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A B S T R A C T

The proper composition of activities is important for the design of
efficient and understandable workflow processes. Due to a lack of
available support, activity composition is currently a time-consuming,
manual task that requires expertise and case knowledge. This thesis
presents an automated approach that addresses this issue. The ap-
proach utilizes the data-flow underlying a workflow process to de-
termine the importance and semantic relatedness of the various, ele-
mentary data-processing steps. Based on these aspects, fundamental
guidelines are proposed to drive and objectify the task of activity
composition in the context of workflow design. A quantitative evalu-
ation indicates that the use of these guidelines leads to activities that
closely resemble those designed by experienced modellers. The guide-
lines have been implemented in software that has been made freely
available. This enables any modeller to generate proper activities for
a given workflow, irrespective of their familiarity with the business
process or the concepts of activity design.
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1
I N T R O D U C T I O N

In the early 1990s, the fundamental rethinking and radical redesign of
business processes emerged. Business Process Redesign (BPR) shifted
processes away from Adam Smith’s division of labour, in which sim-
ple tasks resulted in complex processes, towards re-engineered pro-
cesses that are kept simple in order to meet contemporary demands
of quality, flexibility and low cost [8]. The application of informa-
tion technology (IT), and in particular of Process Aware Information
Systems (PAIS), plays an important role in realizing these process im-
provements [35]. The continuous advancements in IT rapidly increase
the ease with which information can be digitally stored and accessed.
The impact of these new technologies has resulted in radical changes
in information-intensive business processes. These processes, often
found in the service industry, pursue the production of informational
products. Typical examples of such informational products are a mort-
gage contract, requests for governmental support, or a commercial
offer. Such processes shall be referred to as workflows. The structure
of a workflow is for a major part dictated by the data-flow in the
process. Consequently, the design of workflow processes is consid-
erably more flexible than, for example, the design of manufacturing
processes, which process physical parts [26]. A data-flow can be de-
scribed by the numerous, elementary data processing steps that are
involved in the computation of a desired end product. When design-
ing a workflow, these elementary data processing steps are grouped
into activities (or tasks). An activity is a logical piece of work within a
process [32], which may thus comprise a number of elementary data
processing steps. For example, the activity of calculating a mortgage
amount may consist of entering the current interest rate, choosing the
discount rate negotiated by the customer, and calculating the amor-
tized amount of debt.

The focus of attention in this thesis is on the grouping of elemen-
tary data processing steps into activities. This act shall be referred to
as activity composition. When composing activities for a workflow, one
should carefully consider their size and contents, because properly
designed activities can result in three kinds of advantages. Firstly, ac-
tivities that have a proper size, i.e. are of the right granularity, pro-
vide a balance between an increased number of work hand-overs
that results from many small activities, against the reduced flexibility
caused by too many large activities [29, 36]. Secondly, activity com-
position can be used to increase the meaningfulness of activities for
employees executing these [7]. Finally, techniques for activity compo-
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2 introduction

sition are relevant for the topic of Business Process Model Abstrac-
tion (BPMA) [22]. In particular, given a detailed understanding of the
data-flow in a process, activity composition techniques can be used
to provide a quick overview of the process. This has been found to be
a highly demanded use case for BPMA [30]. By contrast, improper ac-
tivity composition can result in the averse, and hence, negative effects.
Such improper composition may, for example, result in activities that
are too large and therefore unworkable for employees [24, 36]. Incor-
rect activities can also lead to processes that contain deadlocks and
therefore cannot be executed. It is thus important that activities are
composed such that the undesirable effects are avoided, while the po-
tential benefits of well-designed activities are attained. It is the goal
of the research presented in this thesis to provide support for such
proper activity composition.

This first chapter elaborates this research goal in Section 1.1. Af-
terwards, related work is considered in Section 1.2, and Section 1.3,
finally, provides an overview of the remaining chapters.

1.1 research goal

Due to the value of proper activity composition, there exists a de-
sire for support that drives the design of activities [26, 36]. Because
such support is currently not available [35], activity composition is a
time-consuming task that requires expertise and case knowledge. For
example, one must be familiar with concepts of task design in order
to ensure that activities are of the proper size, represent meaning-
ful tasks, and do not negatively affect execution efficiency. To design
proper activities, a modeller must furthermore be well-acquainted
with the elementary data processing steps in a workflow, and under-
stand their inter-relations. Due to these requirements, activity com-
position is here considered to be a task that must be performed by
experts. Still, even for experts, manual activity composition can be a
time-consuming task due to the potential size and complexity of data-
flows.

Activity composition is thus an important part of workflow design,
but also one that lacks appropriate support. This issue is captured in
the problem statement of this thesis.

problem statement. Activity composition is important for the
design of efficient and understandable workflow processes, but due
to a lack of support, the task is time-consuming and depends on ex-
pertise, as well as case knowledge.

This thesis presents two contributions to assess this problem. They
are captured in two research goals. The first contribution is an ap-
proach that automatically generates activities for a given workflow.
This is achieved through the design of guidelines that drive and ob-
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jectify the task of activity composition. Although activity composition
is a semantic operation, it is proposed that these guidelines approx-
imate the design choices made by experienced modellers. Thereby,
the automated approach represents an objective alternative to a sub-
jective task. Through this contribution, activity composition no longer
requires in-depth knowledge of the information processing steps in
a workflow, nor familiarity with concepts of job design. Hence, the
time-consuming, manual task of activity composition is replaced by
an automated approach that can be applied by any process modeller.
This contribution is defined in the first research goal.

research goal 1 . Design an approach that supports the task of
proper activity composition so that it can be performed in a time-
efficient manner, irrespective of case knowledge and expertise.

It is proposed that the automated approach generates activities
which approximate the subjective design choices made my experi-
enced modellers. This proposition, however, does not imply that the
guidelines perfectly capture any modeller’s preferences. For this rea-
son, the second contribution of this thesis is the support for man-
ual refinement of the generated activities. Through this support, the
preferences of modellers can be incorporated in activities, while pre-
serving the time-efficiency that is provided by a largely automated
approach. This is captured in the second research goal.

research goal 2 . Extend the approach of Research goal 1 such
that it supports the iterative refinement of activities based on a mod-
eller’s preferences.

1.2 related work

The research presented in this thesis extends the state of the art in
several ways. The interaction between the steps in a process and the
data being processed is at the basis of a wide range of research ef-
forts [28, 33, 34]. Yet, their exclusive focus is on the detection of data-
flow errors. Although the importance of correct workflow processes
is eminent, they do not asses how the interaction between the infor-
mational and the functional perspective of workflow processes can
be used for the design of meaningful tasks. Job design literature does
address the this meaningfulness. The Job Characteristics Model [7],
for example, identifies skill variety, task identity, and task significance
as the three characteristics that determine the psychological meaning-
fulness of a job. Still, the guidance provided through these models is
rather abstract and does not rest on a detailed understanding of the
data-flow perspective in a specific process. Cohesion & Coupling met-
rics [26, 36] do integrate insights from job design with the data-flow
perspective of workflow processes. These metrics propose that the
internal data-flow in activities should be highly cohesive, while, on
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the contrary, the flow between individual activities should be limited.
Cohesion & Coupling, however, are evaluation metrics and hence can
only be retrospectively applied on previously composed activities. Fi-
nally, it is noted that the BPMA approach in [31] identifies clusters of
worfklow tasks that are related through the data-flow. However, since
this approach abstracts from the job design perspective, the clusters
do not represent meaningful activities.

The state of the art is hence extended by proposing guidelines that
ensure correct data processing, while combining job design insights
with the data-flow perspective, to compose meaningful activities.

1.3 outline

The research in this paper consists of six subsequent phases; these
are depicted in the research design presented in Figure 1.1. The re-
mainder of this thesis is structured such that each of the upcoming
chapters describes one of the research phases.

Goal
(ch. 2)

Implemen-
tation
 (ch. 5)

Scope
(ch. 3)

Design
(ch. 4)

Validation
 (ch. 6)

Conclusions
 (ch. 7)

Figure 1.1: Research Design

1.3.1 Goal

The research goal is made operational in Chapter 2 by considering ac-
tivity composition in the context of Product Based Workflow Design.
The chapter furthermore motivates the research goal by performing
activity composition on a running example. This example illustrates
the differences between proper and improper activity designs.

1.3.2 Scope

After the goal of activity composition has been motivated, Chapter 3

defines the scope of this research. This chapter describes a broad vari-
ety of factors that can be considered during activity composition. The
goal of this chapter is to identify those factors that are suitable to be
incorporated in automated activity composition guidelines.

1.3.3 Design

Chapter 4 describes several activity composition guidelines that are
based on the factors identified in Chapter 3. These guidelines are
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designed such that they can be applied in an objective manner. The
most important guidelines are designed such that they require only
a minimal amount of process information. Additional guidelines are
proposed that are able to further refine activities when more process
information is available.

1.3.4 Implementation

Chapter 5 describes an algorithm that implements the proposed com-
position guidelines. It fully automatically generates a set of activities
for a given PDM. The chapter furthermore introduces freely available
software that implements the proposed algorithm. This software also
supports the manual refinement of activities based on one’s personal
preferences. It thereby realizes both research goals of this thesis.

1.3.5 Validation

Chapter 6 presents a quantitative evaluation of activity designs that
adhere to the proposed guidelines. This validation compares automat-
ically generated activity designs with a set of activity designs derived
from literature. These activity designs are all manually composed
by modellers that are experienced in PBWD and are well-acquainted
with the cases for which they designed the solutions. The validation
supports the proposition that the objective guidelines are good ap-
proximations of design choices made by experienced modellers.

1.3.6 Conclusions

Finally, Chapter 7 concludes the paper with a discussion of the re-
sults of this research. The chapter furthermore considers limitations
of the presented research, and completes the thesis with directions
for future research.





2
A C T I V I T Y C O M P O S I T I O N

Activity composition is the act of grouping together atomic informa-
tion processing steps in order to compose activities that represent
logical pieces of work. The proper composition of activities results in
increased process efficiency, tasks that are meaningful for the work-
flow users that execute them, and increases understandability of pro-
cess models. However, inconsiderate activity composition can result
in averse, and hence negative, effects. The task of activity composi-
tion is here made operational by considering it in the context of Prod-
uct Based Workflow Design (PBWD), a methodology for the radical
redesign of workflows [27]. For this purpose, structural data-flow re-
lations are captured in a Product Data Model (PDM). Nonetheless,
the guidelines presented in this thesis can be transferred to compa-
rable data-flow specifications, such as the data flow matrices of [33].
The PBWD methodology is especially suited for this research due to
its objectivity, and because the structure of a PDM ensures data-flow
correctness [24].

This chapter sets out to further motivate the goal of activity compo-
sition. Section 2.1 first describes the PBWD methodology. Section 2.2
introduces a running example that is referenced throughout the re-
mainder of this thesis. Finally, Section 2.3 presents and compares two
alternative process designs, resultant from proper and improper ac-
tivity composition.

2.1 product based workflow design

PBWD is a methodology for the radical redesign of workflow pro-
cesses. In PBWD, the central concept in the design process is the work-
flow product, i.e. the informational product to be created in the pro-
cess [35, p.8]. The structure of this workflow product is captured in
a PDM. A PDM describes the flow of information through a number
of elementary processing steps. These steps, called operations, process
information, starting from the data that is provided as input to the
process, until the desired informational product has been computed.
Example 2.1 explains the PDM by presenting a small example.

example 2 .1 (maximum mortgage): Figure 2.1 depicts a PDM
related to the calculation of the maximum mortgage amount a client
is able. The example is derived from [35, p.43]. The PDM contains
eight data elements, which are depicted as labelled circles in Figure 2.1.
Each data element represents a certain piece of information. They are
described in Table 2.1. Data element A is the root data element of the

7



8 activity composition

PDM; it represents the desired goal of the process. A value for this
root element is computed by executing elementary information pro-
cessing steps, called operations. These operations are depicted as black
dots in the PDM. Each operation produces a value for exactly one
data element, i.e. its output element, illustrated by a directed arc. Each
operation requires a set of zero or more input elements. An operation
can only be executed if all its input elements have been previously
computed. For example, data element C can only be computed if
data elements F, G, and H are available to the operation. Operations
that do not require input elements are referred to as leaf operations.
The data elements produced by such operations represent data that
is provided as input to the process. For example, data element G, the
gross income per year, is provided by the applicant. Finally, the figure
shows that element A is produced by three operations. These opera-
tions represent alternative operations. Generally, these operations are
mutual exclusive alternatives to compute a data element.

Figure 2.1: PDM of the mort-
gage example

id description

A Maximum mortgage

B Percentage of interest

C Annual budget to be

spent on mortgage

D Term of mortgage

E Previous mortgage offer

F Percentage of income to

be spent on mortgage

G Gross income per year

H Credit registration

Table 2.1: Data elements in the
mortgage example

2.2 running example

To motivate the goal of activity composition and add meaning to sev-
eral upcoming concepts, a running example is presented that is refer-
enced in the remainder of this paper. The running example considers
the process that deals with requests for governmental student grants
in the Netherlands. The example, introduced in [35, 36], is designed
to introduce certain concepts in PBWD and is therefore specifically
suitable as a running example. The presented process is a simplified
version of the actual procedure as implemented by the Dienst Uitvo-
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ering Onderwijs1, the governmental institution responsible for the
assessment of student grant requests.

Figure 2.2 presents the PDM of the student grants example. Its data
elements are described in Table 2.2. A student grant comprises four
types of grant: i) a basic grant (i40), ii) a supplementary grant (i39),
iii) a loan (i41), and iv) credit for tuition fees (i43). The basic grant is
assigned to each applicant who is eligible to receive a grant (i27). For
this, an applicant must have the Dutch nationality (i21) and may not
be older than thirty (i23). The remaining three types of grants must be
specifically requested by applicants. Assignment of these grants de-
pends on extended requirements. The root element (i42) represents
the total grant assigned to an applicant. This is either the sum of
the values for the four types of grant, or zero in case the applicant
is deemed non-eligible. Finally, it is noted that all eleven leaf data
elements represent information that is retrieved from a student’s ap-
plication. The interested reader is referred to [35, p.193] for a more
detailed description of the student grants case.

Figure 2.2: PDM of the student grants example

1 www.duo.nl
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id description

i19 Date of request

i20 Birth date of applicant

i21 Nationality of applicant

i23 Age of applicant

i24 Social Security Number of father of applicant

i25 Reference year for tax authority

i26 Social Security Number of mother of applicant

i27 Applicant has the right to receive a student grant

i28 Income of father of applicant

i29 Income of mother of applicant

i30 Income of parents of applicant

i31 Applicant has the right to receive a supplementary grant

i32 Applicant has requested a supplementary grant

i33 Living situation of applicant

i35 Maximum amount of supplementary grant

i36 Parental contribution

i37 Requested amount of loan by applicant

i38 Maximum amount of loan

i39 Amount of supplementary grant assigned to applicant

i40 Amount of basic grant assigned to applicant

i41 Amount of loan assigned to applicant

i42 Total amount of student grant assigned to applicant

i43 Amount of credit for tuition fees assigned to applicant

i44 Maximum amount of credit for tuition fees

i45 Tuition fees of educational institution of applicant

i46 Requested amount of credit for tuition fees

i47 Tuition fees declared by law

i48 Kind of education of applicant

Table 2.2: Data elements in the student grant example
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2.3 two alternative designs

This section presents two workflow process designs for the student
grants example. The process designs are based on two different sets
of activities, i.e. activity designs. Both activity designs are considered
valid according to [36], as they (i) include all data elements and oper-
ations of the PDM, and (ii) respect the dependencies of the informa-
tional structure.

2.3.1 Design 1

Figure 2.3 presents a process model design for a preliminary set of
activities. The process model contains six activities. Their contents
are depicted in Figure 2.4. Activity A represents receiving a student’s
application. It consists of the eleven leaf operations and leaf data ele-
ments of the PDM. Activity B then uses the information derived from
this application. The activity first determines an applicant’s eligibility
to receive a grant (i27). After which it continues with the calcula-
tion of the amount of basic grant assigned to an applicant (i40). The
process model then shows two possible alternatives. Firstly, if i27 is
negative, the application is rejected by executing activity H; the work-
flow process is thereby completed. The second alternative resembles
acceptance of the application. In this alternative, the three remaining
types of grant are computed by activities C and D; these activities can
be executed in parallel. Activity C determines the loan amount (i41)
and the amount of tuition fee (i43) that are assigned to an applicant.
While activity D determines the assigned amount of supplementary
grant (i39). Based on the amounts for the four types of grant, activity
G finally computes the total amount assigned to an applicant (i42).

Figure 2.3: Process model of alternative design 1

Design 1 is a valid design that furthermore clearly illustrates dis-
tinguishable alternatives for acceptance (activity G) and rejection (H)
of an application. Nevertheless, the design has several issues with re-
spect to understandability and execution efficiency. Firstly, activity B

can be considered inefficient. i40, the value for the basic grant, is com-
puted even if the application will be rejected based on the value of
i27. Furthermore, this activity defers execution of activities C and D

until after data element i40 is computed. This is not necessary, since
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Figure 2.4: Activities of alternative design 1

these activities can be executed independent of element i40. A sec-
ond issue involves the information that the process model provides
about the underlying informational structure. As introduced in Sec-
tion 2.2, a student grant consists of four types of grant. However, this
information cannot be derived from Figure 2.3. Only by analysing
the contents of the individual activities, are the four types of grant
revealed. The issues that are present in this design can be overcome
by applying a small amount of adjustments on the activities. This is
illustrated by alternative design 2.

2.3.2 Design 2

The second design is reached by making two adjustments to design 1.
Activities B and C are both split into two activities, respectively into
B1 and B2, and C1 and C2. The resultant process model is shown
in Figure 2.5. This process model clearly resembles the core struc-
ture of the PDM. The parallelism of activities B2, C1, C2, and D il-
lustrates that the four values (i.e. grants) can be independently com-
puted when an application is accepted. Furthermore, this design over-
comes the, earlier mentioned, efficiency issues that are present in de-
sign 1. Due to the splitting of activity B, execution of other activities
is no longer unnecessarily deferred. As seen in Figure 2.6, activity
b1 is completed after i27 has been produced. The final important im-
provement is related to the meaning of the activities. Activities B and
C in design 1 lack a clear focus. Activity B considers eligibility as well
as the basis grant, while activity C calculates two unrelated types of
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grant. The activities in design 2, by contrast, each have a clear focus
and all work towards the production of a single data element. These
data elements furthermore represent data elements that are impor-
tant in the context of the student grant case. Hence, each activity in
the second design represents a logical step in the process.

The two alternative process designs illustrate the impact that activ-
ity composition can have on execution efficiency, process understand-
ability and meaningfulness of activities. The second design, however,
only describes certain characteristics of proper activity designs; it
leaves open the issue of how to compose them in a structured way.
To address this issue, Chapter 3 first determines which factors influ-
ence the quality of an activity design. Afterwards, Chapter 4 defines
explicit guidelines to support objective activity composition.

Figure 2.5: Process model of alternative design 2

Figure 2.6: Activities of alternative design 2





3
S C O P E

Chapter 3 introduces the factors that can be taken into account during
activity composition. The presented factors are those that have been
found, most prominently during an extensive literature review. The
goal of this chapter is to narrow the scope of the remainder of this
research by identifying factors that are explicit and context-independent.
A factor is considered to be explicit if its values can be defined un-
ambiguously, e.g. it is a quantitative factor. Explicitly definable fac-
tors are thus suitable to be used in automated activity composition
guidelines. Context-independent, here, means that the evaluation of
a factor can be performed based on information defined in a PDM.
The evaluation should thus not require information about the con-
text of the workflow process. Information that is not expressed in a
PDM is, for example, the number of resources that are available to the
workflow process. Factors that are explicit and context-independent
are considered to be suitable to be incorporated in objective activity
composition guidelines.

The presented factors are related to three perspectives. These per-
spectives each consider one of the three types of advantages that
are achievable through activity composition. Section 3.1 presents the
workflow user perspective to activity composition. It contains a variety
of aspects that influence the meaningfulness of individual activities
to the workflow users that execute these. The process execution perspec-
tive of Section 3.2 describes factors that affect the execution efficiency
of a workflow. These factors generally encompass multiple activities.
Thirdly, the factors that influence process model understandability are
considered in Section 3.3. This chapter concludes with a recollection
of the factors that are explicit and context-independent in Section 3.4.
Those factors determine the scope for the remainder of this research.

3.1 workflow user perspective

This section considers activity design from the perspective of the
workflow user. As introduced in Chapter 2, activities should repre-
sent logical units of work to the employees that execute these. The
quality of an activity is here considered as a combination of size,
i.e. its granularity, and meaning, i.e. its semantics. Four factors have
been found that influence the granularity of an activity: resource re-
quirements (Section 3.1.1), processing time (Section 3.1.2), its repre-
sentation in a graphical user interface (Section 3.1.3), and complexity
(Section 3.1.4). The semantics of an activity are considered based on

15



16 scope

factor explicit context- included

indepedent

Resource requirements Yes Partially Yes

Processing time Yes No No

GUI content Yes No No

Task complexity Derivable No No

Experienced meaning-
fulness

Derivable Yes Yes

Semantic relatedness Derivable Yes Yes

Table 3.1: Factors in the workflow user perspective

its perceived meaningfulness (Section 3.1.5), and the semantic relat-
edness of its elements (Section 3.1.6). Table 3.1 shows that three out
of these six factors are suitable to be included in objective guidelines.

3.1.1 Resource Requirements

The resource dimension of a workflow process considers the means
required to execute the process. Resource is used as “a generic term for
all means that are required to produce a product within the setting
of a business process” [24]. In PBWD, a resource class or role can
be assigned to an operation. Assigning a resource implies that only
a resource of that class is allowed to perform that operation. All the
operations in an activity must therefore be associated with the same
resource class in order for the activity to be executable.

Evaluation of these resource requirements is explicit and context-
independent. Resource requirements are hence suitable to be included
in the scope of this research. However, there also may exist a par-
tial ordering between resource classes. A partial ordering means that
a resource that is higher in the partial ordering, is allowed to per-
form all operations that can be executed by resources lower in the
partial ordering [35, p.66]. By considering this ordering during activ-
ity composition, it is possible that operations are no longer executed
by the resource classes that are originally assigned to execute them.
By composing such activities, the workload of higher resource classes
increases. This can negatively influence process execution, for exam-
ple, due to increased utilization of resources (see e.g. [19]). The in-
formation required to consider these aspects, such as the number of
resources, is not present in a PDM. Consideration of partial ordering
is hence not context-independent. For this reason, this thesis abstracts
from a (possible) partial ordering in the resource perspective.
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3.1.2 Processing Time

The processing time of an activity is the amount of time that is re-
quired to execute it. This time is directly dependent on the process-
ing times of its underlying operations. When activities are too large,
they may become unworkable for workflow users [35]. High process-
ing times may furthermore result in reduced execution flexibility [25].
This implies that the processing time of an activity should not be too
large. However, a maximum time depends on the context of the activ-
ity. For example, an activity with a processing time of ten minutes can
be considered too large for a cashier in a supermarket. By contrast,
an activity of the same size may be perfectly acceptable in a work-
flow that handles insurance claims. For this reason, processing time
is considered to be context-dependent. It is therefore not included in
the scope of this thesis.

3.1.3 Graphical User Interface

The execution of workflow processes is typically supported through
the use of information systems [19], most prominently through a
Workflow Management System (WFMS). A WFMS defines and man-
ages the execution of workflow processes. It further supports the
workflow user by invoking workflow applications. These are software
programs that support execution of particular activities in a work-
flow [32]. Figure 3.1 provides an example of an activity that is sup-
ported through a workflow application, the figure is derived from [5].

Figure 3.1: Activity supported by a workflow application

Each information field that is shown in the application represents
a data element in a PDM. The information fields that are required to
be filled in by a workflow user, such as those shown in Figure 3.1,
are the data elements that are computed in the activity, i.e. elements
computed by executing its operations. The content of an activity, in
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the form of its input elements and its operations, thus influences
the lay-out of the workflow application, i.e. the Graphical User In-
terface (GUI). Based on literature from the field of electronic form
design, it has been found that the number of information fields, the
type of information, as well as their topic, are factors that influence
the quality of a GUI. Jarrett [11, p.103], poses that forms do not have
a minimal size, as long as they have distinguishable topics. By con-
trast, Jarrett does state that long forms should be split up. For ac-
tivity composition, this implies that activities do not have a minimal
size, but they should not contain too many operations, or depend on
too many data elements. The exact maximum number of elements is,
however, dependent on, for example, the GUI lay-out of the workflow
application. This information is not expressed in a PDM, and there-
fore context-dependent. Considering the GUI perspective for activity
composition is therefore an aspect that should not be overlooked, but
is unsuitable for this research.

3.1.4 Task Complexity

The execution of any task or activity adheres to a certain level of
complexity, generally referred to as task complexity. Many different
theories about task complexity exist in literature, such as an interac-
tionist formulation that defines complexity in terms of the resources
capabilities [4] and Wood’s [40] theory of complexity that considers
required acts and information cues. In order to incorporate task com-
plexity in this research, it must be made explicit. Buzacott [3] suggests
that this may be possible, due an apparent correlation between task
complexity and variance in processing time. However, no guidelines
have been found that indicate when a task should be considered too
complex. It is therefore that the aspect of task complexity is consid-
ered to be dependent on the context, and that the design decisions
are too subjective. Hence, task complexity is further excluded from
this research.

3.1.5 Experienced Meaningfulness

Experienced meaningfulness is here considered as the degree to which
a workflow user experiences an activity as valuable and worthwhile.
Task identity and task significance are two determinants of this factor
in the Job Characteristics Model of Hackman and Oldham [7]. Task
identity is the degree to which a job requires completion of a whole
and identifiable piece of work, while task significance is the degree to
which a job has a substantial impact on the work of other people. The
concept of working towards an identifiable goal is also considered
as a best practice in electronic form design [11]. These concepts sug-
gest that activities that work towards the production of an important
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piece of information, i.e. a data element, are considered meaningful
by workflow users. Employees that work on activities that they like
are furthermore expected to work more efficiently [26]. In order to
compose meaningful workflow activities, important data elements in
a PDM must hence be distinguished.

Intuitively, a data element is important due to its semantic mean-
ing. This importance is therefore an implicit property. However, it
has been found that semantic importance is also revealed by struc-
tural data-flow relations. This implies that it is possible to derive the
semantic importance of data elements through the structural relations
that are captured in a PDM. Example 3.1 illustrates this relation be-
tween semantic and structural importance for the student grants case.

example 3 .1 (data element importance): Data element i27,
an applicant’s right to receive a grant, is without doubt an important
data element in the student grants case. i27 determines whether an
application will be rejected or accepted. It is thus a decisive element in
the workflow process, and therefore clearly important from a seman-
tic perspective. However, as earlier shown in the PDM of Figure 2.2,
data element i27 is required as input for no less than five different
operations. The impact of this element on the structural data-flow is
hence also eminent. It is through this structural impact that element
i27 can also be identified as important, purely based on structural
properties.

The presented example is no coincidence; thorough analysis of
available cases has revealed that structural properties are generally
valid indicators of data element importance. By exploiting the relation
between semantics and structure, the importance of data elements can
be identified in an objective and context-independent fashion. The de-
sign of activities such that they work towards the production of an im-
portant data element, as well as the apparent relation between seman-
tic importance and structural properties, form two of the most impor-
tant principles that are used in the guidelines proposed in Chapter 4.
By adhering to these guidelines, the output element of each activity
represents an important element of the data-flow.

3.1.6 Semantic Relatedness

Semantic relatedness considers the degree to which the meaning of
elements is alike. In a PDM, semantic relatedness is most prominent
in elements that are related to the same informational product or to
a similar topic. An important indicator of semantic relatedness is the
description of data elements. For example, consider the five data el-
ements of the student grant example that are presented in Table 3.2.
The description of each of the five elements contains the term tuition
fees. The data elements are thus arguably related through their shared
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id description

i43 Amount of tuition credit assigned to applicant

i44 Maximum amount of credit for tuition fees

i45 Tuition fees of educational institution

i46 Applicant has requested credit for tuition fees

i47 Tuition fees declared by law

Table 3.2: Semantic related data elements

relatedness to the topic of tuition fees. From a semantic viewpoint, the
core difference between the alternative activity designs of Section 2.3,
is based on the relatedness of the elements per activity. The activities
in the second, proper, design each have a single, clear topic, whereas
activities B and C of design 2 were both related to multiple differ-
ent topics. The operations in the activities of the second design are
therefore considered to have better semantic relatedness.

Considering the relatedness of elements based on their descriptions
requires natural language analysis that is able to identify semantic
relations between elements. This task is often trivial to human mod-
ellers, but is far more complex to capture in automated guidelines.
Approaches that analyse the labels of process model elements have
been proposed [e.g. 13, 14, 15], which indicates that analysing data
element descriptions may be challenging, but not impossible. How-
ever, as with the aspect of experienced meaningfulness (Section 3.1.5),
there once more appears to be a general relation between semantics
and structural properties. Figure 3.2, for example, shows that the five
data elements of Table 3.2, are all connected in the structure of the
PDM. It is proposed that by considering structurally connected op-
erations, semantically related elements of a PDM can be identified.
A related proposition is made by the Cohesion & Coupling metrics
of [36]. These metrics also acknowledge that structural relations in a
PDM can be used to evaluate if operations in an activity belong to-
gether. However, these metrics can only be retrospectively applied on
activities that have already been composed. They therefore do not
represent design guidelines themselves.

Since structural properties are objective and context-independent,
semantic relatedness of elements is suitable to be included in auto-
mated design guidelines. This construct presents one of the core prin-
ciples of the composition guidelines proposed in Chapter 4, together
with the notion of data element importance.

3.2 process execution perspective

This section considers the effects of activity design on process execu-
tion. By grouping operations into activities, five factors in the process
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Figure 3.2: Semantic related data elements

factor explicit context- included

indepedent

Deadlocks Yes Yes Yes

Defragmentation Yes Yes Yes

Parallelism Yes No No

Deferred execution Yes Yes Yes

External sources Yes Yes Yes

Table 3.3: Factors in the process execution perspective

execution perspective can be considered. The presented factors in-
fluence throughput time, as well as execution flexibility. The factors
are: deadlocks (Section 3.2.1), defragmentation (Section 3.2.2), paral-
lelism (Section 3.2.3), deferred execution (Section 3.2.4), and external
information sources (Section 3.2.5). Table 3.3 shows that only paral-
lelism is excluded from the research scope. This factor cannot be eval-
uated in a context-independent manner.

3.2.1 Deadlocks

When combining operations, the least desirable result is that the pro-
cess is no longer executable. Non-executable processes occur when
the aggregation of operations results in cyclic behaviour. Composition
of activities that result in deadlocks should hence, straightforwardly,
be avoided. Example 3.2 illustrates how deadlocks can occur.

example 3 .2 (deadlocks): Consider composition of an activity
actA, that consists of op1 and op3 in the PDM of Figure 3.3a. op1
computes a value for a data element (B) that is required by operation
op2, while op3 actually depends on a value that is produced by that
operation (op2). By aggregating op1 and op3 into actA, a situation
occurs where op2 can only be executed after actA and vice versa. This
results in a non-executable construct, i.e. a deadlock. Such a construct
is visualized as a cycle, as shown in Figure 3.3b.
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(a) Before aggregation (b) After aggregation

Figure 3.3: Occurrence of a deadlock

3.2.2 Defragmentation

Any grouping of operations into activities reduces the number of
model elements, i.e. results in defragmentation of the model. Defrag-
mentation of tasks decreases the number of hand-overs between em-
ployees. Fewer hand-overs lead to reductions in set-up time [1] and
coordination effort [25, 41]. Seidmann and Sundararajan [29] further
pose that there is a possibility of error that arises with every hand-
off. A reduction in the number of hand-overs is hence desirable. It
should however be noted that aggregation of operations is a way to
enforce such a reduction in a relatively inflexible manner. Work item
interaction strategies, such as those proposed in [9], can be applied to
achieve similar results, while preserving a higher level of flexibility.
As work item strategies are beyond the scope of the PDM, defragmen-
tation of workflows is here regarded as a beneficial aspect of activity
composition.

3.2.3 Parallelism

In business processes, tasks can be concurrently executed in order to
reduce the throughput time of a case. As an activity is executed by
a single resource, only one operation in an activity can be executed
at once. When parallel operations are combined into an activity, this
thus diminishes the possibility of simultaneous execution. Simplified
calculations, such as presented in [20], imply that throughput time
is reduced when replacing a sequential by a parallel design. Other
authors [e.g. 1, 25, 41], however acknowledge that parallel processes
are more complex than sequential processes and thus also have draw-
backs. The additional complexity of parallel processes indicates that
it is often beneficial, with respect to resource utilization and average
throughput time, to aggregate parallel operations due to reductions
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in hand-overs and coordination effort [41]. Coordination effort and re-
source utilization are both aspects that are not expressed in a PDM, i.e.
they are context-dependent. It is therefore not possible to determine
whether a reduction in parallelism is beneficial for a given PDM. In
the remainder of this research, concurrency is thus neither purposely
reduced nor preserved.

3.2.4 Deferred Execution

The possibility to start execution of activities may be delayed due to
aggregation of operations. Two cases can be distinguished that result
in such a loss of flexibility. Firstly, by increasing the number of op-
erations in an activity, it is possible that the set of input elements of
an activity is increased. Execution of an activity can only commence
when all required input elements are available, hence execution may
be deferred due to these increased requirements.

The second case in which the execution of activities is deferred,
occurs when activities continue execution after a data element that is
required for other activities has been produced. An example of this is
seen in design 1 of Section 2.3.1. There, activity B continues execution
after data element i27 has been computed. This defers execution of
those activities that require i27 as input, i.e. activities C, D and H.

The former case of deferred execution only defers (part of) a single
activity. Its impact is thus limited. The negative impact of the second
case is, however, larger. Such constructs can defer the execution of
multiple activities. Furthermore, as illustrated by the alternative de-
sign of Section 2.3.2, this construct can be avoided by correctly split-
ting activities. It is therefore posed that activity composition should
avoid such deferred execution.

3.2.5 External Sources

Aside from regular operations, which operate on a set of input elements
and produce a value for an output element, a second type of opera-
tions exists in PDMs: leaf operations. A leaf operation has no input
elements and produces a value for a leaf element. Leaf elements are
those information elements that are provided as inputs to the pro-
cess. Their values can be retrieved from three sources: (i) internally
from the same institution, (ii) from the client, and (iii) from external
parties [37].

In practice, multiple leaf elements are often retrieved from the same
information source, e.g. in the student grant example, all data ele-
ments are retrieved from the student’s application. The leaf opera-
tions that produce these elements thus share an information source,
they can hence be considered to be semantically related. From a se-
mantic perspective, it therefore seems valid to group all leaf opera-
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factor explicit context- included

indepedent

Labelling Yes Yes Yes

Complex constructs Yes Yes Yes

Table 3.4: Factors related to understandability

tions that are related to a single source into one activity. Activities that
consist of grouped leaf operations are found in [e.g. 23, 35, 36]. Such
activities resemble events in which the information is received from
an external source, e.g. receiving an application in the student grant
example. By composing leaf activities, the process retrieves multiple
information elements from a source at the same time. This adheres to
the contact reduction best practice from [25]. This practice advises to
“reduce the number of contact with customers and third parties”.

By considering information sources, it is thus possible to create
meaningful activities that also result in improved execution efficiency.
The notion of information sources can be added in a straightforward
manner to the definition of a PDM. Therefore, the consideration of
information sources is explicit and context-independent. Hence, this
factor is included in the guidelines presented in Chapter 4.

3.3 process model understandability

It has been found in [30] that the most prominent use case for BPMA
is to gain a quick overview of a process. This implies presenting a pro-
cess model that contains coarse-grained tasks, in which semantically
related elements are grouped together. It is exactly this purpose that
can be achieved through activity composition. This section therefore
considers how activity composition can be used to create understand-
able process models. Two aspects of understandability are considered:
labelling of aggregated elements (Section 3.3.1) and avoidance of com-
plex constructs (Section 3.3.2). Table 3.4 shows that both aspects are
suitable for the scope of this research.

3.3.1 Labelling

During activity composition, operations are aggregated into activi-
ties, an act that results in process defragmentation. Defragmentation
is desirable from the perspective of understandability, because larger
models tend to be more difficult to understand than smaller mod-
els [16, 17]. An issue that arises due to such aggregations, is how these
aggregated elements must be labelled [30]. Leopold et al. [14] ad-
dress this issue, by introducing five naming strategies for aggregated
elements in process models. Their End Event strategy appears most
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applicable for the activities designed in this paper. The authors pose
that “when the state [...] at the end of the process defines the over-
all goal of the process, the name of the whole model may be closely
related [...].” This notion is highly suitable here, because meaningful
activities, as defined in Section 3.1.5, have important data elements as
their output elements. Therefore, aggregated data elements shall be
labelled according to the output element of the activity that produces
them. This labelling strategy consequently results in the omission of
insignificant data elements, while the important elements are retained
in process models. This is essentially the goal of BPMA, as described
in [e.g. 21, 31].

3.3.2 Complex Constructs

By aggregating operations, it is possible that complex routing con-
structs may occur in the resultant process models. One such example
is the cyclic construct described in Section 3.2.1. A different control
flow pattern that can result from activity composition is the OR-join.
Informally, an OR-join is a construct that is enabled when a subset
of its input elements are available. The constructs thus combine prop-
erties of XOR- and AND-joins. OR-joins can occur because workflow
processes may contain alternative paths to produce a value for the
desired end-product. This is for example seen in the student grant
case, where there are alternative paths for acceptance and rejection
of an application. When alternative paths are combined into a single
activity, this can lead to the occurrence of OR-joins. These constructs
appear when an activity contains alternative operations that do not
require the same input elements. This notion shall be referred to as
redundant input of an activity. Example 3.3 illustrates how activities
with redundant input result in OR-constructs.

example 3 .3 (redundant input): Figure 3.4a presents a frag-
ment of the student grant example. It contains four data elements
and six operations. Consider a possible aggregation of the alternative
operations that produce i42: operations op1 and op2. It is clear from
Figure 3.4a that these alternative operations require different input
elements. By aggregating these two operations, an activity with re-
dundant input is created. The proposed aggregation is depicted in
Fig. 3.4b. The activity, actA, requires the computation of input ele-
ments i27 and i41. However, as seen in Fig. 3.4a, the computation of
i41 is not required when op2 is executed. Therefore, actA requires
either one, or two input elements. It thus represents an OR-construct,
even though it is visualized as an AND-join.

OR-join constructs have been found to result in process models
that are hard to understand and are ambiguous [16]. Furthermore,
as illustrated in Example 3.3, these constructs hide important infor-
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(a) Before aggregation (b) After aggregation

Figure 3.4: Activity with redundant input

mation from a process model. The aggregated PDM of Figure 3.4b
does not show that applications can be accepted and rejected, while
this is arguably important information. Despite these issues, litera-
ture on manual activity composition does not always adhere to this
restriction. An occurrence of a loss of important information found
in literature is illustrated in Example 3.4.

example 3 .4 (redundant input in literature): Figure 3.5 de-
picts a fragment of a process model shown in [35, p.423]. The frag-
ment is part of a manual activity design for the student grant ex-
ample. The two activities in the fragment are depicted in Figure 3.6.
Activity E has two possible execution alternatives. One of these alter-
natives requires a value for data element i30, which is produced by
activity A. The other alternative operation, however, does not require
any data element that is produced by activity A. Therefore, activity
E does not necessarily require execution of activity A. Hence, activity
E is said to have redundant input elements. Although the presence
of two alternative operations impacts the execution of other activities,
this information cannot be derived from the process model, but is
only revealed when the individual activities are inspected.

Figure 3.5: Redundant input in literature – process model fragment

Regardless of occurrences in literature, process models with such
ambiguous structure are here considered to hide important informa-
tion. Hence, activities with redundant input elements are prohibited
in this research.

3.4 selection

The previous sections have shown that a large number of factors can
be considered when composing activities. It has furthermore been
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(a) Activity A (b) Activity E

Figure 3.6: Redundant input in literature – activities

found that not all these factors are suitable to be incorporated in ob-
jective composition guidelines.

Table 3.1 shows that three out of the six factors of the workflow
user perspective are suitable for this research. Experienced meaning-
fulness and semantic relatedness are both factors that can be derived
from the structural data-flow relations of a process. The former poses
that activities should work towards an important data element, while
the latter implies that activities should consist of semantically related
operations. These notions form the core of the composition guide-
lines that are presented in Chapter 4. The third suitable factor of the
workflow user perspective is the resource aspect. However, since this
factor depends on information that is not available for every PDM, it
is less prominent in the proposed guidelines. The remainder of this
research abstracts from the factors that have been found to be context-
dependent: processing time, GUI content, and task complexity.

Section 3.2 considered five factors that influence the execution ef-
ficiency of a workflow. Most importantly, this section showed that
activity composition must not lead to deadlocks. Further, it has been
illustrated how deferred execution can occur, and hence, how it can be
avoided through proper activity composition. Finally, by considering
the external sources from which leaf elements are derived, meaningful
leaf activities can be created that further improve process execution.
Parallelism is the single factor of this perspective that has been found
to be unsuitable for inclusion in the scope, because it depends on
information about the context of a workflow.

Lastly, Section 3.3 showed that the proper labelling of elements, and
the avoidance of complex constructs improve the understandability of
workflow processes. These factors are therefore also considered when
composing activities.
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Chapter 4 presents composition guidelines that comprise these se-
lected factors. The guidelines emphasise the factors that can be de-
rived from structural properties, such as meaningfulness, semantic
relatedness and deferred execution. Resource requirements and ex-
ternal information sources are then used to refine activities, when
information beyond structural data-flow relations is available.
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C O M P O S I T I O N G U I D E L I N E S

This chapter presents guidelines to support activity composition for
information-intensive workflow processes. The presented guidelines
are based on those factors that have been found in Chapter 3 to be ex-
plicit and context-independent. The guidelines can therefore be applied
in an automated fashion and do not require information beyond the
specification of a PDM. The goal of these guidelines is to approximate
design choices made by experienced modellers.

The most important guidelines pose that activities should work to-
wards production of an important data element and consist of op-
erations that are semantically related to each other. It is proposed
that this can be achieved based on a minimal amount of available
information: the structure of a PDM. To objectify this guideline, Sec-
tion 4.1 considers five structural patterns that are proposed to reveal
important data elements. Section 4.2 then illustrates how those im-
portant data elements can be used to compose activities that consist
of semantically related operations. Finally, Section 4.3 presents addi-
tional guidelines that can be used to further refine activities when
additional process information is available.

4.1 data element importance

Recall from Section 3.1.5, that the meaningfulness experienced by
workflow users during activity execution can be increased by design-
ing activities that complete an identifiable piece of work. It is there-
fore that activities shall be designed such that the final data element
that is produced, i.e. the output element, is an important element in
the informational structure. In order to achieve this goal, this sec-
tion sets out to identify such important data elements. Section 3.1.5
introduced the relation between the semantic importance of data ele-
ments and their structural properties. This section proposes that there
are five structural patterns in a PDM that reveal this relation. These
patterns have been found based on intuition, experimentation, and
by analysing manual activity designs in [e.g. 24, 35, 36]. The identi-
fied elements are referred to as important data elements. The proposed
structural patterns are motivated by referring to the student grants
example of Section 2.2. However, it is proposed that these patterns
are applicable to PDMs in general. This proposition is later evaluated
in Chapter 6.

The five types of important data elements are: (i) the root data
element (4.1.1), (ii) leaf data elements (4.1.2), (iii) conditional data el-

29
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ements (4.1.3), (iv) equal-level data elements (4.1.4), and (v) reference
data elements (4.1.5).

4.1.1 Root Data Element.

The root element is clearly the most important data element in a PDM,
because this data element represents the desired final outcome of
a workflow. For example in the student grants case, this is the to-
tal amount of student grant assigned to an applicant (i42). Pattern 1

therefore simply identifies the root data element.

pattern 1 (root data): The root data element is the single data
element that is not used as input for any operations.

4.1.2 Leaf Data Elements.

The second type of important data elements that can be structurally
distinguished are leaf elements. Leaf elements are data elements pro-
duced by leaf operations. These are the information elements that are
provided as input to a process; the values for these elements are re-
trieved from outside the process. In the student grant example, the
leaf elements represent the information that is retrieved from a stu-
dent’s application, e.g. i20, the birth date, and i21, the nationality of
the applicant.

pattern 2 (leaf data): A leaf data element is a data element that
is produced by an operation without input elements.

4.1.3 Conditional Data Elements

The third type of important elements revealed by structural patterns
are conditional data elements. Conditional data elements are those data
elements that can be produced by multiple, alternative operations.
Four such elements exist in the student grant example: the root ele-
ment i42, and elements i39, i41, and i43. These latter data elements
represent three out of the four types of grant that applicants may be
eligible to receive. These grants directly affect the value of the root el-
ement of the PDM and are therefore clearly important in this process.

pattern 3 (conditional data): A conditional data element is a
data element that can be produced by multiple alternative operations.

4.1.4 Equal-Level Data Elements

By considering conditional data, the importance of three out of the
four types of grant, in the student grant example, has been identified.
The fourth type of grant is the amount of basic grant assigned to an
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applicant, represented by i40. Without additional information, there
is no reason why this fourth grant should be considered as less impor-
tant than the other types of grant. i40 is hence also considered to be
of importance. The similarity between i40 and the other three types
of grants is also revealed through their structural relations. Figure 4.1
shows that the operation that produces i42, requires all four types
of grants as input elements. It is therefore proposed, that since i40 is
required as input for an operation that requires other important data
elements, i.e. conditional data elements, i40 is important as well. It is
proposed that this transitive notion can be applied in a generic fash-
ion to uncover the fourth type of important data elements: equal-level
data elements. These are described in Pattern 4.

pattern 4 (equal-level data): An equal-level data element is
an input data element to an operation that also requires conditional
data as input.

Figure 4.1: Example of equal-level data

4.1.5 Reference Data Elements

Recall from Section 3.1.5, that i27, the eligibility to receive a grant,
is arguably an important data element in the student grant exam-
ple. i27 is important from a structural perspective, because the data
element is required for the execution of operations that produce mul-
tiple important data elements. Such data elements shall be referred
to as reference data elements. Reference data elements represent the fi-
nal type of important data elements. The identification of reference
data elements as important data elements is furthermore beneficial
for execution efficiency. This ensures that activities do not unneces-
sarily defer execution of multiple other activities. They also result in
a strict avoidance of deadlocks.

pattern 5 (reference data): A reference data element is a data
element that is an input element to multiple operations that are, di-
rectly or indirectly, involved in the computation of different sets of
important data elements.
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4.1.6 Proposition

The five patterns represent those structural data-flow relations that
are proposed to predict the significance of data elements. This re-
sults in the first proposition for objective activity composition, Propo-
sition 1.

proposition 1 (important data elements): Root, leaf, condi-
tional, equal-level and reference data elements represent important
data elements in a PDM.

4.2 semantic relatedness

Semantic relatedness considers the degree to which the meaning of el-
ements is alike. As introduced in Section 3.1.6, it is here proposed that
operations with similar meaning can, to a certain extent, be identified
based on structural properties of a PDM. The underlying intuition is
that each operation can be associated with the computation of a sin-
gle important data element. Recall that these elements are identified
by the five structural patterns considered in Section 4.1. Operations
that are associated with the same important data element are then
considered to be semantically related. Definition 4.1 first defines how
operations are associated with important data elements.

definition 4 .1 (associated data element): An important data
element is associated with an operation, if there exists a path in the
PDM from the operation to that data element, such that this path
does not contain any other important data elements.

Due to the way important data elements, especially reference data
elements are defined in Section 4.1, each operation is associated with
exactly one important data element. This is captured in Lemma 1. The
proof for this lemma is provided in Appendix A.

lemma 1 (unique associated data element): Each operation
has exactly one associated data element.

As operations that are associated to the same data element are con-
sidered to be semantically related, it is proposed that such operations
can be grouped into a semantically coherent activity. Composition
of these activities should however not lead to activities that have re-
dundant input elements. The notion of input redundancy has been
introduced in Section 3.3.2. Activities with redundant input are pro-
hibited, because these require the use of complex constructs, hide
routing information from process models, and can possibly result in
the computation of superfluous data elements. It is therefore that ac-
tivity composition is restricted by Constraint 1.
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constraint 1 (redundant input): An activity may not be de-
signed such that it would be possible to execute the activity without
first computing all of its input elements.

It is proposed that semantically coherent activities can be com-
posed by considering associated data elements and prohibiting com-
position of activities with redundant input elements. This proposition
is extended with the notion that leaf operations can be grouped to-
gether into leaf activities. This idea is introduced in Section 3.2.5, and
also found in manual activity designs in [e.g. 35, 36, 24]. This notion
is based on the premise that the values for multiple leaf elements
are often retrieved from the same information source. For example,
as seen in Sect. 2.2, all leaf elements in the student grants case are
derived from a student’s application. By grouping leaf operations, a
process retrieves multiple information elements at once. This reduces
the number of contacts with customers and third parties, which is
desirable according to [25]. Section 4.3 considers how information
sources can be utilized to further refine leaf activities.

4.2.1 Propositions

Proposition 2 summarizes the ideas presented in Section 4.2.

proposition 2 (semantically coherent activities): A se-
mantically coherent activity is an activity that consists of a set of op-
erations that are associated with the same data element and of which
the aggregation does not result in redundant input.

It is finally proposed that activities which adhere to Proposition 1

and Proposition 2, are well-designed activities. These activities work
towards a clear goal, and consist of semantically related operations.
This is defined in Proposition 3.

proposition 3 (well-designed activities): The operations in
an activity should work towards the production of a relatively impor-
tant data element and be semantically related to each other.

By applying Proposition 3, it is possible to automatically generate
a set of activities based on the structure of a PDM. Activity designs
that adhere to this composition guideline furthermore ensure good
execution efficiency, since these designs avoid deadlocks and deferred
activity execution. The second alternative of Section 2.3 presents an
example of an activity design that is generated based on these propo-
sitions.

When additional process information is available, this can be used
to further refine the generated activities. This refinement is consid-
ered in Section 4.3. Chapter 5 presents an implementation of the pro-
posed guidelines. These are furthermore quantitatively evaluated in
Chapter 6.
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4.3 refinement

As introduced in Section 3.4, the resource perspective and external
information sources are two factors that can also be included in ob-
jective composition guidelines. This section considers the refinement
of activities that have been generated based on Proposition 3. While
the previously considered guidelines can be applied for any PDM,
the guidelines that are presented here, require the availability of in-
formation beyond structural relations. Section 4.3.1 presents the re-
finement of activities by including resource requirements, whereas
Section 4.3.2 illustrates how information sources can be used to im-
prove the quality of leaf activities.

4.3.1 Resource Requirements

Work on activity design in PBWD [e.g. 26, 36], acknowledges that
there must exist at least a single resource class that can execute all
operations in an activity. These resource requirements have been in-
troduced earlier in Section 3.1.1. Information about resource require-
ments can be incorporated in the earlier propositions in order to en-
sure that an activity can always be executed by a single resource. This
is achieved by introducing a sixth pattern that reveals an important
data element: hand-over data elements.

pattern 6 (hand-over data): A hand-over data element is the
output element of an operation that is executed by a particular re-
source class, while the data element is also an input element for an
operation that is executed by a different resource class.

By extending the set of important data elements with hand-over
data, Proposition 2 ensures that an activity never requires multiple
resource classes. Unfortunately, the resource perspective has not re-
ceived a lot of attention in research related to PBWD [35, p.228]. It is
therefore that there are no examples of PDMs with detailed, and ex-
plicit, resource specifications available. An example introduced in [6],
however, considers a bicycle manufacturing process that requires in-
volvement of different departments. Example 4.1 considers the refine-
ment of an activity in the bicycle process based on supposed resource
requirements, in order to illustrate the benefits that can be gained by
including resource specifications.

example 4 .1 (refinement through resources): Figure 4.2
presents an activity that is generated for the bicycle case of [6, p.78].
Descriptions of the data elements are provided in Figure 4.1. The ac-
tivity works towards the assembly of a bike, represented in i24. The
activity appears to comprise two distinct parts. Firstly, the two oper-
ations that produce i24 are alternative operations that represent the
assembly of a bike. All other operations are related to a back-ordering
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process, as can be derived from the data element descriptions in Ta-
ble 4.1. This back-ordering process is executed when not all required
parts are available, i.e. i15 is negative.

For illustrative purposes, it is assumed that the two operations that
produce i24 are performed by a resource from the manufacturing de-
partment (RM). Whereas the operations related to the back-ordering
of parts are performed by a resource from the purchasing department
(RP). Data element i23 is produced by an operation that is executed
by resource RP, while it is required for an operation that is performed
by RM. For this reason, i23 is a hand-over element.

After the identification of hand-over elements, refined activities can
be generated based on Proposition 2. The resultant process model
contains three activities, as depicted in Figure 4.3. These activities are
required, because a division into two activities would result in an
activity with redundant input elements. (Example 3.3 illustrates this
for a very similar case). The process model presents two clear alter-
natives: if all required parts are available (i15 is positive), the bike
is assembled by activity A. If i15 is negative, the missing parts are
back-ordered through execution of activity B. After the back-ordered
parts have been received, activity C assembles the bike. This process
model design arguably reveals important details which were previ-
ously hidden in the activity design without resource specifications,
i.e. the existence of two alternatives, as well as a distinguishable back-
ordering process,

Figure 4.2: Activity in bicycle
case

id description

i15 Availability of parts (yes/no)

i16 Required backordered parts

i18 Payment terms of vendors

i19 Quality guarantees of vendors

i20 Delivery options of vendors

i23 Backordered parts

i24 Assembled Bike

Table 4.1: Data elements in bi-
cycle activity

Figure 4.3: Process model of bicycle fragment
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Example 4.1 has illustrated that the inclusion of a resource specifi-
cation can result in an activity design that better resembles the work-
flow process. It is for this reason, that the resource perspective is
utilized whenever this information is available.

4.3.2 Information Sources

Recall from Section 4.2 that leaf operations are considered semanti-
cally related because they commonly represent retrieving informa-
tion from a similar source. It is therefore that such leaf operations are
grouped together into a leaf activity. If no information about infor-
mation sources is available, it is assumed that all leaf operations are
related to the same information source. This is, for example, true in
the student grants case, where all leaf elements are retrieved from a
student’s application. However, workflow processes may also retrieve
information from several sources. An occurrence of this is found in
the PDM of the unemployment case, considered in [24, p.203]. This ex-
ample considers a workflow process of a governmental agency. While
handling applications for unemployment benefits, the agency uses in-
formation derived from two different sources. Some relevant informa-
tion is stored in the information systems of the agency, whereas other
information is retrieved from a client’s application. This separation
of information sources is reflected in the workflow process design
of [24, p.216]. This workflow process contains two leaf activities: one
for information retrieved from the agency’s internal systems, and one
for the information retrieved from a client’s application. By incorpo-
rating information about the sources from which leaf data elements
are derived, it is thus possible to refine the quality of leaf activities.
Although information sources are not currently part of the formal
definition of a PDM (see [35, p.65]), including this notion is trivial.

This chapter has introduced fundamental guidelines for the objec-
tive generation of activities based on the structure of a PDM. Sec-
tions 4.3.1 and 4.3.2 have further shown that these activities can be
refined if additional process information is available. The proposed
guidelines are implemented as a proof of concept in Chapter 5. The
quality of activities that are generated by these guidelines is quantita-
tively evaluated in Chapter 6.
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This chapter presents an implementation of the design guidelines of
Chapter 4. The implementation generates activities that have a single
important data element as output, and of which the operations are
semantically related. These activities can further be refined if infor-
mation is available about resource requirements and external infor-
mation sources.

Section 5.1 describes an algorithm that results in activities that ad-
here to the proposed guidelines. Secondly, Section 5.2 describes freely
available software that supports this implementation. The software
furthermore enables users to incorporate their personal preferences
in the generated activity designs.

5.1 algorithm

This section describes an algorithm that implements the composition
guidelines. The implementation is intended as proof of concept that
shows that the guidelines can be automated. For this reason, the pre-
sented algorithm emphasises understandability, rather than efficiency.
Furthermore, to preserve readability, the implementation of certain
concepts is simplified in this section. In those cases, Appendix B
presents more complex and thorough alternatives. The algorithm con-
sists of four subsequent steps:

• step 1 : identify the root, leaf, conditional and equal-level data
elements (Section 5.1.1);

• step 2 : use the results of Step 1 to identify reference data ele-
ments (Section 5.1.2);

• step 3 : compute the sets of operations that are associated with
the elements identified in the previous steps (Section 5.1.3);

• step 4 : split those sets, resultant from Step 3, that would lead
to activities with redundant input (Section 5.1.4).

5.1.1 Step 1: Identifying Four Patterns

The algorithm first identifies the root, leaf, conditional and equal-level
data elements. Identification of these four types of goals on the basis
of the structure of a PDM is fairly straightforward:

• root data element. The root data element is the single data
element that is not required as input for any operation;
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• conditional data elements . Conditional data elements
are the data elements that are produced by multiple operations;

• equal-level data elements . Equal-level data elements are
identified by considering all operations that require a condi-
tional data element as input. All data elements, that are input el-
ements of those operations, represent equal-level data elements.
This concept is illustrated by Figure 4.1;

• leaf data elements . Leaf data elements are identified as
those elements that are produced by leaf operations, i.e. opera-
tions without input elements.

Algorithm 1 depicts how these important data elements can be for-
mally identified. Note that the notation uses predecessors(x) and succes-
sors(x) to denote the elements that, respectively, precede and succeed
an element x in the PDM.

Algorithm 1 Identification of important data elements

1: Input: PDM
2: result = ∅
3: for d ∈ PDM.dataElements do
4: if successors(d) == ∅ then
5: result.add(d) . d is the root element
6: if size(predecessors(d)) > 1 then
7: result.add(d) . d is a conditional data element
8: for op ∈ successors(d) do
9: result = result ∪ predecessors(op) . equal-level elements

10: for op ∈ predecessors(d) do
11: if predecessors(op) == ∅ then
12: result.add(d) . d is a leaf element

13: return result

5.1.2 Step 2: Identifying Reference Data Elements

Pattern 5 defines a reference data element as a data element that is an
input element to multiple operations that are, directly or indirectly,
involved in the computation of different sets of important data ele-
ments. This definition reveals that the identification of reference data
elements is less straightforward than the identification of the other
patterns, as described in Section 5.1.1. Firstly, this is because the iden-
tification of reference data requires the other patterns to have been
previously identified. Furthermore, the definition reveals that indirect
involvement between elements must also be considered. An opera-
tion is said to be, directly or indirectly, involved in the computation
of a data element, when there exists a path from the operation to that
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data element. This notion is formalized, for any PDM elements, in
Definition 5.1.

definition 5 .1 (involvement): An element el1 is involved in
the computation of an element el2, when there is a path from el1 to
el2 in the PDM.

These involvement-relations are identified by computing the transi-
tive closure of a PDM. A transitive closure G∗ contains all pairs (i, j)
for which there is a directed path from i to j in a graph [12]. Based on
Definition 5.1, a reference data element is a data element for which
its succeeding operations are involved in the computation of different
sets of important elements. Examples 5.1 and 5.2 illustrate the identi-
fication of reference data elements based on involvement-relations.

example 5 .1 (reference data elements 1): Consider the ex-
ample PDM of Figure 5.1a. Data element C may be a reference data
element, because it is used as input by multiple operations: op1 and
op2. To determine if this is indeed the case, the involvement-relations
for op1 and op2 are computed. op1 is involved with the conditional
data elements A and B; op2 is only involved with data element A.
Therefore, the operations that require data element C as input, are
involved with differing sets of important data elements. Hence, data
element C is identified as a reference data element.

(a) Reference data (b) No reference data

Figure 5.1: Identifying reference data elements

example 5 .2 (reference data elements 2): Consider the PDM
depicted in Figure 5.1b. It is similar to Figure 5.1a, aside from a sin-
gle, crucial difference: data element B is no longer a conditional data
element. Due to this alteration, op1 is now only involved with the
computation of one important data element (element A). As the in-
volvement of op2 remains unchanged, op1 and op2 are now involved
with identical sets of important data elements. Hence, in Figure 5.1b,
data element C is not a reference data element.

Algorithm 2 implements the identification of reference data ele-
ments. It takes the important data elements that are identified by
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Algorithm 1 as input. The notation uses involvedWith(x) to denote the
set of elements with whose computation element x is involved. Af-
ter completion of Algorithm 2, all important data elements have been
identified.

Algorithm 2 Identification of reference data elements

1: Input1: PDM
2: Input2: goals . Data elements identified by Algorithm 1
3: result = ∅
4: for d ∈ PDM.dataElements do
5: for op1 ∈ successors(d) do
6: op1Goals = involvedWith(op1) ∩ goals
7: for op2 ∈ successors(d) do
8: op2Goals = involvedWith(op2) ∩ goals
9: if op1Goals 6= op2Goals then

10: result.add(d)
11: return result

5.1.3 Step 3: Computing Associated Operations

When the important data elements have been identified, it is possible
to compose activities that compute these. This first requires the iden-
tification of the operations that are associated with these elements.
Recall from Definition 4.1 that the associated data element of an op-
eration is the single important data element that can be reached via
a path that does not contain any other important data elements. To
identify the operations that are associated with a particular element,
this definition is applied inversely. First, prerequisites are defined in
Definition 5.2.

definition 5 .2 (prerequisites): The prerequisites of an element
el1 are all elements el2, for which there is a path from el2 to el1 in
the PDM.

A prerequisite is the inverse of the involvement-relation described
in Section 5.1.2. Identification of prerequisites is therefore similar.
They are identified by (temporarily) reversing all arcs in the PDM,
and afterwards again computing the transitive closure G∗. The oper-
ations that are associated with a data element d1 are then computed
by taking the prerequisite operations of d1, and removing the prereq-
uisites of all important data elements d2, for which there exists a path
from d2 to d1, i.e. G∗ contains (d2,d1). Example 5.3 illustrates this for
a fragment of the student grant case.

example 5 .3 (associated operations): Consider the fragment
of the student grant case shown in Figure 5.2. It contains the condi-
tional data elements i41 and i42. Table 5.1 presents the prerequisites
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of these elements; they are also marked in the figure. The associated
operations of i42 are identified by removing the prerequisites of i41
from the perquisites of i42. This subtraction is required because there
exists a path from i41 to i42. This is also identifiable based on pre-
requisites, since i41 is part of the prerequisites of i42. The associated
operations of i42 are then {op1,op2}, while {op3,op4,op5,op6} are
associated with i41.

Figure 5.2: Identifying associated op-
erations

id prerequisites

i41 {op3, op4, op5,
op6, i27, i37}

i42 {op1, op2, op3,
op4, op5, op6, i27,
i37, i41}

i42 - i41 {op1, op2, i41}

Table 5.1: Prerequisite elements

Algorithm 3 implements the computation of associated operations.
The algorithm takes a set of important data elements as input. For
each of these elements, it computes the set of its associated operations.
Step 3 concludes by grouping all leaf operations together into a leaf
activity. The final step in the composition of activities is to avoid sets
of operations that result in activities with redundant input. This step
is described in Section 5.1.4.

Algorithm 3 Computing associated operations

1: Input1: PDM
2: Input2: goals . Data elements identified by Algorithms 1 and 2
3: activities = {}
4: for d1 ∈ goals do
5: activity = prerequisites(d1)
6: for d2 ∈ goals do
7: if d1 6= d2 and d1 /∈ prerequisites(d2) then
8: activity = activity − prerequisites(d2)

activities.add(activity)

9: return result

5.1.4 Step 4: Avoiding Redundant Input

Proposition 2 states that activities should not have redundant input
elements. This occurs when alternative operations in a (proposed)
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id prerequisites

op1 {op3, op4, op5, op6, i27, i37, i41}

op2 {op6, i27}

op1 − op2 {op3, op4, op5, i37 , i41}

Table 5.2: Prerequisites revealing redundant input

activity require the computation of different sets of important data
elements. This can be identified by analysis prerequisites, as seen in
Section 5.1.3. Example 5.4 illustrates this.

example 5 .4 (redundant input): Once more, consider the frag-
ment of the student grant example of Figure 5.2. As earlier seen in
Example 3.3, operations op1 and op2 must not be grouped into an ac-
tivity, because such an activity would have redundant input elements.
This can also be identified based on the prerequisites that differ be-
tween op1 and op2. Table 5.2 shows that data element i41 is one of
these differing prerequisites. Because i41 is a conditional data ele-
ment, the alternative operations require the computation of different
important data elements. Hence, the alternative operations must not
be grouped into one activity, but rather into multiple activities.

Algorithm 4 provides a straightforward implementation that uti-
lizes prerequisites to identify if the alternative operations of a data
element result in an activity with redundant input. The implemen-
tation identifies all occurrences of redundant input. However, in cer-
tain cases, even though alternative operations require different data
elements, this does not result in an activity with redundant input.
Appendix B illustrates these exceptional cases, and describes an ex-
tended implementation that identifies them.

Algorithm 4 Identification of redundant input

1: Input1: PDM
2: Input2: goals . Data elements identified by Algorithms 1 and 2
3: result = ∅
4: for d ∈ goals do
5: for altop1 ∈ predecessors(d) do
6: for altop2 ∈ predecessors(d) do
7: difference = prereqs(altop1) − prereqs(altop2)
8: if {difference} ∩ {goals} 6= ∅ then
9: result.add(d)

10: return result

When a set of operations would result in an activity with redun-
dant input, the set must be grouped into multiple activities. For each
alternative operation in the set, a new activity is created that contains
this operation. Although it is not encountered in the cases available
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in literature, other operations may remain in the set. It is possible
to simply assign these operations to new activities in the same way
as the alternative operations. The interested reader is referred to Ap-
pendix B for a more complex alternative to this assignment.

After the operations that lead to redundant input have been sepa-
rated, the activity composition is completed. The result is a number
of sets of operations that each represent an activity. For the student
grants case, the result of the algorithm is the set of activities shown
in Figure 2.6. If a PDM definition contains more information than the
structural data-flow relations, the proposed activities can be further
refined. This is described in Section 5.1.5.

5.1.5 Refinement

As introduced in Section 4.3, the activities that have been generated
based on structural properties can be further refined when informa-
tion about resource requirements and information sources is avail-
able. Refinement based on external information sources is performed
by creating multiple leaf activities. Each leaf activity then contains the
leaf operations that are related to the same information source.

The resource perspective can be incorporated in the activities by in-
troducing hand-over data elements. Recall from Section 4.3.1 that these
data elements are produced by an operation that requires one type of
resource, while it is the input element of an operation that requires
a different resource class. By extending Algorithm 1 such that it also
identifies these hand-over elements, the resource perspective is in-
corporated in the implementation. Hence, extending the approach so
that it includes these two types of refinement is fairly straightforward.

5.2 tool support

The algorithm described in Section 5.1 and Appendix B has been im-
plemented as a plug-in for the ProM6-framework1. ProM is an exten-
sible framework that supports process mining, as well as PBWD. The
plugin is available as the PDMAggregation package, through the built-
in package manager of ProM6. A screenshot of this plug-in is pro-
vided in Figure 5.3. This section describes how the software supports
modellers when composing activities for a given PDM.

5.2.1 Input

The input that is required for the plug-in, is an Extensible Markup
Language (XML) representation of a PDM. The required XML schema
definition (XSD) has been defined in [35], and is provided in Ap-

1 www.promtools.org/prom6
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Figure 5.3: Screenshot of the ProM6-plugin

pendix C. A single adjustment is made to the original XSD: support
for the inclusion of information sources is added as an optional at-
tribute of operations. This addition allows refinement of leaf activi-
ties, as described in Section 4.3.2.

The minimal information that is required for the plug-in is a struc-
tural description of a PDM. An XML definition must therefore always
contain a list of data elements, and a list of operations. Each opera-
tion is defined by specifying its input and output elements. A PDM
can be further extended with optional information, such as, resource
requirements, information sources, execution costs, and processing
time.

5.2.2 Customization

The software allows modellers to fully automatically generate a set of
activities that adhere to the guidelines of Chapter 4. The quantitative
evaluation of Chapter 6 shows that these activities are good approx-
imations of activities that have been manually composed by experi-
enced modellers. However, since activity composition is a subjective
task, the proposition does not imply that the generated activities rep-
resent the only correct activity design. Modellers can have differing
preferences, that result in varying activity designs. For this reason, the
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software includes functionality that supports customization. Through
this function, users can incorporate their preferences in the activity
generation. One can mark any set of data elements that are consid-
ered to be important. The tool then generates an activity design such
that activities in the design produce the elements that are marked by
the user. The operations that are assigned to each activity are the se-
mantically related operations that are identified by Proposition 2. In
order to ensure that the generated activities are valid, the implemen-
tation may introduce reference data elements when required.

The customization function thus allows users to incorporate their
preferences in the generated activities. Furthermore, since the gener-
ation of activities takes mere seconds, the tool is ideal for iterative re-
finement. A modeller can generate activities until a design best meets
his preferences.

5.2.3 Results

The implementation provides users with two types of results. First
and foremost, a set of activities that adhere to the proposed design
guidelines is computed. Secondly, the implementation produces an
abstracted version of the original PDM. In this version, each activity
replaces its set of underlying operations in the PDM. This abstracted
PDM provides an overview of the most important data elements, their
interrelations and possible executions paths. It is thus a very useful
means to gain a quick overview of the most important information
in a workflow. Figure 5.4 shows the abstracted PDM of the student
grants case. It clearly shows different paths to compute the root el-
ement, and illustrates the four types of grant. The abstracted PDM
furthermore forms the basis for the design of process models, either
manually or by applying process generation algorithms (see e.g. [38]).

Figure 5.4: Abstracted PDM of the student grants case

The ProM plug-in is hence a means that allows users to quickly
generate, view and customize activities for a given PDM. By enabling
this tool support, this research presents the first available tool to sup-
port activity composition for workflow processes.
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VA L I D AT I O N

The proposed activity composition guidelines call for validation. The
goal of this validation is to determine how well the guidelines approx-
imate designs made by modelling experts. This chapter presents an
evaluation of the three propositions posed in Chapter 4. These propo-
sitions are quantitatively evaluated based on validation metrics from
the field of information retrieval.

The chapter is structured as follows. Section 6.1 describes the setup
used to evaluate the propositions. Section 6.2 presents the quantita-
tive results of the validation. Finally, this chapter is concluded with a
discussion of the results in Section 6.3.

6.1 setting

The validation is performed by comparing activity designs that are
automatically generated based on the propositions, referred to as pro-
posed designs, with manual activity designs derived from literature or
experts, referred to as solutions. Five cases have been selected from
literature: the student grant case of Sect. 2.2 and [36], the unemploy-
ment case of [24], the bicycle case of [6], the fireworks case of [35] and
a United States student grant case. The cases range from a PDM with
32 operations and 27 data elements, to a PDM of 81 operations and
46 data elements. In total, there are eleven solutions available for the
five cases. Recall from Chapter 4 that the student grant and unem-
ployment cases have been used during the design of the composition
guidelines. The validation results for these cases may thus be consid-
ered biased. It is therefore that, in order to present objective scores,
the results for these cases are considered separately, as training set
results. The three unbiased cases then form the validation set.

This section describes the five cases and the solutions that are de-
rived from experts. For each solution, the granularity, as well as the
perspectives that are emphasised by the modellers are denoted. Ap-
pendix D further presents the data that comprises these literature
solutions.

6.1.1 Student Grants (NL)

The Dutch student grants case (SGNL) is derived from [35], and has
been presented in Section 2.2 as the running example for this thesis.
It considers the process that deals with requests for governmental
student grants in the Netherlands. The PDM of the student grants
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case contains 32 operations, 27 data elements and 74 arcs. Three avail-
able designs have been derived from literature, these are all derived
from [35] and summarized in Table 6.1. The manual designs empha-
sise the aspect of process granularity through the use of Cohesion
& Coupling metrics; these quantitative metrics are considered in Sec-
tion 1.2. It is interesting to note that the automatically generated so-
lution (see design 2 of Section 2.3) is completely identical to solution
SGNL2. Because the SGNL case and its solutions have been studied
during the design of the composition guidelines, this case is assigned
to the training set of the validation.

id source # of activities focus

SGNL1 [35, p.200] 9 Optimization of gran-
ularity based on Cohe-
sion & Coupling met-
rics.

SGNL2 [35, p.200] 8 Coarser-grained al-
ternative design of
SGNL1.

SGNL3 [35, p.200] 12 Finer-grained alterna-
tive design of SGNL1.

SGNL4 generated 8 Generated based on
propositions.

Table 6.1: Activity designs for the SGNL case

6.1.2 Unemployment Benefits

The unemployment benefits case (UNEM) describes the process of
awarding unemployment benefits in the Netherlands. It is considered
in [24, 35]. The workflow process is a highly automated process, in
which 37 of the 51 operations are executed automatically. The PDM
of the process further consists of 42 data elements and 127 arcs. The
available process designs are manual designs that emphasise efficient
process execution. These are described in Table 6.2. It is interesting
to note that the UNEM case is the only case for which it is explicitly
stated that the leaf elements are retrieved from multiple information
sources.

Because the UNEM case and its solutions have been studied during
the design of the composition guidelines, this case is assigned to the
training set of the validation.
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id source # of activities focus

UNEM1 [24, p.216] 15 The design is driven
by a minimization of
cost, minimum num-
ber of contact with
claimant, and usage
of the case assignment
heuristic.

UNEM2 [35, p.165] 13 This activity design is
an adapted version of
UNEM1 that further
aims to optimize pro-
cess granularity based
on Cohesion & Cou-
pling metrics.

UNEM3 generated 17 Generated based on
propositions.

Table 6.2: Activity designs for the UNEM case

6.1.3 Student Grants (US)

The United States student grants case (SGUS) represents an adapta-
tion of the SGNL case. The original case has been adapted in order to
better resemble the student grant system in the U.S. Its informational
structure is significantly more complex. It consists of 48 operations,
45 data elements and 166 arcs. The PDM and its respective activity
designs are part of a United States Ministry of Defence course on
business process modelling, specifically on Business Process Model
and Notation (BPMN). This material is confidential and therefore un-
published.

There are three alternative designs available for this case. They have
been designed by the trainer of the BPMN track, who is considered
a subject matter expert. The three designs resemble process designs
with varying granularities. These are summarized in Table 6.3.

6.1.4 Bicycle Manufacturing

The bicycle manufacturing case (BIC) describes the administrative
part of a cross-departmental bicycle production process. The case is
derived from [6]. Its information structure is very thin, and thereby
differs greatly from the other four cases. The PDM consists of 36 op-
erations, 29 data elements and 87 arcs.

The bicycle case is the only considered case for which there were
originally no activity designs available. Therefore, two modellers were
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id source # of activities focus

SGUS1 unpublished 5 A very coarse-
grained process
that is designed for
maximum process
maintainability, but
which hides many
details.

SGUS2 unpublished 11 A complex design
with maximum de-
tail.

SGUS3 unpublished 9 A design with inter-
mediate granularity
and structural com-
plexity.

SGUS4 generated 12 Generated based on
propositions.

Table 6.3: Activity designs for the SGUS case

asked to manually design activities. Both modellers are well-versed
in PBWD and very familiar with the bicycle case.

The modellers noted that they designed activities that each ad-
dressed an identifiable part of the process. Furthermore, they utilized
implicit resource information from the case description in [6]. Based
on this information, each activity has been designed such that it can
be performed by a single resource. The granularity of these designs
is described in Table 6.4.

id source # of activities focus

BIC1 unpublished 15 The focus of this de-
sign was on semantics
and resource require-
ments.

BIC2 unpublished 15 The focus on this de-
sign is similar to that of
BIC1.

BIC3 generated 14 Generated based on
propositions.

Table 6.4: Activity designs for the BIC case



6.2 results 51

6.1.5 Fireworks

The fireworks case (FW) presents an application of PBWD on a work-
flow process of a Dutch governmental institution. The case is derived
from [39]. The process under consideration assesses requests for per-
mission to ignite fireworks at special events. The PDM of the case
consists of 81 operations, 46 data elements and 262 arcs. The ratio of
operations to data elements reveals that there are many alternative
operations in the PDM. There is a notably high number of alternative
paths that lead to a value for the end product: 496.

Only one process design for this case has been found in literature.
It is initially described in [39], but presented in more detail in [35].
The process design consists of activities that represent distinct sub-
processes in the workflow. The characteristics of this design, as well
as that of the generated design are described in Table 6.5.

id source # of activities focus

FW1 [35, p.215] 9 The activities in the pro-
cess design are composed
such that they represent
clear sub-processes.

FW2 generated 9 Generated based on
propositions.

Table 6.5: Activity designs for the FW case

6.2 results

This section describes a quantitative evaluation of the propositions
against the literature solutions presented in Section 6.1. There are
no resource specifications available for the five cases. Refinement
through resources, such as described in Section 4.3.1, is therefore
excluded. The UNEM case is the single case in which information
sources are explicitly described. Refinement of the leaf activities based
on these information sources is hence included in the validation of
this case.

6.2.1 Validation of Important Data Elements

Proposition 1 proposes that important data elements in a PDM can be
identified based on five structural patterns. This proposition is evalu-
ated by comparing the identified elements with the output elements
of activities in the solutions. Hence, the validation is based on the
assumption that the solutions, similar to the proposed designs, are
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also designed such that they produce a value for an important data
element.

assumption 1: The activities in literature solutions are designed
such that the output element is an important data element.

Assumption 1 appears to be valid for all but the solutions of the
unemployment case. As denoted in Section 6.1.2, these solutions are
explicitly defined to emphasise execution efficiency and do not con-
sider semantics. For this reason, the UNEM case is not considered in
the validation of Proposition 1.

6.2.1.1 Setup

Proposition 1 is evaluated by comparing the output elements in the
proposed designs with the output elements of activities in the so-
lutions. The performance is quantified by computing precision, recall
and F-score. These scores are, respectively, formalized in equations
6.1, 6.2, and 6.3. In these equations, a true positive (tp) denotes a data
element that is correctly identified as important, whereas a false posi-
tive denotes a data element that is incorrectly identified as important.
True negative (tn) and false negative (fn), respectively, represent correct
and incorrect predictions for data elements that are identified as not
important.

The data used for the evaluation of Proposition 1 is described in
Appendix D.

Precision =
tp

tp+ fp
(6.1)

Recall =
tp

tp+ tn
(6.2)

F-score = 2 ∗ precision ∗ recall
precision + recall

(6.3)

Precision indicates the fraction of identified important data ele-
ments that match output elements in the solutions, whereas recall is
the fraction of output elements in literature that were also identified
by the proposed designs. Finally, the F-score is the harmonic mean of
the precision and recall measures ([2]).

6.2.1.2 Results

The results1 for Proposition 1 are presented in Table 6.6. The aver-
age scores on all three measures are high, with notable averages of

1 For cases with multiple solutions, the average score is presented.
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sgnl unem train. sgus bic fw valid.

avg . avg .

Precision 1.00 n/a 1.00 0.86 0.89 0.86 0.87

Recall 0.84 n/a 0.84 0.86 0.62 0.89 0.79

F-score 0.90 n/a 0.90 0.83 0.72 0.89 0.81

Table 6.6: Validation of Proposition 1

1.00 (training set) and 0.87 (validation set) for precision. This implies
that the patterns are valuable indicators of important data elements
for the solution set. For six out of the nine included solutions, the
score on either precision or recall is 1.00. This suggests that the pro-
posed designs balance between fine-grained solutions (indicated by
high precision) and coarse-grained solutions (high recall). As preci-
sion dominates recall, the automatically generated designs are on av-
erage more coarse-grained than the solutions.

6.2.2 Validation of Semantic Relatedness

The second proposition in this paper states that operations are seman-
tically related if they have the same associated data element and if the
aggregation of those operations does not result in an activity with re-
dundant input elements. To validate if such operations are indeed
semantically related, proposed activity designs are compared with
activities from the solutions. In order to asses semantic relatedness, it
is assumed that the activities in the solutions consist of semantically
related operations.

assumption 2: The activities in the literature solutions consist of
operations that are semantically related to each other.

As for the evaluation of Proposition 1, this assumption once again
results in the exclusion of the unemployment solutions, since these
solutions explicitly do not consider semantic relatedness.

6.2.2.1 Setup

Proposition 2 is evaluated by comparing the contents of activities in
the proposed designs with those of activities in the solutions. In or-
der to evaluate the performance of Proposition 2 independent of the
performance of Proposition 1, the proposed designs are generated
based on the output elements derived from the literature solutions.
As each activity represents a cluster of operations, clustering perfor-
mance measures are utilized to evaluate the proposition. The used
indices are the Rand index and Jaccard index.

The Rand index computes how similar the activities, i.e. clusters,
in the proposed designs are to the activities in the literature solu-
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sgnl unem train. sgus bic fw valid.

avg . avg .

Jaccard 0.96 n/a 0.96 0.94 0.74 0.95 0.88

Rand 0.99 n/a 0.99 0.98 0.97 0.95 0.97

Table 6.7: Validation of Proposition 2

tions [10]. The Rand index measures both correctly identified similar-
ity, i.e. true positives, as well as correctly identified dissimilarity, i.e.
true negatives. The index is shown in Equation 6.4.

Rand index =
tp+ tn

tp+ fp+ tn+ fn
(6.4)

The Jaccard index [18] is similar to the Rand index, with the dif-
ference that the former only considers correctly identified similarity.
The Jaccard index is included because it can, in some cases, reveal
information that is not shown by the Rand index. Such situations can
occur for fine grained activity designs, in which a high amount of
true negatives may conceal a low number of true positives.

Jaccard index =
tp

tp+ fp+ fn
(6.5)

The possible scores on both indices range from 0.0 to 1.0. A score
of 1.0 means perfect similarity between the proposed design and a
literature solution. A score of 0.0 occurs when, for example, all opera-
tions are combined into one activity in the proposed design, whereas
the solution consists of separate activities for each operation.

6.2.2.2 Results

Table 6.7 provides the scores for the Jaccard and Rand indices. With
average scores, respectively, close to and well-above 0.9, the Jaccard
and Rand indices indicate that the automatically generated designs
show a high similarity to the manual designs of modelling experts.
The majority of the differences are caused by the ban on redundant
input elements in the proposed designs. This constraint is not ad-
hered to by several of the solutions. By excluding differences that
result from the avoidance of redundant input elements, the average
Rand-index is higher than 0.98. In other words, the proposed designs
are then nearly identical to the solutions. This implies that considera-
tion of associated data elements very well approximates activities de-
signed by human modellers, while the largest differences occur due
to differing definitions of correctness.
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sgnl unem train. sgus bic fw valid.

avg . avg .

Jaccard 0.89 0.46 0.68 0.88 0.48 0.95 0.77

Rand 0.98 0.87 0.93 0.96 0.91 0.95 0.94

Table 6.8: Validation of Proposition 3

6.2.3 Validation of Well-Designed Activities

Unlike the validation of the previous two propositions, the validation
of Proposition 3 is performed without assumptions about the activi-
ties in the solutions.

6.2.3.1 Setup

The validation of Proposition 3 is performed in the same way as the
validation of Proposition 2. The difference is, however, that the pro-
posed designs are here generated based on the data elements iden-
tified by Proposition 1, rather than based on those derived from the
literature solutions.

6.2.3.2 Results

As shown in Table 6.8, the scores for the Rand-index range from 0.81

to 0.98. They are thus relatively stable, when compared to the Jac-
card index. Values for the latter index are spread, ranging from 0.46

to 0.95. A high Rand index and low Jaccard index on the same solu-
tion implies that the proposed design is more coarse-grained than the
solution. This further reveals that the occurrence of false negatives in
such designs, i.e. operations that are clustered in the solution but not
in the proposed design, is very limited.

6.3 discussion

The validation of the three propositions has shown that the automat-
ically generated designs show a high similarity to the manually de-
signed solutions found in literature. The proposed guidelines thus
approximate the design choices made by experienced modellers.

The evaluation of Proposition 1 reveals that the generated designs
are on average more coarse-grained that the solutions. This suggests
that even though the proposed patterns are valid identifiers of impor-
tant data elements, experts also take other factors into account when
determining the proper granularity of activities. A clear example is
found in the bicycle case. Since this case lacks an explicit resource
description, work hand-overs are not captured by the generated so-
lutions. Manual modellers, by contrast, incorporate these hand-over
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intuitively. This then results in a larger process granularity for the pro-
posed design, due to the limited amount of explicit information that
is available to generate the activities. The solutions of the Dutch stu-
dent grant case also show a second reason for differing granularities.
There, the solutions vary the number of activities that are related to
the calculation of the supplementary grant. Intuitively, the modeller
considers this sub-process to be too large for a single activity [35].
For this reason, SGNL1 and SGNL3 split this sub-process into multi-
ple activities. Therefore, these two designs are considered to have a
better granularity. This intuition is, however, not captured in the gen-
erated activities. Hence, the generated design is coarser-grained than
SGNL1 and SGNL3.

Section 6.2.2 shows that the semantic relatedness of operations is
well-approximated by Proposition 2. The only major differences be-
tween the proposed designs and the solutions occur due to differing
notions of correctness. Section 3.3.2 justifies the avoidance of activ-
ities with redundant input because these constructs hide important
information. By contrast, some solutions (SGNL1, SGNL3 and BIC1)
do contain these constructs. The activities in these solutions are there-
fore not reproduced by the proposed guidelines.

The evaluation of Proposition 3 shows that its performance varies
between the cases. The UNEM and BIC cases have relatively low
scores on the Jaccard-index. For the bicycle case, this is due to dif-
fering granularity. As previously indicated, the solutions for this case,
intuitively, included resource requirements. Since implicit resource
information is not captured in the generated design, this design is
coarser-grained. The generated designs show the least similarity to
the solutions of the unemployment case. The solutions execute the
automated operations as soon as they are enabled. On the contrary,
the proposed designs only execute the automated operations when
required. Since these automated operations encompass a majority of
the operations, this difference has a significant impact on the quan-
titative results. However, the implications are arguably irrelevant, as
the execution of automated operations is instantaneous and costless.
When only non-automated operations are considered, the proposed
design and the solutions of the unemployment case are completely
identical.

The validation shows that the automatically generated designs are
good approximations of designs by experienced modellers. The causes
of the most important differences have furthermore been shown to
be clearly identifiable. These differences occur either due to differing
preferences, or because of the minimal amount of process information
that is available for the generation of the designs.
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C O N C L U S I O N

The research in this thesis provides automated support for the com-
position of workflow activities. The proper composition of activities
is important for the design of efficient and understandable workflow
processes. However, without support, this task requires broad exper-
tise and is time-consuming. The presented research provides such
support through the introduction of fundamental guidelines for ob-
jective activity composition. It thereby enables non-experts to design
proper activities. Because the guidelines are implemented in an auto-
mated approach, the time-consuming nature of activity composition
is overcome. The implementation, furthermore, supports the iterative
refinement of automatically generated activities. Through this func-
tionality, modellers can incorporate their preferences in the generated
activity designs.

To achieve the desired automated support, a broad range of fac-
tors that influence the quality of activity designs has been considered.
This scoping phase resulted in the identification of semantic related-
ness and importance of data-flow elements as the most promising fac-
tors to be incorporated in objective guidelines. It has been shown
that these properties can be identified based on structural data-flow
relations, captured in a PDM. The guidelines, furthermore, ensure
efficient workflow execution. The activity designs avoid redundant,
as well as deferred process execution. A quantitative evaluation has
shown that the automatically generated activity designs are close ap-
proximates of activity designs manually created by experienced mod-
ellers. Since the majority of the cases used in this evaluation is based
on existing business processes, the applicability of the guidelines in
practice seems justified.

The close resemblance to manual activity designs is achieved de-
spite a minimal amount of process data that is used to generate the
activities. It has been shown that in cases were information beyond
the structural data-flow relations is available, the generated activi-
ties can be further refined. The objective refinement of activities has
been illustrated through the inclusion of additional guidelines that
consider the resource perspective and external information sources.

The research presented in this thesis has been shown to successfully
support the subjective and time-consuming task of manual activity
composition with an objective and largely automated approach.
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7.1 limitations

Although the presented work shows promising results, it is subject
to some limitations. Throughout this research, the most important
limitation has been the number of available example cases. Few suit-
able PDMs and accompanying activity designs are found in literature.
The available cases are based on existing business processes, and vary
in complexity and domain. Even though this shows that the eval-
uation covers a diverse range of real processes, the strength of the
evaluation can be increased by incorporating additional cases and
activity designs. Furthermore, the available activity designs did not
include explicit resource specifications. Therefore, the performance
of the guidelines on workflows with a prominent resource dimen-
sion has not been evaluated. Aside from the impact on the validation
strength, the limited number of cases may also have left structural
patterns undiscovered. It is possible that other workflows reveal ad-
ditional patterns that indicate the importance of data elements.

Other possibilities for improvement lay in the strictness of the de-
sign guidelines. The guidelines consider data element importance as
a binary property; hence, all important data elements are regarded to
be of equal significance. It is conceivable that an approach which rec-
ognizes different levels of importance, is more appropriate in certain
cases. For example, for data-flow structures with a lot of important
data elements, a more extensive classification could be used to cre-
ate activities that encompass multiple, less important data elements.
Strictness also plays a role in the avoidance of activities with redun-
dant input elements. The prohibition of these activities is here jus-
tified because they hide important information and require the use
of complex constructs. However, it has been found that experienced
modellers sometimes deliberately ignore this notion in their activity
designs. It is thus possible that there exist conditions for which mod-
ellers prefer designs that require those complex modelling constructs.
If such conditions exist and are identified, the design guidelines may
avoid redundant input less strictly, and thereby improve the quality
of the generated activities.

7.2 future research

This research has shown the feasibility of objective and automated
support for the composition of workflow activities. This results in
several opportunities for future research.

Firstly, the approach itself can be extended. Besides improvement
of the existing guidelines, such as considered in the previous section,
the set of guidelines can be extended by including more process infor-
mation. Such additional guidelines may incorporate the factors that
have been excluded here, due to a lack of objectivity or because they
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depend on information beyond the definition of a PDM. If contextual
information about a workflow is available, guidelines could, for ex-
ample, apply a maximum processing time per activity, or avoid too
complex activities. An extension furthermore presents opportunities
to integrate principles of interaction design in the approach. These
principles could be used to optimize activities for the workflow envi-
ronment in which users execute them. Through such future research,
the approach can be extended into one that encompasses all aspects
of workflow activity design.

The presented research considers the design of activities for work-
flow processes. It does not assess the step that converts an activity
design into a process model. Future work can focus on an approach
which derives process models that are specifically fitted to the gener-
ated activities. For example, the activities are designed for high exe-
cution efficiency. Amongst others, they avoid redundancy and allow
concurrent execution. A next step is then to design process models
that emphasise such characteristics. The abstracted PDMs generated
by the implementation provide an excellent starting point for auto-
mated process derivation. These abstracted versions already have a
structure that is similar to that of process models. They furthermore
capture all structural inter-dependencies that must be considered to
create sound workflows. By extending the activity composition ap-
proach with a step that generates suitable process models, the trans-
formation from data-flow structure to workflow process can be fully
supported.

On a higher level, future work can consider the applicability of the
composition guidelines in other parts of business process manage-
ment. The area of process mining appears to be particularly interesting
for this. It is the goal of process mining to extract information about
processes from transaction logs. These logs contain large quantities of
data about atomic processing steps, i.e. events. The sheer size of this
data often distorts understandability of the results. The concepts pro-
posed in this thesis may be able to identify and group related events.
Thereby it could provide a higher level overview of information that
is otherwise too large or complex to be comprehended. This makes
the applicability of the guidelines in process mining a very promising
direction for future research.
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C O R R E C T N E S S O F L E M M A 1

Lemma 1 proposes that each operation in a PDM is associated with
exactly one important data element. This appendix provides a proof
of this lemma.

It is here shown that each operation in a PDM has exactly one
associated data element. An important data element is identified by
any of the five structural patterns in Section 4.1. The most important
structural pattern in the proof of this lemma is the pattern of reference
data elements. Informally, Pattern 5 defines a reference data element as
a data element that is an input element to multiple operations that are,
directly or indirectly, involved in the computation of different sets of
important data elements. By including the notion of associated data
elements, this definition is formalized in Definition A.1.

definition a .1 (reference data element): A reference data
element, is any data element d, for which d is an input element to at
least two operations, op1 and op2, with g1 as the associated element
of op1, and g2 as the associated element of op2, such that g1 6= g2.

The associated data element of an operation is formalized in Defi-
nition A.2.

definition a .2 (associated data element): Given D : the set
of important data elements. d ∈ D is an associated data element of
operation op, if there exists a path p from op to (but excluding) d,
such that p∩D == ∅.

Lemma 1 proposes that by this definition, each operation has ex-
actly one associated data element.

proof of lemma 1

An operation in a PDM always has at least one associated data
element, because a PDM is connected, therefore for each operation op,
there is a path from op to root, and root is an important data element,
as defined in Pattern 1.

The property that each operation is associated with at most one
data element, is determined as a proof by contradiction. This proof fol-
lows from the way reference data elements are identified in a PDM,
given by Definition A.1. It is shown that, due to reference data el-
ements, an operation cannot be associated with two (or more) data
elements, and therefore must thus have at most one associated data
element.

Assume that operation op has two distinct associated data ele-
ments, g1 and g2. Then by Definition A.2, there must exist path p1
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from op to g1 and path p2 from op to g2, such that p1∧G = ∅ and
p2∧G = ∅.

Operation op has exactly one output data element, therefore paths
p1 and p2 start from the same data element and overlap for an arbi-
trary length.

Since g1 6= g2, there must exist two operations, op1 and op2 that
respectively produce g1 and g2. Therefore, there must exist a data
element d that is used as an input elements by (at least) two oper-
ations, op3 and op, such that op3 is associated with g1 and op4 is
associated with g2. However, by Definition A.1, data element d is a
reference data element. Therefore, op cannot be associated with g1

and g2, since p1∧ g1 6= ∅ and p2∧ g2 6= ∅.
Since the aforementioned shows that an operation always has at

least one, and not more than one associated data elements, Lemma 1

has been proven.



B
I M P L E M E N TAT I O N E X T E N S I O N S

Appendix B presents two atypical cases that can be encountered dur-
ing activity composition. For both cases, their complexity is here con-
sidered to outweigh their impact on the implementation presented in
Chapter 5. Therefore, the implementation abstracts from these cases
in order to maintain understandability.

b.1 redundant input exception

As stated in Section 5.1.4, it is possible that multiple alternative oper-
ations, that require differing sets of important data elements, do not
result in an activity with redundant input. This is possible, because
Constraint 1 states that redundant input occurs when “it would be
possible to execute the activity without first computing all of its in-
put elements.” Therefore, differing prerequisites may not always lead
to redundant input. Example B.1 provides an example of this.

example b .1 (false redundant input): Consider Figure B.1,
it depicts activity C1 of Section 2.3.2. This activity contains two al-
ternative operations: op1 and op2. The former operation, op1, only
requires element i37, whereas op2 requires a larger set of input el-
ements. This set includes the reference data element i27. Therefore,
the two alternative operations have differing sets of important data
elements as their prerequisites. Hence, Algorithm 4 would identify
this activity to have redundant input elements. However, if the en-
tire student grant case of Figure 2.2 is inspected, it is clear that i27

must always be computed, irrespective of the alternative selected for
activity C1. Therefore, the activity in Figure B.1, cannot result in the
redundant computation of i27.

Figure B.1: Activity C1
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To formalize the concept shown in Example B.1, alternatives are
defined in Definition B.1. Example B.2 illustrates this notion.

definition b .1 (alternative): An alternative is any minimal set
of operations and their output elements, such that the operations can
be executed to create the root data element of a PDM.

example b .2 (alternatives): Consider the PDM shown in Fig-
ure B.2. There are three possible alternatives for this PDM. These al-
ternatives are described in Figure B.1. The alternatives represent those
sets of operations that can be executed to compute the root element
A. Any other set of operations is either unable to compute the root
element, or is an extended version of one of the three alternatives. In
the latter case, the set is not considered to be minimal.

Figure B.2: Alternatives

id content

1 {op1, op3, op6, A, B, D}

2 {op1, op4, op7, A, B, E}

3 {op2, op4, op8, A, C, F}

Table B.1: Elements per alternative

An activity has redundant input if it can be executed without com-
puting all its input elements. This can be identified by utilizing the
concept of alternatives. Given the alternative operations that produce
an element d, and a differing prerequisite data element d2. An ac-
tivity that produces d then has redundant input if and only if d2

does not occur in all the alternatives that contain d. For example, in
Example B.1, there is no alternative in the student grant case that
contains conditional data element i41 but not element i27. Therefore,
computation of i27 is never redundant for the activity of Figure B.1.
Algorithm 5 implements this notion; it resembles an extension of Al-
gorithm 4. The algorithm uses alternatives(x) to denote the alternatives
that contain element x.

b.2 assigning remaining operations

When a set of operations results in an activity with redundant input,
the operations must be assigned to multiple activities. Section 5.1.4
describes the most straightforward approach for this assignment: cre-
ate a new activity for each operation in the set. This approach ensures
that the resultant activities do not have redundant input and further-
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Algorithm 5 Extended identification of redundant input

1: Input1: PDM
2: Input2: goals . Data elements identified by Algorithms 1 and 2
3: result = ∅
4: for d ∈ goals do
5: for altop1 ∈ predecessors(d) do
6: for altop2 ∈ predecessors(d) do
7: difference = prereqs(altop1) − prereqs(altop2)
8: differingGoals = difference ∩ goals
9: for d2 ∈ differingGoals do

10: if (alternatives(d) − alternatives(d2)) 6= ∅ then
11: result.add(d)
12: return result

more is generally well-applicable in practice. However, it is not be the
best approach for some cases. If the set of operations contains more
than just a number of alternative operations, other approaches are
more suitable. This section describes such an approach; it attempts to
split the set of operations into activities that best resemble the notion
of semantic relatedness, as proposed in Proposition 2.

First, for each alternative operation in the set, a new activity is cre-
ated that contains this operation. The separation of the alternative
operations ensures that these activities do not have redundant input
elements. Any operations that remain, i.e. those that are not alterna-
tive operations, are then considered. There are two cases to assign
these remaining operations. Firstly, if a remaining operation (op1) is
a prerequisite of only one of the alternative operations, then op1 is
assigned to the activity that contains this alternative operation. Oth-
erwise, op1 is assigned to an activity with other operations that are
required by the same alternative operations, if any. Example B.3 illus-
trates both cases.

example b .3 (separating alternative operations): Assume
that the operations in Figure B.3 form an activity that results in redun-
dant input. The operations must therefore be assigned to multiple ac-
tivities. To accomplish this, firstly, two activities are created for the
alternative operations, i.e. one that contains op1, the other with op2.
Then, {op3,op4,op5} are the remaining operations. op3 is a prerequi-
site of only one alternative operation: op1. Hence, op3 is assigned to
the same activity as op1. op4 and op5 are, however, both prerequi-
sites of alternative operations op1 and op2. Therefore, a third activity
is created that consists of these operations. The resultant activities are
thus: {op1,op3}, {op2} and {op4,op5}.

Through the assignment illustrated in the example, the operations
are grouped into activities that best resemble the notion of semantic
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Figure B.3: Separating alternative operations

relatedness that has been earlier proposed. Algorithm 4 provides an
implementation of this assignment approach.

Algorithm 6 Separating alternative operations

1: Input1: altOps
2: Input2: remainingOps
3: activities = map<id, set> . map from id to operations
4: for altOp ∈ altOps do
5: activities(altOp) = {altOp} . create new activity

6: for op1 ∈ remainingOps do
7: op1Alts = involvedWith(op1) ∩ altOps
8: if size(op1Alts) == 1 then
9: altOp = op1Alts.pop() . retrieve the alternative operation

10: activities(altOp).add(op1)
11: else
12: activities(op1) = {op1}
13: for op2 : remainingOps do
14: op2Alts = involvedWith(op2) ∩ altOps
15: if op1Alts == op2Alts then
16: activity.add(op2)
17: remainingOps.remove(op2)

18: return activities
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X M L D E F I N I T I O N O F A P D M

<?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>
<xs:schema xmlns:xs=" h t t p : //www. w3 . org /2001/XMLSchema"
elementFormDefault=" q u a l i f i e d " a t t r ibuteFormDefaul t="

unqual i f i ed ">
<xs :e lement name="PDM">
<xs:complexType>

<xs :sequence>
<xs :e lement r e f ="Name"/>
<xs :e lement r e f =" DataElement " maxOccurs=" unbounded "/>
<xs :e lement r e f =" Resource " maxOccurs=" unbounded "/>
<xs :e lement r e f =" Source " maxOccurs=" unbounded "/>
<xs :e lement r e f =" Operation " maxOccurs=" unbounded "/>
<xs :e lement r e f =" RootElementRef "/>

</xs :sequence>
</xs:complexType>
</xs :e lement>
<xs :e lement name=" DataElement ">

<xs:complexType>
<xs :sequence minOccurs=" 0 ">

<xs :e lement r e f =" Data " minOccurs=" 0 "/>
</xs :sequence>

< x s : a t t r i b u t e name=" DataElementID " type=" xs : ID " use="
required "/>

< x s : a t t r i b u t e name=" Descr ipt ion " type=" x s : s t r i n g " use="
opt iona l "/>

</xs:complexType>
</xs :e lement>
<xs :e lement name=" Resource ">

<xs:complexType>
< x s : a t t r i b u t e name=" ResourceID " type=" xs : ID " use="

required "/>
< x s : a t t r i b u t e name=" Descr ipt ion " type=" x s : s t r i n g " use=

" opt iona l "/>
</xs:complexType>

</xs :e lement>
<xs :e lement name=" Source ">

<xs:complexType>
< x s : a t t r i b u t e name=" SourceID " type=" xs : ID " use="

required "/>
< x s : a t t r i b u t e name=" Descr ipt ion " type=" x s : s t r i n g " use=

" opt iona l "/>
</xs:complexType>

</xs :e lement>
<xs :e lement name=" Operation ">

<xs:complexType>
<xs :sequence>

<xs :e lement name=" Input ">
<xs:complexType>

<xs :sequence>
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<xs :e lement name=" DataElementRef "
type=" xs:IDREF "

minOccurs=" 0 " maxOccurs=" unbounded
"/>

</xs :sequence>
</xs:complexType>

</xs :e lement>
<xs :e lement name=" Output ">

<xs:complexType>
<xs :sequence>

<xs :e lement name=" DataElementRef " type
=" xs:IDREF "/>

</xs :sequence>
</xs:complexType>

</xs :e lement>
<xs :e lement name=" Cost " minOccurs=" 0 "/>
<xs :e lement name=" Time " minOccurs=" 0 "/>
<xs :e lement name=" Condition " minOccurs=" 0 "

maxOccurs=" unbounded "/>
<xs :e lement name=" P r o b a b i l i t y " minOccurs=" 0 "/>
<xs :e lement name=" ResourceRef " type=" xs:IDREF "

minOccurs=" 0 "/>
<xs :e lement name=" SourceRef " type=" xs:IDREF "

minOccurs=" 0 "/>
<xs :e lement r e f =" Data " minOccurs=" 0 "/>

</xs :sequence>
< x s : a t t r i b u t e name=" OperationID " type=" xs : ID " use="

required "/>
< x s : a t t r i b u t e name=" Descr ipt ion " type=" x s : s t r i n g " use=

" opt iona l "/>
</xs:complexType>

</xs :e lement>
<xs :e lement name=" Data "/>
<xs :e lement name=" RootElementRef " type=" xs:IDREF "/>
<xs :e lement name="Name"/>
</xs:schema> �



D
VA L I D AT I O N D ATA

Appendix D presents the data that is used in the validation of Chap-
ter 6. Table D.1 contains the important data elements that are derived
from the literature solutions. The values in this table are used for the
quantitative evaluation of Proposition 1. The remaining five tables in
this appendix describe the activity designs found in literature. These
values are used during the evaluation of Proposition 2 and Proposi-
tion 3.
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case design output data precision recall f-score

SGNL SGNL0
a i27, i39, i40, i41,

i42, i43, leaf
n/a n/a n/a

SGNL1 i27, i30, i39, i40,
i41, i42, i43, leaf

1 0,88 0,93

SGNL2 i27, i39, i40, i41,
i42, i43, leaf

1 1 1

SGNL3 i25, i27, i28, i29,
i30, i39, i40, i41,
i42, i43, leaf

1 0,64 0,78

SGUS SGUS0 i26, i28, i36, i39,
i40, i45, leaf

n/a n/a n/a

SGUS1 i26, i40, i45, leaf 0,57 1 0,72

SGUS2 i26, i27, i28, i32,
i36, i39, i40, i42,
i45

1 0,7 0,82

SGUS3 i26, i27, i28, i39,
i40, i42, i45, leaf

1 0,88 0,93

BIC BIC0 i2, i11, i12, i15,
i22, i24, i25, i27,
i28, i29, leaf

n/a n/a n/a

BIC1
b i2, i7, i8, i9, i10,

i11, i12, i15, i22,
i23, i24, i25, i26,
i27, i28, i29

0,82 0,56 0,67

BIC2 i2, i7, i9, i10, i11,
i12, i15, i22, i23,
i24, i25, i26, i27,
i28, i29

0,91 0,67 0,77

FW FW0 i1, i2, i12, i13,
i14, i15, i16, i40,
leaf

n/a n/a n/a

FW1 i1, i2, i10, i12,
i13, i14, i15, i16,
leaf

0,89 0,89 0,89

Table D.1: Data used in the validation of Proposition 1

a leaf denotes the output element of a leaf activity, is such an activity is present in the
given activity design.

b One of the activities in this design has three output elements. All three are here
counted as important data elements.
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design activities

SGNL1 A = {op27, op28, op29, op30, op31, op32, op33, op34, op35,
op36, op38}, B = {op20, op21, op22, op23, op25}, C = {op08}, D
= {op01, op02, op03, op05}, E = {op06, op07}, F = {op15, op17,
op24}, G = {op18}, H = {op19}, I = {op10, op11, op12, op13};

SGNL2 A = {op19} , B = {op01, op02, op03, op05, op10, op11, op12,
op13, } , C = {op18} , D = {op07, op06} , E = {op23, op22, op21,
op20, op25} , F = {op08} , G = {op17, op15, op24} , H = {op34,
op38, op29, op28, op30, op31, op32, op33, op27, op35, op36};

SGNL3 A = {op27, op28, op29, op30, op31, op32, op33, op34, op35,
op36, op38} , B = {op20, op21, op22, op23, op25} , C = {op08}
, D = {op01} , E = {op06, op07} , F = {op15, op17, op24} , G =
{op18} , H = {op19} , I = {op10, op11, op12, op13} , J = {op02} ,
K = {op03} , L = {op05};

Table D.2: Solutions SGNL case

design activities

UNEM1
ab A = {O36, O38, O39, O41, O42, O46, O47, O48, O50, O51},

B = {O43, O35, O34, O37, O49, O45, O40, O44, Op01, Op02,
Op03, Op04, Op05, Op06, Op07, Op08, Op09, Op25} , C =
{Op10, Op30, Op32} , D = {Op17} , E = {Op18} , F = {Op19}
, G = {Op20} , H = {Op16, Op26, Op27, Op29, Op33} , I =
{Op14, Op15} , J = {Op11, Op24, Op28, Op31}, K = {Op13} , L
= {Op21} , M = {Op23} , N = {Op12} , O = {Op22};

UNEM2
c A = {O36, O38, O39, O41, O42, O46, O47, O48, O50, O51},

B = {O43, O35, O34, O37, O49, O45, O40, O44, Op01, Op02,
Op03, Op04, Op05, Op06, Op07, Op08, Op09, Op25} , C =
{Op10, Op30, Op32} , D = {Op17} , E = {Op18} , F = {Op19}
, G = {Op20} , H = {Op21} , I = {Op26, Op27, Op28, Op29,
Op31, Op33} , J = {Op11} , K = {Op15} , L = {Op22} , M =
{Op12} , N = {Op23} , O = {Op24} , P = {Op13, Op14, Op16};

Table D.3: Solutions UNEM case

a The original design contains two activities with operations {Op11, Op24, Op28,
Op31}, these operations were assigned to a separate activity (J) in order to enable
the calculation of the most objective scores.

b Operations Op12 and Op22 are originally not part of this design because these are
considered to be inefficient. However, in order to properly calculate validation scores,
these are included in activities N and O.

c The original designs does not include operations Op13, Op14 and Op16. Since these
are connected, an additional activity (P) that consists of these operations is added
for completeness.
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design activities

SGUS1 A = {O17, O11, O16, O08, O15, O23, O14, O19, O18, O12,
O04, O05, O06, O07, O13, O01, O02, O03, O10, O22, O09,
O20, O21} , B = {OpID02, OpID03} , C = {OpID04, OpID05,
OpID06, OpID07, OpID08, OpID09, OpID10, OpID11, OpID12,
OpID13, OpID14, OpID15, OpID16, OpID17, OpID18, OpID19,
OpID20} , D = {OpID21, OpID22, OpID23, OpID24, OpID25} ,
E = {OpID01};

SGUS2 A = {O17, O11, O16, O08, O15, O23, O14, O19, O18, O12, O04,
O05, O06, O07, O13, O01, O02, O03, O10, O22, O09, O20, O21}
, B = {OpID01} , C = {OpID02, OpID03} , D = {OpID04} , E
= {OpID05, OpID11} , F = {OpID07} , G = {OpID06, OpID08,
OpID09,OpID10, OpID12,OpID13, OpID14, OpID15, OpID16}
, H = {OpID17, OpID18, OpID19, OpID20} , I = {OpID22,
OpID23, OpID21, OpID24, OpID25};

SGUS3 A = {O17, O11, O16, O08, O15, O23, O14, O19, O18, O12, O04,
O05, O06, O07, O13, O01, O02, O03, O10, O22, O09, O20, O21} ,
B = {OpID02, OpID03} , C = {OpID04} , D = {OpID05, OpID11}
, E = {OpID07} , F = {OpID06, OpID08, OpID09,OpID10} , G =
{OpID12,OpID13, OpID14, OpID15, OpID16} , H = {OpID17,
OpID18, OpID19, OpID20} , I = {OpID22, OpID23} , J =
{OpID21, OpID24, OpID25} , K = {OpID01};

Table D.4: Solutions SGUS case

design activities

BIC1 A = {op1, op2} , B = {op3, op4, op5, op6, op7} , C = {op8, op9}
, D = {op10} , E = {op11, op12, op13, op14} , F = {op15} , G =
{op16, op17, op18} , H = {op19, op20, op21, op22, op23, op24,
op25} , I = {op26} , J = {op27, op28} , K = {op29} , L = {op30} ,
M = {op31} , N = {op32, op33} , O = {op34, op35, op36};

BIC2 A = {op1, op2, op6, op8, op10, op29} , B = {op3, op4, op5} , C =
{op7} , D = {op9} , E = {op11, op12, op13, op14} , F = {op35} , G
= {op15} , H = {op36} , I = {op16, op17, op18} , J = {op19, op20,
op21, op22, op23, op24, op25} , K = {op26} , L = {op27, op28} ,
M = {op30} , N = {op31, op32, op33} , O = {op34};

Table D.5: Solutions BIC case
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design activities

FW1 A = {Op11} , B = {Op04, Op05, Op06, Op07} , C = {Op12, Op13} ,
D = {Op61, Op73, Op51, Op74, Op66, Op65, Op64, Op70, Op57,
Op72, Op55, Op63, Op58, Op59, Op69, Op68, Op67, Op53,
Op75, Op76, Op50, Op52, Op60, Op77, Op62, Op56, Op49,
Op71, Op14, Op15, Op48} , E = {Op17, Op42, Op23, Op40,
Op21, Op18, Op19, Op38, Op39, Op29, Op28, Op79, Op31,
Op30, Op22, Op32, Op20, Op27, Op35, Op25, Op37, Op44,
Op33, Op43, Op34, Op41, Op26, Op47, Op82, Op45, Op36,
Op78, Op81, Op80, Op83, Op24, Op46} , F = {Op09, Op10} ,
G = {Op01, Op02} , H = {Op08} , I = {Op16};

Table D.6: Solutions FW case
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