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Abstract

In the field of numerical simulation the finite element method is one of the most popular
general purpose techniques for computing accurate solutions. Since memory latency is one of
the most serious bottlenecks in high-performance computing, I/O-efficient algorithms which
minimize this latency have been developed for finite element methods defined on grid-based
discretizations by ordering the data accesses along a space-filling curve. In this thesis we
investigate the design of I/O-efficient algorithms for finite element methods for arbitrary
discretizations in two and three dimensions. In 2D we are successful in extending the 2D
algorithm to arbitrary subdivisions at the cost of doubling the traversal length. In 3D an
optimal solution was not achieved, but a highly efficient solution which seems to scale well
with the input size is still obtained by using heuristic approaches. Experimental evaluation
shows that for tetrahedral subdivisions of point sets up to 80, 000 the cache-miss rate can be
reduced to as low as 5 %.
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1 Introduction

In Scientific Computing the key objective is to do virtual experiments on a computer regarding
problems in the physical sciences. By capturing natural phenomena in mathematical models
(usually based on partial differential equations (PDEs)), numerical simulation techniques may
approximate real-life behavior. Examples include how heat distributions or fluid dynamics change
(or settle) over time. In this field the finite element method is one of the most popular general
purpose techniques for computing accurate solutions [1]. Just like all other methods it relies on
the availability of a discretization of the input domain.

Although numerical simulation techniques are a heavily studied subject due to their relevance
in many fields of science, according to Schweitzer[2] relatively little attention is paid to the prac-
tical details of programming these algorithms. By taking the hierarchical memory design of a
computer into account during the design stages of an algorithm data input and output operations
(I/O-operations) can become much faster and less frequent, consequently avoiding the associated
memory latency and decreasing the running time of the algorithm. In modern computers this
memory latency is one of the most serious bottlenecks in high-performance computing [3]. The
external-memory model of computation by Aggarwal et al.[4] analyses an algorithm in terms of
its I/O-efficiency, i.e. the number of I/O-operations as a function of the input size. A distinction
is made between cache-aware algorithms, which require knowledge of the hardware parameters
such as the block size and memory size, and cache-oblivious algorithms, which do not. For finite
element methods defined on two- and three-dimensional grid-based discretizations, Gunther et al.
[3] developed the first cache-oblivious algorithm using the Peano space-filling curve in 2006 (later
dubbed the Stack & Stream algorithm [5]).

Since then this approach has been generalized to other grid-based discretizations – using other
space-filling curves – but never to arbitrary discretizations [5, Chapter 14]. In this thesis we
investigate the design of cache-efficient algorithms for finite element methods for arbitrary dis-
cretizations in 2D and 3D. We develop an abstract data access model which expresses efficient
data access as a minimization problem and show that previous work on grid-based discretizations
effectively found an optimal solution in this model. In 2D we are successful in finding an optimal
solution for arbitrary discretizations. In 3D an optimal solution was not achieved, but a highly
efficient solution which scales well with input size is still obtained by using heuristic approaches.

The remainder of this thesis is structured as follows: Section 2 describes the finite element
method computation and the external-memory model of computation. In Section 3 we explain
the Stack & Stream algorithm, after which our generalization to arbitrary 2D discretizations is
given in Section 4. Section 5 discusses the generalization step to 3D, presents the abstract data
access model, and discusses (heuristics for) two approaches which minimize the number of I/O’s.
We have implemented both approaches, the experimental results of which are given in Section 6.
Finally, we list areas of interest for future work in Section 7 and conclude in Section 8.
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2 Model of computation

In this section we explain the context in which we have developed our algorithm. First, we will
talk about the kind of data used in finite element method type calculations and how it is used.
Secondly we introduce the external-memory computational model and how it differs from the
standard RAM model. Lastly, we look at how the external-memory model model differs when
applied at the cache level of the memory hierarchy.

2.1 Finite element methods

In the field of numerical simulation the finite element method (FEM) is an approximation scheme
which by iterative computations eventually converges towards the solution of the simulation prob-
lem. Examples include how heat distributions or fluid dynamics change (or settle) over time. There
exist many different kinds of finite element methods and problems, each one slightly different based
on their application. We will define a typical input first and discuss variants afterwards.

The finite element method is defined on a discretized input space and uses time steps to advance
the simulation. The accuracy of the model depends on the granularity of the discretizations and the
time steps. The discretization results in a subdivision which can be characterised by a set of vertices
V = (v1, . . . , vn), a set of non-intersecting edges E ⊆ (V × V ), a set of non-intersecting elements
or cells C = (c1, . . . , cm) and, in three and higher dimensions, a set of 2D faces F . Although the
finite element method can be defined for any subdivision, we restrict ourselves to triangulations
in 2D or tetrahedralizations in 3D unless explicitly stated otherwise, i.e. subdivisions where each
cell is a triangle in 2D or tetrahedron in 3D respectively. Input sizes can range into the millions
of cells, depending on the accuracy required.

All vertices v ∈ V have a variable(s) associated with them (also referred to as an ‘unknown’
in literature). Examples are a vector field with velocity in d dimensions and pressure, or variables
from Maxwell equations and temperature. During an iteration the values of these variables are
updated to their new value for the next iteration. The new value of a variable is calculated from
weighted linear independent contributions of its current value, and the variable values of those
vertices in the subdivision which it shares a cell with [1, Section 4.1]. Due to the independent
nature of the contributions, we can define the computation on a per-cell basis, which is known as an
element-oriented approach. Consider a cell c ∈ C of vertex degree k. Let vector vc = [v1, . . . , vk]

T

hold the variable values associated with its k vertices, and let Ac be a k × k matrix. Then all
vertex-to-vertex contributions at c of a single iteration can then be calculated by v′c = Acvc after
the values of Ac (i.e. the weighting of the contributions) are properly defined [1, Section 6.1.1].
The total computational work of a single iteration is the summation of the computational work
done at each cell, i.e. the computation of Acvc for all c ∈ C.

The matrix Ac is known as the reference matrix, cell matrix or element (stiffness) matrix
and its values depend on the shape and orientation of c in the subdivision. If the subdivision is
completely uniform (e.g. a uniform grid) then Ac is identical for each cell, but if it is completely
irregular it can be unique for each cell. We will assume that all initial values (i.e. vertex variables
and cell matrices) are given as an input and abstract from concrete problem-specific values.

For each variable at a vertex an associated accumulating variable (also known as ‘residual’) is
also stored. The role of the accumulating variable is to sum up the contributions from vc

′ at each
adjacent cell c of the vertex. At the end of an iteration the resulting value of the accumulating
variable replaces the current variable value. The number of such variable and accumulating variable
pairs depends on the problem at hand. In the remainder of this thesis we refer to all vertex variables
as ’the vertex’. Idem for cell variables.

Depending on the application the finite element method might be different from this descrip-
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tion. Differences include models which include variables on edges, hanging vertices (i.e. vertices
which lie in the interior of an edge), or calculations that depend on the computation order of the
cells. For some applications may also be desirable to dynamically change the subdivision during
the computation. Points may be added or removed based on some criteria which we abstract
from, and subsequently the subdivision has to be re-triangulated. The algorithm needs to be able
to adopt these changes in between (a couple of) iterations. We do not consider these variations
unless explicitly stated otherwise.

2.2 The external-memory model of computation

For algorithm analysis the standard computational model, also known as the RAM model, assigns
a unit cost to each operation (for example a load, store, or computational operation). Since we
are interested in asymptotic worst-case behaviour we abstract from any constant factors in the
algorithm and express the complexity in terms of its input or parameter size. This leads to the
familiar big-O notation, e.g. O(n log n) and O(kn) for sorting n numbers consisting of at most k
digits with merge sort and radix sort respectively. The assumption of a unit cost per operation
is one that is justified in practice for most algorithms and has shown to result in a model that is
often a good predictor of the running time. However, when the input size of a problem exceeds
the main memory of the machine, the performance bottleneck of an algorithm often shifts from
computational complexity to I/O-complexity due to the high latency associated with an I/O-
operation (input/output from/to disk). This is where the external-memory model of computation
[4] becomes a far more accurate running time predictor.

The standard external-memory model is based on a two-level memory hierarchy. The main
memory or internal memory is small and fast, but cannot hold all data at once, whereas the external
memory (usually a magnetic disk) is slow and viewed as being infinitely large. Computations can
only be done on data that is present in the internal memory. Whenever data is necessary that is
not present, a miss is said to occur and an I/O-operation is executed to retrieve the data from
external memory, replacing a block of internal memory data that is consequently moved to external
memory to make room. When necessary we may assume that we have complete control over the
replacement policy, i.e. the choice which block of data to move to disk.

In the external memory model it is assumed that the latency incurred from I/O-operations
throughout the algorithm dominates the running time and that any computational operations
done in internal memory are negligible. Therefore the complexity analysis of an algorithm in the
external memory model uses the I/O-operation as the unit cost. It is expressed in terms of the
hardware specifications of the machine that will run the algorithm.

On all machines both the internal memory and external memory are partitioned into blocks
and whenever a data element has to be read or written the I/O-operation reads or writes the whole
block it resides in – blocks are the only unit for I/O-operations. The block operations are used to
amortize the high latency costs associated with it over the useful data elements loaded. This is a
form of pre-fetching data, banking on correlated data accesses (e.g. accessing sequential elements
in an array). Given the size of a data element (e.g. a variable) we can calculate the number of
contiguous data elements that are read or written at once during an I/O-operation. This number
is denoted by B, and analogously we use M to denote the number of data elements that fit into
internal memory. A usual assumption is that M > B2.

Algorithms which try to minimize the number of I/O-operations sometimes require the values of
B and/or M as an input parameter. These algorithm are called cache-aware. When I/O-efficiency
is achievable without knowledge of B and M the algorithm is called cache-oblivious.

In the external memory model there are two main principles that decrease the number of I/O’s
and increase the efficiency of an algorithm. If we ensure that data elements which are stored close
to each other on disk are needed around the same time we cater to the assumption underlying
block I/O-operations and thus increase their efficiency. The extra data that was pre-fetched will
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still reside in internal memory when needed and will not require its own I/O-operation. This is
known as the spatial locality principle. Secondly, when the moments of access to the same data
element are clustered in time, it is likely to still be present in the internal memory and we do not
need multiple I/O’s to fetch the same data. This is the temporal locality principle. Adhering to
these principles is the key to make the most of each I/O-operation and reduce the I/O-complexity
of an algorithm.

2.3 Modelling cache-efficiency

The cache-efficient model is very similar to the external-memory model described in Section 2.2,
but it is applied at a different level of the memory hierarchy. We again have a two-level hierarchical
memory model, but now the small on-chip cache memory is the internal memory and the main
memory is regarded the external memory. The internal and external memories still communicate
using block I/O-operations 1 and the spatial and temporal locality properties still apply. However,
there are also some differences.

1. The latency associated with an I/O-operation between main memory and cache memory is
smaller than it for I/O’s between disk memory and main memory. Thus it is less dominant
for the running time and disregarding all internal memory operations completely is not
justified.

2. Usually there are several levels of cache memory, each one a bit bigger and slower than the
previous, to bridge the I/O-latency disparity between the fastest cache and main memory.
Usually we have L1 and L2 cache, but L3 caches also exist.

3. In the external memory model we had assumed that we had complete control over the
replacement policy and blocks, but the replacement policy at cache level is implemented in
hardware and rarely has control instructions. Furthermore, this implementation is usually
also n-way associative instead of fully associative. Each block of main memory data can go
to one of n slots in cache-memory (usually n ∈ {1, 2, 4, 8}). Thus we cannot write a block of
data to our memory location of choice.

We could try to incorporate all differences into a new model, but the reality is that there is
a trade-off between simplicity and accuracy. The more details you incorporate the more accurate
your model will be, but it will also become increasingly harder to take all of them into account
when designing or analysing your algorithm.

There is some work dedicated to these differences. Sen et al. [6] present a model that maps
any I/O-efficient algorithm at disk level to a cache efficient version of it and bounds the resulting
number of I/O-operations by a constant while respecting the restrictions of the replacement policy
and associativity. Furthermore, it also incorporates the internal memory operations into the
complexity analysis.

Frigo et al. [7] do not address the differences, but instead argue why they are minor. They
make the ideal-cache assumption which assumes that the differences listed in bullets 2. and 3. do
not affect the asymptotic analysis when applying the external memory model at the cache level,
and additionally assume that the replacement policy is optimal. These are strong assumptions, but
they theoretically justify each of them. The main justification comes from the work of Sleator et
al. [8], who tell us that any machine implementing a least recently used (LRU) replacement policy
has at most twice as many misses as an optimal machine with half the memory, thus bounding
the miss rate by a constant.

We note that in the papers by Sen and Frigo the framework of internal and external memories
with block data transfers as well as the spatial and temporal locality design principles remain

1In literature a block of cache memory is often referred to as a cache line.
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intact. The differences that exist have a minor impact or can be dealt with by using the mapping
strategy of Sen et al. In the remainder of this thesis we therefore work on the premise that
the analysis and assumptions of the external-memory model are also applicable and accurate at
the cache level of the memory hierarchy and will use the terms cache-efficient and I/O-efficient
interchangeably. We will introduce a few more in-depth hardware concepts in Section 6.5, where
we discuss the results on this thesis in the context of typical hardware specifications.

7
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3 Stack & Stream traversals

The Stack & Stream algorithm is the original work this thesis builds on. It is a cache-oblivious
algorithm for the types of calculations described in Section 2.1 which allows for adaptive refine-
ment of the mesh while retaining its I/O-efficiency. In this section we will explain the main idea
behind the algorithm. We refer the interested reader to the book of Bader [5, Chap. 14] where
a full description, including implementation details, is given. The original work was published by
Gunther et al. [3].

To minimize the number of I/O-operations the goal will be to only use stack data structures.
Stacks only have push and pop operations which access only one address in the memory and
subsequently move the head pointer to the new head or previous element. Therefore all additional
data elements loaded by the block I/O-operations are those next in line to be popped, i.e. stacks
have perfect spatial locality when implemented in contiguous memory. Furthermore, the elements
which have not been recently used will also not be used in the near future because they are
buried deep in the stack. The cache’s least recently used replacement policy therefore matches
our intended use of the data. We will now discuss the order in which the calculation should be
executed to allow for stack data structures.

3.1 Traversal order

In the Stack & Stream algorithm the element access order is determined by the order in which
a space-filling curve running through the cells of the subdivision visits them. We will first talk
about the structure of a single traversal (i.e. FEM iteration) and later show how it easily extends
to many iterations.

A space filling curve is a curve running through a refinement pattern that can be applied
recursively and which, when refined ad infinitum, occupies the whole domain of unit space it is
defined on. An example of this is the Hilbert curve illustrated in Figure 1.

The refinement pattern of the Hilbert curve is a square that has been bisected on both axes
to obtain four subsquares. If any square would be recursively refined then a (mirrored or rotated
variant of the) refinement pattern determines the course of the space-filling curve through the new
squares such that its endpoints connect to the predecessor and successor of the original square.
The orientation in which the refinement pattern is recursively applied unique in the case of the
2D Hilbert curve, but for the 3D variant there are multiple orientations [5, Chap. 8]. Many space-
filling curves exist each with their own refinement pattern and orientations. Examples include the
Peano curve whose refinement pattern is defined on a square that is divided into nine subsquares
by trisecting both axis, and the Sierpinski curve which is defined on a triangular space that is
bisected along the hypotenuse. For now we will work with the Hilbert curve example.

Let the finite element method subdivision be a quadtree grid, i.e. a subdivision that can be
obtained by recursively splitting a square into four equal quadrants, subquadrants, and so on.
This grid does not need to be uniform – some quadrants may be refined more than others. When
we draw the Hilbert curve through the grid we obtain an order in which the cells and vertices are
visited (illustrated in Figure ??). Whenever two vertices are access at the same time (i.e. the
same cell) ties are resolved by the order in which they would have been accessed if that cell was
refined once more. Furthermore we categorize all vertices as lying either to the left (green) or
right (red) hand side of the curve.

The order of the finite element computation matches the order in which the space-filling curve
visits the cells. At each cell all its adjacent vertices are loaded to make the matrix-vector compu-
tation. In the next section we will show how the properties of this order and categorization can
be used to set up an efficient stack data structure.

8
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Figure 1: The first three iterations of the 2D Hilbert curve.
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Figure 2: The enumerated access order of vertices in an uniform quadtree grid.

3.2 Stack structure

We are now ready to define the data structure behind the element accesses. We need to provide
four I/O-efficient operations: loading and storing the data associated with cells (cell matrix), and
loading and storing the data associated with vertices ((accumulating) variables). We work with
the worst-case assumption that all cell matrices are unique and need to be loaded for each cell
separately.

The cell data structure has a near-trivial design since all cells are only used once. We can
order the cells on their access time and store them sequentially in contiguous memory for per-
fectly I/O-efficient operations. However, if we would use an array implementation refining a cell
of the grid (i.e. splitting it into four equal subquadrants) would take O(n) time to insert the
subquadrants into the array if we want to maintain the correct order. The solution is to instead

9
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use a stream implemented by two stacks: an input and an output stack. During the traversal cells
are continuously popped from the input stack and pushed to the output stack. Whenever a cell
needs to be refined we pop it from the input stack and, instead of the cell, push the four new
subquadrants to the output stack in the order in which the refined space-filling curve visits them.
Conversely, for a coarsening operation we can load the four quadrants that descended from the
same parent consecutively from the input stack and replace them by a single cell on the output
stack.

The vertex data structure is a bit more sophisticated. We again have an input and output stack
which are ordered along the space-filling curve, but because vertices are accesses more than once
a simple sequential traversal is not possible without duplicating vertices. We need a structure to
store the vertices at in between their first a last access – the intermediate vertex stack. Whenever
a vertex is accessed for the last time we move it to the output stack, otherwise it is stored on the
intermediate stack. This strategy is possible because the Hilbert curve (and all other 2D edge-
connected space-filing curves, i.e., curves whose subsequent subdomains at least share a common
edge) satisfy the stack property : all accesses to the vertices of the same color in Figure 1 (i.e.
red or green) occur in a strictly most recently used scheme, i.e. follow a stack principle. Thus if
we employ an intermediate stack for both the left and right hand side all vertex load and store
operations are supported by stack data structures.

The access scheme of a vertex is now as follows: At the first access it is popped from the input
stack and pushed to the intermediate stack. At intermediate accesses it is both popped from, and
pushed to, the intermediate stack. Finally, at the last access it is popped from the intermediate
stack and pushed to the output stack.

Analogue to the cell refinement and coarsening, we can again replace vertices as needed in an
on-line fashion.

So far we have shown how we can efficiently support vertex load and store operations by cleverly
distributing them over the two intermediate stacks, but we have not addressed how to distinguish
between them and the input/output stacks during a load or store operation. It turns out that the
refinement pattern of the space-filling curve is structured enough to locally determine whether an
adjacent vertex is accessed for the first or last time. We refer to Bader [5, Section 14.2] for a full
discussion on how to maintain the curve’s local orientation during the traversal.

3.3 Iterations

Now that we have defined the structure of a single traversal extending it to multiple ones is
surprisingly simple. Observe that during the first forward iteration all elements of the input
stacks have been moved to their respective output stack in a last-access order. Thus the elements
currently residing on the output stacks exactly match the first-access order if we now do a back-
to-front traversal along the space-filling curve. As a consequence many consecutive iterations can
efficiently be executed by inverting the interpretation of the input and output stacks, and the
traversal direction along the space-filling curve at the end of each iteration.

10
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4 Generalizing 2D Stack & Stream to arbitrary subdivi-
sions

In Section 3 we have seen how the space-filling curve based Stack & Stream approach provides an
I/O-efficient traversal of the subdivision. However, the power of the space-filling curve approach
is not immediately apparent. In an uniform quadtree grid a row-by-row traversal would also
satisfy the stack and inversion properties. In fact, in 2D any Hamiltonian path in the dual with
end points adjacent to the hull of the subdivision would suffice to define the left/right hand
classification and stack structure, but these approaches do not support refinement and coarsening.
In this context a space-filling curve can be viewed as a persistent Hamiltonian path under local
refinement/coarsening operations. However, using a space-filling curve approach is only possible
when the subdivision matches the refinement pattern of the space-filling curve, even for the static
variant of the problem. In this section we will present a modified approach which works for
arbitrary connected planar subdivisions.

4.1 Traversal order

Now that we are working with arbitrary planar subdivisions space-filling curves are not applicable
any more and we need a different curve to make the left/right division in order to use the Stack
& Stream algorithm. Any Hamiltonian path across the cells (i.e. the dual of the subdivision)
would do, but its end points must be adjacent to the hull of the subdivision otherwise the left
and right hand side may overlap (e.g. a spiral after the first 360 degree turn). However, not every
subdivision has a Hamiltonian path and finding one is a hard problem to begin with (it is one of
Karp’s original 21 NP-complete problems [9]). So how can we deal with this?

The solution is simple – we do not. Although a Hamiltonian path would work it is not a
necessary condition for the Stack & Stream algorithm. It is only required that the traversal has
the stack property and visits every cell and vertex at least once, but it is ok to visit a cell more
than once.

A spanning tree defined on the dual of the subdivision touches every cell. Therefore a treewalk
along this spanning tree defines a traversal which visits every cell at least once. At each cell we
make an anti-clockwise boundary walk, interrupted by recursive boundary walks along the children.
We therefore pass every vertex from each of its adjacent cells. This curve is a 2-approximation in
terms of the total number of cells visited compared to the Hamiltonian path. Both the cell and
vertex access orders are determined by the order in which they are lie incident to the right hand
side of the curve during a traversal of it. This also defines the order in which the computations
are done. The concept is visualised in Figure 3, and an example of the order from a cell’s local
point of view is illustrated in Figure 4 (left).

The left-right division of the vertices along the treewalk curve is special because the the left
hand side is a void and does not contain any vertices. Nonetheless we will try to employ the same
system of stacks as used by the regular Stack & Stream algorithm in Section 3. In the remainder
of this section references to ’the curve’ and ’the access order’ always implicitly refer to the right
hand side of the treewalk curve and access order.

It is not straightforward that this approach is immediately applicable. There are still a number
of issues that we need to address: (1) Does the treewalk curve commit to the stack-property? (2)
What data structure do we use for the intermediate cell storage now that they are accessed
multiple times? (3) How do we pass on the vertex-to-vertex contributions now that they are not
accessed consecutively at a cell? (4) How do we discriminate between popping from the input or
the intermediate stack, and pushing to the intermediate or output stack? (5) Is it still possible to
do iterative traversals in the reverse direction? We will address issues (1) and (2) in Section 4.2,
and issues (3), (4) and (5) in Sections 4.3, 4.4 and 4.5 respectively.
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Figure 3: The treewalk curve of a spanning tree defines a traversal through the subdivision. The
vertices are order according to their first appearance at the right hand side of the curve.

4.2 Treewalks and stack property

Perhaps the most important of these questions is the stack property. Without it a stack-based
traversal as presented in Section 3 is simply not possible. We will now formally prove that the tree-
walk order commits to the stack property for both the cells and vertices, i.e. that the intermediate
data structures can be implemented with a stack.

Theorem 1. The cell access order of the treewalk commits to the stack property.

Proof. The treewalk order is a depth-first traversal of the nodes (i.e. cells) of the tree. A cell c
stored on the intermediate stack can only be blocked on the intermediate stack by cells that come
after it, but due to the depth-first order the last accesses of all cells that come after c occur before
the next access of c. Thus they will have been moved to the output stack and c lies on top of the
intermediate cell stack.

However, this means we load the full cell matrix upon each cell visit even though we only need
column i of Ac to calculate all contributions of vi. We therefore chop up Ac into its columns
and order them in contiguous memory according to the order in which we need them to calculate
the contributions. The resulting order can then, once again, be streamed. The stack property
and structure is still required for passing on the vertex-to-vertex contribution and discriminating
between stacks though, as we will discuss in Section 4.3.

Theorem 2. The vertex access order of the spanning tree treewalk commits to the stack property.

Proof. If a vertex v is only accessed once (i.e. adjacent to only one cell) it is directly stored on the
output stack and does not pose a problem. Now consider the case where v is accessed multiple
times. We will prove that v can always be found at the top of the intermediate vertex stack for
all accesses except for the first, where it is found on top of the input stack instead. The vertex
labelled ‘7’ in Figure 3 may serve as a visual aid during this proof.

We enumerate all vertex accesses along the treewalk curve to obtain an order of the points in
time at which vertices are accesses. Let t and t+ k be two consecutive access times to vertex v in
this order, and p the subcurve of the treewalk curve that starts at t and ends at t+k. At each cell
the treewalk curve makes a boundary walk incident to the cell’s vertices interrupted by recursive
boundary walks along its children. Thus subcurve p starts and ends at different cells, but its start
and end point lie incident to the same vertex.

If we connect the start and end point of p at v then we form a cycle which encloses a part of
the subdivision. All vertices which lie on the inside (right hand side) of this cycle are accesses
along p after t and can potentially block access to v on the intermediate vertex stack at time t+k.

12
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Figure 4: An example of the traversal order from a cell’s local point of view (left) and the matching
order of the vertex input stack (right). ”Parent”, ”Child X” and ”Child Y” denote the vertices
visited by the curve at other cells, not the actual cells.

The treewalk curve is non-intersecting and, because the cycle is formed by connecting p at
a vertex, no other part of the curve can reach the area enclosed by p since it is defined on the
cells (dual) of the subdivision. Therefore all accesses to the enclosed vertices occur along p. This
includes the last access at which they are moved to the output stack. Hence all vertices that come
in between two successive accesses of v will have been moved to the output stack and at time t+k
vertex v can be found on top of the intermediate vertex stack.

4.3 Passing on contributions

Recall that at each cell c we need to compute v′c = Acvc where vc is a vector holding the variable
values associated with each vertex adjacent to c, A is the cell matrix which defines the weighting of
the vertex-to-vertex contributions, and vector v′c accumulates the vertex-to-vertex contributions
and holds the new variable values at the end of the iteration.

Say c is a triangle, then v′i = Ai,1 · v1 + Ai,2 · v2 + Ai,3 · v3. In the original Stack & Stream
algorithm a cell’s adjacent vertices are all treated consecutively, thus for i = 1 it is straightforward
to add the contributions of A1,2 · v2 and A1,3 · v3 to v′1. But now that we have separated the
calculation in time we need to address how to pass on these contributions.

We have proven in Section 4.2 it is possible to implement the cell accesses with an intermediate
stack. In the end we choose not to use it because it introduced overhead in the form of loading
unnecessary data, but it can still be used as an efficient data structure for storing data that is
shared between vertices of the same cell. Thus we can pass on a contribution from one vertex to
another by storing it to the cell intermediate stack, but because we can only pass on information
in the direction of the traversal at the end of the current iteration not all variable values of v′c will
be up to date. However, a vertex can only be missing contributions from vertices that come after
it. Therefore, since we inverse the traversal direction after each iteration, all stored contributions
will still make it to their destination vertex in time (i.e. before its next use).

For the original Stack & Stream algorithm we had worked with the worst-case assumption that
all cell matrices are unique and need to be loaded for each cell separately. This is why we had to

13



2IM91 Masters Thesis technische universiteit eindhoven

design a cell data structure, even though the best or realistic case might not require it. As it turns
out this effort has not been in vein – for the generalized variant it is required for every subdivision
to pass on the vertex contributions.

4.4 Discriminating between stacks

Using space-filling curves it was possible to locally deduce whether a vertex should be loaded from
or stored to an intermediate or input/output stack due to the regular structure, but for arbitrary
subdivisions we do not have this structure and we need to store it explicitly. All additional
information can be stored on the cell stack. We augment the data associated with a cell of d
vertices with two bit-vectors and one integer.

Since we have only one intermediate stack one bit of information is enough to discriminate
between which stack to load from or store to respectively. Thus we store a length d vector of
bit-pairs (l, s)i which each cell, where l, s = 1 if we need to load from or store to, the intermediate
stack and 0 otherwise. Additionally we need to know whether we should recurse to a child or not
at each edge during the anti-clockwise traversal of the cell (excluding the edge adjacent to the
parent cell). For this we need another bit-vector of length d − 1. Finally, to be able to continue
the boundary walk where we left off after returning from a child we need a single integer in the
range [1, d− 1], i.e. another log(d− 2) bits.

From Euler’s formula it follows that vertices in planar graphs have an average degree of 6 so
the total additional data is linear with a very small constant. In the case of a triangulation, where
the cell size is constant, the overhead amounts to 3*2+2+1 = 9 bits per cell 2.

4.5 Iterations

The first-access order of vertices and cells during the backwards traversal should again match the
last-access order during the forward traversal. This is indeed the case. Thus consecutive iterations
can still efficiently be executed by inverting the interpretation of the input and output stacks, and
the traversal direction along the treewalk curve at the end of each iteration.

Since the direction of the boundary walk at each cell has been inverted the extra data stored at
each cell has to be interpreted backwards as well. Of the bitpair (l, s) load bit l now denotes where
to store to, and s where to load from. The recursion bitvector should also be read in end-to-start
order. Note that all changes are conceptual and require no changes to the data.

Finally we note that the reasoning in the proofs of Theorem 2 and 1 also applies to the
backwards traversal order.

4.6 Incorporating edge variables

In the description of the finite element method model we noted that there also exist variants with
variables on edges. So far we have not looked at edges, but we will now show how they can be
incorporated without changing the data structure.

Edges are a new element of the subdivision which, similar to vertices, have to be accessed at
each adjacent cell to make a computation. We make a distinction between two types of edges:
Those which are intersected by the spanning tree, and those which are not.

We observe that edges which are not intersected by the spanning tree always connect two
vertices who are accessed consecutively along the right hand side of the treewalk curve. Therefore
we can insert the edge’s variable(s) in between them on the vertex stack and load it as we traverse
along the treewalk curve. When an edge is intersected by the spanning tree then it marks a point
during the traversal where we cross from one cell to another. Hence it is accessed in between two

2Technically the root cell can have up to three children and form an exception. However, this can be easily
avoided by choosing it adjacent to the hull of the subdivision.
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cells which are accessed consecutively along the curve, and we can insert the edge’s variable(s) in
between them on the cell stack .

These changes do not require a structural modification of the algorithm. The information
stored at the recursion bit-vector of each cell already provides all necessary information. During
the boundary walk of a cell we consult the i’th bit of the recursion vector when we traverse along
its i’th anti-clockwise edge.

– If the bit is equal to ’1’ (i.e. we recurse to the cell’s child) then we know we need to
access an edge from the cell stack. We load the edge from the cell input stack, calculate
its contribution, push the current cell to the intermediate cell stack, load the child from the
cell input stack, calculate the contribution of the edge to the child cell, push the edge to the
intermediate cell stack, and finally continue our boundary walk at the child.

– If the bit is equal to ’0’ (i.e. we do not recurse) then we know we need to access an edge
from the vertex stack. We load the edge from the same vertex stack as the last vertex,
calculate its contribution, store it to the same vertex stack as the last vertex, and continue
our boundary walk at the next vertex.

The same information is also sufficient for the second access to the edge, and can also be
applied to the backwards iteration.
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5 Generalizing 3D Stack & Stream to arbitrary subdivi-
sions

The approach in Section 4 successfully generalized the Stack & Stream approach to arbitrary
connected subdivisions for the case of the static finite element method calculation. We will now
look at the 3D variant of this problem. First we will show why the spanning tree approach does
not generalize to 3D in Section 5.1, after which we present a model which captures the data access
problem in Section 5.2. Using this model, we give two approaches for efficient intermediate data
storage based on another system of stacks and a memory-constrained data structure in Sections
5.3 and 5.4 respectively.

5.1 Infeasibility of applying the 2D approach

We will now prove infeasibility of the spanning tree Stack & Stream approach for arbitrary con-
nected subdivisions in 3D. Consider the tetrahedralization given in Figure 5a. It consists of
four vertices (v1, v2, v3 and v4) which define the hull, and one interior vertex v5 which splits up
the subdivision into four cells labeled A through D which can be defined by their adjacent ver-
tices as follows: adj(A) = {v1, v2, v4, v5}, adj(B) = {v2, v3, v4, v5}, adj(C) = {v1, v3, v4, v5} and
adj(D) = {v1, v2, v3, v5}.

A

B

C

D

v1

v3

v2

v4

v5

(a) A simple 3D tetrahedralization.

A

B C D

(b) A spanning tree of the sub-
division in Figure 5a.

Figure 5: A simple 3D tetrahedralization. It consists of four vertices (v1, v2, v3 and v4) which
define the hull, and one interior vertex v5 which splits up the subdivision into four cells labeled A
through D.

Due to symmetry this simple 3D subdivision only has four distinct spanning tree. We will
present the proof for one given in Figure 5b, but similar proofs can be constructed to proof
infeasibility for the other trees (although they require a few more deductive steps). Let the
spanning tree be rooted at cell A, and let cells B, C and D be its children in left-to-right order.
The spanning treewalk then results in the cell sequence A−B −A−C −A−D−A. All vertices
adjacent to a cell need to be popped from either the input or intermediate stack at some point
when we visit that cell in the traversal sequence.

Consider vertex v5 during the traversal, which lies adjacent to all four cells. Some of the
cells will be visited multiple times and we can choose at which point in time we will make the
computation (e.g. cell A), but a leaf of the spanning tree will only be visited once. We therefore
immediately know at which point in time three out of the four accesses to v5 occur and in between
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them v5 has to be stored somewhere. These storage time intervals correspond to the colored
regions marked in Figure 6. We are purposefully leaving out the access at cell A at the moment
because it complicates things and the extra access does not influence the proof.

The stack property dictates that every vertex that is put onto the intermediate stack should
be the top element of the stack at the next time it has to be accessed. Therefore it is not allowed
to put any other vertex on top of v5 that will not be moved to the output stack before the next
access to v5. Conversely, all vertices underneath v5 cannot be accessed until v5 is moved to the
output stack, so we should make sure they are not required until that point in time. The points
in time at which v5 has to be stored on the intermediate stack coincide with the colored regions
in Figure 6. Therefore for each of the other vertices all accesses to it should occur within exactly
one region, otherwise they will at some point block access to v5 on the intermediate stack, or vice
versa.

5

5

5

A

B

A

C

A

D

A

Figure 6: The storage regions defined by accesses to vertex v5. This figure excludes accesses to
cell ’A’.

The regions of Figure 6 can be defined in terms of the cells that they cover in the traversal
sequence. We find that Pink = {A,B,D}, Blue = {A,B,C} and Green = {A,C,D}. Recall that
we can express vertices in terms of the cells at which (at some point) they need to be accessed.
We can now map the access times of the vertices to the regions by finding a region which spans all
the cells at which a given vertex needs to be accessed. The results are shown in Table 5.1 (right).

Region Covered cells
Pink {A,B,D}
Blue {A,B,C}
Green {A,C,D}

Vertices Maps to region
v1 = {A,C,D} Green
v2 = {A,B,D} Pink
v3 = {B,C,D} -Is not contained by a single region-
v4 = {A,B,C} Blue

Table 1: The region problem defined by v5 in Figure 6. The cells covered by the regions (left),
and the mapping of vertices to the regions (right).

It is clear that there does not exist a region which spans all cells that lie adjacent to vertex v3.
Therefore it is impossible to find an access order that respects the stack property; at some point
vertex v3 will block access to v4 on the intermediate stack, or vice versa. Because we have only
made forced decisions (since leaf nodes are only visited once), it follows that the Stack & Stream
approach with one intermediate stack is not possible for this spanning tree.
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Cells
Vertices A B C D

v1 X X X
v2 X X X
v3 X X X
v4 X X X
v5 X X X X

(a) The vertex-cell adjacency
relations of the subdivision

in Figure 5.
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(b) The marked access times for
each vertex along the traversal.
The filled circles mark definitive

access times – the vertex must be
accessed here. The open circles

represent a choice problem –
among all of them one should be
chosen as a definitive access time.
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(c) An example of the resulting
intervals after making arbitrary
choices (marked in red) for the
choice problem in Figure 7b.

Figure 7: An overview of the access model applied to the subdivision of Figure 5.

Of course adding more intermediate stacks would solve the problem. The trivial solution uses
n stacks, but in this case all I/O-efficiency will be lost. In Section 5.3 we will discuss the problem
of minimizing the number of intermediate vertex stacks. An alternative solution which uses a
memory-constrained data structure is discussed in Section 5.4.

5.2 The abstract data access model

As we have seen in Section 5.1 the access times of a vertex during the tree traversal create regions
which impose constraints on when other vertices can be accessed. If we do not respect these regions
the stack property will be violated and consequently it will not be possible to implement Stack &
Stream using the stack data structure. Although sufficiently clear for the counterexample regarding
straightforward generalization to 3D, we did not define these ”regions” and the restrictions they
impose on the data accesses in full detail yet. The remainder of this section is dedicated to this
problem.

If we enumerate the cell order of the traversal every region of the counterexample forms a
time line on which we can mark the points in time at which a vertex is accessed. Each pair of
consecutive marks now defines a time interval in between accesses during which the vertex has to
be stored somewhere. We can apply this technique to each vertex and mark the time line according
to the vertex-cell adjacency relations, resulting in a set of well-defined consecutive intervals in the
domain [1, 7] for each vertex. A vertex which lies adjacent to n cells has n− 1 intervals associated
with it. When a vertex lies adjacent to a cell which is visited multiple times a decision has to be
made at which point in time the vertex access should occur. This choice problem exists for any
such cell. Figure 7 gives an overview of the vertex-adjacency relations, the resulting access time
options and one of the possible resulting interval sets after the choices have been made. Note that
for this traversal order only cell A is visited multiple times, so only vertices adjacent to A have a
choice problem (i.e. v3 does not).

Before we can employ this access model there is one technicality we need to resolve regarding
intervals which share end points. Currently the inter-cell access order has been properly defined,
but the intra-cell order is ambiguous. A tetrahedralization has four vertices per cell, so the number
of intervals which share an end point (i.e. are accessed at the same cell) is bound by a constant. By
reserving a small amount of temporary storage we are able to swiftly deal with the issue. During
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the traversal all vertices accessed at the current cell may be temporarily stored here in between
being loaded and stored, therefore allowing us to load and store them in any order and not worry
about the intra-cell order.

The ability to load multiple vertices of a cell at once and being allowed to re-order them
undermines how the regions are used in the argumentation of the counterexample and allows us
to store more vertices onto the same stack. In Section 5.3.1 we will show how the subdivision of
the counterexample can be traversed with only one intermediate stack.

We have defined a model which describes all access and storage times of the vertices during the
traversal, but its characteristics heavily depend on the traversal order and the choices made when
a cell is visited multiple times. Assuming that the traversal order and the intervals (i.e. access
times) of all vertices are pre-established, we will first look at two approaches which define efficient
intermediate data access and storage operations in Sections 5.3 and 5.4. Thereafter Sections 5.5
and 5.6 discuss heuristic solutions for the access time choice problem and the traversal order which
improve the input for the two approaches.

5.3 Overlap graph coloring

Given the set of intervals resulting from the access model of Section 5.2 we will now look at
constructing an efficient data structure for storing the vertices during the traversal. Considering
the success of the 2D Stack & Stream algorithm the first instinct is to once again use a system of
stacks. We will now show how such a system can be defined by the interval overlap graph coloring.

5.3.1 Sharing stacks

In the context of the abstract data access model we are no longer restricted to the strict left/right
division along the traversal order, or to a constant number of stacks. As a result it is possible
to pick up a vertex from a stack, but afterwards place it back on a different one. Thus a single
interval of a vertex corresponds to the time that it resides on ”a” stack, and it can switch stacks
at the endpoints. Hence we should not assign vertices to stacks, but rather assign all its intervals
to stacks separately.

In order to use a stack data structure we need to carefully plan the data accesses that use it so
that they do not block each other. When two intervals do not intersect in time they can trivially
be assigned to the same stack. If they do intersect then one is stored on top of the other and
it should be removed before the next access to the interval below it. It follows that any pair of
intervals I1 and I2 can be assigned to the same stack if either (1) I1 contains I2 of vice versa, or
(2) they are disjunct. Here containment is defined as Ii ⊆ Ij . If a pair of intervals does not satisfy
(1) or (2) we say they partially overlap. Two identical intervals do not form a degenerate case
because the abstract data access model allows us to abstract from the intra-cell access order. It
therefore does not matter if we store one on top of the other, or vice versa.

When the calculations at the current cell are done and we need to store the vertices again we
store them in latest-endtime-first order of their next intervals (ties can be resolved either way).
This way we guarantee that the vertices whose intervals share an endpoint at the current cell can
always be picked up and re-distributed over the stacks without blocking each other.

Using the partial overlap definition and the abstract data access model we are able to schedule
strictly more intervals onto a single stack without violating the stack property than Stack & Stream
because we do not need to worry about the intra-cell order. In fact, if we look back at Figure 7c
we can see that there now exists a solution to the counterexample of Section 5.1 that only uses one
stack. However, this all depends on our choice for the access order problem. If v1 had accessed A

19



2IM91 Masters Thesis technische universiteit eindhoven

at time 1 instead of 5 then the first interval of v1 (which would then be [1,4]) would have partially
overlapped with the second interval of v2 ([2,6]) and a second stack would be required.

5.3.2 Assigning stacks

Now that we have a defined which intervals can share a stack we can look at assigning stack
numbers to them. Obviously, our aim is to use as few stacks as possible. This minimization
problem can be solved by a standard graph coloring algorithm after casting our intervals to a
graph as follows. Let graph G = (V,E) be a graph consisting of a set of vertices V and a set
of edges E ⊆ V × V . Vertex set V contains a vertex v for every interval in I, and E contains
an edge for every pair of intervals (v, v′) ⊆ V × V that partially overlap. Thus no two vertices
connected by an edge can be assigned to the same stack. It follows that a set of intervals that can
be assigned to the same stack corresponds to an independent set in G.

To find the minimal number of stacks we need to find the minimal number of independent sets
that covers V . This matches the vertex coloring problem of G, i.e. assign a color to each vertex
in V such that no two vertices who are connected by an edge have the same color. Coloring two
vertices the same color thus corresponds to assigning two intervals to the same stack. To find the
minimal number of stacks we need to find the minimal number of colors needed, i.e. the chromatic
number χ of G. We will use the terms vertex coloring and graph coloring interchangeably.

Although every set of intervals can be translated to a graph, not every graph can be translated
to a set of intervals on N. It turns out that we are dealing with a special class of graphs called
interval overlap graphs, or the equivalent class circle graphs [10]. For overlap graphs it is known
that the coloring problem is NP-hard [10]. However, this does not imply that the coloring problem
is hard for our specific kind of overlap graph. The data accesses of the 2D Stack & Stream algorithm
can also interpreted by the data access model developed for 3D. The 2D problem can be solved
in linear time and only needs a single intermediate stack, which corresponds to an overlap graph
with χ = 1. Therefore our graph may be a subclass of the overlap graphs class, but we have not
been able to identify any such class. It is an open question whether for arbitrary 3D subdivisions
a traversal and vertex access order can be constructed such that the chromatic number of the
corresponding overlap graph is bounded by a constant. For now a brute force search is infeasible
even for small subdivisions as we need to solve the NP-hard coloring problem for all resulting
interval sets of all element orders (i.e. cell orders) and all access time choices. For now the results
are constrained by whichever (overlap) graph coloring algorithm uses the least amount of colors
in a practically acceptable running time.

5.3.3 Graph construction

The overlap graph of a set of intervals can be trivially constructed in O(|V |2) time by iterating

over all
(|V |

2

)
possible edges and checking if their corresponding intervals intersect. This is not

efficient nor acceptable for the input sizes we are dealing with (as we will see later). We will now
present an alternative O(|V | log |V |+ |E|) sweep algorithm.

We start by sorting all intervals on their start time and put them into queue Q. During the
algorithm we will sweep over the interval domain, load intervals as we encounter them, and con-
struct the graph on the fly. The current position of the sweep coincides with startT ime(head(Q)),
i.e. startT ime(q). During the sweep we will maintain a list structure L which contains all inter-
vals which at that point in time are intersected by the position of the sweep, sorted ascending by
end time. Let I be the set of all intervals. The overlap graph is then constructed by Algorithm
ConstructGraph.
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Algorithm ConstructGraph(I)
(∗ Constructs the overlap graph of interval set I. ∗)
1. Sort I on start time and store the result in queue Q
2. V = ∅, E = ∅, L = ∅
3. while Q 6= ∅
4. while endT ime(head(L)) ≤ startT ime(head(Q))
5. removeHead(L)
6. q ← removeHead(Q)
7. V ← V ∪ q
8. p ← head(L)
9. while endT ime(q) > endT ime(p)
10. if startT ime(p) 6= startT ime(q)
11. E ← E ∪ (p, q)
12. p ← next(p)
13. Insert q in L between prev(p) and p
14. return (V,E)

During the sweep of Q we maintain the invariants that (1) L contains all intervals intersected
by the current position of the sweep, and (2) L is sorted ascending on latest end time.

From the definition of the sweep line it follows that (1) is equivalent to ’startT ime(q) is
contained by all intervals of L’. Thus q partially overlaps with an interval p from L if its end time
is not contained by it, i.e. endT ime(q) > endT ime(p). An exception exists when p and q share the
same start time, in which case p contains q and they do not partially overlap. Because L is sorted
on end time we can sequentially scan through it and report all intervals partially overlapping with
q as we go. When we reach the point where endT ime(q) ≤ endT ime(p) we know all remaining
intervals of L contain contain q. We insert q into L, thus maintaining invariant (2), and stop. In
conjunction with the while loop at lines 4-5 this also maintains invariant (1) for the next iteration.

The total execution time of lines 4-5 is O(|I|) = O(|V |) because every interval is only added
to, and removed from, L once. Furthermore every iteration of the outer while loop (lines 3-13)
directly corresponds to a vertex in V , and every iteration of the inner while loop (lines 9-12)
directly corresponds to an edge in E (barring a constant factor which shares the start time of
q). Therefore the total running time of Algorithm ConstructGraph is output sensitive and, if we
include the sorting step, we find a running time of O(|V | log |V |+ |E|).

5.3.4 Coloring algorithm

The running time of any algorithm that obtains a coloring should not be of order O(I2) or higher in
order to be feasible due to the high number of intervals. However, most literature concerned with
graph colorings either provides theoretical hardness bounds or is happy with an approximation
in polynomial time where the polynomial degree is not of much concern because it is still a
massive improvement over exponential time. Heuristic solutions do not provide a guaranteed
bound on the result, but they are often straightforward and quick to implement. We therefore use
the heuristic used by the Iterated Greedy algorithm [11], which is a linear time algorithm with
minimal additional data structures.

The Iterated Greedy algorithm determines an order in which the vertices will be colored up
front (i.e. a permutation of V ). Thereafter they are colored in order using the heuristic of assigning
the minimum color that does not cause a conflict, i.e. the minimum color (starting from ‘1’) that
does not occur among those vertices connected to it by an edge. In the worst case this heuristic
yields an O(n)-approximation as demonstrated in Figure 8. This result is then improved upon by
running many iterations of the heuristic for which, by careful choice of the permutation, it can be
proven that they use no more colors than the previous iteration.
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a2a1 a3

b1 b2 b3

Figure 8: A worst case example for the proposed heuristic. The graph consists of 2n vertices with
edges between ai and bj for all i 6= j. The order a1, b1, a2, b2, . . . results in n colors whilst the
graphs is 2-colorable.

It is straightforward to see that the running time of one iteration of Iterated Greedy is n times
the complexity of assigning a color to a vertex, so how do we assign a color? Initially all vertices
are uncolor, which we mark by color number zero. Now consider for example a vertex of degree six.
Iterating over its adjacent vertices we see the colors c5, c3, c1, c5, c2, c6 and we should deduce that c4
is the minimum color that does not cause a conflict (we cannot color with color number zero). The
straightforward solution is to sort all colors and then find the smallest positive unlisted integer
with a sequential scan. This would results in an algorithm of O(

∑
v∈V

degree(v) log degree(v)).

However, we would like to avoid the sorting complexity bound and instead assign colors in time
linear in the degree of the vertex. This can be achieved as follows.

Let n be the degree of a vertex v in the graph. When we iterate over its adjacent vertices in
the graph we see n colors which may or may not contain duplicates. This means that there must
be at least one color in the range [1, n + 1] which does not occur in this series. Therefore the
problem of finding the smallest unlisted number reduces to the problem of finding the smallest
unlisted number less than n+ 1. This means that we do not have to keep track of numbers that
are greater of equal to n. Hence it suffices to use a boolean array of size n to keep track of the
colors so far. When we see the color ci we force the boolean variable at index i to true. After we
have iterated over all adjacent vertices the minimum color which can be assigned without conflict
then corresponds to the lowest index of the array which holds a false value (or n + 1 in the case
that all values are true). This index may be found by a sequential scan.

The Delaunay tetrahedralization of n 3D points chosen uniformly at random from a sphere
the expected number of cells is 6.77n [12]. Since every tetrahedron contributes to four adjacent
vertices this means we have approximately 4 ∗ 6.77 = 27.08n vertex accesses in total which result
in an average of 26.08 intervals per vertex. Since the graph contains a vertex for each interval it
will be massive (subdivision inputs range into the millions of cells) and Iterative Greedy is a costly
algorithm. However, the first iteration can be implemented efficiently by a sweep procedure very
similar to Algorithm ConstructGraph of Section 5.3.3 without actually constructing the graph.
We therefore choose to only implement the first iteration. The structure of ConstructGraph and
its invariants are maintained, but all graph operations are replaced by the coloring heuristic. The
result is Algorithm OverlapColoring .

The while-loop at lines 9-12 accumulates the colors used by those intervals who partially overlap
with q (i.e. which would be connected to q by an edge in the overlap graph) in usedColors. Note
that all interval in L have already been colored. We mark all colors in the range [1, |usedColors|]
in boolean array b[]. The minimum color for q that does not cause a conflict is then found by a
scan of b[] for the lowest index of the array which holds a false value, and is assigned to q. The
running time and correctness analysis is identical to that of Algorithm ConstructGraph except
that we can no longer call it output-sensitive because the overlap graph is never constructed. The
introduction of the scan over b[] does not increase the complexity bound because its use sums up
to the order of the number of edges in the graph. Thus we are able to obtain a valid coloring in
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the same time it would otherwise take to just construct the graph.

Algorithm OverlapColoring(I)
(∗ Constructs an overlap coloring of interval set I. ∗)
1. Sort I on start time and store the result in queue Q
2. L = ∅
3. while Q 6= ∅
4. while endT ime(head(L)) ≤ startT ime(head(Q))
5. removeHead(L)
6. q ← removeHead(Q)
7. p ← head(L)
8. usedColors ← ∅
9. while endT ime(q) > endT ime(p)
10. if startT ime(p) 6= startT ime(q)
11. usedColors ← usedColors ∪ color(p)
12. p ← next(p)
13. Let b[] be a size |usedColors| boolean array initialized to false
14. for all ci ∈ usedColors
15. if i ≤ size(b)
16. b[i] ← true
17. color(q) ← Smallest false index of b
18. Insert q in L between prev(p) and p

5.4 Interval graph coloring

We will now look at an alternative approach for constructing an efficient data structure for storing
the vertices during the traversal. It is aimed at making the best selection of vertices to keep inside
cache memory and is based on the concepts of cache coloring. We will show that it is closely
related to the previous approach in the sense that it again boils down to a graph coloring problem,
this time involving the interval graph coloring (note the absence of the ’overlap’ infix). We again
assume that the set of intervals resulting from the access model of Section 5.2 is pre-established.

5.4.1 Memory-constrained data structures

Instead of optimizing the efficiency of the I/O-operations the memory-constrained data structure
approach is based on making the most of the data that already resides in the internal memory, i.e.
the cache memory. The subdivision as a whole does not fit into the cache memory as a whole, but
by making a smart selection of which parts we keep cached at certain points during the iteration we
aim to reduce the number of cache misses. Vertices are therefore assigned to slots in the internal
memory instead of stacks, where the number of slots is equal to the cache size (in bytes) divided
by the size of a vertex’s variables. The stack data structure for the cell data remains unchanged.

We have already seen how the intervals of the abstract data access model relate to the points
in time during which a vertex needs to be stored somewhere. Similar to the stack approach we
now need to define how intervals can make use of the same storage structure (i.e. slots). Since
a slot can only hold one vertex at a time this is rather straightforward – Two intervals may use
the same slot during the iteration if and only if they are disjunct. The start time of an interval
may match the end time of the previous interval that used the slot without problems because the
abstract data access model allows us to abstract from the intra-cell access order.
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5.4.2 Assigning slots

Now that we have a defined which intervals can share a slot we can look at assigning slot numbers
to them. When an interval is assigned a slot number its associated vertex will occupy the slot
in cache memory for the duration of the interval and hence will not incur a cache miss when it
is accessed at the end time of the interval. Obviously, we want to assign as many intervals as
possible a slot number as to minimize the number of cache misses.

This minimization problem can be solved by a standard graph coloring algorithm after casting
our intervals to a graph as follows. Let graph G = (V,E) be a graph consisting of a set of vertices
V and a set of edges E ⊆ V × V . Vertex set V contains a vertex v for every interval in I, and E
contains an edge for every pair of intervals (v, v′) ⊆ V × V that partially overlap. Thus no two
vertices connected by an edge can be assigned to the same slot. It follows that a set of intervals
that can be assigned to the same slot corresponds to an independent set in G.

To assign the maximum number of intervals a stack number we need to find the maximum
number of vertices that can be covered by k independent sets, where k is the number of slots
available in the cache memory. This matches the k-colorability problem of G, i.e. assign the
maximum number of vertices one color out of k such that no two vertices who are connected by
an edge have the same color. Coloring two vertices the same color thus corresponds to assigning
two intervals to the same slot.

The resulting graph is again a special class of graphs known as interval graphs [13]. For interval
graphs the k-colorability problem of the corresponding set of intervals I can be solved in O(I)
time after sorting [14] 3. The algorithm works directly on the intervals thereby avoiding the factor
|E| associated with the graph’s construction and achieving linearity in |V |, i.e. |I|. Achieving
optimality of the interval coloring in linear time is a very strong result indeed as all problems so
far have been of a combinatorial nature. By choosing k equal to the number of available slots in
cache-memory we maximize the number of cache hits.

5.4.3 Data structure for uncolored intervals

By definition of the external-memory model of computation the whole data set does not fit into the
cache memory. Although the access times of the vertices are spread over the traversal and they are
not all needed at once we still expect that we cannot color 100% of the intervals (and otherwise this
definitely holds for bigger input sizes). The results presented in Section 6.4 show this assumption
is correct. We have an optimal interval coloring algorithm, so when an interval remains uncolored
it means that it is inefficient to store its corresponding vertex in cache memory during this time
(i.e. the slots can be put to better use). We therefore need to design an additional data structure
in external memory to store vertices at for the durations of the uncolored intervals. By design this
means that the next access of this vertex will incur a cache miss. We have completely knowledge
of the next access times of these vertices (i.e. the vertex end points) and can take this information
into account when designing the data structure. We will discuss two candidates for this data
structure: A priority queue and an array.

In the priority queue approach the vertices will be tagged with the end time of their correspond-
ing uncolored interval. They are then inserted into the queue and at the time they are required
during the traversal they will be the minimum element in the queue and can be quickly retrieved.
Priority queues are closely related to sorting and the sorting lower bound of Ω(n log n) comparisons
between n input elements applies to them. However, they are a heavily studied subject and many
variants have been designed for many different purposes [17]. This includes a priority queue in the

3We note that a very straightforward implementation may be achieved by replacing Carlisle et al.’s use of a
special-case disjoint set union data structure [15] by the general-case variant by Tarjan [16] since the asymptotic
complexity will still be dominated by the sorting step.
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external-memory model, for which an optimal cache-oblivious priority queue has been designed
by Arge et al. [18]. In the RAM model queues have been developed with interesting distribution-
sensitive properties. The Fishspear priority queue [19] has the property that the amortized cost
of handling an element x is logarithmic its maximum position before extraction, i.e. over time
the largest number of elements less than x simultaneously in the priority queue. Furthermore,
Elmasry et al. present a priority queue with the time-finger property [20]: It supports insertions
in worst-case constant time, and delete-min, access-min, delete, and decrease-key of an element
x in worst-case O(log(min{wx, qx})) time, where wx (respectively, qx) is the number of elements
that were accessed after (respectively, before) the last access to x (i.e. insertion in our case) and
are still in the priority queue at the time when the corresponding operation is performed.

The array approach does exactly what is says on the box – we index everything in an array.
We reserve an array in external memory whose length is big enough to accommodate a number
of vertices equal to the number of uncolored intervals. Since a vertex can have multiple uncolored
intervals this structure may be bigger than actual number of vertices, but because it is stored in
external memory (which may be viewed as infinitely large) this is not a problem.

The intervals directly correspond to the access times during the traversal so, if we assign
an interval the array index that matches its position in the ascending-on-end-time sorted set of
uncolored intervals, then they are loaded from the array sequentially, i.e. with spatial locality.
This essentially makes it a stream for read operations and makes the design of such a big array
worthwhile over just using an array of size |V |. We note that during execution most of the array
slots will be empty. The indices before the read position are empty by construction, and the
indices beyond it are sporadically written to to ‘fill in the gaps’ such that by the time the read
position arrives there all vertices can be found in contiguous memory.

In general the space requirement of the array approach is a bit ridiculous, but for our application
this is irrelevant. The array also requires a write per interval due to the irregular pattern in which
it writes to memory slots, whereas priority queues can do buffered batch writes (i.e. writes
with spatial locality). Conversely, the structure that the priority queue provides has overhead
associated with it. Any priority queue has to make element comparisons at some point to sort its
content. The priority queues with distribution-sensitive properties are not known to have cache-
efficient operations, and the cache-oblivious queues which have optimal block operations lack the
distribution-sensitive properties. This makes it hard to support insert and delete-min operations
which together, amortized per vertex, stay below the time of the array’s write penalty and efficient
loading. Furthermore, all of them have pointer memory overhead and partially reside inside cache
memory, occupying precious space which could otherwise be used for more slots (i.e. more colors).

In the end the exact values of the write time, the block size and the interval length/distribution
are decisive in determining which approach is the most efficient. We will come back to this in the
discussion of the results in Section 6.

5.5 Choosing data access times

We have seen that a vertex’s access times depend on when we visit its adjacent cells during the
traversal. If they are visited once, the access time is set, but if they are visited multiple times we
can choose during which visit we will make the computation. So far we have assumed that this
choice has been pre-established and that we are left with the resulting interval set. We will now
present a heuristic solution for creating ’good’ intervals.

5.5.1 Selection heuristic

Although it is possible to make an optimal choice for the 2D subdivision with use of the geometric
information, making an optimal choice for the abstract problem is hard. It requires an algorithm
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to have the foresight to know how good the solution of the resulting graph coloring problem is.
We therefore use a heuristic solution.

After the choices have been made each vertex has a set of consecutive intervals [t1, t2], [t2, t3], . . . , [tk−1, tk]
associated with it. The number of such intervals is equal to the number of adjacent cells minus
one. Consider two random intervals in the domain of 1 to the length of the cell traversal. We
know nothing about the intervals, but we can say is that the probability of them being disjunct
increases as their lengths approach 1. Disjunct intervals lead to a sparser graph both for the
interval and overlap graph and hence improve the interval set input for the coloring algorithms.
We therefore aim to to minimize the average interval length. Furthermore, smaller intervals also
improve temporal locality and, for the slots approach, maximize the time during which a slot can
hold another vertex. Since the intervals of a vertex are consecutive it follows that to minimize the
average length we need to minimize tk − t1 (for each vertex separately).

The heuristic implicitly assumes that the distribution of the intervals over the traversal domain
is uniform. This may look farfetched at first, but for tetrahedralizations it makes sense because
each cell is associated with a small constant number of vertices. Our heuristic is applied to each
vertex independently and does not consider the choice of other vertices. We therefore argue that
it does not significantly favour any part of the traversal sequence more than others and that the
result should be approximately uniform.

5.5.2 Implementing the heuristic

In this section the interval (length) of a vertex should be interpreted as the sum of (the lengths of)
all its intervals, i.e. we are only interested in [1, tk] and not in the actual intervals [t1, t2], [t2, t3], . . . , [tk−1, tk].

Like the definition of the intervals in the abstract data access model we can use the same
enumeration scheme to express at what time a cell can be accessed. For example a cell A has
the access time set {2, 6, 18} associated with it if it is the 2nd, 6th and 18th cell in the traversal
sequence. Note that each access time can only occur once in the set a of cell – we do not have to
deal with duplicates. The final interval of a vertex should thus span at least one value from the
access time set of each of its adjacent cells. To find the optimal interval we will first define the
notions of a minimal and minimum interval.

– An interval is considered a minimal interval if it contains at least one value from the access
time set of each of its adjacent cells and every sub-interval of it does not, i.e. it cannot be
shrunk.

– The minimum interval is the shortest interval of all minimal intervals.

The definition of a minimal interval implies that the cells at the endpoints of the interval only
occur once. This will be the crux of our algorithm. We start with the interval (0, 0). Whilst the
interval does not span at least one access time of all mv adjacent cells we increment the interval’s
right endpoint (rep) until it does. Note that the cell at the right endpoint now only occurs once
in the interval. If at this point the left endpoint (lep) has become non-unique, i.e. more than once
of its access times are contained by (lep, rep), we increment the left endpoint until it is. At the
end of this procedure we have found a minimal interval which is then reported. The left endpoint
is then incremented by one and the procedure is repeated to find the next minimal interval.

During execution we need to keep track of the number of occurrences of each adjacent cell’s
access times in (lep, rep), the number of distinct cells covered by the interval and the best minimal
interval so far. Let mv denote the number of adjacent cells of vertex v, Sv be the union of the mv

access time sets, and function cell(s) return the associated cell id for s ∈ Sv. A minimum interval
can then be found by Algorithm MinimizeIntervalLength.
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Algorithm MinimizeIntervalLength(v)
(∗ Finds a minimum interval of vertex v ∗)
1. Sort Sv on access time and store it in an array
2. occurrences ← size mv array initialized to zero
3. lep ← 0, rep ← -1, #distinct ← 0, bestSoFar ← (0,∞)
4. while rep < |S| − 1
5. while #distinct 6= mv and rep < |S| − 1
6. rep ←rep+ 1
7. occurences[cell(S[rep])] ← occurences[cell(S[rep])] + 1
8. if occurences[cell(S[rep])] = 1 (* Up from zero *)
9. #distinct ← #distinct+ 1
10. while occurences[cell(S[lep])] > 1
11. lep ← lep+ 1
12. occurences(cell(S[lep])) ←occurences(cell(S[lep]))− 1
13. if #distinct = mv and S[rep]− S[lep] < lengthOf(bestSoFar)
14. bestSoFar ← (lep, rep)
15. lep ← lep+ 1
16. occurences(cell(S[lep])) ←occurences(cell(S[lep]))− 1
17. #distinct ← #distinct− 1
18. for all mv access time sets
19. Make an arbitrary access time choice within bestSoFar.
20. return The resulting intervals of the access time choices

During execution Algorithm MinimizeIntervalLength considers all possible values for lep at
some point, except those it skips over while shrinking the interval at lines 11-13. For each lep
value the while loop at lines 6-10 guarantees by construction that we find the smallest possible
value for rep such that interval (lep, rep) contains all mv adjacent cells of v, and only then the
shrinking step happens. Thus the only lep values we skip over are those who can never be the left
end point of a minimum interval because, by construction, they form a non-unique left endpoint at
that point and there exists a smaller minimal interval. Therefore MinimizeIntervalLength iterates
over all minimal intervals and is able to find a minimum interval.

Every access time in S is accessed a constant number of times in between being included
in and removed from bestSoFar. This means the running time is dominated by the sorting
step and MinimizeIntervalLength runs in O(mv logmv) time with O(mv) storage. Note that
Algorithm MinimizeIntervalLength is run for each vertex separately and that the expected average
for mv, as we argued in Section 5.3.4, is ∼ 26.

5.6 Traversal order alternatives

At the abstract data access model we noted that the traversal order directly influences the possi-
bilities for the resulting intervals. For the 2D variant and the running example for 3D we have thus
far always used a spanning treewalk order, but since we do not use any assumptions or geometrical
information in the abstract model it is not a requirement. Although the model can be applied to
any order we want to find ourselves in one of two practical situations where the cell order is either:
(1) implementable with one intermediate cell stack, or (2) the cell order is streamable (i.e. it is a
permutation of C).

The first access of a cell is always from the input stack (stream) and any subsequent accesses
to it use the intermediate stack. Therefore an order can be implemented with one intermediate
stack if it follows a most recently used order for any subsequent accesses after the first access, i.e.
an order for which it can always be found on top of the intermediate stack. We have proven in
Section 4.2 that a spanning treewalk follows the most recently used order and thus commits to the
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stack property, but there are infinitely more orders which also have this property. We will now
specify this set of orders.

Let S be the string of cells denoting the (partial) cell traversal order, S[i : j] (i ≤ j) be the
substring starting from index i and ending at index j, ++ be the string concatenation operator,
and cn be the string of n consecutive c’s (i.e. c1 = c, c2 = cc, etc). Every element in the set of all
cell traversal orders which can be implemented with a single intermediate stack for a set of cells C
can then be returned by the following recursive specification with initial call Order(C, ∅). Since
all occurrences of a cell c ∈ C are inserted consecutively c does not block the transition from S[i]
to S[i + 1] since it will have been moved to the output stack before then. This reasoning can be
applied inductively to argue the correctness of the returned string. One can easily verify that a
depth-first traversal of any tree adheres to this definition. Permutation are also included and can
be generated by choosing n = 1 for all c ∈ C.

Order(C, S) =


if C 6= ∅ Order(C \ {c}, S[1 : i] ++ cn ++S[i+ 1, |S|]),

for c ∈ C, i ∈ [1, |S|], and n ∈ N+.

Otherwise Return S

We know that traversal orders matching the specification can be efficiently implemented with
the familiar system of stacks, but we still need to identify which orders lead to a better input
for the graph coloring. It is not surprising that this leads us back to the locality principles. We
observe that two adjacent cells of a tetrahedralization have three out of their four adjacent vertices
in common. When they are traversed consecutively this, in the best case, results in three intervals
of length one. Furthermore, any other cells adjacent to these vertices lie nearby in the subdivision
and are likely to be accessed soon if we keep following the neighbour-to-neighbour principle.
Note that the data access time heuristic of Section 5.5 (minimize the average interval length)
also supplements this principle perfectly and significantly improves the probability of actually
ending up with the intervals of length one. This directly leads us back to the spanning treewalk
approach defined on the dual of the subdivision. More specifically, since different spanning trees
have different properties, we will be looking at depth-first and breadth-first spanning trees.

Depth-first treewalks maximize the string of traversing through unvisited cells before returning
to parent cells and thus, intuitively, open up the door for many length-one intervals. Conversely,
breadth-first trees are much more balanced and have shorter string of unvisited cells, but cells
adjacent to the same vertex are likely to have approximately the same depth in the tree. Therefore
the traversal length to go up in the tree and down into another branch to reach the adjacent cell
(assuming there is no parent-child relation) should be of order O(log n) instead of O(n). This
should result in smaller intervals overall (i.e., following the notation of the selection heuristic,
tk − t1 is minimized).

It should be obvious that for streamable traversal orders a random permutation of C will not
result in the best set of intervals since it has very poor locality. At first glance a Hamiltonian path
through the subdivision seems to have good locality, but for arbitrary subdivisions finding one is
a NP-complete problem [9] (if it exists at all) and different Hamiltonian paths may also have very
different locality properties. We therefore extract a permutation from the spanning tree traversal
by means of pruning. The pruned version of a spanning treewalk traversal order is the original
depth- or breadth- first spanning tree traversal order in which of each cell only its first access is
preserved, resulting in a permutation with, hopefully, a high degree of locality.

If we allow for two intermediate cell stacks instead of one we note that it is possible to treat
them as the input/output stack of the original 2D Stack & Stream algorithm and transfer all |C|
cells from one stack to the other as many times as we want before moving the cells to the actual
output stack, i.e. one iteration consists of many subdivision traversals in which every cell is visited
once. If we transfer all cells back and forth over the two intermediate cell stacks |V | times during
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one iteration then all vertices can trivially be stored on one intermediate vertex stack/slot by only
accessing one vertex per full transfer (i.e. subdivision traversal). Needless to say this is highly
inefficient, but it illustrates the point that there exists a trade-off between the traversal length
and the optimal solution in terms of the graph coloring. Even with one intermediate cell stack
visiting a selection of cells multiple times in a specific order may improve the graph coloring, as
illustrated by the generalized 2D approach.

This concludes the discussion of the last variable under our control. The global problem can
thus be formulated as:

Minimize the number of colors of the overlap graph coloring,
or maximize the number of colored intervals of the interval graph k-coloring (for k equals
the number of slots in cache memory)

– over all possible traversal orders matching the specification of Order(C, S) (of practical
length),

– over all possible access time choices.

We had assumed that the subdivision of the input space is pre-determined, otherwise this
would be another variable.

5.7 Data streams and structures overview

In the previous sections we discussed the theory behind the optimization problem and as a result
we did not focus on the implementation details. We will now fill in the blanks and provide an
overview of the proposed data streams and structures.

Most of the data structures are analogous to the 2D variant as discussed in Section 4. However,
we make a distinction based on whether the cell traversal order is a permutation or an order in
which cells are visited multiple times according to the specification of the previous section (this
includes spanning treewalks).

Analogously to the generalized 2D Stack & Stream algorithm we cannot deduce from which
stack a vertex should be popped, and to which stack it should be pushed, locally and thus need to
store it explicitly. However, in contrast to the 2D traversal the number of stacks is not limited to
a left and right hand stack, thus we require integers instead of a few bits of additional information
(i.e. the assigned colors) 4. Since this information is not of negligible size and is only used once
we no longer wish to store it with the cell and instead stream it. This forms the main data stream
that drives the traversal.

At each step of the cell traversal we access the main data stream and retrieve the load/store
locations of all vertices that need to be accessed. An equal number of cell matrix columns will
then be loaded from the cell matrix stream. What happens next depends on the traversal order.
If it is a permutation order then all contributions can immediately be stored at the right vertices,
we store the vertices to the right stack/slot, and we can move on to the next cell. If it is not
a permutation order then a system of stacks (i.e. an input, one intermediate, and output stack)
is also involved for passing on partial contributions. To distinguish between loading from the
input or intermediate stack, resp. storing to the intermediate or output stack, an additional two
bits of information are required in the main stream. The partial contributions are stored to this
structure, the vertices to their store stack/slot, and we move on to the next cell in the traversal.
To avoid write latency all streams can be implemented with an array instead of two stacks, since
their values will not be altered.

4The size of the integer depends on the number of colors used.
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Iterations are once again possible by inverting the traversal order and a backwards interpreta-
tion of all data structures.

5.8 Incorporating edge and facet variables

The abstract data access model describes the accesses to data element at points in time. So far
we have only used it to design an efficient data structure for intermediate vertex storage, but
analogously we can also employ it to describe edges and facets (or cells for that matter, but their
data accesses are already efficient by design).

If edge or facet variables are added to the model this therefore simply results in more intervals
that need to be colored. In the case of the overlap coloring they can simply be stored among
the vertices and share stacks with them. In the case of the interval coloring the slot size should
be adjusted to the maximum storage capacity required among the vertex, edge and/or facet
variable(s).

Loading these variables from the correct stack or slot also requires explicit references, which
should be included into the main data stream discussed in the previous section.
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6 Experimental Results

In this section we present the results of our approach to the 3D finite element method. We do not
compare our approach to other implementations directly because industrial implementations also
employ other techniques to improve performance (examples include multi-core-aware paralleliza-
tion, GPU accelerated computing, cache tuning, compiler optimization and more). We therefore
measure the effectiveness in terms of the optimization problem instead, i.e. the characteristics of
the graph colorings. Section 6.1 describes the setup of our approach, Sections 6.3 and 6.4 present
the results of the overlap resp. interval coloring, and in Section 6.6 we present a discussion of the
obtained results and their implications.

6.1 Setup

The input subdivision is a Delaunay tetrahedralization of n 3D points randomly picked from a
uniform distribution inside the positive unit cube. The implementation was made in MATLAB
R2014b and uses the twister random number generator with the seed 49874574. The full computa-
tional code is given below, after which the resulting structures P , DT , and the neighbour relations
between the cells of DT (which can be queried from DT with function neighbors(DT )) are writ-
ten to a text file. During experimentations we noticed that the exceptions thrown by MATLAB
indicate that behind the scenes the implementation is based on qhull (http://www.qhull.org/).
The documentation of the delaunayTriangulation class, including all methods on the resulting
triangulation object, can be found at MATLAB ’s website [21].

rng(49874574,’twister’); //Set rng seed and rng generator type
P = rand(n,3); //Generate a size n uniform random 3D pointset
DT = delaunayTriangulation(P); //Compute the Delaunay triangulation of P

All spanning trees are rooted at the first cell that is written to file by MATLAB, and the
children of a cell are visited in the order they are listed by neighbors(DT ). Finally, we note
that inside the reported minimum interval of Algorithm MinimizeIntervalLength we choose the
earliest access time for each cell (i.e. our choice at lines 18-19 of MinimizeIntervalLength is not
random). The correctness of the implementation was verified by a brute-force comparison of the
color assignment of all O(|I|) interval pairs for small input sizes (n = 1, 000), as well as by a
checksum approach: Using a uniform weighting of one and vertex-to-vertex contribution equal to
their vertex ID’s we verified that at the end of a traversal the values of all accumulating variables
are equal to the known sum of adjacent vertex ID’s in the subdivision.

6.2 Subdivision and interval characteristics

The Delaunay tetrahedralization gives us a subdivision of which the element sizes are shown in
Table 2. The average number of cells and intervals per vertex lie in the range 6.671 − 6.719 and
25.68−25.88 respectively, which matches our earlier theoretical prediction. Due to the high number
of intervals, or objects in general, our Java implementation is not able to handle the construction
of the interval set for point sets of n ≥ 90, 000, for any traversal order and consequently throws an

Point set size (n)
10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Cells 66,356 133,413 200515 267,651 335,449 402,930 470,240 537,503
Intervals 22,5424 513,652 772060 1,030,604 1,291,796 1,551,720 1,810,960 2,070,012

Table 2: The resulting number of cells and intervals from the Delaunay tetrahedralization of n
uniformly distributed points in the 3D unit cube.
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out-of-memory exception. The additional overhead of the interval and overlap coloring algorithm
causes it to break down for even smaller input sizes. As a result we are only able to obtain the
interval coloring of subdivisions of ≤ 80, 000 vertices, and the overlap coloring of subdivisions of
≤ 50, 000 vertices. To emphasize the extend of the memory requirement: The number of executions
of line 11 of Algorithm OverlapColoring during the coloring of the n = 50, 000 DF overlap graph
(which equals the number of edges) is 1,308,211,509. This corresponds to an average of 1013 edges
per vertex in the graph. Storing this graph in full and/or using any non-linear coloring algorithm
is inadvisable.

The characteristics of the interval length distribution for our four traversal orders Depth First
(DF ) and Breadth First (BF ) spanning tree treewalks, and their pruned variants (DFP and BFP ))
are presented in Figure 9. To provide some context the results of a random permutation are also
included. These may be viewed as an absolute lowerbound – any structured approach should
outperform it. We will therefore not discuss or compare its results and only include it in figures
where it does not affect the interpretability of other results (e.g. by completely distorting the plot
due to extreme values relative to the rest). We used the largest possible input size for which just the
interval set could be constructed for all traversal orders, which was for n = 75, 000. We note that
57-73% of all intervals have length one, and 76-81% have a length of ten or smaller. Furthermore,
the different properties of breadth and depth first traversals and their pruned variants result in
different length distributions with BFP coming out on top from length eight onward. This is
consistent with the intuition discussed in Section 5.6 – depth-first traversals have more length-one
intervals whereas breadth-first traversals have smaller intervals overall. It is perhaps surprising
that the tipping point between the two approaching lies so low.

The improvement of pruning on the interval length distribution of breadth-first traversals
follows from the removal of unnecessary traversal steps. Due to the breadth first approach any
two cells adjacent to the same vertex will have approximately be the same depth in the tree.
If they have a parent-child relation then the intervals will be small, but if they lie on different
branches then they will be longer because we need to traverse up the tree and then down again.
The pruned variant only preserves the first visit of a cell and therefore does not travel back up the
tree, but instead immediately moves on to the child of the last cell of which not all children have
been visited. This shortens the traversal length between two cells adjacent to the same vertex,
and hence the interval length.

For depth-first traversals the adjacent cells of a vertex are not expected to approximately
have the same depth, but they should still benefit from the pruning effect. Somehow this is not
reflected in the length distribution. This may be explained as follows: From the access time
selection heuristic of Section 5.5 it follows that sometimes it may be more favourable to access a
cell at a later access time. Because depth-first trees are very unbalanced (the size of the subtree
at the first child is expected to be much bigger than the size of the subtree of the last child)
the traversal distance between the first two visits is bigger than for breadth-first trees, and the
heuristic has a bigger impact on the interval length distribution (i.e. choosing the second access
time option instead of the first makes a bigger difference compared to the breadth-first tree). The
pruned variant forgoes the improvements gained by the selection heuristic by always preserving the
first visit of a cell and, despite the expected improvements of pruning, results in a less favourable
interval length distribution.

In addition to the effect of the traversal order we also examine the effect of the point set size
on the interval length distribution for the same traversal order. Figure 10 shows the distribution
for BFP traversals for different point set sizes. In the sampled range there are only minuscule
differences – the maximum length interval becomes bigger, but percentage wise the distribution
does not change. Although only the plot for DFP is shown, but we have verified this holds for all
four traversal orders. We cannot measure the distribution for even bigger subdivisions, but at over
two million intervals these results are highly unlikely to be a fluke, and instead represent a steady
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Figure 9: Interval length distribution resulting from various traversal orders for n = 75, 000.

average. Hence we conclude that the distributions we found are a property of the traversal order,
and are not dependent on the size of the subdivision. Therefore the traversal orders maintain their
locality properties and scale well to larger subdivisions.

Clearly the spanning tree based traversals result in good locality. However, the target is to
obtain a good graph coloring and the distribution of the intervals over the traversal length (i.e.
|C| or 2|C| − 1) also plays a role. The graph coloring results will be presented in Sections 6.3 and
6.4.

6.3 Overlap coloring

The overlap graph of the interval set is colored by the heuristic coloring algorithm of Section 5.3.4.
In Figure 11 the resulting number of stacks is shown for various input sizes. The results are
consistent with our presumption that smaller intervals lead to less stacks (i.e. colors). Judging
from the experimental results the relation between the input size of the point set and the total
number of stacks looks to be linear for DF and DFP and sublinear for BF and BFP , although
measurements of bigger input sizes are needed to confirm this conjecture about the asymptotic
relation.

The BF and BFP traversal order clearly result in the least amount of stacks. Since the
difference in the number of stacks between BF and BFP is negligible the BFP traversal order has
the best results because it does not require the additional data structure for passing on partial
contribution (since it is a permutation).

The effectiveness of the system of stacks approach also depends on the distribution of the
intervals over the stacks. Based on the coloring heuristic, which is biased towards assigning low
color number, we expect that every additional stack accommodates less and less intervals. This is
reflected in the plot of Figure 12, which shows the cumulative percentage of interval accommodated
as a function of the number of stacks. For n = 50, 000 the first stack of BFP accommodates 76, 8%
of all intervals. The remaining stacks accommodate > 1% each up to stack 6 (inclusive), > 0.1%
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Figure 10: Interval length distribution of the BFP traversal order for various point set sizes.

each up to stack 27 (inclusive), and from stack 85 onwards each stack accommodates less than
0.01% of all intervals.

In addition to the raw number of intervals per stacks the maximum load of the stacks (i.e.
the maximum number of elements that simultaneously reside on it during execution) is also of
importance. If they only hold a few elements their locality properties barely play a role. Even
though for n = 50, 000 the first stack of BFP accommodates almost one million intervals (76, 8%
of all intervals) its maximum load is only 53. This is because all length-one intervals can trivially
be assigned to stack one (of which there are a lot), and most other small intervals will be assigned
to it as well due to the bias in the heuristic. The biggest maximum load among all 554 stacks is
77, followed by 69. The average is 26.6.

We noticed that the difference between the number of intervals accommodated and the max-
imum load is smaller for higher stack numbers. This makes sense because following from the
heuristic’s bias it is expected that stacks with a lower (resp. higher) stack number serve more
small (resp. large) intervals and the length distribution is not uniform. However, for stacks 325
through 554 (41% of all stacks) this difference is zero. This means there is no oscillation in their
load – it is increasing until the maximum load is reached, after which it is decreasing. We note
that they together accommodate only 4212 intervals (3.26 · 10−3%).

Our interpretation is that these are the longest intervals, i.e. those whose lengths are a big
fraction of the total traversal length. For all stacks their top interval is the smallest of those that
reside on it and, due to the coloring bias, this top interval is also continuously kept small for lower
stack numbers. It is therefore unlikely that a long interval can be assigned a low stack number
since it will overlap with the top intervals of most stacks, maybe even all of them in which case it
would require the creation of a new stack. This causes an effect where intervals up to a certain size
can be accommodated by the first so many stacks and, conversely, longer intervals most likely are
assigned a stack number beyond that. Apparently this results in an implicit threshold whereby,
from a certain stack number onwards, all intervals which reach this stack number are so long that
it never occurs that two disjunct ones are contained by the top interval of those stacks. Hence
their load never fluctuates. In our experiment this threshold effect kicks in from stack number 325
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Figure 11: The number of colors used by the heuristic coloring algorithm for overlap graphs of
various point set sizes.

onward.

6.4 Interval coloring

The interval graph of the interval set is colored by the optimal k−coloring algorithm by Carlisle et
al. as discussed in Section 5.4.2. The results of the interval graph coloring are easier to interpret
since the only output is the percentage of intervals colored. In Table 3 this percentage is shown for
the different traversal orders and various k for a subdivision of a point set of n = 75, 000. Table 4
shows the scalability of the approach by presenting the percentages for BFP traversal orders for
various point set sizes.

Analogously to the results of the interval distributions and the overlap coloring the breadth first
orders outperform the depth first orders, and the difference between BF and BFP is negligible
for realistic k-values – the small k-values are included to show the relation between k and the
percentage for the whole range. Therefore the BFP traversal order has the best results because
it does not require the additional data structure for passing on partial contribution (since it is a
permutation).

It is remarkable that with only ten slots of cache memory over 76% of all vertex accesses can
be accommodated in a subdivision of 80, 000 points, and with 100 slots this increases to over 95%.
The results in Table 4 indicate that these percentages are only marginally influenced by the size
of the subdivision. This implies that, up to at least input sizes of n = 80, 000, over 95% of all
vertex accesses through the intermediate data structure result in a cache-hit if the cache memory
only has room for 100 slots. For k ≥ n/10 over 99% of all intervals can be colored. The vertices
corresponding to uncolored intervals incur writing latency when being written to the external
memory data structure, and a cache miss penalty when they are loaded again. Depending on the
implementation of this data structure these write and load operations may or may not have spatial
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Figure 12: The cumulative percentage of intervals assigned to the first x stacks of all traversal
orders for n = 50, 000. Note that the graphs for BF and BFP are almost identical.

locality.

Based on the high percentages achievable with only a couple of dozen slots an obvious opti-
mization is to color the graph in two stages: We first color with k1 colors where k1 matches the L1
cache size, and then color the remainder with k2 colors where k2 matches the L2 cache size. The
overall bottleneck will still be the slowest memory involved (i.e. RAM), but this strategy will still
increase the number of L1 cache hits. It is unknown if the k1-coloring followed by the k2 coloring
yields the same results as the (k1 + k2)−coloring, i.e. if optimality is retained, but since ten slots
already color > 70% the difference in L1 hits is definitely worth the relatively negligible decrease
in L2 hits.

6.5 Hardware specifications

We have now progressed to the point where the hardware specifications come in to play to make
a comparison between the cache efficiency of the two approaches, i.e. stacks versus slots. We will
limit the discussion to the BFP traversal order since it has proven to yield the best results for
both approaches. The typical hardware specifications as of 2012 are given by Patterson et al. [22,
Figure 5.35] and are shown in Table 5. The access latency of a L1 cache hit is 1 or 2 cycles, i.e.
instant.

Following the example in the model of computation a vertex can have a vector field with
velocity in d dimensions and pressure as associated variables. This means that it requires four
double precision variables worth of memory, i.e. 64 bytes. Since we only consider theDFP traversal
order we do not have to to pass on partial contribution, but we do need the accumulating variables
which sum up the received contributions at each cell. There is one for each vertex variable so
this would make the total memory footprint of a vertex 128 bytes or, in general, the memory
requirement is two times the number of variables times eight bytes (double precision is always
required). A total of four variables is not unusual for finite element methods. This means that
the number of vertices per block (i.e. B) is one or two and that the gains by spatial locality are
almost or completely nullified. The cache’s vertex capacity ranges thus are 2, 500− 50, 000 for L2
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Traversal Number of colors (k)
order 10 25 50 100 250 500 1,000 2,000 4,000 8,000 16,000
BF 78,33% 89,35% 93,08% 95,29% 97,06% 97,88% 98,48% 99,04% 99,43% 99,71% 100,00%
BFP 76,54% 88,68% 92,86% 95,22% 97,04% 97,87% 98,48% 99,04% 99,43% 99,71% 100,00%
DF 78,93% 86,20% 87,90% 88,80% 89,73% 90,50% 91,41% 92,57% 93,99% 95,80% 97,78%
DFP 75,42% 83,65% 86,15% 87,26% 88,17% 88,82% 89,61% 90,58% 91,87% 93,48% 95,36%

Random 1,39% 2,39% 3,50% 5,09% 8,19% 11,65% 16,45% 23,06% 32,05% 44,08% 59,65%

Table 3: Percentage of intervals colored by the k-coloring algorithm for various k and traversal
orders for the subdivision of a point set of n = 75, 000.

Point set Number of colors (k)
size (n) 10 25 50 100 250 500 1,000 2,000 4,000 8,000 16,000
10,000 76,77% 89,33% 93,57% 95,71% 97,45% 98,37% 99,04% 99,56% 100,00% 100,00% 100,00%
20,000 76,70% 89,06% 93,27% 95,51% 97,19% 97,94% 98,65% 99,23% 99,72% 100,00% 100,00%
30,000 76,68% 88,94% 93,10% 95,35% 97,18% 97,99% 98,56% 99,15% 99,75% 100,00% 100,00%
40,000 76,66% 88,87% 93,03% 95,36% 97,20% 98,09% 98,70% 99,25% 99,68% 100,00% 100,00%
50,000 76,56% 88,74% 92,92% 95,26% 97,14% 98,07% 98,59% 99,07% 99,53% 99,90% 100,00%
60,000 76,48% 88,67% 92,86% 95,27% 97,19% 98,17% 98,80% 99,22% 99,64% 99,94% 100,00%
70,000 76,56% 88,67% 92,84% 95,13% 96,90% 97,76% 98,40% 98,90% 99,37% 99,84% 100,00%
80,000 76,53% 88,67% 92,79% 95,15% 96,98% 97,84% 98,46% 99,02% 99,45% 99,79% 100,00%

Table 4: Percentage of intervals colored by the k-coloring algorithm for various k and input sizes
for the BFP traversal order.

Hardware level
Feature L1 cache L2 cache Paged memory
Total size in blocks 250− 2000 2, 500− 25, 000 16, 000− 250, 000
Total size in kilobytes 16− 64 125− 2000 1, 000, 000− 1, 000, 000, 000
Block size in bytes 16− 64 64− 128 4000− 64, 000
Miss penalty in CPU clocks 10− 25 100− 1000 10, 000, 000− 100, 000, 000

Table 5: Typical cache features as of 2012 [22, Figure 5.35].

37



2IM91 Masters Thesis technische universiteit eindhoven

and 250− 4, 000 for L1 respectively, assuming that the full cache is available. In practice there is
also some object overhead (e.g. pointer data) and the CPU also serves other processes which also
require cache capacity (e.g. the operating system).

This has strong implications for the stacks approach because we intended to make the most
of their cache-oblivious nature – the excess data elements loaded by a block I/O-operation always
loads exactly those data elements which are needed next. But since B = 1 or 2 this has little
to no advantages over the naive approach of storing them in an array and using random access,
i.e. by design the stack data structure does not improve the I/O-efficiency and which vertices
remain cached is solely determined by the cache’s replacement policy (i.e. least recently used).
Therefore the interval coloring, which is provable optimal in its selection of which vertices to store
in cache memory and exercises complete control over the replacement policy, can only improve
on it. The small number of elements per block also immediately resolves the discussion of the
uncolored interval data structure: The write penalty of the array approach is not excessive since
a vertex fills a block almost completely, and (cache-efficient) priority queues provide no spatial
locality and only introduce overhead.

In practice things are slightly different due to prefetching techniques which can be employed
to speed up load operations. We distinguish two types of prefetches: In software and in hardware
[23, Section 3.7].

Software prefetch instructions can be implemented into the software and give hints to the cache
which block of data should be loaded into cache memory, anticipating future use. This operation
works just like a load from memory operation, but since the memory request can be send before the
CPU realizes that the data is required the CPU does not have to wait for it when it does. It is the
programmer’s responsibility to issue the prefetch instruction in a timely manner. By prefetching
data from potential search paths in comparison-based searching data structures Khuong et al. [24]
show that data structures which better suit prefetch instructions may outperform data structures
which are more cache-friendly in the external-memory model of computation when there is an
excess of bandwidth between RAM and cache memory.

Hardware prefetch instruction are issued by the CPU, which is able to detect simple access
patterns like sequential reads of an array and will load blocks into the cache hierarchy even before
they are accessed. Due to hardware reasons5, reading the next block(s) immediately afterwards
is faster than accessing a single random block at only 2 clock cycles of 400 MHz DDR2 SDRAM
per block [25, Table 3.1]. A modern CPU runs at 3 GHz [22, Figure 1.17], so this brings down
the latency to 15 CPU cycles per subsequent block and effectively expands the effects of spatial
locality from intra-block to inter-block (but only for consecutive operations on nearby memory
locations).

By issuing prefetch instructions the CPU can be fed a continuous stream of non-cached data.
This affects the main data stream, cell matrix stream, as well as the vertex input stream (i.e.
they also affect the slots approach). Since stacks occupy contiguous memory prefetching is also
applicable to them.

As a final step we need to assert that the latency of the computational work does not exceed
the load latency (in cycles), otherwise faster loading begets no benefits. In a tetrahedralization
where each cell has four adjacent vertices the matrix-vector multiplication Acvc consists of 12
additions and 16 multiplications. The latency of an addition resp. multiplication is 3 resp. 5
cycles , but due to pipelining6 the throughput is one addition/multiplication per cycle after the

5As to not introduce the full hardware structure of RAM memory we refrain ourselves from the technical
foundation of this effect – it is related to certain parts retaining their charge, resulting in non-uniform access
latencies. We refer to Akesson et al. [25, Chapter 3] and Shao [26, Section 2.1] for an overview of the RAM memory
structure and the timing constraints. In jargon terminology: it is related to the delay between Column Access
Strobe (CAS) operations being smaller for accesses to the same row of memory).

6Instructions take several cycles to complete in which the instruction is fetched, decoded, an affective address
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first one [27, Section 8.9]. Therefore the total computational latency per cell is at most 5+27
cycles. The data consists of four vertices of 8 double precision variables (4× 64 bytes) each and a
4 × 4 cell matrix of 16 double precision variables (128 bytes). The cell matrix may be efficiently
prefetched from the input stream in 15-30 cycles and does not form the bottleneck. However, the
vertices are not guaranteed to cache-hit and if even one of them has a cache miss the 100− 1000
cycles miss penalty definitely exceeds the computation latency. Thus the cache-hit ratio of vertex
variables forms the bottleneck of the algorithm and improving it directly affects the running time.

We we note that the maximum (theoretical) peak transfer rate from RAM to cache memory
can also form a bottleneck. The machine used by Khuong et al. could transfer a maximum of 8
bytes/cycle. Therefore the cell matrix will take at least 128/8 = 16 cycles to load, regardless of
prefetching.

6.6 Discussion

Thus far we have refrained from making a comparison between the two approaches. This is also
not directly possible because, in contrast to the slots approach, the cache-miss ratio of the stacks
approach is not immediately apparent. However, by putting things into context we are able to
make a decision.

The slots approach exercises explicit control over k slots of the cache memory and can easily
be extended to also include L1 cache efficiency, but is still subject to the constant factors of
overhead that result from the ideal cache assumption. Furthermore, the exact choice of k is hard
to make because it requires an estimation of the CPU and cache usage of other processes. Only
the upperbounds can be directly derived from the hardware specification. However, even for small
k a high fraction of all intervals can be colored. It should also be noted that prefetching techniques
make loading vertices from the uncolored interval array just as fast as loading data from any of
the streams.

The stacks approach has cache-oblivious data structures (i.e. also L1 efficiency by design) and
benefits from prefetching, but the replacement policy is non-optimal and decided by the cache. Our
experiments indicate the number of stacks is not constant, but instead linear in the subdivision’s
size and already reaches into the hundreds for subdivisions of only 335, 000 cells. With such a
large number of stacks they have lost their main asset: The cache’s least recently used replacement
policy matching our intended use of the data because elements which have not been recently used
will also not be used in the near future (since they are buried deep in the stack). Moreover, the
cache’s blocks are spread thin over the stacks and due to B = 1 less consecutive loads are needed
to trigger a cache-miss by hitting the uncached data below. When uncached data is hit it can be
loaded faster with prefetch instructions, but since we have no guarantee that the next elements
in line will be used in the near future this may be wasteful. Optimizing when (not) to prefetch
directly brings us back to the slots approach. In summary the stacks approach stands or falls
with a bounded number of stacks. Since this condition is not met the interval coloring approach
makes better use of the cache and deals better with the inevitable misses (i.e., prefetching from the
uncolored array is faster than unstructured single block loads from different stacks). If it would
be met then stacks would have been the better choice due to their oblivious nature and ease of
implementation.

The remainder of this section is dedicated towards estimating the effectiveness of the interval
coloring approach in terms of the number of cache-misses by looking at the lower bound of all
parameters.

Assuming B = 1 and a L1 cache of 250 blocks of which only 20% are available to us, i.e. k = 50,

is read (if necessary) and finally executed. During a cycle each step is executed for a different instruction, i.e.
instruction i4 is fetched while i3 is decoded, while an address is read for i2, while i1 is executed. At the end of the
cycle each instruction moves one step forward in the pipeline. Therefore the latency is the length of the pipeline,
but the throughput is one operation per cycle.
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the coloring of the n = 80, 000 subdivision still results in a 92,79% L1 cache-hit rate for vertex
accesses. Analogously we find that a L2 cache of 2,500 blocks of which only 20% are available,
i.e. k = 500, results in a vertex cache-hit rate of 97,84%. We had already established that these
percentages scale well with the subdivision size. Since the interval coloring percentage has a one-
to-one correspondence to the vertex cache-hit rate we therefore conclude that the result are very
strong indeed – the various heuristics have actively optimized the cache-ratio of the vertices. The
asymptotic complexity of the pre-processing step is dominated by the sorting of the intervals, i.e.
O(|I| log |I|) where in 3D |I| is approximately 26 times the size of the point set of the subdivision.

Due to the large number of open ends and optimization problems these topics have a separate
discussion in Section 7.
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7 Optimizations and future work

We have experimented with various algorithms and heuristics to find the data access order which
is most favourable for obtaining cache efficiency. The experiments had an exploratory nature
with the aim to identify the usefulness of simple heuristics for the global optimization problem
presented at the end of Section 5.6. To improve the results we put forth the following ideas as
(pointers to) areas of interest for further optimization.

Traversal orders

1. In this thesis we have explored breadth- and depth- first spanning trees, but there are
many more. Are there other spanning trees with more favourable properties (pruned
or not pruned)?

2. In our experimental setup the choice of the root and the order in which children of a
cell are visited were kept constant at an arbitrary value/order. Could we benefit from
choosing the starting cell in a particular way?

3. Our definition of a treewalk has been a depth-first traversal of the spanning tree. How
good are (pruned) breadth-first treewalks of breadth- and depth-first spanning trees?

4. Can the use of a traversal orders which is not based on spanning tree heuristics be
argued? A geometric separator recursively make balanced bisections of the subdivision.
An in order traversal of the leafs of its recursion tree (i.e. single cell subdivisions) seems
to have good locality properties.

5. Our pruning heuristic preserves the first occurrence of each cell in the treewalk. Could
we benefit from choosing the which occurrence is preserved in a particular way?

– For depth-first trees preserving the last occurrence looks promising. The argument
for why DF outperformed DFP may be completely inverted – the unbalanced tree
property can work in our favor.

– Before pruning the access time choice heuristic of Section 5.5 could be used to
determine which option looks like the best choice to retain by means of majority
vote. That is, if a cell is accessed more than once during the treewalk then, after
applying the heuristic, the access time at which the most vertices are accessed is
preserved during pruning (rather than always the first).

Intervals

6. The data access time selection heuristic only focusses on minimizing the average interval
length by minimizing the interval [t1, tk]. The choice of t2, . . . , tk−1 does not matter
in this context, but it can make a difference for the interval length distribution. For
example you can have two intervals of length 50, or one of 3 and one of 97. Could we
benefit from choosing t2, . . . , tk−1 in a particular way without using combinatorial time
(i.e. considering all possibilities)?

7. Our heuristics are aimed at obtaining as many disjunct intervals as possible by min-
imizing their length. However, the stacks approach would also benefit from intervals
which contain each other. Can different optimization heuristics be formulated which
also take this secondary goal into account?

Implementation details

8. The data in the ‘main data stream’ as described in Section 5.7 only contains addresses
(i.e. stack or slot ID’s) of where variables should be loaded from and/or stored to.
This is actually redundant – since they are static the compiled program could already
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contain the stack/slot addresses in its load/store instruction, thus removing the need
for the stream. The CPU has a dedicated independent cache for instructions so this
causes no conflicts. This optimization is possible because, unlike the space-filling curve
approach, we’re dealing with a static subdivision.

9. Whenever a bit of information is required it might be faster to dedicate a full byte to
that value instead. The time saved by loading less bits may be exceeded by the time it
takes to filter the individual bits from a byte.

10. Due to the invariant that the number of vertices loaded from the input stack is always
smaller than the number written to the output stack the combined size of the input and
output stack is always smaller than |V |. They can therefore be implemented together
in a size |V | array.

11. (Knowledge of RAM design memory required:) By storing each stream and stack on
a different bank of SDRAM memory read and write operations will never cause row
conflicts and the memory latency will be smaller. If this optimization is incorporate it
voids the suggestion in bullet 10.

Miscellaneous

12. The abstract data access model completely describes all data accesses during an itera-
tion. Therefore every off-line optimization technique in the book for minimizing memory
latency can be used as long as it does not make the pre-processing time excessive (e.g.
RAM address mapping techniques [26]).

13. When running the algorithm in parallel, the abstract data access model may be used
for weight balancing purposes by assigning a uniform fraction of the traversal length to
each processor.

14. The 3D approach as such has no dependencies on the dimension of the subdivision –
All we need are the vertex accesses times along a traversal order. Therefore it can
be directly applied to subdivisions in other dimensions. How effective is the interval
(overlap) graph coloring approach for other dimensions? Are the same heuristics still
the best heuristics?

15. The 2D approach works efficiently with one intermediate cell/vertex stack, but still
incurs misses when loading from these structures. It would be of interest to compare
the actual number of misses with the 2D slots approach using the BFP traversal order
for the same subdivision.

16. How does the percentage of colored data elements change if we incorporate edge and/or
facet variables into our subdivision?

17. We have not explored the variant of the finite element method with dynamic subdivi-
sions. This poses additional constraints on the approach. In 2D dynamic operations
seem to be possible as long as the spanning tree can be dynamically adjusted as well.
In 3D things are more complicated because updates are not local. The load/store ad-
dresses depend on the interval graph coloring algorithm which works off-line on the set
of all intervals, and the result is stored spread out over a stream. Moreover, even just
maintaining the set of all intervals with acceptable overhead is challenging. A single
insertion/deletion can trigger an update of the start/end times of Ω(|I|) intervals.
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8 Conclusion

In this thesis we set out to generalize the Stack & Stream algorithm for finite element method
computations to arbitrary 2D and 3D subdivisions. The Stack & Stream algorithm is designed to
minimize the overall memory latency that is incurred during executing, which is one of the most
serious bottlenecks in high performance computing. In 2D we have been successful in this attempt
and have developed an I/O-efficient algorithm for arbitrary subdivisions at the cost of doubling
the traversal length.

The 3D variant posed a harder challenge and no optimal solution was found. We have intro-
duced the abstract data access model which can be used to capture the data access pattern of any
finite element method computation regardless of its traversal order, access pattern or the subdi-
vision’s dimension. In the context of this model two approaches for I/O-efficient computations
were defined based on the overlap graph and interval graph coloring. Both approaches are subject
to the effectiveness of heuristic solutions to combinatorial problems, e.g. the traversal order and
access time choices.

We have implemented both approaches and the experimental results showed that the interval
graph coloring for the BFP traversal order yields the best results. Over 92% (resp. 97%) of all
vertex data accesses are a cache-hit in L1 (resp. L2) cache memory for tetrahedral subdivisions of
point sets up to 80, 000. All other data accesses may be efficiently prefetched from data streams.
The experiments also indicate that these percentages are only marginally influenced by the size
of the subdivision and scale well to bigger subdivisions. Considering that we do not exploit any
particular property of the structure of such big input subdivisions, these high percentages are a
powerful result indeed.

The many heuristics and variables underlying our approach provide many angles for further
optimization. Before any of them are considered it should be established that the results presented
in this thesis, which are conjectured to be almost independent of the subdivision’s size, indeed
scale well to even bigger subdivisions and predict actual performance on actual machines well.
Thereafter the effectiveness of the many listed (traversal order) alternatives may be explored. The
main open question is whether it is possible to bound the number of colors of the interval (overlap)
coloring by a constant. Without making any assumptions about the subdivision this seems like
an inherently hard problem due to the combinatorial nature of the many variables involved.
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