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Abstract

In this thesis we study the point-location problem in 1-dimensional and 2-dimensional space.
We show how to construct data structures such that queries with points far from the boundary
of the region containing them are answered faster than queries with points close to the region
boundary. More precisely, we present point-location structures that have O(log( 1

δq
)) query

time, where δq is the distance from the query point to the nearest region boundary relative
to the size of the domain of the space.
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1 Introduction

Point location is one of the most fundamental problems in computational geometry and found
in many applications. When car navigation software receives gps-coordinates of your current
location it uses point location to find the street you are driving through. When clicking with
your mouse on a computer screen point location is used to find out on what button, window,
etcetera you clicked. The point-location problem is defined as follows. Let S be a subdivision
of a 2- or higher dimensional space into regions. A point-location query is to find, for given
query point q, in which region the point q lies. To answer such queries quickly, one can
pre-process the subdivision into a suitable point-location data structure. In this thesis we
restrict ourselves to 2-dimensional subdivisions with polygonal regions. The standard point-
location structures [7, 8, 10] in this case need O(n) storage and have O(log n) query time,
where n is the number of edges of the subdivision. Intuitively, it should be easier to answer
a point-location query if the query point q lies inside a large region, or when it lies far from
the boundary of any region. The goal of this thesis is to answer the following two research
questions:

1. Can we get faster query times if a query point is inside a large region?

2. Can we get faster query times if a query point is far away from the nearest region
boundary?

These questions are closely related to so-called entropy-sensitive point location. Here each
region of the subdivision has a probability associated to it (the probability that a query point
falls into that region) and the goal is to minimize the expected query time. More precisely,
let S be a subdivision with regions R1, . . . , Rm and query point q. Let pi be the probability
that q ∈ Ri. Then entropy(S) =

∑m
i=1(pi log( 1

pi
)). Let T be a point-location structure for a

subdivision S whose domain has unit area. If T has an expected query time of O(entropy(S))
it is entropy sensitive. Now if T has a query time of O(log( 1

area(Ri)
)), where Ri is the region

in which q lies, then it has faster query times if the query point is inside a large region. If
we take pi = area(Ri), then the query time is O(log( 1

pi
)). The expected query time is then

O(entropy(S)).

Chapter 2 provides some background information on all point-location structures discussed
in this thesis, except for the MDBST and MDBST-2D point-location structures which will be
introduced in this thesis.

In Chapter 3 we look at 1-dimensional point location. Analysis of the OBST shows the
query time for a point q is O(log( 1

pq
)), where pq is the probability of the region in which the

query point lies. Therefore we can say that using an OBST we get faster query times when
the query point is inside a large region. Note that this implies that if we define the probability
of a region to be equal to its relative size, then it has faster query times if a query point is
inside a large region and the expected query time is O(entropy(S)). It is also evident that it
has faster query times if a query point is far away from the nearest region boundary, because
a query point far away from the nearest region boundary implies it is inside a large region. So
the OBST has all the desired properties. However its construction time is O(n3). To improve
this, we introduce a 1-dimensional point-location structure called MDBST. This structure has
O(n log n) construction time and like the OBST it has O(log( 1

pq
)) query time. This again
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means you have faster query times when the query point is either inside a large region or
far away from a region boundary. And of course it also has a O(entropy(S)) expected query
time. We compare the OBST and MDBST in an experiment which shows, as expected, that
MDBST is constructed much faster and has an only slightly worse expected query time. The
relative difference in expected query time even seems to decrease when increasing the number
of regions in the subdivision.

In Chapter 4 all the 2-dimensional point-location structures mentioned in Chapter 2 are
analysed with respect to the research questions. When we make the probability of a region
equal to its relative size, we achieve O(entropy(S)) using either Weighted triangulation re-
finement or Weighted Trapezoidal decomposition if S has only regions of constant complexity.
With a simple example we show that for a 2-dimensional subdivision S which is not restricted
to regions with constant complexity it is impossible to get a query time of O(log( 1

pq
)). Hence,

the answer to research question 1 is negative for 2-dimensional point location. We therefore
turn our attention to research question 2. We show that it is possible to have faster query
times for query points far away from the region boundary using an adapted version of a so
called star quadtree. Then the 1-dimensional MDBST is adapted for 2-dimensional subdivi-
sions. The 2-dimensional version is called MDBST-2D. At the time of writing it can handle
subdivisions where the edges are either vertical or horizontal. For these subdivisions we show
that MDBST-2D has O(log( 1

δq
)) query time, where δq is the distance from the query point

to the nearest region boundary. Finally we experimentally compare the star quadtree and
MDBST-2D using rectilinear subdivisions. In this experiment the expected query time of the
MDBST-2D is always less than the expected query time of the star quadtree. We believe that
this is not only the case in this experiment but that this is always the case, except for some
degenerate cases.

2 Background on point-location structures

This chapter contains related work and serves as background information for the rest of this
thesis. First the OBST is described which can be used as a 1-dimensional point-location
structure and has an optimal expected query time. The OBST is analysed in Section 3. Then
the 2-dimensional point-location structures Triangulation refinement, Trapezoidal decompo-
sition and 2 kinds quadtrees are described. These 2-dimensional structures are analysed in
Chapter 4.

2.1 1-dimensional point location

In 1-dimensional point location the subdivision is an interval [a, b] that is partioned into
regions (intervals) R1, R2, . . . Rn defined by boundary points x0, x1, . . . xn (see Figure 1). For
the sake of convenience we assume that [a, b] = [0, 1]. A subdivision of any other interval
can easily be translated and scaled such that its domain becomes [0, 1] without changing
any of the ratios between the regions. One could use an ordinary balanced seach tree as
point-location structure. The tree would have a depth of O(log n) and therefore can answer
any point-location query in O(log n) time. If one knows for each region Ri its probability
(that a query point lies in that region) then one can optimize the point-location structure for
its expected query time. The expected query time of a tree T is O(cost(T )), where cost is
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x0 x1 x2 xn−1 xn

R1 R2 Rn

0 1

Figure 1: 1-dimensional point location.

defined in Definition 2.1, where we assume that for each region Ri there is a unique leaf node
ui where the search with a query point p ∈ Ri ends.

Definition 2.1. Let T be a tree and pi be the probability of a query to end in the leaf node

ui ∈ T corresponding to region Ri. Then cost(T ) =
∑
ui∈T

((depth(ui) + 1)pi).

The OBST (Optimal Binary Search Tree) balances the tree such that it has minimal cost
and thus optimal expected query time. The OBST tree is constructed using dynamic pro-
gramming [4]. The general form of the subproblem to be solved by the dynamic-programming
algorithm is as follows. Given indices i, j with 0 6 i < j 6 n, compute an optimal tree for
the subdivision of [xi, xj ] into regions induced by xi, . . . , xj .

First three tables are filled with information about these subproblems and then the OBST
is constructed using the last table. The first table w[0 . . . n − 1, 1 . . . n] contains the weight
of the subproblems which is the sum of the probabilities of the regions inside the interval
of the subproblem. The second table, cost[0 . . . n − 1, 1 . . . n], contains the cost of the sub-
problems that is, cost[i, j] is the minimum cost of a tree on the subdivision of [xi, xj ]. Then
cost(i, j) = cost(i, r) + cost(r, j) + w(i, j), where r is the point contained in the root node.
Unfortunately it is not known which r results in the least cost and the cost for each possible
r needs to be calculated.

Thus cost(i, j) =

{
pj if i = j − 1
min
i<r<j

cost(i, r) + cost(r, j) + weight(i, j) if i < j − 1

After calculating the cost in previous table, one can fill the third table. The third table,
root[1..n− 1, 2..n], contains the index of the point in the root node of the subproblem which
is. This table has one row less than the other two since the root of an OBST of a single
region is a leaf which does not contain a point. The OBST is constructed using the third
table. Start with the root of the complete problem which is located at the top of the table.
Divide the range in two using this root and get the roots of the subtrees. Repeat this until
the interval contains a single region which becomes a leaf.

The tables consists of O(n2) entries so the space needed for construction is O(n2). Fill-
ing an entry in this table takes O(n) time since the cost for each possible root needs to be
calculated. This results in O(n3) construction time. The book ”Introduction to algorithms”
[4] contains a more elaborate description of the OBST, with i.a. pseudo-code.

2.2 Triangulation refinement

The first standard 2-dimensional point-location structure that we discuss [7] is based on tri-
angles. Therefore the non-triangular regions in the subdivision S need to be triangulated
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first. Also S may contain at most three outer vertices, which form a triangular bounding
box around the subdivision. In case it contains more than three outer vertices then at most
two extra vertices need to be added to meet this requirement. The general idea is to build
a hierarchy of triangles. The structure consists of a series of triangulations T0, T1, . . . ,Tm.
Triangulation T0 consists of only one triangle made of the three outer vertices, then in each
following triangulation the previous one gets refined, until the final triangulation Tm which
is the triangulated version of the original subdivision. Each triangle ∆ in Tk contains links
to those triangles in Tk+1 that intersect it. We call these triangles the children of ∆. A
terminal triangle is a triangle that is (also) found in the final triangulation Tm. Quering this
point-location structure with a query point q is done by going down the hierarchy, starting
in the single triangle of T0 and always proceeding to the child containing q, until a terminal
triangle is reached.

The data structure is constructed bottom up. Triangulation Tk is derived from Tk+1 by
removing an independent set of vertices (not containing the three exterior vertices) and re-
triangulating the resultant non-triangle polygons. The links to intersecting triangles need to
be added and the terminal triangles need to be marked (the ones that have just one link
which is to another terminal triangle). A greedy algorithm can pick a big enough indepen-
dent set each time such that the number of triangulations m = O(log n) and at the same
time ensures that triangles intersect not more than a constant number of triangles from the
next triangulation. This results in a query time of O(log n) and a space requirement of O(n).
The construction time of this point-location structure is O(n) (after triangulating the non-
triangular region of the initial subdivision). Figure 2 shows an example of the construction

T1 T0

T3 T2

∆0
∆1

∆2

∆3

∆4 ∆5 ∆6

∆7

∆8
∆9

∆10

∆11
∆12 ∆13

∆14 ∆15
∆16

∆17

∆9 ∆10 ∆11 ∆12 ∆13 ∆14 ∆15 ∆16 ∆17

∆0

∆1 ∆2 ∆3

∆4 ∆5 ∆6 ∆7 ∆8

HierarchyTriangulations

Figure 2: Triangulation refinement example.

of a triangulation hierarchy as described above. T3 is the original triangulation. The hollow
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vertices with a red edge form the independent set that will be removed in Tk−1. The dashed
edges are created after re-triangulating a non-triangular polygon. An example of a terminal
triangle that is not in the final triangulation T3 is ∆5. Note that ∆5 becomes ∆11 in T3 but
has the same shape and position.

2.2.1 Weighted Triangulation refinement

Now suppose each region Ri of our initial subdivision has a probability pi associated to it.
Iacono [6] presented an algorithm to adapt the triangulation-refinement point-location struc-
ture [7] such that it becomes entropy-sensitive. The trick is choosing the independent sets of
vertices that are removed each step in a certain way.

In the paper [7] it is assumed that the subdivision is a triangulation. But in practice the
subdivision is often non-triangular. Therefore the regions need to be triangulated first. You
can then distribute the probability of the region evenly over the triangles. This step can
disturb the O(entropy) expected query time for subdivisions with non-constant complexity
regions since the triangles may get a much lower probability than the region it is in.

Let T be a triangular subdivision and n the number of vertices. Then the algorithm chooses
an independent set of size (n− 3)/50 each time, where each vertex has a degree of at most 24
and each vertex is not incident to a triangle with a probability of more than 24/n. The sub-
traction of 3 out of n is caused by the fact that the outer 3 vertices may not be removed. Using
Eulers formula Iacono proves that there is always such a set. Since the removed vertices have
a degree of at most 24 the new triangles intersect at most 24 triangles of triangulation Tk+1.
The size of the independent set ensures that the number of triangulations, m, is O(log n). A
greedy algorithm can find the independent set of vertices in O(n) time. Hence this structure
can still be built in O(n) time and space. The query time of a single query is O(min (log(n),
log(1/pi)), where Ri is the region containing the query point q. When you multiply for each

region the O(log(1/pi)) bound by its probability you get entropy(S) = O(
∑
Ri∈S

pi log(1/pi))

as a bound for the expected query time for subdivisions of regions with constant complexity.

2.3 Trapezoidal decomposition

The second standard point location structure we discuss [8, 10] is based on a so-called trape-
zoidal decomposition. (A more elaborate description is found in book [2]). To obtain a
trapezoidal decomposition some extra edges need to be added to the subdivision. To this
end a bounding box is created around the subdivision if it doesn’t already exist. Then for
each vertex a vertical edge is added, going both upward and downwards until it encounters
another edge; see the lower left of Figure 3. Notice that the subdivision now consists of only
trapezoids where the vertical edges are parallel. It is possible some triangles are created which
can be seen as trapezoids with one edge of length zero. For every vertex only two extra edges
are added so the number of edges stays asymptotically the same.

The constructed point-location structure is an acyclic directed graph with one root and out-
degree two of the internal nodes. Each leaf represents one of the trapezoids in the subdivision.
The point-location structure is used to find for a query point the trapezoid it lies in. Each
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node contains an edge of the trapezoidal map which is used to navigate the structure.

The point-location structure is constructed simultaneously with the trapezoidal decompo-
sition, by a randomized incremental algorithm. Each time a random edge of the subdivision
is inserted into the point-location structure. First the vertical edges through its endpoints are
added, followed by the edge itself. The search graph of the previous step is used to locate the
trapezoids the endpoints of the new edge fall in. And the trapezoidal decomposition is used
to find out which of the other trapezoids the edge intersects. Then the trapezoidal decom-
position is updated. Constructing them simultaneously is done to reduce the construction
time. Figure 3 shows an example of the trapezoidal map and point-location structure after
inserting edge s1 followed by edge s2. The construction time is expected to be O(n log n),
the size is expected to be O(n) and the query time is expected to be O(log n). In the worst
case the construction time and space used could be O(n2) and the query time linear. In case
a bad structure is constructed with bad query times the algorithm can be repeated until a
good one is found.

s1

s2

p1

q1

p2 q2A

B

C

D E

F

G

s1

s2

p1

q1

p2 q2

p1

A q1

s1

B p2

C s2

D F

q2

s2

E

G

Figure 3: Trapezoidal example from [2].

2.3.1 Weighted Trapezoidal decomposition

There is also a weighted variant of trapezoidal decomposition [1]. The probability of each
region in the subdivision is distributed evenly over the number of trapezoids it includes (not
proportionately to their size). Then each of the four edges of a trapezoid gets 1

4 of the
probability of the trapezoid. The probability each edge gets from their adjacent trapezoids
is being added up. Then a constant K > 0 is introduced and each edge gets a weight of
max(dK · pe · ne, 1), were pe is the probability of the edge and n the number of edges in the
subdivision. Assigning the weight this way will prevent the difference between weights being
more then a factor O(n). The choice of K is a trade off between space requirements and
query time but will not effect them asymptotically. A bigger K will decrease the expected
query time while increasing the expected required space at the same time. The edges are still
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randomly chosen for insertion but the probability that an edge is chosen is not equal for all
edges any more, but now depends on its weight.

The expected construction time of O(n log n) and expected required space of O(n) remain
the same, but the expected query time is now O(entropy) for subdivisions with constant-
complexity regions. Like with Triangulation refinement the distribution of the probability of
regions over the trapezoids prevents the O(entropy) expected query time for subdivisions with
non-constant-complexity regions. Though Weighted Triangulation refinement and Weighted
trapezoidal decomposition both have an expected query time of O(entropy), the constants
used in the Weighted trapezoidal decomposition variant are smaller and hence a bit better [1].

2.4 Quadtrees

Now suppose that the subdivision S is a subdivision of a square. Then we can also use a
quadtree for point location. A quadtree recursively divides the square into four equal parts
until some stopping rule applies. What the stopping rule is depends on the kind of quadtree.
Creating four equal parts is accomplished by splitting each square both horizontally and ver-
tically through the middle, resulting into four equal non-overlapping new squares. These
squares have sides with a length of 1

2t the length of the sides of the bounding box, where t is
the number of recursions.

When the stopping rule applies it is still possible that there is more than one region in-
tersecting the square which means the query cannot be answered yet. In this case another
point-location structure is added to these squares. Which structure depends, like the stop-
ping rule, on the kind of quadtree. The stopping rule causes the interior of the squares to
have certain properties which can be exploited. Originally quadtrees were used as an in-
dexing structure of points in the plane and the stopping rule could be something like: stop
when a square contains at most a constant number of points. Several kinds of point-location
quadtrees exist. In the next subsections a short description for two of them is added.

2.4.1 Star quadtrees

A star quadtree [3] is a linear quadtree [5] designed for fat triangulations. A fat triangulation
is a triangulation where the triangles have angles of at least α for some fixed constant α > 0;
the greater the minimum angle the fatter the triangulation. This α is used in the bounds
given for the query time etcetera.

The star quadtree has as stopping rule: stop dividing when all edges intersecting the square
are incident on a common vertex v. The vertex v can be either inside or outside the square, see
Figure 4. When the stopping rule applies to a square it can intersect with at most 2π

α regions.
The point-location structure for squares with multiple possible regions remaining is unspeci-
fied. The star quadtree has O(log(nα)) query time and requires O( n

α2 log n
α2 ) construction time

and O( n
α2 ) space, where n is the number of edges in the subdivision.

2.4.2 Guard quadtrees

The guard quadtree [3] is meant for storing low-density subdivisions. When a subdivision
S has density λ this means that any disk D is intersected by at most λ edges o ∈ S where

9
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v

v

Figure 4: Two squares for which the star quadtree stopping-rule applies.

length(o) > diameter(D). Every edge has four so-called guards which are used in the stop-
ping rule. The guards are located at the corners of the bounding box of the edge. Note that
two of those guards are located at the endpoints of the edge.

The stopping rule of the guard-quadtree is: stop dividing when the number of relevant guards
inside the square is at most λ. Relevant guards are guards whose corresponding edge inter-
sects the square. The maximum number of remaining edges and thus possible regions in such
a square is O(λ). The point-location structure for squares with multiple possible regions re-
maining is unspecified. The guard quadtree is stored as a compressed quadtree [9] were paths
of nodes with only one non-empty child are compressed to single edges. The guard quadtree
requires O(n) space, O(n log n) construction time and has a query time of O(log(λ)+ log(n)),
where n is the number of edges in the subdivision.

3 1-Dimensional difficulty-sensitive point location

Before looking at 2-dimensional point location we take a look at 1-dimensional point location.
Recall that our goal is to have faster query times when the query point is far away from the
region boundary or in a large region. As explained earlier, this relates to entropy-sensitive
point location. First we will prove that an OBST has O(entropy(S)) expected query time.
Hence, for an OBST the research questions get answered positively. (Recall that for the
analysis of the structures we make the probability that a query point is inside a region equal
to the size of the region which is in 1-dimensional subdivisions the length.) However, the
construction time of an OBST is very large, namely O(n3). Then we introduce a 1-dimensional
point-location structure we call MDBST. It is shown that an MDBST also has O(entropy(S))
query time. Finally the OBST and MDBST are experimentally compared, where we see that
the MDBST is much faster to construct and has an almost optimal query time.

10
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3.1 Entropy-based analysis of the query time of an OBST

In this section we show that the OBST of a 1-dimensional subdivision S has a O(entropy(S))
expected query time. To do this we first prove two lemmas.

Lemma 3.1. Let T be a BST with a subtree T ′ ⊆ T . When the depth of the whole subtree T ′

is increased by one, then the cost of T increases by the sum of the probabilities of the regions
in T ′.

Proof. Recall that the cost of a tree (Definition 2.1) is calculated by summing up for
every node its depth + 1 times the probability of the query ending up there. For the part
outside the subtree T ′, which is T \ T ′, nothing changes, since there both the depth and
probability of the nodes will stay unchanged. The cost for a node u ∈ T ′ changes though. Its
probability stays the same but its depth is increased by one. The difference in cost that a
node u contributes is (depthu + 2)pu − (depthu + 1)pu = pu, where pu is the probability that
a query ends in node u. Since queries end only in leaf nodes which have a probability equal
to the probability of the region it contains and a region can occur only once in T , we know
that the cost of T increases by the sum of the probabilities of the regions in T ′. �

Note that by reverse reasoning the opposite is also true; decreasing the depth of T ′ decreases
the cost of T by the sum of the probability of the regions in T ′.

The following lemma implies that the OBST has faster query times if the query point is
inside a large region, if we take the probability of a region equal to its size.

Lemma 3.2. Let T be an OBST and let u ∈ T be the leaf corresponding to region Ri. Then
the depth of u is at most O(log( 1

pi
)), where pi is the probability of region Ri.

Proof. Lemma 3.2 will be proven by showing that in T always after a constant number of
splits, the maximum length of an interval and thus probability of its corresponding subtree is
divided by a constant factor greater then one. The number of splits is three and the constant
dividing factor is 3

2 . This means that the maximum probability of a node after each three
steps is the multiplied with a factor 2

3 .

We prove it by contradiction. Assume T ′ ⊆ T is a subtree which after three splits con-
tains a subtree T ′′ ⊆ T ′ that has a probability pT ′′ >

2
3pT ′ . If T ′′ is in the left branch of the

root of T ′ then Figure 5 shows for each possible position of T ′′ an example of a tree with
the same regions but with less cost and thus a better expected query time. The left most
tree is T ′. The other trees are the examples of trees with less cost then T ′, were T ′′ is one
of its grey subtrees. Since T ′′ has a probability greater then 2

3 the rest of the subtrees have
a combined probability of less then 1

3 . And in all examples the depth of T ′′ decreases by one
while the depths of all other subtrees increases by at most two. In total the cost of the given
trees decrease compared to T ′. For examples with T ′′ in the right simply mirror the trees in
Figure 5. This shows us that T ′ is not optimal qua expected query time and therefore can
not be an OBST after all. Since every subtree of an OBST should also be an OBST we know
that T cannot be an OBST either. This contradiction proves Lemma 3.2. �

If the query point is far away from a region boundary then it has to be in a large region too.
Therefore the OBST gets also faster query times if the query point is far away from a region
boundary. With Lemma 3.2 we can now prove the following theorem.

11
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Figure 5: The left tree is T ′. The other trees are rotated versions of T ′, containing the same
nodes and subtrees. The rotated trees have less cost than T ′ if one of its grey subtrees (T ′′)
has a probability of at least 2

3 of the probability of T ′.

Theorem 3.3. Let T be an OBST for a 1-dimensional subdivision S. Then the expected
query time of T is O(entropy(S)).

Proof. We know that the expected query time is measured by the cost of the OBST
and only leaf nodes with regions contribute to the cost and these regions occur exactly once.
Therefore the expected query time is the sum of the probability of the regions times the
depth of the node in which they are located. Let T be the OBST of subdivision S and pi the

probability of a region then the expected cost is
∑
Ri∈S

(pi · log(1/pi)) = O(entropy). �

The OBST does not have O(log n) query time like for example Weighted triangulation, where
n is the number of regions. We show this by giving a counter example with O(n) query
time. Suppose S is a subdivision with an interval [0, 1] that has n regions. If S would have a
boundary point halfway its interval, and then each time recursively another boundary point
halfway the interval from 0 to the previous boundary point until it has n regions. Then the
OBST of S would give you the boundary points x0..xn, where x0 = 0, xn = 1 and other
points are xi = 1

2n−i . The OBST of S would then be a left-going chain with length n. See
Figure 6 for an example with n = 5. The smallest regions would have a O(n) query time.
More then O(n) query time for a OBST is not possible since it uses only boundary points for
its internal nodes and exactly once.

3.2 Another difficulty-sensitive 1-dimensional point-location structure: MDBST

The construction of an OBST takes O(n3) time, where n is the number of edges in the sub-
division. For many applications this is to slow. Here we introduce another point-location
structure called MDBST (Middle Dividing Binary Search Tree) that can be constructed in
O(n log(n)) time, though it is not always optimal in terms of the expected query time. But
when it is not optimal it is close.

This MDBST algorithm works as follows. It is a recursive algorithm that at each step has as
input a subdivision [xi, xj ] which is a part of the original subdivision. More precisely, xi and
xj are boundary points with i < j. Each time take the boundary point that divides [xi, xj ]
most equally in terms of length. This is the point closest to the middle point. Take this
point as a split point for the root of the (sub)tree starting with the whole interval. Then split

12
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Figure 6: OBST with O(n) query time were n = 5.

subdivision in two at that split point and recursively add the (sub)trees from the two smaller
subdivisions until they consist of a single region and become a leaf.

As mentioned before this 1-dimensional point-location structure MDBST can be constructed
in O(n log n) time. If there are n regions then there are O(n) points between regions. Each
point represents exactly one node of the MDBST. Together with the n leaf nodes containing
a region there are O(n) nodes. For each recursive step the point closest to the middle needs
to be chosen. Calculating the middle point takes O(1) time and finding the closest point can
be done in O(log n) time since you can order them beforehand in O(n log n) time. Together
this results in O(n log n) construction time.

In Algorithm 8 pseudocode for constructing an MDBST is given.

Algorithm MDBST (X[0..n], i, j)
(∗ X[0..n] is an array with boundary points. ∗)
(∗ X[i] = xi ∗)
(∗ Indices i, j with 0 6 i 6 j 6 n define part of the subdivision to be handled which has interval [xi, xj ]. ∗)

1. mp ←X[j]−X[i]
2 +X[i]

2. Let c be the index of the boundary point closest to mp.
3. root(x) ←X[c]
4. if c− 1 > i
5. left(x) ←MDBST(X, i, c)
6. if c+ 1 6 j
7. right(x) ←MDBST(X, c, j)
8. return x

Figure 7 shows an example of a 1-dimensional subdivision and the constructed MDBST. Note
that the choice for x1 could have also been for x2 (since both were as far away from the middle
point resulting in a slightly different tree depending on the implementation). Figure 8 shows
another example where the result of MDBST is not an optimal in terms of the expected query
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Figure 7: Example subdivision with resulting MDBST tree.

time. In the example ε has a value 0 < ε < 1
6 . The cost of the MDBST tree is (2 + 1) · 1 = 3.

The cost of an OBST tree is (1 + 1)(12 − ε) + (2 + 1)(12 − ε) + (3 + 1)2ε = 5
2 + 3ε. So in this

case the MDBST tree is at most 6
5OPT since 3

5/2+3ε 6
6
5 .

A B C D

0.5-ε ε ε 0.5-ε

s1 s2 s3
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s1 s3
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s3
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s2A

B C

D

MDBST OBST

Figure 8: Example subdivision for which a MDBST does not have optimal query time.

3.3 Entropy-based analysis of the query time of an MDBST

In this section we show that the MDBST of a subdivision S has a O(log( 1
pi

)) query time,
where pi is the probability of the region where the query point lies. Hence, it has faster query
times for query points inside large regions, faster query times for query points far away from
a boundary, and an expected query time of O(entropy(S)), if the probability of a region is
equal to its length.
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Theorem 3.4. Let T be an MDBST of subdivision S. Then a query with a point q takes
O(log( 1

length(Ri)
)) time, where Ri is the region containing q.

Proof. Similar to the proof of Lemma 3.2 for the OBST, we will show that always in a
constant number of splits the interval of a subtree is divided by at least a constant factor
greater then one. The number of splits is three and the division is at least 3

2 . This means
after each three splits the maximum length of an interval and thus probability of the tree is
at most 2

3 of what it was.

Let subtree T ′ ⊆ T and xi boundary point closest to the middlepoint. If T contains just
a single region it will not have a point p′ but then the theorem is true anyway since it becomes
a leaf which will not be split any further. Since T ′ is an MDBST its root contains p′ as split
point. Then we make a case distinction as seen in Figure 9. We made the interval of T ′ start
at 0 and the distance be relative to the length of the interval of T ′. This will not affect the
ratios between the regions. In case A the distance from point p′ to the middlepoint of T ′ is
greater then 1

6 and else it is case B.

case A case Acase B

0 1
3

2
3 1

Figure 9: Cases A and B.

Case A:
In case A, point p′ is located between 0 and 1

3 or 2
3 and 1 in the interval. Point p′ will split

the interval of T ′ into an interval bigger than 2
3 and a small interval at most 1

3 . Let T1 ⊂ T ′

be the subtree corresponding to the small interval and T2 ⊂ T ′ be the subtree corresponding
to the big interval. If T2 contains more than one region it will be split. Let p2 be the point
between regions closest to the middlepoint of T2 which splits it. Since T2 contains the bigger
interval of the two it will also contain the middle point of T ′. Let r2,1 be the region containing
the middle point of T ′. Point p′ is a boundary of r2,1 with a distance to the middle point of
at least 1

6 . The other boundary is located at least as far away from the middle point to the
other side. This means r2,1 will include at least the interval from 1

3 to 2
3 and has a length

greater then 1
3 . To either sides of r2,1 the remaining intervals can now only be smaller then

1
3 . Therefore the interval of r2,1 is greater then half of the interval of T2, meaning that the
middlepoint of T2 is in r2,1 and p2 is the other boundary of r2,1. Then p2 will split T2 in two.
Let subtree T2,1 ⊂ T2 be the one containing r2,1 then that we the only region in it which
means it becomes a leaf and will not be split any more. Let T2,2 ⊂ T2 be the other subtree
with an interval with the length smaller then 1

3 . Now T ′ is divided into subtrees T1 and T2,2
with interval smaller then 1

3 after at most two splits and subtree T2,1 which is not split any
more after one split. In Figure 10 you can see the tree for case A.

Case B:
Since in case B point p′ has a distance of at most 1

6 to the middle point, it will split the
interval of T ′ in intervals with lengths of at most 1

2 + 1
6 = 2

3 . So after one split the subtrees
have intervals with lengths of at most 2

3 of the interval of T ′.
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Figure 10: MDBST for case A.

Both in case A and B we see that in every tree splits the the maximum interval length

will be divided by at least 2
3 . Then the query time for T is at most log3/2(

1

length(Ri)
) =

O(log(
1

length(Ri)
)). This proves Theorem 3.4. �

The MDBST can have in the worst case O(n) query time. The same reasoning as for the
OBST applies here, which is given at the end of Section 3.1.

3.4 Experimental comparison of the MDBST and the OBST

Two experiments were conducted to compare the two point-location structures. Although
the MDBST has not always the minimal possible cost it is expected to be constructed much
faster than the OBST. In experiment 1 the scaling behaviour with respect to the number of
regions is investigated. We look at the construction time, expected query time and depth
of the point-location structures. In experiment 2 we look at the expected query time of the
point-location structures with respect to the proportion of big regions compared to small
regions.

Java is used as programming language. The computer used for conducting the experiments
is a ”Lenovo T60p” laptop with the following properties:

Microsoft Windows XP
Professional
Service Pack 3

Intel(R) Core (TM)2 CPU
T7200 @ 2.00GHz
2.00 GHz, 2,00 GB of RAM
Physical Address Extension

3.4.1 Experiment 1: Scaling behaviour for uniformly distributed boundary points

Data sets.
13 sets of 10,000 subdivisions each were created. A set consists of subdivisions with either
20, 40, 60, 80, 100, 120, 140, 160, 180 or 200 regions. Each region is assigned a random width
[0,1). At the end the width of each region is divided by the sum of the widths of all region,
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such that the interval of the subdivision becomes [0, 1]. Each region has the precision of a
double in Java. For each subdivision an OBST and a MDBST are constructed.

Construction time.
In the second and third column of Table 1 the average construction times of the OBST and
MDBST are shown in milliseconds (All tables are in the appendix). Despite the somewhat
inaccurate measurements because of short construction times you see that the MDBST is as
expected constructed much faster. We expect the construction times to be O(n3) for the
OBST and O(n log n) for the MDBST, were n is the number of regions. In column 4 and 5
the construction times are divided by n3 and n log n respectively. Here the numbers settle
around a constant number, indicating that the bounds for the construction time are tight.
The numbers of the OBST are more steady than the ones of the MDBST. Constructing an
OBST always requires the same number of comparisons for subdivisions with the same num-
ber of regions. This is not true for the MDBST since the number of comparisons needed for
searching the boundary point closest to the middle of an interval varies. In Figure 11 most
of the data is shown again in a graph which gives a good impression of the big difference of
construction time.
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Figure 11: average construction times in milliseconds experiment 1.

Expected query time.
Recall that the expected query time is O(cost(T )). In Table 2 and Figure 12 both the average
and maximum relative cost of the MDBST compared to the cost of the OBST is shown. It
shows a declining trend in both the average and maximum. And the difference in cost is
not big to start with. When the MDBST has the same cost as an OBST it means that it is
optimal too. Surprisingly no optimal MDBST was created in this experiment for subdivisions
with 80 or more regions.

Depth.
In Figure 13 and Table 3 the minimum, average and maximum depth of both the OBST and
MDBST is shown. The two structures do not differ much in depth but usually the MDBST
seems to have slightly smaller depth.
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Figure 13: Depth, experiment 1.

3.4.2 Experiment 2: Large and small regions

For the second experiment subdivisions are created with small and large regions, as follows.
The small regions are the same as the regions in the previous experiment which have lengths of
[0,1). The large regions vary per set and can have lengths of either [5, 10), [50, 100), [500, 1000)
or [5000, 10000). The portion of large regions starts at zero and is increased by 3

100 each time.
Each combination forms a set and each set contains 10,000 subdivisions of 200 regions. For
each subdivision an OBST and an MDBST is created. The goal of this experiment is to find
out if there is a relation between the relative cost of the MDBST with respect to the fraction
of large regions.

Table 4 contains the average relative cost of the MDBST per set. The first column shows
which portion of the regions is a large region. The first row shows how large these large
regions are. In Figure 14 this information is shown in a graph.

When a subdivision has no large regions then it is similar to the subdivisions in exper-

18



TU Eindhoven Difficulty-sensitive point location

1

1.005

1.01

1.015

1.02

1.025

1.03

0

0
.0
6

0
.1
2

0
.1
8

0
.2
4

0
.3

0
.3
6

0
.4
2

0
.4
8

0
.5
4

0
.6

0
.6
6

0
.7
2

0
.7
8

0
.8
4

0
.9

0
.9
6

co
st

 M
D

B
ST

\O
B

ST

Portion big

5-10

50-100

500-1000

5000-10000

Figure 14: Average relative cost MDBST, experiment 2.

iment 1 (for 200 regions). When it contains a few large regions then the MDBST performs
relatively bad although its average cost is still not more than 2% more then for the OBST.
After that you’ll see an overall decreasing line. After some point (around 70

100 large regions)
the MDBST performs even better than with no large regions. Even though the line is overall
decreasing we see some fluctuation in it and this fluctuation seems to be similar for all four
lines where each line represents subdivisions with different large regions sizes. Looking at the
four lines we see that the difference in cost is smaller when the large regions are larger.

That the difference in cost is smaller when the large regions are larger could be explained
by the fact that when the large regions become larger the relative size of the small regions
compared to the whole length of the subdivision becomes smaller. Therefore the chance of
having a small region containing the middlepoint becomes smaller and it is less likely to have
a situation like in Section 3.1 high up in the tree resulting in a ”big” difference in cost. Ap-
parently the likelihood for such cases to happen is more important for the average difference
in cost then the size of the big region (the bigger the big region the bigger the difference in
cost can be).

Increasing the number of big regions also decreases the relative length of the small regions.
Also the relative size of a single big region becomes less. This explains the decreasing line.

That after some point the MDBST performs even better then when there were zero big
regions can be explained by the fact that the size difference between the smallest and largest
big region is at most a factor two and for smaller regions it can be much more.

When investigating the fluctuation in the decreasing line of the relative cost we noticed that
there is also a fluctuation in the depth of the OBST but not in the MDBST. The OBST has
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an average depth which is greater then the MDBST but when the total number of big regions
is close to a power of two then depth of the OBST is close to the depth of MDBST. And when
at a point where the difference in depth is small we see minima in the decreasing line of the
relative cost. In Figure 15 you can see the depths of the OBST and MDBST for the case of
big regions having a length [5000,10000).
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4 2-Dimensional point location

Now that we know more of 1-dimensional point location in relation with the two research
questions, we try to answer these questions for 2-dimensional point location. In 2-dimensional
point location the subdivision S is a partitioning of a 2-dimensional domain into regions (faces)
R(S) defined by a set of edges E(S). The domain of S is the unit square. The point-location
structure T for such a subdivision S is usually a tree or a DAG (directed acyclic graph) in
which each node ui ∈ T represents a region region(ui) of the domain of S (not to be confused
with the regions R(S)). The region of the root of T is the whole domain, and in each internal
node the region is partitioned into multiple smaller regions that are represented by its child
nodes. Often the region is split in two over a dividing line which is stored in the node. This
line is often defined by an edge from S. It turns out that it is not always possible to create
a point-location structure for a 2-dimensional subdivision that has faster query times if the
query point is inside a large region. It is possible though to get faster query times if the query
point is far away from the nearest region boundary. An adaptation for the star quadtree is
given for which this holds. Also the MDBST for 1-dimensional subdivisions is adapted such
that it can handle rectilinear 2-dimensional subdivisions (which are subdivisions that have
only horizontal and vertical edges) without dangling edges. We call this version MDBST-2D.
For this limited set of subdivisions we prove that it has faster query times if the query point
is far away from the nearest region boundary.

4.1 Faster query times when in large region?

The first research question is:“Can we get faster query times if a query point is inside a large
region?”. The query time of the Weighted triangulation hierarchy and Weighted trapezoidal
decomposition is O(log( 1

pi
)), were pi is the probability of the region Ri ∈ R(S) in which

the query point lies. When we make the probability of a region equal to its size we get
faster query times if the query point is inside a large region. However this holds only for
subdivisions with regions of constant complexity. We will show with a simple example that
no point-location structure can guarantee O(log( 1

size(Ri)
)) query time, where Ri is the region

containing the query point, when the regions in the subdivision do not all have constant
complexity. Imagine a subdivision with two regions of the same size, which are separated by
a zigzag line of n edges like in Figure 16. Although the subdivision has only two regions,
which each occupy about half of the space each, it is obvious that a point-location structure
cannot answer a query in constant time in the worst case.

4.2 Faster query times when far away from boundary?

The second research question is: ”Can we get faster query times if a query point is far away
from the nearest region boundary?”. Let δq be the distance between the query point q and the
nearest region boundary. If the query time of a point-location structure is O(log( 1

δq
)), then we

would have faster query times if the query point is far away from the nearest region boundary.
If a query point is far away from the nearest region boundary then the query point has to
be inside a large region. Hence, Weighted Triangulation refinement and Weighted trapezoidal
decomposition, for subdivisions with regions of constant complexity, have faster query times
if the query point is far away from the nearest region boundary. But for subdivisions that
have a region with non-constant complexity this cannot be guaranteed by these point-location
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Figure 16: Two regions divided by a zigzag line.

structures. The subdivision from the previous section, with a zigzag (Figure 16), is an example
for which it is obvious that both Weighted triangulation refinement and Weighted trapezoidal
decomposition will not produce a point-location structure which has faster query times for
all query points far away from the nearest region boundary. In Figure 17 you can find a
triangulation and a trapezoidal map of that subdivision, with some red points. All the red
points are far way from the nearest region boundary, but is impossible to have fast query
times for all of them. Quadtrees seem more suited when one wants to get faster query times
if the query point is far away from the nearest border. The star quadtree and the guard
quadtree are analysed next.

4.2.1 A star quadtree with O(log( 1
δq

)) query time

Recall that a star quadtree is designed for fat triangulations. A fat triangulation is a trian-
gulation where the triangles have angles of at least α for some fixed constant α > 0. Even
though it is designed for triangulations, its stopping rule is valid for any kind of polygonal
subdivision. So it is not necessary to triangulate the subdivision first. But the proven bounds
for the query time, construction time and required space do not apply for non-triangular
subdivisions. Of course we can first triangulate the subdivision. This would not increase
the number of edges asymptotically, but the minimum angle α can become much smaller.
Nevertheless, the bounds on the query time we will prove below also hold for non-triangular
subdivisions. First we will show that the star quadtree has O(log( 1

δq
) + log( 1

α)) query time,
where α is the minimum angle. Then an adaptation for the star quadtree is given which
achieves O(log( 1

δq
)) query time.

Theorem 4.1. Let T be a star quadtree for subdivision S with angles of at least α for some
fixed constant α > 0. Then a query on T with a point q takes O(log( 1

δq
) + log( 1

α)) query time,
where δq is the distance between q and its nearest region boundary.

Proof. First we analyse the query time up until the stopping rule is applied. Recall that
the stopping rule for the star quadtree is: stop dividing when all edges intersecting the square
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(a) Triangulation (b) Trapezoidal map

Figure 17: Triangulation and a trapezoidal map of a subdivision with a zigzag, each containing
some red points. The solid lines are region boundaries, the dashed lines are edged added to
create the triangulation or trapezoidal map.

are incident on a common vertex v. Note that the stopping rule holds for an empty square.
Since we know that δq is the distance from q to its nearest edge, we know that the circle
with radius δq and query point q at its center is empty inside. Any square with diameter δq
or smaller that contains q, is always in that circle and therefore also empty, see Figure 18.
Until the stopping rule is applied the square subdivision is partitioned recursively in four
equal squares. The diameter of a child square is half the diameter of its parent. The square

corresponding to a node at depth i has a diameter of
√
2

2i
. Hence, a node corresponding to a

square with diameter δq, has depth log(
√
2
δq

). The node representing the largest square which

contains q and with a diameter equal or smaller then δq has a depth less then log(2
√
2

δq
) + 1.

The stopping rule will be applied to this empty square or one of its ancestors. Hence the
query time up until the stopping rule is applied is O(log( 1

δq
)). The part after the stopping rule

is unspecified for the star quadtree. At that point the square contains at most 2π
α edges which

are incident on a common vertex v. By storing these edges in a balanced search tree the query
can then be answered in O(log( 1

α)) time. The total query time is then O(log( 1
δq

) + log( 1
α)).

�

Now an adaptation is given for the star quadtree that has O(log( 1
δq

)) query time. We call this
adapted version δq-star quadtree. The δq-star quadtree is a quadtree with the same stopping
rule as the star quadtree. The difference is in the part after the stopping rule applies. At that
moment the remaining part of the subdivision is a square with edges that are all incident on
a common vertex. Hence all regions are also incident to the common vertex. If the square
contains zero edges it will contain a single region, and a leaf can be added. Otherwise the
produced point-location structure is a binary search tree containing edges of the subdivision
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∆qq

Figure 18: The gray square represents the minimum size of a square containing q.

in its internal nodes. However, we will not use a regular balanced binary search tree to store
these edges. The idea is to convert the 2-dimensional subdivision to a 1-dimensional subdi-
vision and construct an MDBST for it, and then replace the boundary points of the MDBST
with their corresponding edges in the 2-dimensional subdivision. First it is explained how the
point-location structure for after the stopping rule can be constructed for the case that the
common vertex lies outside or on the boundary of the square. Afterwards it is explained for
the case that the common vertex lies inside the square.

Let σ be a final square in the quadtree subdivision, and let E(σ) be the set of edges in-
tersecting σ. Let m be the number of edges in E(σ). Let v be the vertex on which all edges in
E(σ) are incident. Pick an arbitrary edge e∗ ∈ E(σ), and define ∠(e∗, ei) to be the clockwise
angle around v, between e∗ and another edge ei, with a value −π 6 ∠(e∗, ei) 6 π (see Figure
19). Let e1, . . . , em be the edges in E(σ) ordered on their angle with e∗. Since all edges
are incident on v, all regions are also incident on v. Let Ra, . . . , Rm (with a either 0 or 1
depending on the case), such that a region Ri has the edges ei and ei+1 on its boundary. We
will define a 1-dimensional subdivision σ′, based on σ and the edges incident to v, for which
an MDBST will be made. The point x′1, . . . , x

′
m that define σ′ will correspond to the edges ei,

and the regions R′a, . . . , R
′
m will correspond to regions Ri. For the precise definition of σ′ we

distinguish two cases.

Case 1: Vertex v lies outside or on the boundary of the square.
In this case the number of regions is m+ 1 and a = 0. The regions in σ are R0..Rm and the
regions in σ′ are R′0..R

′
m in σ′. An edge e0 is added from v to the corner of σ, such that all other

corners lie on the right side of e0. And an edge em+1 is added from v to the corner of σ, such
that all other corners lie to the left of em+1. By adding e0 and em+1 we make sure that each
region R0..Rm has two boundary edges. The interval of σ′ becomes [∠(e∗, eo),∠(e∗, em+1)].
Every edge ei ∈ E(σ) corresponds to a boundary point x′i ∈ σ′ = ∠(e∗, ei). Note that now a
region Ri in σ corresponds to a region R′i in σ′. See Figure 20 for an example. To construct
the point-location structure, we make an MDBST for σ′ and replace each boundary point x′i
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v

e∗ = 0

−π
π

−π
2

π
2

Figure 19: Illustration of the clockwise angle with e∗.

with its corresponding edge ei.

v

e1 e2

e3

R0

R1

R2

R3

e0

e4

x′0 x
′
1 x′2 x′3 x′4

R′
0 R′

1 R′
2 R′

3

σ

σ′

Figure 20: Example σ and σ′ of a δq-star quadtree (Case 1).

Case 2: Vertex v lies inside the square.
In this case the edges and regions of σ lie in a complete circle around v. The regions in σ
are R1..Rm. No edges need to be added, since every region has two boundary edges, because
e0 now also represents em+1 as boundary edge for Rm. The domain of Subdivision σ′ is the
interval [−π, π]. Similar to the previous case, every edge ei in σ corresponds to a boundary
point x′i ∈ σ′ = ∠(e∗, ei) except for x′0 = −π and x′m = π.

Region Rm is split by the expansion of e∗ and corresponds to two regions in σ′ we call
R′m.1 and R′m.2. If the expansion of e∗ contains an edge then either the length of either R′m.1
or R′m.2 is zero. See Figure 21 for an example. We construct an MDBST for σ′ and replace
each boundary point x′i with its corresponding edge ei.
Now we know how the δq-star quadtree can be constructed, we show that it has faster query

times if the query point is far away from the nearest region boundary, by proving the following
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Figure 21: Example σ and σ′ of a δq-star quadtree before and after the first split (Case 2).

theorem.

Theorem 4.2. Let T be a δq-star quadtree of a 2-dimensional subdivision S. Then a query
with point q takes O(log( 1

δq
)) time, where δq is the distance between q and its nearest region

boundary.

Proof. Let σ be the square of the quadtree subdivision that contains the query point q,
and let σ′ be the 1-dimensional subdivision corresponding to the subdivision within σ. The
query time until we reach the node corresponding to σ is the same as for the star quadtree
which means it is O(log( 1

δq
)). Since the part after the stopping rule is a MDBST we know,

by Theorem 3.4, that querying it takes O(log( ψ
length(R′i)

)) time, where R′i is the region in σ′

containing point ∠(e∗, vq) and ψ is the length of the interval of σ′. This ψ is at most 2π.
Hence, if we can prove that length(R′i) = Ω(δq) then we know it has O(log( 1

δq
)) query time.

Let δv be the distance between v and q. Let δe be the distance between q and the near-
est of the two boundary edges of Ri (incident on v), and let γ be the angle between vq and
the nearest of the two edges incident on v and Ri. See Figure 22. The bounding box of
S is the unit square and its diameter is

√
2. Hence, the maximum distance between two

points in σ is
√

2. There is at least one edge ending in v. Hence, 0 6 δq 6 δe 6 δv 6
√

2,

and we have γ = arcsin( δeδv ) > arcsin(
δq√
2
). It is obvious that the angle between ve and the
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edge incident on v and Ri but not nearest is at least γ. Normally length(R′i) = x′i+1 − x′i =

δv
δe

v

γ

•q

Figure 22: Example for δv, δe and γ.

∠(e∗, ei+1) − ∠(e∗, ei) > 2γ. Only if Ri is split in two (Case 2: i = n), or if σ contains only
one edge of Ri (Case 1: i = 0

∨
i = n), then this is not the case. In those cases length(Ri) is

at least γ.

Distance δq can never be more than
√

2 since it is the maximum distance in S. Since

sinh(
δq√
2
) > 2δq√

2
for 0 6 δq 6

√
2, we have length(Ri) > γ > sinh(

δq√
2
) > 2δq√

2
.

We already knew that the query time for after the stopping rule is O(log( 1
length(Ri)

)). Hence,

it is also O(log( 1
δq

)). Since both of the query times for the parts before and after the stopping

rule are O(log( 1
δq

)), the total query time of the δq-star quadtree is also O(log( 1
δq

)). �

4.2.2 O(log( 1
δq

) + log(λ)) query time guard quadtree

Recall that the guard quadtree [3] is meant for storing low-density subdivisions. When a
subdivision S has density λ this means that any disk D is intersected by at most λ edges
o ∈ S where length(o) > diameter(D). The following theorem gives a bound on the query
time of the guard quadtree.

Theorem 4.3. Let δq be the distance from query point q to the nearest region boundary and
let λ be the density of the subdivision. Then the guard quadtree has O(log( 1

δq
) + log(λ)) query

time.

Proof. Recall that the stopping rule of the guard-quadtree is: stop dividing when the
number of relevant guards inside the square is at most λ. This stopping rule applies to an
empty square. As shown for the star quadtree, there is a node representing such a square in the
quadtree, containing point q, at depth O(log( 1

δq
)). The maximum number of remaining edges

after the stopping rule is O(λ). Hence, if we construct a standard point-location structure on
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the subdivision within each leaf square of the quadtree, then the query time is O(log( 1
δq

) +

log(λ)). �

Unfortunately we found no way to adapt the guard quadtree such that it has O( 1
δq

) query

time, exploiting the property of containing only O(λ) edges after the stopping rule. Other
than using a point-location structure after the stopping rule, that already achieves this on its
own, we see no way to achieve O( 1

δq
) query time.

4.3 MDBST-2D

Here we adapt the 1-dimensional MDBST such that it can be used as a point-location structure
for rectilinear 2-dimensional subdivisions (which are subdivisions that have only horizontal
and vertical edges) without dangling edges. We call this adapted version MDBST-2D. Later
on it is shown that the MDBST-2D has faster query times if the query point is far away from
the nearest region boundary. Suggestions for possible ways to adapt to arbitrary polygonal
subdivisions are given in Chapter 5.

In Figure 23 an example is given of a rectilinear subdivision without dangling edges. Dangling
edges are not allowed since those edges are on both sides incident on the same region and
therefore do not separate regions. It is possible though to get edges that on both sides are
incident on the same region as seen in Figure 24.

Figure 23: Example of a rectilinear subdivision.

In 1-dimensional subdivisions the MDBST chose the boundary point closest to the mid-
dlepoint of the interval, because that was the one dividing the interval most evenly. With
the following example we show that in 2-dimensional subdivisions the line containing an edge
closest to the middle point will not always partition the region most evenly. Note that if one
only partitions the regions with horizontal and vertical lines, then the regions will always be
rectangular. Suppose the subdivision is a rectangle, where the horizontal side has length 20
and the vertical side has length 10 meter long. The rectangle is divided into four regions by a
horizontal line and a vertical line. The vertical line lies 1 unit to the right of the middlepoint.
The horizontal line lies 1 unit below the middlepoint. See Figure 25. Partitioning the subdi-
vision by the vertical line, will result in a part of area 110 and a part of area 90. Partitioning
the subdivision by the horizontal line, will result in a part of area 120 and a part of area
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(i) (ii) (iii)

AllowedNot allowed Not allowed

Figure 24: For all three subdivisions there is an edge incident on the same region on both sides.
Subdivision (i) and Subdivision (ii) contain a dangling edge and are not allowed. However,
Subdivision (iii) is allowed.

0 11 20

0

4

10

Figure 25: Altough both lines are at an equal distance to the middlepoint, the horizontal line
would divide most evenly.

80. Hence, while both lines are equally close to the middlepoint, partitioning by the vertical
line will divide the subdivision most evenly. The line which partitions the subdivision most
evenly, is the line that has the minimum distance to the middlepoint relative to the length of
the sides of the region that are perpendicular to the line. In the given example the relative
distance from the vertical line to the middlepoint is 1

20 , and for the horizontal line it is 1
10 .

Hence, the vertical line is the closest relative to the relevant side length, and it divides the
subdivision most evenly.

Unfortunately this solution will not guarantee faster query times if the query point is far
away from the nearest region boundary. While an edge can be far away from the query point,
the line containing that edge can go through the interior of a region and come close to the
query point. In Figure 26 a subdivision is shown for which the mentioned solution will not
result in a fast query time for point q that is far away from the nearest region boundary.
Hence, a different approach. One option would be to switch each time between horizontal
and vertical edges, when searching for the edge closest to the middle point, until one group
runs out of edges. Or one could, when possible, always choose edges perpendicular to the
longest side of the region. We pick the last solution. Now we will prove some lemmas which
will later on help us prove that our solution works.

Lemma 4.4. Let T be a MDBST-2D for the rectilinear subdivision of the unit square and let
u ∈ T be a node. Then depthh(u) = O(log( 1

lengthv(u)
)), where depthh(u) is the number of nodes
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q

mp

Figure 26: A subdivision for which an MDBST-2D that partitions using the line through an
edge closest to the middlepoint relative to the length of the sides of the region perpendicular
to the line, does not result in a fast query time for point q far away from the nearest region
boundary. The point mp is the middle point of the subdivision. Note that the horizontal line
lies slightly below the middlepoint. In the branch which contains q each time a vertical edge
is chosen over the horizontal edge because the vertical edge goes exactly through the middle
point of the respective region.

on the path from the root to node u that contain horizontal edges, and lengthv(u) is the length
of the vertical sides of region(u). Similarly, depthv(u) = O(log( 1

lengthh(u)
)), where depthv(u)

is the number of nodes on the path from the root to node u that contain vertical edges, and
lengthh(u) is the length of the horizontal sides of region(u).

Proof. We will prove the first part of the lemma. The second part can be proven in a
similar way. If a node in T contains a line through a vertical edge, the length of the vertical
sides of that node is equal to the the length of the vertical sides of the regions correspond-
ing to its child nodes. Hence, lines through vertical edges will not influence the vertical
sides of the region. Hence, we can essentially ignore the vertical splitting lines, and the
situation is very similar to the 1-dimensional situation. Hence, according to Theorem 3.4
depthh(p) = O(log( 1

lengthv(p)
)). �

Lemma 4.5. Let T be a MDBST-2D and let u ∈ T a node. If the regions corresponding to
nodes on the path from the root of T to u always intersect at least one vertical edge if the
horizontal side of the region is longest, then depth(u) = O(log( 1

lengthh(u)
)), where lengthh(u)

is the length of the horizontal sides of region(u). Similarly, if the regions corresponding to
nodes on the path from the root of T to u always intersect at least one horizontal edge if the
vertical side of the region is longest, then depth(u) = O(log( 1

lengthv(u)
)), where lengthv(u) is

the length of the horizontal sides of region(u).

Proof. We will prove the first part of the lemma. The second part can be proven in a
similar way. Let depthh(u) be the number of nodes on the path from the root to node u that
contain horizontal edges, and let depthv(u) be the number of nodes on the path from the root
to node u that contain vertical edges. Let lengthv(u) be the length of the vertical sides of
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region(u).
According to Lemma 4.4, depthv(u) = O(log( 1

lengthh(u)
)). Since on the path from the root

of T to u there were always vertical edges intersecting the regions, a line containing a hor-
izontal edge could only have been chosen if the vertical side of the region was longest. It
takes at most O(log( 1

lengthh(u)
)) nodes containing horizontal lines for the length of the verti-

cal sides to be equal or smaller than lengthh(u). After one more node like that the vertical
side will be smaller then the horizontal side. Hence, depth(u) = depthv(u) + depthh(u) =
O(log( 1

lengthh(u)
)) +O(log( 1

lengthh(u)
)) + 1 = Os(log( 1

lengthh(u)
)). �

Lemma 4.6. Let T be a MDBST-2D, and let leaf(q) be a leaf containing point q, and let δq
be the distance from q to the nearest region boundary. Let σ be the region corresponding to
the parent of leaf(q). Then the region of leaf(q) has at least one side with a length of at least
δq√
2
, and σ contains at least one edge perpendicular to this side.

Proof. Let e be the edge used to partition σ, and let l be the line containing e. Let δe be
the distance from q to e, and let δl be the distance from q to l. Then δe > δq since δq is the
minimum distance from q to an edge.

If δe = δl, then the side of leaf(q) perpendicular to l has a length of at least δe > δq, and edge
e is perpendicular to this side and in σ (Figure 27, Case 1).

If δe > δl then an endpoint, that we call ζ is the closest point on e to q (Figure 27, case

q q

Case1 Case2

e e

δe δl δe

ζ

Figure 27: Illustration for the proof of Lemma 4.6.

2). This ζ is inside the region of the parent of leaf(q). The bounding box with q and ζ in its
corners lies inside leaf(q), and has a diameter of δe. Hence, at least one side of that bounnding

box and thus also a side of leaf(q) has a length of at least
δq√
2
. Since ζ lies inside σ and no

dangling edges are allowed, there must be another edge for which ζ is an endpoint. This edge
is not parallel to e else it would be closer to ζ, so it can be only perpendicular to e. This
means that it does not matter which of leaf(q) has a length of at least

δq√
2
, it has an edge

parallel to it in σ. �

Now we can prove the following theorem that shows us that the MDBST-2D has faster
query times is the query point is far away from the nearest region boundary.
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Theorem 4.7. Let T be an MDBST-2D for a subdivision S of the unit square. Then querying
T with a point q takes O(log 1

δq
) time, where δq is the shortest distance from q to an edge of

S.

Proof. From Lemma 4.6 we know that the leaf containing q has a side with a length of
at least

δq√
2
, and the parent of leaf containing q did contain an edge perpendicular to that

side. Depending on that side, being horizontal or vertical, we can prove with Lemma 4.5,
that the depth of the leaf containing q is at most O(log( 1

δq
)). Hence, a query with point q

takes O(log( 1
δq

)) time. �

4.4 Experimental comparison of the MDBST-2D and the δq-star quadtree

Some experiments were conducted to compare the δq-star quadtree with the MDBST-2D. We
mainly look at the cost of the point-location structures, which is a good measure for the
expected query time. But we also look at the number of nodes the point-location structure
has, which determines the required space.

Java is used as programming language. The computer used for conducting the experiments
is the same as for the 1D-experiments; see Section 3.4.

4.4.1 Data sets

The subdivisions for the experiments were generated as described next. The following pa-
rameters can be used to control the complexity and the sparseness of the subdivision:

• x (number of columns)

• y (number of rows)

• ε (fraction of edges to be removed, 0 6 ε 6 1)

• δmin (minimum length of the sides of a region)

• δmax (maximum length of the sides of a region)

To generate the subdivision, we first create a grid, with x columns and y rows. Each row and
each column gets a random width in the range [δmin, δmax). Then the grid is scaled such that it
fits exactly in the unit square. A grid consists of xy regions, where each region is a rectangle.
Then edges are randomly removed one at a time until in total d(x(y − 1) + y(x− 1))εe edges
have been removed. See Figure 28 and Figure 29, for two examples of a subdivision.

We want to make sure that we always generate a subdivision of the unit square without
dangling edges, that is, each vertex should have degree at least two. We do this as follows.
First of all, we never remove edges on the outer boundary (the boundary of the unit square).
Secondly, if after an edge is removed there are edges with a degree-1 endpoint, then those
edges get removed too. If the removal of these edges results in other such edges, then these get
removed too. This continues until none of such edges exist. The removed edges are added to
the total number of removed edges, but this process does not necessarily stop when a fraction
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of ε edges is already removed. Hence, it can happen that more than a fraction of ε edges get
removed.

Figure 28: A subdivision with x = y = 80,
δmin = δmax = 1, ε = 0.4.

Figure 29: A subdivision with x = y = 80,
δmin = 0.2, δmax = 1, ε = 0.8.

4.4.2 Experiments

The following 3 experiments were conducted. A discussion of the outcome of the experiments
is given in Section 4.4.3.

Experiment 1. Every subdivision in the first experiment is generated with the following
settings:

• x = 400

• y = 400

• δmin = 1

• δmax = 1

Ten sets were created, with values of ε ranging from ε = 0 to ε = 0.9, with steps of 0.1. Each
set consists of 1000 subdivisions. For each subdivision a δq-star quadtree and a MDBST-2D
are created. An example for such a subdivision only with a slightly smaller x and y is given
in Figure 28. Note that all rows and columns have the same width, since δmin = δmax. Hence,
we simply have a regular grid when ε = 0. For each set, the average number of nodes together
with the number of edges in the subdivision (Figure 30a) and the average cost (Figure 31a),
are given for both structures. Also the minimum, maximum and average relative cost of the
MDBST compared to the δq-star quadtree is given (Figure 32a).
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Experiment 2. The second experiment is the same as the first, except now δmin = 0.2.
Hence, the edges are not distributed evenly. An example for such a subdivision only with a
slightly smaller x and y is given in Figure 29. The results are shown in Figure 30b, Figure 31b
and Figure 32b.

Experiment 3. In the third experiment the scaling behaviour as a function of the number

(a) Experiment 1 (b) Experiment 2

Figure 30: The average number of nodes in the data structure as of a function ε. For
comparison, the number of edges in the subdivision is shown as well.

(a) Experiment 1 (b) Experiment 2

Figure 31: The average cost in the data structure as of a function ε.

of edges (for fixed ε) is investigated. The subdivisions in this experiment are generated with
the following settings:

• x = y

• δmin = 0.2

• δmax = 1

• ε = 0.8

Ten set were created with varying number of rows and columns (more rows and columns
means more edges when ε is the same). For the first set x = y = 50. For each following set x
and y are increased by 50. The results are shown in Figure 33, Figure 34 and Figure 35.
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(a) Experiment 1 (b) Experiment 2

Figure 32: The average relative cost ( MDBST-2D
δq-star quadtree) in the data structure as of a function ε

Figure 33: Experiment 3:The average number of nodes in the data structure as of a function
ε. For comparison, the number of edges in the subdivision is shown as well.

4.4.3 Discussion of the experiments

In the experiments we see that the number of nodes of the MDBST-2D is always at most the
number of nodes of the δq-star quadtree. This can be explained as follows. In the part of a
δq-star quadtree before the stopping rule, one recursively partitions a square into four smaller
ones, until some stopping rule applies. Partitioning a square into four smaller ones can be
seen as twice, dividing the current region exactly in half over its longest side. Both sides of a
square are equally long, so one can start with dividing either over the horizontal side or the
vertical side, then divide the two parts over their longest side which is the side perpendicular
to the last chosen side. Eventually, for every edge in the subdivision, there should exist at
least one node in the tree, which contains the line over this edge. Else, one cannot distinguish
between the region on one side of the edge and the region on the other side. Hence, if we
do not have a split coinciding, with an edge, before the stopping rule applies, we will add it
afterwards. The MDBST-2D works in a similar way. It divides the subdivision recursively,
over its longest side, into non overlapping regions. But it does not necessary divide it exactly
in half, because it divides over the nearest line through an edge, which is perpendicular to
the longest side. This looks like an improvement, because now every dividing line coincides
with at least one edge. There are no edges parallel to the dividing line between the dividing
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Figure 34: Experiment 3:The average cost in
the data structure as of a function x.

Figure 35: Experiment 3: The average relative
cost ( MDBST-2D

δq-star quadtree) in the data structure as of
a function x.

line and the line parallel through the middle point. In this part also no perpendicular edge
can end since it has to end on an endpoint of another edge. Hence, shifting the dividing line
to the nearest line through an parallel edge, will not result in more edges in either of the two
regions. Hence, the number of nodes in the MDBST-2D is typically at most the number of
nodes in the δq-star quadtree. The cost of the MDBST-2D is also always less than the cost
of the δq-star quadtree. This can be explained in the same way. Hence, the expected query
time and required space is less for the MDBST-2D.

Comparing the relative cost in Experiment 1 and Experiment 2 (Figure 32), we see that
the relative cost of the MDBST-2D performs is smaller in Experiment 2. This is because in
Experiment 1 the column and row widths are the same and the number of both the rows and
columns is even. This taken together, makes the chance of an edge coinciding with the side
of a square of the quadtree much higher. The advantage over the δq-star quadtree would be
even greater, if the number of columns and the number of rows would be a power of 2, such
as 256 or 512. Looking at relative cost from Experiment 3, in Figure 35, we see that if the
number of edges in the subdivision is increased, that the relative difference in cost between
the two structures becomes less. However we suspect that the cost of the δq-star quadtree
will never be less than the MDBST-2D, except for some degenerate cases were the difference
is made after the stopping rule of the δq-star quadtree. An example of a subdivision for which
the δq-star quadtree can have less cost, depending on the implementation choices of both
structures, is a square with three edges starting in the middle, of which one goes up, one goes
down and one goes to the right (Figure 36).

But if we look at the relative cost in Experiment 1 and Experiment 2, we see that when ε
is large and many edges are removed, that then the relative difference becomes less. This is
contradictory to what we have seen in Experiment 3. Probably the advantage the MDBST-2D
has when more multiple edges lie on the same line, which is higher when ε is small, is more
important.
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Figure 36: A subdivision for which the δq-star quadtree can cost less than the MDBST-2D.
For both structures it costs less if it divides the subdivision first vertically, then if one would
divide it first horizontally. Both structures can divide the subdivision either first horizontally
or first vertically, depending on the implementation of the algorithms.

5 Conclusion

For 1-dimensional subdivisions, the OBST (Optimal Binary Search Tree) is a point-location
structure that has faster query times if the query point is inside a large region or far away
from the nearest region boundary. Unfortunately the OBST requires O(n3) construction time.
We therefore introduced a point-location structure, called MDBST, that also has faster query
times if the query point is inside a large region or far away from the nearest region boundary.
This structure can be constructed in O(n log n) time. The expected query time of the OBST
is optimal when the probability of a query point to lie in a region is proportional to the
size of the region. The MDBST has no optimal expected query time, but according to some
experiments it comes close. In the experiments the expected query time of the MDBST is at
most 5% more than for the OBST. When increasing the number of regions we even saw a
declining trend in the relative difference of the expected query time of both structures.

For 2-dimensional subdivisions with regions of constant complexity, point-location struc-
tures such as Weighted triangulation refinement and Weighted trapezoidal decomposition, have
faster query times if the query point is inside a large region or far away from the nearest region
boundary. But there are 2-dimensional subdivisions with non-constant complexity regions for
which both structures fail both requirements. We showed that it is in fact impossible, to
have a data structure that is guaranteed to have O(log( 1

size(Ri)
)) query time, where Ri is

the region containing the query point. It is possible though, to construct a point-location
structure for 2-dimensional subdivisions with non-constant complexity, that has faster query
times if the query point is far away from the nearest region boundary. An example is the
δq-star quadtree, introduced in this thesis, for which the part after the stopping rule is based
on the 1-dimensional MDBST. The MDBST itself is also adapted, such that it can be used
for 2-dimensional subdivisions containing only horizontal and vertical edges. This structure
is called MDBST-2D, and it is shown that it also has faster query times if the query point lies
far away from the nearest region boundary. We experimentally compared the δq-star quadtree
to the MDBST-2D. The MDBST-2D has always a better expected query time, and requires
less space.

Unfortunately the MDBST-2D cannot handle diagonal edges yet. There are some ideas of
how to do this, but these are not worked out. In the MDBST-2D the horizontal edges and
vertical edges were in different groups. One idea is to group edges with similar slope together.
Another idea is to first recursively partition the subdivision, with horizontal or vertical lines

37



TU Eindhoven Difficulty-sensitive point location

through the endpoints of the edges. And then after some stopping rule, which is perhaps the
same as for the star quadtree, start dividing also diagonally over the edges. The third idea
is to make a hybrid between the second idea and a δq-star quadtree. Choose a dividing line
through an endpoint if its relative close to the middle, else divide exactly in half. And use
the stopping rule, and structure afterwards, as used in the δq-star quadtree.
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Some tables with results of the experiments for 1-dimensional point-location structures.

]regions OBST MDBST (OBST/n3)106 (MDBST/(n log n))105

10 0.043 0.012 43.027 35.731

20 0.055 0.011 6.867 12.344

40 0.203 0.008 3.168 3.689

60 0.552 0.020 2.554 5.758

80 1.208 0.024 2.359 4.647

100 2.281 0.032 2.281 4.756

120 3.770 0.027 2.182 3.197

140 5.825 0.041 2.123 4.088

160 8.550 0.044 2.087 3.713

180 11.989 0.064 2.056 4.761

200 16.340 0.072 2.043 4.703

400 138.109 0.219 2.158 6.334

800 1373.777 0.233 2.683 3.020

Table 1: Average construction times in milliseconds, experiment 1.
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]regions Average MDBST/OBST Maximum MDBST/OBST

10 1.010703229 1.072771914

20 1.006746017 1.04139978

40 1.005472646 1.027054879

60 1.006273478 1.019032613

80 1.004895461 1.015458239

100 1.004725213 1.015131395

120 1.005648701 1.013308495

140 1.005378261 1.013648433

160 1.004403343 1.011180706

180 1.003931625 1.00937304

200 1.0042721 1.009862491

400 1.00388304 1.006531437

800 1.003495534 1.00507212

Table 2: Relative difference in cost experiment 1.

]Regions Minimum Average Maximum Minimum Average Maximum
OBST OBST OBST MDBST MDBST MDBST

10 3 3.42 6 3 3.28 6

20 4 4.84 8 4 4.61 8

40 5 6.20 9 5 5.96 9

60 6 7.04 10 6 6.70 10

80 6 7.49 10 6 7.24 10

100 7 7.94 11 6 7.66 10

120 7 8.31 11 7 8.01 11

140 7 8.58 11 7 8.26 10

160 8 8.82 12 7 8.49 11

180 8 9.00 12 8 8.73 11

200 8 9.21 12 8 8.96 12

400 9 10.41 12 9 10.17 12

800 11 11.67 13 10 11.36 13

Table 3: Depth, experiment 1.
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Fraction large [5, 10) [50, 100) [500, 1000) [5000, 10000)

0 1.004283983 1.004284913 1.004283309 1.004284665

0.03 1.01560761 1.025067452 1.018414091 1.015919917

0.06 1.017592887 1.021543963 1.016037392 1.014892902

0.09 1.018071169 1.020517294 1.011274517 1.010073094

0.12 1.01996699 1.01682772 1.013412912 1.012888929

0.15 1.020625089 1.012184567 1.006835021 1.006162765

0.18 1.017810622 1.012881529 1.008872291 1.008355721

0.21 1.014618902 1.013562393 1.011545298 1.011306369

0.24 1.01305453 1.011995515 1.010555087 1.01040555

0.27 1.012890639 1.009325947 1.007832987 1.00761598

0.3 1.013608351 1.006851752 1.005083955 1.004896244

0.33 1.013754949 1.006492798 1.004752716 1.004549843

0.36 1.012723379 1.007467773 1.006308313 1.006202419

0.39 1.011326463 1.008449826 1.007663802 1.007631493

0.42 1.009973357 1.008677177 1.008128674 1.008078175

0.45 1.008862729 1.008298669 1.007953728 1.00787666

0.48 1.007812931 1.00756735 1.007276384 1.00723348

0.51 1.006803091 1.006534974 1.006243324 1.006224685

0.54 1.005869089 1.005339649 1.005059076 1.005036425

0.57 1.005126865 1.004160063 1.003917735 1.003880702

0.6 1.004591786 1.003301779 1.003026908 1.002994238

0.63 1.00435852 1.002908787 1.002669939 1.002629955

0.66 1.00415015 1.002843063 1.002657674 1.002631035

0.69 1.003832153 1.002916672 1.002805514 1.002793075

0.72 1.003704303 1.003182341 1.003102322 1.0030808

0.75 1.003609408 1.003385126 1.003344305 1.003340843

0.78 1.003502814 1.003476542 1.003455274 1.003458201

0.81 1.003391456 1.003458096 1.003462252 1.00346497

0.84 1.003240016 1.003380698 1.003374454 1.003367314

0.87 1.003070441 1.003201929 1.003220815 1.003201005

0.9 1.0028805 1.002982474 1.002991151 1.003009617

0.93 1.002655585 1.002743717 1.002767504 1.00275158

0.96 1.002396591 1.00244652 1.002453485 1.002458054

0.99 1.002089521 1.002107413 1.002100112 1.002102185

Table 4: Average cost MDBST/OBST, experiment 2.
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