj̄ = uj̄ (3.99)

one could obtain the gradient of the Tikhonov functional by forming all partial derivatives ∂Ĵλ

∂uj̄
.

This can be expressed in matrix form as follows

∇Ĵλ = Gu−HF, (3.100)

where u, F ∈ RMN contains the entries of the gradient that are independent of uλ and G,H ∈
RMN×MN is symmetric and positive definite (SPD). The first order optimality condition leads to
the solution of the following linear system of equations

Gu−HF = 0. (3.101)

One possible method for the solution of such linear systems with G being SPD is the conjugate
gradient method (CG). It is also possible to apply direct sparse solvers to the system. Alternatively,
an equivalent and much easier derivation of this linear system is obtained by considering the
discrete version of the Tikhonov functional in the form

Jλ(u) = ||Au−b||22+λ
[
||Iu−IF ||22+||Dtu−DtF ||22+||Dsu−DsF ||22+||Dttu−DttF ||22+||Dssu−DssF ||22

]
and applying the gradient operator to obtain

∇Jλ(u) =ATAu−AT b+ λIT I[u− F ] + λDT
t Dt[u− F ] + λDT

s Ds[u− F ]

+ λDT
ttDtt[u− F ] + λDT

ssDss[u− F ]

=[ATA+ IT I +DT
t Dt +DT

s Ds +DT
ttDtt +DT

ssDss]u−AT b

− λ[IT I +DT
t Dt +DT

s Ds +DT
ttDtt +DT

ssDss]F, (3.102)

where A = Dt +RDss is the discrete differential operator as defined before.

3.4.6 Multifrontal Sparse QR factorization

An important way to efficiently solve large (sparse) linear system and least-squares problems
directly is to factorize matrices into the form A = QR, where Q is orthogonal and R is upper
triangular. Such a transformation is called QR factorization. The first QR factorization meth-
ods transformed A one row or column at a time and did not reach theoretical performance due
to irregular access of memory. An efficient alternative is an approach which involves symbolic
analysis, preordering to eliminate singletons and makes use of different forms of parallelism. The
most relevant details for this multifrontal multithreaded QR factorization as implemented from
Matlab R2009a upwards are extracted from Davis [13].
The procedure starts with the elimination of singletons, which are columns j with a single nonzero
entry aij > τ , where τ is a threshold value or no entry. Singletons are permuted to the left and
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row i is permuted to the top. Column j and row i are then removed from the matrix. This is
done for all singletons leading to a matrix [

R11 R12

0 A22,

]
(3.103)

where R11 is upper triangular with diagonal entries larger than τ . The remaining matrix A22

is then ordered to reduce fill using Matlab’s ”COLAMD” method, which orders ATA without
explicitly forming it. Next, ”COLMOD” symbolically finds a LLT factorization of the ordered
matrix ATA by only analyzing A itself. For this purpose the elimination tree of ATA and the
number of nonzero entries in each row of R are computed. The information contained in the
elimination tree is important for the symbolic analysis as well as the numerical factorization. The
next step is the identification of supernodes, which are groups of m adjacent rows with (nearly)
identical nonzero pattern. Each supernode results in one frontal matrix which is a dense subset of
A on which the actual QR factorization is performed. The information about supernodes is stored
in the frontal matrix tree which gives rise to the frontal matrix after ordering, determination of
the frontal matrix sizes and a corresponding assembly strategy. A Householder transformation is
then applied to the frontal matrix. Potential ways of exploiting parallelisms are the parallel QR
factorization of parts of the frontal matrix and the QR factorization of a single frontal matrix can
be accelerated by using shared-memory multi-core capabilities of the ”LAPACK” QR factorization
package.

3.5 Numerical Experiments

In order to extract suitable model and discretization parameters and to validate the model some
numerical tests are carried out. These tests are based on the performance of the regularization
algorithm tested against the downward in time solution of the standard Black-Scholes equation
with suitable final and boundary data. Thus the numerical solution of the Black-Scholes backwards
in time is shortly outlined in the first section. Thereafter, the algorithm is tested for the inverse
time heat problem. We determine the best way to solve the least-squares problem numerically and
introduce potential alternative boundary conditions. The choice of the regularization parameter
will also be dealt with.

3.5.1 The backward-time problem: Crank-Nicolson

The Black-Scholes equation is solved backwards in time, which is the forward problem to our
inverse problem, to assess the quality of the regularization procedure described above. The Crank-
Nicolson method will be applied to numerically solve (2.13). Since the interest rate is assumed to
be zero we obtain the following discretization. For all reference forward solution of the problem we
use N = 400 data points in each dimension. To verify that the implementation works, results for
one example are compared to Matlab’s implementation of the Black-Scholes price called ”blsprice”.
In Fig. 3.2 one can see a plot of call and put as calculated using the Crank-Nicolson
scheme for an option with expiration T = 5/12, strike K = 50$, interest rate r = 0 and volatility
σ = 0.5.

3.5.2 Verification test: time inverse heat solution

To validate the algorithm for a slightly different problem, the 1D heat equation is solved backward
in time. Let the initial boundary value problem be given by

∂T

∂t
+ αd

∂2T

∂x2
= 0 with x ∈ (0, π), t ∈ (0, Te), (3.104)

T (x, 0) = ψ(x), x ∈ [0, π], (3.105)

T (x, t) = 0, x = {0, π}, t ∈ [0, Te], (3.106)
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Figure 3.2: Price of an option with strike price K = 50$, T = 5/12 years, in dependence of spot
price S. Verification of analytical solution as calculated by Matlab for call and put vs.
Crank-Nicolson scheme for call and put .

where αd is the thermal diffusivity with units [m
2

s ] and is set to αd ≡ 1. The initial temperature
distribution is prescribed by ψ(x) = sin(x). The equation is then first solved forwards in time
using the Crank-Nicolson scheme as mentioned before to obtain the temperature distribution
at the final times Te = {0.05, 0.1, 0.2, 0.4}s. These distributions are then contaminated with a
random signal with noise level δ = {10−1, 10−2, 10−3} in order to prevent committing inverse
crime. The resulting distribution is used as the terminal condition for the algorithm solving the
inverse problem up until time t = 0. Finally, the reconstructed initial distribution is compared
to the true initial condition ψ(x) in Fig. 3.3. For this test the regularization parameters λ is
chosen heuristically and is set to λ = 0.25 for error level δ = 10−2. This way the constant α from
(3.54) can be obtained. In our test case we obtain α = 0.15 and we thus choose the regularization
parameter according to λ(δ) = δ0.3. In accordance with expectations one can see that the quality
of the solution decreases with an increase in noise level and or for larger end times Te. Note,
that stable solutions are only guaranteed for Te ∈ (0, 12 ) because of the restriction Te < a0/2 in
Theorem 3.54. Indeed, increasing Te to 1

2 in our numerical example leads to unusable results. The
minimization problem (3.90) is solved using Matlab’s sparse QR solver.

3.5.3 Assessment: How to include boundary conditions?

As discussed in Section 3.4.3 we consider two ways of implementing the initial (3.13) and boundary
(3.14) conditions. In Fig. 3.4 the results are compared. One can observe that with a certain choice
of parameters λ and γ the results are similar for both methods. However, the fixed boundary

method gives better results compared to the alternative boundary method which makes

sense since the forward problem was solved using the same boundary conditions. In the
following numerical computations the boundary conditions will be directly prescribed.

3.5.4 Bid-Ask spread requirements

When dealing with real market data, we assess that bid-ask spreads of an option’s underlying are
very tight. The bid-ask spread ∆ is defined as ∆ = sa−sb. We observe a typical bid-ask spread of
∆ = 0.05% sa+sb

2 . The resulting problem is that the dynamics on the domain Q2τ are not sufficient
to extract any additional information when compared to the interpolation of option prices between
ua(t) and ub(t) as defined in (3.14). Thus, we exclude options with spreads ∆ < 0.5% sa+sb

2 from
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Figure 3.3: Heat equation solved backward with noise level δ = 10−3 , δ = 10−2 and
δ = 10−1 and true initial distribution ψ(x) for different terminal times Te.
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Figure 3.4: Solution of price forecasting for set boundaries vs. free boundaries compared

to forward solution of the problem as obtained by Crank-Nicolson method .
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Figure 3.5: L-Curve in double logarithmic scale for options with different bid ask spreads of
the underlying: large spread ∆ = 2.6% sa+sb

2 vs. tight spread ∆ = 0.12% sa+sb
2 for

regularization parameter λ ∈ (10−8, 1).

the following considerations.

3.5.5 Choice of regularization parameter

The magnitude of the regularization parameter λ greatly influences the solution’s behavior. There
are two classes of parameter selection algorithms: methods that rely on information on the noise
level in the input data and such methods that do not and are therefore called noise free parameter
choice rules. However, in the deterministic case there is always a noise such that for any regular-
ization method with error free parameter choice the regularized solution will not converge to the
true solution. This result is also referred to as Bakushinksii’s veto [7].

L-curve

The L-curve criterion is a popular error free parameter choice method. It is a graphical tool
which for all valid regularization parameters plots the discrete smoothing norm (in our case the
discrete analogon of ||u− F ||H2) versus the corresponding residual norm ||Au− f ||2. In the case
of Tikhonov regularization the L-curve is continuous because one can choose the regularization
parameter from an interval of real number values. The L-curve criterion visualizes the tradeoff
between minimization of the two norms mentioned. In a lot of cases the plot in double logarithmic
scale of these two norms against each other has the shape of the letter L. One then aims to seek
the point where the curvature is maximal, being the point corresponding to the corner of the letter
L. Let us calculate the norms for regularization parameters λ ∈ (10−8, 1) for one randomly picked
option and plot the results in double logarithmic scale. In Fig. 3.5 one can see that the resulting
plot does not resemble the letter L. However, increasing the difference between the bid and
ask price of the underlying –sb and sa respectively–one can observe that the resulting L-curve
actually resembles the letter L. Since the bid-ask spreads we are dealing with are typically smaller
and since it is difficult to numerically determine this point in this case, we move on to the next
possible parameter selection criterion.

Generalized Cross Validation (GCV)

Another error free parameter selection method is the Generalized Cross Validation method (GCV).
The idea is to minimize the predictive mean-square error ||Auλ− f∗||2, where f∗ is the exact data
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Figure 3.6: GCV function G(λ) for the full range of regularization parameters λ ∈ (10−8, 1) on
the left and zoomed in around the minimum on the right.

as defined in (3.46). The GCV function works with the given data f and is defined as

G(λ) =
||Auλ − f ||22

(Tr(I −AA#))2
, (3.107)

where A# = (ATA + λDTD)−1AT is the regularized inverse. Using generalized singular value
decomposition the matrices A and D can be decomposed as

A = UCX−1, D = V SX−1, (3.108)

where U, V are orthonormal matrices, X is nonsingular with ATA orthogonal columns and C,S
are diagonal matrices with diagonal elements being ordered non-decreasingly. Then consider the
relations

A(ATA+ λDTD)−1AT = UCX−1(X−T (C2 + λS2)X−1)−1X−TCTUT (3.109)

Tr(I −A(ATA+ λDTD)−1AT ) = tr(I)− tr(C2(C2 + λS2)−1), (3.110)

where we used the fact that U is orthogonal and the relation Tr(ABC) = Tr(CAB). Remarks
on the general form Tikhonov form and parameter selection criteria in this case can be found
in Chung [12]. The λ0 value corresponding to the minimum of the GCV function G(λ0) is the
optimal parameter then. Fig. 3.6 shows one such plot for a random option. Observe that the
minimum found does not represent the best parameter when compared to the reference forward
solution uCS and is also hard to determine numerically since machine precision level is reached.
A similar scenario is found on page 198 in Hansen [19], where the occasional failure of the method
is mentioned and the GCV function around the minimum is very flat. Thus, we refrain from
using the GCV method for our problem and continue with a heuristic estimation of the optimal
parameter in the next section.

Heuristics: Parameter selection by forward solution fitting

Since it seems to be hard to find a regularization parameter in our case, we introduce a heuristic
approach now. Let the numerical solution of the forward problem as obtained by Crank-Nicolson
scheme be uCS . The idea is to pick 100 different options and choose the average regularization
parameter which minimizes the difference between the regularized solution and the forward solu-
tion. Let the mean-square error between these two solutions be defined as e2 = ||uλ−uCS ||2. The
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resulting regularization parameter is λ = 5 · 10−3, which is in good agreement with the parameter
used by Klibanov [29].

More Heuristics: Multiparameter Regularization

We observed that the reconstruction quality is sometimes higher and the range of admissible
regularization parameters larger when the different terms in the (discretized) Sobolev norm ||u−
F ||H2 are assigned different weights. More specifically, this means that there is not only one
regularization parameter λ but five of them. One way to do this is to remove the natural scaling
stemming from the finite difference discretization of the Sobolev operator, such that

||u−F ||H2 = λ||u−F ||2+λ2dt||Dt(u−F )||2+λ2ds||Ds(u−F )||2+λdt2||Dtt(u−F )||2+λds2||Dss(u−F )||2.
(3.111)
Note, that by doing so we essentially make the problem a multiparameter Tikhonov regularization
problem and also leave the framework of the convergence proof presented before. For more inform-
ation on multiparameter Tikhonov regularization and possible parameter selection criteria in this
case see among few available papers on this topic for example Ito [22], Reichel [38] or Chung [12].
Ito [22] provides further relevant references in section 1 of his paper. Rerunning the analysis from
the preceding section we retrieve as the regularization parameter λ = 0.75 for our problem. Since,
this is only an experimental observation and since the convergence results from Section 3.4 do not
hold for the case of multiple parameters, we will not actually apply this approach when forecasting
prices in Chapter 5.

3.5.6 Numerical instability of gradient method and lsqr algorithm

Solving the minimization problem using Matlab’s implementation of the LSQR algorithm from
Section 3.4.4 and the gradient method discussed in Section 3.4.5 led to more unstable results
when compared to the multifrontal QR solution from Section 3.4.6. The matrix product ATA is
actually calculated in the gradient formulation leading to considerable round-off error because the
condition number of ATA is high, which explain its unsatisfactory performance. In Fig. 3.7 the
results using different solvers are plotted.

3.5.7 Alternative Boundary conditions

Since the boundary conditions chosen by Klibanov [29] are very sensitive to price changes and have
a strong influence on the trading strategy (see Section 5.4). As an insightful thought experiment,
consider for example an option trading at constant 0.95$ for two days and then making a 5%
jump to 1$ on the third day, i.e. prices p = [1, 1, 1.05] corresponding to the times t = [−2τ,−τ, 0].
Quadratic interpolation and evaluation of the resulting polynomial until time 2τ imply an anti-
cipated price of p2τ = 1.3. However, compare this to the result for a 5% decrease at the third
day, yielding p2τ = 0.7. This corresponding quadratic functions , are plotted in Fig. 3.8.
Therefore, alternative choices of the boundary values (3.14) are proposed. The aim is to still use
the past observations for ub, ua at τ ∈ {−2τ,−τ, 0}, but to reduce the strong dynamics implied
by the quadratic polynomial in (3.14).

Linear Regression

As a first alternative, we propose to use the linear regression function as boundary values. As one
can see in Fig. 3.8 the dynamics are damped compared to the quadratic polynomial while still
exhibiting a tendency to increase , decrease .

Constant Average

One might also argue that a single jump in price does not justify modeling future prices with a
lasting trend. In this case we suggest to use constant boundary conditions using the mean value
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Figure 3.7: Solution as obtained using different methods: reference solution , Matlab’s back-

slash (Multifrontal QR) , Matlab’s LSQR and backslash solution of the gradient system

. Regularization parameter was set to λ = 0.1.
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Figure 3.8: Price using quadratic polynomial , +5%, , −5%, regression , +5%, ,
−5%, mean , +5%, , −5%, weighted average , +5%, , −5% .
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of the past observations as the constant boundary condition. The corresponding plots ,
are also there in Fig. 3.8.

Constant Weighted Average

Similarly, the more recent observations could be given more weight when calculating the mean
value. One possibility is to assign the weights ω = [ 16 ,

2
6 ,

3
6 ] to the prices p, resulting in the weighted

average
p̄w = ω1p1 + ω2p2 + ω3p3 = 1.025/0.975. (3.112)
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Chapter 4

Parameter Identification: Implied
Volatility as an Inverse Problem

As already pointed out in the introduction the volatility implied by the Black-Scholes equation is
observed to depend on both the underlying price s and the time t. In reality one can observe that
options whose strike is either far out of or far into the money have a greater implied volatility while
volatility tends to decrease the more the time to expiry. This dependence can be seen in so-called
volatility surface plots in which implied volatility is plotted against the strike price K and time
to expiry T . For example consider Fig. 4.1 in which the volatility data for 288 call options on
Microsoft (MSFT) shares on 05.07.2015 were plotted. According to Rubinstein [40] this effect has
only been observed in stock options after the financial breakdown of 1987 whereas it was already
known for foreign currency options by then. As a result many practitioners and researchers tried
to extend the Black-Scholes model to incorporate the volatility coefficients dependence on stock
price and time. This class of models is therefore called local volatility models and the Black-Scholes
in the extended form becomes

∂u

∂t
+

1

2
s2σ(s, t)2

∂2u

∂s2
+ sµ

∂u

∂s
− ru = 0. (4.1)

The volatility coefficient is assumed to satisfy 0 < m < σ(s, t) < M <∞ and belong to the Hölder
space Cλ(ω̄∗), 0 < λ < 1 for some interval ω∗ ⊂ (0,∞). Furthermore there is still a final condition
imposed at the expiry date T :

u(s, T ) = (s−K)+ = max(0, s−K), 0 < s. (4.2)

The inverse problem of option pricing can then be formulated as determining the volatility σ for
given values

u(s∗, t∗;K,T ) = u∗(K,T ), K ∈ ω∗, T ∈ I∗ = {T1, T2}, (4.3)

where s∗ is the price of the underlying at time t∗ and is assumed to be contained in ω∗, i.e. s∗ ∈ ω∗.
The main problem with coefficient inverse problems (CIP) is that the cost functionals associated
with the Tikhonov formulation of the problem are non-convex. This means that the cost functional
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Figure 4.1: Implied volatility surface for MSFT options. Data retrieved on 05.07.2015.
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potentially has many ravines and one should roughly know the location of the minimum to find
a global minimum. One way to obtain globally convergent numerical algorithms is to construct
strictly convex Tikhonov-like cost functionals using Carleman Weight Functions (CWF). For some
theory on this topic see for example Klibanov [28], Timonov [31]. In the following, the non-linear
coefficient inverse problem (4.1)-(4.3) will be linearized to obtain estimates of the volatility σ(s, t).
However, if one wants to use this s-dependent volatility coefficient in the forecasting problem from
section 3.2 the convergence estimates of section 3.4 do not hold anymore. The challenge is to
construct a modified Tikhonov-like functional such that convergence can be proved in this case.
Inspiration for this task can be drawn from e.g. Klibanov [26, 28] or Timonov [31]. In any case,
the algorithm from section 3.2 will be tested with the data obtained from the solution of the CIP
in a numerical experiment.

4.1 Ill-posedness of the inverse problem and literature over-
view

In the past 35 years many approaches have been made to reconstruct the volatility surface given a
discrete set of option prices. Avellaneda [5] applies dynamic programming to minimize a relative
entropy functional, Bouchaev [9] approximates the option price as the sum of the Black-Scholes
price and a correction for the non-constant volatility stemming from the parametrix expansion of
the fundamental solution whereas Lagnado and Osher [32] minimize a Tikhonov like functional
to solve the inverse problem . For more complete surveys on the topic see e.g. Zubelli [49] or
Reisinger [39]. Since the solution of the nonlinear inverse option pricing model (nonlinear in
the sense of the volatility depending nonlinearly on K and T ) is unstable, therefore numerically
challenging and regularization techniques hard to apply on sparse real market data we turn to
a linearization approach suggested by Isakov [11, 21] which is numerically more robust to sparse
data and better suited to the analysis of a large data set in terms of computational complexity.

4.2 Linearization approach by Isakov

Based on the aforementioned papers by Isakov [11, 21] the volatility is being linearized at two
different times T1, T2. The local volatility is assumed to be given by

1

2
σ(s, t)2 =

1

2
σ2
0 + f∗0 (s) + tf∗1 (s), (4.4)

where f∗0 , f
∗
1 ∈ C0(ω) are small perturbations of σ0 which in turn is the constant implied volatility

defined as the solution of the Black-Scholes equation with constant volatility coefficient. Calcu-
lation of σ0 is straightforward and can be done by applying a Newton fix point algorithm to the
Black-Scholes equation. Alternative ways as e.g. rational approximation Li [33] also exist. Out-
side of the interval ω∗ we set f∗0 = f∗1 = 0. This conjecture is acceptable if the volatility is not
changing fast with respect to stock price and slow with respect to time.
Since the analysis of the problem is analytically and numerically easier in terms of the strike
price K and maturity date T the Black-Scholes equation is formulated in terms of these variables
yielding the Dupire equation. This dual equation is derived in the next section.

4.2.1 Continuous time formula: Dupire

Dupire [14] derived a dual equation to the Black-Scholes in 1993, which is not defined in terms of
s and t but describes the option price in dependence of strike K and expiry T . The result stems
from the question whether under certain conditions the Black-Scholes model can be modified to
accommodate for non-constant volatility while keeping the model complete in the sense of being
able to hedge the option with the underlying asset. The question was whether it is possible to
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find a risk-neutral diffusion process of the form

dS

S
= r(t)dt+ σ(S, t)dW, (4.5)

given arbitrage-free prices u(K,T ). The relation

u(K,T ) =

∫ ∞

0

max (S −K, 0)φT (S)dS =

∫ ∞

K

(S −K)φT (S)dS (4.6)

results in

φT (K) =
∂2u

∂K2
(K,T ) (4.7)

after differentiating twice with respect to K, where φT is the risk-neutral density function of the
spot at time T . The question is whether there exists a unique diffusion process dx = a(x, t)dt +
b(x, t)dW generating these densities φT ? Assuming for the moment that the interest rate is zero
consider dx = b(x, t)dW . Using the Fokker-Planck equation and some calculation it is shown in
Dupire [14] that the following relation holds

b2(K,T )

2

∂2u

∂K2
=
∂u

∂T
(4.8)

for European options. From this b can be obtained because ∂2u
∂K2 and ∂u

∂T are known from observable
market data. One only has to think of suitable interpolation or discrete differentiation procedures
to obtain these quantities. Comparing this to the diffusion process (4.5) one identifies the volatility

σ = b(S,t)
S . The derivation for non-zero interest rate is slightly more complicated and results in

the Dupire equation

∂u

∂T
− 1

2
K2σ(K,T )2

∂2u

∂K2
+ µK

∂u

∂K
+ (r − µ)u = 0. (4.9)

4.2.2 Linearization at constant volatility

Equation (4.9) and final condition (4.2) are transformed by

y = ln(
K

s∗
), τ = T − t∗ (4.10)

a(y, τ) = σ(s∗ey, τ + t∗), U(y, τ) = u(s∗ey, τ + t∗) (4.11)

into

∂u

∂τ
− 1

2
a(y, τ)2

∂2u

∂y2
+ (

1

2
a(y, τ)2 + µ)

∂u

∂y
+ (r − µ)u = 0 (4.12)

u(y, 0) = s∗(1− ey)+, y ∈ R.
(4.13)

The additional market data become

u(y, τj) = uj(y), y ∈ ω, j = 1, 2, (4.14)

where ω is the transformed interval ω∗ and uj(y) = u∗(s∗ey, Tj). Also note that

1

2
a2(y, τ) =

1

2
σ2
0 + f0(y) + τf1(y), (4.15)

with
f0(y) = f∗0 (s

∗ey) + t∗f∗1 (s
∗ey), f1(y) = f∗1 (s

∗ey). (4.16)
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The idea is to construct the solution u as u = V0 + V + v, where v vanishes quadratically with
respect to (f0, f1) and V0 solves (4.12) with a = σ0 and V is the solution to

∂V

∂τ
− 1

2
σ2
0

∂2V

∂y2
+ (

1

2
σ2
0 + µ)

∂V

∂y
+ (r − µ)V = α0(f0(y) + τf1(y)), (4.17)

V (y, 0) = 0, y ∈ R, (4.18)

with

α0(y, τ) =
s∗√
2πτσ0

e
− y2

2τσ2
0
+cy+dτ

, (4.19)

c =
1

2
+

µ

σ2
0

, d = − 1

2σ2
0

(
σ2
0

2
+ µ)2 + µ− r (4.20)

and
V (y, τj) = Vj(y) = uj(y)− V0(y, τj), j = 1, 2, y ∈ ω. (4.21)

This linearization is in accordance with the theory presented in e.g. Bouchaev [10] for the inverse
option pricing model. Further substitution of V = ecy+dτW yields

∂W

∂τ
− 1

2
σ2
0

∂2W

∂y2
= α(f0(y) + τf1(y)), 0 < τ < τ∗, y ∈ R, (4.22)

W (y, 0) = 0, y ∈ R, (4.23)

with

α(y, τ) =
s∗

√
2πτe

− y2

2τσ2
0

(4.24)

and the final data
W (y, τj) =Wj(y) = e−cy−dτjVj(y). (4.25)

In one last simplification α is replaced by the y independent function

α1(τ) =
s∗√
2πτσ0

(4.26)

and the domain R is restricted to a finite interval Ω ⊃ ω̄.

4.2.3 Uniqueness and Stability

Theorem 5 Let ω = (−b, b) and f0 = f1 = 0 outside ω. Furthermore demand

τ21 + τ22 +
√
τ1τ2(τ1 + τ2)3b

2

τ1τ2(τ2 − τ1)2σ2
0

< 1, (4.27)

(
√

τ1
τ2

+
√

τ2
τ1

+ 2) b2

σ2
0
+ 2

√
2π(

√
τ1 +

√
τ2)

b
σ0

2(τ2 − τ1)
< 1. (4.28)

This guarantees the uniqueness of the solution (f0, f1) ∈ L∞(ω) × L∞(ω) of the inverse option
pricing problem (4.22)-(4.26).

Proof The proof will only be sketched here. For the complete proof see Isakov [21]. One
starts by proving the uniqueness of a solution to the approximate inverse option pricing problem
(4.22)-(4.26) by applying a Fourier transform to (4.22), solving the generated ordinary differential
equation and using a Taylor expansion of the exponential function to prove boundedness of the
system of integral equations. Using the definition of Sobolev norms via the Fourier transform the
stability and uniqueness is proved.
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Equivalence to the following system of Fredholm equations∫
ω

K0(x, y; τ1)f0(y) +K1(x, y; τ1)f1(y)dy =W1(x), x ∈ ω (4.29)∫
ω

K0(x, y; τ2)f0(y) +K1(x, y; τ2)f1(y)dy =W2(x), x ∈ ω, (4.30)

is then shown, where

K0(x, y; τ) = S∗

∫ ∞

|x−y|+|y|
σ0

√
2τ

e−τ2

dτ, (4.31)

K1(x, y; τ) = S∗(

√
τ√
2σ0

(|y| − |x− y|)e
− (|x−y|+|y|)2

2τσ2
0 + (

x2 − 2xy

σ2
0

+ τ)

∫ ∞

|x−y|+|y|
σ0

√
2τ

e−τ2

dτ), (4.32)

with S∗ = s∗

σ2
0

√
π

and Wj(x) = e−cx−dτjVj(x) with Vj(x) = uj(x) − V0(x, τj) as defined before.

This means that it suffices to show the uniqueness and stability of the solution to this system of
Fredholm equations to prove uniqueness of the linearized option pricing problem.

4.2.4 Numerical solution of the forward problem

This section deals with the numerical solution of the forward problem.

∂u

∂τ
− 1

2
a(y, τ)2

∂2u

∂y2
+ (

1

2
a(y, τ)2 + µ)

∂u

∂y
+ (r − µ)u = 0, . (4.33)

The forward problem is solved using an implicit respective combination of explicit and implicit
methods. Consider the Dupire equation (4.12) which is being discretized using the so-called
θ-method. For simplicity we set r = µ = 0. Time derivatives are discretized using first order finite
differences whereas derivatives with respect to the strike price are second order accurate finite
differences. The θ-method requires a θ-weighted average of explicit and implicit discretization to
be formed. Inserting these averages into (4.35) yields:

un+1
j − unj
δt

=
1

2
a(y, τ)2[θ

un+1
j+1 − 2un+1

j + un+1
j−1

δx2
+ (1− θ)

unj+1 − 2unj + unj−1

δx2
] (4.34)

+
1

2
a(y, τ)2[θ

un+1
j+1 − un+1

j−1

2δx
+ (1− θ)

unj+1 − unj−1

2δx
].

Defining σ = a(y,τ)2δt
2δx2 and ρ = −a(y,τ)2δt

4∗δx we rearrange equation (4.35)

un+1
j + 2σθun+1

j − σθun+1
j+1 − ρθun+1

j+1 − σθun+1
j−1 + ρθun+1

j−1 = (4.35)

unj − (1− θ)σ2unj + (1− θ)σunj+1 + (1− θ)ρunj+1 + σ(1− θ)unj−1 − ρ(1− θ)unj−1

j = 2, . . . , N − 1

We prescribe zero Dirichlet boundary conditions such that Un
1 = Un

N = 0 which yields

j = 1 : −σθun+1
2 − ρθun+1

2 = (1− θ)σun2 + (1− θ)ρun2 (4.36)

j = N : −σθun+1
N−1 + ρθun+1

N−1 = (1− θ)σunN−1 − (1− θ)ρunN−1 (4.37)

In matrix notation we have

A =



0 −σθ − ρθ 0 0 · · · 0
−σθ + ρθ 1 + 2σθ −σθ − ρθ 0 · · · 0

0 −σθ + ρθ 1 + 2σθ −σθ − ρθ · · · 0

0 0
. . .

. . .
. . . 0

0 · · · 0 −σθ + ρθ 1 + 2σθ −σθ − ρθ
0 · · · · · · 0 −σθ + ρθ 0


(4.38)

Inverse Problems in Black-Scholes: Option Price Forecasting with Locally Reconstructed
Volatility

35



CHAPTER 4. PARAMETER IDENTIFICATION: IMPLIED VOLATILITY AS AN INVERSE
PROBLEM

B =



0 (1− θ)(σ + ρ) 0 0 · · · 0
(1− θ)(σ − ρ) 1− 2σ(1− θ) (1− θ)(σ + ρ) 0 · · · 0

0 (1− θ)(σ − ρ) 1− 2σ(1− θ) (1− θ)(σ + ρ) · · · 0

0 0
. . .

. . .
. . . 0

0 · · · 0 (1− θ)(σ − ρ) 1− 2σ(1− θ) (1− θ)(σ + ρ)
0 · · · · · · 0 (1− θ)(σ − ρ) 0


(4.39)

Aun+1
: = Bun: (4.40)

For all computations we chose θ = 1.

4.2.5 Numerical tests: reconstruction of given volatility surfaces

In order to test the proposed algorithm, the Dupire equation (4.9) is solved with a prescribed

volatility function a(y, τ) =
σ2
0

2 + f(y) to obtain the values uj(y). Then the system of Fredholm
equations (4.29), (4.30) is solved and the reconstructed volatility perturbation ā(y, τ) = σ0

2 +
f0(y) + τf1(y) is compared to the given volatility a(y, τ). We make use of the fact that

K0(x, y; τ) = S∗

∫ ∞

|x−y|+|y|
σ0

√
2τ

e−τ2

dτ =

√
π

2
S∗ erfc

( |x− y|+ |y|
σ0

√
2τ

)
, (4.41)

where erfc is the complementary error function. The integrals are calculated using a composite
midpoint rule. For more information on the numerics of (ill-posed) Fredholm integral equations
of the first kind see e.g. Baker [6]. We discretize the domain ω = (−b, b) with N grid points. This
way (4.29), (4.30) becomes

N∑
k=1

dyK0(x, yk, τ1)f0(yk) +K1(x, yk, τ1)f1(yk) =W1(x), x ∈ ω (4.42)

N∑
k=1

dyK0(x, yk, τ2)f0(yk) +K1(x, yk, τ2)f1(yk) =W2(x), x ∈ ω. (4.43)

If we let the collection of yk, k = 1, 2, . . . , N coincide with the points xj , j = 1, 2, . . . , N this
results in a square block matrix K ∈ R2N×2N consisting of the square matrices K10,K11,K20,K21

with entries

K10,jk = dyK0(xj , yk, τ1), K11,jk = dyK1(xj , yk, τ1) (4.44)

K21,jk = dyK0(xj , yk, τ2), K22,jk = dyK1(xj , yk, τ2), (4.45)

such that

K =

[
K10 K11

K20 K21

]
. (4.46)

This way the system of equations (4.29), (4.30) can be written

Kf̄ = W̄ . (4.47)

The unknown volatility perturbation f(y) is then obtained by solving the linear system (4.47) as

f̄ = K−1W̄ , (4.48)

where f̄ = [f̄0f̄1]
T , W̄ = [W̄1W̄2]

T ∈ R2N and where the ·̄ quantities are the approximations
to their respective smooth counterparts. For example the entries of f̄0 ∈ RN are f̄0,j ≈ f0(xj),
j = 1, . . . , N .
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Figure 4.2: Reconstructed volatility surface compared to prescribed volatility surface .

Numerical example

We try to recover a given volatility surface function a(y, τ) = 1
2σ

2
0 + 1

2y
2. Let s = 20, σ0 = 1

2 ,
y ∈ (−1, 1.5). The equation (4.12) is solved backwards with volatility σ0 and a(y, τ) to obtain
Vj(y) and thereafter the Fredholm system (4.47) is solved. The results are presented in Fig. 4.2.
The quality of the reconstruction is not satisfactory and the reason for this behaviour are not clear
at the moment.

4.2.6 Towards a real world scenario: Smooth interpolation of market
prices and remarks

Since uj , j = 1, 2 has to be at least twice differentiable on ω in order for f to be continuous the real
market prices u(τj , y), j = 1, 2 which are only sparsely available, i.e. for certain combinations of
maturity T and strike priceK, have to be smoothly approximated and or interpolated. For example
one could use smoothing splines to achieve this. Given n data (xi, yi) with x1 < x2 < x3 < · · · < xn
such that yi = µ(xi). The smoothing spline approximation µ̄ of µ is the minimizer of

n∑
i=1

(yi − µ̄(xi))
2 + η

∫ xn

x1

(d2µ̄(x)
dx2

)2

dx. (4.49)

Here, η > 0 is a smoothing parameter regulating the trade-off between a good data fit and a
smooth approximation. In fact, for η → 0, the solution will converge towards the interpolating
spline, whereas for η → ∞ the solution will get smoother and converge towards the linear least
squares fit. A small test on some prices of put options on the MSFT stock suggests that this
method is suitable for this purpose. The result which can be seen in Fig. 4.3 has been generated
using Matlab’s Curve Fitting Toolbox and the suggested smoothing parameter in this case is
η = 0.3738.
In the context of the inverse problem of section 3.2 one could take the corresponding option’s strike
price and maturity date and reconstruct the volatility as follows. For the choice of I∗ = {T1, T2}
there are two possibilities: either take the options maturity as T1 and take the next biggest contract
duration as T2 or take T2 as the option’s maturity and T1 as the next smallest maturity. Regarding
the interval ω; it should contain today’s stock price s∗. One approach would be to take all strikes
in a range of ±30% around the stock price s∗. This choice reflects the observed reconstruction
quality of the volatility which deteriorates for options that are deep in or out of the money.
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17.06.2016 as observed on 14.09.2015 with smoothing spline .



Chapter 5

Putting everything into action: A
large-scale real market data study

5.1 Option exchanges & BATS

The data was collected via Yahoo Finance http://finance.yahoo.com/options which retrieves
its options data from the BATS exchange which had a market share in the American options
market of 9.9% in March 2015 [1]. The biggest American options exchange is the Chicago Board
of Options (CBOE) with a option trading volume of more than $561 billion in 2013 [2]. Regular
trading hours on the American exchanges are generally from 0930 ET to 1615 ET. There are also
extended trading hours from 0030 ET until 0930 ET and from 1615 ET until 0915 ET +1d. Within
the European market Deutsche Börse owned Eurex Exchange is the most important exchange.

5.2 Data gathering

For information on how to use the Yahoo Finance API visit: http://www.jarloo.com/yahoo_

finance. To retrieve the option data we used the Remote Data Access functionality of the Python
Data Analysis Library pandas: http://www.pandas.pydata.org. Quite some effort went into
implementing this multi-threaded data grabber incorporating delays to synchronize real-time stock
quotes with delayed option quotes and creating a MongoDB http:www.mongodb.org database to
store the collected data. Data was collected in one hour intervals starting from 0930 ET during
regular trading hours. This means that 7 data sets were collected each day starting from 1st July
2015 until 4th August 2015. The information is stored in CSV format and one such data set has
a file size of around 40MB. A list of 3746 symbols for which option data was collected can be
downloaded from http://s000.tinyupload.com/?file_id=08865665819161381532.

5.3 Data filtering

We collect data in the following format:
Strike Expiry Type Symbol Last
Bid Ask Chg PctChg Vol
Open Int IV Root IsNonstandard Underlying
Underlying Price Quote Time Underlying Symbol Underlying Bid Underlying Ask

In order to obtain meaningful results the raw data has to be filtered first. Only options with
sufficient trade volume were taken into account. Next, for backtesting reasons option data that
were not available for five consecutive days as well as zero entries are removed from the data set
and a mapping of dates to consecutive trading days with results being stored in a vector called
TV is appended. Option with identical last price or volume on two consecutive days were also
filtered because this is interpreted as a sign of inactivity. Additionally, a vector containing the
time to expiry in years named TTE is also appended. Eventually the datasets (per option) which
are imported to Matlab contain the following data:
Strike Bid Ask Implied volatility Underlying Bid Underlying Ask TTE TV

Assume there are nt days for which data is available for option XYZ. The dataset XY Z for option
XYZ will then be of dimension XY Z ∈ R8×nt . For the following computations only every tenth
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entry of the database was considered to keep calculation times manageable on a consumer class
computer.

5.4 Trading strategy

Remember that this model does not distinguish between call and put options since this information
is usually incorporated by means of the boundary conditions. However, we solve the (inverse time)
Black-Scholes equation on the new interval (sb, sa). For trading decisions the calculated price of the
option is evaluated at the midpoint between the ask and bid price of the underlying sm = sb+sa

2 .
Since the bid-ask spread is narrow trades are only executed if our calculated price uα(sm, τ)
surmounts the so-called decision criterion d(t) by an amount of b = 0.02$ at least. Since we are
calculating uα(sm, t) for t ∈ (0, 2τ), the trading strategy is a two time unit strategy. This means
that depending on the prices uα(sm, τ), uα(sm, 2τ) we execute one of the strategies listed below.
Remember that τ can be one minute, one hour, one day or every fraction of 255 days between 0
and 1/4.

1. If uα(sm, τ) > d(τ) + b and uα(sm, 2τ) > d(2τ) + b, buy two contracts of the option today,
i.e. at t = 0. Then, sell one contract at t = τ and the second one at t = 2τ . Apply the
strategy after two time units, i.e. at t = 2τ again.

2. If uα(sm, τ) > d(τ) + b, but uα(sm, 2τ) ≤ d(2τ) + b, buy one contract today, i.e. at t = 0.
Sell the contract after one time unit, i.e. at t = τ and apply the strategy on that day again.

3. If uα(sm, τ) ≤ d(τ) + b, but uα(sm, 2τ) > d(2τ) + b, buy one contract today, i.e. at t = 0
and sell it after two time units, i.e. at t = 2τ .

4. If uα(sm, τ) ≤ d(τ) + b and uα(sm, 2τ) ≤ d(2τ) + b, do not buy anything and apply the
strategy after time τ has passed.

For now we use the extrapolated ask price ua(t) as the decision criterion, i.e. d(t) = ua(t). We
mention this because we will choose different combinations of boundary conditions and decision
criteria in later sections.

5.5 Backtesting

• Options are usually traded by means of option contracts which is written on 100 shares of
the underlying.

• Trading is possible irrespective of the account balance → money can be borrowed at all times
and without costs.

• Transaction costs are not considered, but one might argue that the buffer b accounts for
them.

• Interest rates are not taken into account, i.e. r ≡ 0.

• Data is required to be available for 5 consecutive days in order to back test. In a real world
application of the algorithm more decisions would be made.

Since our trading strategy only incorporates trades with holding periods of one and two day(s),
we store profits respectively losses in the matrices X1 and X2. For nt days of observable data
we have nt − 2 trading opportunities for one day holding periods and nt − 2 − 1 for two day
holdings. This is due to the fact that we need two days of history data to apply our strategy. If
no options are considered the matrices will have the following dimensions: X1 ∈ Rno×nt−2 and
X2 ∈ Rno×nt−2−1. For implementation reasons we append a zero column vector z = 0 ∈ Rno×1 to
X2 to make its dimension coincide with the dimension of X1. I.e. X2 is redefined as X2 = [X2 z].
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To clarify matters, assume there is a list of options labeled 1, 2, . . . , j, . . . , no. Now entry X1(i, j)
contains the change in price of the ith option from the jth day to the j + 1th day of observation
i.e. X1(i, j) = (ub(j+1)+ua(j+1))/2−ua(j). Note that the ask price on the day of buying ua(j)
is quoted whereas the midpoint between bid and ask price on the day of selling is quoted under
the assumption that we are able to trade within the bid ask range on average. Next an indicator
matrix I ∈ Rno×nt−2 is defined. Whenever the algorithm suggests a strategy for a certain option
the corresponding number will be written into I at the corresponding position. The labeling is
as follows: strategy 1 =̂ 1, strategy 2 =̂ 2, strategy 3 =̂ 3, no trade =̂ 0. In a next step this
indicator matrix is split intro three separate matrices of the same dimension, such that I1 contains
the non zero entries of I which equal one and I2, I3 the non zero entries which equal 2 and 3
respectively. These indicator matrices allow us to pick the daily/two day profit/loss from X1 and
X2 for the days on which the algorithm suggested trading. This is a comfortable way to calculate
profit per option or per strategy. Consider for example the profits (or losses) generated by strategy
1. Since this strategy includes two holding periods the total profit is a combination of entries in
X1 and X2. More precisely, let X1d1 and X2d1 be the entries of X1 and X2 respectively whose
positions coincide with the non zero entries of I1. The subscript 1d1 encodes a holding period of
one day (1d) for strategy 1 (1). For example, one obtains the profit per option for strategy 1 by
summing along the second dimension of X1. The account balance as plotted in the figures across
the following sections is the sum of all options’ profit/losses for all strategies combined, such that
balance with initial balance b0 on the ith trading day is

b(i) = b0 +

no∑
a=1

nt−2∑
b=1

Xi
1d1(a, b) +Xi

2d1(a, b) +Xi
1d2(a, b) +Xi

2d3(a, b), i = 1, 2, . . . , nt − 2. (5.1)

5.5.1 Restriction on options with significant bid-ask spread: A Com-
parison

As witnessed and explained in the previous section, the information content for options whose
underlyings have very small bid-ask spreads is very small. To mitigate this we restrict our analysis
to those options with significant bid-ask spreads and investigate possible potential for profit among
this data subset. Let the bid-ask spread of the underlying be defined as ∆ = sa − sb. Such a
data subset contains only options for which the relative spread ∆

(sa+sb)/2
> ε, where ε is the

relative spread threshold. We demand a minimum relative spread of ε = 0.6% for an option to be
considered ”an option with significant bid ask spread”. The testing procedure is as follows. The
dataset containing all options is referred to as dataset 1. The dataset containing the options with
significant bid ask spread is referred to as dataset 2. We take 40 random samples out of each of
the datasets such that the number of decisions made by the algorithm is roughly the same. Then
we simulate the trading strategy on each of the datasets’ samples and calculate mean values of
characteristic quantities q, which we denote by ∅q. The initial account balance is b0 = 100$ and
it is assumed that money can be borrowed at no costs at any time. A comparison of back testing
results can be seen in Table 5.1. The algorithm triggers fewer trades for dataset 2 than for dataset
1. This results in significantly higher end balance ∅b(nt − 2): 94.93$ vs. 88.68$. Note however,
that the ratio between profitable and losing trades is still the same.

5.5.2 Modification: Negativity of extrapolated ask price

In case the extension of the quadratic polynomial ua(t) onto (0, 2τ) is negative at any point
t ∈ (0, 2τ), no trade is recommended. The reason therefore is that the extrapolated ask price is a
boundary condition for the inverse problem and even though the solution of such a problem could
still contain information about the evolution of the price when compared to the decision criterion
ua, we do feel like it is not reasonable to allow for negative option prices. The results, which
can be seen in Table 5.2 suggest improved results for both datasets. Especially, the increase in
performance for dataset 1 is remarkable when compared with the data from Table 5.1 (∆∅b(nt −
2) = +6.93$). Therefore, all the computations to follow respect this modified trading rule.
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Measure Dataset 1 Dataset 2
∅b(nt − 2) 88.68$ 94.93$
∅# decisions made 114 112
∅# profitable trades 13 8
∅# losing trades 40 27

Table 5.1: Comparison between samples from all options versus samples from options with signi-
ficant bid-ask spread.

Measure Dataset 1 Dataset 2
∅b(nt − 2) 95.61$ 96.65$
∅# decisions made 108 115
∅# profitable trades 10 5
∅# losing trades 30 21

Table 5.2: Effects of incorporating the modified trading rule mentioned in Section 5.5.2.

5.5.3 Impact of boundary conditions and decision criterion

From the boundary conditions from Section 3.4.3 we chose to test the regression boundary condi-
tions and back test it. Furthermore, we also investigate the effects of using different combinations
of boundary conditions and decision criteria. The abbreviations ”bc” and ”dc” stand for the
boundary conditions and decision criterion used, respectively. In this context, ”quad” refers to
the quadratic polynomial and ”reg” refers to the case where regression is applied on to the re-
spective data for use as boundary condition or decision criterion. See Table 5.3 for the results. An
important observation is that the regression boundary conditions and regression as the decision
criterion lead to way lower number of trades. It might be interesting to further investigate the
behavior of this strategy for longer observation horizon.

5.5.4 Influence of volatility coefficient

Another important quantity is the volatility coefficient σ(t). The quadratic extrapolation men-
tioned in Section 3.2 is compared with a linear regression function obtained from the volatility
observations at times {−2τ, τ, 0}. The impact can be seen in Table 5.4. Fewer trades are recom-
mended when compared to the cases with the volatility which is quadratic in time (see Table 5.2).

5.5.5 Test on most actively traded options

One expects the prediction quality to be better for actively traded, i.e. liquid options. On the
other hand tight bid ask spreads are associated with these options. In dataset 3 we collect the 56
most active options and run our strategy on this subset. The results are shown in Table 5.5.

5.5.6 Alternative one-day trading strategy

As prediction quality theoretically decreases for longer prediction horizons, we test a one-day
trading strategy. The trading rule is as follows:

1. If uα(sm, τ) > d(τ) + b, buy one contract today, i.e. at t = 0. Sell the contract after one
time unit, i.e. at t = τ and apply the strategy on that day again.

2. If uα(sm, τ) ≤ d(τ)+ b, do not buy anything and apply the strategy after time τ has passed.

We use d(t) = ua(t). In Table 5.6 the results of this strategy can be seen for all samples from all
options (dataset 1), for options with significant bid-ask spread (dataset 2) and for most actively
traded options.
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Measure Dataset 1 Dataset 2
bc: quad, dc:regression

∅b(nt − 2) 89.73$ 93.96$
∅# decisions made 121 113
∅# profitable trades 19 9
∅# losing trades 52 32

bc: regression, dc:quad
∅b(nt − 2) 91.18$ 92.85$
∅# decisions made 122 112
∅# profitable trades 14 7
∅# losing trades 54 35

bc: regression, dc:regression
∅b(nt − 2) 98.47$ 98.99$
∅# decisions made 88 115
∅# profitable trades 2 1
∅# losing trades 4 1

Table 5.3: Impact of different combinations of boundary conditions and decision criteria as presen-
ted in Section 3.4.3.

Measure Dataset 1 Dataset 2
bc: quad, dc: quad

∅b(nt − 2) 91.46$ 96.74$
∅# decisions made 109 113
∅# profitable trades 10 5
∅# losing trades 30 21

bc: quad, dc: reg
∅b(nt − 2) 93.22$ 93.96$
∅# decisions made 128 122
∅# profitable trades 20 9
∅# losing trades 55 36

Table 5.4: Experiment: Linear regression function as volatility.

Measure Dataset 3
bc: quad, dc: quad

∅b(nt − 2) 97.40$
∅# decisions made 100
∅# profitable trades 7
∅# losing trades 12

Table 5.5: Experiment: Most actively traded options.

Measure Dataset 1 Dataset 2 Dataset 3
bc: quad, dc: quad

∅b(nt − 2) 97.75$ 99.38$ 99.13$
∅# decisions made 98 115 100
∅# profitable trades 5 3 3
∅# losing trades 11 6 7

Table 5.6: Experiment: One-day trading strategy.
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5.5.7 Forecasting with locally reconstructed implied volatility: Future
work

Note that we are leaving the inverse Black-Scholes framework presented in Section 3 due to the
fact that the volatility coefficient now depends both on time t and stock price s. Since the retrieval
of volatility in Isakov [11] is not based on the same model as in Klibanov [29], in this case the tests
presented here are of experimental nature only. However, the authors of [29] believe that based on
the theory of globally convergent algorithms which was successfully applied in Klibanov [28, 26]
it should be possible to construct functionals such that convergence can be proved. The key idea
is to modify the Tikhonov-like functional to become globally strictly convex.
Since the results for the volatility reconstruction in Chapter 4 are not satisfactory, we refrain from
providing further commentary here.
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Chapter 6

Conclusions

What has been done

The study was set out to investigate the possibility of forecasting options prices via the solution of
the time inverse Black-Scholes equation. To this end, fundamental terminology and basic concepts
regarding the derivative form of options were introduced. Since the problem we are dealing with
is ill-posed in the sense of Hadamard some basic theory on the treatment and analysis of such
problems was presented in Section 3.3. The regularization technique applied here is Tikhonov
regularization. We cited a convergence proof of the minimizer of the Tikhonov functional to the
exact solution of the time inverse problem and analyzed different parameter selection criteria for
their applicability to the inverse time option pricing problem. The analogy to the heat equation
served as an accessible example to point out some of the particularities one encounters in the con-
text of (ill-posed) inverse problems. A numerical example confirmed the theoretic result of solving
the backward time heat equation for up to T = 0.5s, which is a remarkable result considering the
instantaneous failure of standard Euler scheme like solvers for this problem.
One aspect of this thesis was to test the conjecture of profitability of the reconstruction algorithm
when applied with a simple trading strategy to real market data. To do so, data was collected from
Yahoo Finance and accumulated using Python’s pandas library. The queried data was imported
into a MongoDB database, filtered using the statistical computing software R and formatted for
use with Matlab. Finally, backtesting was done using different boundary conditions and decision
criteria and a two day strategy was compared to a one day strategy. The number of options
considered (samples taken from a database of roughly 300.000 different options) was significantly
higher than the 20 options tested in the original paper by Klibanov [29].

What the results mean

The reconstruction algorithm works when a reasonable regularization parameter is chosen. How-
ever, for the computational domain we are interested in, it is difficult to find automated parameter
selection procedures. At the moment, good heuristic approaches seem to be the best way of choos-
ing such parameters in this case. The results obtained in Sections 5.5.1-5.5.4 should not be seen in
terms of absolute return but as insight into which changes the boundary conditions, trading rules
and decision criteria have on the overall performance of the algorithm. Since the test sets only
comprised one month’s worth of data, prolonged observations are imperative for a final assessment
of the strategies performance. The results support our conjecture of the prediction to be rather
pointless for options whose underlying’s bid-ask spreads are too tight. In that case the prediction
generated by the solution of the time inverse problem essentially corresponds with the interpola-
tion function F (s, t). One basically tries to predict price by extrapolation of a polynomial in that
case and the solution of the inverse problem is superfluous.

What can be done in future work

As already mentioned before, the algorithm should be tested for longer periods of time than one
month, preferably more than one year to observe long term behavior of the algorithm. Additionally,
the data filtering can probably improved based on heuristics and experience with option trading.
Furthermore, in some cases better results were achieved when weighting the regularization terms
in (3.67) differently. In this context it might be interesting to have a look at multi parameter
Tikhonov regularization techniques. Note however that the convergence results from Section 3.4
are not valid in this case.
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Next, the performance of the algorithm for shorter time intervals, for example hourly trading could
be investigated. In theory, results should be better.
Additionally, improved volatility coefficients could further improve the reliability of the prediction.
Unfortunately, numerical results for the linearization approach presented in Chapter 4 were not
satisfactory and the volatility therefore not incorporated into the model.
Also, we observed that the largest jumps in option price usually occur on the day of a company’s
earning report. This might seem obvious, but one could try to map estimated earning call dates
to stock symbols and pause the algorithm on these days. This is also in line with the fact that
the Black-Scholes framework is per assumption not able to predict or account for sudden market
events.
Another possibility might be to come up with more advanced trading strategies that make use of
the information obtained by the solution of the inverse problem in a better way than our rather
primitive strategy. In this context, one could introduce confidence levels for certain symbols or
options based on experience, i.e. past decisions. Finally, machine learning techniques might be
applied therefor, as well as for the selection of regularization parameters.
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