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Abstract

Biometric authentication is a promising solution for secure authentication. However, the storage
of biometric data may lead to security and privacy problems. A Helper Data System (HDS)
is introduced to solve these problems. HDS offers the capability to extract information from
noisy data while maintaining the confidentiality. There are two types of HDS, which are Fuzzy
Extractor (FE) and Secure Sketch (SS). The difference between FE and SS is, a Secure Sketch
allows reconstruction of the enrolled biometric from a noisy measurement, whereas a Fuzzy
Extractor derives a stable uniform key or secret. In this thesis, we consider a general Helper
Data System (HDS), which extracts secret from the enrollment data, but with non-uniform
probability of secret. This thesis explore the optimal secret reconstruction procedure in Zero
Leakage Helper Data System (ZLHDS). The main goal is to maximize the amount of information
that can be extracted from noisy data. The optimization of ZLHDS is done by maximizing the
mutual information of the generated secret and the reconstruction secret given helper data. The
optimization of ZLSS consists of two phase. First is the analysis to formulate the optimum
reconstruction boundary. Second is the numerical analysis to find the optimum probability to
obtain the maximum mutual information. The result confirmed that ZLHDS gives a higher
mutual information than Zero Leakage Fuzzy Extractor (ZLFE) for a certain amount of noise.
This thesis also explored the theoretical approach for the optimization of ZLHDS in a more
general case, which is for arbitrary source and arbitrary noise distribution. This approach was
done using Lagrange Multiplication, which resulted in a more complicated formula.
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Chapter 1

Introduction

A reliable authentication scheme is crucial to allow secure access. Authentication is a process of
determining whether a certain identity that is claimed by someone is actually true. If the claimed
identity matches the database of the authorized users, then the user will be granted access.

1.1 Types of Authentication

There are three types of authentication schemes which are distinguished based on the category
of the resources used. They are the authentication scheme that are based on what you know,
what you have, and what you are.

What you know -based authentication distinguishes the authorized user from all other users
from the knowledge of a secret. The authentication scheme simply checks whether a person
who claims to be the authorized user, knows the secret. An example of what you know -based
authentication is the password-based authentication scheme. This authentication scheme verifies
that a user knows a password that nobody else does.

In the password-based authentication scheme, the system checks whether an identification
data, e.g. username and password entered by the user is valid. The validity is done by comparing
that username and password with the list of authorized identification data that stored in the
database. Since the identification data is a confidential information, the storage needs to be
secured.

Storing this identification data in a plain database without applying any cryptographic al-
gorithm is not a wise thing to do. Once the database is compromised, the authentication system
becomes vulnerable to attack. This problem can not be solved by simply encrypting the data-
base, since it is susceptible to an insider attack. If an attacker possessed the decryption key, then
the attacker can impersonate any users that are listed on that database.

A common solution to securely store passwords is by applying a cryptographic hash function
to the stored password. Hash is a one-way-function that is computationally hard to invert.
Therefore, even if the attackers can obtain the hashed data, it is difficult to revert the original
password. Hence, it prevents the attacker from deriving any useful information from the hashed
value.

Even though the database is secure, password-based authentication still has a weakness.
Because of the limitation in human memory, people tend to choose a password that is easy to
remember. Thus, making it easy for an attacker to guess the password.

On the contrary, if the password is difficult to guess, there is a high possibility that a user will
forget the password. If the user writes down the password somewhere, it will raise the possibility
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CHAPTER 1. INTRODUCTION

of leakage. Moreover, stealing passwords is often becoming the target of social engineering attack.

Another type of authentication scheme is the what you have-based authentication scheme. In
this scheme, the identity of a user is verified based on an object that belongs to a certain user.
For example, ID-card, biometric passport, RFID-card, and security token.

There are two types of identification that can be used in what you have-based authentication
scheme. First is the authentic physical object, e.g. ID Card, having physical authenticity marks
such as special microstructures, inks, etc. that are difficult to clone. Second is the hard-to-hack
specialized hardware tokens that employ a cryptographic key.

The what you have-based authentication might have solved the risk of human memory limit-
ation. However, it does not eliminate the risk of careless human behavior. If the authentication
object (the passport, or the token) is lost or stolen, then anyone could easily impersonate the
authorized user. Due to this limitation, an authentication technique based on what you are is
developed.

The idea of what you are-based authentication corresponds to the natural way of how people
recognize each other. People are not identified using some secret exchange protocol or certain
belonging. People recognize each other because of their look, their sound, their human charac-
teristic or in other words, what you are.

However, in order to utilize human characteristics in an authentication scheme, it is crucial to
choose characteristics that are easy to measure and difficult to spoof. The characteristic that is
often used in what you are-based authentication is the biometric information, such as fingerprint,
iris, face, etc. This form of authentication is called biometric authentication.

Recently, the concept of biometric authentication has been applied to authenticate physical
object. It becomes possible because of the implementation of physical unclonable function (PUF).
PUF has similar characteristics as biometric, which are unique, measurable, and unclonable.
Hence, PUF objects are generally known as device biometrics. Physical object authentication
that uses PUF as its identifier is called PUF-based authentication.

This thesis is focused on what you are-based authentication.

1.2 Biometric authentication

Biometric authentication scheme has a promising potential as a solution for secure authentica-
tion scheme because of its unique characteristics. Biometric data is bound to the user identity
and cannot be forgotten. Biometric authentication utilizes the physiological or behavioral char-
acteristic of a person, such as fingerprint, iris, retina, handprint, face, DNA, signature and voice.
This biometric information is called biometric identifier.

Generally, biometric authentication consists of two phases: enrollment and authentication.
During the enrollment phase, a biometric template is extracted from the biometric identifier of
a user. Biometric template is a form of features that best characterizes the biometric sample.
This biometric template is then stored in the database as the enrollment data.

In the authentication phase, the system scans another biometric sample of a user, extracts
the biometric feature, and then compares it against the enrollment data. A user is authenticated
if the new sample produces high similarity with the enrollment data in the database.

In a general biometric authentication scheme, the extracted biometric template usually con-
tains confidential information of the user. Therefore, if the storage of this biometric template is
not secured, it may lead to several security and privacy problems.
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1.2.1 Problems in Biometric Authentication

Security problems occur when an attacker is able to obtain sufficient information to produced
fake biometrics, e.g. rubber finger, face mask, fake DNA, or fake iris. Using these fake biometrics,
an attacker might be able to impersonate a certain user to gain unauthorized access to a system
or to leave fake evidence at a crime scene.

Privacy problems occur when some personal information can be derived from the biometric
template. For example, a biometric template may reveal disease information. Once leaked, an
attacker may misuses the health information of a certain user for malicious intentions. Another
privacy risk occurs when an attacker is able to perform cross-correlation between databases, so
that an attacker could observe that someone is enrolled in both databases. Hence, the storage
of biometric data needs to be highly secured.

In the password-based authentication, the database is secured using hash functions. However,
hash functions are very sensitive to noise. A minor change in the source results in a totally
different hash value. In contrast, biometric information is prone to noise. It is impossible
to reproduce two exact similar biometric information. Therefore, applying a straightforward
implementation of hash to biometric information is not possible. It is necessary to perform a
noise-correction procedure to the biometric information for further processing.

1.3 PUF-Based Authentication

Another form of what you are-based authentication is the implementation of Physical Unclonable
Function (PUF). It was first introduced by [12]. They developed a physical one-way function
which was easy to evaluate on every input but hard to revert when only the output is known.

PUF is a random function that is embodied in a physical structure. PUF performs a unique
challenge-response behavior which is hard to predict, but reliable and easy to evaluate. PUF is
also unique and unclonable. These properties are caused by the uncontrollable manufacture of
their physical microstructure.

When the microstructure is challenged by a physical stimulus, the response is unpredictable.
This unpredictable response is caused by the complex interaction between the stimulus and the
physical microstructure of the device. However, this response is reliable. When PUF is queried
with the same challenge, the corresponding responses are relatively similar and only differ by a
minor variation. Thus, the response can be evaluated.

It is impossible to construct two PUFs with the exact same challenge-response behavior, even
though those PUFs were manufactured with the same process as a similar device. Therefore,
PUFs can be used as a unique and a tamper-evident device identifier.

PUFs can also generate and store secure key for authentication. The responses of the PUFs
act as the authentication data. In order to derive a reproducible bit strings for the authentication
data, a noise-correction algorithm is required. Because PUF is unique and prone to noise, it is
also known as device biometrics.

PUF-based authentication also has similar problems as biometric authentication. Those
problems are the noisy response and the highly-secured storage requirement.

1.4 Approaches for Protecting Privacy

Both biometric and PUF data contain confidential information, either it is the personal data
or the secure key. Therefore, this information needs to be stored securely. There are several
algorithms that not only provides secure storage, but also enable the stored data to be further
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processed. The latest feature is important for authentication. Those algorithms are homomorphic
encryption and helper data system.

Homomorphic encryption was first introduced by [13]. It is a cryptographic scheme that
enables a computation to be performed directly on the encrypted data without decrypting it
first. The result of this algorithm is a ciphertext where the decryption matches the result of the
same operations performed on the original plaintext. Homomorphic cryptosystem is malleable
by design.

In general, there are two types of homomorphic algorithm. They are the partially homo-
morphic [6][1] [11]; e.g. as unpadded RSA, El Gamal, Goldwasser-Micali, Benaloh, and Paillier;
and the fully homomorphic encryption scheme [5]. The difference is that the first algorithm
only allows certain operations on their cipertext computation, e.g. addition, and multiplication.
On the other hand, fully-homomorphic algorithm supports both addition and multiplication to
be performed on the encrypted values. However, homomorphic cryptosystems require enormous
computational resources.

Another approach is the helper data system, as proposed by [7], [10] and [4]. Helper data sys-
tem offers a security primitive that can extract information from noisy sources while maintaining
the confidentiality of the data. Moreover, helper data system requires less resources and less
complex computation, compared to the homomorphic cryptosystem. Hence, helper data system
is convenient for biometric based authentication.

1.5 Helper Data System

Helper data system is a cryptographic primitive that extracts high-entropy noise-free bit strings
from noisy sources. Helper data system is attractive because the extracted information hides
the confidential information of the source data. Another advantage of the helper data system is
that it can be combined with various cryptographic algorithms, including hash functions. Thus,
it can be used in a biometric authentication scheme.

In general, helper data system consists of two phase. They are the Generation phase and
the Reconstruction phase. The Generation phase obtains the noisy biometric data as input and
generates two values, the secret and the helper data. The secret contains the most significant
bits of the input, while the helper data contains the least significant bits. Therefore, the helper
data contains only the required information to reconstruct the secret without actually leaking
any confidential information of the biometric input.

The Reconstruction phase obtains another noisy biometric data, that correlated to the input
of the Generation phase, and helper data as its input. The output of this phase is the recon-
structed secret. In the ideal case, the reconstructed secret from the Reconstruction phase should
be similar with the generated secret from the Generation phase.

There are two types of helper data system, they are Fuzzy Extractors and Secure Sketches.
Fuzzy extractor produces a uniform and an error-tolerant bit string as the extraction result.
Fuzzy extractors are mostly used to generate keys. On the other hand, secure sketches focus
more on extracting entropy without requiring uniformity constraint.

Helper data algorithm was first introduced by [7], [10], and [4]. Their work, however, was
focused only on the discrete metric spaces. The definition of fuzzy extractor was then extended
by [15], where a generic construction of fuzzy extractor for noisy continuous sources is introduced.
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1.6 Zero Leakage Helper Data System

Helper data is considered as a public data, thus it should not reveal any confidential information
of its input data. Zero leakage property is defined as a condition where the mutual information
between the helper data and the secret extracted is equal to zero [3]. Their proposed zero leakage
properties ensure that the helper data is independent from the secret. Thus, knowing the helper
data never leaks any information about the secret. For instance, the proposed scheme of [15]
and [3] are zero leakage.

The theory of zero leakage helper data system was then refined by [3]. They focused on
the quantization and proved that the zero leakage scheme requires quantile helper data. Their
result also provided an optimal reconstruction algorithm minimizing the reconstruction error
probability. However, the optimal reconstruction for a ZL HDS with a not-uniformly-distributed
secret remains an open question.

The uniformity constraint of the fuzzy extractor has a negative impact on the amount of
entropy extracted from the source. In the fuzzy extractor algorithm, the input data is partitioned
into certain number of equiprobable regions. The choice of the number of the equiprobable regions
depends on the noise characteristic. If the chosen number of regions is too large, then the error
correction may fail. If it is too small, then the helper data system will not give the correct
reconstruction.

1.7 Research Questions

This thesis explores the optimization of zero leakage Helper Data System (ZLHDS). There are
two questions that become the main focus of this research. They are:

• finding the best reconstruction algorithm in ZLHDS

• how to optimize the quantization intervals so that the maximum amount of entropy is
extracted from the source.

1.8 Contributions and Outline

This thesis is focused on the optimization of ZLHDS. We have modified the reconstruction
boundaries proposed by [3] to suit the secure sketch requirements.

Our approach consists of two phases. First is to obtain the generalized formula to produce
the optimum reconstruction boundary. Second is to perform numerical analysis to define the
optimum quantization intervals that maximizes the bit of information extracted. The numerical
analysis is applied under assumption of Gaussian source and Gaussian noise with zero mean, and
a perfect enrollment.

Chapter 2 gives the preliminaries; including the helper data system, information theory, zero
leakage, and the results of [3]. Chapter 3 focus on the detailed analysis of the proposed algorithm,
including the optimal quantization boundary and the optimization of the quantization intervals.
Chapter 4 elaborates the numerical analysis of the algorithm proposed. Chapter 5 describes
the analytical approach for general case with arbitrary source and noise. Finally, chapter 6
summarizes and concludes the results of this thesis.

Optimization of Zero Leakage Helper Data Systems 5





Chapter 2

Preliminaries

2.1 Information Theory

2.1.1 Expected Value, PMF, PDF, and CDF

The expected value of a random variable is the average of all possible values. Consider a discrete
random variable X and a function h(X). The expected value of h(X) is defined as

E[h(x)] =
∑
x∈X

Pr[X = x]h(x). (2.1)

A probability mass function (PMF) is a function that gives the probabilities of the possible
value x for a discrete random variable X.

A probability density function (PDF) is a function which describes the probability that a
continuous random variable X is close to a given value.

A Cumulative Distribution Function (CDF) describes the probability that a real-valued ran-
dom variable X with a given probability distribution will be found to have a value less than or
equal to X.

2.1.2 Shannon Entropy

The Shannon entropy of a discrete random variable X is a measure of the amount of the uncer-
tainty that is associated with X.

H(X) = −
∑
x∈X

px log px (2.2)

The joint entropy of two random variables, X and Y , is the entropy of their joint distribution.

H(X,Y ) = −
∑
x∈X

∑
y∈Y

pxy log pxy. (2.3)

The conditional entropy measures how much the uncertainty about X exist if Y is known.

H(X|Y ) = −
∑
y∈Y

py
∑
x∈X

px|y log px|y. (2.4)

Optimization of Zero Leakage Helper Data Systems 7
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2.1.3 Mutual Information

Mutual information between two random variables measures the amount of information that
can be obtained about one random variable by observing another. The mutual information of
discrete random variable X relative to Y is given by:

I(X;Y ) =
∑
x∈X

∑
y∈Y

pxy log
pxy
pxpy

. (2.5)

For continuous random variables, the mutual information is:

I(X;Y ) =

∫
x∈X

dx

∫
y∈Y

dy pxy log
pxy
pxpy

. (2.6)

Mutual information can be represented as:

I(X;Y ) = H(X)−H(X|Y ) (2.7)

= H(Y )−H(Y |X) (2.8)

= H(X) +H(Y )−H(X,Y ). (2.9)

2.2 Helper Data System

Helper data system (HDS) is a cryptographic primitive that can extract a reproducible bit
strings from noisy sources while maintaining its privacy. HDS consists of two phases, Generation
and Reconstruction. There are two special algorithms that have been developed for HDS, they
are Fuzzy Extractor (FE) and Secure Sketches (SS). In FE the probability distribution of the
extracted secret given the helper data is (nearly) uniform. On the other hand, the probability
distribution of the extracted secret in SS is not necessarily uniform. In SS, however, the entropy
of the secret given the helper data is generally higher than for a FE.

2.2.1 Fuzzy Extractor

Figure 2.1: Fuzzy Extractor Scheme

Definition 2.2.1 (Fuzzy Extractor). Taken from Definition 6.1 in [14].
A Fuzzy Extractor for a source space X and target space {0, 1}l consists of a (possibly non-
deterministic) procedure:

• Gen: X → {0, 1}l × {0, 1}∗ : x 7→ (sx, wx) (”generate”) which extracts a secret sx and
helper data wx from x, and

8 Optimization of Zero Leakage Helper Data Systems
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• Rec: X × {0, 1}∗ → {0, 1}l : (y, w) 7→ ŝx (”reconstruction”) which tries to reconstruct the
secret from the helper data and a fresh measurement y.

A Fuzzy Extractor must satisfy the following properties:

• Correctness: The probability that Ŝx = Sx must be close to 1.

• Security: The random variable Sx must be close to uniform, given knowledge of Wx.

In the Gen phase, FE extracts a uniform random bit string S from an enrollment data X.
The Gen phase also outputs a helper data W that can be safely made public since it does not
contain any confidential information of the secret S.

The Rec phase takes Y as its input. Y is the noisy value that correlated to X, which is also
known as the authentication measurement. Hence, the secret bit string S can be reconstructed
as Ŝ from Y and W . The helper data W helps the reconstruction of secret S.

2.2.2 Secure Sketch

Figure 2.2: Secure Sketch Scheme

Definition 2.2.2 (Secure Sketch). Taken from Definition 6.2 in [14].
A Secure Sketch for a source space X consists of two algorithms,

• Gen: X → {0, 1}∗ : x 7→ wx (”sketch”), and

• Rec: X × {0, 1}∗ → X : (y, wx) 7→ x̂ (”reconstruct”).

A Secure Sketch must satisfy the following properties:

• Correctness: The probability that X̂ = X must be close to 1.

• Security: X given Wx must have high entropy.

It is always possible to construct a FE from SS.

2.2.3 General Helper Data System

Another scheme is the general HDS where the algorithm is similar to FE but with non-uniform
probability of secret s.

Optimization of Zero Leakage Helper Data Systems 9
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Figure 2.3: General HDS

2.3 Zero Leakage

Although secure sketches leave entropy in W and fuzzy extractors extract uniform randomness
from it, they may leak some information about the secret s during the error correction. Zero
Leakage (ZL) algorithm was developed by [2] to resolve this problem.

The work of [2] introduced a constraint on the conditional helper data as

fW (W |S = s) = fW (w) ∀S ∈ {0, . . . , N − 1} (2.10)

so that I(W ;S) = 0. fW is the probability density function of W and N is the total number of
secret.

They defined ZL as a condition where helper data does not reveal privacy of the source. This
condition can be achieved if the mutual information between W and S is equal to zero.

Definition 2.3.1 (Zero Leakage). Taken from Definition 2.1 [3].
Let W ∈ W, we call a helper data system Zero Leakage if and only if

∀V⊆W P[S = s|W ∈ V] = P[S = s] (2.11)

Def. 2.3.1 implies I(W ;S) = 0.
In ZL the helper data W contains only the least significant digits of source X, while S contains

the most significant digits. Thus, S does not depend on W .

2.4 Noise Model

The correlation ρ ∈ [−1, 1] between the enrollment measurement X and the authentication
measurement Y is defined as

ρ =
E[XY ]− E[X]E[Y ]

σXσY
(2.12)

where σX and σY denotes the variance of the enrollment sample and the authentication
sample respectively. Later, we also introduce σR as the variance of the additive noise.

Let the noise-free measurement is notated as Z, then we have the noisy enrollment and noisy
authentication measurements as

X = Z +Ne (2.13)

Y = Z +NRec (2.14)

10 Optimization of Zero Leakage Helper Data Systems
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where Ne is the enrollment noise and NRec is the authentication noise. Thus, we have

Y = X −Ne +NRec (2.15)

Without loss of generality, we consider X and Y to have zero mean. Thus, as defined in
[3], the authentication sample Y which related to the enrollment sample X and the independent
noise R is

Y = λX +R (2.16)

where λ ∈ [0, 1] is the attenuation parameter. R is the zero-mean additive noise that is uncor-
related with X.

According to the consistency requirements for the second order statistic:

1. Eq.(2.16) squared: E[Y 2] = E(λX +R)2

2. Eq.(2.16) times X: E[XY ] = E(λX2 +RX)

since σXR = 0, where σXR is the covariance between X and R, then we have the variances as

1. σ2
Y = λ2σ2

X + σ2
R

2. ρ σXσY = λσ2
X

The unknown variables are λ and σR. Using the equation above, we solve them as

λ = ρ
σY
σX

(2.17)

and

σ2
R = σ2

Y − λ2σ2
X (2.18)

= σ2
Y − ρ2 σ

2
Y

σ2
X

σ2
X (2.19)

σ2
R = σ2

Y (1− ρ2). (2.20)

As defined on [3], λ can also be expressed as

λ2 =
ρ2

1− ρ2

σ2
R

σ2
X

. (2.21)

The ratio of the enrollment data to the noise is defined as the Signal to Noise Ratio (SNR),
such that

SNR =
λ2σ2

X

σ2
R

(2.22)

In this noise model, there are two limiting situations exist [3]

1. Perfect Enrollment, occurs when the enrollment noise is negligible.

σ2
Y = σ2

X + σ2
R ⇐⇒ λ = 1 (2.23)

σ2
R = σ2

Y − σ2
X . (2.24)

Optimization of Zero Leakage Helper Data Systems 11
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2. Identical conditions, occurs when the enrollment and the authentication noise are identical.

σ2
Y = σ2

X ⇐⇒ λ = ρ (2.25)

σ2
R = (1− ρ2)σ2

X . (2.26)

Definition 2.4.1 (Symmetric Fading Noise). Taken from Definition 2.2 [3].
The noise is called symmetric fading noise if for all x, y1, y2 holds

|y1 − λx| > |y2 − λx| ⇒ ψ(y1|x) < ψ(y2|x) (2.27)

Gaussian noise is an example of symmetric fading noise.

2.5 Results from De Groot et.al.[3]

The work of [3] observed the ZL property of HDS in the case of a one dimensional continuous
source X and continuous helper data W .

Consider a random variable X ∈ R. The Probability Density Function (PDF) of X is denoted
as f , while the Cumulative Distribution Function (CDF) is denoted as F .

The secret S is an integer in the range S = {0, . . . , N−1} where S is a result of a quantization
function Q such that S = Q(X). The probability mass function of secret s is denoted as ps.

Figure 2.4: Quantization regions and Quantization boundaries for enrollment phase

The quantization regions is defined as As = {x ∈ R : Q(x) = s}. One quantization region
represents a single value of s. The left boundary of a quantization region As is the quantization

boundary Ωs where Ωs = F−1

(∑s−1
t=0 pt

)
. In the Figure 2.4, the shaped area represents the

quantization regions and the vertical lines represent the quantization boundaries for enrollment
phase.

The continuous helper data is represented as W ∈ W ⊂ R where W = [0, 1). The helper
data is computed using a function g such that W = g(X). g is an invertible function on each
quantization interval As.

2.5.1 Sibling Points

Sibling points are a point x that corresponds to a different secret s but gives rise to the same
helper data w.

Definition 2.5.1 (Sibling Points). Taken from Definition 2.1 [3].
Two points x, x′ ∈ R, with x 6= x′ are called sibling points if g(x) = g(x′).
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Lemma 3.4 from [3] proved that for each quantization interval As there exists only one
point x that is compatible with w. Theorem 3.6 from [3] proved that g is differentiable on each
quantization interval, it has to be either monotonously increasing on all intervals or monotonously
decreasing on all intervals.

2.5.2 Quantile Relationship between Sibling Points

De Groot et al.[3] proved that zero leakage is equivalent to quantile relationship between sibling
points.

Theorem 2.5.2 (Quantile Sibling Points). Taken from Theorem 3.8 in [3].
Let g be monotonously increasing on each interval As with g(A0) = · · · = g(AN−1) = W. Let
s, t ∈ S. Let xs ∈ As, xt ∈ At be sibling points as defined in Def. 2.5.1. In order to satisfy Zero
Leakage we have the following necessary and sufficient condition on the sibling points,

F (xs)− F (Ωs)

ps
=
F (xt)− F (Ωt)

pt
. (2.28)

According to the Theorem 2.5.2, the enrollment phase can be defined as

s = Q(x) (2.29)

w = g(x) =
F (x)− F (Ωs)

ps
. (2.30)

The helper data w is represented as a quantile distance between x and Ωs and normalized to ps.

2.5.3 Optimal Reconstruction Boundary of ZLFE

The work of [3] discovered how maximum likelihood reconstruction is done for ZLFE.

Figure 2.5: Reconstruction boundaries for some given w

Lemma 2.5.3 (Optimal Reconstruction FE). Taken from Lemma 4.1 [3]. Let Rec(y, w) be the
reconstruction algorithm of a ZL FE system. Let g−1

s be the inverse of the helper data generation
function for a given secret s. Then optimal reconstruction is achieved by

Rec(y, w) = arg max
s∈S

v(y|g−1
s (w)). (2.31)

They [3] also found where the reconstruction boundary lie that follow from Eq.(2.31) by
finding a point y = τs that gives the equal probability of v(y|g−1

s (w)) for s and s − 1. The
threshold τs represents the lower boundary of the decision region. The optimal reconstruction
where ŝ = s can be achieved if τs,w ≤ y < τs+1,w.

Optimization of Zero Leakage Helper Data Systems 13
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Theorem 2.5.4 (Optimal Reconstruction Boundary in ZL FE System). Taken from Theorem
4.2 [3]. Let ψ(y|x) represent symmetric fading noise. Then the optimal reconstruction in a FE
scheme is obtained by the following choice of thresholds

τs = λ
g−1
s (w) + g−1

s−1(w)

2
. (2.32)

2.6 Lagrange Multipliers

Lagrange multipliers is an algorithm on finding the extrema of a function m(x, y) where one or
more constraints, e.g. c(x, y) = 0, have to be satisfied. A new variable λ is introduced. A new
function L[x, y, λ] is constructed as

L[x, y, λ] = m(x, y) + λ c(x, y).

The extrema are found by calculating the partial derivatives of L w.r.t. x, y, and λ, and
demanding each derivative to be equal to zero.

2.7 Implicit Function Theorem (IFT)

Let G(~p, τ) : RN+1 → R be a function where ~p = {p0, p1, . . . , pN−1}. Denoting points (pα, τ)
that satisfies G(~p, τ) = 0 and ∂G

∂τ 6= 0 at pα.
Thus the calculation of the implicit function can be done as follows:

∂τ

∂pα
= − ∂G/∂pα

∂G/∂τ
. (2.33)

2.8 Summary of Notations

There are several notations used in this thesis, they are:

Kronecker Delta

δs,α δs,α =

{
0, s 6= α
1, s = α

.

Step Function

1s−1(α)
s−1∑
i=0

δi,α 1s−1(α) =

{
1, α ≤ s− 1
0, α > s− 1

.

Gaussian Noise

ϕσ(z) 1
σ
√

2π
e−

z2

2σ2 Probability distribution function
of a Gaussian random variable
with zero mean and variance σ2.

ϕ′σ(z) − z
σϕσ(z) First derivative of Gaussian.

Φσ(z)
∫ z
−∞ dz′ϕσ(z′) Error function: − 1

2 erf( −z√
2σ

).

Enrollment Measurements
X (−∞,∞) Enrollment measurement of the

generation phase.
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f(x) Probability density function of X.
F (x)

∫ x
−∞ dx′ f(x′) Cumulative distribution function

of X.
s Q(x) The generated secret s ∈ S, where

S = {0, . . . , N − 1}.
Ωs F−1

(∑s−1
t=0 pt

)
Quantization boundary of the
Generation Phase.

w

(
F (x)−

s−1∑
i=0

pi

)
/ps w = g(x) where w ∈ W in which

W = [0, 1).

ξs,w F−1

(
s−1∑
i=0

pi + wps

)
x-value that corresponds to s, w.

Authentication Measurements
Y (−∞,∞) Authentication measurement of

the reconstruction phase. It is
the noisy value correlated to the
source X.

ψ(y|x) v(y − λx) Probability density function of y
given x.

V (z)
∫ z
−∞ dy v(y) Cumulative density function.

τs,w
σ2
R ln ps

ps−1

λ(ξs−1,w−ξs,w) + λ
(ξs−1,w+ξs,w)

2 Reconstruction boundary for cer-
tain s and w.

qŝ
∫∞
−∞ dx f(x)

∫ τŝ+1,w(x)

τŝ,w(x)
dy ψ(y|x) Pr[Ŝ=ŝ] which also equal to

Ew Λŝ|w.

Conditional Probabilities
Υŝ|s,w V (τŝ+1,w − λξs,w)− V (τŝ,w − λξs,w)

∫ τŝ+1,w

τŝ,w
dy ψ(y|ξs,w).

Πs,ŝ|w psΥŝ|s,w

Γs|ŝ,w
Πs,ŝ|w
Λŝ|w

Λŝ|w
∑
s
psΥŝ|s,w

∑
s

Πs,ŝ|w.

Noise
λ ρ σYσX The attenuation parameter where

λ ∈ [0, 1].

Mutual Information

I(S; Ŝ,W )
∑
s,ŝ

EwpsΥŝ|s,w ln
Υŝ|s,w
Λŝ|w

Mutual information.

Error Reconstruction

Pr[Ŝ = S]
∑
s
psEwΥs|s,w Probability of correct reconstruc-

tion.

ERec 1− Pr[Ŝ = S] Error probability of the recon-
struction phase.

Table 2.1: Summary of Notations
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Chapter 3

Optimization of Zero Leakage
Helper Data System

This chapter first introduces the problem formulation. The first problem that will be elaborated
on this chapter is on defining the optimal reconstruction boundaries.

Followed by the optimization of the quantization boundaries. The optimization of Zero
Leakage Helper Data System (ZLHDS) is computed by maximizing the mutual information.

3.1 Problem Formulation

There are two main problems on the optimization of ZLHDS. They are:

• finding the optimal reconstruction boundaries for ZLHDS algorithm

• optimize the quantization intervals so that I(S; Ŝ|W ) is maximized; while maintaining a
reasonable error rate

These problems is elaborated further on the following sections.

3.2 Determining The Optimal Reconstruction Boundaries

The lower boundary of a reconstruction region of a certain secret s is defined as a threshold τs,w.
The reconstruction boundaries is constructed with the main objective is to obtain ŝ = s. This
can be attained when the authentication data y satisfy τs,w ≤ y < τs+1,w. The illustration of
this reconstruction boundaries is displayed on Figure 2.5. The lowest and the highest boundaries
are fixed, τ0,w = −∞ and τN,w =∞.

In order to produce an exact reconstruction of secret s, maximum likelihood algorithm is
utilized to determine the most probable ŝ given known y and w.

Lemma 3.2.1. The optimal reconstruction of secret s is

Rec(y, w) = arg max
s∈S

ψ(y|ξs,w)ps. (3.1)

Proof. This is a slight modification of Lemma 4.1 from [3] with the same starting point

Rec(y, w) = arg max
s∈S

f(s|y, w) (3.2)

Optimization of Zero Leakage Helper Data Systems 17
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= arg max
s∈S

f(s, y, w)

f(y, w)
. (3.3)

Since the denominator does not depend on s, it can be eliminated

Rec(y, w) = arg max
s∈S

f(s, y, w) (3.4)

= arg max
s∈S

f(y|s, w) f(w|s) ps (3.5)

and since for every enrollment data there is a corresponding w-value, it results in f(w|s) = 1
(see Appendix A.1 for the proof), then it yields

Rec(y, w) = arg max
s∈S

f(y|s, w) ps. (3.6)

Since knowing s and w is equal as knowing ξs,w and given ψ(y|ξs,w) as the probability density
function of y|ξs,w, then the Eq. (3.6) becomes Eq. (3.1)

From Eq.(3.1) we can derive a general lemma of τs,w for general noise.

Lemma 3.2.2. The reconstruction boundary τs,w that gives equal probability for s and s− 1 can
be defined as

psψ(τs,w|ξs,w) = ps−1ψ(τs,w|ξs−1,w). (3.7)

Proof. Using Lemma 3.2.1 to reconstruct the secret that gives equal probability for s and s− 1,
we define y as the boundary τs,w.

psψ(y|ξs,w) = ps−1ψ(y|ξs−1,w) (3.8)

In the fuzzy extractor, the value of ps is not depend on s due to its uniformity distribution.
However, in this general helper data system, similar to secure sketch, the value of ps needs to be
considered.

In the case of Gaussian noise, we have:

ψ(y|ξs,w) = ϕσR(y − λξs,w). (3.9)

Theorem 3.2.3. Let the noise be Gaussian with zero mean and variance σ2
R, then the optimal

placement of reconstruction boundaries is

τs,w =
σ2
R ln ps

ps−1

λ (ξs−1,w − ξs,w)
+ λ

(ξs−1,w + ξs,w)

2
. (3.10)

Proof. The proof for Theorem 3.2.3 closely follows Theorem 4.2 from [3]. We apply Gaussian
noise on ψ(y|ξs,w), under Eq. (3.1), to define a point y = τs,w that gives equal probability for s
and s− 1.

ϕσR(y − λξs−1,w)ps−1 = ϕσR(y − λξs,w)ps (3.11)

⇐⇒ 1

σR
√

2π
e
−

(y−λξs−1,w)2

2σ2
R ps−1 =

1

σR
√

2π
e
− (y−λξs,w)2

2σ2
R ps (3.12)
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⇐⇒ ln

(
e
−

(y−λξs−1,w)2

2σ2
R ps−1

)
= ln

(
e
− (y−λξs,w)2

2σ2
R ps

)
(3.13)

⇐⇒ −(y − λξs−1,w)2

2σ2
R

+ ln ps−1 =
−(y − λξs,w)2

2σ2
R

+ ln ps (3.14)

⇐⇒ 2yλξs−1,w − λ2ξ2
s−1,w + 2σ2

R ln ps−1 = 2yλξs,w − λ2ξ2
s,w + 2σ2

R ln ps (3.15)

⇐⇒ 2yλ (ξs−1,w − ξs,w) = 2σ2
R ln

ps
ps−1

+ λ2
(
ξ2
s−1,w − ξ2

s,w

)
(3.16)

⇐⇒ 2y =
2σ2

R ln ps
ps−1

+ λ2
(
ξ2
s−1,w − ξ2

s,w

)
λ (ξs−1,w − ξs,w)

(3.17)

⇐⇒ y =
σ2
R ln ps

ps−1

λ (ξs−1,w − ξs,w)
+ λ

ξs−1,w + ξs,w
2

(3.18)

by notating the threshold as y = τs,w thus we have the result in Eq. (3.10).

Remark. In the case of Fuzzy Extractor algorithm, the Eq. (3.10) is reduced to the result of [3].

τs,w = λ
ξs−1,w + ξs,w

2
. (3.19)

Lemma 3.2.1 and Theorem 3.2.3 are new results.

3.3 Optimization of the Quantization Intervals

Interval of quantization regions under curve ψ(y|x) is defined as the probability of the recon-
structed secret pŝ. The optimization of the quantization intervals is obtained by maximizing the
mutual information between S and Ŝ given W , which can be notated as I(S; Ŝ|W ).

Lemma 3.3.1. For zero leakage helper data system the mutual information can be formulated
as

I(S; Ŝ|W ) = H(S)−H(S|Ŝ,W ) = I(S; Ŝ,W ). (3.20)

Proof of Lemma 3.3.1.

I(S; Ŝ|W ) = H(S|W )−H(S|Ŝ,W ) (3.21)

for ZL, it holds that H(S|W ) = H(S).

Since S and W are independent, Lemma 3.3.1 can also be re-written into the following lemma.

Lemma 3.3.2.

I(S; Ŝ,W ) =
∑
s,ŝ

EwpsΥŝ|s,w ln
Υŝ|s,w

Λŝ|w
(3.22)

The proof is in Appendix A.2.

The aim of this thesis is to maximize I(S; Ŝ|W ). The numerics of Lemma 3.3.2 are presented
in Chapter 4, in the case of Gaussian source and Gaussian noise, along with the discussion of
the analytical approach.
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3.4 Reconstruction Error Probability

The error rate is calculated as the probability of the incorrect secret reconstruction. Since

Pr[Ŝ = Q(x)|X = x] =

∫ τQ(x)+1,g(x)

τQ(x),g(x)

dy ψ(y|x) (3.23)

= V (τQ(x)+1,g(x) − λξQ(x),g(x))− V (τQ(x),g(x) − λξQ(x),g(x)). (3.24)

then the probability of the correct reconstruction is

Pr[Ŝ = S] = Ex
∫ τQ(x)+1,g(x)

τQ(x),g(x)

dy ψ(y|x) (3.25)

with s = Q(x) and w = g(x), we have

=
∑
s

psEw[V (τs+1,w − λξs,w)− V (τs,w − λξs,w)] (3.26)

=
∑
s

psEwΥs|s,w. (3.27)

The Average Reconstruction Error Probability is defined as

ERec = 1− Pr[Ŝ = S]. (3.28)

Such that it becomes

Definition 3.4.1.

ERec = 1−
∑
s

psEwΥs|s,w. (3.29)
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Chapter 4

Numerical Analysis of Zero
Leakage Helper Data System

This section describes the numerical analysis for the optimization of Zero Leakage Helper Data
System (ZLHDS) algorithm. The numerics were done in Mathematica 10.0 Student Edition. To
simplify the calculation, the source is assumed to be Gaussian with zero mean and a variance
equal to one. The noise is also assumed to be a zero mean Gaussian, which modeled under
perfect enrollment where λ = 1. The adjustable parameters for our numerical analysis are the
number of secret, N , and the noise variance, σR. The objective of this numerical analysis is to
find the optimum ~p that maximize I(S; Ŝ|W ). We also compare the result of ZLHDS with the
result Zero Leakage Fuzzy Extractor (ZLFE).

4.1 The Numerical Analysis

The first step is to define all of the required formulas to perform the numerical analysis. They
are the mutual information formula based on Lemma 3.3.2 and the error probability based on
Definition 3.4.1. The required definition for the error probability is only Υŝ|s,w. On the other
hand, the mutual information requires several of definitions. These required definitions are given
in the Figure 4.1 below. The detailed form of each definitions are given in Section 2.8.

I(S; Ŝ|W )

Λŝ|w

Υŝ|s,w V (τŝ,w − λξs,w)

ξs,w

τs,w

Figure 4.1: Chart of the required definitions for the numerics

For τs,w, since it is fixed that τ0,w = −∞ and τN,w =∞ then τs,w only need to be calculated
for s = {1, . . . , N − 1}. When the pN−2 is very small compared to pN−3 and pN−1, the order of
τs,w may switched. For an illustration of this behavior, see Figure 4.2. There is no intersection
between p1 and p2 because p1 is too small. Instead, p2 intersects with p0, in which this intersection
happens before the intersection between p0 and p1. Thus, the order of the boundary is switched.
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Figure 4.2: Illustration for the switched τs,w for N = 3. Each gaussian represents the distribution
of the noise which is v(y − λξs,w) with λ = 1.

The optimum ~p that maximize the I(S; Ŝ|W ) will never be this drastically different from each
other. Hence, the pathological case as shown in Figure 4.2 will never occurs as the optimum ~p.
Lemma 3.2.2 will always hold in our numerics.

Since the Gaussian source and the Gaussian noise are centered at zero, we knew it in advance
that the probability of ~p is symmetric. We used this symmetry to simplify the numerics. For
example, for N = 3 the value of p0 and p2 are identical. Thus, the value of p1 can easily be
calculated as p1 = 1 − 2p0. We can expect that for N = 4, the ~p = {p0, p1, p1, p0}, where
p1 = (1 − 2p0)/2. These examples are depicted on Figure 4.3. For N = 5 we have ~p =
{p0, p1, 1−2(p0+p1), p1, p0} and for N = 6 is ~p = {p0, p1, 1−2(p0+p1)/2, 1−2(p0+p1)/2, p1, p0}.

(a) N = 3. (b) N = 4.

Figure 4.3: Illustration of Symmetrical Probability for N ∈ {3, 4}. The gaussian represents the
distribution of the source, f(x).

The procedure of finding the maximum mutual information value and the optimum ~p is
performed using FindMaximum in Mathematica. This command allows the searching of local
maximum and its corresponding p values subject to certain constraint in a continuous domain.

Figure 4.4 shows an example of of mutual information with N = 3 and σR = 0.5 for p0 and
p1 in range of {0.08, . . . , 0.72}. As can be seen, the highest mutual information is above 0.8
for a combination of p0 around 0.2 and 0.4 < p1 < 0.6. According to Table 4.1, the mutual
information result for ZLFE with N = 3 and σR = 0.5 is 2% lower than the result of ZLHDS.
Thus, the highest mutual information for ZLHDS is slightly above the result of the ZLFE with
uniform probability.
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Figure 4.4: Example: I(S; Ŝ|W ) for N = 3, σR = 0.5 as a function of p0 and p1.

Table 4.1: Comparison of Secret Reconstruction between ZLHDS and ZLFE with N = 3

σR
ZLHDS ZLFE

~p I(S; Ŝ|W ) ERec I(S; Ŝ|W ) ERec

0.01 {0.333, 0.334, 0.333} 1.585 1.1× 10−15 1.585 1.1× 10−15

0.03 {0.333, 0.334, 0.333} 1.585 1.1× 10−15 1.585 1.1× 10−15

0.05 {0.333, 0.334, 0.333} 1.585 1.1× 10−15 1.585 1.1× 10−15

0.08 {0.333, 0.334, 0.333} 1.585 1.1× 10−15 1.585 1.2× 10−8

0.10 {0.333, 0.334, 0.333} 1.585 3.2× 10−6 1.585 3.2× 10−6

0.13 {0.329, 0.342, 0.329} 1.583 0.0002 1.582 0.0002

0.15 {0.322, 0.355, 0.322} 1.575 0.0007 1.573 0.0011

0.18 {0.309, 0.382, 0.309} 1.551 0.003 1.539 0.005

0.20 {0.299, 0.400, 0.299} 1.525 0.005 1.504 0.010

0.23 {0.286, 0.428, 0.286} 1.473 0.010 1.433 0.022

0.25 {0.279, 0.442, 0.279} 1.430 0.015 1.380 0.032

0.28 {0.268, 0.464, 0.268} 1.360 0.024 1.290 0.049

0.30 {0.262, 0.476, 0.262} 1.310 0.032 1.240 0.062

0.33 {0.254, 0.491, 0.254} 1.230 0.044 1.159 0.083

0.35 {0.250, 0.499, 0.250} 1.176 0.053 1.107 0.097

0.38 {0.246, 0.508, 0.246} 1.098 0.069 1.036 0.118

0.40 {0.244, 0.512, 0.244} 1.048 0.080 0.991 0.132

0.50 {0.253, 0.494, 0.253} 0.827 0.148 0.808 0.197
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4.2 The Result: Performance of ZLHDS

Table 4.1 displays the comparison of secret reconstruction between ZLHDS and ZLFE algorithm
for N = 3. As shown on the table, when the noise variance is very low the ZLHDS coincides with
the ZLFE. However, as the noise variance becomes larger, the ZLHDS is slightly better than the
ZLFE. Further results for the comparison of ZLHDS and ZLFE are given in the Appendix B.

We analyze the ZLHDS and the ZLFE reconstruction performances for N ∈ {3, 4, 5, 6} as
shown in Figure 4.5. Every point in the graph corresponds to a σR value. According to Figure
4.5, the result of ZLHDS reconstruction algorithm is slightly better than the result of ZLFE.

(a) ZLHDS
(b) ZLFE

Figure 4.5: I(S; Ŝ|W ) and Error probability for N ∈ {3, 4, 5, 6} and σR ∈ {0.01, . . . , 0.3} for
ZLHDS and ZLFE.

4.3 Discussion

The numerical analysis enables us to find the optimum ~p that maximize I(S; Ŝ|W ). For a noise
variance less than 0.10, the result of ZLHDS coincides with the result of ZLFE, regardless the
number of N used. As the data becomes more noisy, the ZLHDS is able to extract information
approximately 2%-5% better than ZLFE. This is because the non-uniform probability gives a
noise resilient quantization region compared to those using the uniform probability. For a noise
variance larger than 0.15 the error probability of ZLHDS is half of those of ZLFE.

Under the assumptions of zero mean Gaussian source and zero mean Gaussian noise distribu-
tion, the optimum probability of ~p is symmetrical. Thus, we can simplify the search range of ~p
while finding the maximum I(S; Ŝ|W ). For example, for N = 3 and N = 4, the search range of
~p = {p0, . . . , pN−1} can be simplified into one dimensional region since p0 = pN−1. Therefore, p1

can be calculated as p1 = 1− 2p0 for N = 3 and p1 = (1− 2p0)/2 for N = 4. Thus, it only need
to search for p0 value. While for N = 5 and N = 6, the search range is two dimensional. For
N = 7 and above, the computation becomes labor intensive since the search range is larger than
two dimensional space. For example, for N = 7 and N = 8 requires three dimensional search
range, for N = 9 and N = 10 requires four dimensional search range and so on.

As the noise variance becomes larger, the computational time is also becomes longer. When
the variance is less than 0.1 the numerics took about 5-10 minutes to execute. While for a
variance larger than 0.20 the computational time took around 30 minutes or more, depends on
the N values. On the other hand, sometimes the computation does not converge even after more
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than several hours had passed. For example, for N = 6 and σR = 0.33 the computation does not
converge even after three hours.
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Optimization Using Lagrange
Multiplier and Implicit Function
Theorem

This section describes our theoretical analysis approach in maximizing I(S; Ŝ|W ) in Zero Leakage
Helper Data System (ZLHDS) for more general case, which is for arbitrary source distribution
and arbitrary noise distribution. We also aim to speed up the optimization by numerically solving
a set of analytical equations.

In order to maximize I(S; Ŝ|W ), Lagrange multiplication algorithm is applied with constraints∑
β

pβ = 1 and ERec = κ, where κ is a constant.

5.1 The Lagrange Multiplier Approach

The Lagrangian for our optimization problem is defined as

L[~p, c1, c2] = I(S; Ŝ|W ) + c1

N−1∑
β=0

pβ − 1

+ c2(ERec − κ) (5.1)

where c1 and c2 are the Lagrange multipliers.
The unknown variables in Eq. (5.1) are c1, c2 and {pα}. Therefore, the partial derivatives

over c1, c2 and pα need to be calculated and need to be set to zero.
The derivation of L[~p, c1, c2] over c1 is quite straightforward and is given as follows:

0 =
∂L[~p, c1, c2]

∂c1
=

N−1∑
β=0

pβ − 1 (5.2)

which is precisely the conservation of the probability constraint.
Similar case goes for the derivative over c2:

0 =
∂L[~p, c1, c2]

∂c2
= ERec − κ (5.3)

On the other hand, the partial derivatives of L[~p, c1, c2] over pα is very tedious.
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We split the derivative of Eq.(5.1) into three parts; the derivative of mutual information and
the derivative of the constraint terms; and solve it from the simplest thing first. The partial
derivative of the normalization constraint over pα is

∂

[
c1(
∑
β

pβ − 1)

]
∂pα

= c1
∑
β

∂pβ
∂pα

− 0 (5.4)

= c1
∑
β

δβ,α (5.5)

= c1. (5.6)

In order to solve the derivative of the mutual information over pα, we need the following
lemmas. The proofs of all lemmas are in the Appendix A.

Lemma 5.1.1. The partial derivative of H(S) over pα is

∂H(S)

∂pα
= − ln(epα). (5.7)

Lemma 5.1.2 (
∂Πŝ,s|w
∂pα

).

∂Πŝ,s|w

∂pα
= δs,αΥŝ|s,w + ps

∂Υŝ|s,w

∂pα
. (5.8)

Lemma 5.1.3 (
∂Λŝ|w
∂pα

).

∂Λŝ|w

∂pα
= Υŝ|α,w +

∑
s

ps
∂Υŝ|s,w

∂pα
. (5.9)

Proof.

∂Λŝ|w

∂pα
=

∂

∂pα

∑
s

Πŝ,s|w (5.10)

=
∑
s

∂

∂pα
Πŝ,s|w (5.11)

using Lemma 5.1.2, we have Eq. (5.9) as the result.

Thus, we have the derivative of the mutual information on the following lemma.

Lemma 5.1.4 (∂I(S;Ŝ|W )
∂pα

).

∂I(S; Ŝ|W )

∂pα
= − ln(epα) + Ew

∑
ŝ

Υŝ|α,w ln Γα|ŝ,w + Ew
∑
s,ŝ

ps
∂Υŝ|s,w

∂pα
ln Γs|ŝ,w (5.12)

Until this stage, the unsolved derivative is
∂Υŝ|s,w
∂pα

. In order to calculate
∂Υŝ|s,w
∂pα

we need the
following lemmas:
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Figure 5.1: The relation between τs,w and ξs,w

Lemma 5.1.5 (
∂ξs,w
∂pα

).

∂ξs,w
∂pα

=
1

f(ξs,w)
(1s−1(α) + wδs,α). (5.13)

Figure 5.1 illustrates the τs,w and the ξs,w. The τs,w represents the threshold of the recon-
structed secret. The closed form expression for the general case is unknown. Thus, we will do
the calculation of

∂τs,w
∂pα

using implicit function theorem.

Since v() is an even function, where v(λξs,w − τs,w) = v(τs,w − λξs,w), then G(τs,w, ~p) can be
defined as follows.

Definition 5.1.6 (G(τs,w, ~p)).

G(τs,w, ~p) = v(τs,w − λξs,w)ps − v(τs,w − λξs−1,w)ps−1 (5.14)

Lemma 5.1.7 (
∂τs,w
∂pα

).

∂τs,w
∂pα

= − 1

v′(τs,w − λξs,w)ps − v′(τs,w − λξs−1,w)ps−1[(
v(τs,w − λξs,w)− λw 1

f(ξs,w)
v′(τs,w − λξs,w)ps

)
δs,α

−
(
v(τs,w − λξs−1,w)− λw 1

f(ξs−1,w)
v′(τs,w − λξs−1,w)ps−1

)
δs−1,α

− λ 1

f(ξs,w)
v′(τs,w − λξs,w)ps1s−1(α) + λ

1

f(ξs−1,w)
v′(τs,w − λξs−1,w)ps−11s−2(α)

]
.

(5.15)

Remark.
∂τs+1,w

∂pα
is the

∂τs,w
∂pα

with shifted index from s to s+ 1.

As defined in the Section 2.8, we have

Υŝ|s,w = V (τŝ+1,w − λξs,w)− V (τŝ,w − λξs,w). (5.16)

Thus,
∂Υŝ|s,w
∂pα

is calculated below.

Lemma 5.1.8 (
∂Υŝ|s,w
∂pα

).

∂Υŝ|s,w

∂pα
= v(τŝ+1,w − λξs,w)

∂τŝ+1,w

∂pα
− v(τŝ,w − λξs,w)

∂τŝ,w
∂pα

+
(
v(τŝ,w − λξs,w)− v(τŝ+1,w − λξs,w)

)
λ
∂ξs,w
∂pα

(5.17)
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Proof.

∂Υŝ|s,w

∂pα
=

∂

∂pα

(
V (τŝ+1,w − λξs,w)− V (τŝ,w − λξs,w)

)
(5.18)

= v(τŝ+1,w − λξs,w)
∂(τŝ+1,w − λξs,w)

∂pα
− v(τŝ,w − λξs,w)

∂(τŝ,w − λξs,w)

∂pα
(5.19)

= v(τŝ+1,w − λξs,w)

(
∂τŝ+1,w

∂pα
− λ∂ξs,w

∂pα

)
− v(τŝ,w − λξs,w)

(
∂τŝ,w
∂pα

− λ∂ξs,w
∂pα

)
(5.20)

The partial derivative of the error constraint over pα is:

Lemma 5.1.9 (∂[c2(ERec−κ)]
∂pα

).

∂ [c2(ERec − κ)]

∂pα
= −c2Ew

[
V (τα+1,w − λξα,w)− V (τα,w − λξα,w)

+
∑
s

ps

(
v(τs+1,w − λξs,w)

∂τs+1,w

∂pα
− v(τs,w − λξs,w)

∂τs,w
∂pα

)]
(5.21)

Proof.

∂ [c2(ERec − κ)]

∂pα
= c2

∂(ERec − κ)

∂pα
+ (ERec − κ)

∂c2
∂pα

(5.22)

= c2
∂ERec

∂pα
+ 0 (5.23)

using ERec based on Definition 3.4.1, we have

= c2

∂

(
1−

∑
s
psEw (V (τs+1,w − λξs,w)− V (τs,w − λξs,w))

)
∂pα

(5.24)

= −c2
∑
s

Ew
∂ (ps (V (τs+1,w − λξs,w)− V (τs,w − λξs,w)))

∂pα
(5.25)

= −c2
∑
s

Ew

[
δs,α (V (τs+1,w − λξs,w)− V (τs,w − λξs,w))

+ ps

(
v(τs+1,w − λξs,w)

∂τs+1,w

∂pα
− v(τs,w − λξs,w)

∂τs,w
∂pα

)]
(5.26)

then we have Eq.(5.21) as the result.
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5.2 Discussion

The optimization of ZLHDS approach using Lagrange Multiplier resulted in a more complic-
ated formula compared to the original expression for I(S; Ŝ|W ). Eq.(5.12) contains Υŝ|s,w =∫ τŝ+1,w

τŝ,w
dy v(y − λξs,w) which is similar to the original expression of I(S; Ŝ|W ) itself. We have

not implemented the numerical analysis for this approach. Thus, it remains unclear for us
whether the Lagrangian could optimize the performance of the numerical analysis at larger N .
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Chapter 6

Summary

6.1 Conclusions

This thesis studied the general Helper Data System (HDS) and its particular zero leakage prop-
erties. The objective of this thesis is to maximize the extraction of information from a noisy
data without leaking any confidential information.

There are three contributions of this thesis. The first contribution is the formulation for the
optimal reconstruction boundaries. We have two new general formulas. They are Lemma 3.2.1
and Theorem 3.2.3. The second contribution is the maximization of the mutual information
for zero leakage helper data system which described in Chapter 4. The numerical analysis
assumed the source and the noise to be Gaussian with zero mean. We modeled the noise as
perfect enrollment, where the attenuation parameter is equal to 1. The third contribution is the
derivation of the analytical optimization equation, as described in Chapter 5.

In ZLHDS reconstruction, there is a possibility that the order of the τs,w is switched. This
condition occurs when a small pα is sandwiched between much larger pα−1 and pα+1, where α
is a certain index in ~p. This limits the search range when performing the numerical analysis.
For a Gaussian source and Gaussian noise with zero mean, the optimum probability of ~p is
symmetrical. This properties is useful to simplify the calculation of ~p.

The numerical analysis of ZLHDS found the optimum ~p that maximizes the information
extracted. The amount of the information extracted is decreases with increasing noise variance.
This result is inline with the result of fuzzy extractor.

In conclusion, the performance of the ZLHDS is better than the ZLFE for certain noise vari-
ance. For a very small noise variance, the extracted information of ZLHDS algorithm coincides
with the result of ZLFE. As the noise variance increases, the amount of of information extracted
in ZLHDS is around 2%-5% better compared to ZLFE. While the error probability for a certain
noise variance in ZLHDS even reaches half of the error probability in ZLFE.

We also perform an attempt to generalize the maximization of I(S;S|W ) using Lagrange Mul-
tiplier. This attempt produces complicated result and more formulas compared to our previous
method. We have not perform the numerical analysis for this Lagrange optimization.

6.2 Future Work

ZLHDS algorithm is recommended for securely correcting noise in noisy data, as it can extract
more information compared to ZLFE, for a certain range of noise variance. In this thesis, we have

Optimization of Zero Leakage Helper Data Systems 33



CHAPTER 6. SUMMARY

studied the performance of ZLHDS for N ∈ {3, 4, 5, 6}, σR ∈ {0.01, . . . , 0.3}. We only considered
the perfect enrollment noise model where λ = 1. This thesis did not cover the problem for larger
number of secret and larger noise variance.

In addition, there are several of open problems for future works, such as:

• explore the optimization of ZLHDS reconstruction for different noise model, e.g. where λ
is not equal to one

• explore the optimization of ZLHDS reconstruction for a larger noise variance

• establish a generalized algorithm in maximizing the mutual information for arbitrary source
distribution and arbitrary noise distribution.
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Appendix A

Proofs

A.1 Proof of f(w|s) = 1

Proof of f(w|s) = 1. Knowing that

f(w|s)dw = f(ξs,w)dξs,w
1

ps
(A.1)

Thus we have

f(w|s) =
f(ξs,w)

psdw/dξs,w
(A.2)

=
f(ξs,w)

ps
d

dξs,w

[
1
ps
F (ξs,w)−

s−1∑
j=0

pj

] (A.3)

=
f(ξs,w)

d/dξs,wF (ξs,w)
(A.4)

=
f(ξs,w)

f(ξs,w)
(A.5)

= 1 (A.6)

A.2 Proof of Lemma 3.3.2

Proof of I(S; Ŝ,W ).

I(S; Ŝ|W ) =
∑
s,ŝ

Ew ps,ŝ,w ln
Πs,ŝ|w

ps Λŝ|w
(A.7)

=
∑
s,ŝ

Ew ps|w pw Υŝ|s,w ln
Υŝ|s,w ps

ps Λŝ|w
(A.8)
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knowing that pw = 1, ZL property ps = ps|w, we have Eq.(3.22) as the result. This Eq.(3.22)
can also be written in the mutual information form such that:

I(S; Ŝ|W ) = I(S; Ŝ,W ). (A.9)

A.3 Proof of Lemma 5.1.1

Proof of ∂H(S)
∂pα

.

∂H(S)

∂pα
=

∂

(∑
s
ps ln 1

ps

)
∂pα

(A.10)

= −
∑
s

∂

∂pα
(ps ln ps) (A.11)

= −
∑
s

(
ln ps

∂ps
∂pα

+ ps
∂ ln ps
∂pα

)
(A.12)

knowing that ∂ps
∂pα

= δs,α

= −
∑
s

(
δs,α ln ps + δs,α

1

ps
ps

)
(A.13)

= −
∑
s

δs,α(ln ps + 1) (A.14)

finally we use
∑
s
δs,α ln ps = ln pα and

∑
s
δs,α = 1 which results the Eq. (5.7).

A.4 Proof of Lemma 5.1.2

Proof of
∂Πŝ,s|w
∂pα

.

∂Πŝ,s|w

∂pα
=
∂
(
ps|wΥŝ|s,w

)
∂pα

(A.15)

using ZL properties ps|w = ps and chain rule

= Υŝ|s,w
∂ps
∂pα

+ ps
∂Υŝ|s,w

∂pα
(A.16)

= Υŝ|s,wδs,α + ps
∂Υŝ|s,w

∂pα
(A.17)

Thus, we have Eq. (5.8) as result.
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A.5 Proof of Lemma 5.1.4

Proof of ∂I(S;Ŝ|W )
∂pα

.

∂I(S; Ŝ|W )

∂pα
=
∂H(S)

∂pα
− ∂H(S|Ŝ;W )

∂pα
(A.18)

= − ln(epα)− ∂

∂pα

(
EwH(Ŝ;S|W = w)− EwH(Ŝ|W = w)

)
(A.19)

= − ln(epα)− Ew
∑
s,ŝ

∂H(Ŝ;S|W = w)

∂Πŝ,s|w

∂Πŝ,s|w

∂pα
+ Ew

∑
ŝ

∂H(Ŝ|W = w)

∂Λŝ|w

∂Λŝ|w

∂pα

(A.20)

= − ln(epα) + Ew
∑
s,ŝ

ln(eΠŝ,s|w)
∂Πŝ,s|w

∂pα
− Ew

∑
ŝ

ln(eΛŝ|w)
∂Λŝ|w

∂pα
(A.21)

= − ln(epα) + Ew
∑
s,ŝ

ln(eΠŝ,s|w)

(
δs,αΥŝ|s,w + ps

∂Υŝ|s,w

∂pα

)

− Ew
∑
ŝ

ln(eΛŝ|w)

(
Υŝ|α,w +

∑
s

ps
∂Υŝ|s,w

∂pα

)
(A.22)

= − ln(epα) + Ew
∑
ŝ

Υŝ|α,w ln
eΠŝ,α|w

eΛŝ|w
+ Ew

∑
s,ŝ

ps
∂Υŝ|s,w

∂pα
ln
eΠŝ,s|w

eΛŝ|w
(A.23)

Thus, we have Eq. 5.12 as the result.

A.6 Proof of Lemma 5.1.5

Proof of
∂ξs,w
∂pα

.

∂ξs,w
∂pα

=

∂F−1

(
s−1∑
i=0

pi + wps

)
∂pα

(A.24)

=
1

f(ξs,w)

∂

(
s−1∑
i=0

pi + wps

)
∂pα

(A.25)

=
1

f(ξs,w)

(
s−1∑
i=0

δi,α + wδs,α

)
(A.26)

Thus, we have Eq.(5.13) as the result.
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A.7 Proof of Lemma 5.1.7

Proof of
∂τs,w
∂pα

.

∂τs,w
∂pα

= − ∂G/∂pα
∂G/∂τs,w

(A.27)

where

∂G

∂pα
=
∂ [v(τs,w − λξs,w)ps − v(τs,w − λξs−1,w)ps−1]

∂pα
(A.28)

= v(τs,w − λξs,w)
∂ps
∂pα

− λ∂ξs,w
∂pα

v′(τs,w − λξs,w)ps

− v(τs,w − λξs−1,w)
∂ps−1

∂pα
+ λ

∂ξs−1,w

∂pα
v′(τs,w − λξs−1,w)ps−1 (A.29)

= v(τs,w − λξs,w)δs,α − v(τs,w − λξs−1,w)δs−1,α

− λ 1

f(ξs,w)
(1s−1(α) + wδs,α)v′(τs,w − λξs,w)ps

+ λ
1

f(ξs−1,w)
(1s−2(α) + wδs−1,α)v′(τs,w − λξs−1,w)ps−1 (A.30)

=

(
v(τs,w − λξs,w)− λw 1

f(ξs,w)
v′(τs,w − λξs,w)ps

)
δs,α

−
(
v(τs,w − λξs−1,w)− λw 1

f(ξs−1,w)
v′(τs,w − λξs−1,w)ps−1

)
δs−1,α

− λ 1

f(ξs,w)
v′(τs,w − λξs,w)ps1s−1(α) + λ

1

f(ξs−1,w)
v′(τs,w − λξs−1,w)ps−11s−2(α)

(A.31)

∂G

∂τs,w
=
∂ [v(λξs,w − τs,w)ps − v(τs,w − λξs−1,w)ps−1]

∂τs,w
(A.32)

= v′(τs,w − λξs,w)ps − v′(τs,w − λξs−1,w)ps−1 (A.33)

Inputing Eq.(A.31) and Eq.(A.33) into Eq.(A.27), we have Eq.(5.15) as the result.
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Appendix B

Results

Table B.1: Comparison of Secret Reconstruction between ZLHDS and ZLFE with N = 4

σR
ZLHDS ZLFE

~p I(S; Ŝ|W ) ERec I(S; Ŝ|W ) ERec

0.01 {0.250, 0.250, 0.250, 0.250} 2.0 1.1× 10−15 2.0 1.1× 10−15

0.03 {0.250, 0.250, 0.250, 0.250} 2.0 1.1× 10−15 2.0 1.1× 10−15

0.05 {0.250, 0.250, 0.250, 0.250} 1.99 2.7× 10−11 2.0 2.7× 10−11

0.08 {0.249, 0.251, 0.251, 0.249} 1.99 0.000015 1.99 0.000015

0.10 {0.244, 0.256, 0.256, 0.244} 1.99 0.00028 1.99 0.00037

0.13 {0.225, 0.275, 0.275, 0.225} 1.97 0.0022 1.96 0.0045

0.15 {0.211, 0.289, 0.289, 0.211} 1.94 0.0049 1.91 0.012

0.18 {0.189, 0.311, 0.311, 0.189} 1.86 0.0115 1.80 0.0299

0.20 {0.177, 0.323, 0.323, 0.177} 1.80 0.018 1.72 0.046

0.23 {0.161, 0.339, 0.339, 0.161} 1.70 0.029 1.60 0.074

0.25 {0.152, 0.348, 0.348, 0.152} 1.63 0.038 1.52 0.094

0.28 {0.141, 0.359, 0.359, 0.141} 1.52 0.054 1.42 0.125

0.30 {0.134, 0.366, 0.366, 0.134} 1.45 0.066 1.35 0.145

0.33 {0.128, 0.372, 0.372, 0.128} 1.34 0.086 1.26 0.175
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Table B.2: Comparison of Secret Reconstruction between ZLHDS and ZLFE with N = 5

σR
ZLHDS ZLFE

~p I(S; Ŝ|W ) ERec I(S; Ŝ|W ) ERec

0.01 {0.2, 0.2, 0.2, 0.2, 0.2} 2.32 1.1× 10−15 2.32 1.1× 10−15

0.03 {0.2, 0.2, 0.2, 0.2, 0.2} 2.32 1.1× 10−15 2.32 1.1× 10−15

0.05 {0.2, 0.2, 0.2, 0.2, 0.2} 2.32 7.3× 10−15 2.32 7.3× 10−8

0.08 {0.195, 0.200, 0.210, 0.200, 0.195} 2.32 0.0003 2.32 0.0004

0.10 {0.180, 0.206, 0.228, 0.206, 0.180} 2.29 0.0017 2.29 0.0036

0.13 {0.154, 0.218, 0.257, 0.218, 0.154} 2.23 0.007 2.18 0.019

0.15 {0.137, 0.225, 0.275, 0.225, 0.137} 2.16 0.013 2.08 0.037

0.18 {0.116, 0.235, 0.299, 0.235, 0.116} 2.04 0.025 1.92 0.072

0.20 {0.104, 0.239, 0.314, 0.239, 0.104} 1.95 0.035 1.83 0.098

0.23 {0.089, 0.245, 0.332, 0.245, 0.089} 1.81 0.053 1.69 0.138

0.25 {0.081, 0.247, 0.343, 0.247, 0.081} 1.72 0.07 1.61 0.16

0.28 {0.073, 0.249, 0.355, 0.249, 0.073} 1.58 0.09 1.49 0.20

0.30 {0.070, 0.252, 0.356, 0.252, 0.070} 1.49 0.11 1.43 0.23

0.33 {0.080, 0.259, 0.322, 0.259, 0.080} 1.38 0.15 1.34 0.26
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Table B.3: Comparison of Secret Reconstruction between ZLHDS and ZLFE with N = 6

σR
ZLHDS ZLFE

~p I(S; Ŝ|W ) ERec I(S; Ŝ|W ) ERec

0.01 {0.167, 0.167, 0.167, 0.167, 0.167, 0.167} 2.58 1.1× 10−15 2.58 1.1× 10−15

0.03 {0.167, 0.167, 0.167, 0.167, 0.167, 0.167} 2.58 3.1× 10−13 2.58 3.1× 10−13

0.05 {0.167, 0.167, 0.167, 0.167, 0.167, 0.167} 2.58 5.5× 10−6 2.58 5.5× 10−6

0.09 {0.143, 0.164, 0.193, 0.193, 0.164, 0.143} 2.55 0.003 2.53 0.007

0.10 {0.133, 0.165, 0.202, 0.202, 0.165, 0.133} 2.52 0.005 2.49 0.013

0.13 {0.105, 0.169, 0.226, 0.226, 0.169, 0.105} 2.39 0.015 2.31 0.045

0.15 {0.089, 0.170, 0.241, 0.241, 0.170, 0.089} 2.30 0.024 2.18 0.074

0.18 {0.069, 0.170, 0.261, 0.261, 0.170, 0.069} 2.13 0.042 2.0 0.122

0.20 {0.059, 0.169, 0.271, 0.271, 0.169, 0.059} 2.02 0.056 1.90 0.155

0.23 {0.049, 0.167, 0.284, 0.284, 0.167, 0.049} 1.86 0.079 1.76 0.202

0.25 {0.044, 0.166, 0.290, 0.290, 0.166, 0.044} 1.75 0.097 1.67 0.231

0.27 {0.042, 0.169, 0.289, 0.289, 0.169, 0.042} 1.66 0.12 1.60 0.26

0.30 {0.083, 0.222, 0.195, 0.195, 0.222, 0.083} 1.53 0.23 1.50 0.30
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