EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Flow on imprecise terrains

Theunissen, M.L.M.

Award date:
2013

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/56cc90e3-941e-4413-baf3-2f329a389ec8

Department of Mathematics and
Computer Science

Den Dolech 2, 5612 AZ Eindhoven
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

www.tue.nl

Technische Universiteit
Eindhoven
University of Technology

Supervisor
dr. Herman Haverkort (TU/e)

Section
Algorithms and Visualization

Date
April 9, 2013

Where innovation starts

Flow on Imprecise Terrains

Master’s Thesis

Marlous Theunissen

Acknowledgements

After almost eight years of studying at Eindhoven University of Technology (TU/e), I proudly present
my Master’s thesis. This graduation project would not have been the same without the support of
many people. I wish to express my gratitude to my supervisor, Herman Haverkort, without whom this
text could not have been written yet, since he did a great job in tutoring me during this graduation
project. Thank you for your time, your lovely stories about Emma and most of all, thank you for the
project discussions, which lead to some fruitful ideas. I would also like to thank Anne, who served
as a second tutor for me when I had an urgent matter and Herman could not help. I would like to
thank Sander, Q and Alex for the in-depth discussions about algorithmic problems, and the fellow
algorithms graduates for the tea breaks once in a while. Furthermore, I should not forget ‘the guy
from the hallway’, whom I now know as Roeland. Although he and others tried to convince me of
doing a PhD afterwards, I did not listen.

I also want to thank my parents, for their love, support, but most of all their patience when I
again was talking about the interesting algorithmic details of a problem. Another person with a lot
of patience is Erik, who has had a lot of chatter to endure but who always kept listening — or at least,
pretended that he did. He is a wonderful guy, and was open to discussions about my project whenever
I needed that and helped me when I got lost in the great world of Mathematics. Also many love and
thanks to Bieflap and Stooflap, the hamsters which made me smile again after a proof went wrong or
after a full day of debugging.

Finally, I want to thank all the students with whom I enjoyed classes or who participated in my
social life — you too Jeroen. You all did a great job in helping me with the successful completion of this
project.

ii

Abstract

Driemel et al. [DHLS11] introduced a new type of algorithms for flow computations on terrains using
the Single Flow Direction (SFD, steepest-neighbour) method. These algorithms can deal with ter-
rains represented by a graph G = (V,E), with a certain elevation range [low(v), high(v)] for every
vertex v € V. The elevation range can be seen as an uncertainty in the elevation of the vertex; the
elevation-bounded model is therefore an instance of an uncertainty model. An alternative method
to model the uncertainty in a terrain is by defining bounds on the elevation difference between adja-
cent vertices: the slope-bounded model. We investigate both uncertainty models and gain insight in
the behaviour in practice of the algorithms by Driemel et al. and our extension to the Multiple Flow
Direction method (MFD, where water flows to all neighbours with a lower or equal elevation).

We prove that it is NP-hard to determine whether water can flow from one point to another point
in the slope-bounded SFD model. For the remainder of the project, we therefore concentrate on the
watershed algorithms by Driemel et al. for elevation-bounded models. By interpolating neighbour-
hoods of different sizes, we obtain several elevation-bounded model instances, based on a Digital
Elevation Model (DEM, in which vertices have a fixed elevation). However, this still does not cap-
ture the actual behaviour of water flow. Additionally, we therefore apply a flooding technique (lifting
the elevations of each vertex until it is able to leave the terrain) to the data sets. By applying both
techniques, the watershed algorithms return plausible results.

Driemel et al. define a potential watershed as the region from which water may flow to a cer-
tain set of vertices Q, and a persistent watershed as the region from which water can only escape by
flowing through Q. We define the certainty of the watersheds of Q as the ratio of the persistent and
potential watershed. The algorithms frequently show high uncertainty when applied to small blocks
of the terrain. Lower uncertainty is observed for blocks intersecting a river bed. The reliability of the
results is therefore still questionable. The algorithms still lack robustness; a small difference in the
input can seriously affect the resulting watersheds. We therefore conclude that current results can
only be interpreted by users who know the area and algorithms very well. Either further assistance is
required for selecting the area of interest, or the algorithms have to be improved.

iv

Contents

(I Introduction|

2 Preliminarics

2.1 Modelling terrains|. e e e e e e
2.2 Modellinguncertainty| e
2.3 Modelling flow]. e e e

b

Implementation|

[6.1 Creating the uncertaintymodels|
|6.2 Calculating with the uncertaintymodels|

Computing the Elevation Range|

[7.1 Localitysetting e e e e e
[7.2 Ordinary Least Squares|. e

...

12

15
15
16

23
23
28
31
32

37
37
40

42
43
46
48

50
50
55
57

63

CHAPTER 1

Introduction

In Geographic Information Science (GIS), a lot of research has been done on the behaviour of water
on a terrain. With a realistic simulation of, for example, the water flow on a terrain, one can analyse
certain effects and risks of, for instance, flooding, or give a better overview of the water flow after a
heavy downpour. However, since we do not have the exact terrain properties available of every square
meter of the Earth’s surface at any moment in time, elevation data of this surface is used to create ele-
vation models to give an approximation of the area. This elevation data can be obtained as described
by Haverkort and Toma [HTar] by using methods such as extracting the data from the contour lines
on a topographic map, or by using a more recent technique as LIDAR (Light Detection And Ranging)
or SONAR (SOund Navigation And Ranging). Two disadvantages of these type of measurements are
that they often contain noise and they give us a discrete representation of the surface. After all, the
elevations of points for which no measurements are done need to be estimated. Therefore, calcula-
tions on this elevation data can never yield a fully realistic simulation with complete certainty. In this
report we discuss this discrete representation of a terrain, the terrain models, and will refer to these
models as terrains instead of the actual surface that is represented by the data.

Traditional preprocessing

Most of the developed algorithms that are currently in use in common GIS-applications base their
calculations on a digital elevation model (DEM). This DEM consists of a set of points, where each
point has an exact elevation. The fact that elevation data of a terrain contains noise, due to the mea-
surements, and the fact that the estimation of an elevation value at a specific point is done by, for
instance, interpolation, both give rise to an uncertainty interval in which the elevation of the point in
the real terrain probably would lie. That means that in order to use these algorithms, when extracting
elevation data from e.g. topographic maps or LIDAR point clouds, we need to select one of the many
plausible elevation values for each specific point. We call this a realization of the terrain — a selec-
tion of elevation values for the points of the terrain. By choosing such a value for each point, a lot of
other possible realizations of the terrain are discarded. However, due to several errors, it is not sure
whether the selected value is the actual value. As a result, preprocessing of a DEM is needed before
doing actual calculations. As described by Cheng-Zhi and Lijun [CZL12], doing flow accumulation
calculations in real applications requires a DEM preprocessing algorithm to remove depressions and
flat areas in advance. Preprocessing techniques that are commonly used involve filling the closed
depressions (flooding) and detecting drainage routes in the input data; removing local extrema; or
stream burning, a technique that overlays the data with a vector input of the river network to improve

CHAPTER 1. INTRODUCTION

the elevation values of data points along rivers [{IPCRM08|]. Image processing techniques such as
smoothing are used to remove small-scale roughness caused by interpolation techniques.

Consequences

Each preprocessing technique influences the quality of the calculations on the resulting DEM. Two
channel mapping techniques, techniques for extracting drainage networks from DEMs, are compared
by Lindsay [Lin06]. The channel-initiation algorithms simulate overland flows to locate channel
heads, where the valley-recognition algorithms identify channel grid cells based on specific topo-
graphic profiles, such as a ‘v’-shape. Both approaches extract a drainage network from the input
model. However, if the error magnitude of a DEM is moderate to large, and/or if the degree of spatial
autocorrelation in the error surface is low, Lindsay states that the channel network extracted will likely
contain significant artefacts due to errors. Furthermore, the elevation errors influence the positions
of the channel heads. Lindsay also states that ‘algorithms are also hindered by the surface depres-
sions occurring on rough surfaces, which is associated with a more detailed representation. Note
that a gridded DEM suffers from the problem that elevations are sampled on a regular grid, which
may under-sample the terrain in rugged areas and oversample it in smooth areas. Wise [Wis07] uses
six different DEM creation methods on the same area, a small catchment in Devon (UK), to investigate
the effects on the results of several DEM algorithms. As a result, predictions differed in some cases
over 200% for surface run-off and a difference of 25% was measured for hourly flow values. The first
result was instigated by the presence of interpolation artefacts in the DEM, leading to completely un-
realistic predictions. The overall conclusion of Wise supports the idea that DEM artefacts have little
effect on broad-scale results, but that they can have important consequences for local-scale results,
which is the scale at which most DEM analysis algorithms work. Errors in DEMs are usually gross
errors or blunders, systematic errors due to bias in the data and random errors [FT06]. However, not
only the errors in DEMs itself causes errors in the algorithms results. Also the selected flow models
(Section [2.3) have influence on the results, as reported by Zhou and Liu [ZL02].

Sources of uncertainty

As we can see, there are several sources of error that appear when computing with terrain models. We
can divide the errors, influencing the results of computations, roughly into four categories. First of all,
the measurements conducted to retrieve elevation values for a number of points are not precise; we
call these errors measurement errors. The equipment used for the measurements is ultimately error-
prone and often returns a height with a known error bound or a height interval instead of a fixed value
IGKLS12]. Second, we have the errors caused by creating a terrain model from the measured data. We
will call these errors interpolation errors. As a third, the sampling rate has an effect on the results
of the elevation models, denoted by sampling rate errors. With more data points a higher resolution
model can be created and more details of the terrain are captured. Last but not least, we have the
interpretation errors. These errors are either caused by the inherent shortcomings of an algorithm
or by the inability to effectively capture certain area-specific properties in the terrain model. For
instance, when a valley has a bridge crossing a river at a height that is much higher than the actual
height of the river, the elevation models possibly capture this as a dam, looking at the elevation values,
whereas in practice, the water could actually flow underneath the bridge.

Taking uncertainty into account

Due to the errors described above, one may want to keep some uncertainties that can be extracted
from the data set available in one way or another, when doing calculations on the terrain. We call a
model that takes uncertainty into account an uncertainty model. One way to translate these uncer-
tainties into a terrain model is described by Driemel et al. [DHLS11], where each point in the input
has an elevation range [e;, ej,] instead of a fixed elevation. That is, a point p has a minimum elevation

and a maximum elevation and the exact elevation is not known. In the rest of this document, this
model is denoted as the elevation-bounded model. Using such a terrain model that keeps uncertain-
ties into account, we want to have a notion of uncertainty in the output of the algorithms. Driemel
et al. described several algorithms to translate this uncertainty in the input to the output, beginning
with algorithms that calculate uncertainty ranges for the watersheds for point sets.

Water flow

Algorithms simulating water flow base their calculations on a so called flow model. 1t is very difficult
to describe the exact behaviour of water on a terrain when the terrain is only represented by a grid
of points with elevations. Every algorithm that simulates water flow is a compromise between all
possible flows, since a grid representation simply limits the possibilities of the real flow. Water has a
typical behaviour of flowing downwards. To approach this flow behaviour, several flow models have
been described to determine the flow direction and the flow amount of water leaving a certain point
[GP08]. Driemel et al. base their algorithms on the flow model where water flows to the steepest
descent neighbour.

This report

In this report, we extend the watershed algorithms as introduced by Driemel et al. for a second flow
model, where water can flow to multiple neighbours. We look at two different uncertainty models.
The first model, the elevation-bounded model, is shortly described in Section Based on an
equidistant grid model, where all edges between points have the same distance, we show the nesting
properties of watersheds in this model. The second uncertainty model we will look at, is the slope-
bounded model, which is introduced in Section[2.2.2] For this second model, we show that determin-
ing whether water could flow from a certain point to another point is NP-hard. Afterwards, we switch
back to the first uncertainty model and take a closer look at the behaviour in practice of the watershed
algorithms by using data from the Neuse River Basin in North Carolina. We describe several ways to
select the elevation ranges such that the uncertainty is taken into account and discuss the results.

CHAPTER 2

Preliminaries

In this chapter we will introduce the relevant models and terms that are used in the rest of the report.
We will first define the terrain models used, describing a terrain by a set of points in the xy-plane
with for each point an elevation. Next, the two uncertainty models studied are explained. Since the
report is about flow on imprecise terrains, we also need to define which flow models we take into
account. This is done in Section[2.3] Last but not least, we conclude this chapter with a brief overview
of the relevant algorithms introduced by Driemel et al. [DHLS11] that are used to obtain our results

in Chapters[4} [7jand

2.1 Modelling terrains

A digital elevation model used in GIS applications could be described as a grid with cells, for which
every cell (or every centre of the cell) is assigned an elevation. Such a model can be modelled as a
graph G = (V,E), in which each point v € V represents the centre of a grid cell and has a property
‘elevation’, and each edge e € E represents the adjacency of two adjacent (neighbouring) cells in the
grid. The neighbourhood of a point set P, denoted by N(P), is the set of vertices that have an edge to
avertex in P and are not part of P itself. N(P)={s:s¢ PA3teP:(s,t)cE}.

2.1.1 Irregular network

An irregular network is a network of irregularly distributed vertices and edges with three-dimensional
coordinates (x, y, z), defining the location and elevation value of a vertex. To be able to reduce the re-
quired storage space, it is possible to allow a lower sampling density on parts of the terrain that are
less interesting. To combine different sampling densities within a graph, one could use an irregular
network in which each vertex drains to one or more of its neighbours. We refer to this irregular net-
work as the nefwork model, and unless indicated otherwise we assume that, from every vertex, water
flows down along the steepest incident edge.

2.1.2 Regular square grid

A regular terrain is a terrain for which there exists a periodic structure in the input data (a graph) of
the terrain. A typical example is a regular square grid; for a square of size § x §, the coordinates of the
vertex in the i’th column and j’th row can be defined as (i-6,j-§).

2.2. MODELLING UNCERTAINTY

The digital elevation models used in most GIS computations are regular square grids. These grids
can be seen as a matrix of unit size squares, where each square has a given elevation. There are
two types of these grid models: one where the cells of the grid are modelled as squares that have a
certain elevation and one where the corners of the square grid cells are used as the basic elements of
computations. We will use the type for which the centres are modelled as vertices in a graph, and we
count the rows from top to bottom.

For each square, say of size 6 x 8, the neighbours are given by the eight surrounding squares.
However, the distances (measured using the centre points of the squares) from such a square to its
neighbours are not all equal. For example, the distance to a north-east neighbour is v/28, which is
larger than the distance § to its north neighbour (see Figure[2.1).

2.1.3 Regular triangular grid (hexagonal grid model)

A different regular grid is a grid where hexagons are repeated. Connecting the centres of the hexagons
for all neighbouring cells yields a regular triangular grid. In this regular triangular grid the lengths of
the edges are all equal. This property simplifies several flow computations; since steepest neighbour
tests are based on the proportion of the distance and the accompanied elevation difference, one only
need to look at the elevation differences when all edges have the same length. Therefore we will
focus at computations with equidistant grids where each distance between two neighbours is equal.
In particular, we choose this regular triangular grid. In this report, we will also denote this regular
triangular grid as the hexagonal grid model, because the vertices define the centres of the cells of a
regular hexagonal grid, as shown in Figure[2.2] In this way, we can talk about cells as is done for GIS
applications. An example of a hexagonal grid with elevations on each cell, is given in Figure[2.3]

)
NW N NE
¢ {
V20
T B
SwW S SE
Figure 2.1: Unit grid DEM Figure 2.2: Hexagonal grid

2.2 Modelling uncertainty

2.2.1 Elevation-bounded model

As briefly described in the introduction, one of the two uncertainty models we will take a look at, is
the elevation-bounded model, as described by Driemel et al. [DHLS11]. In this model, each point in
the input has an elevation range [low(v), high(v)] instead of a fixed elevation. That s, a point p has a
minimum elevation low(v) and a maximum elevation high(v) and the exact elevation is not known.
In Figure[2.4] an example is given of an elevation-bounded model. Note that in this type of model, all
elevations of the different points can be selected independently of each other. (In the second model,
described in Section[2.2.2] this is not the case.)

CHAPTER 2. PRELIMINARIES

Figure 2.3: Example of elevations embedded in the hexagonal grid.
Image taken from http://geekanddad.wordpress.com/category/games/.

e 0,1]

[~1,0
[0,1]

&
Figure 2.4: Example of an elevation-bounded model in an equidistant grid. The elevation of each
vertex can be selected independently.

We use the definition of an imprecise terrain 7 as presented by Driemel et al. An imprecise ter-
rain is defined as a graph G = (V, E), where each vertex v € V has a third property, which represents
its imprecise elevation. The bounds of this elevation are denoted by low(v) and high(v). A realiza-
tion R of 7 consists of graph G together with an assignment of elevations to the vertices Vg, where
the assigned elevation elevg(v) is at least low(v) and at most high(v). The edge set Ep is the set
of edges E mapped to the vertices with the assigned elevations. We will use the notation of R~ for
the realization where all vertices are assigned the lowest elevation; i.e. such that elevg- (v) = low(v)
for every vertex v. Similarly, R* represents the realization such that for every vertex v it holds that
elevg+(v) = high(v). The set of all realizations of an imprecise terrain 7 is denoted with R

Note that Driemel et al. base their definitions and proofs on the Single Flow Direction
model, as explained in Subsection [2.3] Further on in this report, we will extend this approach with
the Multiple Flow Direction model.

2.2.2 Slope-bounded model

Next to the elevation-bounded model, we will discuss the slope-bounded model. The slope of two
points is defined here as the ratio of the vertical distance divided by the horizontal distance; for a
model where all edges have the same distance, the slope is simply denoted by the elevation difference
between the two points.

As opposed to the first model where points have elevation bounds, in the slope-bounded model,
or slope model, the edges are given bounds on their slopes - the slope range [low(e), high(e)]. In
this model, the elevation of a vertex is relative to the elevation of its neighbour, and we can only re-
trieve information about the difference in elevation between two vertices instead of exact elevation
details. The slope range slopeRange(e) of an edge e € E, e = (v, 2), gives a bound on the possibil-

http://geekanddad.wordpress.com/category/games/

2.3. MODELLING FLOW

ities of the elevation difference between vertices v; and v, the slope slope(e). For example, for an
edge with length one, we may have slopeRange(e) = [0,2] and slope(e) € [0,2]. In that case, assum-
ing that the elevation of v; is denoted by elv(v;) we know that v, has a possible elevation range of
[elv(vy), elv(vy) +2].

Also for this model, we give a definition of an imprecise terrain 7. An imprecise terrain is defined
asagraph G = (V,E), where each edge e € E has a third property, which represents its imprecise slope.
The bounds of this slope are denoted by low(e) and high(e). A realization R of T consists of graph
G with edges Eg with an assignment of slopes to the edges, where the assigned slope slopey(e) is at
least low(e) and at most high(e) and there exists an assignment of elevation values to the vertices
in V such that all selected slopes indeed obey the slope ranges. The set Vy is the set of vertices E
mapped to the edges with the assigned slopes. The set of all realizations of an imprecise terrain 7 is
denoted with ‘R.

Note that the slope of an edge is directed, that is, slope((u, v)) = —slope((v, u)) and the elevation
of avertex can be described by elv(v) = elv(u)+slope((u, v)) where slope((u, v)) € [low(v), high(v)].
As aresult, after choosing a slope for a certain edge, the valid slope ranges (the range for which there
still exists a realization of the model) of other edges in the graph may be effected, as in the example in
Figure When selecting a slope 0 for edge (a, b), the slope ranges of the other two edges stay the
same as depicted in the Figure. However, when selecting a slope 1 for this edge, the only possibility for
the remaining edges, is to select a slope of 0 for edge (b, ¢) and a slope of -1 for edge (¢, a), otherwise
arealization does not exist.

[0,1]

[_130]

Figure 2.5: Example of a slope-bounded model in an equidistant grid. Selecting a slope for one edge,
influences the possible slope values for other edges.

2.3 Modelling flow

When modelling the flow of water, one could choose several types of flow algorithms to determine the
flow direction and flow amount of water leaving a certain point [GP08]. We choose either the Single
Flow Direction (SFD), the so-called D8 method, or the Multiple Flow Direction (MFD) model. In the
first model, the water always flows to the steepest descent neighbour of that point. In the second
model, the water is divided over a subset of the neighbours that have a lower elevation than the point
itself. However, there exist a large number of definitions of this division. The most commonly used
methods are the FD8 method and the D-co method. In the first method, water flows to all lower
neighbours with a percentage based on the slope of each neighbour. The second algorithm only
allows water to flow to at most two neighbours, but here, too, the amount of water is based on the
slope of the neighbour points. In the calculations of the watershed algorithms as described in the
next section, it is also possible that water flows to a neighbouring point with the same elevation as
the current point. In the case of the SFD method this is only possible when there are no other points
with a lower elevation. In the case of MFD, it depends on the exact definition. The MFD method as
we apply it in Section[4.2]also allows water to flow to a neighbour with the same elevation as the point
where water flows from.

CHAPTER 2. PRELIMINARIES

If water from p reaches a node q € Vg then we write p > g (“p flows to g in R”), and for technical
reasons we define p » p for all p and R. We use 7 to describe a flow path in the graph G of an impre-
cise terrain 7. That is a path with no repeated vertices, which carries water to a local minimum in a
realization R and visits all vertices of this local minimum in that specific realization. Given a path x
and any pair of points p,q in m, the order of p and g in 7 is determined by the order in which water
flows from one point to another; p — g if p > g. For any pair of nodes p, g in 7, we also write p — g
if p » g, that is, 7 contains p and q in this order. We denote with 7[p, q] the subpath of 7 from p to
¢, including these two nodes. For a set S of realizations (S € Ry), I1(S) represents the set of all flow
paths in any realization in S.

2.4 Watersheds

In a realization R, where for each node an elevation value is assigned, the watershed of a node ¢ is
defined as the union of nodes that flow to g in R. We can also write this as Wgr(q) := {p: p > q}. The
discrete watershed of a set of nodes Q is now defined as Wg(Q) := Ugeq Wr(9).

Unfortunately, given an imprecise terrain 7, we can not simply calculate the discrete watershed
of anode (or set of nodes) due to the fact that the elevation values are now ranges of values instead of
one single value. Therefore, Driemel et al. introduced the notion of potential watersheds, Q-avoiding
potential watersheds, core watersheds and persistent watersheds. We will give a brief introduction to
these four types of watersheds here, for the complete explanation we refer to Driemel et al. [DHLS11].

The potential watershed of a set of nodes Q in a terrain 7 is defined as

Wu(Q)= U Wr(Q),

RERT

which is the set of nodes such that there exists a flow path in the set of all possible realizations such
that water leaving p will eventually also enter node g € Q on that flow path. The easiest way to think
of this potential watershed is by taking the union of the nodes on possible flow paths to Q for the
different realizations, which results in the definition given here. We will write W ,(g) to denote the
potential watershed of a single node g, slightly abusing the notation. Besides the union of all possible
watersheds of a set Q for every realization R, we can describe the potential watershed by looking at
the possible flow paths and the nodes contained in them:

Wu(Q)={p:3Inecll(R7),m3p3qeQ:pyq}.

The potential watershed of Q is also called the maximal watershed, since it represents the largest
set of nodes for which water could possibly flow to a node in Q in any of the realizations in R [DHLS11].
The analogous definition to this yields the set of nodes p from which water flows to Q via any induced
flow path that contains p, and is given by

Wn(Q)={p:Vrnell(Rr),m3p3qeQ:pq}.

We call this the core watershed of Q. However, as explained by Driemel et al., this definition is a bit
too restrictive. In the case of overlapping elevation ranges of neighbouring nodes, each node could
become a local minimum in some realization, so that water from that node will not reach Q, while
it is clear that water from these nodes will eventually end up in a node of Q. A definition that takes
these situations into account, is the definition of the Q-avoiding potential watershed of a set nodes
S:

W)= U Ulp:(pps)alalpslnQ=g},

HEH(RT) seS

2.4. WATERSHEDS

which represents the set of nodes that have a potential flow path to a node s € S that does not pass
through a node of Q before reaching s. Nodes that flow to a node in Q in at least one realization
and which get stuck in a local minimum inside the potential watershed of Q in all other realizations,
will therefore not appear in the Q-avoiding potential watershed of S, if S lies outside W (Q). So the
nodes that do appear in Q-avoiding potential watershed of S are the nodes that are able to leave the
potential watershed in some realization and can thus escape from flowing to Q.

Last, but not least, we define the persistent watershed of set nodes Q, also referred to as the min-
imal watershed, which is a subset of the nodes in the potential watershed of Q. In words, a persistent
watershed of Q is the set of nodes that occur within the potential watershed of the set Q, for which
the only escape from flowing to a node in Q is ending up in a local minimum within this potential
watershed for any possible realization. Or, as Driemel et al. describe it, the set of nodes that cannot
have a high enough elevation such that the water from those nodes could escape from the potential
watershed of Q. The formal definition can be written as

Cc
Wa(Q)=(M(Mu(@)9)
and it can be shown that W, (Q) € W (Q). In this report, we only use the definition of a Q-avoiding
potential watershed of a set S to find the persistent watershed of Q. That means that we assume
that every set S when writing about the Q-avoiding potential watershed of S, does not contain any
point from the potential watershed of Q. Furthermore, slightly abusing the notation, the shorthand
notation ‘Q-avoiding potential watershed’ refers to the Q-avoiding potential watershed of the com-
plement of the potential watershed of Q.

Given these definitions, the authors of [DHLS11] also propose an algorithm for calculating the

potential watershed of a set of nodes, the POTENTIALWS(Q) algorithm.

Algorithm POTENTIALWS(Q)

1. Forall g € Q: Enqueue (g, z) with key z = low(q)

2. while the Queue is not empty

3 do (¢’,z") = DequeueMin()

4. if ¢’ is not already in the output set

5 then Output g’ with elevation z’

6 Enqueue each (p, z) € ExPAND(q’, 2')

The ExpAND(q’, z") algorithm calculates for each neighbour p of g’ whether there exists a real-
ization R such that water flows from p to g’, where g’ has elevation z’ or higher in R, and returns p
together with the minimum elevation for which such a realization R exists. We will use the steps in
this algorithm later on in this report to simplify the algorithm in the case of equidistant graphs, where
the length of all edges are equal, and we will extend the algorithm for the MFD situation. However,
for the details of this EXPAND(q’, z") algorithm, we refer to [DHLSTI].

For completeness, we also give the pseudocode of the algorithms that calculate the Q-avoiding
potential watershed of a set S, Q-AvOIDINGPOTWS(S, Q), and the persistent watershed of a set Q,
PERSISTENTWS(Q), as described above.

CHAPTER 2. PRELIMINARIES

Algorithm Q-AvOIDINGPOTWS(S, Q)
For all s € S: Enqueue (s, z) with key z = low(s)
while the Queue is not empty
do (s',z") = DequeueMin()
if s’ is not already in the output set As’ ¢ Q
then Output s’ with elevation z’
Enqueue each (p, z) € EXPAND(s’, 2’)

SRR

Algorithm PERSISTENTWS(Q)

1. P« POTENTIALWS(Q)

2. A< Q-AVOIDINGPOTWS(P¢, Q)
3. Output A°

2.5 Expanding a node in an equidistant grid

For the SFD method, the water flow depends on which point is the steepest descent neighbour.
Driemel et al. [DHLS11] uses a slope diagram for the EXPAND algorithm to determine in which cases
a point can be the steepest descent neighbour. For the exact definition of the slope diagram as we use
it, we refer to the definition as defined by Driemel et al. Each neighbour point g; of p has a distance
§; to p in the (x, y)-projection and a highest possible elevation value high(g;). These two values are
used as the coordinates for the point §; in the slope diagram. We are interested in the subset of neigh-
bours g1, g2, ... that appear in counter-clockwise order along the boundary of the convex hull of the
slope diagram, starting from the left most point and continuing to the lowest point. The neighbours
that do not lie on this lower left chain are ignored, since these points have no potential for being the
steepest descent neighbour. The halfplane in the slope diagram that lies above the line through §;
and g is denoted by H;. U(p) is the intersection of the halfplanes H;, Hy, ..., the halfplane right of
the vertical line through the left most point and the halfplane above the horizontal line through the
bottommost point of the convex chain.

One important observation in the case of an equidistant model, is that a slope diagram of a point
p, called for in the EXPAND function in line [6} can be described by a single neighbour point. To
be more precise, exactly that neighbour point with the minimal maximal elevation of all neighbour
points of p. The slope diagram of a point p exists of all neighbours g € N(p), where each g is placed
in the diagram at coordinate (x, y), where x equals the distance between node ¢ and p projected on
the xy-plane and y is the high(q) value. By definition, in an equidistant grid, all neighbours g of p
have the same distance 6 to p. That means that they all have x-coordinate ¢ in the slope diagram.

U(p) is in this case defined by the lowest y-coordinate of all neighbours of p. Since the y-
coordinate is given by the high(q) values, we are searching for the neighbour with minimal high(q)
value (see Figure 2.6/ for an example). We will use this fact and refer to this node(s) as ggjopepoint(p)
and we will call the according minimal high(q) value sdValue(p), which represents the maximal el-
evation for which a neighbour can win the steepest-neighbour contest. A point p is now always re-
turned by the EXPAND function if the expanded point g’ can win the steepest-neighbour contest from
siopepoint(p)> and will never be returned if the expanded z’-value of g’ is higher than sdValue(p).
This property is used in the proof given in Chapter[3} We can write the expand function for an equidis-
tant grid as given below.

10

2.5. EXPANDING A NODE IN AN EQUIDISTANT GRID

Algorithm EXPANDEQ(q, z)
1. S$+<o
2. for all neighbours p e N(q)
3 do if high(p) > z A sdValue(p) > z
4, then e < max(z, low(p))
5 S<Su(pe)
6. returnS
§
-
= I
|
°
g U(p)
:
. hich | o
,Din (high(g)) °
(‘5 distan:e to p

Figure 2.6: Example of a slope diagram in an equidistant grid

11

CHAPTER 3

Disconnected Persistent Watersheds

As noted in Appendix B in Driemel et al. [DHLS11], there exist terrains with disconnected persistent
watersheds for certain points in that terrain. In this chapter, we will explain why this example of a
disconnected persistent watershed exists and show that we can also find an example for equidistant
grids.

We will first explain the cause of the disconnection in the example of Appendix B of [DHLS11].
The example given in the paper can be found in Figure[3.1] In Figure[3.2} the slope diagram of node d
is drawn.

c [4,4] high(a:)

PR
2 N

1 2 3 d;

Figure 3.1: Example of a disconnected persistent Figure 3.2: Slope diagram of node p of the ex-
watershed on a regular terrain ample in Figure

In this example, the persistent watershed of node e is the set {c, e}, two vertices that are discon-
nected in the given graph. The reason that these two vertices are disconnected can be traced when
walking through the steps of the watershed definitions by Driemel et al. [DHLS11]. The persistent
watershed of e is given by

—(w\e ¢

Wae) = (W (Wu(e)9)) -
That means that the e-avoiding potential watershed of the elements that are not in the potential wa-
tershed of e, contains all points except for e and c¢. To be more precise, this set must contain d and
not ¢ and e to disconnect the two nodes in the persistent watershed. The reason why d is in the
potential watershed of e, is because there is a setting such that water can flow from d to e (when

12

elevg(d) > elevg(e)). Also for c there is a possibility to flow to e. However, apparently, there is no
setting possible for node ¢ such that water (if leaving c) does not arrive in e, while for node d there
must be such a setting possible. The reason that this is the case can be traced back to the shape of
the slope diagram of d. Because d has a neighbour that is further away from d than both b and c,
the slope diagram gives a minimum elevation of z; (see Figure for which b can be the steepest
descent neighbour of d. This elevation however, is higher than the possible elevation of c. Therefore,
itis possible for water from d to leave the potential watershed of e, whereas it is not possible for water
from c to do so.
Now, we will take a look at the case of an equidistant grid.

Given an equidistant terrain 7 and a point g, we want to show that the persistent watershed of ¢q
in 7 can be disconnected. In that case, we have a persistent watershed of at least two components,
S1 and S;. We assume w.l.o.g. g € S;, and we take a point p € S, for which there exists at least one
realization R, with a flow path such that water leaves p by flowing to a neighbour r € (W (q)\S2).
This point r is in the potential watershed but not in the persistent watershed of g and is also part of
a flow path in G connecting p and ¢q in at least one other realization R;, € R (by definition of the
potential watershed). It is trivial to see that there is at least one such a pair (p, r).

l:l Potential watershed of ¢
l:l Persistent watershed of ¢

---+ Possible flow path

Figure 3.3: Sketch of the situation used to prove that there exist disconnected persistent watersheds
in equidistant grids.

By definition of a persistent watershed, Wn(q) = (W&f (WU(q))c))c, we know that r is part of
the g-avoiding potential watershed of the complement of the potential watershed of g. Therefore,
there must exist a flow path in at least one realization R, € R for which water flows from r to a point
s in the set of points (W (q))°. Note that R, # R and R, # R, otherwise water could flow from p
to r and from r to s, thus creating a flow from p to s; given that p is in the persistent (and not in the
g-avoiding potential watershed) watershed of g, there can be no such realization. Note that for each
realization for which water flows from r outside the potential watershed, the elevation of r has such
avalue that r can never be the steepest descent neighbour of p. The situation is sketched in Figure[3.3}

For each point g in the terrain 7, we are given a minimum elevation of low(g) and a maximum el-
evation of high(g). Furthermore, sdValue(g) gives the value of the minimal maximal high(g’) values
of all g’ € N(g). There are only two possibilities for how r is added to the g-avoiding potential wa-
tershed when computing this watershed using the algorithm as described in Driemel et al. [DHLS11].
We denote with n(r) the first neighbour of r that caused r to be enqueued with the lowest enqueued
elevation, and we use elev(n(r)) to denote this elevation with which the expand step for n(r) was
executed.

* A point r is enqueued with elevation greater than high(p) and is therefore added to the po-
tential watershed. If this would be the case, we have max (elev(n(r)),low(r)) > high(p), as

13

CHAPTER 3. DISCONNECTED PERSISTENT WATERSHEDS

calculated in line [4|in Algorithm [I} Since there exists a realization (R,;) for which water flows
from p to r, we know that low(r) < high(p) and thus it must be that elev(n(r)) > high(p).
However, we know that sdValue(r) < high(p), and thus when n(r) is expanded with elevation
greater than high(p), n(r) can never be r’s steepest descent neighbour. Therefore, point r can
never be enqueued with elevation greater than high(p) in this g-avoiding potential watershed,
leading to a contradiction. That means that this point r can not be in the g-avoiding potential
watershed and thus this situation does not apply for the point r we are looking for.

* Apoint r is enqueued with elevation smaller or equal to high(p).
Given that water can not flow from p to r in the g-avoiding realizations, r must be enqueued
with an elevation value, denoted as elev(r), greater than sdValue(p). So we get sdValue(p) <
elev(r) < high(p). As presented in Figure such a setting is indeed possible and therefore,
also in equidistant grids the persistent watershed of a point can be disconnected.

Figure 3.4: Example of a disconnected watershed in an equidistant terrain, with equal imprecise
ranges.

In Figure node s is ‘guarded’ by two nodes. Water can only flow to s if the elevation of the
nodes connected to these guarding nodes is larger than or equal to the lowest elevation of the guard-
ing nodes. The lowest possible elevation is 9. However, in that case node ¢ on the last row with a
range of [1,8] makes sure that water of its two neighbours flows to ¢ itself, since it will be the steepest
descent neighbour with a maximum elevation of 8. For the nodes that have no dark blue border, real-
izations are possible where each node has at least an elevation of 9 and water can flow to s. Therefore,
these nodes do not lie in the persistent watershed of g, causing the persistent watershed of g being
disconnected. Note that in this example all boundaries of the ranges consist of different values, such
that the case of flow to a neighbour with the same elevation does not cause the model to disconnect
the persistent watershed.

14

CHAPTER 4

Watersheds in the MFD Model

The definitions and algorithms for computing watersheds by Driemel et al. [DHLS11] are based on
the SFD (Single Flow Direction) approach.This chapter extends the watershed definitions and accom-
panied algorithms by Driemel et al. to the case of the MFD (Multiple Flow Direction) model. We will
show that with some non-trivial adaptations the same algorithms can be used to calculate the defined
watersheds for the MFD approach. Note that the in this chapter proposed definitions and algorithms
are designed for all network models.

4.1 New watershed definitions

The difference between SFD and MFD is that in the first model, water only flows from a point p to the
steepest descent neighbours, whereas in the second model water flows to all neighbours who do not
lie higher than p itself. That means we have to adapt the definitions for the watersheds as given in
Chapter[2]

For the MFD method the watershed of a point g in a realization R is defined, equal to the SFD
method, as the union of nodes that flow to g in R, that is

Wr(q):={p:ppdq}

MFD

Similarly, we define the discrete watershed of a set of nodes Q in this realization as Wg(Q) := U Wr(q).
MFD qeQ MFD
4.1.1 Potential watersheds

The definition of the potential watershed of a set of points Q, is equivalent for both flow methods:
Wu(Q)= U Wr(Q).
MFD ReR 7 MFD

This is the set of points for which there exists a flow path to a node in Q. In Section|4.2.1, we see that
the algorithm for the potential watershed in the SFD model only needs a minor adaptation to find the
potential watershed for the MFD model.

15

CHAPTER 4. WATERSHEDS IN THE MFD MODEL

4.1.2 (Q-avoiding potential watersheds

The second definition we have to consider is the definition of the Q-avoiding potential watershed of
a set S, which needs a little more attention. Since we only use the Q-avoiding potential watershed to
find the persistent watershed of Q, we assume, as we did for the SFD method, that also for the MFD
method the set S is the complement of the potential watershed of Q. Driemel et al. define the Q-
avoiding potential watershed of S as the set of points that can escape from flowing to a point in Q by
leaving the potential watershed of Q. In this definition, a point p is able to escape from (the potential
watershed of) Q when there exists at least one realization where each flow path in which p occurs,
flows to a point s € S without visiting a point g € Q. Local minima, that can not escape the potential
watershed of Q, but which do not always flow to a point in Q, are considered not to be part of the
Q-avoiding potential watershed. Although this definition seems a little off in some situations, as we
saw in the previous chapter with the disconnected persistent watersheds, we will first give a definition
that is based on this definition by Driemel et al., followed by a definition of the persistent watershed.
In Section [4.2.3} we will give a second definition of the Q-avoiding potential watershed as we would
propose it and explain how the algorithms are affected by this new definition.

One important observation for the case of the MFD flow method, is that a point p in a realiza-
tion R can be contained in multiple flow paths. That means we cannot use the original definition of
Q-avoiding potential watersheds by Driemel et al., which considers each flow path separately. This
would enable the possibility of including points that have a possible flow to a point in S, while still
flowing to a point in Q in another flow path of the same realization. We only want to include those
points p that can escape the potential watershed without leaving any water behind in the potential
watershed. That means we are looking for points p for which there exists a realization for which all
flow paths in which p occurs, will escape the potential watershed by flowing to any of the points s € S,
without entering a point g € Q. Flow paths ending up in a local minimum in the potential water-
shed that do not directly lead to a point in Q are considered as not to be Q-avoiding, according to the
definition by Driemel et al.

Let us introduce the notion of R (), which represents the set of realizations for which flow path
7 exists. We can now define the Q-avoiding potential watershed in the MFD setting:

WL\JQ(S)z U {p:Vrel(R), n5p3seSVYqgeQ: psaq¢[ps]}
MFD ReR T

Note that the above definition does not hold when S contains points from inside the potential
watershed of Q.

4.1.3 Persistent watersheds

Using the new definition for the Q-avoiding potential watershed, we can reuse the definition of the
persistent watershed for the SFD method:

c

WQF((WU(@)C)) ,

MFD MFD

Wn(Q) ==(

MFD

which is the set of nodes that have at least one realization for which a flow path exists to a point g € Q,
and for which in all other realizations the water can not leave the potential watershed of Q .

4.2 Watershed algorithms for the MFD method

Based on these new definitions, we are able to construct algorithms that compute the three types of
watersheds for us. The potential watershed computation is done in a similar fashion as described

16

4.2. WATERSHED ALGORITHMS FOR THE MFD METHOD

by Driemel et al., using a different algorithm for the EXPAND function, and is described first. We
continue with the algorithm for computing the Q-avoiding potential watershed, where more work
was needed to obtain the correct results. The algorithm for computing persistent watersheds is a
simple combination of the previous two algorithms and is presented as well. We conclude this section
with a short evaluation of the existing definitions.

4.2.1 Potential watersheds

The algorithm that computes the potential watershed of a set Q in the SFD setting, can be adapted
to the MFD setting by relaxing the constraints of the steepest-neighbour setting. In the algorithms
described by Driemel et al., a slope diagram for point p is used to determine whether a point g’
can be the steepest descent neighbour of p. In the case of the MFD model, we need to determine
whether there is a realization possible such that g’ has a slope < 0 with point p. Therefore, instead of
constructing the slope diagram with all high(q) values, we only need to verify whether p can be set
to an elevation greater or equal to the elevation z’ that g’ was enqueued with. If it is possible to set
the elevation of a neighbour p to an elevation higher or equal than z’, enqueue p with the minimal
elevation such that this requirement holds.

The algorithm for the potential watershed of a set Q does not need any other changes, only the
expand function is adapted. This results in the algorithms as described by POTENTIALWSMFD and
EXPANDMFD.

Algorithm POTENTIALWSMED(Q)

1. Forall g € Q: Enqueue (g, z) with key z = low(q)

2. while the Queue is not empty

3 do (¢',z") = DequeueMin()

4. if g’ is not already in the output set

5 then Output g’ with elevation z’

6 Enqueue each (p, z) € EXPANDMFD(q’,z")

Algorithm EXPANDMFD(q, z)

1. S<o

2. for all neighbours p e N(q)

3 doif high(p) >z

4. then e < max(z, low(p))
5 S<Su(p,e)

6

return S

The POTENTIALWSMEFD algorithm computes the points and minimal elevation of those points
for which a flow path exists to (at least) one of the points in Q. The proof for the correctness of the
algorithm for computing the potential watershed of a set Q given by Driemel et al. [DHLS11] still
applies, since all points are enqueued with their minimal elevation such that there exists a flow path
from p to g in at least one of the possible realizations.

4.2.2 (Q-Avoiding potential watersheds

We can calculate the set of points that have a flow path leaving the potential watershed of Q, with-
out visiting any of the vertices of Q on the escape route, by using the algorithm for calculating the
Q-avoiding potential watershed for the SFD method, with the EXPANDMFD algorithm. This combi-
nation is captured in the Q-AvOIDINGPOTWSMFDA algorithm. This algorithm calculates the points
that have a flow path leaving the potential watershed while not visiting a point in Q. In the case of

17

CHAPTER 4. WATERSHEDS IN THE MFD MODEL

MFD, however, multiple flow paths can leave a certain point. That means that for another flow path in
the same realization, it is still possible that water visits a point in Q or gets stuck in the potential wa-
tershed. Therefore, this algorithm does not compute the Q-avoiding potential watershed, but returns
a superset of the actual Q-avoiding potential watershed.

Algorithm Q-AvOIDINGPOTWSMFDA(S, Q)
For all s € S: Enqueue (s, z) with key z = low(q)
while the Queue is not empty
do (s',z") = DequeueMin()
if s’ is not already in the output set As’ ¢ Q
then Output s’ with elevation z’
Enqueue each (p, z) € EXPANDMEFD(s’, z’)

SRR

One would think that points that are output with a lower elevation compared to the potential
watershed output belong to the Q-avoiding potential watershed; If they can leave the potential wa-
tershed by a flow path with a lower height than the minimal flow height to a point in Q in the potential
watershed, we know that there exists a realization for which water from this node will never end up in
Q - trivially, since the points in the potential watershed had minimal elevation for which a flow path
existed to a point in Q. However, it is possible that these flow paths divide into multiple flow paths
and one of these flow paths ends up in a local minimum within the potential watershed. By definition,
the points for which this holds do not belong to the Q-avoiding potential watershed. Let us denote
the set of points that have no flow path 7 € I1(R7) leaving the potential watershed by Q’. These are
the points in the potential watershed minus the points calculated by the Q-AvOIDINGPOTWSMFDA
algorithm. For our final Q-avoiding potential watershed, we do not only need to look at flow paths
ending up in Q, but to flow paths ending up in Q’.

Another observation in the case of MFD is that enqueueing a point p at its highest elevation mini-
mizes the number of possible flow paths towards p (flowing to or visiting p on its path); one could see
this as a blocking mechanism to prevent flow paths to pass this point. This observation is the basis of
our actual computation. We use this to calculate the so-called peak avoid watershed of a set Q' and a
set Q4, where eg/‘ represents the enqueued elevation for which p was added to Q4 and Q' is defined

as Wy(Q)\Qa:

Pa(Qa)={q":q'€Q"}
U{p!pEQA A E|7z+el'I(R;’_) A G'eQ' A p'eN(p) * (p; p,) A (p,; ql) A (eSA(p) 2 high(p’))}.

This set contains all points that cannot escape the potential watershed based on the enqueued eleva-
tion with which they were added to Q 4, a set containing potential Q-avoiding candidates.

The pseudo-code is given by the PEAKAVOIDMFDWS algorithm. The set Q4 represents the set of
points with a flow path to outside the potential watershed. The set Q' is defined as W(Q)\Qa, and
contains only (maybe not all) points that can not leave the potential watershed without leaving water
behind, since the points in W (Q)\Qa cannot leave W (Q)at all, except in a realization in which
also a flow path to a point g € Q exists — by definition of Q4. The algorithm enqueues all points
in Q' at their highest elevation and adds these points to the peak persistent watershed, after which
it expands the flow search. We know, since Q4 is an upper bound on the points that can leave the
potential watershed, that for a point in Q’, water will always stay in the potential watershed or flow
via a point in Q before leaving the potential watershed. Therefore, we can enqueue these nodes at
highest elevation, without influencing the flow from Q' to outside the watershed, while blocking as
much flow to Q' as possible — one can not enqueue any point of Q’ at a higher elevation. We have a
set of enqueued points p with enqueued elevation e, forming the peak persistent watershed so far,
and we expand the search for a neighbour n(p) € Q4 based on the following condition:

18

4.2. WATERSHED ALGORITHMS FOR THE MFD METHOD

e If n(p) € Qan egg‘p) > e, water from n(p) is never able to escape from Q' when it wants to

leave the potential watershed, since p (and all other points on the flow path to a point g € Q")
is enqueued at its highest elevation and n(p) has to be set at a higher elevation to be able to
leave the potential watershed, which means that water will flow to Q’ after all. Therefore, we
can enqueue n(p) at the highest elevation to block as much flow to Q” as possible.

Note that a point n(p) € Q4 with er??p) < ep is not added to the peak avoid watershed, since it still

has an opportunity to leave the potential watershed without leaving water behind. We do not have to
check explicitly whether we add points from outside the potential watershed to the peak avoid wa-
tershed; if there would be a flow possible to a point in Q, these points would belong the the potential
watershed as well, and since all points in Q’\Q are enqueued at their highest elevation, we also know
that there will be no flow to one of these points as well — they were enqueued with a height smaller
equal to their maximal height and did not enable flow from points outside the potential watershed
then, therefore not enabling this flow now either.

Algorithm PEAKAVOIDMFDWS(Q’, Q)

1. Forall g€ Q’: Enqueue (g, z) with key z = high(q)

2. while the Queue is not empty

3 do (¢',z") = DequeueMin()

4. if ' is not already in the output set

5 then Output g’ with elevation z’

6 Enqueue each (p, z) € EXPANDHIGHAVOIDMFD(q’,z’,Q4)

Algorithm EXPANDHIGHAVOIDMED(q, 2, Q4)

1. S<o

2. for all neighbours p e N(q)

3. doif-((p,e)eQane<z)

4. then S < Su (p, high(p))
5. return$

The algorithm for calculating the Q-avoiding potential watershed of a set of points S is given by
the Q-AvOIDINGPOTWSMEFDB algorithm. We start with the set Q 49, the potential Q-avoiding poten-
tial watershed as calculated by the Q-AvOIDINGPOTWSMFDA algorithm — the superset of Q-avoiding
potential watershed candidates, and Q’, as defined above. We iteratively strip the set Q 49 by remov-
ing nodes that will end up in Q’ after all. We start by calculating the peak avoid watershed of Q and
Qa0- We now have a set of points P4 for which water will flow to Q or partly ends up in the poten-
tial watershed when trying to leave the potential watershed. We fix the elevations of these points at
their highest possible elevation and recalculate the set of potential Q-avoiding candidates Q(;1)-
With this new set Q4(;,1) we again calculate the peak avoid watershed, but now for P\Q A(i+1)- The
above process (enqueue at highest elevation, check whether still escape possible) repeats itself until
Qax = Qa(x+1)- Using this repetition, we filter all flow paths that will lead to a local minimum within
the potential watershed or flow paths that will visit a point in Q. The points that eventually end up in
Q4 represents the set of points of the final Q-avoiding potential watershed. These points are able to
leave the potential watershed without leaving water behind in the potential watershed.

In set notation, the algorithm computes the following sets. We start with the set containing all
points with a possible escape to outside the potential watershed:

QAO(S’ Q) = {p:zlnel'[(’RT) A seS VDIGQ : _'(pﬂ_) q) A (pn_) S)}

Note that this definition assumes that S does not contain any node from the potential watershed of
Q, which is the case in the computations for which we use this definition.

19

CHAPTER 4. WATERSHEDS IN THE MFD MODEL

Algorithm Q-AvOIDINGPOTWSMEFDB(S, Q,P)

i< 0;

Qi < Q-AVOIDINGPOTWSMFDA(S, Q)

P 4; < PEAKAVOIDMFDWS (P\Qa;, Qa;)

repeat For all (p, e) € P,;: Update (temporarily) low(p) < e
i<i+1
Qai < Q-AVOIDINGPOTWSMFDA(S, Py (1))
P; < PEAKAVOIDMFDWS (P\Qa;, Qa;)

until Q4; == Q4(;-1)

For all (p, e) € Q,;: Output p with elevation e

© NN -

Next, we calculate each iteration i the peak avoid watershed regarding the set Q,;, starting with
Qa0 which is defined. Let us denote the set W,(Q)\Qa; by Q; . Note, that by definition p > p. The
peak avoid watershed of an iteration i can now be rewritten to:

P4i(Qai)={q":q" € Q}}
U {p :p€Qai A E|7r+el'[(R;) A q'€Q} A p’eN(p) : (pn_: p/) A (p,n_i C]/) A (egm > high(p,))}.

This gives us the points p that can not escape from flowing to a point in Q; with their potential wa-
tershed escape elevation e,; (p) when all points on the flow path are set to their maximum elevation.
The definition of the sets Qg4;, i >0, can now be given by:

Qui(SPagi—1y) ={P: Jneni(rr) r ses Vaersany : ~(P @) A (P> 5)}.

When Qax = Q4(x+1), the points for which a realization exists in which they can escape from the
potential watershed, without occuring in any flow path that ends in the potential watershed or visits
a point in Q, the Q-avoiding potential watershed, can be described by the set Q 4.

There are three ingredients of the Q-avoiding potential watershed algorithm that we need to prove
correctness of:

1. The Q ; sets are actual supersets of the Q-avoiding potential watershed.

2. The points in the peak avoid watershed can be set to their highest elevation for new calcula-
tions, while still computing the correct Q-avoiding potential watershed.

3. Atthe moment that Qax = Q(x+1), We have found our Q-avoiding potential watershed, Qax.

Let us start with the second ingredient, since we use this fact when calculating new Q4;.

Lemma 4.2.1 Points for which in all realizations at least one of the flow paths ends up in Q' can be set
to their highest elevation for new calculations, while still computing the correct Q-avoiding potential
watershed.

Proof We are given that the points computed by the peak avoid watershed algorithm are the points
for which in any realization water will end up in a point in Q'. It is safe to set the low values for these
points p to their high values, for new Q-avoiding calculations, since we know that water will end up
in Q' for these nodes after all and the highest possible elevation for these points blocks as many flow
paths flowing to or visiting p, as possible. Points in the final Q-avoiding potential watershed should
have a realization for which the flow paths to outside the potential watershed do not cross any of the
nodes in this peak avoid watershed, because if they do, water will end up in Q or in a local minimum
and the point should not be in the Q-avoiding potential watershed. Therefore, we can safely update
the low values to their high values.

20

4.2. WATERSHED ALGORITHMS FOR THE MFD METHOD

Given that we can enqueue the points in the peak avoid watershed at their highest elevation for
new calculations, we continue with the first ingredient.

Lemma 4.2.2 The Q 4; sets are actual supersets of the Q-avoiding potential watershed.

Proof We will prove this lemma by induction. We know, by definition, that our initial set Q4 is a su-
perset of the actual Q-avoiding potential watershed; this set contains all points that have at least one
flow path leaving the potential watershed. Now, let us assume that the set Q 4; is a superset of the Q-
avoiding potential watershed. Now, we calculate the peak avoid watershed, which returns the set Py;
of points that will have a flow path to a point in Q" =W ;(Q)\Qa; for their enqueued elevation in Q4;
when all points in Q” are set to their highest elevation. By definition, these are the points from which
some flow will always remain in the potential watershed. We enqueue these points at their highest
elevation, before calculating the new set Q,(;;1). The points in Qy; that are no longer possible to
escape had a flow path via a point that was added to the peak avoid watershed in the last iteration
and is now set to its highest elevation, since otherwise the flow path would still be possible. By defi-
nition, this point would visit a point that does not belong to the Q-avoiding potential watershed, and
therefore this point also does not belong to the Q-avoiding potential watershed. For the points that
are still in Q (;41) we know that there still exists a flow path to outside the potential watershed. That
means that the sets Q 4; indeed are supersets of the Q-avoiding potential watershed.

Given the fact that the Q4; sets are supersets, we now need to prove that we indeed find the correct
Q-avoiding potential watershed.

Lemma 4.2.3 After the last iteration of the algorithm, at the moment that Qax = Qs(x+1), we have
found our Q-avoiding potential watershed, Q .

Proof At the moment the algorithm does not add any new point to the peak avoid watershed, we
have found our Q-avoiding potential watershed. The peak avoid watershed checks for the potential
Q-avoiding candidates whether there still exists a flow path to any point in Q’, with all g’ € Q' set to
their highest elevation. If such a flow path still exists, the point for which this is the case is added to
the peak avoid watershed and the algorithm needs another iteration. If there does not exist any such
a flow path, we know that for each of the points p € Q 4, there exists a realization for which water can
escape the potential watershed without leaving any water behind, namely the realization in which all
points in Q' are set to their highest elevation and all point ¢’ to their enqueued elevation as enqueued
in Qay. Exactly for these enqueued elevations the peak avoid watershed is determined and no flow
paths to a pointin Q’ was found. That means that we now have found the set of points that can escape
the potential watershed without leaving any water behind: Q 4y, the Q-avoiding potential watershed.

All together, this gives us that the above algorithm indeed calculates the Q-avoiding potential
watershed as defined.
4.2.3 Persistent watersheds

The complement of the Q-avoiding potential watershed then yields the persistent watershed. The
complete algorithm for calculating the persistent watershed in the MFD setting can then be described
by the algorithm PERSISTENTWSMFD.

4.2.4 Running times

The running times of the POTENTIALWSMED algorithm and the Q-AvOIDINGPOTWSMFDA algorithm
are the same as for the SFD method, O(nlogn). The proof is similar to the proof by Driemel et al.

21

CHAPTER 4. WATERSHEDS IN THE MFD MODEL

Algorithm PERSISTENTWSMFD(Q)

1. P < POTENTIALWSMFD(Q)

2. A< Q-AvOIDINGPOTWSMEFDB(P¢,Q,P)
3. Output A°

[DHLS11]. The same proof can also be applied to the PEAKAVOIDMFDWS algorithm, since the only
difference is that nodes are enqueued at their highest elevation, still leaving the three types of nodes
during the graph search. The bottleneck in the computations is the Q-AvOIDINGPOTWSMFDB algo-
rithm, caused by the repeat-until statement. We know that this loop can only be executed a number
of times of the size of the potential watershed of Q — each iteration at least one point must be added
to the peak avoid watershed, otherwise the Q4 set remains the same. That means that the algorithm
has a worst case running time of O(size(W_),,,,,(Q)) - nlogn) = O(n®logn). For the persistent wa-
tershed, we need to calculate both the potential and the Q-avoiding potential watersheds to find the
set of points of the persistent watershed, by taking the complement of the second set. In total, cal-
culating the persistent watershed with algorithm PERSISTENTWSMFED costs O((nlogn) +(n?logn) +
(nlogn)) = O(n?logn) time.

4.2.5 Evaluation

The above definitions and arguments are based on the definition as proposed by Driemel et al., which
state that points that can not leave the potential watershed without flowing through a point in Q al-
ways belong to the persistent watershed. This definition however, may be a little off in some cases, as
mentioned before. For a local minimum for which all neighbours can leave the potential watershed
without flowing to a pointin Q, it is not always as intuitive that this local minimum belongs to the per-
sistent watershed of Q — as with the disconnected persistent watersheds in the previous chapter for
example. Solely looking at the possible elevation values and realizations, one would indeed be able to
conclude that, if water leaves this local minimum, it would flow to a point in Q. However, in the real-
ization where all neighbours can escape the potential watershed, it is more likely that water collects in
this local minimum and when fully filled, it is also possible to leave the potential watershed by flowing
to one of the neighbours that was already able to leave the potential watershed. To take this situation
into account in the case of the SFD or the MFD method, the definition of the Q-avoiding potential
watershed could be adapted to a set of points that can escape the potential watershed without flow-
ing to Q, together with points that can indirectly escape the potential watershed without flowing to
Q, for example the points for which the neighbour with the minimum elevation can escape from the
potential watershed. One of the adaptations for the Q-avoiding potential watershed algorithm then
involves changing the set Q" for which the PEAKAVOIDMFDWS algorithm is invoked, in such a way,
that it should not contain every point that has no possible flow path outside the potential watershed
of Q. Further research should be done to find out whether this definition and a suitable algorithm
realizing this definition gives the desired results.

All computations in the rest of this report are based on the first definition and the algorithms as
described above.

22

CHAPTER b

NP-hardness in the Slope-Bounded Model

In this chapter, we will show that it is NP-hard to decide for the slope-bounded model whether there
exists a setting such that water could flow from a node s to a node t. We prove NP-hardness for the
slope-bounded model together with the flow model where water will flow to the steepest descent
neighbour of a node, the SFD method. The reduction is from 3-SAT; with a 3-CNF formula as input,
with n variables and m clauses. Based on the formula, we construct a slope-bounded model. We
will first explain the construction method that is used for the proof, then we give the details of the
construction and finally we will prove the correctness. At last, we show that this problem is still NP-
hard in the special model instance of an equidistant grid.

5.1 General idea of the construction

Before we give the proof, let us formulate the decision problem and give a brief description of the
3-SAT method we use to prove the NP-hardness.

Problem: Given a slope-bounded model as defined in Section [2.2.2] does
there exist a realization of this model such that in this realization, water will
flow from a given node s to a given node #?

To prove that this problem is NP-hard, we find a polynomial-time reduction from 3-SAT to the
above problem. If we can find the answer to the above problem in polynomial time, then we can also
find the answer to all 3-SAT problems in polynomial time, which is generally believed to be impossi-
ble. So by giving a valid reduction, we can show that the above problem is at least as hard as the 3-SAT
problem. Given that 3-SAT is NP-complete, showing the reduction gives us that our decision problem
above is NP-hard.

3-SAT is a special instance of the satisfiability problem. In the case of 3-SAT, we are given a for-
mula in conjunctive normal form, where in each of the m clauses three of the n variables appear (for
instance (((x;V-x2V=x3) A (X1 VX2V x4)A...)). The general idea of the NP-hardness construction
is to use the variables and clauses from the 3-CNF formula to create a slope-bounded model, such
that a truth assignment to the variables corresponds to a realization in the slope-bounded model. We
want to prove that if and only if in such a realization water flows from a certain starting vertex s to a
certain target vertex ¢, all clauses in the 3-CNF formula are satisfied. For the realizations that do not
correspond to a truth assignment of the 3-CNF formula, we want that water will never flow from s to ¢.

23

CHAPTER 5. NP-HARDNESS IN THE SLOPE-BOUNDED MODEL

The construction of the slope-bounded model consists of two basic elements: switch and connector
gadgets. Since water will only flow to the steepest descent neighbour, we can create local minima in
the model — where water gets stuck — by making sure that all neighbours have a positive slope with a
certain node, and thus a higher elevation than that node.

Waterfall stairs The final construction of the slope model is based on a number of stairs connected
to each other. Each stair represents one of the m clauses of the formula and each stile one of the n
variables. The stairs and stiles are connected such that the flow of water is influenced based on the
choice of the slopes in the model, which are dependent on the truth value of the variable representing
the stile (see Figure[5.1). The vertices in this Figure are examples of distribution and collection nodes
as explained in the next paragraphs. Each stile has a number of distribution nodes and a number
of collection nodes, to influence the water flow based on the truth assignment of the variable that is
represented by that stile. The edges are the connections between these nodes, which is also explained
in more detail below, and allow water to flow to the following node for certain realizations of the
model. If and only if water can flow down via all m stairs, the 3-CNF formula can be satisfied. The
exact setting and connections are explained in detail in the next subsection. We will first explain the
basic elements of the construction. Since each stile represents the combination of a variable and a
clause, we use the subscripts x; j to denote the k’th number of the variable of type x belonging to the
stile that represents the combination of the i’th variable and the j’th clause.

Figure 5.1: The water flow is influenced based on the slope choices in the model. Sketch of two stairs
and the possible routes of the water flow.

Distribution nodes Since we want to translate an assignment of the 3-CNF formula to a realization
in our slope model, we have to keep track of the result of a clause in one way. To accomplish this, we
use different distribution nodes along the way of a stair case. Each stile has four different distribution
nodes, located on the left of the stile and all on the same height but on a certain distance from each
other. The exact details are discussed in the part where we discuss all the details of the construction.
The four distribution nodes each represent a truth assignment to the variables of the clause we visited
so far. If we have not crossed a variable of the clause yet, water flows through the first distribution
node. After the first variable of the clause has been traversed, water flows either through the first or
the second distribution node, or it stays behind in a local minimum, based on the truth value of this
first variable. After the second variable, water flows through one of the four distribution nodes. One
of the four then represents the truth setting where both values were false. By the information the
distribution nodes give us — which truth assignment it represents — we can influence the flow path
of the s-t flow: when we come across a variable of the clause, the slope value representing the truth

24

5.1. GENERAL IDEA OF THE CONSTRUCTION

value of that variable determines to which collection node - see the next paragraph — the water is
diverted.

Collection nodes To differentiate the realizations that represent truth assignments from the other
realizations, we introduce collection nodes. A distribution node is connected to three collection
nodes, located on the right of the stile on a lower elevation as the distribution node and all three with
a different height compared to each other and on a certain distance from each other. These collection
nodes represent the true, false or confused state of the variable of the current stile in the realization
corresponding to the evaluation of the variable in that clause — the truth assignment, the false assign-
ment and the confused state, when it is not clear which truth value is represented by the realization.
Based on the elevation of the distribution node, water flows to one of the collection nodes. Based on
the collection node where water has arrived, we can decide to which of the four distribution nodes of
the next variable water should be traversed. In this way, we can decide at the stile of the third variable
of a clause whether the assignment of the variables would yield true or not. If not, the flow of water
is halted by creating a local minimum. Otherwise, the slopes (and thus assignment of the variables)
give a valid truth assignment to that clause and water can flow to the next stairs (see Figure[5.2|for a
top view sketch). In this Figure, the stair case is unfolded and the stiles can be described as the larger
rectangles of the two types of rectangles. As mentioned, the distribution nodes are on the left of this
rectangle and the collection nodes are on the right. Water flows via an edge (in the direction of the
arrows) from a distribution node to one of the collection nodes. The way the water flow is influenced
is determined by the connector gadget, as explained below.

X1 i) T3 Iy

=3

flow direction

>

Figure 5.2: The water flow depends on the truth values of the variables (the slopes in the model).
Top view showing the flow paths for the clause (x; vV —x3 V x4) on the stair case with four variables.
Light blue shows when water flows to the false collection nodes, the red edge means that after this the
clause yields false, and thus a local minimum is created. For simplicity, the confused states are left
out.

Switch gadgets A switch gadgets enables a water flow to switch between the connected collection
nodes. A basic switch gadget consists of one incoming node — the distribution node s, three collection
nodes (¢, f and ¢), and at least one helper node £ that is connected to a control edge e. The setting is
sketched in Figure[5.3] When the helper node is set to its highest possible elevation, the water will flow
to the f node. Is it set to its lowest possible elevation, water will flow to the ¢ node. For the settings in
between, water will flow to the ¢ node.

The reason that this is possible is the fact that the three nodes can be placed at fixed distances
with respect to the s node and fixed elevations with respect to the complete model. Furthermore,
the helper node defines the elevation of the s node. Choosing the right values for the distances of
the edges and the fixed elevation of the f,c and ¢ nodes, enables the switch gadget to divert the flow
to the collection node that is the steepest neighbour depending on the elevation of the s node. The

25

CHAPTER 5. NP-HARDNESS IN THE SLOPE-BOUNDED MODEL

switch gadget used in our construction is a slightly adapted one; with four distribution nodes that
are connected to two helper nodes, h;;; and h; 2, with slope 0, making sure they all have the same
elevation in every realization (see Figure[5.4|for a top view). When the variable in the clause is negated,
we switch positions of the f and ¢ collection nodes, such that the flow is diverted based on the correct
truth assignment.

t

Figure 5.3: Basic switch setting

AdA44

1]1 Cij1 fzgl tzg2 Cij2 f7,]2t133 Cij3 f7.]3t7,]4 Cija fz]4

Figure 5.4: Sketch of a switch gadget used to control the flow based on the height of the distribution
nodes.

Connector gadgets To connect two switch gadgets, we use a connector gadget. These are the smaller
rectangles of the two types of rectangles in Figure A connector gadget connects the collection
nodes with the distribution nodes of the next switch gadget, based on certain criteria. Since we have
to do with a 3-CNF formula with the three variables v,,v; and v, (p > g > r), in our construction the
connection is based on the variable for which the switch gadget operates. Since a clause consists of
three variables, we need four different connector gadgets, as presented in Figure Between two
switch gadgets of the same clause, the connector gadget decides which edges are introduced. These
gadgets make sure that the water flow is adapted, based on the variable of the current stile. A con-
nector gadget has four different distribution nodes s; 1, s; 2, $;j3 and s; j4. At the beginning of a stair
case, the water flows in the first distribution node s; ;; of the first stile of the stair case. For each stile
of a variable that is not part of the clause of the current stair case, the connector gadget of Figure[5.5a]
connects the switch gadget of the current stile to the switch gadget of the next stile. This connector
gadget diverts the water to the distribution node with the same number as it arrived on the previous
stile, since the variable has no influence on the result of the clause. That means that water always
flows via the first distribution node s;;; when entering the switch gadget of the first variable v), of
the clause. After the switch gadget of v), the connector gadget shown in Figure is connected.
After the flow is switched, water can only be in one of three collection nodes x;;; (x € {¢, f,c}) con-
nected to the distribution node Spj1- Based on the collection node the water arrives at, the water is

26

5.1. GENERAL IDEA OF THE CONSTRUCTION

diverted to either of the two distribution nodes s(,.1);1 Or $(,41);2 Of the next stile. Here, the first
distribution node s(,,1); represents the state for which the variables until now all are assigned true,
and the second distribution node s(,,), represents the state that of all variables traversed so far,
exactly one variable of the clause was set to false. So, after the first variable is traversed, it is possible
that water flows via the first or the second distribution node. Using the connector gadgets of case (a)
for the variables that are not part of the clause, water arrives in either the first or second distribution
node at variable v,. Therefore, case (c), the connector gadget for the second variable, deals with the
collection nodes connected to distribution nodes one and two. Again, the diversion is based on the
collection node water flowed to. Now, for the next stiles on the stair case, the first distribution node
sij1 (i > q) represents the state for which the variables until now all are assigned true, and the second
distribution node s; j2 (i > q) represents the state that of all variables traversed so far, the first vari-
able of the clause was set to false. The third distribution node s; ;3 (i > q) represents the state that
of all variables traversed so far, the second variable of the clause was set to false. The last and thus
the fourth distribution node s; 4 (i > g) represents the state for which the variables until now all are
assigned false. Again, using the connector gadgets of case (a) for the variables that are not part of the
clause, water arrives in one of the four distribution nodes at variable v,. Now, the connector gadget
as shown in Figure[5.5d|is connected. For the last variable v,, each of the seven assignments making
the clause evaluate to true is diverted to the first distribution node s(,,1);; of the next stile. The col-
lection node that represents the situation where all variables evaluate to false, is changed to a local
minimum, by not connecting it to any distribution node of the next stile.

In this way, we can guide the water down the stairs based on the slope values of the nodes the
water flows through. The slope values, which are directly related to the slope of the control edge,
representing the truth setting of a variable, decide in what collection node the water arrives. The
combination of the collection node water arrived at, whether or not the variable occurs in the clause
of the current stair case and whether or not the variable is negated, decides to which distribution node
of the next stile water is sent. By connecting each collection node to at most one distribution node,
and by making sure the distribution nodes of a next stile have a lower elevation than the collection
nodes of the current stile, water is always sent to the connected distribution node. This distribution
node is the only lower situated neighbour that is connected to the collection node and therefore will
always win the steepest neighbour contest. In this way, a slope bounded model can represent a 3-CNF
formula.

tij1 cij1 fija tij2 cij2 fijo tijz cij3 fij tija Cija fija tij1 cij1 fiju tijo cij2 fijo tijz cij3 fijs tija Cija fija
S(i+1)j1 S(i+1)52 S(i+1)53 S(i+1)j4 S(i+1)51 S(i+1)52 5(i+1)53 S(i+1)j4
(a)Casei+p,q,r (b) Casei=p
tij1 cij1 fij1 tijo Cijo fij2 tijs cijs fij3 tija Cija fija tij1 cij1 fij1 tij2 Cij2 fij2 tijs fij3 tija Cija fija
S(i+1)51 S(i+1)52 S(i+1)53 S(i+1)54 S(i+1)51 S(i+1)52 S(i+1)53 S(i+1)j4
(c)Casei=q (d) Casei=r

Figure 5.5: The four different settings of the connector gadget for a variable v; (1 <=i <= n) for a 3-
CNF formula with the clause variables v, v, and v;. Note that the settings to connect a switch gadget
to the sink of a column are not shown here.

27

CHAPTER 5. NP-HARDNESS IN THE SLOPE-BOUNDED MODEL

5.2 Details of the construction

With the global idea of the construction and the basic elements in mind, we will now give the exact
details of the construction. Note that we can enforce a certain elevation onto some of the points
in the construction by creating a sort of framework with selected slope values. We will use this to
connect the stiles of one variable to each other and to construct the stairs. As already explained, the
construction consists of m stairs with each n stiles.

We want to enforce that the first stile of the (j +1)’th

clause has a lower elevation than the last stile of the j’th
clause (as sketched in Figure [5.6). In that case, the wa- *\—\—‘—|ﬁ
ter flow is always able to proceed to the next stairs. Fur- ——
thermore, we want to place the collection nodes of a dis-
tribution node on a fixed elevation relative to the lowest
elevation of the distribution node, such that the slope cho-
sen for the variable — which on his turn influences the ele-
vation of the distribution node - indeed causes the right

switching behavior as explained above. We use helper
nodes to create the bounding box to enforce these conditions.

Figure 5.6: Water can always flow to the
next clause.

The construction is based on a set of nodes with coordinates, a set of edges between these nodes
and a slope range defined for each of these edges. We will give the relative coordinates of the nodes
within the gadgets, the coordinates of the helper nodes and the settings of the control edges. Then,
we will explain how the gadgets are connected and how the exact coordinates can be obtained, based
on a gadget’s row and column.

We will give the sizes and distances in the xy-plane, and for the edges introduced we will also
define the corresponding slope range. If the slope of an edge only consists of one possible value,
we also call it the slope value of that edge. The top view of the construction is sketched in Figure
The S boxes represent the switch gadgets, the C boxes the connector gadgets and the F boxes
are connector gadgets that are adapted to divert the flow to the next stairs if necessary. The F box
contains the connected gadget that would be selected as described above, with the adaption that all
edges that would connect a collection node to a distribution node S(i+1)jk (ke{1,2,3,4}) of the next
gadget are now replaced by edges connecting to one ‘fake’ distribution node d; that is connected
to the first distribution node of the next stairs s;(;,1);. For the last stile of the last stairs, the ‘fake’
distribution node is t.

Every row of the construction represents a clause of the 3-CNF formula, every column a variable
of the alphabet used by the formula. A row consists of n switch gadgets. If a variable is not contained
in the clause represented by the row, or if the variable occurs non-negated in the clause, the switch
gadget as shown in Figureis placed on the stile. Otherwise, the ¢;jx and f; jx collection nodes are
switched. The switch gadgets have size five by one and are placed with distance one between them
to create the stairs. The connector gadgets only add edges to connect the switch gadgets, so they
introduce no extra nodes.

In Figure[5.9} the edge lengths in the xy-plane between the distribution node and the connected
collection nodes are given, together with the distances in the xy-plane between the collection nodes.
In Figure the slope diagram of one distribution node of a switch gadget is given. Because of
symmetry, we can use the same lengths and distances for each of the four distribution nodes. Based
on the distances as given in Figure we can find values for the elevations of the nodes in the slope
diagram such that the setting indeed diverts the water to the right collection node in the right setting.

Using these values, we can calculate the elevations and slopes for the nodes within a gadget.
Assume node s; ;. has coordinates (x;, ys,[5,6]), where [5,6] means that the node can have an el-
evation between 5 and 6. Now we can define the coordinates of the connected collection nodes;

28

5.2. DETAILS OF THE CONSTRUCTION

Si1 C Sa1 C S.1 C Sn1 F

Sia C S0 C Sia C Sh.2 F

m clauses

SLm C SZ,m C Sz',m C Sn,m F

— L

U1 q1 U2 92 Vi qi Un qn

n variables

Figure 5.7: Sketch of the total construction, viewed from top.

1

57,]1 é’7,]2 ‘51]3 ‘52]4

TAAAA

tz]l Cij1 fljltl_]z Cij2 fl]2tzjd Cij3 fl]dfl_]‘l Cija fL]4

hij2

Z
<>

24

Figure 5.8: Distances in the switch gadget (top view).

tijk = (Xs+1,ys - ?—1,0.1312) and ¢;jr = (xs+1,ys— 24,O 8) and f;jr = (xs+1,¥s5,1). When s;;; has a
height below 5% the flow is directed to flow gate ¢; ;. When the height is in range [5 ,5% =), the flow
is directed to the confused flow gate, ¢; ;. And when the height is higher or equal to 5;—1, the flow is
directed to flow gate f; ji.

The slope ranges between the distribution nodes and collection nodes are:

* For the edge (s;jk, tijk)), the elevation difference is within [-5.8688,—4.8688]. Divided by the
distance of the edge in the xy-plane, £, this gives us a slope range slopeRange((s; k. tijk)) =
[-4.8907,-4.0573].

. For the edge (s;jk, ¢iji)), the elevation difference is within 5.2, -4.2]. Divided by the distance,
24, this yields slopeRange((s; j, ciji)) = [-4.992,-4.032].

* Since the distance for the edge (s;jx, fijx) is one, the slope range is equal to the elevation dif-
ference: slopeRange((s;jx. fijx)) = [-5,—4].

)57

The elevation differences between the collection nodes and the distribution nodes of the next stile
are for edge (#;jk, S(;+1)j1) difference between [-1.1312,-0.1312]. For edge (c;jt, S(j+1);1) in the

29

CHAPTER 5. NP-HARDNESS IN THE SLOPE-BOUNDED MODEL

A
lLigh(s,L-jk)
4
55’
AN
AN
AN
AN
5% x. N
ik tow(sije) ¥ ou N U(sijr)
. .
\
\
6 N\
Ss 5 N
1 \. ijk
4 NCijk
5 AN t“k
0.1312 e
tijk Cijk fijk R
>
3
35
<> L
oy 1 6
24 5

Figure 5.9: Distances in the switch Figure 5.10: Slope diagram of the distribution nodes
gadget for one distribution node. Sijk-

range of [-1.8,-0.8], and for edge (f;jk, S(i+1)j1) Within [-2,-1]. The slope ranges can be calculated
by dividing the elevation difference range by the distance from the collection node to the connected
distribution node in the xy-plane.

We will make sure (using the helper nodes) that each stile has a height of 6 and the top of the
next stile starts at the bottom of the current stile, making sure that these slopes can be obtained. The
slope of the edges (h;j1,5ij1), (Sij1,Sij2), (Sij2,Sij3), (Sij3,Sija) and (s;ja, h;j2) are set to slope value
0, making sure they will be at the same elevation. We will also connect the collection nodes of the
switch gadget in such a way, that the elevations are exactly as explained.

We can now connect multiple switch gadgets to construct the stairs for a clause. Now, we want
to connect the stairs of each clause such that the setting indeed realizes the slope model to prove the
NP-hardness. The stairs of each clause is placed within distance one from the stairs of the next clause
and for each pair helper nodes (1, h;(j,1)2) an edge is added with slope value s = (-6n—1) such
that the stile of the next stairs is placed n stile-heights plus one lower. The situation is sketched in
Figure The helper node of the last clause #;,,; is connected to the variable node v;, the purple
box as sketched in Figure with a control edge as explained earlier. The variable node is placed
distance 1 from the helper node and the control edge (v;, ;1) has slope range [0,1]. In this way, all
stiles of one variable are raised when this control edge is set to a higher slope. The slope of the edge
connecting the fake distribution node d; to the first distribution node of the next stairs s(;,), is set
to (—1/(2n)), since a stile is size 1 and between two stiles also 1 space is added.

The front side view how the variable nodes and collection helper nodes ¢g; are connected in the
total framework is depicted in Figure The numbers on the edges are the slope values for each
edge. The collection helper nodes ¢g;, depicted by the orange boxes, connect to the corresponding
collection nodes of the i’th variable with fixed slopes only. That means that the collection nodes will
have a fixed height compared to the height of the framework. The slopes between all the distribution
nodes of on variable are also fixed, except for the control edge connected to the variable node v;,
which can increase the height of the variables’ distribution nodes all by a height within 0 and 1.

30

5.3. CORRECTNESS OF THE NP-HARD REDUCTION

[0,1]

y

m clauses

Figure 5.11: Side view connecting the switch gadgets for variable j.

Figure 5.12: Slopes in front view.

5.3 Correctness of the NP-hard reduction

Lemma 5.3.1 If water flows from s to t in some realization, then there is a truth assignment of the
variables of the 3-CNF formula that satisfies the formula.

Proof Water starts flowing from s, which is in our construction the first distribution node of the first
clause, s1,1,1- As calculated above, water entering a switch gadget at one of the distribution nodes will
either end up in a local minimum or it will enter the next switch gadget in one of the distribution
nodes. That means that water from s can only reach t after flowing through all switch gadgets. Since
all ¢; jx. channels lead to local minima, we know that if there is a flow path from s to ¢, no switch gadget
can be in a confused state. That means that all control edges must have a slope either in [0,0.2) or
in (0.8,1]. If the variable occurs non-negated in the clause, the gadget in the column of that variable
leads in the first case to a true state of that gadget (otherwise to a false state). In the second case, the
water leaves the gadget as it was in a false state (or a true state when negated). We can now construct
a truth assignment to the variables in which each variable is true if the control edge is in the lower
range as described above, and false otherwise. Since water flows through each stairs and reaches ¢,
this setting satisfies each clause, and thus the complete 3-CNF formula.

Lemma 5.3.2 Ifthereis a truth assignment to the variables that satisfies the given 3-CNF formula, then
there is a realization of the slope model in which water flows from s to t.

Proof We set the control edge for variable v; to 0 if the value was assigned true in the assignment and

to 1 if it was assigned false. By construction, in each clause stairs, water from the first distribution
node will reach the fake distribution node at the end, and thus, water from s reaches t.

31

CHAPTER 5. NP-HARDNESS IN THE SLOPE-BOUNDED MODEL

Thus, 3-SAT can be reduced, in polynomial time, to deciding whether there is a realization of
the slope model such that water can flow from s to f. Therefore, deciding whether there exists a
realization in this slope model such that water flows from s to ¢ is NP-hard.

5.4 NP-hardness in equidistant slope model

The setting described above is constructed based on the influence of the slope diagram of the distri-
bution nodes, where the different distances between the ¢; i, ¢; jx and f;jr nodes decide where the
water flows to in the different settings of the distribution node. One may wonder whether it is still
NP-hard when all distances between neighbours are the same. We call this setting the equidistant
slope model; a slope model where all edges have the same length. Unfortunately, also for this model,
deciding whether water flows from a point s to ¢ is still NP-hard. To prove this, we use the same con-
struction as above, replacing the switch gadgets and connector gadgets with gadgets where all edges
have the same length, as described below.

Equidistant switch gadgets The switch gadget for the equidistant slope model is sketched in Figure
To make sure that the setting also works in an equidistant grid where all nodes are connected, the
nodes of the gadgets are placed on specific places in the hexagonal grid, such that the blank neigh-
bours can be added with a positive slope such that water can never flow to these nodes. However,
since filling in these details for these irrelevant nodes makes the gadget unreadable, we did not in-
clude these edges in the Figure. It is easy to verify that it is indeed possible to add edges with positive
slopes such that water can never flow to the currently ‘unused’ neighbours.

fijk

tijk

Figure 5.13: General switch gadget for the equidistant slope model

The idea behind this setting is that we create a dependency between the neighbours that is based
on the height of the green node - the distribution node. As depicted in Figure[5.13} the elevation of
the distribution node depends on the selected slope of the blue edge, the ‘control edge’. As already
mentioned above, we can set elevations relative to the zero setting of the node, by connecting a node
to the ground node (before the control edge influenced the height of the distribution node). Using

32

5.4. NP-HARDNESS IN EQUIDISTANT SLOPE MODEL

this method, we can set several elevations to a fixed value. Other elevations can be set relative to the
elevation of the distribution node by setting a fixed slope. In the slope diagram of the distribution
node, we will have a neighbour with a fixed elevation, and one with a fixed slope. Depending on the
elevation of the distribution node, one of the two nodes is the steepest descent neighbour and water
will flow to that neighbour. In this way, we can create a setting where water can flow to different
nodes in different settings. We sketched the situation in Figure [5.14 with the slope diagram of the
distribution node d; ;. and of nodes a and b in Figure Note that we only draw the slope diagram
for elevations of a node for which water actually flows to that node.

Jijr

[3 tijk

Figure 5.14: Elevations in the equidistant switch gadget

The distribution node d;j; has an elevation between zero and one, based on the slope of the
control edge. The only neighbours that have a (possible) lower elevation than d; j are nodes a and b.
As can be seen in Figure a is the steepest descent neighbour for d; . > %, and b is the steepest
descentneighbour for d; ji < 5. Inthe case that d; ;. = % both nodes get an amount of water. Therefore,
we can not distinguish the true and false state of this gadget based on this difference in elevation, and
we have to introduce a confused state again. However, since we have two different flows of water
after which the confused state should be reached, it is easier to create a setting with two confused
nodes. When water arrives in one of these two nodes, the gadget is in a confused state. In the setting
we describe here, we have a true-state when theldistribution node d; ji has an elevation in the range

of [0,3), a true-ish state when the elevation is }, a confused state in the range of (3,%), a false-ish

state when the elevation is % and the gadget will be in the false state when the distribution node has
an elevation in the range of (%, 1]. In the true-ish and false-ish states, water does not only flow to a
confused node, but also to either the f;; or f;;x node. Furthermore, to halt the flow when d; ;. has
an elevation of %, causing water flowing to both neighbours, we ensure by this setting that both flows

end up in a confused node.

First, we will look at the water flow when d; jx € [0, %] In this case, water flows to node b. As can be
seen in Flgure 5.15b, node ¢; jx; will be the steepest descent neighbour of b When b has an elevation
between —% and —5. This corresponds to an elevation of node d; j between % 3 and 1 . For a lower
elevation of node dl]k, water flows via b to node ¢; j. Now, let us look at the case When diji € [%, 1].
In this case, water flows to node c. Since e’s elevation is 5 3 lower than d; jk's elevation ford; i € [1 1]
the elevation of e lies within the range of [-1, ——] And Wlth an elevation of —3 for ¢, water from node
¢ will always flow to e. Looking at the slope dlagram of node e as deplcted in Figure |5 we can
see that water flows to the f;;x node when d; ji > £ 2 and for d; jk € [;, %], water flows to the confused
node c¢; jx2. That means that this setting fulfills the requirements as described and we can distinguish
between the true-, false- and confused states of the gadget. When the variable occurs negated in the
clause, the labels of the ¢; j; and f; jx are switched.

33

CHAPTER 5. NP-HARDNESS IN THE SLOPE-BOUNDED MODEL

high(dijr)1

high(e) 7%I

N|=

_5
69,

low(dijk-) 0. low(e) 1 5

high(tijx) high(cijrz)
N4 Cijkl

| fijk

low(tijk) low(ciji2)

(a) Node dijk (b) Node b (c) Node e

Figure 5.15: Slope diagrams of the equidistant switch gadget

Equidistant connector gadgets The connector gadgets for the equidistant slope model connect the
tijx and fijx nodes in the same way as the connector gadgets described before, however, now the
edges are spread over multiple cells to ensure flow to the right distribution node. The gadgets are
sketched in Figure[5.16] Note that we left out the edges between neighbouring nodes, since that only
distracts from the actual flow path that is managed by these connector gadgets. The edges with an ar-
row make sure that water flows to the right neighbour and flows paths can not cross. The actual slopes
only have to differ an amount of € > 0, such that the neighbour on the flow path will be the steepest
descent neighbour. Overall, the connector gadget will bridge an elevation of 1 before connecting to
the distribution nodes. Where the edges are inserted to obtain this total difference in elevation in the
gadget, is up to the constructor, as long as the requirements for the flow paths are met.

Total construction For the construction of the stair cases, we connect the switch and connector
gadgets as in the general slope model construction, with the edges and slopes as described in this
setting. The connection between each stair case is adapted, to make sure that the setting also works
in an equidistant grid. We change the setting such that the stairs are connected by a flow path in a
planar graph structure, such that edges can not cross. The situation is sketched in Figure The
blue edges on the bottom of the construction are the control edges for each variable. The orange
edges connect the switch gadgets such that the slope of the control edge is propagated to all stiles of
the variable. The dark red edges connect the connector gadgets (in particular the ¢; j; and f; jx nodes)
to make sure that we can use the ‘zero’ height as sketched in the switch gadget above. The black edge
at the bottom of the figure regulates the base difference in stiles. The slope differences between the
nodes are sketched in Figure[5.18] This determines the edges and slopes to construct the staircase for
each clause. By only allowing edges with zero or negative slope, we can make sure that the flow path
connecting two stair cases is downwards and that the second stair case is in total below the first one.
Furthermore, we can calculate the total elevation difference of the stair case, since this is defined by
the construction that connects the control edges at the bottom of the total construction. The stiles of
a variable are connected with an edge defining this slope plus one (of the stair case connecting flow
path), such that the slope of the control edge is indeed propagated.

5.4.1 Correctness of the NP-hard reduction

Lemma 5.4.1 Ifwater flows from s to t in some realization of the equidistant slope model construction,
then there is a truth assignment of the variables of the 3-CNF formula that satisfies the formula.

Proof Water starts flowing from s, which is in our construction the first distribution node of the first
clause, dj,1,1. As calculated above, water entering a switch gadget at one of the distribution nodes

34

5.4. NP-HARDNESS IN EQUIDISTANT SLOPE MODEL

fija fijae fijae fm"/\
di1)ja o diitayja / diis1)ja o diivija
tija tija e tija e tija \
fizs figs fijs figs <N
d’\z+1)_)3 . d’\1+1)13 d’\1+1)j3 . du+1)73
tij3 tijz e tig e J/ tis \
S Fire _ fio S8 _ JTRSEN _
d(;+1),i2 diy1)j2 diy1)j2 o diiv1)j2
Lija tijo o tiz2 Zy/ Lijz \
fin fij . fis . fis / .
diyyn diit1)j1 diiv1)j1 diit1)j1
tin b1 tij1 / tih
(@) Casei+p,q,r (b)Casei=p (c)Casei=g (d)Casei=r

Figure 5.16: The four different settings of the connector gadget in the equidistant slope model for a
3-CNF formula with the variables p, g and r. Note that the settings to connect a switch gadget to the
sink of a column are not shown here.

will either end up in a local minimum or it will enter the next switch gadget in one of the distribution
nodes. That means that water from s can only reach ¢ after flowing through all switch gadgets. Since
all ¢; jx channels lead to local minima, we know that if there is a flow path from s to 7, no switch gadget
can be in a confused state. That means that all control edges must have a slope either in [0, %] orin
[%, 1]. If the variable occurs non-negated in the clause, the gadget in the column of that variable leads
in the first case to a true state of that gadget (otherwise to a false state). In the second case, the water
leaves the gadget as it was in a false state (or a true state when negated). We can now construct a truth
assignment to the variables in which each variable is true if the control edge is in the lower range as
described above, and false otherwise. Since water flows through each stairs and reaches ¢, this setting

satisfies each clause, and thus the complete 3-CNF formula.

Lemma 5.4.2 [fthereis a truth assignment to the variables that satisfies the given 3-CNF formula, then
there is a realization of the equidistant slope model in which water flows from s to t.

Proof We use the total construction as described above in the equidistant slope model setting and
we set the control edge for variable v; to 0 if the value was assigned true in the assignment and to 1 if
it was assigned false. By construction, in each clause stairs, water from the first distribution node will
reach the fake distribution node at the end, and thus, water from s reaches t.

35

CHAPTER 5. NP-HARDNESS IN THE SLOPE-BOUNDED MODEL

S

Figure 5.17: Connecting the stair cases in the equidistant slope model

2

Figure 5.18: Slopes in front view

Thus, 3-SAT can be reduced, in polynomial time, to deciding whether there is a realization of the
slope model such that water can from from s to ¢. Deciding whether there exists a realization in this
equidistant slope model such that water flows from s to ¢ is NP-hard.

36

CHAPTER O

Implementation

In this chapter we discuss the implementation details of the watershed algorithms as used to obtain
the results in the next chapters. Note that all results are based on calculations on hexagonal grid
models. We can divide the implementation into two parts: creating the uncertain elevation models,
including actions such as deciding the elevation ranges and the coordinates of the data points, and
the second part, calculating properties of these uncertain elevation models. Since elevation models
are usually very large (several GBs), we need to take memory management into account. The first
part of the implementation is described in Section this part covers interpolating the elevation
values and constructing the models, which can be done by a sequential read of the data and therefore
that is all the memory management that is necessary. The code for this first part is written in Python
2.7 using the statsmodels package (http://statsmodels.sourceforge.net). The second part covers the
actual calculations on the models and is described in Section this part is written in C++ and
compiled using the gcc 4.5.1 compiler. All tests are run on a computer with a Linux 2.6.35.14 Kernel,
four Intel Core2 Quad Processors each 2.66GHz, a memory of 8GB and a second hard disk of 500GB.

6.1 Creating the uncertainty models

Since most GIS applications use normal square grid models as input models and we want to calculate
with hexagonal grid models, we need to translate the existing square grids to hexagonal grid models.
Since the input files are very large, we can not simply store all information in memory and then con-
tinue with calculating the hexagonal grid information. Therefore, we divide the input file in smaller
blocks and examine the results of these blocks one by one. The easiest way to implement this is by
reading the minimum number of rows of the original input file into memory for calculating one row
of the hexagonal grid. After calculating this hexagonal grid row, we can remove the rows of the rect-
angular input model that have no use any more and read the lines we need for calculating the next
hexagonal grid row. We can continue this until we reach the end of the document. There are several
ways to place a hexagonal grid on top of a rectangular grid. In our implementation, the elevation of a
cell (a, b) in the hexagonal grid (row a, column b), is determined by the formulae given below, where
rect(x, y) refers to the elevation of the cell on the x’th row and in the y’th column in the rectangular
grid and ¢ represents the smallest row index in the rectangular grid for which the data is available in
memory. By substracting this ¢ we refer to the local rectangular grid, that exists only of the lines read
to memory that were necessary for this calculation. We need to distinguish the situations that we are
calculating the cells of an even or an odd column in the hexagonal grid, because of the shifted cells.

37

http://statsmodels.sourceforge.net

CHAPTER 6. IMPLEMENTATION

In Figure is shown how we can place a hexagonal grid onto a square grid. Based on this
overlay method, we can find the elevation values for the centres of the hexagonal grid cells as follows:

b odd:

b even:

n=rect(|(@+1)V3]- £, 20) ra=rect([(a+1)-v3] - 6, 220)
ro=rect(|(a+1)-V3]-€,2230) ra=rect([(a+1)v3]- 0,22 20)

X1 = r1+(%(r2—r1))
Xo = r3+(%(r4—r3))

First, we interpolate the upper and lower coordinates of the square to get values x; and x, as
depicted in Figure[6.1b] Since the centre of the hexagonal cell lies exactly on the centre of these
edges, this is a simple calculation step. Next, we interpolate these x-values. Here, we need
to take into account where the centre of the hexagonal grid cell is placed on the line segment
(x1,X2):

hex(a,b) = x1+((\/3(a+1)-|V3(a+1)])-(x2-x1)).

2+3b

)
)

rn= rect([(a+%)-\/§J—€,
2+3b

1
ro =rect([(a+ E)\/g] -/,
Now, the elevation of the cell in the hexagonal grid model can be calculated with:

hex(a,b) =i+ ((V3(a+3) = [V3(a+) (o).

This overlay method will create a ["—\;51 -1]x LZT’” —1] hexagonal grid from a nx m rectangular grid.
#’
[] S [] [] S [] [] /r.
3 ol 1%
1
® [] L] o L] L] (]
V3
[] [] [] [] [] [] [] ./”'3 9 /’04.
(b) b odd
[] [] [] [] [] [] []
1
° e °
[] [] [] []] [] []
. (] . . (] ° [[{]
2
1 L.l
[] (] L [] []
1 (c) b even

(a) Overlay of a hexagonal grid onto a square grid

Figure 6.1: Interpolating a square grid to a hexagonal grid for the hexagonal grid column number b.

38

6.1. CREATING THE UNCERTAINTY MODELS

In our implementation, the input (a square grid file) is an ASCII file with on the first four lines
the north, south, east and west coordinates of the terrain, on the fifth line the number of rows n
and on the sixth line the number of columns m of the input data, followed by n lines containing the
elevation values in row major order from left to right, as space-delimited floating point numbers. The
output (a hexagonal grid file) is a text file with on the first line “HEX”, to denote that this file contains
information on a hexagonal grid, followed by the number of rows, columns and then the elevation
values as described above. When a data point does not exist in the original input, the output file has
‘~1’ on that place in the file, the no-data value.

Below, the pseudo-code for this interpolation method can be found. The algorithm reads as many
lines as needed to compute the elevations of a new hexagonal grid row. The function isOdd(a) returns
whether value a is odd. The function split(i) splits a line from the input data file into an array of the
values that are separated by spaces. The function array.append(x) appends the input x to the array,
array.pop(i) removes the i’th index from the array.

Algorithm INTERPOLATESQTOHEX(fileln, fileOut)

Input: File fileIn with a rectangular grid input

Output: File fileOut containing the interpolated values of the hexagonal grid
1. Read file fileIn until line 4

2. Writeline HEX to fileOut

3. a, hexRows, hexCols < 0,0,0

4. rectGrid <[]

(* rectGrid|[a, b] contains the elevation value for row a, column b *)
5. smallestL, largestL < 0,—1

6. smallestLforA, largestLforA< |\/3-al,[\/3(a+3)]

7. nrRows < number on fourth line

8. nrCols < number on fifth line

9. Write line nrRows to fileOut

10. Write line nrCols to fileOut

11. forline i < 6to nrRows+5

12. do rectGrid| len(rectGrid) — 1].append(split(i))

13. if largestL = largestLforA

14. then for b < 0 to hexCols—1

15. do Calculate the interpolated values based on isOdd(b)
and write value to fileOut

16. If original values are noData values, write value —1

17. a<~a+1

18. ifa> hexRows—1

19. then break

20. else Write new-line character

21. smallestLforA, largestLforA< |\/3-al,[/3(a+3)]

22. for p < smallestL to smallestLforA

23. do rectGrid.pop(0)

24. smallestL < smallestLforA

Algorithm INTERPOLATESQTOHEX translates a square grid to a hexagonal grid. However, this still
does not give us any uncertainty range for a grid cell. Therefore, we need to compute uncertainty
ranges. How we do this, is explained in the next chapter. For now, we assume that we have an input
file with for each cell a low and a high elevation.

Since the data files are very large (several GB’s), we need to take some memory management into
account. One way of speeding up an algorithm for large data is by reading the data from a binary file.

39

CHAPTER 6. IMPLEMENTATION

In a binary file, the data is not stored as text, but as a sequence of bytes that are intended to be read
as something other than text. One could see it as that the space in the file is divided into a number of
records of fixed size and that each record represents a cell of the hexagonal grid. This is exactly how
we want to use it. The file starts with three blocks containing the type “HEX”, the number of rows and
the number of columns, with a total size of b; bytes. For a grid of size n x m, the file is followed by a
sequence of n- m blocks — all having the same size b, — with the information of each hexagonal grid
cell. When we want the information of the i’th hexagonal grid cell, we want to have the information
in the file after by + (i — 1) - b, bytes. In this way, we do not need to do a sequential read of the file,
every time we want to access information of the file.

All the data manipulation so far writes the output into regular text files. When we want to use
binary files, we need to convert our text files to this new binary format. To do this, we simply read
the information from the text file and write it to a new file by creating blocks of information for each
cell of the input. First, we create three blocks containing the type, number of rows and number of
columns. Next, we read the low and high elevation values for a cell and create a block of bytes of this
information and output this to the new binary file. After all cells are processed, we have a binary file
containing the header and the cell information with the values as in the original text file.

6.2 Calculating with the uncertainty models

Given the binary files with an elevation range for each hexagonal grid cell, we can now compute the
watersheds as explained in Chapter[4 Our implementation in C++ consists of a class implementing,
for both flow models SFD and MFD, the three watershed algorithms. These functions are imple-
mentations of the algorithms described in Chapter 2 and [4|for calculating the potential, Q-avoiding
potential, and persistent watershed of a set Q. Furthermore, we have two functions that expand a
vertex, based on the flow type, and a function that calculates the sdValue of a vertex as explained in
Section[2.5]

One enhancement in the code for calculating watersheds takes care of a large speed-up; for an
input set S, the persistent watershed of a set Q ¢ S is defined as:

C
Wa(Q) = (W (WL(Q)9)) -

Per definition, W, (Q) € Wi»(Q) and (W (Q))¢ = S\W(Q). As one may recall, the Q-avoiding po-
tential watershed of the potential watershed of Q is the set of nodes that can leave the potential wa-
tershed of Q in at least one of the realizations of the terrain. N(W_(Q)) is the set of vertices that are
direct neighbours of the nodes in the potential watershed of Q and do not belong to the potential wa-
tershed themselves. It is trivial to see that the flow path of a node that leaves the potential watershed
must include one of the vertices in N(W_(Q)). That means that, instead of taking the complement
of W(Q) to calculate the Q-avoiding potential watershed, we can simply take the set N(W,(Q)) to
calculate it for. Enqueueing all these neighbours at the lowest possible elevation for each node, when
running the algorithm, results in the same Q-avoiding potential watershed of the complement of the
potential watershed of Q, as when one would calculate the Q-avoiding potential watershed for the
set of S\W(Q). In this way, we do not need to check all the other nodes (S\W_(Q))\NW_(Q)),
saving an enormous amount of time for large sets (WW;(Q))¢. The adapted algorithms are described
by Q-AvOIDINGPOTWSADAPTED and PERSISTENTWSADAPTED.

The results of the watershed algorithms (which nodes are part of which watershed and on which
lowest elevation a node was enqueued) are then captured in a PNG file. The results of the algorithms
are discussed in the next chapters.

40

6.2. CALCULATING WITH THE UNCERTAINTY MODELS

Algorithm Q-AvOIDINGPOTWSADAPTED(S, Q, P)

Output: nodes p € P that can leave P by flowing to a node in S
1. Forall se S: Enqueue (s, z) with key z = low(s)

2. while the Queue is not empty

3 do (s',z') = DequeueMin()

4, if s’ is not already in the output set As” ¢ Q

5 then Output s’ with elevation z’ if s € P

6 Enqueue each (p, z) € EXPAND(s,z') if pe P

Algorithm PERSISTENTWSADAPTED(Q)

1. P < POTENTIALWS(Q)

2. N(P) <« {n:nneighbour ofanodein PAn¢P}
3. A<« Q-AvOIDINGPOTWSADAPTED(N(P),Q,P)
4. Output P\A

41

CHAPTER [

Computing the Elevation Range

In this chapter we discuss several methods to determine the elevation range of a node. As input data
set, we use the DEM of the Neuse River Basin in North Carolina to test our settings. Note that this
means that we introduce uncertainty on a model for which preprocessing has occurred to extract the
data points from original data, for instance, a LiDAR data set. For future work, it would be interesting
to see the results of the methods applied to this original data, including all noise and uncertainty, tak-
ing the original uncertainties into account and get different uncertainty ranges as a result. For now,
we apply the methods on the DEM as it is. The hexagonal grid file of this data set — without uncer-
tainty ranges — is drawn in Figure[7.1} together with the colour maps that are used for visualizing the
elevation data of the terrain, the minimal elevation for which a cell belongs to the potential watershed
of a set of cells and the colour for the low elevation of a cell in the persistent watershed.

Colour map terrain data

Om 275m

Colour map potential watershed

Oom 275m

Colour map persistent watershed

Figure 7.1: Data set of the Neuse River Basin in North Carolina (215km by 153km wide), interpolated
to hexagonal grid data file, together with the colour maps used in the rest of this report.

42

7.1. LOCALITY SETTING

In the next paragraphs, we calculate the watersheds for cell 41924617; this cell has the largest
watershed in the original data set. For simplicity, we will refer to this cell number as cell ¢,,.

7.1 Locality setting

Allinterpolation methods described in this chapter are executed using three different locality settings;
interpolating and determining the ranges is done by looking at the elevation values of neighbour
nodes. We have chosen three different neighbourhoods to calculate the ranges with, are depicted in

Figure

(a) Setting 18 (b) Setting 30 (c) Setting 72

Figure 7.2: The three settings for determining the uncertainty range of a cell. Each setting shows
which neighbours are involved during the calculations for the interval of the light cyan cell; white
cells are ignored and the information of the turquoise cells is used for determining the interval.

The first setting, Setting 18, looks at the direct neighbours within two rings distance. The second
setting, Setting 30, does not look at its direct neighbours, but at the two rings around them, and the
last setting, Setting 72, only looks at the neighbours in ring 3,4 and 5. Using the information of these
neighbours we try to find a plane or a polynomial surface that could resemble the area around the
current cell in the actual terrain. With this fit, we give an estimation of the possible elevation of the
current cell. We then assume that the real elevation of the cell will lie between the predicted elevation
and the measured elevation. The reason why we chose these different approaches is based on the
appearance of local errors. Based on the sampling rate one would want to look a bit ‘further’ away in
the area to estimate the surface, since it could be possible that the current cell lies in, for instance, a
local minimum.

Since one of the main preprocessing steps for hydrological analysis in GIS is to remove supposedly
artificial local depressions (local minima), ideally, the uncertainty intervals would allow the water of a
node in a local minimum to leave this depression in a way. Therefore, our first method, the min-max
method, was based on taking the minimum and maximum elevation of a number of neighbouring
nodes. However, the watersheds computed for points in the terrains created by this interpolation
method, are unrealistic compared to the original terrain. The idea of the min-max method for a cell
¢ is to look at a neighbourhood setting, say for example Setting 18, and set as low elevation the min-
imum elevation value of the current cell and the 18 neighbours and as high elevation the maximum
of all possible elevations of the current cell and the 18 neighbours. In Figure the watersheds are
calculated for cell 41924617, which lies within the indicated red circle. As one would expect, water
will only flow to that cell from a number of the cells in the same valley the cell belongs to. However,

43

CHAPTER 7. COMPUTING THE ELEVATION RANGE

the Figure shows otherwise. In this Figure, it seems that all cells with a height that is higher than cell
¢ have a possible flow path to this cell. In reality, this can not be true. We can explain these erro-
neous results by looking at the way in which the watersheds are calculated. A neighbouring cell n(c)
of cell ¢ is added to the potential watershed if the elevation of n(c) can be set such that c is the steep-
est descent neighbour. If the minimum and maximum elevation of a cell depend on the minimum
and maximum possible elevations of a number of neighbours and the current cell, it is possible to
build a sort of dam in almost every situation and cells that normally belong to a different valley, now
can set their elevations to the same elevation as a surrounding neighbour, enabling a water flow to a
different valley. In Figure[7.3} we have sketched an example of a 1.5 dimensional elevation-bounded
terrain. The thick lines describe the upper and lower terrain after applying the min-max method to
the original terrain (indicated with the normal black line). Point b in the original terrain will always
flow to the right valley, via point c. However, after applying the min-max method using Setting 18,
point ¢ and d can be set to the same elevation as b’s elevation in the original terrain, allowing water
to flow to the valley on the left of b, via point a. By lifting the points to one of the original elevations
of the neighbours in the locality setting, the steepest neighbour of a point p, can now be any of the

six neighbours of p.
X .
‘ N\upper terrain

3 dam building

original terrain

4 lower terrain

Figure 7.3: An example of a 1.5 dimensional imprecise terrain, with the possibility to dam-building,
after applying the min-max method Setting 18 to the original terrain.

In Figure[7.4} we have sketched the situation in a hexagonal grid terrain. Figure[7.4aJshows the ele-
vations of the cells in the orginal terrain, and Figure[7.4b|shows a possible realization of the elevation-
bounded terrain that is obtained after applying the min-max method to the original terrain. In the
original terrain, we can distinguish two valleys, one valley following the flow path indicated by the left
blue arrow, and the other valley indicated by the right arrow. These valleys are isolated by the ridge
of the orange cells in between. However, after applying the min-max method with Setting 18, we can
find a realization in which water from the left valley can flow to the right valley, by building a dam. Let
us denote the cells from the left valley that are in the potential watershed of the red cell by V. Each
cell v € V has a neighbour n(v) that is higher (or equally) situated and delivers water to v on its way
to the red cell. Because of the min-max method, it is possible for the lower cells [€ L of the left valley,
where the water from points v € V normally would flow to, to set their elevations to the elevations of
the water delivering neighbour cells n(v). This blocks the water flow downwards the valley and en-
ables a water flow to neighbours with the same elevation, causing a sort of ‘isoline-flow-path’, which
is unrealistic in the original terrain.

This means that basing the uncertainty range on the minimum and maximum elevation of the di-
rect neighbourhood does not give us the result as we would like. Therefore, we dived into the method
of Ordinary Least Squares, as described in the next section.

44

7.1. LOCALITY SETTING

(a) Original terrain and its general flow direc- (b) Possible realization of the elevation-
tions. bounded terrain after applying the min-max
method with Setting 18.
low high

(c) Colormap for the terrains in (a) and (b).

Figure 7.4: An example of dam-building on a hexagonal grid terrain. The cells in the potential water-
shed of the red outlined cell have a blue outline. The blue arrows indicate the flow on the terrain.

Figure 7.5: Computed watersheds for cell 41924617 within the indicated red circle, based on the min-
max method.

45

CHAPTER 7. COMPUTING THE ELEVATION RANGE

7.2 Ordinary Least Squares

One of the causes of computational uncertainties are the local-scale errors that appear in the data
sets. These local scale errors, can have large effects on the result of an algorithm. Therefore, we
thought that smoothing the data, while keeping the original elevations in mind, could help us by
obtaining better results. One way of smoothing the data is by trying to fit a certain shape onto a
specific area to decrease the number of outliers and to increase the consistency between all data
points. We will first explain which fitting method we selected. After the introduction to this method,
we explain how we apply the method in our situation.

Ordinary Least Squares (OLS) is a method for estimating a fit for a linear regression model by
minimizing the sum of squared (vertical) distances between the values of the data file and the values
of the linear approximation. We use OLS on independent input values: x and y, which represent
the coordinates of a hexagonal grid cell centre, and z, the elevation value of a cell. On page 108
Davies [Dav08|] describes the general case of the linear regression OLS method. OLS tries to fit a
certain model on a number of observations. We will explain the OLS method now for fitting a plane
z=a-x+b-y+d through a set of points, in other words, finding a suitable a,b and d for which the
equation returns values that are, on average, as close as possible to the original values. For each
observation (for example, a z-value of the data file that belongs to a cell ¢ on position (x, y)), the x
and y values are added to the design matrix X, and the z values are added to the observation matrix
Y. This observation matrix contains only one column, with on each row i the elevation value of a
point corresponding to the data of the point on row i in the design matrix. The design matrix has
three columns [1, x, y]. The rows of the design matrix contain the values of the independent variables
x and y. An all-one column is usually added to be able to predict the constant term d. Leaving the
all-one column out would result in fitting a plane z = a- x + b- y. If variables occur in different forms
(x, x%,etc.), the value of x, respectively x?, is added to the matrix. For more information on OLS and
other related procedures, we refer to Montgomery [MonQ9].

Let us given an example. We want to fit our plane z=a-x+b- y+d.

For the i’th point (x;,y;,z;) = (2,4,7), we have in the observation matrix the value 7 on row i, and
[1,x;,¥i] =[1,2,4] on row i in the design matrix. However, if we try to fit a polynomial surface such
asz=a-x*>+b-xy+d-y*+e, we have for this same point a value of 7 in the observation matrix, and
[1,x;, x; -y,-,y?] =[1,4,8,16] on row i in the design matrix.

The fit is determined by minimizing the least squares estimator. For each of the n observation
values we have that Y; = 81 X;; + B2Xj2 +... + Br X;i + €; where 1 < i < n and ¢; is an independent
random variable, representing the noise in both the observation and measurement [Dav08]. For OLS,
one typically assumes Gaussian white noise. If each distortion has a normal distribution with zero
mean, the signal is said to be Gaussian white noise. In this case, OLS is the maximum likelihood
estimator for the unknown parameters. When the errors are non-Gaussian, the estimates may be
biased or grossly inaccurate and corresponding statistics, such as p-values, are no longer valid. We
try to minimize the sum of squared vertical distances between the values of the observation values
(for k columns in the design matrix):

2
n k
mﬁinZ(Yi—ZXuﬂj) =Y -xpI* = (v -xp)" (Y- XP),
i=1 j=1
which results in
B=(x"x)"'x"y.

The inverse of matrix (X X) only exists if the colums of design matrix X are independent (which
is the case in our situation, as explained further on in this section). OLS calculates g = (X7 - X)7!.
XT.y, resulting in a vector with the number of elements equivalent to the number of columns in the

46

7.2. ORDINARY LEAST SQUARES

design matrix. In our plane fitting case, these are three elements. The plane that we are searching for
can now be described by z= ;- x+ -y + B3.

Using the statsmodels package for Python, we can implement this method very easily by selecting
the locality setting (which neighbours have influence on the fit) and computing the fit for these cells.
As a result, we get as output the values for the vector §, together with the coefficient of determination
for the corresponding fit, the R-squared value. This value indicates the goodness-of-fit of the regres-
sion; it will be equal to one if the fit is perfect and it will be equal to zero when the so-called entries
X in the design matrix have no explanatory power regarding the observations Y. We also have the R-
squared Adjusted statistic, which is designed to penalize for the excess number of regressors which do
not add to the explanatory power of the regression. This value is always smaller than the R-squared
value and is defined as follows:

2 n-1 2
RAdj:l_rp(l_R)

The x and y values referring to our grid coordinates are clearly independent. Furthermore, we can
transfer all uncertainty in these x and y values to the z variable. We then have known values for x and
y and a measured value for z. Now we can apply OLS with the x, y and z to spread out the uncertainty
in z over a larger area, such that the noise on the fitted elevation z' decreases and we can find a better
estimate for the final z value in a specific point (x, y) by using the x, y, z values of surrounding points
to calculate a fit.

We want to calculate the uncertainty range for cell c. We apply this OLS method in three different
ways:

1. The first application (OLS Plane) tries to fit a plane (z = a-x+ b- y + d) through a set of points.
An OLS fit then returns fitted values for a, b and d.

2. The second application (OLS PlaneSurf) tries to fit a plane as described in 1. and a polynomial
surface (z=a-x*>+b-xy+d-y* + e) and selects the fit with the best rsquared value.

3. The last application (OLS PlaneSurf Adj.) again tries to fit a plane and a polynomial surface,
both as described above, but bases its choice of the best fit on the adjusted rsquared value.

Based on the selected setting, the point set consists of the 18, 30 or 72 neighbours as depicted in
Figure Note that it is impossible to find a fit of a plane when the observation points are linearly
dependent — for example when all points are placed on one line — because that gives you information
on only two of the three degrees of freedom. However, in our situation, we are looking at neighbours
in all possible directions, resulting in most cases in a set of observation points that are not linearly
dependent. If there are too few neighbours, or the set is linearly dependent (when the neighbours in
a setting of one specific ‘line’ are only useful for calculations), the original z value is used. Otherwise,
the fitted z value for a cell is used to update the minimum and maximum value of the cell. If the
fitted value is larger than the current value, the maximum value is updated to the fitted value and
the minimum value to the original value. If the fitted value is smaller than the current value, the
minimum value is updated to the fitted value and the maximum value to the original value.

In Figure[7.6|the results are drawn for the OLS Plane and OLS PlaneSurf methods. The six pictures
are captured and enlarged from the area with the red circle around it. A hexagonal grid cell in this
data set has a diameter of roughly 18.3 meter.

We can see that the water indeed flows along the mountain hill down into the river area, but
water from the higher parts of the river does not end up in the area, as opposed to our expectations.
This phenomenon can be explained by looking at the interpolation methods we use to establish the
uncertainty interval. In the case that a local minimum is as big as the neighbourhoods we are looking
at, the resulting surface will also be approximated as a local minimum. Therefore, flow entering this
local minimum is still not able to leave this local minimum, and the watershed algorithm will not

47

CHAPTER 7. COMPUTING THE ELEVATION RANGE

(a) Area captured and zoomed below for specific approaches

(b) Planel8 (c) Plane30 (d) Plane72

(e) PlaneSurf18 (f) PlaneSurf30 (g) PlaneSurf72

Figure 7.6: Results of the different interpolation methods on the Neuse data set.

capture these nodes in the potential watershed of points somewhere else on the terrain. Therefore,
for an actual flow estimation, dealing with uncertainty in a node is not enough. In an area where a
high number of extrema appear on a river path, water will (eventually) flow to the river estuary, but
not when we consider the actual surface of the terrain. The water will only flow once the river contains
a certain amount of water and the local minima are flooded. Therefore, we still need to take a look at
flooding, as is done on regular GIS DEM’s.

7.3 Flooding
Flooding calculates the height of the water level of each cell after an infinite amount of rain has fallen

on the terrain. In this way, pools and lakes are formed on parts of the area where water could not
immediately flow downwards to a lower situated part of the terrain, or by leaving the terrain into the

48

7.3. FLOODING

so-called ocean, the area surrounding the original terrain. After a certain amount of rain, enough
water has fallen to fill all local minima and form lakes such that the next rain that falls is able to flow
off the terrain, into the ocean. The moment that these local minima are filled and water falling down
at each cell is able to flow into the ocean, we call the terrain flooded. The height up to which a cell
is flooded, is the minimal height of a flow path from that cell to an ocean cell. The height of a flow
path is the highest height of a cell occurring on that flow path. A way to calculate this height is by
turning the definition around and by taking a look at the definition from the ocean’s point of view.
Based on that setting, we want to find the Single Source Lowest Path (SSLP) [Jan08] from the ocean
to the cell we are interested in, which is quite similar to the well known Single Source Shortest Path
(SSSP) problem. As Janssen explained, the only difference is the way the value of a path is calculated;
for SSSP the sum of the weights of all edges on a path is calculated, where for SSLP only the maximum
weight, is important. This weight is related to the height of the lowest path between the two cells it
connects.

We used Janssen’s [Jan08] implementation for flooding a regular squared grid and adapted the
code - the I/O-efficient implementation with the cache-oblivious approach, see Secion 2.3 of his re-
port [Jan08] - to the case of a hexagonal grid input. In this way, we are able to calculate the minimum
height for a cell such that water is able to flow off the terrain. However, since we deal with uncertainty
ranges rather than with a fixed elevation value for a grid cell, we had to make several other decisions.
For a terrain with cells ¢ with elevation range [¢;, ¢,], we flood the area based on the minimum eleva-
tion values ¢; and as a result we get the new elevation values cf for each cell such that water can leave
the terrain and flow into the ocean. Next, we update all ranges for the cells where ¢y > ¢; such that
the new range becomes [cy, ¢ + (¢, —¢;)]. In this way, we keep the original uncertainty of a cell in
mind when flooding the terrain. No-data cells are ignored by the implementation if they have a path
consisting of only no-data cells connecting the cells to the ocean. If such a path does not exist, the
cells are treated as regular cells and they are flooded as well. ‘Holes’ in a data set are thus removed. In
the next chapter, we discuss the results of the watershed algorithms on the flooded data sets.

49

CHAPTER 8

Evaluation

Since determining whether water can flow from one point to another point in the slope-bounded
model is proven to be NP-hard (Chapter[5), the actual computations we evaluate in this chapter, are
done on elevation-bounded models. In this chapter, we show some of the results of the algorithms
on the different data sets as created according to Chapter[7] Based on these results, we reflect on the
existing algorithms. We end this report with some suggestions for further research.

8.1 Results

All images in this and previous chapters show the minimum elevation values for the terrain data, un-
less indicated otherwise. Furthermore, the computations are done for the SFD flow method, where
water flows to the steepest descent neighbour, unless indicated otherwise. The third method of inter-
polation to find the uncertainty range for a cell, OLS PlaneSurf Adj., gave similar results as the second
method, OLS PlaneSurf. Since this did not contribute to the conclusions we draw, we did not include
these results in this report. In appendix[A} extra results are given, contributing the statements made
in this chapter.

8.1.1 Certainty of watersheds

Since the difference between the size of the potential watershed and the size of a persistent watershed
tells us something about the certainty of a watershed, we could think of a map showing the certainties
for each set Q for which the watersheds are calculated. We define the certainty of the watershed of a
set Q as:

size(persistent watershed)

size(potential watershed) -

certainty(Q) =

Due to the fact that W (Q) € W (Q), we know that if the size of a persistent watershed of Q is
equal to the size of the potential watershed of Q, all water arriving at a cell that lies in the potential
watershed of Q will eventually flow through at least one of the cells in Q. In other words, because the
potential watershed is equal to the persistent watershed of Q, it is certain for every cell that it belongs
to the watershed of Q. If there is a big difference in size between the size of the potential watershed
of Q and the size of the persistent watershed of Q, it is for a large number of cells not certain whether
water arriving at that cell will eventually reach a cell in Q. Therefore, the watershed is more uncertain
in these cases. Based on this observation, we compute the certainty of a watershed and label ten

50

8.1. RESULIS

different categories, as shown in Table For example, category 4 depicts the watersheds that have
a certainty between 0.4 and 0.5, where 0.4 belongs to the range when counting, and 0.5 does not.

We calculated the watersheds for blocks of 10x10 cells (roughly 137x137 m?), 50x50 cells (roughly
685x685 m?) and 100x100 cells (roughly 1.37x1.37 km?) for a part of the Neuse basin as depicted in
Figure We used the colour for these plots as depicted in Figure a block is coloured darker
red if the watershed of that block has a high uncertainty, whereas the block is coloured lighter yellow
when the potential and persistent watershed are almost equal in size. We plotted the uncertainty
results for each of the blocks, as shown in Figure [8.3] Together with these calculations, we kept track
of the number of blocks in each of the ten categories as mentioned above. In Figure Figure
and Figure[8.6]these results are plotted in bar charts, for a better overview of the exact partition of the
different data sets and to detect a change in uncertainties for larger block size.

[0-0.1) o 7
[0.1-0.2)
[0.2-0.3) |
[0.3-0.4)
[0.4-0.5)
[0.5-0.6)
[0.6-0.7)
[0.7-0.8)
[0.8-0.9)

ooz AN
[0.9-1] ags

Table 8.1: Certainty categories Figure 8.1: Area (36.5x36.5 km?) for calculating certainty

Figure 8.2: Colour map for certainty (range [0-1])

£ T

@QD\]CDUI%UJNHO‘

At first sight, the figures of the Plane72 method seem to show the same results as the figures for the
PlaneSurf72 methods. But when we look at the bar chart in Figure[8.6} we see a small difference. For
the second method, the bars show a higher percentage for the higher certainty categories, compared
to the first method. That means that smoothing the area, while keeping the original terrain in mind,
based on a fit of both a plane and a polynomial surface gives slightly better results for the computation
of watersheds on the terrain. A very clear difference, when looking at Figure[8.3] is that for larger block
size, the uncertainty of the watersheds decreases. This is confirmed by the bar charts in Figure
and Figure for the 10x10 blocks more than 50% of the computed watersheds end up in the first
category (number 0), which means that for each of these computations the potential watershed is
more than ten times larger than the persistent watershed of the block. For the 50x50 blocks we see a
higher concentration around the center categories (4,5 and 6) and for the 100x100 blocks the majority
of the computations is categorized in category 6 or higher.

We did some experiments on the data to find out how this could be explained. We selected a
slightly smaller area of 11 km high and 12.4 km wide. In Figure the watersheds are calculated
for three different block sizes, all starting from the same cell in a sub area from the area shown in
Figure The blocks for which we calculate the watersheds are coloured firebrick red. We see that
the cells in the potential watershed of the 10x10 block in Figure[8.7alalmost all belong to the potential
watershed and only a few cells apart from the block itself belong to the persistent watershed of the

51

CHAPTER 8. EVALUATION

(b) Plane72 50x50 (c) Plane72 100x100
'... .-i : N
L ¢ N
L T
;l .-I-Ei‘ ‘ -i - \
y:_.-f;._.f:.-ﬂ.:'_l'r:ﬁ._r 1 e Y L
i " L L |]
: i':' o™ Y = e
| & - |
| SRR e L

(d) PlaneSurf72 10x10 (e) PlaneSurf72 50x50 (f) PlaneSurf72 100x100

Figure 8.3: Results of the different interpolation methods on the Neuse data set.

60

B
o
T

#percentage
[\
()
T

0 H H loe mm ofl- DHH HH DQH DQH DQH

T
0 1 2 3 5 6 7 8 9

]anlanen (10x10) 00 Plane72 (50x50) [0 Plane72 (100x100) \

Figure 8.4: Uncertainties in the Plane72 flooded data file, for three different block settings.

block. When we look at the two other figures, Figure[8.7b|and Figure[8.7c} both for larger block size,
we see that the persistent watershed suddenly is quite a lot larger compared to the smaller 10x10
block size watershed. When we calculate the watersheds for a 10x10 block based on a cell a little
further upwards on the river, where the 10x10 block covers the width of the ‘river’ — see Figure the
persistent watershed is all of a sudden very large again. In the next section, we try to explain why this
is the case and think of methods how to prevent these situations.

Furthermore, we can recognize the original area as depicted in Figure which implies that
the type of area has influence on the results of uncertainty. For blocks in and near the ‘rivers’ in
the valleys, the watersheds are more certain than on higher grounds. Blocks that are close to the
‘rivers’ have a very high uncertainty. The reason for this is explicable by the same explanation as the
explanation for the above scenario, which is given in the next section. Blocks that are positioned on
higher ground have a high uncertainty, but when we realize what we calculate in these situations,

52

8.1. RESULIS

60 -

40

20

. H H | I DHH DHH ol gl

0 1 2 3 4 5 6 7 8 9
]anlaneSurm (10x10) 00 PlaneSurf72 (50x50) [0PlaneSurf72 (100x100) \

#percentage

Figure 8.5: Uncertainties in the PlaneSurf72 flooded data file, for three different block settings.

60

40

20 |-

#percentage

0 1 2 3 4 5 6 7 8 9
] 00Plane72 (100x100) 0 PlaneSurf72 (100x100) \

Figure 8.6: Uncertainties of the 100x100 block setting for Plane72 and PlaneSurf72 compared.

this makes sense. The certainty of a watershed says something about the proportion of the potential
watershed compared to the persistent watershed. In the case of cells that are on higher ground, the
potential watersheds are quite small, and the persistent watershed is also very small. Due to the fact
that these areas suffer from local roughness, it is very likely that, although the watershed is very small,
a number of these cells in the watershed can avoid flowing throug a cell in Q. Therefore, a large part
of the potential watershed is not in the persistent watershed. Because the watershed of such a cell is
very small, an extra cell more or less in the potential watershed suddenly gives a large difference in
certainty. Take for example a persistent watershed of size 1. When the potential watershed has size
995 or 100, this both results in a certainty of roughly 0.001. When the potential watershed has size 5
or 10, this gives two different certainties 0.2 and 0.1. This immediately clarifies the fact that parts of
the ‘rivers’ in the valley have a higher certainty; the size of the watersheds for cells down in the valley
are very large, because all water from the cells uphill end up in the river some time. That means thata
few cells more or less in the potential watershed have less influence on the certainty of the watershed.
This also explains the observation that for uphill areas, the uncertainty decreases rapidly for higher
block size. Since the watersheds in the uphill areas are smaller than for the valley ‘rivers’, taking a
larger block size increases the size of the persistent watershed, but the size of the potential watershed
increases by only a number of cells, as depicted in Figure[8.9]

Another observation we can make, is that the certainty of the watersheds increases for the lower
locality settings (interpolating based on a smaller neighbourhood), see[A.3] This makes sense, since
taking more measurements into account from areas further away, will influence the fit of a plane; for
a larger neighbourhood, the uncertainty ranges become slightly larger. As we saw with the min-max
method, if ranges become too large, the dam-building problem appears again, but now on a more
local scale.

53

CHAPTER 8. EVALUATION

.
(a) PlaneSurf72 10x10 (b) PlaneSurf72 50x50 (c) PlaneSurf72 100x100

Figure 8.7: Uncertainty decreases for larger blocksizes (area is 12.4km by 11km)

T

Figure 8.8: Watersheds of a 10x10 block a little further upwards the river

.
(a) PlaneSurf72 10x10 (b) PlaneSurf72 50x50 (c) PlaneSurf72 100x100

Figure 8.9: Uphill watersheds stay small, resulting in less uncertainty for larger block sizes.

We also calculated the certainties for the case of the MFD method, where water flows to all neigh-
bours that have a lower or equal elevation as the cell we are looking at. The results are similar, see Ap-
pendix[Alfor the Plane72 results - for larger block size the uncertainty decreases, and for the PlaneSurf
methods the results give slighlty better results than the Plane methods. However, in general the un-
certainty of the blocks is higher, which means that there is a larger difference between the size of the
potential watersheds and persistent watersheds. This can be explained by the fact that cells are added
to the potential watershed if there is a setting such that at least one of the neighbours can be posi-
tioned at a lower height and water from this cell can flow to a cell in Q. But for these cells there are
also other settings where they will not have a higher height and water will flow to other cells that will
never reach a cell in Q. As a result, the potential watershed calculated by using the MFD method is
usually larger than the potential watershed of a set of cells for the SFD method, containing more cells
that are also contained in the Q-avoiding potential watershed.

54

8.2. EVALUATION OF THE WATERSHED ALGORITHMS

8.2 Evaluation of the watershed algorithms

During our computations we stumbled upon a number of problems. Below, we will discuss each of
the problems and, where applicable, suggest solutions for the problems.

8.2.1 Single-cell behaviour

One of the main drawbacks of the watershed algorithms is the fact that the calculations are done in
a single-cell fashion, meaning that a tiny change in the input set Q can have a huge effect on the
resulting watersheds. One would expect that adding one cell more or less from the same area to the
set Q does not have such a great impact on the results. This turned out not to be true. Especially in
the case of an area where cells have a similar height, such as a flooded terrain, the algorithms return
confusing results and you need to understand the behaviour of the watershed algorithms very well to
draw any conclusions on, for instance, the certainty of the watershed.

The certainty of a watershed — size(persistent watershed) versus size(potential watershed) —
gives an idea of the amount of water that could flow via the set Q. In the case that the persistent
watershed is very small compared to the potential watershed, one would intuitively assume that there
is a low probability that all the water from the potential watershed will eventually flow through Q.
However, this is in most cases not the case. The reason why there is a large difference in size in many
cases is causes by the fact that water can avoid the set of cells via a number of neighbouring cells that
do not belong to the set Q.

In Figure a situation is sketched for which the algorithms returns a confusing answer. In
this example — where only a part of the terrain is drawn for simplicity — the persistent and potential
watershed of cell ¢ are depicted; the red outlined cell, cell ¢, is the only cell in the persistent watershed,
all blue cells together with cell ¢ belong to the potential watershed. The darker blue cells have a
higher elevation than the light blue cells and the green cells have the highest elevation. The arrows
leaving from the light blue cells indicate that water from these cells will always flow downwards to
their neighbouring cells. According to the watershed definitions, water from the darker blue cells
may avoid flowing through cell ¢ on their path to the ocean. This is indeed the case, since water can
flow around cell c via the other two light blue cells, where it gathers again afterwards to flow further
downwards. However, this is a very unrealistic situation, and we are not interested in the behaviour
of water avoiding single cells, but in the general behaviour of water in that area. When we would have
selected the three light blue cells as a set to find the potential and persistent watershed, all dark blue
cells would have been part of the persistent watershed as well.

With this single-cell behaviour formulated, we can explain the results of Figure The blocks
that cover the lowest cells in the ‘rivers’ of the valleys have a high certainty, since water can not ‘escape’
flowing through these lowest cells. Blocks that contain a number of lowest cells of the ‘river’, but not
all, calculate the potential watershed and end up with the cells that will flow through these lowest
cells, but can avoid these cells by flowing through the neighbouring cells of the river, that are not
included in the block. This results in a small persistent watershed, since a large part of the uphill cells
can avoid the cells in Q by flowing via the neighbouring river-cells. On higher ground, the watersheds
are smaller, but the difference of a small amount has a great impact on the uncertainty of a watershed,
causing a lot of blocks ending up in the low-certainty categories.

Possible solution and drawback

We thought of a solution for this problem, by augmenting the set Q with all direct neighbours with
the low elevation c; the same as the lowest elevation for a cell in Q. Although this would lead to better
(more certain) results — results where the persistent watershed have a size in the order of the size of
the potential watershed — for a large number of calculations, the resulting watersheds are not related
to the (actual) watersheds of the original set Q.

55

CHAPTER 8. EVALUATION

For cells Q’ in a flooded area, the new algorithm would add all neighbouring cells within that are
flooded as well to the set Q of the calculations. This is more or less what is intended; water flowing
to cells in a local depression gathers until the local depression is filled and then continues its way to
lower situated areas. This means that water arriving at other cells in the local depression is able to
flow to Q, before flowing to lower grounds. The calculations would now give a better overview of the
potential watershed of this flooded area, and therefore a better overview of the potential watershed
of the original set Q’. On the other hand, for example on a mountainous area, the extension of the set
Q can include cells that are not significant for the current area of interest. Let us take, for instance,
the mountain sketched in Figure The cells that are positioned in the grid on the place of the
isolines have an elevation represented by the height of that isoline. If we calculate the watersheds for
the set Q = {c}, where c is positioned on the green isoline, the new algorithm would enlarge the set Q
by all the cells on that green isoline. At that moment, we are not calculating the watershed for the area
of cell c anymore, but we are calculating the watersheds for the complete mountain path of the height
of cell ¢; This will return the potential watershed containing the cells of the complete mountain top
above within the green isoline, which is absolutely not the result we intended to find.

(a) Sketch of the situation of single-cell be- (b) Sketch of a set of isolines representing
haviour the top view of a mountain

Figure 8.10: Examples to clarify one of the drawbacks of the watershed algorithms used

8.2.2 Computation times

A second drawback of the (implementation of the) algorithms, is the fact that calculations for a com-
plete area (even if the area contains not that many cells) costs a lot of time. The theoretical running
times of the algorithms are O(nlogn) and O(n?logn). Unfortunately, the input terrains are very large
— hundreds of millions cells — and the algorithms contain a lot of set calculations on this input. Tak-
ing the complement of a set, computing the difference of two sets; with really large sets, this takes a
lot of time due to the fact that these sets do not fit in memory any more. Other calculations, such as
the expansion of a cell, are also delayed when the information needed by the algorithm is too much
to fit in memory. At that moment, the I/O-inefficiency of an implementation becomes important.
There is a large similarity between the computation of a potential watershed (also for the Q-avoiding
potential watershed) and a regular Dijkstra single-source shortest path query. The only difference is
the way the ‘distance’ is calculated; for watersheds we investigate the possibility of a flow path rather
than computing the length of the path. This difference is captured in the EXPAND functions of the
watershed algorithms.

56

8.3. FURTHER RESEARCH

Henzinger et al. [HKRS97] propose a (theoretical) linear time algorithm for computing a Dijkstra
query, by changing the order in which the nodes are extracted from the queue — with the possibility
that a node is extracted multiple times. The structure of this algorithm is very similar to the structure
of a standard I/O-efficient algorithm — dividing the area in smaller partitions, compute answers for
the smaller partitions and combine the results — we suspect that this structure can be used to obtain
an I/O-efficient implementation of the Dijkstra algorithm. Since the only difference between the
Dijkstra query and a watershed query is the way the ‘distance’ is determined, and the queueing part is
the same, we also believe that this approach can be used to speed-up the watershed algorithms. One
interesting question for further research would be, whether this theoretical linear-time algorithm can
indeed be translated to an I/O-efficient technique for Dijkstra queries.

8.2.3 Flow on levelled terrain

Another problem could be the fact that water can flow to neighbours with an equal height. In most
GIS computations, grids are pre-processed and areas with neighbouring cells with an equal elevation
are perturbed such that equal heights for two neighbours do not occur any more. It is very difficult
to say anything about the influence of this choice, because the algorithm calculates the watersheds
based on ranges and it is not always clear when a decision is made for equal neighbour flow. Since it
is possible to select any elevation value within the allowed range, independently of the elevations se-
lected for the neighbouring cells, we think the dam-building effect occurring in the min-max method
described in Section[7.1] can also occur in elevation-bounded models that are obtained by different
interpolation methods, but on a more local level. The basic ingredient for this dam-building effect is
that the ranges of the neighbouring vertices should overlap. It could be possible that allowing flow to
neighbours with an equal height enlarges the possibilities to dam-building. However, further research
should be conducted to confirm this claim.

8.2.4 Uncertainty captured

Although there are still some questions about the watershed algorithms for the elevation-bounded
model, we should not forget that, when selecting an appropriate area Q (for instance, a local mini-
mum), we can compute the region for which water will certainly end up in Q and the region for which
water may end up in Q. These watersheds take the elevation ranges into account and and give more
information on the possibilities of the terrain compared to calculations on models with fixed eleva-
tions. The areas of the potential watershed that are not included in the persistent watershed are then
areas for which the uncertainty in the elevations of the cells can give no definite conclusion on which
flow path for ending up in the ocean is followed on the real terrain. The persistent watershed then
gives a good impression of the minimal size of the watershed and the possible areas from which water
can end up in Q as well.

This adds value to existing methods, which base their calculations on fixed elevations and do not
take into account that the terrain may have a different shape in reality. Furthermore, by fitting a plane
or polynomial surface to the area to smooth the terrain in a sense, we deal with measurement errors
and are able to see the results of both situations.

8.3 Further research

Based on the certainty results and the discussion of the single-cell behaviour of the algorithms, we
conclude that a simple calculation of the watersheds of a (set of) cells is not sufficient to base any
conclusions on, since the results heavily depend on the behaviour of direct neighbouring cells. Since
the suggested approach for extending the set of cells has the drawback that original intentions of a
calculations get lost, a new way of determining how to extend a set Q should be formulated. This can

57

CHAPTER 8. EVALUATION

be done by estimating a sort of measure for the probability that a cell belongs to the area of interest
or not, and based on these estimates, for example, extending the set Q. It would be very useful to put
some time in investigating the possibilities for this approach, therefore, we suggest this for further
research.

As explained in Section it could also be useful to investigate the definitions of a persistent
watershed. We are not sure whether it makes sense that the persistent watershed of a set Q can be
disconnected, taking the idea behind flooding into account. The new definition however, should
be weaker than the original definition of the core watershed, as already explained by Driemel et al.
[DHLS11]. Based on the new definition, experiments should be conducted on real terrains to find out
whether the definition has the desired results.

The algorithm for calculating the Q-avoiding potential watershed of a set Q for the MFD model
takes O(n?logn) time, as proven in Section This also affects the running time of the persistent
watershed of Q in the MFD model, since this algorithm invokes the Q-avoiding potential watershed
algorithm. We are interested whether there exists a faster way to calculate the Q-avoiding potential
watershed and the persistent watershed of Q. One could think of a complete new approach, by re-
placing the method for finding the peak avoid watershed by a simpler one if possible, or by enhancing
the existing algorithms. Future research should show the possibilities in this matter.

Other questions that arose during this project, which are interesting for further research are:

1. Is there a way to pre-process LiDAR data to a grid with useful uncertainty ranges?

2. Isit a problem that water can flow to neighbours with equal height?

3. How can we adapt the watershed algorithms such that the single-cell behaviour has less impact
on the results?

4. Is it possible to use the techniques in the in theory linear-time algorithm as proposed by Hen-
zinger et al. [HKRS97] for an I/ O-efficiency implementation in practice?

58

Nomenclature

pr g pflowstoginR

T Representation of an imprecise terrain

b4 A flow path

I1(S) The set of all flow paths in any realizationin S, SC Ry
7[p,q] The subpath of 7 from p to g

Ry The set of all realizations of an imprecise terrain 7
Wr(Q) Watershed (SFD)

Wnr(Q) Persistent watershed (SFD)

Wn(Q) Core watershed (SFD)

Wy(Q) Potential watershed (SFD)

WL\JQ (S) Q-avoiding potential watershed (SFD)

W&JQ Q-avoiding potential watershed (MFD)

MFD

Wr Watershed (MFD)

MFD

Wpn Persistent watershed (MFD)

MFD

Wy Potential watershed (MFD)

MFD
N(P) The neighbourhood of a point set P

3-CNF Conjunctive Normal Form formula with clauses of three variables
3-SAT 3-Satisfiability Problem

DEM Digital Elevation Model

GIS Geographic Information Science

59

NOMENCLATURE

MFD Multiple Flow Direction

SFD Single Flow Direction

60

Bibliography

[CZL12]

[Dav08]

[DHLS11]

[dPCRMO08]

[FT06]

[GKLS12]

(GP08]

[HKRS97]

[HTar]

[Jan08]

[Lin06]

[Mon09]

Qin Cheng-Zhi and Zhan Lijun. Parallelizing flow-accumulation calculations on
graphics processing units — From iterative DEM preprocessing algorithm to recursive
multiple-flow-direction algorithm. Computers and Geosciences, 43(0):7-16, 2012.

Laurie Davies. Linear Regression and the Analysis of Variance. Lecture notes, Eindhoven
University of Technology (TU/e), 2008.

Anne Driemel, Herman Haverkort, Maarten Loffler, and Rodrigo Silveira. Flow Compu-
tations on Imprecise Terrains. CoRR, abs/1111.1651, 2011. v2, last revised 26 Sep 2012.

Adriano da Paz, Walter Collischonn, Alfonso Risso, and Carlos Mendes. Errors in
river lengths derived from raster digital elevation models. Computers and Geosciences,
34(11):1584 — 1596, 2008.

Peter Fisher and Nicholas Tate. Causes and consequences of error in digital elevation
models. Progress in Physical Geography, 30(4):467-489, 2006.

Chris Gray, Frank Kammer, Maarten Loffler, and Rodrigo Silveira. Removing Local Ex-
trema from Imprecise Terrains. Computational Geometry, 45(7):334 — 349, 2012.

Stephan Gruber and Scott Peckham. Land-Surface Parameters and Objects in Hydrology.
In Geomorphometry, volume 33 of Developments in Soil Science, pages 171-194. Elsevier,
2008.

Monika Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-
path algorithms for planar graphs. J. Computer and System Sciences, 55(1):3-23, 1997.

Herman Haverkort and Laura Toma. Terrain Modeling for the Geosciences. In Teofilo
Gonzalez, editor, Computing handbook set, volume I: Computer Science. CRC Press, To
appear.

Jeffrey Janssen. Drainage computations on Digital Elevation Models. Master’s thesis,
Eindhoven University of Technology (TU/e), 2008.

John Lindsay. Sensitivity of channel mapping techniques to uncertainty in digital ele-
vation data. International Journal of Geographical Information Science, 20(6):669-692,
2006.

Douglas Montgomery. Design and Analysis of Experiments. Wiley, 7th edition, 2009.

61

BIBLIOGRAPHY

[Wis07]

[ZL02]

Steven Wise. Effect of differing DEM creation methods on the results from a hydrological
model. Computers and Geosciences, 33(10):1351-1365, 2007.

Qiming Zhou and Xuejun Liu. Error assessment of grid-based flow routing algorithms
used in hydrological models. International Journal of Geographical Information Science,
16(8):819-842, 2002.

62

APPENDIX A

Extra results

In this appendix, more results supporting the claims in Chapter|[8|are presented.

-.. | | a2 .
|I . -
Ry e, I.
" - n ' L |
-:- :l - m
L m
o e
I‘--- .‘ | - J
(b) Plane30 50x50 (c) Plane30 100x100

-.-l:-. “
.-.5..__r,__-,

o 58 I n
g 5 e ._ |_- 1 =
- |
= : .I. , " - . l. .
I. I
- B - n I __B - . .
(o PR = .
VL T ol m o |
(d) PlaneSurf30 10x10 (e) PlaneSurf30 50x50 (f) PlaneSurf30 100x100

Figure A.1: Results of the different interpolation methods on the Neuse data set for the 30 neighbours
setting and the SFD method.

63

APPENDIX A. EXTRA RESULTS

g o B . =
“ e o
e 2N u
o o N A
. I..I , | | | | : o . .
TS, &
] B - | |
-— L n = o . mnm k. .
(b) Planel8 50x50 (c) Planel8 100x100
g it o =
. L ' .l.
| | | |
» | | | |
| | | | = n I. | | -
. n
u ; | | I | | : u ‘ . .
I- - | |
=S "'J =
vre . | | | |
(d) Plan (e) PlaneSurf18 50x50 (f) PlaneSurf18 100x100

Figure A.2: Results of the different interpolation methods on the Neuse data set for the 18 neighbours
setting and the SFD method.

- 4 gy

[| [| [|
[| c H
3 |
[| A N | Al | m um
| | B EE N
|| |
¢
[| IJ.H
[| - N | 15m - -
. ™
(a) Plane18 100x100 (b) Plane30 100x100 (c) Plane72 100x100

Figure A.3: Interpolating based on smaller neighbourhoods results in lower uncertainty

64

(a) Planel8 10x10 (b) Plane30 10x10 (c) Plane72 10x10

Figure A.4: Comparison of the results for different neighbourhood settings for a block of size 10x10

!.t...n..

(a) Plane18 100x100 (b) Plane30 100x100 (c) Plane72 100x100

Figure A.5: Comparison of the results for different neighbourhood settings for a block of size 100x100

(a) Plane72 10x10 (b) Plane72 50x50 (c) Plane72 100x100

Figure A.6: Results of the Plane interpolation method on the Neuse data set for the 72 neighbours
setting and the MFD method.

65

This Page Intentionally Left Blank

	Introduction
	Preliminaries
	Modelling terrains
	Modelling uncertainty
	Modelling flow
	Watersheds
	Expanding a node in an equidistant grid

	Disconnected Persistent Watersheds
	Watersheds in the MFD Model
	New watershed definitions
	Watershed algorithms for the MFD method

	NP-hardness in the Slope-Bounded Model
	General idea of the construction
	Details of the construction
	Correctness of the NP-hard reduction
	NP-hardness in equidistant slope model

	Implementation
	Creating the uncertainty models
	Calculating with the uncertainty models

	Computing the Elevation Range
	Locality setting
	Ordinary Least Squares
	Flooding

	Evaluation
	Results
	Evaluation of the watershed algorithms
	Further research

	Extra results

