
 Eindhoven University of Technology

MASTER

Computing a toolbit pre-assignment for the AX machine

van Duijnhoven, R.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ab416b61-0eff-4afe-85c4-541bfe8190d2

Eindhoven University of Technology

Department of Mathematics and Computer Science

Master’s Thesis

Computing a toolbit pre-assignment for

the AX machine.

by

R. (Roel) van Duijnhoven

Supervisors

TU/e: prof. dr. M.T. (Mark) de Berg

Assembléon: C.M.W. (Corne) Kuepers and S.H. (Sjoerd) van der Laag

Eindhoven, Thursday 4th April, 2013

Abstract

The AX is a machine developed by Assembléon that uses Surface Mount Technology to pick
and place electrical components on panels in a pipelined fashion. It consists of up to 20 robots
that work in parallel and can all place components. A robot can only pick up a component if a
compatible toolbit is mounted to it. Components of all size and shape can be placed by a robot
by exchanging its mounted toolbit with one of the toolbits in the toolbit exchange unit (TEU)
that is found on each robot. Assembléon has software that can generate instructions for the AX
to assemble panels that lead to low production times. This software computes the toolbits present
in the TEU of each robot. There are, however, situations known where the instructions that are
generated lead to a large number of toolbit exchanges. These take a relatively long time, and
Assembléon believes solutions exist that yield better production times.

In this thesis we present an algorithm that makes use of Simulated Annealing to allocate
toolbits to the TEUs of robots. This assignment of toolbits to TEUs can be pre-assigned into
Assembléon’s software. We show that this software is indeed capable of reducing the production
time for these troublesome problem instances when it uses the pre-assignment as computed by our
algorithm. Our solution gives a reduced production time for 58% of the inputs, and the average
improvement for thoses inputs is 1.8%. If we look at all problem instances we tested (including the
ones where our solution was worse) we still get an average improvement of 0.5%, and we believe
there is still room for improvement.

Contents

1 Introduction 3

2 Background on the AX 5
2.1 Hardware . 5
2.2 Panel specification . 7
2.3 Placement program . 7

2.3.1 Configuration & setup . 7
2.3.2 Cycle . 8
2.3.3 Quality . 9

2.4 The Optimizer package for computing placement programs 9

3 The algorithm of the current Optimizer 12
3.1 High level description . 12
3.2 Fill TEUs of robots . 12
3.3 The genetic algorithm . 13
3.4 Algorithm to obtain solution represented by chromosome 14

3.4.1 Step 1: Select workable TEU . 15
3.4.2 Step 4: Assign components to buckets . 15
3.4.3 Step 5: Ordering the components in a bucket 15
3.4.4 Chromosome’s influence on solution . 16

4 A new algorithm for pre-assigning toolbits 17
4.1 Simplified problem . 18
4.2 Computing the cycle time in the simplified model 20

4.2.1 Filling the part bank . 21
4.2.2 TEU construction from part bank . 21
4.2.3 Computing toolbit exchanges . 22

4.3 Our approach to solving the simplified problem . 24
4.4 Simulated annealing . 25
4.5 Computing an initial solution . 27
4.6 Mutating the solution . 27

4.6.1 Move component . 27
4.6.2 Move part . 27
4.6.3 Duplicate part . 27
4.6.4 Merge part . 29
4.6.5 Swap part . 29

4.7 Strategy for selecting mutator . 29
4.8 Balance objective function . 31

1

5 Experimental evaluation of the new algorithm 32
5.1 Setup . 32
5.2 Experimental evaluation . 34

5.2.1 The effect of the mutators . 34
5.2.2 Effect of the balance objective function . 34
5.2.3 Convergence rate of the SA algorithm . 34
5.2.4 Variance of the PreAssigner . 34
5.2.5 Comparison in the simple model . 36
5.2.6 Relation simple model to complete model 38
5.2.7 Comparison in the complete model . 39
5.2.8 Influence exact toolbit computation . 41

6 Future work 43

7 Summary and Conclusion 45

Bibliography 46

2

Chapter 1

Introduction

Assembléon is a global supplier of Surface Mount Technology (SMT) pick & place solutions for the
electronics manufacturing industry. SMT is a method for constructing electronic circuits in which
the components are mounted directly onto the surface of panels (also called printed circuit boards).
The pick & place machines developed by Assembléon use SMT to place electrical components on
top of panels with high speed and precision.

Figure 1.1: Picture of an AX.

The problem studied in this thesis concerns the AX, Assembleon’s most sold machine. A picture
showing an actual AX is shown in Figure 1.1. The AX machines are used by various manufacturers
to assemble motherboards for laptops, for mobile phones, and for many other types of panels. Once
fully assembled, these panels contain all sorts of chips, resistors and other electronical components.
An AX machine essentially consists of a transport system for transporting the panels through the
machine, and a number of robotic arms alongside the transport system that can place components
onto the panels. To assemble a panel it is put onto the transport system, and transported through
the machine from one position to the next. At each position where the panel halts, one or more
robots place a number of components onto the panel. Then the panel is moved to the next position,
where each robot places some more components. After the panel has halted at every position,
all components have been placed and the panel has been fully assembled. All of this is done in
a pipelined fashion: when the first panel moves from the first robot to the second robot, another
panel enters so that the first robot can start working on that panel. Thus in a generic time step,
the robots are all operating in parallel. Note that the transport system can only transport the
panels to their next positions once all the robots have finished. This requires careful scheduling

3

of which robots places which components, so that the time needed is as small as possible and is
distributed evenly among the robots. There are many aspects that influence the time needed by
the robots to place their components. One important aspect are the so-called toolbit exchanges,
as discussed next.

A robot can pick up a component using a toolbit. The shape and characteristics of the toolbit
should be compatible with the component. The components that a machine places vary in size
and weight however; from a CPU to a resistor. To be able to place all components on a panel
multiple toolbits are thus necessary. In general, it is not possible to schedule the placement of the
components in such a way that each robot only has to place components that can be picked with
the same toolbit. Hence the robots can change their toolbit during the assembly process. This
operation, however, takes a relatively long time.

By smartly deciding which robots places which components (and in what order) the time it
takes to assemble a panel can be reduced. Assembléon has developed software for this, for the AX
machine. While this software usually performs quite well —that is, the resulting schedule for the
given panel leads to a low production time for the panel— there are also cases where significant
improvements seem possible. In particular, there are situations where the current software is
known to generate lots of these toolbit exchanges.

In this thesis an algorithm will be described that makes use of Simulated Annealing to solve a
simplified version of the problem that the AX software is facing. The solution obtained in this way
can be fed to the AX software in an attempt to solve the problems involving toolbit exchanges.

We have experimentally evaulated our new algorithm, and compared it to Assembléon’s existing
Optimizer algorithm. For the simplified version of the problem, our algorithm outperforms the
solution generated by the Optimizer in 74% of the cases, and the average decrease in assembly time
for these cases is then 7.3%. When we feed our solution —more precisely, how it distributes toolbits
over the robots— as a starting point into the Optimizer , then we obtain improved assembly times
in 58% of the cases, with then an average improvement for these cases of 1.8%. The improvements
are particularly good when the original Optimizer generates many toolbit exchanges. Surprisingly
there are also cases where our solutions generates more toolbit exchanges than the Optimizer , but
still has a lower assembly time. Apparently our algorithm is also good at balancing the workload
over the robots.

4

Chapter 2

Background on the AX

2.1 Hardware

High level. The AX is build around a transport beam. This transport beam is used to transport
panels from one side to the other. Multiple panels can be on the transport beam at the same
time. As panels move over the transport beam, components get placed on them. A component is
placed on a panel by a robot. There are multiple robots on an AX, which can work in parallel on
the panels lying beneath it. The components that are placed by a robot are taken from a feeder
bank. The AX consists of a number of segments. Each segment consists of four robot slots; robots
can be mounted upon one or more consecutive slots. Furthermore each segment has its own feeder
bank from which the mounted robots can take components.

There are two types of AX machines. They only differ in the number of segments. The AX301
has three segments, the AX501 has five segments. A high level visualization of an AX301 can be
seen in Figure 2.1.

2 3 4 5 6 7 8 9

feeder banks

robots

feeders lanes

assembly line

Figure 2.1: High level visualization of an AX301 configured with eight robots. The rightmost
feeder bank is zoomed in at. One can see six feeders mounted to the feeder bank slots. Some
feeders take up multiple slots. The lanes of the feeders are represented by dashed boxes. Some
feeders contain multiple lanes. Inside of each lane a part can possibly be placed.

Feeder bank. A fully assembled panel has lots of components on it. An example of such panel is
the motherboard of a smartphone. A picture of a fully assembled panel can be seen in Figure 2.2.
A component is characterized by a location on the panel and a part. A part describes the piece of
electronics. A part can for example be a resistor or a memory chip. Parts are initially placed in
the feeder bank, and it is the task of the robot to pick them up and place them onto the panels.

Parts cannot be placed in the feeder bank directly. First feeders need to be mounted on the
feeder bank. Each feeder bank consists of 27 slots. A feeder can be mounted on one or more
consecutive slots. The number of slots depends on the feeder’s type. A feeder consists of one or

5

Figure 2.2: Example of an assembled panel.

Figure 2.3: Seven different toolbit types that the AX can use. Note the different tip at the end of
each toolbit.

more lanes. A lane can house a large number of components of the same part type. However a
lane can only hold a part if the part type is compatible with that lane. A feeder bank, configured
with feeders, can partially be seen in Figure 2.1.

Robot. Each robot is located in a so-called module. A module is essentially a box that contains
all hardware that is needed to pick and place components using the robot. It can can be mounted
upon one or two slots of an AX. Once mounted, the module partially overlaps both the transport
beam and feeder bank. The robot can move horizontally through the space that the module takes
up. Since the fact that robots are contained in modules is not relevant to the problem we study
we will talk only about robots in the remainder of this document. Attached to the robot is a
placement head. This placement head contains a nozzle that can be used to pickup components.
The placement head can move up and down and can rotate around a vertical axis. Remember
that the robot partially overlaps the feeder bank; thus by moving the robot a component can be
picked up from a feeder using the nozzle of the placement head. By again moving the robot, and
possibly rotating the placement head, the component can be placed somewhere on the area of the
panel that is reachable by the robot.

Before a component can be picked up, a toolbit must be mounted to the nozzle of the placement
head. Because of the different size, structure and weight of parts, a single toolbit cannot pick up
all types of parts. Therefore multiple toolbits exist. A picture showing some of the toolbits is
given in Figure 2.3. Each robot is equipped with a toolbit exchange unit (TEU) that can hold up
to eight toolbits. The placement head can exchange the toolbit currently in its nozzle with one
out of the TEU. This is called a toolbit exchange.

A component may only be placed once the robot can guarantee the placement on the panel to
occur within a certain precision. The precision that is required depends on the part. To obtain
a higher placing precision the robot needs to figure out how the panel is positioned. This can be
achieved by reading fiducials. The exact implementation is far more complex and is outside of the
scope of this master’s thesis.

An abstract visualization of a robot as found in a module with all the previously described
components can be seen in Figure 2.4.

6

feeder bank
7 13.

T
E
U

robot

placement
 head

transport
beam

Figure 2.4: Visualization of a robot inside a module.

Transport beam. Panels are transported through the AX via the transport beam. The trans-
port beam can be in one of two modes: either it clamps itself to all the panels in the AX; or it is
unclamped from the panels. Only once the transport beam is clamped to the panels can it actually
transport the panels. More importantly, robots can only work on a panel once it is clamped to
the transport beam. Clamping guarantees that the panels will not move and allows placement of
components with the required precision.

However, unlike a conveyor belt, the transport beam can not continuously move in one direc-
tion. The transport beam can only move a limited distance in one direction before it runs out
of space. This problem is tackled by unclamping the transport beam once it can no longer move
forward; by moving it (unclamped, thus without the panels) backwards and finally by clamping
the panels back to the transport and continuing the transport of panels. This is called a return
stroke. An example of this effect is visualized in Figure 2.5.

2.2 Panel specification

The description of a fully assembled panel is given by a panel specification. This specification
is given by a set of components with their locations that need to reside on any assembled panel.
Furthermore the panel specification contains information about fiducials that are found on a panel.

2.3 Placement program

The AX is controlled by a placement program. A placement program contains instructions for
both transport beam and robots. These instructionts are meant for an AX conforming to a
specific machine configuration and setup (see Section 2.3.1). Only once an AX is configured in
this way can it actually perform the instructions in the placement program. The instructions are
described by a cycle (see Section 2.3.2).

2.3.1 Configuration & setup

The operator of an AX should make sure the machine configuration and setup is met before any
of the instructions contained in a placement program are run.

The machine configuration describes essentially all hardware pieces that are difficult or impos-
sible to change. It consists of the AX type and the robots mounted on the robot slots of each
section.

7

(a) Moving panels (e) Transport beam reaches start

(b) Transport beam reaches end (f) Clamp to panels

(c) Unclamp (g) Move transport beam

(d) Move transport beam back (h) Transport beam reaches end

Figure 2.5: How transport beam acts a a conveyor belt with use of return stroke.

The machine setup describes the hardware that can be changed relatively cheaply. This is
given by the toolbits found in the TEU of each robot; the feeders attached to the feeder bank slots
of each section; and the parts that are located in the lanes of feeders.

2.3.2 Cycle

A cycle describes how an AX can produce panels in a pipelined way. The initial state of a cycle is
given by a transport beam that is filled with panels. The further a panel is on the transport beam,
the more components have been placed onto it. The panel at the start of the transport is empty
while the panel at the end is fully assembled. Now during a cycle the panels are transported by
the transport beam in such a way that all panels move exactly one position further. At the start
of the cycle the fully assembled panel at the end of the AX is transported out, and at the end of
the cycle an empty panel is inserted at the start of the AX. Once the cycle ends we are back in a
state that is identical to the initial situation at the start of the cycle: there is an identical number
of panels inside the AX lying at exactly the same locations.

During the transport of the panels in a cycle, multiple stops occur. Such a stop is called an
index step. Only during these index steps robots can work on the panels lying in the AX. Let
us define a bucket to be a collection of components that are placed by a particular robot in a
particular index step. A robot has thus a bucket for each index step in this cycle. The total
number of buckets is given by the number of robots multiplied by the number of index steps. To
make sure that an assembled panel leaves the AX each cycle, all components have to be placed
exactly once during a cycle. Thus each component should be allocated to a single bucket, that is
going to place it.

A component can not be placed in any bucket. The main reason for this being that a component
may not be reachable by a robot in an index step. Recall that an index step is a position where the
transport beam halts, so robots can work on panels. The positions of the index steps decide where
the transport stops, and thus where the panels are lying in the AX at each index step. Where

8

the panels are lying decides what components a robot can actually place, namely the components
that are located on an area of a panel that is reachable by the robot. Let us define all the buckets
for which the robot can reach a component in that index to be the reachable buckets of that
component.

2.3.3 Quality

For a single panel specification there exist a vast number of placement programs that place all the
components correctly onto the panels. A component can be placed by a robot in another index
step for example. A part can also be found on multiple feeder banks allowing more robots to place
components of it. Obviously, the performance of these programs may differ.

The cycle time can be used to compare placement programs. The cycle time is the time it
takes for all instructions in the cycle to be executed and is thus equivalent to the time it takes the
AX to repeatedly output a new assembled panel.

Now what are items that make up the cycle time? The transport beam transports the panels
iteratively to the next index step of the cycle. After the panels are in position the robots can work
on the panels. Once they are done the transport beam moves on to the next index step. As these
actions happen strictly after each other, the cycle time is given by the sum of the time all these
actions takes.

The time it takes the robots to work in an index step can be broken down further. Remember
that the robots work in parallel, thus the time it takes all robots in an index step to complete
their work is the time the robot that finishes its work last takes.

The actions in a bucket are performed in sequence by the robot, thus the sum of the time these
individual actions take is the time this robot needs. An action is either placing a component,
reading a fiducial, or exchanging the toolbit. A robot needs to perform a toolbit exchange just
before it is about to place a component of a part that is not compatible with the toolbit that is
currently attached to the nozzle of the robot.

An example of a solution can be seen in Figure 2.6. The cycle time of this solution is given by
the sum of the times index step one and index step two take up. The time each index takes up
is represented by the dotted line, and is the maximum time among buckets. The time index step
one takes, for example, is clearly determined by the time robot R1 takes. As a consequence robot
R2 is idle half of the time. The cycle time could well be reduced if some of the load of robot R1

in this index step is offloaded to robot R2. However, this may not always be possible.

2.4 The Optimizer package for computing placement pro-
grams

Even for panel specifications containing a small number of components it is not trivial to make a
valid placement program. For each single component a robot that is going to place it should be
chosen, as well as the index step in which this robot is going to do so (in other words: a bucket
should be chosen for every component). However doing so may influence the toolbits that this
robot needs to carry in its TEU and the parts that it should have on the feeder bank. All these
can, directly or indirectly, influence the cycle time that one can achieve. Obviously the exercise
of obtaining an optimal cycle time for a placement program gets even harder as the complexity
of the panel specification increases. To that end the AX comes bundled together with tooling.
The Optimizer software package is part of that bundle and can be used to generate placement
programs. The Optimizer will produce a placement program based on the input that it receives.
The most important part of the input of the Optimizer is given by a panel specification. The
Optimizer will try to produce a placement program for assembling the input panel specification
yielding an optimal cycle time for the input panel specifications.

Recall that the machine configuration is given by the robots that are configured on an AX.
Replacing or changing these robots can be very costly or involve a lot of work. Therefore the
machine configuration for which one wants to produce a placement program is to be given to the

9

t2

t1

t3

t1

t3 t1

R1 R2 R1 R2

index 1 index 2

ti
m

e

Figure 2.6: Example of a solution with two index steps and two robots. The time it takes to
read a fiducial is not shown. A grey coloured box represents a toolbit exchange. Non-gray boxes
of the same colour represent placements of components of the same part type. One can see that
components of the same part type do not necessarily take the same amount of time. The toolbits
that are used to place components are annotated. An arrow on the toolbit annotation marks that
a toolbit is carried over by a module from that index to the next. For example toolbit t1 that is
used at the end of index step one of robot R1, is reused in index step two.

Optimizer as input. The Optimizer will then make sure that the given machine configuration is
used in the placement program that it generates.

It is up to the Optimizer to compute a machine setup: the toolbits in the TEU of each robot,
the feeders in the feeder banks and the parts to be found in the lanes of these feeders. The
Optimizer may only use toolbits, feeders and parts that are owned by the customer. A library of
resources that the Optimizer may draw from is therefore part of the input of the Optimizer . Each
resource in this library may have an inventory accompanied with it, which specifies how much of
this resource is available. Parts, feeders and toolbits may have an inventory. The performance
of a placement program is largely influenced by the resources that one chooses to use from this
library.

Optionally, the user of the Optimizer may choose to preassign some of the resources to a
position on the machine. For example a toolbit may be assigned to the TEU of a robot. These
pre-assignments must be obeyed by the Optimizer .

The Optimizer can generate placement programs for multiple panel specification at once that
all share the same machine configuration and setup. For simplicitiy this is ignored.

A schema depicting input and output of the Optimizer is given in Figure 2.7.

10

AX Configuration

Optimizer
panel
specifications

inventory

placement
program

preassignments

toolbit
library feeder

library

Figure 2.7: Input and output of the Optimizer .

11

Chapter 3

The algorithm of the current
Optimizer

In this Chapter we will discuss the internals of the current Optimizer . The largest part of this
algorithm is driven by a Genetic Algorithm. First a high level description is given. Then we zoom
in at the important steps.

3.1 High level description

A complete placement program is be generated by the Optimizer by executing three steps in
sequence. Let us briefly describe these three steps.

1. Index steps are generated primarily based on the panel dimensions and the machine config-
uration. Recall that these index steps decide the reachable buckets of each component.

2. A robot can contain up to eight toolbits in its TEU. In this step the algorithm figures out
which toolbit it thinks are most useful for each robot, and places these in the TEU.

3. Using the information computed in the previous two steps a Genetic Algorithm is started.
This algorithm will evaluate a large number of solutions and finally report the best solution
that it found.

Both step two and three involve toolbits and toolbit exchanges, therefore both steps are de-
scribed in more detail in the next sections.

3.2 Fill TEUs of robots

This step will fill the TEU of each robot with toolbits that may be relevant later on. These are the
toolbits that actually end up in the AX. However, no guarantee is given that these are actually
used, as will become apparant later on.

To decide how relevant a toolbit type is, upfront the workload fraction is computed for each
toolbit type. It is defined as the number of components that are placeable using this toolbit type
divided by the total number of components. Note that the sum of the workload fractions of all
toolbit types is generally higher than one, because multiple toolbit types are generally able to
place the same component. If we now assign a toolbit to a robot we expect that the fraction of the
components that this robot can place using that toolbit is given by the workload fraction divided
by the number of toolbits of that type that are already assigned plus one.

Now iteratively the toolbit is selected that can place the highest fraction of components. For
each toolbit a TEU is chosen to which it should be allocated. This is the TEU containing the

12

most free spots, that does not already have this toolbit assigned to it. This process repeats until
there are no useful toolbits anymore, or all TEUs contain eight toolbits. The latter is usually the
case.

As an example assume that two toolbits 1 and t2 exist with a workload fraction of respectively
5
6 and 1

3 . First toolbit t1 is chosen, as it can place the highest fraction of components. In the next
round toolbit t2 can still place the same fraction of components, given by its workload fraction.
For toolbit t1 the fraction of placeable components reduces, there is namely already a toolbit of
this type assigned. The fraction both toolbits t1 can place is thus given by half the workload
fraction, 5

12 . Hence, assigning toolbit t1 is still better. However, the third time around assigning
toolbit t2 wins because the fraction of t1 reduced to 5

18 .

3.3 The genetic algorithm

A Genetic Algorithm (GA for short) is a heuristic algorithm for solving optimization problems,
that is problems where the goal is to find a solution that minimizes some cost-function. It works
by evolving over time a large collection of possible (valid) solutions. These solutions are encoded
as strings, which are called chromosomes. The characters in this string are called genes, and
they represent different “parts” of the solution. Chromosomes evolve over time by crossover and
mutation, and the fittest chromosomes survive. Once a stop critereon is met, the genetic algorithm
terminates and the fittest solution found is reported. Pseudo code of a genetic algorithm is given
in Algorithm 1.

Algorithm 1 Genetic Algorithm

population← InitialPopulation
repeat

evaluate obj of each chromosome in population
population← Crossover(population) ∪Mutate(population)

until stopping criterion is met
return chromosome found with best obj

A chromosome should encode a solution to the problem one is solving. At the end of a GA the
best chromosome is reported, and thus a matching solution is found. A population is a set of chro-
mosomes. At the start of the algorithm this set is filled using an algorithm InitialPopulation.
In each stage of the loop a new population is created out of the previous one. A CrossOver and
Mutate operation are to be defined that create new chromosomes out of the existing population.
The CrossOver operation does so by pairing two existing chromosomes. The Mutate operation
does so by taking an existing chromosome and changing it slightly. Candidate chromosomes that
are used by these operators are normally the chromosomes that performed well. To check the
performance of a chromosome an algorithm Obj should be defined. Let us now see how these
parameters are chosen in the Optimizer.

• A chromosome normally represents a solution to the problem. A chromosome for a solution
to the Traveling Salseman Problem —where the shortest tour through a number of cities
is to be found— could for example encode the order in which the cities are visited. The
chromosome that is used by the Optimizer however, does not encode a solution to the
problem directly. Rather it contains all sorts of weights and hints that are used to influence
heuristics used by an algorithm that computes a solution. In this way, the chromosome does
influence the solution, but very indirect.

The algorithm that decodes a chromosome into a solution is described in Section 3.4.

• The performance Obj of a single chromosome is defined to be the cycle time of the solution
encoded by that chromosome.

13

select
toolbits

assign
components
to buckets

order
components
in a bucket

assign
parts

assign
feeders

chromosome

index steps

TEUs or robots

1. 2. 3.
4. 5.

solution

Figure 3.1: A high level schema of the five steps performed by the GA algorithm to decode a
chromosome into a solution.

• The algorithm that defines how an initial population is constructed and how a new population
is created follows a strategy called CHC [1]. This strategy makes no use of mutations. The
new population constructed by this strategy always contains the fittest chromosomes found
in the previous population. But on top of that it will produce chromosomes using crossover
that are maximally different from their parents. The highly disruptive crossover mutation
can provide a more effective search according to [1]. The initial population is taken randomly.

• When does the GA algorithm terminate? The Optimizer itself terminates after some time
has passed. The Optimizer software is normally kept running for five minutes. The time it
takes to evaluate the performance Obj of a chromosome is what takes up the most time. On
a typical computer for a typical problem the Optimizer is solving a single evaluation takes
takes about ±0.3 seconds. Thus there is normally time to evaluate ±1.000 chromosomes. As
each generation has a population of 50, ±200 generations will approximately be evaluated
in total.

3.4 Algorithm to obtain solution represented by chromo-
some

Recall that before the GA algorithm started, two steps were already performed. In these steps the
index steps were computed and the TEU of each robot was filled completely with toolbits. That
information, in combination with the chromosome, will form the input of the algorithm described
in this section. The algorithm consists of five steps that are performed in sequence. After the last
step has finished a solution is found. A schema showing this is given in Figure 3.1. Let us now
briefly describe these five steps.

1. The TEU, as generated in the previous step, contains generally too many toolbits. Therefore
in this step a subset of the toolbits in the TEU is selected. These are the toolbits that may
later on actually be used to place components with.

2. Feeders must exist on the feeder bank before parts can be allocated to it. In this step
therefore feeders are allocated to the feeder banks.

3. At this point we know exactly what feeders are present on the feeder banks. Therefore we
know precisely what parts can actually be placed on the feeder bank. In step 3 parts are
assigned to the lanes of the feeders assigned in the previous step. Multiple parts of the same
type may be assigned if the algorithm believes this will be useful.

4. The index steps and both the toolbits and parts that a robot can use are all known at this
point. Using this information we can compute the reachable buckets of a component. In
step 6 each component now gets assigned to one such bucket. Now the algorithm may thus
have decided that a component is going to be placed by a specific robot and index step. It
is however not clear what toolbit is going to be used to do so, as multiple toolbits may be
compatible with the component’s part. Therefore a toolbit is now chosen that is going to
place this component.

14

5. No attention is given to the order in which components in the previous step are placed.
The order in which the components are going to be placed strongly influences the number of
toolbit exchanges that are going to be performed. In this step the order in which components
are placed is changed with the goal of minimizing the toolbit exchanges.

Step 1, 4 and 5 are related to toolbits. Therefore, these steps are explained in more detail
in the following sections. We noted in the previous section that a chromosome does not directly
encode a solution. In fact, we explained the algorithm for decoding a solution without speaking
about the chromosome at all. The chromosome does however influence the solution, a section is
devoted to these influences.

3.4.1 Step 1: Select workable TEU

The toolbits in the TEU have been set already before the GA started. However not all of these
toolbits may be used in the solution obtained by this algorithm. Let us call the subset of toolbits
out of the TEU of a robot that may actually be used the workable TEU. In this step the workable
TEU is computed for each robot.

The first step of the algorithm is very simple; a single toolbit is assigned to the workable TEU
of each robot. To decide how useful assigning a toolbit is, first some characteristics are computed.
The most important characteristic is the number of toolbits that the algorithm expects to need
of that kind. Now iteratively a toolbit is selected that is expected to be most useful. For such
toolbit a corresponding robot is selected that matches best. Obviously this must be a robot that
contains this toolbit in its TEU. This toolbit is now assigned to the workable TEU of this robot.

At this moment each robot has exactly one toolbit in its workable TEU. The TEU of the robot
contains eight toolbits however. In this next stage the number of toolbits in the TEU may now be
extended. This is done using a list of rare toolbits. A toolbit is labeled rare if it is the only toolbit
capable of placing a specific part, and only few components of that part need to be placed on this
panel. If the toolbit assigned to a robot is contained in this list of rare toolbits then all seven other
toolbits from this robot’s TEU are assigned to the workable TEU of this robot as well. Thus that
robot may now use all eight toolbits for placing components, instead of the single toolbit.

3.4.2 Step 4: Assign components to buckets

In this step the components on the panel get distributed over the buckets. Furthermore for each
component the toolbit that is going to place it is decided upon.

A component can be placed by a robot if the robot has the component’s part on its feeder bank,
a toolbit is found in the workable TEU that is compatible with that part, and the component is
assigned to an allowed bucket of this robot. Because the contents of the part bank and TEU of each
robot, and the index steps are known, we know now precisely where we can place a component.

Much like in previous steps iteratively a component is selected, and that component is then
assigned to the bucket that matches best. This must be a a bucket that can actually place the
component, as described above. An important reason to assign a component to a bucket is that
the component can be placed using one of the toolbits that is already needed by that bucket. This
is the case if one of the already assigned components in that bucket is placed using a toolbit that
is also compatible with this component. In this case that toolbit is also used to place the newly
assigned component. It can however be the case that such a bucket does not exist. In that case
another bucket is chosen and a toolbit out of the workable TEU of the robot corresponding to that
bucket must be chosen instead. The most suitable toolbit is given by the one that is compatible
with the most parts of the feeder bank of this robot. Once all components are distributed the
algorithm continues.

3.4.3 Step 5: Ordering the components in a bucket

The components have now been distributed over the buckets, and the toolbits that are going to
be used are selected. The order in which the components are ultimately going to be placed is yet

15

unknown however. By smartly ordering the components faster cycle times can be achieved. In
particular, toolbit exchanges can be avoided. Hence groups of components are formed that can
be placed by the same toolbit. Components in such group are placed consecutively so no toolbit
exchange is necessary in between.

3.4.4 Chromosome’s influence on solution

There are four genes of the chromosome that are relevant for the toolbit exchanges. Next we
discuss these genes. For reference the actual names used in the source code of the Optimizer are
used to represent them.

UseCompleteToolbitExchangeUnitContent. This gene represent a boolean. If that gene
has value “true”, the workable TEU chosen in Step 1 will contain the entire TEU for all robots.
In that case the workable TEU for each robot will contain eight toolbits. If the gene has the value
“false” then the method as described in Step 1 is used.

FudgeFactor. Recall the list of rare toolbits that is constructed in Step 1. If a toolbit is on
that list, the workable TEU will be the entire TEU of the robot. The number of toolbits in this
list will be increased by the number represented by this gene. This is a number between minus
two and one.

If this number is for example minus one, one rare toolbit will be dropped from the list. If a
positive number is given then an extra toolbit is added to the list, thus increasing the likelyhood
that the workable TEU of a robot will contain all toolbits in its TEU. This extra toolbit will be
the toolbit that is closest to being rare.

Weight. For each toolbit type there is a gene in the chromosome that encodes the weight of
that toolbit. This weight is simply used to increase or decrease the likeliness that a toolbit will
be selected in Step 1.

TargetNumberOfToolbitsToBeAssignedAddition. For each toolbit type there is a gene in
the chromosome that encodes a number. Choosing the most interesting toolbit in Step 1 is based
on the number of toolbits the algorithm expects to use. This number is simply increased by the
number encoded in the chromosome. This is number between zero and three.

16

Chapter 4

A new algorithm for pre-assigning
toolbits

From Chapter 3 one can learn that the toolbits that make it into the TEU of a robot are computed
by the Optimizer only once, at the start. This limits the solution space. As the content of
the TEU is based on a simple heuristic, an interesting part of the solution space could well be
neglected. Either the algorithm should be adapted so the contents of the TEU can change during
the algorithm, or more thought should be put into computing a TEU that is really useful.

Halfway the algorithm the workable TEU is constructed. There is a rather harsh distinction
in the number of toolbits in the workable TEU: it contains either a single toolbit or the entire
TEU. Depending on the components that are placed in a robot, the number of toolbits actually
used can lie anywhere between zero and eight. The algorithm for distributing components is not
very targeted at minimizing the number of toolbits used by a robot, more toolbit exchanges can
ultimately occur then strictly necessary. The other way around, sometimes fewer toolbit exchanges
can be incurred if one uses more toolbits, rather than less. As this algorithms does not look at
that opportunity, additional toolbit exchanges are believed to occur in general.

The genetic algorithm as used by the Optimizer is not a traditional implementation of a genetic
algorithm because a solution is not directly encoded by a chromosome. This makes it unclear how
precisely the solution space is traversed. Due to this, extending or modifying the structure of the
chromosome or internals of the genetic algorithm seems no good option.

The remainder of this thesis will focus on computing an alternative TEU assignment for all
robots. Remember that the Optimizer software allows one to preassign toolbits to the TEU of
a robot. These preassigned toolbits are guaranteed to end up in the TEU. Thus a TEU can be
fed into the existing Optimizer . The advantage of this is that the algorithm for computing the
pre-assignment need not take all details of the machine into account, but that (by feeding its
output into the Optimer) it can still be used to generate placement programs that can actually
be used in a real-world setting.

We noted earlier that the TEU is currently computed based on some simple heuristics. To
make sure a feasible solution is found, the TEU is always filled completely with toolbits. Instead,
the alternative TEU should only add toolbits to the TEU that it believes are going to be useful
for the Optimizer to get a good solution. This alternative TEU thus guides the Optimizer into a
solution direction.

All toolbits in the alternative TEU are thus placed there with the hope the Optimizer will use
them. The hope is that the workable TEU computed by the Optimizer will contain the entire
TEU for all robots. Luckily, the UseCompleteToolbitExchangeUnit gene exists and does precisely
that. One can safely assume that several chromosomes will be evaluated having this boolean set
to “true”.

As the alternative TEU contains only toolbits that are thought to be necessary, it will generally
contain fewer toolbits. Because there are fewer toolbits the step of the algorithm that distributes

17

panel
specification

PreAssigner
solution
in simple
model

TEU pre-
assignment

Optimizer
solution in
complete
model

Figure 4.1: Schema showing how Optimizer and PreAssigner software are combined.

the components will hopefully make fewer errors.
When a pre-assignment is given that does not fill the TEU itself completely, the Optimizer

will fill the TEU up completely with additional toolbits. This is a problem, but can easily be
mitigated by adding dummy toolbits to the TEU pre-assignment that are of no use at all.

How do we generate this TEU? If one thinks about it, actually all aspects of the problem need
to be looked at to do so. Whether placing a toolbit in the TEU of a robot is a good idea depends
among others on the inventory of that toolbit type, the available parts on the feeder bank, the
components that are reachable by the robot that it is allocated to and also the other toolbits in
the TEU. The alternative TEU is thus essentially part of a complete solution, that one suspects
has a good cycle time.

Thus to obtain such TEU, a complete solution to the problem needs to be generated. Only
the TEU of that solution is then taken and inserted into the Optimizer . Because only the TEU of
the solution is relevant, that part of the solution should match the original problem description.
However, other parts of the problem can be simplified were needed. Let us call the algorithm
that is going to compute a TEU pre-assignment the PreAssigner . A schema of how an improved
solution to the original problem is hopefully obtained is given in Figure 4.1.

4.1 Simplified problem

The original problem is very complex and has many features and constraints. One can not expect
to come up with an algorithm that produces a complete solution to the original problem in the
scope of a single master’s thesis project. In order to cope with the complexity, first a simplified
model is introduced. As noted in the previous section the only requirement on this simple model
is that the toolbits and TEUs should remain identical to the original model, because this is what
we are going to preassign. In addition, the simplified model should be close enough to the original
problem that the computed pre-assignment is not only good in the simplified model, but that it
also leads to good results when used by the Optimizer to solve the original problem.

The model that is used by the PreAssigner is different from the complete model as introduced
in Chapter 2. The model used by the PreAssigner is obtained by imposing constraints on the
original model or by simply removing concepts:

• The Optimizer can generate placement programs for multiple panel specifications that share
the machine configuration and setup. The PreAssigner will not be able to do so, and is
constrained to a single panel specification.

• Each segment has a feeder bank in the original model. The notion of a feeder bank is dropped
altogether in the simple model. Instead each robot has a part bank. Parts can be assigned
directly to the part bank of a robot. A robot can simply use a part if it is assigned to its
part bank. The notions of feeders and lanes are now useless and are thus dropped from the
simple model. Contrary to the feeder bank, parts do not have an order in the part bank.
Similar to the feeder bank, the part bank will also have a number of slots. A part can cover
one or more of these slots. A schema of this new model is given in Figure 4.2.

• A cycle in the original model contains a sequence of actions for each bucket. An action is for
example placing a component or exchanging a toolbit. In the simplified model only a set of
components that need to be placed is maintained per bucket. Actions like reading a fiducial

18

part banks part slots

parts

robots

1 2 3 4 5 6

Figure 4.2: Visualization of new model. Note that a part bank is related to a single robot. The
rightmost part bank is zoomed in at. One can see that this part bank has six slots, that are
occupied by three parts.

and exchanging a toolbit are thus no longer part of this. Also the order in which to place
components is removed. Thus in a placement program in the simple model the instructions
corresponding to a bucket are given by a set of components that need to be placed somehow.

It seems strange that the time needed for toolbit exchanges is not part of our simplified
model, since reducing the number of toolbit exchanges is the goal of our work. However,
we do take toolbit exchanges into account when we evaluate the quality of a solution in our
simplified model, as will be explained later.

• Index steps are part of a placement program. In the complete model they are thus part of
the output generated by the Optimizer . In the simple model we assume that the index steps
are known upfront. To be more precise: the index steps that are put into the simple model
are generated using the Optimizer software.

• Recall that a return stroke can be performed by the transport beam and takes place at least
once, at the end of a placement program. Generally speaking a return stroke takes more
time then performing a toolbit exchange does. In the complete model a toolbit exchange
can therefore be masked by a return stroke. Hence the time a toolbit exchange takes at the
very end of a cycle does not count towards the cycle time. Masking toolbit exchanges is not
possible in the simple model.

• Recall that a component may only be placed once a robot can guarantee the placement on
the panel to occur within a certain precision in the complete model. As long as this precision
is not met the robot must read more fiducials. Reading fiducials takes time however. This
time is not accounted for in the simple model.

• We assume that the time it takes a robot to place a component is independent of the other
components that are placed by that robot. This is also true in the complete model most
of the time. However exceptions do exist. These exceptions are not covered in our simple
model.

These simplifications lead to a new problem statement, which we call the simplified problem
(or sometimes the simplified model). Next we describe the simplified problem more precisely. We
describe the input and the required output.

The input. The input consist of the following elements.

• The panel is described by a set of components to be placed. For each component it is
specified of what part type it is. For each part type the number of slots that it will occupy
on a part bank is given. Furthermore an inventory is given for each part type.

19

• The machine configuration is given by the number of robots. For each robot the number of
slots available on its part bank is known. Furthermore, the time it takes a robot to pick and
place a component is given for the combination of each component and robot.

The time that a robot takes to place a component is imported out of the Optimizer and
called the lower bound time. This is the time that it takes the robot to place this component
in the most ideal scenario.

• The number of index steps are given. Recall that the exact locations of the index steps
determine the reachable buckets of each component. This information is taken as input,
instead of the exact index step locations. Thus per component the reachable buckets of the
component are given.

• The toolbit library is given. This defines what toolbit types are available. Furthermore the
parts that a toolbit is compatible with are given. Furthermore an inventory is given on the
toolbits in the library. This defines how many toolbits there are of each toolbit type.

The output. The output is simply given by a distribution of components over buckets. A
solution can only be valid if each component is allocated to an allowed bucket.

The problem we wish to solve is now to compute for the given input a valid output that
minimizes the time to assemble a panel. In other words, we wish to compute a valid output that
minimizes the cycle time. (In fact, only the TEU assignment of the solution will be used as pre-
assignment for the original Optimizer . The idea is that this pre-assignment leads to a good result
when used by the Optimizer , because it leads to a low cycle time in our simplified model.)

The way the cycle time is computed is similar to the original problem. However, because
our solution only consists of a distribution of components over buckets, the number of toolbit
exchanges is not known. The number of toolbit exchanges can however be deduced from the
component distribution using algorithms. Therefore the cycle time of our solution is defined as
the output of the algorithm presented in Section 4.2.

Without going into the specifics of this algorithm one can already conclude that solving the
problem described above is NP-hard.

Theorem 4.1.1. The simplified problem is NP-hard

Proof. Look at the situation where there is only a single index step and a single toolbit. Fur-
thermore assume all parts can be handled by that one toolbit and both parts and toolbit have an
infinite inventory. Now the task at hand is to distribute the components over the available robots.
As there is only a single index the cycle time is determined by the robot that takes longest to
process. Because only one toolbit exists no toolbit exchanges can take place and the cycle time
is already well defined without knowing the specifics of the algorithm to be presented in the next
section.

The scenario sketched here is identical to the minimum makespan problem. Minimum makespan
is known to be NP-hard [2] therefore our simplified problem is NP-hard as well.

4.2 Computing the cycle time in the simplified model

Recall that the cycle time is given by the sum of the time each index takes. The time an index
takes is defined as the maximum time a robot takes processing that index. The time it takes a
robot to process an index consists of two pieces: the time it takes to place all components and the
time the robot is busy exchanging toolbits. The time it takes a robot to place a component in an
index step is given in the input. Hence the time it takes that robot to place all components in an
index step, which is given by the sum over all these times, can easily be computed. The time a
robot is exchanging toolbits is given by the number of toolbit exchanges multiplied by the time a

20

component
distribution

compute
part

banks

compute
TEUs

compute
toolbit

exchanges

toolbit
exchanges
per bucket

Figure 4.3: Schema depicting steps necessary to compute the number of toolbit exchanges per
bucket based on a component distribution.

single toolbit exchanges takes. The time a single toolbit exchanges takes is constant. Computing
the number of toolbit exchanges is less trivial, as discussed next.

In the complete model the number of toolbit exchanges does not only depend on the distribution
of components, but also on the toolbits that are located in the TEU of each robot, and which
toolbit is used to place what component. Because all these are part of a solution in the complete
model, the number of toolbit exchanges can be computed. To be able to compute the toolbit
exchanges in the simple model we also have to generate both a part bank and TEU for each robot.

As a first step, the part bank is computed for each robot based on the components that are
placed by that robot. Next, the TEU of each robot is filled based on the parts that are on its
part bank. As a last step the actual number of toolbit exchanges per bucket is computed based
on both the part banks and TEUs of all robots. A schema depicting this is given in Figure 4.3.
For the last step, computing the toolbit exchanges, two implementations are proposed: a fast but
inaccurate one and an exact but slower one. In the following subsections all steps of the process
are described.

It can be the case that one of the steps below fails to generate either a part bank or a TEU
with whom all components can be placed. In that case a cycle time of invalid is reported.

4.2.1 Filling the part bank

As a first step we are going to assign parts to part banks of robots, based on the component
distribution as contained in a solution of the simple model. A part bank of a robot can trivially be
filled based on the following observation: a component that resides in a bucket of that robot can
only be placed by that robot if it has the component’s part on its part bank. As a valid solution
is only found if all components are placeable that part must thus be placed in the part bank of
that robot.

Thus per robot we loop over all components that are contained in its buckets and add a part
to the part bank as soon as we encounter a part that we did not encounter before.

If the sum of the sizes of the parts allocated to the part bank of a robot exceeds the size of that
part bank, invalid is reported. In this case a solution simply does not exist given the distrubtion
of components.

4.2.2 TEU construction from part bank

The part bank of a robot will now contain a part if and only if a component of that part is assigned
to a bucket of that robot. Now we are going to fill the TEU of each robot in such a way that all
parts located in the part bank are indeed usable. Thus for each part in the part bank a compatible
toolbit should be present in the TEU. Recall that toolbits can have an inventory, and thus can
be assigned only a limited number of times. Thus assigning a toolbit to a robot can influence the
feasibility or performance in another robot. Therefore the assignment of toolbits to TEUs cannot
be done independently for each robot. The more toolbits are contained in a TEU the more likely
it is that a toolbit exchange will happen. Therefore minimizing the number of toolbits across all
TEUs is important.

Let n be the number of robots, and t be the number of toolbits. Recall that for each robot
the list of parts in its part bank is known. We are now interested in an assignment of toolbits to
robots that covers all parts. An assignment covers all parts if for each part a compatible toolbit is
assigned. These assignment should be chosen in such a way that the sum of the toolbit exchanges
over all robots is minimal. A visualization of this problem on a small input is given in Figure 4.4.

21

R2

p1 p2 p3 p4

t2 t3t1

R1

1 ∞ ∞

toolbits

parts

robots

toolbit inventory

p4

R3

part banks

Figure 4.4: Example problem. Marked edges represent a valid solution assignment.

Theorem 4.2.1. The toolbit-assignment problem defined above is NP-hard.

Proof. Let there be an arbitrary instance of the Set Cover [3] problem. Assume an AX that is
configured with only one robot, there is thus only one part bank. Now let there be a part on the
part bank of this robot for every vertex in our Set Cover instance. Now introduce a toolbit for
every set in the Set Cover instance. A toolbit is compatible with a part if and only if the set
corresponding to this toolbit contains the vertex corresponding to that part. Because there is only
one robot, we are interested in the assignment with the minimum number of assignments to this
robot. That number is identical to the minimal number of sets found in the Set Cover problem.

We thus reduced Set Cover to our toolbit assignment problem. Because Set Cover is known to
be NP-Hard [3], this will prove our toolbit assignment problem to be also NP-Hard.

As this subproblem is NP-hard, one can safely presume no fast algorithm exists. Therefore
instead an algorithm is proposed that does not guarantee the minimal number of assignments to
be found. This algorithm is a greedy algorithm. The greedy choice is: make the assignment of
toolbit to robot that covers the most parts that are yet uncovered. This greedy step is iteratively
used until a valid solution is found, and then reported as the solution.

A problem with this algorithm is that iteratively using this greedy step can yield an infeasible
solution, when a feasible solution does exists (this is the case in Figure 4.4 where assigning t1 to
R1 will make p3 of R2 uncoverable). Because toolbit inventories are not tight in practise —usually
there are more toolbits available then one could possibly need—, this greedy algorithm will usually
report a solution if one exists. In these rare cases that the greedy algorithm does fail an extra
algorithm is run to test if a feasible solution does indeed not exist. This algorithm simply tests all
possible assignments of toolbits to robots (note that the actual implemented algorithm smartly
combines these two algorithms).

If the algorithm finishes and has not found a TEU covering all parts then invalid is reported.
In this situation TEUs simply do not exist that cover all parts.

4.2.3 Computing toolbit exchanges

At this point we have a solution in the simple model, augmented with both a part bank and a
TEU for each robot. Now enough information is available to actually compute the number of
toolbit exchanges that are used in a single bucket.

Two methods are described that can be used to obtain a number of toolbit exchanges. A
simple method is shown to estimate the number of toolbit exchanges and one is shown that can
compute the minimum number of toolbit exchanges over all the buckets.

Estimating the number of toolbit exchanges

Assume that in a single bucket four components get placed of four different parts, and a minimum
of two toolbits are necessary to cover the four parts. It is easy to see that to be able to place all

22

four components at least one toolbit exchange must be performed. As a more general rule: if the
minimum number of toolbits to place all components in a bucket is n, then max(n− 1, 0) toolbit
exchanges are needed at least.

So now how does one compute the minimum number of toolbits needed to place all components
in that bucket? As the number of toolbits found in the TEU of a robot is limited by eight, brute-
force suffices. This algorithm will iterate over all possible subsets that can be constructed using the
toolbits in the TEU. Worst-case all 28 = 256 possible subsets are tested. The subsets are iterated
over such that smaller subsets are always considered before larger ones. If a subset already covers
all parts than all subsets that contain this subset can be pruned.

Exact computation of the number of toolbit exchanges

The previous technique is an underestimation on the number of toolbit exchanges. It assumes
that the first toolbit that is needed in a bucket is already attached to the nozzle of the placement
head at the start of that bucket. This is however not always the case. For an input with n index
steps each robot can incur at most n toolbit exchanges that are not accounted for in the previous
technique. This is the case if a robot must exchange toolbit at the start of each index. If the
AX is configured with m robots the previous method can make an error of at most nm toolbit
exchanges.

Note that the choice for the toolbits to be used in a single bucket of a robot can influence the
toolbits exchanges between index steps that occur elsewhere in this robot. Therefore, instead of
the previous technique, one can not compute the number of toolbits needed in a single bucket in
isolation: the toolbits used for all buckets of that robot will need to be computed at the same
time.

The problem of computing the minimum number of toolbit exchanges for a given robot can
be formulated as a graph problem. An example of a graph that is used to compute the minimal
number of toolbit exchanges is given in Figure 4.5. Each vertex in the graph is associated with
a toolbit, which represents the use of that toolbit by the robot at the beginning of an index step
or at the end of an index step. An edge denotes a possible sequence of toolbit exchanges. The
weight of an edge denotes the number of toolbit exchanges that occur between the source and
target vertex.

Next we describe the construction of the graph in more details. First introduce a start vertex
v0,j for every toolbit tj in the TEU of the robot. Let us now encode the toolbit exchanges that
occur strictly within an index. For an index i of this robot one can trivially find the parts that
are necessary to place components assigned to i. Let Si be the maximum set of subsets of toolbits
in the TEU of this robot such that the toolbits in each subset cover the previously found parts.
A set of toolbits covers a set of parts if for each part in the set a compatible toolbit exists in the
set of toolbits. Introduce vertices v2i+1,j , v2i+2,j for each toolbit tj that occurs somewhere in the
set Si. These vertices represent respectively the toolbit that is allocated at the start and the end
of index i. Introduce an edge between v2i+1,j and v2i+2,k if either

• tj = tk and tj is a singleton element in Si, or

• tj 6= tk and there is a subset of toolbits in Si that contains both tj and tk.

The weight of an edge is given by the minimum number of toolbit exchanges necessary using these
toolbits, and is, just as before, given by the number of toolbits minus 1.

Next we model the toolbit exchanges between index steps. Introduce an edge (v2i,j , v2i+1,k) if
both vertices exist. The weight of the edge is zero if tj = tk and one if tj 6= tk.

Now a graph is constructed for the problem input, how can one utilize it to find the minimum
number of toobit exchanges? Well, the minimum number of toolbit exchanges is defined as the
girth of the graph. The girth is defined as the length of a smallest cycle in the graph.

A cycle of minimum length among all cycles that pass through start toolbit t can be found
using Dijkstra’s algorithm [4]. Namely this cycle is given by the shortest path from start toolbit t

23

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t1

t2

index 0 index1 start

t1 t2 t3 t3 t4or t1 t2

Figure 4.5: Example of a graph used for computing the minimum number of toolbit exchanges.
The number of arrows on each edge represents the weight of that edge. Start nodes on left and
right node represent identical nodes. The yellow marked cycle represents a minimal solution of
three toolbit exchanges whereas the brown cycle represents a solution that yields four toolbit
exchanges (as would be generated using the estimation method).

to itself. Dijkstra’s can be used as all edges are non-negative. Dijkstra’s algorithm can be run for
every toolbit in the TEU. The smallest cycle found over all runs is now the smallest cycle among
these that go through a start toolbit. However, by construction, a cycle in this graph will always
contain precisely one of the start toolbits, and therefore the smallest cycle found is indeed a cycle
of minimal length in the entire graph.

The algorithm will thus yield a cycle of minimum length. The length represents the minimum
number of exchanges necessary for the given robot. One can find the exact places where the
algorithm decides to exchange toolbit by looking at the edges having a strictly positive weight
inside of the cycle. The algorithm should however report a number of toolbit exchanges per index.
For index i this is found by the number of toolbit exchanges within this index, plus possibly a
single additional toolbit exchange if the correct toolbit is not yet at the nozzle at the start of this
index. In terms of the computed cycle this is given by the sum of the weight of the two edges in
the cycle that have either vertex v2i, as source or target.

4.3 Our approach to solving the simplified problem

It is now clear how the cycle time can be obtained once a solution is found. But how is one going
to find a solution to the problem? As we have seen earlier, computing an optimal solution is
NP-hard. One can thus not hope to come up with a fast exact algorithm. That limits the possible
approaches. Techniques that could possibly be used include: (integer) linear programming, genetic
algorithms and simulated annealing.

• Many optimizing problems can be formulated as linear programs, that is, problems where
a lineair objective function of a number of variables should be maximized (or minimized)
subject to a number of linear constraints on the variables. The function that we want to
optimize, however, is not a linear function. In fact, it is partially determined by the outcome
of the algorithm for computing the minimum number of toolbit exchanges needed by a given
solution. Hence, linear programming is not a viable approach for our problem.

24

 0 200 400 600 800 1000 1200 1400 1600

O
bj

ec
tiv

e
va

lu
e

Time

Current solution

Figure 4.6: Graph depicting the value of the objective function of the single solution over the time
of a Simulated Annealing algorithm.

• The theory behind the genetic algorithm was already explained earlier in Section 3.3. A
genetic algorithm can be terminated at any time and will then yield the best solution found
so far. However, finding a crossover operation for our problem that is not too disruptive
turns out to be difficult. The most obvious crossover operations one can think about typically
yield invalid solutions.

• Simulated annealing is much similar to a genetic algorithm. Also this algorithm can safely
be stopped at any time. It differs from the genetic algorithm in that it has a candidate
population of one. That single candidate is iteratively transformed by applying mutations on
it. Mutators are operations that alter a given solution slightly. Defining mutators that yield
valid solutions is a lot simpler than defining crossover operations that yield valid solutions.

Due to these reasons simulated annealing is chosen as our technique to overcome the NP
hardness of the problem.

4.4 Simulated annealing

Simulated annealing (SA for short) is a method for approximating the global optimum of a given
function in a large search space. It is a search method algorithm that iteratively chooses a new
solution. The quality of a solution is given by an objective function Obj. All solutions having
a better objective function value than the current one are accepted, while only some solutions
are accepted that have a worse objective function value, based on a probabilistic criterion. This
criterion is chosen so that the probability that worse solutions are accepted decreases as the
algorithm continues to explore the solution space. New solutions are obtained from the current
one by slightly mutating it.

Figure 4.6 shows an example of a graph depicting the value of the objective function over time
of the solution maintained by a Simulated Annealing algorithm. One can see that the algorithm
can freely accept solutions that are much worse at the start. However, as time passes, the algorithm
is less likely to accept such solutions.

25

Algorithm 2 Simulated Annealing

T ← start temperature
solution← an initial solution
repeat

T ← NextTemperature(step)
neighbor ←Mutate(solution)
if Obj(neighbor) < Obj(solution) then

solution← neighbor
else if P(Obj(neighbor)−Obj(solution), T) ≥ Rand() then

solution← neighbor
end if

until stopping criterion is met
return solution

The pseudo code for a standard Simulated Annealing algorithm is given in Algorithm 2. One
can see that an initial solution to the problem should be already known. The mutate method
should be able to mutate an input solution and return a slightly different solution. Their imple-
mentations are obviously dependent on the problem at hand.

The variable T is known in the SA literature as the temperature. The value of T is a function
of the time. The shape of that function is determined by the the start temperature and the
implementation of NextTemperature. The temperature influences the probability P that a
solution that has an objective function value that is worse than the current objective function is
accepted. If the temperature is high this probability should be high, as the temperature approaches
zero this probability should reduce to zero. If the initial temperature and the implementation
of NextTemperature are chosen correctly the SA algorithm is known to be able to generate
satisfactory results. The start temperature, NextTemperature and method P are independent
of the problem. However in order to get good results from the SA algorithm these parameters have
to be tuned specifically to the problem. Tuning these parameters is mentioned as future work in
Chapter 6.

Now how can we use SA to solve our problem? Therefore we have to fill in all parameters
discussed above. These parameters are chosen in the following way:

• A solution is simply a solution to our simple model. Thus a solution is a distribution of
components over buckets.

• The value of the objective function of a solution in the simple model is obtained by using
our algorithm for computing the cycle time of a solution, as presented in Section 4.2.

• The start temperature and the next temperature method decide how the temperature cools
during the algorithm. The start temperature is chosen as the cycle time of the solution that is
initially computed. The next temperature method describes an inverse exponential function.
The exponent is chosen in such a way that at the end of the algorithm the temperature has
dropped to 0.001.

• The probability function that is used is taken from the paper introducing Simulated Anneal-
ing [5]. A solution neighbor is accepted over solution at temperature T with a probability
of:

exp

(
Obj(current)−Obj(neighbor)

T

)
• The algorithm terminates after 250.000 evaluations have been performed.

• An algorithm to compute an initial solution is given in Section 4.5.

• A set of mutators is given in Section 4.6. How a mutator is chosen from this set is described
in Section 4.7.

26

• The SA algorithm itself is adapted such that it not always accepts new solutions that yield
an equal objective function value. This adaption to the algorithm is explained in more detail
in Section 4.8.

4.5 Computing an initial solution

A valid initial solution needs to be computed before the SA algorithm can actually start working.
An algorithm that produces such solution is given in this section. The performance of the solutions
generated using this algorithm is known to be poor. It is up to our SA algorithm to transform it
into a solution that performs well.

To produce a valid solution, each component needs to be allocated to a bucket that can actually
place it. However, we also want to distribute the components in such a way that it is unlikely that
the algorithm that evaluates solutions in our simple model reports invalid. The later happens
if no valid part bank can be found. To maximize our chances that a part bank for our solution
exists we try to place components of the same part on the same robot as much as possible.

The algorithm iterates over all parts. For each part it will find the robot that can place the
largest number of components of that part. These components are now distributed over the buckets
of this robot. If not all components can get placed by this robot, the remaining components are
distributed over a second robot. This continues until all components have been placed.

In theory this algorithm can produce a solution that is invalid when a valid solution exists.
This is for example the case if there is only just enough room to allocate each part once. In that
case one should carefully think about where to place each part. However this is not likely to
happen in practise.

4.6 Mutating the solution

In each iteration the SA algorithm will mutate the current solution using a mutator. In this section
the five available mutators are described.

4.6.1 Move component

This mutator will simply move a component from one bucket to another. The only requirement is
that the robot of the bucket that receives the component already places another component of the
same part in one of its buckets and the receiving bucket is an allowed bucket of the component.
An example of applying such mutator is given in Figure 4.7.

4.6.2 Move part

Applying this mutator will effectively move a part from a part bank of one robot to the part bank
of another robot that does not yet have this part. This is done in two steps. First all components
of the part are taken out of the buckets of the source robot. Then the components are distributed
over the buckets of the receiving robot. This mutator is only allowed if the receiving robot does
not already place a component of this part and there is enough space on the part bank of the
receiving robot to receive this part. Furthermore all components that are placed in buckets of the
source robot should be placeable in buckets of the receiving robot. An example of applying such
mutator is given in Figure 4.8.

4.6.3 Duplicate part

This mutator will possibly reduce the time a robot is busy placing components of a part. It does so
by moving half of the components of that part to another robot. First, half of the components of
this part are taken from each bucket of the source robot. Next these components that got removed
are distributed over the buckets of the other robot. This mutator is only allowed if the other robot

27

index 1 index 2 index 1 index 2

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

ti
m

e

Figure 4.7: Effect of applying a move-component mutator. Each box represents the time it takes
to place a single component. A single component is moved from robot R1 to R3 within index one.
One can see this mutator reduces the time needed for index one, while keeping the time index two
takes. The cycle time is thus reduced.

index 1 index 2 index 1 index 2

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

tim
e

Figure 4.8: Effect of applying a move-part mutator. A box represents the time it takes to place
a single component. Boxes colored in the same way represent components of the same part.
Components of the red part are moved from robot R1 to R3. One can see that this mutator
reduces the time each index takes.

28

index 1 index 2 index 1 index 2

R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

tim
e

R1

Figure 4.9: Effect of applying a duplicate-part mutator. A box represents the time it takes to
place a single component. Boxes colored in the same way represent components of the same part.
The red part on robot R1 is duplicated to robot R2. The effect is that half of the components
previously placed by robot R1 are now placed by R2. This reduces the time both indices take.

does not already place a component of this part and the other robot has enough space on the part
bank of the receiving robot to receive this part. Also the inventory should allow placing an extra
part of this type. Furthermore half of the components that are placed in buckets of the source
robot should be placeable in buckets of the other robot. An example of applying such mutator is
given in Figure 4.9.

4.6.4 Merge part

A duplicate-part mutator can be reverted by applying the merge-part mutator. All components
of the same part will be moved from one robot to another robot. The requirement is that the
other robot should already be placing components of that part type and all components taken
from the source robot are placeable by buckets of the receiving robot. An example of applying
such mutator is given in Figure 4.10.

4.6.5 Swap part

This mutator is similar to the move-part mutator. The move part mutator moves a part from
one robot to another, where the receiving robot should not already place a component of that
part. The swap mutator will at the same time move a part from that receiving robot back to
the source robot. Also this source robot should not already place a component of that part. The
requirement is that the part banks of both robots should not be overloaded after swapping the
parts. An example of applying such mutator is given in Figure 4.11.

4.7 Strategy for selecting mutator

In each iteration of the SA algorithm a mutator is applied to the current solution. There are
five mutators available, so how does one choose which mutator to apply? A weight is attached to
each of the mutators to do so. The relative weight determines the probability that this mutator
is applied to the current solution.

We configured this strategy with weights. These weights were chosen because they yielded
good results during the construction of the PreAssigner . No experiments have been performed

29

index 1 index 2

R2 R3 R1 R2 R3

tim
e

R1

index 1 index 2

R1 R2 R3 R1 R2 R3

Figure 4.10: Effect of applying a merge-part mutator. A box represents the time it takes to place a
single component. Boxes colored in the same way represent components of the same part. The red
part on robot R2 is merged with robot R1. All components placed by robot R2 are thus distributed
over robot R1. The time needed increases in both indices, and the cycle time increases.

index 1 index 2 index 1 index 2

R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3R1

ti
m

e

Figure 4.11: Effect of applying a swap-part mutator. The red part on robot R1 is swapped with
the blue part on robot R3. A box represents the time it takes to place a single component. Boxes
colored in the same way represent components of the same part. Note how the components of the
blue part are distributed evenly after the mutation. Index one gets faster whereas index three gets
slower. Overall the cycle time gets worse.

30

Mutator Probability
Move component 0.45
Move part 0.27
Duplicate part 0.09
Merge part 0.05
Swap part 0.14

Table 4.1: The probability that a mutator is chosen by the mutator strategy.

R1 R2 R3 R1 R2 R3 R1 R2 R3

m
ov

e
co

m
p
on

en
t

fr
om

 R
3
to

 R
2

m
ov

e
co

m
p
on

en
t

fr
om

 R
1
to

 R
2

Figure 4.12: Serie of mutators of whom the first does not improve the cycle time, but is beneficiary.
A box represents the time it takes to place a single component. Boxes colored in the same way
represent components of the same part.

however to find the weights that achieve the best results. Table 4.1 shows the probability that
each of the mutators is chosen by this strategy.

4.8 Balance objective function

There are many situations where a mutator will influence the solution but not the cycle time.
Recall that the time an index step takes is defined as the maximum over all the buckets in that
index. Thus the cycle time changes only if the maximum changes. In the default SA algorithm
solutions having identical cycle times are always accepted. In our case, it seems better to use a
more refined strategy.

Take a look at the balance of a single index of a solution given in Figure 4.12. Inside of this
index step there are two robots that have the exact same value, which is the maximum among
robots. As robot R2 has almost no work scheduled, one would think that a better solution should
exist. There is no mutator available, however, that can reduce the cycle time directly. A first step
towards improving the cycle time is obviously offloading work from either robot R1 or robot R3

to robot R2. This mutator yields an identical cycle time. Once such mutator has been applied,
mutators can be used that do improve the cycle time directly.

The first mutator that offloaded work can be called an improvement even though it did not
change the cycle time, because it improved the balance of the solution. Using this information the
SA algorithm is now altered. If a new solution has an equal cycle time then the solution will now
only be accepted if it improves the balance, or with a constant probability if it did not improve
the balance. This constant is taken as 0.2.

A solution improves the balance if the new solution has a lower balance metric. The balance
metric is defined as the sum of the squared times each bucket takes. This metric will report lower
values if the balance among buckets is better distributed (for example 32 + 12 > 22 + 22)

31

Chapter 5

Experimental evaluation of the
new algorithm

5.1 Setup

The previous sections have introduced both the Optimizer , the software currently used by As-
sembléon, and the PreAssigner that has been developed for this thesis. The Optimizer produces a
solution for the complete model, whereas the PreAssigner produces a solution for a model. These
two solutions can be located in the top-left and bottom-right quadrant of Figure 5.1 respectively.

The TEUs can be extracted from a solution in the simple model. This TEU configuration can
be fed into the Optimizer . By doing this for a solution generated by the PreAssigner , a solution
in the complete model is obtained. A solution obtained in such way can be found in the top-right
quadrant of Figure 5.1.

The simple model is obviously a simplification of the complete model. Therefore any solution
in the complete model can be transformed to a solution in the simple model. We developed a tool
such that any solution obtained using the Optimizer can be translated into a solution in the simple
model. A solution obtained in this way can be found in the lower-left quadrant of Figure 5.1.

There are two comparisons that are of great interest to us. The first is how a solution that is
generated by the PreAssigner performs compared to a solution as imported from the Optimizer
(labeled “1” in Figure 5.1). This can show how good our generated solution is in the simple model,
and how good potentially the TEUs of that solution are. The second comparison of interest is
how well our PreAssigner performs in the real-world. This can be shown by comparing a solution
obtained by the Optimizer with and without a pre-assignment (labeled “2” in Figure 5.1).

optimizer
run

imported
optimizer
solution

prototype
run

preassigned
optimizer
run

optimizer prototype

complete
model

simple
model 1.

2.

Figure 5.1: The four relevant quadrants for our experiments.

32

Test set. Assembléon has a test-suite for its Optimizer software. Among the tests in this suite,
actual problem instances can be found. This set consists of problems taken from actual customers.
These customer problems use very diverse configurations and make for an ideal test set for our
purposes.

The PreAssigner is bound to some constraints. Therefore not all problem instances in this set
can be used directly. The following steps are performed upon the test set to prepare it.

• Problems can be meant for multiple machines. For example, a problem can state how two
AX machines standing in one assembly line, or even a AX and another pick & place machine,
can best assemble a single panel. Our PreAssigner only works for AX machines. Problems
for multiple machines are thus split into multiple problems for a single machine. Now only
the problems for an AX are kept.

• A problem may also contain multiple panel specifications. A constraint on the PreAssigner
is that the input may only contain a single panel specification. The problem is therefore split
into multiple problems, each of only single panel specification. Each of these new problems
is inserted into our test set.

• Solutions of the PreAssigner are obtained in the complete model via pre-assignments. It can
however also be the case that problems in the test suite already have a toolbit pre-assignment
configured. This conflict is resolved by simply removing all pre-assignments present in the
test suite. Also, the feeder and part pre-assignments are dropped.

After these steps have been performed a total of 145 problem instances is found. These make
up our test set.

Runs. Let us now describe how solutions are generated from all four quadrants.

[optcomplete] A run of the complete test-set by the original Optimizer . Because the Optimizer is
deterministic it is only run once. Each instance is kept running for 5 minutes. The solutions
produced by the Optimizer are obviously in the complete model.

[optsimple] The solutions as found in [optcomplete] are now transformed into solutions for the sim-
ple model. To compute the placement time of the transformed solution, the algorithm
that computes the minimum number of toolbit exchanges is used in the objective function.
Transforming the solution into the simple model is deterministic and occurs thus only once.

[proexact,simple] The PreAssigner is run for every problem in the test-set. Because the PreAssigner
is non-deterministic each problem is run three times, the solution yielding the best cycle time
is chosen. The time the PreAssigner takes to process a single problem instance depends
on the complexity of the job, but takes in the order of five minutes. The exact toolbit
computation method is used in the algorithm that computes the cycle time. The rest of the
SA algorithm is configured as discussed in Chapter 4.

[proexact,complete] For each solution found by [proexact,simple] the TEUs are extracted. Solutions in
the complete model are found by running the Optimizer for each solution with the extracted
TEUs preassigned.

[proestimate,simple] These solutions are obtained similar as described in [proexact,simple]. However
instead of the exact method to compute toolbits, the estimation method is used.

[proestimate,complete] These solutions are obtained similar as described in [proexact,complete]. How-
ever the solutions in the simple model as given by [proestimate,simple] are used instead.

33

5.2 Experimental evaluation

5.2.1 The effect of the mutators

Our SA algorithm uses a total of five mutators. What is the effect of each mutator, and are all
these mutators really necessary? We test this by running the PreAssigner for each possible subset
over these mutators. For these five mutators there are 25 − 1 = 31 possible non-empty subsets.
In such a run the PreAssigner may only use mutators out of the subset. The mutator strategy
is used for this, and an equal weight is assigned to each mutator. Furthermore the PreAssigner
is run using this subset for five different problems. These five problems are chosen in such a way
that they are believed to be representative for the complete test-set. Each problem is run three
times and the best solution is used. The time reported for a subset of mutators is the average
cycle time achieved on these five jobs.

The results of this experiment can be seen in Table 5.1. One can see, as expected, that the set
containing all the mutators performs best. The set containing all mutators excluding the duplicate
part mutator ranks only 13th. The twelve subsets performing better all make use of the duplicate
part mutator, apparantly duplicating parts is crucial to obtain well performing solutions. The
subset containing all mutators excluding the merge part mutator scores almost as well as the
subset containing all mutators. Apparantly the merge part mutator is not really crucial. A
sequence of move component steps can imitate the merge part mutator equally well.

5.2.2 Effect of the balance objective function

The SA algorithm is adapted so that it accepts solutions yielding an identical cycle time only
if the balance of the solution improves. We are interested if this adaption to the SA algorithm
yields an improvement over the SA algorithm without the adaption. We test this by running the
PreAssigner once with and once without this addition. A run is done over the complete test set,
and each problem in the set is run three times. The results can simply be described by saying
that it makes no siginificant change if this feature is used or not.

5.2.3 Convergence rate of the SA algorithm

Recall the graph given earlier showing the value of the objective function of the current solution
in the SA algorithm over time. This graph shows the behaviour one expects from a SA algorithm
in two ways. Firstly, the cycle time reduces to a point where it converges. Secondly, the variance
in cycle time reduces as the time progesses. We hope that such effects are also present in our
algorithm. To verify this we look at graphs for solutions in [proexact,simple] that show the cycle
time of the solution currently used by our PreAssigner over time.

A representative set of four graphs is given in Figure 5.2. Visual inspection of these graphs
learns us that the cycle time indeed decreases over time. At the end of the PreAssigner the
solution is clearly converged. The algorithm could have been terminated earlier. Also one can
clearly see that the variance in cycle time decreases over time. At the start of the algorithm the
cycle time jumps up and down siginificantly, whereas at the end the cycle hardly changes. This is
exactly the behaviour one would hope to get from a SA algorithm.

5.2.4 Variance of the PreAssigner

The PreAssigner is non-deterministic. It is interesting to see how much the results vary if the
same problem instance is run more than once. To test this we are going to run the PreAssigner on
five problem instances a total of 20 times. These five problems are chosen in such a way that they
are believed to be representative for the complete test-set. The results of this experiment can be
seen in Figure 5.3. The horizontal axis contains the number of times the PreAssigner is run. A
line is shown for each problem. Each line represents the relative improvement of the best solution,
found after having runned the PreAssigner a given number of times, over the solution found in

34

Move component Move part Duplicate part Merge part Swap part Cycle time√ √ √ √ √
25.99√ √ √ √
26.03√ √ √
26.30√ √ √ √
26.39√ √
29.82√ √ √
30.47√ √
31.06√ √ √
31.08√ √ √
31.12√ √ √
31.14√ √ √ √
31.98√ √ √ √
32.61√ √ √ √
46.22√ √ √
46.35√ √ √
47.34√ √
48.00√ √
49.12√
49.49√ √
49.89√ √
50.36√ √ √
50.61√ √
51.76√ √
52.04√
52.17√ √ √
52.25√ √ √
52.91√
53.55√ √
53.83√
91.38√ √
91.68√
94.73

Table 5.1: The average cycle times that are obtained by running the SA algorithm with only using
the checked mutators.

35

 0 500 1000 1500 2000 2500

O
bj

ec
tiv

e
va

lu
e

Time

Current solution

 0 500 1000 1500 2000 2500

O
bj

ec
tiv

e
va

lu
e

Time

Current solution

 0 500 1000 1500 2000 2500

O
bj

ec
tiv

e
va

lu
e

Time

Current solution

 0 500 1000 1500 2000 2500

O
bj

ec
tiv

e
va

lu
e

Time

Current solution

Figure 5.2: Four graphs each showing the cycle time of the solution as maintained by the SA
algorithm over time.

the very first run. The red line (of which points are denoted as plusses) represents the average of
the five other lines. One can see that two of the five problems do not have much variation in their
results. However the other three problems do. For these three problems the solution found after 20
runs has improved by almost 10% on average. For all the five problems together an improvement
is found of 7%.

As usual, there is a trade-off between time and performance. Visual inspection shows that
running the PreAssigner six times gives a good balance between time and performance. Note
however that all experiments performed using the PreAssigner in this Chapter are run only three
times. Unfortunately at the time these experiments were performed we did not yet have this
knowledge. One can thus expect that the improvement in the simple model can be increased even
more. The first indication based on these five cases is that an increase in performance of 3% can
be gained if the PreAssigner was run 6 instead of 3 times.

5.2.5 Comparison in the simple model

Let us now compare the solution obtained in the simple model as produced by our PreAssigner
([proexact,simple]) with solutions in the simple model obtained by the Optimizer ([optsimple]). One
would hope that the results obtained by the PreAssigner will outperform the imported solutions
of the Optimizer . If this it not the case, then it is not very likely that a solution of our PreAssigner
in the complete model, as obtained by pre-assigning TEUs, will yield an improvement over the
actual Optimizer .

The relative improvement that the PreAssigner obtains can be seen in Figure 5.4. On average,
the improvement of our PreAssigner in the simple model is approximately 4.5%. An improvement
is found in 77% of the cases. For these cases an improvement of 7.3% is found on average.

Allthough the PreAssigner achieves an improvement for most of the jobs, there still exist some
problem instances that do not beat the Optimizer . Inspection of these problem instances by hand
lets us categorize these instances in three groups.

• The feeder bank as found in the complete model cannot be realized as a part bank in the
simple model. Recall that the part bank is a simplification of the feeder bank as found in
the complete model. To make sure that all parts that are placed on the part bank in the
simple model can actually be placed on the feeder bank in the complete model, the size of

36

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18 20

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t

o
v
e
r
fi
rs

t
ru

n
 (

%
)

Number of runs

average improvement

Figure 5.3: Line chart showing the variance of the PreAssigner. A point in the graph at r runs
depicts the improvement of the best performing solution found after having runned the PreAssigner
r times over the very first found solution. The red line represents the average of the five other
lines.

 0

 2

 4

 6

 8

 10

 12

 14

 16

-20 -15 -10 -5 0 5 10 15 20 25 30 35 40

C
o
u
n
t

Relative improvement to Optimizer, simple model

Prototype, improvement
Prototype, decline

Figure 5.4: Histogram showing the relative improvement of the PreAssigner over the Optimizer
in the simple model.

37

Toolbit exchanges Size
[0, 5) 109
[5, 10) 19
[10, 15) 11
[15,∞) 6

Table 5.2: Clustering of problem instances based on number of toolbit exchanges

the part bank in the simple model is underestimated. In general, fewer parts will fit on the
AX in the simple model than in the complete model.

Obviously a solution as obtained by the Optimizer may use the entire feeder bank. If such
solution is now imported in the simple model, the size of the part bank is typically violated
for some of the robots. A solution as imported from the Optimizer is thus in general able to
use more parts. This effect puts the PreAssigner in a disadvantage. For a couple of problem
instances one can clearly see that due to this a better solution cannot be obtained in the
simple model.

• For another set of problem instances it holds that their solutions lie in a deep local minimum
that is hard to escape from. To improve such solution a large number of mutations need to
be performed that all achieve a worse cycle time. In order to overcome such local minimum
the temperature should probably cool at a much slower rate, improving the probability that
concequtive worse solutions are accepted. Another solution is to provide a more direct way
from this local minimum to a better solution. As a last solution the initially generated
solution could be randomized or multiple intial solutions should be used.

• There are also problem instances known where the solution generated by the PreAssigner
uses more toolbit exchanges and this clearly leads to worse cycle times. A cooling schedule
that would cool more slowly could hopefully find better solutions.

An interesting observation is that a lot of solutions in the simple model actually use more
toolbits than the imported solutions from the Optimizer . Still these solutions have a better cycle
time on average. The most extreme example is for a problem for which the Optimizer uses 47
toolbit exchanges. For this problem the PreAssigner generates a solution that uses 95 toolbit
exchanges, but that is still approximately ten percent faster.

The initial belief was that particularly jobs performing lots of toolbit exchanges could be
improved. To test this belief we cluster the problem instances into four groups, based on the
number of toolbit exchanges that the Optimizer originally uses. These four groups, as well as the
number of problem instances that are contained in them, are given in Table 5.2. The improvement
that the clusters achieve are given in Figure 5.5. Interestingly one can see that, indeed, the
improvement of the PreAssigner in the simple model improves as the number of toolbit exchanges
used by the Optimizer increases. The improvement for the 36 jobs that make up the three clusters
having 5 or more toolbits, is 9% on average.

5.2.6 Relation simple model to complete model

As the simple model is a simplification of the complete model we suspect the cycle time of a
solution in the simple model to be an underestimation of the complete model. A solution in the
simple model is thus suspected to have a faster cycle time. Let us see if this is the case. Also it is
interesting to see how large the difference between the simple and complete model actually is. To
get an idea we compare the solutions obtained by the Optimizer ([optcomplete]) with the analog
imported solutions ([optsimple]). A histogram showing the relative difference in cycle time of an
imported solution over the solution generated by the Optimizer is given in Figure 5.6. We observe
that in 90% of the cases the simple solution is actually an underestimation. There are however
cases that are an overestimation. These cases can possibly be explained by the fact that toolbit

38

-20

-10

 0

 10

 20

 30

 40

[0, 5) [5, 10) [10, 15) [15, ∞)

Figure 5.5: Boxplots showing the relative improvement of the PreAssigner over the Optimizer in
the simple model. A boxplot is found for each cluster defined in Table 5.2.

exchanges are not masked at the end of a cycle in the simple model. On average a solution in the
simple model is 7% faster.

The difference between the simple and complete model is less than 10% for 65% of the cases.
There are however cases that have larger differences. We suspect that these are cases for which
fiducial readings are important. Fiducial readings are not part of our simple model.

5.2.7 Comparison in the complete model

Let us now look at the actual results if we compare the results obtained from preassigning the TEU
generated by the PreAssigner ([proexact,complete]) versus the results obtained by the Optimizer
([optcomplete]). An improvement here would mean an actual improvement in the real world.

The result of running all jobs can be seen in Figure 5.7. On average, the improvement of our
PreAssigner in the complete model is approximately 0.5%. In 6% of the cases the exact same
result is found. An improvement is found in 58% of the cases. For these cases an improvement of
1.8% is found on average.

Let us now again cluster the results according to the clusters as defined by Table 5.2. The results
can found in Figure 5.8. Also in the complete model one can see that the obtained improvements
increase as the number of toolbit exchanges increases. However this effect is not as strongly as
seen before. In particular, a decrease in performance is observed in the second cluster. The 36
jobs that make up the three clusters having 5 or more toolbits still makes an improvement of
1.3% on average. The 17 jobs that make up the two clusters having 10 or more toolbits make an
improvement of 2.9% on average.

We give three reasons that can explain why the improvements obtained in the simple model
are not obtained in the complete model.

• The improvements found before are based on a simplified version of the actual model. Ob-
viously information about the actual problem is lost in this step. For example the time it
takes to place a component is approximated. The simple model can thus be a too simple
representation of the complete model.

• The TEU of each robot as found by the PreAssigner is pre-assigned to the Optimizer . The
rest of the solution is, however, discarded. The distribution of components is thus not used at

39

 0

 5

 10

 15

 20

 25

-50 -40 -30 -20 -10 0 10 20

C
o
u
n
t

Relative difference to complete model (%)

Imported solution from Optimizer, overestimation
__, underestimation

Figure 5.6: Histogram showing the relative difference of an imported solution over a solution
generated by the Optimizer.

 0

 5

 10

 15

 20

 25

 30

 35

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

C
o
u
n
t

Relative improvement to Optimizer, complete model

Prototype, improvement
Prototype, decline

Figure 5.7: Histogram showing the relative improvement of the PreAssigner over the Optimizer
in the complete model.

40

-10

-5

 0

 5

 10

[0, 5) [5, 10) [10, 15) [15, ∞)

Figure 5.8: Boxplots showing the relative improvement of the PreAssigner over the Optimizer in
the complete model. A boxplot is found for each cluster defined in Table 5.2.

all. Also the part bank, and allocation of toolbits to components as found by the algorithm
that computes the cycle time is neglected. In order to obtain an identical solution in the
complete model, the Optimizer needs to figure out these choices itself based on only the
TEU pre-assignment. Because the TEU is generated carefully we hope that this is also the
case. However there are solutions that have a completely different feeder bank, and thus a
completely different solution. These solutions normally perform worse.

• We reported earlier that solutions are generated by the PreAssigner in the simple model that
outperform the Optimizer but use more toolbit exchanges. However for these problems the
Optimizer does not seem to be able to generate solutions that yield an improvement. Visual
inspection of the solutions obtained in the simple model leads us to believe that obtaining
such solution in the complete model is also possible. However, the algorithms the Optimizer
uses are not tuned to using more toolbit exchanges were that will lead to an improved cycle
time.

In general, there can be two reasons that the improvement decreases when going from the
simple model to the complete model: either the computed pre-assignment may not be as good as
hoped, or the pre-assignment is potentially good, but the Optimizer fails to take advantage of it.
Is is not clear what the main reason is.

5.2.8 Influence exact toolbit computation

The exact method to compute the number of toolbit exchanges is proposed because we believe
that it makes the simple model match better to the complete model. This should improve our
chances that an improvement obtained in the simple model can also be obtained in the complete
model. Is this actually the case? Earlier in this chapter we showed that the PreAssigner yields
some improvements over the Optimizer in both the simple and complete model. These results are
obtained with the PreAssigner using the exact method to compute toolbit exchanges. We expect
that when using the estimation method, the improvement in the complete model will be less
significant. Therefore we compare the improvement using the exact method ([proexact,complete]
over [optcomplete]) to the improvement using the estimation method ([proestimate,complete] over
[optcomplete]).

41

Recall that using the exact method to exchange toolbits there was an improvement over the
Optimizer of 0.5%. However when the estimation method is used we get a decrease of approxi-
mately −0.5 percent over the Optimizer . The estimation method thus performs worse. The same
holds if we look at the jobs for whom the Optimizer used many toolbits exchanges. Using the exact
method an improvement of 2.9% is obtained, using the estimation method only an improvement
of 2.0% percent is obtained. Hence using the exact method to compute toolbit exchanges indeed
helps to obtain a better solution in the complete model.

42

Chapter 6

Future work

Optimization algorithms for NP-hard problems, as the one described in Chapter 4, will usually
not achieve the optimal solution for every problem instance. Therefore tweaking and improving
such algorithms is a never-ending process. Because the time for a master’s thesis is limited, not
all ideas have been implemented or tested. In this Chapter an overview is given of the ideas that
could be used to improve the PreAssigner .

First of, the PreAssigner has some constraints. It can namely only produce solutions for single-
panel problems. The algorithm can however be extended quite trivially to multiple panels. To do
so, a solution in the simple solution should consist of a distribution of components to buckets for
each panel. The cycle time should then be defined as the weighted cycle time of the individual
problems.

Recall that toolbits taking place prior to the return stroke can be masked by the transport
in the complete model. Thus a toolbit exchange at the end of the program can be performed
without it counting towards the cycle time. This is not modelled in the simple model, but it
can be implemented rather straightforwardly. The algorithm to compute the minimum number of
toolbit exchanges can for example be adapted by simply changing the weight to zero for the edges
of which their source is a start vertex. In this way the Simulated Annealing algorithm will most
likely prefer to perform a toolbit exchange at the end of the cycle. This straightforward solution
has not been incorporated in the PreAssigner because we became only aware of this effect at the
end of this master’s thesis, and not all experiments could be repeated with this adjustment. We
did however experiment briefly with an adapted algorithm on a fraction of the problem instances.
During these experiments no real improvement in the simple model was found however.

The simulated annealing algorithm as implemented in this thesis has many parameters that
can be tweaked. The start temperature, cooling schedule, probability function and weights of the
mutators. The choice for the parameters as described is based on observations done during testing
the algorithm. However, no tweaking of parameters has been done. By carefully tweaking these
parameters most likely improvements can be expected.

We observed that there is a lot of variance in the cycle times of the solutions that are generated
by the PreAssigner . We mitigate this in this paper by running more instances of the algorithm.
Most likely, however, one can get the same increase in performance without running the algorithm
multiple times. This can for example be achieved by using multiple initial solutions or by restarting
the algorithm during its execution.

A solution in the simple model consists of only a distribution of components to buckets. How-
ever, after evaluating the cycle time using our algorithm, also a TEU and part bank are known
for each robot. Only the TEU is pre-assigned to the Optimizer . The Optimizer also supports
pre-assigning feeders and parts to a robot. One could also try to pre-assign feeders and parts
corresponding to the part bank as found in the simpel solution. This would steer the Optimizer
much more directly towards the solution as computed in the simple model. It would, however,
require either an adaption of the simple model or an algorithm should be placed in between that
can convert a part bank to a feeder bank.

43

Lastly, recall the algorithm of the Optimizer . In Step 5 the components were ordered in such
a way that the number of toolbits, and hopefully toolbit exchanges, was reduced. This problem
looks similar to the problem that is solved by our PreAssigner to compute the minimum number
of toolbit exchanges. However, the later one solves it exactly and will induce a lower number of
toolbit exchanges. This algorithm could well be used in that step.

44

Chapter 7

Summary and Conclusion

In this master’s thesis we studied the Optimizer , software used by Assembléon to generate place-
ment programs with whom the AX can assemble panels. That software is known to sometimes
produce placement programs using lots of toolbit exchanges, for which Assembléon believes lower
cycle times can be obtained.

In Chapter 2 of this thesis we started by describing what hardware makes up an AX. The
Optimizer software was described, which is as an algorithm to produce such placement programs.
In particular, we explained the possibility the Optimizer offers to pre-assign toolbits to the TEUs
of robots. After we familiarized ourselves with the AX, we turned our attention to the internals
of the Optimizer in Chapter 3. We found clues as to why the current algorithm can sometimes
yield a solution containing too many toolbit exchanges, the most important being that the TEUs
of robots are computed using simple heuristics, but remain static during the complete genetic
algorithm.

In Chapter 4 we presented the PreAssigner , an algorithm that can compute a TEU pre-
assignment for each robot. Such a pre-assignment can be fed into the existing Optimizer , yielding
real-world results. A simplified model was introduced. The simplified model was shown to be
NP-hard still and a Simulated Annealing algorithm was presented to compute efficient placement
programs in the simplified model. The required ingredients that Simulated Annealing needs were
filled in by introducing five mutators, an algorithm to compute an initial solution and an algorithm
to compute the fitness of a solution. In Chapter 5 we experimentally tested the performance and
characteristics of the PreAssigner . In both the simple model and the real world the PreAssigner
was shown to generate better results. Finally, in Chapter 6, we gave ideas and tasks that could
not be completed within the scope of this thesis. These could be used by Assembléon to continue
work on the PreAssigner .

Assembléon believes the solutions of problem instances can be improved for which the Optimizer
now uses many toolbit exchanges. The PreAssigner described in this thesis has, indeed, shown to
be able to generate solutions for these problem instances that outperform the existing Optimizer
by 2.9%. In fact, the solutions generated by the PreAssigner outperforms the Optimizer on
average over all test instances with 0.5%. The production time of panels can thus be reduced by
Assembléon by using the PreAssigner as a pre-processing step.

The initial belief of Assembléon was that results could only be improved by reducing the number
of toolbit exchanges. Surprisingly there are several cases where our solutions in the simple model
generate more toolbit exchanges than the Optimizer , but still achieve lower cycle times. This
shows that minimizing the number of toolbit exchanges should not always be the goal when trying
to increase performance.

Contrary to the 0.5% improvement that the PreAssigner achieves over the Optimizer in the
complete model, the improvement in the simple model is a staggering 4.5%. It is not completely
clear why there is a large gap between these two. It can be because the generated pre-assignment
is not as good as hoped. In that case most likely the simple model is not a good representation of

45

the complete model. It can also be because the optimizer fails to take advantage of a generated
pre-assignment that is potentially good. For both cases ideas have been listed in Chapter 6 that
could mitigate these problems. One option could be to adapt the Optimizer in order to cope
with a potentially good pre-assignment. However, the internals of the AX have been shown to be
implemented rather strangly in a couple of ways. One could therefore also consider replacing the
complete Optimizer in favor of an algorithm based on the PreAssigner .

46

Bibliography

[1] L. J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search When Engag-
ing in Nontraditional Genetic Recombination in Foundations of Genetic Algorithms. Morgan
Kaufmann, pp. 265-283 (1991).

[2] D. S. Hochbaum, D. B. Shmoys. Using dual approximation algorithms for scheduling problems
theoretical and practical results. In ACM volume 34 issue 1, pp. 144-162 (1987).

[3] R. M. Karp. Complexity of Computer Computations. In Complexity of Com-puter Computa-
tions, New York, Plenum Press, pp. 85-104 (1972).

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Section 24.3: Dijkstra’s algorithm. In
Introduction to Algorithms. MIT Press and McGraw-Hill, pp. 595-601 (2001).

[5] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing. In science
volume 220 no 4598, pp. 671-68 (1983).

47

	Abstract
	Contents
	1. Introduction
	2. Background on the AX
	3. The algorithm of the current Optimizer
	4. A new algorithm for pre-assigning toolbits
	5. Experimental evaluation of the new algorithm
	6. Future work
	7. Summary and Conclusion
	Bibliography

