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Abstract 

Procurement policies in commodity markets are crucial to the flour milling industry which 

operates under a thin profit margin while facing various major uncertainties. This thesis explores 

the optimal procurement policies of a firm-value-maximizing flour miller, under demand 

volatilities and stochastic prices. It turns out that myopic base-stock policies are optimal. 

Meanwhile, the value of downward substitution in commodity markets is also developed, and the 

result shows that it depends on the convenience yield, the difference between the forward and 

spot transportation costs, and the quality premium. According to the numerical results, the % 

benefit of downward substitution exponentially increases with quality requirement uncertainty. 
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Summary 

Motivated by the flour milling industry, this thesis considers the procurement problem of a flour 

miller who procures different types of wheat from upstream wheat providers and earns revenue 

by trading a specific type of flour to the downstream industries (e.g. bakeries) and aims at 

maximizing the firm value, while facing an uncertain business environment. 

The flour miller procures different types of wheat, and convert it into specific types of flour to 

sale. The milling process in general includes grinding and sifting which contain further detailed 

technological processes (usually accompanied with weight loss during the process, prior wheat 

blending or latter flour blending to achieve flour quality requirement from industrial customers. 

The grinding process usually also produces by-product).  

Though the revenue is considerable, the indeterminacy in the business environment faced by the 

flour millers is impairing their profit: volatile wheat purchase price, uncertain wheat quality, and 

not entirely fixed wheat supply amount and delivery date, from the upstream wheat suppliers; 

uncertain flour demand and uncertain flour quality requirement from downstream customers, 

together with uncertain conversion ratio during the flour producing processes, etc.. 

The miller can procure the wheat by forward contracts and on the spot market. Both markets 

provide abundant amount of wheat in all types, but the spot market ensures immediate delivery 

and the forward market delivers the wheat one period later. However, the transportation fee on 

the spot market is higher than the forward market. Because under forward contracts, the logistics 

provider clearly knows what type of wheat should be delivered from which wheat supplier to 

which location on which future date, and in what amount, which enables advanced logistical 

planning for the logistics provider; while on the spot market these information usually would not 

be confirmed until the last minute, which as a result restrains any advanced logistical planning.  

The sales of flour are based on pre-agreed sales contracts between the miller and the downstream 

food industry. The customers denote their demand and quality requirement (e.g. particle size 

index, dough volume and falling number) on the contracts which will be mature in one period 

after signing. But these sales contracts do not possess legal power, so on the mature date the 

customers can adjust their demand and quality requirement for their own benefits.  

The thesis would explore the problem in a uncertainty-complexity increasing way. First, only 

flour demand uncertainty would be taken into account, to explore the corresponding optimal 

procurement policy. Even though the sales contracts are signed, the flour demand of the next 

period is still random. So it is highly likely that the miller observes either wheat shortage or 

excess one period later, when the wheat procured by forward contracts arrives and the real flour 
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demand is observed. The miller would purchase the missing amount of wheat from the spot 

market if wheat shortage happens, or hold the inventory into the next period if wheat turns out to 

be excessive. No flour backlog is allowed.  

Then except for the demand uncertainty, the quality requirement is also assumed to be uncertain. 

The miller cannot observe the real quality requirement, until the mature dates of the sales 

contracts. Every type of wheat has its own constant quality characteristics, thus a certain flour 

quality requirement defines a certain wheat blending ratio.  

Next, the thesis also considers the downward substitution problem. Downward substitution 

means the miller can substitute the shortage of normal wheat with excessive good wheat (if there 

is any), but not the other way around: After receiving the wheat purchased by forward and 

observing the flour demand and quality requirement, the miller may face a situation in which the 

good wheat is more than enough but the normal wheat is in a shortage. Except for procuring (all) 

the missing amount of normal, the miller can choose to substitute with excessive good wheat.  

In each case, the thesis models the decision making process of the miller as a stochastic dynamic 

program, and every model has a multiple-period time scope. The multiple-period assumption is 

more realistic to the flour miller instead of one period, because the decision in current period 

would always be influenced by the one made in the previous period in the form of inventory or 

backlog, and so is the decision next period by the current period. Moreover, the research results 

of multiple-period case can also be applied to single-period one. 

It turns out that the optimal procurement polices fall into the Newsvendor pattern, and the higher 

the ratio of (extra expenses on the spot market compared with the forward market)/(the 

difference between the forward market price plus expected holding cost and the expected 

forward market price next period), the miller would utilize the forward market more, which is 

more beneficial compared with the spot market. Another observation is that the convenience 

yield would not always necessary show up in the optimal procurement policies in the commodity 

markets, when the spot procurement does not face uncertainties. 

The downward substitution value in the commodity markets depends on the convenience yield, 

the difference between the forward and spot transportation costs, and the negative effects of 

losing the quality premium. The stochastic price brings dynamic to the value of downward 

substitution in the commodity markets, resulting in value increase or decrease. When the value is 

positive, downward substitution would be beneficial; when the value becomes negative, 

downward substitution should be avoided.  
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In the simulation section, we simulated how the value of downward substitution would change 

according to the blending ratio volatility, under a stochastic price process and different marginal 

profits. According to the numerical experiment result, the % benefit of downward substitution 

increases in a speeding up style along the rising of quality requirement uncertainty, and such a % 

is higher for the case with lower marginal profit, on the same quality requirement uncertainty 

level.  
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1. Introduction 

According to the European Flour Millers' association (2011), the European flour milling industry 

represented a turnover of 15 billion euros per year, producing 35 million tons of flour annually; 

IBISWorld (2012) pointed out that flour milling industry in U.S. would create 21 billion dollars 

revenue annually, and the revenue was estimated to keep growing in the following five years. 

Given the huge economic size of the flour milling industry, it is essential to optimize the 

operating and hedging decisions of the millers. 

Flour milling industry procures different types of wheat, and converts it into specific types of 

flour to sale. The milling process in general includes grinding and sifting which contain further 

detailed technological processes, usually accompanied with weight loss during the process. The 

grinding process also produces by-products. Here is an example of the business scenario about 

flour milling industry in Europe, based on the introduction of the European Flour Millers’ 

association (2012): the millers procure different types of wheat (e.g. common wheat, spelt wheat 

and durum wheat etc., sometimes even other types of grains instead of wheat) from upstream 

farms, merchants and grain stores or by import. EU flour millers produce up to 600 different 

types of flour most of which can be classified into white, whole meal or brown category. The 

millers convert the wheat into specific types of flour and sell it to downstream bakeries, retailers, 

caterers or other food manufacturers, together with the by-product being sold to animal feed 

companies usually. The flour would be consumed as bread or similar baked products (70% in 

total), and also used in a great variety of other foods including biscuits, cakes, pies, pizzas, 

coatings, confectionery etc.  

Though the revenue is considerable, the indeterminacy in the business environment faced by the 

flour millers is impairing their profit: uncertain demand, volatile wheat price, uncertain flour 

quality requirement, besides (in some cases) uncertainties from wheat quality and milling 

processes (e.g. how much weight would be lost) etc. For instance, Figure 1 depicts the 

fluctuations of European commodity prices (in euros per metric ton).  
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Figure 1: milling wheat price fluctuations (Smale,2013) 

Motivated by the flour milling industry, this thesis considers the problem of a flour miller who 

procures different types of wheat from upstream wheat providers and earns revenue by trading a 

specific type of flour to the downstream industries (e.g. bakeries) and aims at maximizing the 

firm value, while facing an uncertain business environment similar to the one described generally 

above . 

The miller can procure the wheat by forward contracts and on the spot market. Both markets 

provide abundant amount of wheat in all types, but the spot market ensures immediate delivery 

and the forward market delivers the wheat one period later. As a result, the transportation fee on 

the spot market is higher than the forward market, as discussed by Goel and Tanrisever (2011).  

The sales of flour are based on pre-agreed sales contracts between the miller and the downstream 

food industry. The customers denote their demand and quality requirement (e.g. particle size 

index, dough volume and falling number mentioned by Hayta and Çakmakli (2001)) on the 

contracts which will be mature in one period after signing. But these sales contracts do not 

possess legal power, so on the maturity date the customers can adjust their demand and quality 

requirement for their own benefits.  

Clearly, the miller faces flour demand uncertainty. Even though the sales contracts are signed, 

the flour demand of the next period is still random. So it is highly likely that the miller observes 

either wheat shortage or excess one period later, when the wheat procured by forward contracts 

arrives and the real flour demand is observed. The miller would purchase the missing amount of 

wheat from the spot market if wheat shortage happens, or hold the inventory into the next period 

if wheat turns out to be excessive. No flour backlog is allowed.  
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Except for the demand uncertainty, the quality requirement is also uncertain. The miller cannot 

observe the real quality requirement, until the maturity dates of the sales contracts. Every type of 

wheat has its own constant quality characteristics, thus a certain flour quality requirement defines 

a certain wheat blending ratio.  

The miller also faces a downward substitution problem. After receiving the wheat purchased by 

forward contracts and observing the flour demand and quality requirement, the miller may face a 

situation in which the good wheat is more than enough but the normal wheat is in shortage. The 

miller can substitute the shortage of normal wheat with good wheat. But what is the value of 

downward substitution, and what would be the best downward substitution policy? 

The main purpose of this thesis is to explore the optimal procurement policy of the miller. The 

miller examined in this thesis is an example of a broader class of integrated operational and 

financial risks management problems, including firm-value-maximizing companies from textile 

industry, food manufacturing industry, chemical reagent industry, dye industry and drug 

manufacturing industry etc which need different primary inputs to generate a single type of 

output while facing demand uncertainties.  

The procurement prices in the wheat forward market and spot market are assumed to evolve 

under a risk-neutral measure, and the flour sales price is based on the wheat spot price, in order 

to eliminate arbitrary behaviors.  

The thesis finds the optimal procurement policies for a flour miller who faces demand and 

quality requirement uncertainties in commodity markets, as well as a downward substitution 

problem, and then compares the results with the existing literatures. Meanwhile, the extra value 

of downward substitution in the commodity markets is also explored in this thesis. It turns out 

that the optimal procurement polices fall into the Newsvendor pattern. The value of downward 

substitution in commodity markets depends on the convenience yield, the difference between the 

forward and spot transportation costs, and the quality premium. According to the numerical 

results, the % benefit of downward substitution exponentially increases with quality requirement 

uncertainty. 

The thesis proceeds as follows: In §2, it reviews the relevant literatures and describes the 

difference of this thesis generally. In §3, a basic case with only demand uncertainty is introduced 

and explored. The quality requirement is deterministic, and downward substitution is not taken 

into account. In §4, on the basis of the case in §3, the quality requirement uncertainty is taken 

into account, and the optimal procurement policy is developed for this new case. In §5, based on 
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the case in §4, the downward substitution problem comes into the scope, and the optimal 

procurement policy together with the optimal substitution policy are developed. The extra value 

brought by downward substitution in commodity markets is also examined in this case. In §6, a 

stochastic price simulation model is explained, and then we simulate how the value of downward 

substitution changes according to the blending ratio volatility, under a stochastic price process 

and different marginal profits. Section 7 contains the concluding remarks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

2. Literature Review 

There are three streams of literature relevant to the research in this thesis: a) optimal commodity 

procurement portfolio of contracts including forward and spot; b) downward substitution in 

supply chain management; c) quality requirement uncertainty.  

Recently, a growing body of literature considers forward contracting in commodity procurement 

(since they can help to mitigate price and demand risks), along with spot market. Wu and 

Kleindorfer (2005) build an one-period model of a market which has multiple sellers and one 

buyer who trades by options, forward and on spot market while being risk neutral, to explore the 

optimal contracting and spot transactions portfolios for them. Dong and Liu (2007) check the 

determination of an equilibrium forward contract on a non-storable commodity, between two 

firms in an one-period model. They find that the forward contract would affect inventory policies 

because of its hedging effect. In a related research, Seifert et al. (2004) consider the benefits of 

applying spot market in procurement in single period models, compared with exclusive 

utilization of forward contracts. Their results indicate that significant profit improvements can be 

achieved when a moderate fraction of commodity is procured on the spot markets. In addition, 

they point it out that spot markets can offer a higher expected service level to companies, but 

they may bring a higher variability. 

Yi and Scheller-Wolf (2003) study a multi-period inventory management problem of a buyer 

who faces random demand. Their objective was to minimize the total expected replenishment 

costs. They assume commodities can be procured by forward contracts with known price and on 

the spot market with random price. Based on a new closure property of K-convexity, they figure 

that optimal inventory decisions have a structure similar to the classic (s, S) policy. Martínez‐de‐

Albéniz and Simchi‐Levi (2005) solve the optimal supply contracts portfolio (including spot 

market) problem of a buyer (manufacturer) who can procure by forward contracts, options and 

from the spot market, based on the “flexibility-price trade-off” of the potential procurement 

choices. They model the problem in a multi-period environment, assuming supply contracts, spot 

market costs and inventory holding costs to be convex. They find that the optimal replenishment 

policy follows a modified base-stock policy for every option. They also figure that the contract 

selection problem is a concave maximization problem for which they provide closed-form 

solution for the single period version. However, as pointed out by Haksöz and Seshadri (2007), 

this paper does not model the connection of forward and/or futures prices to the spot prices. The 

long-term contract price is therefore assumed to evolve independent of the spot market price. 

Haksöz and Seshadri (2007) themselves take a literature review on the work in the supply chain 
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operations literature, including plentiful papers which cover the topic of optimal procurement in 

the presence of forward (or future) and spot markets.  

Goel and Gutierrez (2011) examine how the price information and flexibility on the commodity 

market (which consists of spot and forward markets) lead to significant retrenchment in 

inventory costs in a periodic review system. They model a two echelon zero-lead-time 

distributive supply chain with one center location and multiple nonhomogeneous downstream 

retailers in a multiple-period setting. In the model, the supply chain faces random demand (even 

for spot procurement) and price, and the holding cost is determined by the spreads between spot 

and forward prices. Goel and Gutierrez (2012) develope a multi-period and periodic-review 

inventory model with stochastic demand to study the optimal forward and spot procurement 

policies of a processor who provides a single type of product. They find that it is possible to 

reduce inventory related costs significantly by combining spot and futures price information 

when making the procurement decision. In their paper, optimal forward procurement policies are 

characterized by a fixed band. This paper considers the procurement problem in a very similar 

setting to the one in this thesis, and thus the results in this thesis are compared with theirs, 

especially on the perspective of convenience yield. 

The first stream of literature cited above seems similar to another stream which builds models 

allowing multiple modes of supply. For instance Chiang and Gutierrez (1998) and Tagaras and 

Vlachos (2001) both explore a periodic review inventory system where regular replenishment 

and emergency replenishment (with shorter lead time and higher ordering cost) both exist. But 

the latter stream assumes uncertain demand even in the emergency replenishment, and it usually 

does not take the price volatility into account.  

Except for the optimal procurement policies, this thesis also considers the downward substitution 

problem. Downward substitution among the final products has already been studied by plentiful 

operations management papers. Hsu and Bassok (1999) consider a single-period, one input, 

multi-product, full downward substitution model, in a setting where demand is uncertain and the 

yield is random. They develop three solution methods to find the optimal production decision. 

Uday et al. (2004) model a multi-product inventory system with downward substitution and 

setup costs as a one-period stochastic program with recourse. They exploit structural properties 

of the model and utilize a combination of optimization techniques to develop effective inventory 

planning heuristics. Bassok et al. (1999) study a single period multi-product inventory problem 

with stochastic demands, downward substitution and proportional costs and revenues. They show 

that a greedy substitution allocation policy was optimal. Nagarajan and Rajagopalan (2008) 
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consider a system where individual demands are negatively correlated and partially downwardly 

substitutable. They find state independent base-stock policies turn out to be optimal inventory 

policies. Liu et al. (2009) consider an one-period downward substitution problem for two 

components, with more subtle exploration of the substitution rule. They present a dynamic 

substitution rule which is a threshold policy. For systematic literature review on the classic 

downward substitution problem, the work by Uday et al. (2004) is recommended. But it is very 

rare, if not at all, to see literatures which examine the value of downward substitution under a 

setting where commodity markets are involved. 

Quality requirement uncertainty is another problem to be considered in this thesis. A similar 

problem is considered by some remanufacturing literatures. In remanufacturing, the manufacture 

usually can procure new components or attain good ones from used products to fulfill the 

demand, so the manufacture faces the challenge of addressing uncertain yields problem. Some 

relevant papers include: Ferrer and Michael (2004), Ferrer and Whybark (2009), Galbreth and 

Blackburn (2006), Bakal and Akcali (2006), Mukhopadhyay and Ma (2009), Xu (2010).  

This thesis differs from (most of) the above studies mainly in two ways. First, in the thesis the 

value of downward substitution is examined in commodity markets, so the value of downward 

substitution is explored not only under demand uncertainty, but also under price volatility under 

a multiple-periods setting. Second, the thesis takes demand uncertainty, price uncertainty, quality 

requirement uncertainty and downward substitution into account, in the presence of forward 

contracts and spot market. Compared with the main body of relevant papers that only takes 

demand uncertainty and price volatility into account when exploring the optimal procurement 

policies in commodity markets, this thesis also considers another main uncertainty from the 

downstream of the industry chain and the possible influence from producing processes on the 

procurement policies (i.e. quality requirement uncertainty and downward substitution). Such 

additions contribute to enriching the integrated operational-financial interface focused research, 

as well as dismantling the partition between producing processes and procurement policies.  
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3. Case with demand uncertainty 

In this thesis, we assume the miller procures two types of wheat- good and normal ( hereafter 

referred to as type   and type   respectively), and the quality premium for per unit of good wheat 

is denoted as  . Since there are two types of wheat, any given quality requirement can be 

converted to specific blending ratio of wheat. 

In this section, from the perspective of the miller, the flour demand is uncertain, while the quality 

requirement is deterministic. Assume the demand of period      would arrive at time    ( where  

         ), i.e. the end of the period, and it follows a general distribution, i.e.         (where  

   stands for the unrealized flour demand at time  , and      stands for a general probability 

density function, and the corresponding cumulative distribution function is denoted as     ). 

Denote the wheat blending ratio at time   as   , where          and it means the proportion of 

type   wheat in the flour (so     for type   wheat accordingly).    is abbreviated as   

hereafter.  

The time-line of decision making is as follows: at time   the miller (1) observes the wheat 

inventory levels from time     . Denote the wheat inventory levels from last period as        

and         for type   and type   respectively, (2) receives the wheat purchased by forward at 

time     , with which the amounts of type 1 and type 2 wheat accumulate to the order-up-to 

points of time t-1 (denoted as        and        accordingly), on the basis of        and        , (3) 

observes the exact flour demand   , (4) The miller observes the wheat spot price   . The delivery 

cost per unit wheat on the spot market is fixed and denoted as   . If there is not enough wheat to 

meet the flour demand, the miller will procure exactly necessary amount of wheat from the spot 

market immediately, denoted as      and      respectively for type   and type   wheat, so there is 

no possible backlog or lost sale; if the wheat is more than enough, the miller will just hold it into 

the next period, under fixed holding cost (denoted as    and    per unit respectively for type    

and    wheat) or take a recourse if it is the final period already, (5) converts the wheat into flour 

according to the blending ratio, and receives the revenue. In order to eliminate possible 

speculative behavior from the customers, the flour sales price is based on the wheat spot price at 

time   . The marginal profit is fixed and denoted as  , (6) observes the forward price   , and 

makes a decision how much to purchase for type   and   by forward (i.e.           and      

     respectively), to fulfill the demand of next period, and pay for them at time  , under a fixed 

forward delivery cost per unit (denoted as   ). 

Note: (1) in this model we make a general assumption in which     ⃗      , i.e. forward 

dominates spot, so it is always more valuable to fulfill the demand from the forward market than 
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the spot market. (2)           contains the information of forward price and spot prices at time  , 

and it is abbreviated as    hereafter. (3) the expectation is taken under the risk-netural measure, 

as denoted by   . (4)        , where   is a risk free discounting rate and     . 

We denote the present value of cash flows at time   by   . 

                                              

where 

                                                                     

               (         )          (         )        

    ̃     ̃   
           ̃     ̃     

where 

                 
 ,                       

  

                 
 ,                       

  

The first and second terms in the stochastic dynamic program are the cost of spot procurement. 

The third term is the revenue from satisfying the demand. The fourth and fifth terms are the 

holding cost of excessive wheat. The sixth and seventh terms are the cost of forward 

procurement. The eighth term is the discounted cost to go function. 

In the following part of this section, we will rebuild the cash flow function above from the 

perspective of cost instead of profit, and then develop the (possible) optimal procurement policy 

step by step. 

3.1 The optimal order-up-to point 

We rebuild the present value function of cash flow from the perspective of cost, in order to ease 

the exploration of the optimal order-up-to point in case it exists 

  (                         )                                  

                    (         )          (         )        

    ̃     ̃   
            ̃           ̃           
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where  

                                    
 ̃     ̃   

            ̃           ̃          

The salvage value function is accordingly modified into: 

  (                         )                            

                                 

Theorem 1. A base-stock policy is optimal in each period of a finite-horizon problem. 

Proof: See Section TA3. 

Theorem 2. The base-stock policy defined as follows is optimal in each period of a finite-horizon 

problem: 

 (
    

 
)  

        
   (      

 )

 (       
 )

,             

 (
    

   
)  

      
   (    

 )

 (       
 )

,             

As defined in Section TA2,     denote a minimizer of         over all real value    . 

Proof: See Section TA7. 

An example of Theorem 2 would be the optimal order up to points for the last period. 

Result 1. The optimal order up to points for the last period 

 (
      
 

)  
                        

           
 

 (
      
   

)  
                    

           
 

Proof: See Section TA4. 

The optimal base-stock policy above resembles the result of classic Newsvendor model, which 

seems contradict with the multiple-period setting of the problem discussed in this thesis: the 

miller can make the optimal procurement decision as if without considering the influence on the 

following periods, just like in the single period Newsvendor model. Actually, the prolonged 

influence is taken into account in the optimal policy already. The cost of per unit understock in 

this model would be the extra expenses on the spot market compared with the forward market, 

instead of the lost profit suggested by the Newsvendor model; the cost of per unit overstock here 
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would be the difference between the forward market price plus expected holding cost and the 

expected forward market price next period, instead of the value loss after salvage in the 

Newsvendor model (except for the last period). So the optimal base-stock policy here is built 

based on the tradeoff between the costs of now and future.  

Another interesting observation is that the optimal policy is myopic. Such a characteristic may 

conceal the essence that the result considers the prolonged influence of each procurement 

decision up to the final period, instead of only up to the next period. Actually, such a result is 

consistent with how the problem is modeled in a nesting way in Section 3.1: the expected 

influence of a given procurement decision on all the following periods is wrapped up in one 

function which would expand at the following time point (i.e. the beginning of the next period).  

According to the theorem above, the higher the ratio of (extra expenses on the spot market 

compared with the forward market)/(the difference between the forward market price plus 

expected holding cost and the expected forward market price next period), the miller would 

utilize the forward market more, which is more beneficial compared with the spot market. 

Though the numerator is always positive, the denominator may be negative when the 

transportation fee on the spot market is not bigger enough than the one on the forward market, or 

the discount rate   is too small. In such a case, the ratio would also be negative, which means the 

miller should not order from the forward market at all, since it is more beneficial to procure from 

the spot market. 
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4. Case with quality requirement uncertainty 

On the basis of Section  , in this section, the miller also faces quality requirement uncertainty. 

The quality requirement in each period would realize at the same time as the demand on the 

time-line (developed in Section 3). We accordingly assume the blending ratio   is independent 

and identically distributed in each period. The corresponding probability density function and 

cumulative distribution function are denoted as      and      accordingly. 

Here is the present value function of cash flows (from the perspective of cost) which takes the 

expectation of   into account: 

  (                         )                                  

                    (         )          (         )        

    ̃     ̃     ̃
            ̃    ̃       ̃       ̃    

                                                                   

                      

where  

                 
 ,                       

  

                 
 ,                       

  

                                     ̃     ̃     ̃
            ̃    ̃      

  ̃       ̃   

The salvage value function is accordingly modified into: 

  (                         )                            

                                 

We will develop the (possible) optimal procurement policy step by step in the following part of 

this section. 

Theorem 3. A base-stock policy is optimal in each period of a finite-horizon problem. 

Proof: See Section TA10. 

Theorem 4. The base-stock policy defined as follows is optimal in each period of a finite-horizon 

problem: 
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∫  (
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   (      
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 (       
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∫  (
    

   
)          

      
   (    

 )

 (       
 )

 

 
,              

Proof: See Section TA14. 

An example of Theorem 4 would be the optimal order up to points for the last period. 

Result 2. The optimal order up to points for the last period would be 

∫  (
      
 

)          
                        

           

 

 

 

∫  (
      

   
)          

        
   (      

 )

 (       
 )

 

 
  

Proof: See Section TA11. 

The theorem above shows the introduction of quality requirement uncertainty would not change 

the optimal procurement policy structure as obtained in Theorem 2 in which only demand 

uncertainty exists. 

The effect of convenience yield: up to now, the problem seems to be very similar to the one 

considered in the paper by Goel and Gutierrez (2012), but the distinction in the business scenario 

assumptions leads to an important difference between the results. In the paper from Goel and 

Gutierrez (2012), the marginal convenience yield            shows up in the optimal spot 

procurement policy, as the unit cost of overstocking, but in this thesis, as shown in Section 3 and 

4, the spot price does not show up, even though the spot procurement option exists in each 

period.  

In the paper from Goel and Gutierrez (2012), when purchasing from the spot market, the demand 

is still not observed, so the decision maker has to evaluate the tradeoff between the spot 

procurement and forward procurement, thus the spot price    shows up in the optimal 

procurement policy together with forward price and holding cost.  

However, in this thesis, when purchasing from the spot market, the demand and quality 

requirement are both realized, so the decision maker does not compare the tradeoff between the 

spot procurement and the forward one, and she/he just needs to order exactly necessary amount 

from the spot market to avoid backlogs.  

When the decision maker in this thesis procures by forward, she/he indeed has to weigh between 

purchasing by current forward and spot market one period later, thus the decision maker needs to 
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consider the current forward price and the expected spot price of next period which however is 

equal to the current forward price (i.e.        ̃    ), so the spot price does not show up in the 

optimal forward procurement policies either. 

Based on the comparison, the convenience yield would not always necessary show up in the 

optimal procurement policies in the commodity markets, when the spot procurement does not 

face uncertainties. 
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5. Case with downward substitution 

On the basis of Section 4, the normal wheat can be replaced by the good wheat (i.e. downward 

substitution). Assume the downward substitution ratio is always    . After adopting the 

modification in Section 4, the time-line developed in Section 3 would further takes the following 

updates: 

If there is not enough type   wheat to meet the flour demand, the miller will procure exactly 

necessary amount of the type 1 wheat from the spot market immediately, and if there is not 

enough type   wheat, the miller will either procure from the spot market or substitute with 

excessive type 1 wheat (if possible, and denote the substitution amount as   ) or take both 

methods to fulfill exactly the demand of type   wheat immediately, so there is no possible 

backlog or lost sale. 

The present value function of cash flows from the cost perspective would update into: 

  (                         )

              [          ]
 
                 

          
                      

                    (         )          (         )        

    ̃     ̃     ̃
            ̃    ̃       ̃       ̃    

              [          ]
 
                 

          
                                  

                                           

where  

                 
 ,                       

     

                 
    ,                       

  

                                     ̃     ̃     ̃
            ̃    ̃      

  ̃       ̃   

The salvage value function is: 

  (                         )                            
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We assume the optimal procurement policies stay the same as Section 4. The value of downward 

substitution and the optimal downward substitution policy are developed as follows: 

Theorem 5. At             , when                   , the miller would try to 

slove the shortage issue of type   wheat by substitution as much as possible, i.e.    

     [          ]
 
                 

  ; when                   , the miller 

would not substitute at all, i.e.     . 

At the final time point     , when             , the miller would try to slove the 

shortage issue of type 2 wheat by substitution as much as possible, i.e.               

       
                  

  ; when             , the miller would not substitute 

at all, i.e.     . 

Proof: See Section TA15. 

At            , when                   , the per unit cost of purchasing the 

missing type   wheat is higher than the expected per unit value of excessive type   wheat ( so it 

is reasonable to substitute the missing part of type   wheat with excessive type   wheat as much 

as possible) ; when                    it is the other way around. 

At t=T , when             , the per unit cost of purchasing the missing type   wheat is 

higher than the per unit salvage value of excessive type   wheat; when               it 

is the other way around. 

Value of downward substitution in the commodity markets: The main body, if not all, of the 

relevant existing papers, exclusively focuses on the value of downward substitution against the 

negative effects of demand uncertainty (backlog penalty e.g.). However, that is not the complete 

picture of the appealing benefits brought by such an operation mechanism. As reveal by the 

above exploration, in the commodity markets, downward substitution may very likely bring extra 

economic benefits when the quality premium is not very high compared with the values of other 

parameters. 

The convenience yield,         , is assumed to be positive by Goel and Gutierrez (2012), 

and the spot transporation cost on the spot market is always higher than the forward market, as 

discussed by Goel and Tanrisever (2011), which means        . So when the quality 

premium is smaller than the sum of convenience yield and the difference between spot and 

forward transportation costs, i.e.                     , the value of downward 

substitution in the commodity markets, defined as follows, would be positive. 

                                     (     )   ,             
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The stochastic price brings dynamic to the value of downward substitution in commodity 

markets, resulting in value increase or decrease. When the value is positive, downward 

substitution would be beneficial; when the value becomes negative, downward substitution 

should be avoided. In the following section, we are going to simulate how the value of 

downward substitution changes according to the blending ratio volatility, under a stochastic price 

process and different marginal profits. 
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6 Numerical simulation 

6.1 Commodity price  

The commodity prices are simulated based on the two-factor stochastic model developed by 

Schwartz and Smith (2000), which takes both short-term volatility and long-term equilibrium 

level in prices into consideration. In this model, the commodity price at a given time  ,    is 

decomposed into two stochastic factors:             , where    stands for the short-term 

deviation and    represents the equilibrium price level. The short-term deviation     is revert to 

zero, following an Ornstein-Uhlen-beck process 

                      

The long-term factor is assumed to evolve following a Brownian motion process 

      
 
             

where      and     are increments of standard Brownian motion processes and they are 

correlated as         
  
  . The parameter     is the rate of the mean reversion of the short-

term factor   , i.e. the rate at which the short-term deviations are expected to disappear.  

Parameters    and    describe the uncertainty for the short-term deviation factor and long-term 

equilibrium factor accordingly,    and    is the risk premium on short-term and long-term factor 

respectively, and  
 

 is the drift rate associated with the long-term factor.  

Chockalingam and Muthuraman  (2007) describes how to simulate the increments of standard 

Brownian Motion under given correlation coefficient. The value of the correlation coefficient 

together with other necessary parameters for the numerical simulation are collected from the 

paper of Goel and Gutierrez (2011) where the two-factor model is applied to explore the effect of 

term structure model of futures price on procurement policies for gasoline and wheat.  

6.2 Downward substitution value 

In this section we implement numerical experiments by altering operational parameters to 

explore how the value of downward substitution would change when the business environment 

becomes more challenging to the decision maker. We first describe the demand and quality 

requirement models, then we will explain the stochastic price process parameters for wheat 

before performing the numerical analysis. We assume the flour miller works on a bi-weekly 

schedule, and in each period (i.e. two weeks) the demand follows a normal distribution with 

mean equal to     bushels and the standard deviation of    bushels. Wheat procured from the 

forward market has a lower transportation cost compared with spot market (Goel and Tanrisever, 
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2011). We assume the transportation cost of                 from the forward market and 

                from the spot market. The quality premium of type   (i.e. the good one) wheat 

is assumed to be                 The holding cost is assumed to be                        

for type   wheat and                        for type   wheat. We assume the marginal profit 

of flour to be                  . The quality requirement per period (i.e. the blending ratio) is 

assumed to follow a normal distribution with its mean equal to      and standard deviation equal 

to     . The following table illustrates the price process parameters and the operational 

parameters for the base case. The price process parameters come from the paper by Goel and 

Gutierrez (2011).  

Table 1: parameters value of base case 

Parameters Value Item remarks 

 
 

 600 bushels/period demand mean  

   50 bushels/period demand standard deviation  

   40 cents/bushel transportation cost from spot market 

   10 cents/bushel transportation cost from forward market 

   12 cents/bushel/period holding cost of type 1 wheat 

   10 cents/bushel/period holding cost of type 2 wheat 

  5 cents/bushel quality premium 

   17.5 cents/bushel marginal profit 

 
 
 0.55 blending ratio mean 

   0.05 blending ratio standard deviation 

   -0.081318691 initial short-term factor 

  0.9204 mean reversion rate of the short-term factor 

   -0.1473 risk premium on short-term factor 

   0.2826 short-term factor standard deviation  

 
  

 0.1288 correlation ratio 

   6.450380057 initial long-term factor 

   0.0679     
 
    

   0.1735 long-term factor standard deviation  

  0.998001999 discount rate 

   0.04 fraction of two weeks (i.e. one period) in one year  

 

We change the quality requirement uncertainty level (i.e. the blending ratio standard deviation) 

and marginal profit parameters while keeping the other parameters in the base case detailed in 

the table above, which results in three case groups as shown in the table below. Each case group 

has a fixed marginal profit, while the requirement uncertainty level increases.  
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Table 2: different business environments 

case group 1 
(             
      ) case group 2 

(             
      ) case group 3 

(             
      ) 

case 1         case 6         case 11         

case 2          case 7          case 12          

case 3        case 8        case 13        

case 4          case 9          case 14          

case 5         case 10         case 15         

 

We now compare the value of the model with downward substitution as discussed in Section 5 

and the one without it described in Section 4. We apply Montel Carlo method and assign 10,000 

sample paths to each of the 15 cases, under each model, with a planning horizon of   

       . The result is shown in Figure 2. The y-axis computes 

                                                                              

                                        
    , which suggests 

% benefit of downward substitution. The x-axis shows the blending ratio standard deviation, and 

each curve has a corresponding fixed marginal profit.  

 

Figure 2: downward substitution value 

As we can observe from Figure 2, whatever marginal profit it is in the simulation, the % benefit 

of downward substitution increases in a speeding up style along the rising of quality requirement 

uncertainty. Furthermore, the figure indicates that on the same quality requirement uncertainty 

level,  % benefit of downward substitution is higher for the case with lower marginal profit.  
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7 Conclusion  

As shown in the three cases above, myopic base-stock policies are optimal, because the    

function is jointly convex.     function contains the tradeoff when ordering wheat for the next 

period: if the miller does not order enough, he/she is expected to pay for higher transportation fee 

per unit wheat on the spot market, i.e.      ; if the miller orders more than enough, he/she is 

expected to lose   ⃗   in per unit wheat value.  

The higher the ratio of (extra expenses on the spot market compared with the forward 

market)/(the difference between the forward market price plus expected holding cost and the 

expected forward market price next period), the miller would utilize the forward market more. 

Though the numerator is always positive, the denominator may be negative when the 

transportation fee on the spot market is not bigger enough than the one on the forward market, or 

the discount rate   is too small. In such a case, the ratio would also be negative, and the miller 

should not order from the forward market at all, since it is more beneficial to procure from the 

spot market. 

This thesis also examines the value of downward substitution in the commodity markets, and it 

turns out it would indeed bring extra value which depends on the convenience yield (Goel and 

Gutierrez, 2012), the difference between the forward and spot transportation costs (Goel and 

Tanrisever (2011) and the negative effects of losing the quality premium. The possibility of 

downward substitution brings more flexibility to the miller. But it seems the decision maker feels 

no incentives to change the procurement policy inherited from the previous case that does not 

perform downward substitution. 

According to the numerical experiment result, the % benefit of downward substitution increases 

in a speeding up style along the rising of quality requirement uncertainty, and such a % is higher 

for the case with lower marginal profit, under the same quality requirement uncertainty level. 
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Technical Appendix 

The Technical Appendix section consists of three parts conceptually, and each part contains 

proofs for the theorems and results in Section 3, 4 and 5 accordingly. Part 1 includes TA1, TA2 

up to TA7, and it can be further split into two sub-parts : TA1, TA2 and TA3 together serve as 

the step-by-step proofs of Theorem 1 which aims at exploring the existence of optimal policy 

qualitatively for the problem with demand uncertainty in Section 3 ; TA4 up to TA7 together 

established the explicitly optimal policy quantitatively, which leads to Theorem 2. 

Part One 

TA1. Lemma 1 and proof 

This section acts as a preliminary step of Section TA2. 

Lemma 1. Suppose that            is a convex function defined on   
  and the real valued 

function    is defined on   
  by                            , where   is a random 

variable following a general probability density function     , and      . Then    is 

convex on   
 . 

Proof:  ,  ̅,   and  ̅ are four arbitrary none negative real values and       and  ̅     , 

then 

       ̅   ̅      ̅             ̅           ̅          ̅          

            ̅             ̅        ̅          

             ̅           ̅        ̅           

              ̅          ̅           ̅  ̅           [because   is a convex 

function defined on   
 ] 

         ̅       ̅   ̅ ̅          

        ̅    ̅   ̅ ̅  

So    is convex on        , i.e. convex on   
 . 

TA2. Lemma 2 and proof 

This section finishes the preparation of Section TA3. 

Lemma 2. If      is convex on   
 , then the following hold: 

a)    is convex on            . 
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b) A base-stock policy is optimal in period   . Indeed, any minimizer of    is an optimal base-

stock level. 

c)    is convex on   
 . 

Proof: a) if      is convex on   
 , according to Lemma 1,  

 ̃     ̃   

            ̃          

 ̃          is convex on            .               and             are also convex on 

           , thus    is the positive linear combinations of three convex functions. Hence    is also 

convex on            . 

b) Let     denote a minimizer of         over all real value    . If        , then the minimizing 

        is at        , whereas, if        , then the minimizing     is at        . That is, a base-

stock policy with base-stock level     is optimal for period  . 

c) All the possible value of       constitues a convex set   
 , and all the possible value of 

          constitutea nonempty set 

   {(         )|     [          ]
 
      [              ]

 
} for every given      , the 

set                         
          is a convex set. Moreover, since –              , 

            ,       ,       ,              ,             and         are all convex on   , 

their positive combination –                                                   

                         is convex on C  too and  

  (                         )                                       

                                                 and   (                  

       )     for every          
  constitues a convex set since the cost is always none 

negative, according to Theorem A.4 in Porteus (2002),     is a convex function on 

               , i.e. convex on   
 . 

TA3. Proof of Theorem 1 

According to the definition of terminal value function in Section 3.1, the function is convex on 

  
  . Thus, by Lemma 2 (a) and (b),       is jointly convex and a base-stock policy is optimal for 

period    . By Lemma 2 (c),      is convex as well. Thus, the argument iterates backward 

through the periods in the sequence                . 
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Up to here, the qualitative exploration about the existence of optimal policy is finished, and in 

the following sections (i.e. the second sub-part of part one, as mentioned at the beginning of 

Technique Appendix) the quantitative expression of the optimal policy is going to be developed. 

TA4. Proof of Result 1 

Before jumping into the main body of quantitative exploration, an one-period problem is solved 

first. The result is going to be referred to when establishing the optimal policy expression for 

each period in the multiple periods case studied in Section 3. 

Let's examine the one-period problem at the end of the time horizon. The expected ordering, 

holding, and shortage cost, less any expected salvage value, in that period, starting with zero 

inventory and ordering up to       units can be written as 

                                              

    ̃   ̃ 
            ̃           ̃        

                                      ̃   ̃ 
  [ ̃         ]

 
          

 [ ̃             ]
 
        [ ̃         ]

 
             

 [ ̃             ]
 
            

                                   

             ∫ (            )              
 

        

 

           ∫ (                )              
 

            

 

                ∫ (            )              
        

 

 

              ∫ (                )              
            

 

 

Let       denote a solution to 

    
           

Then 
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 (      )                        ∫               

 

        

 

                ∫               
        

 

   

    
 (      )                    ∫               

 

            

 

              ∫               
            

 

   

i.e.  

 (
      
 

)  
                        

           
 

 (
      
   

)  
                    

           
 

TA5. Result 4 and proof 

The result in this section functions in a similar way as the result of Section TA4: waiting to be 

referred to when establishing the ultimate optimal policy expression later. 

Result 4. At time point     

  ̃     ̃   
 

{
 {    (        ̃             ̃        )}

       
} 

              (
      

 
)     (

      

 
)                 (

      

 
) , when 

                    

  ̃     ̃   
 

{
 {    (        ̃             ̃        )}

       
} 

            (
      

   
)     (

      

   
)               (

      

   
) , when           

          

Proof: Let's examine     , by plugging in the optimal decision for each state: 
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     (                             )               [      

      ]
 
          [                ]

 
 [            ]

 
   

[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

     (                             )  {             [      

      ]
 
          [                ]

 
 [            ]

 
   

[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

     (                             )  {             [      

      ]
 
          [                ]

 
 [            ]

 
   

[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

     (                             )               [      

      ]
 
          [                ]

 
 [            ]

 
   

[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

So at time point      

  ̃     ̃   
 

{
 {    (        ̃             ̃        )}

       
} 

              (
      

 
)     (

      

 
)                 (

      

 
) , when 

                    

  ̃     ̃   
 

{
 {    (        ̃             ̃        )}
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              (
      

 
)     (

      

 
)             (   (

      

 
))  

  ̃     ̃   
  

               

       
 , when                     (here    stands for        or       ) 
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 ̃     ̃   

 
{
 {    (        ̃             ̃        )}
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            (
      

   
)     (

      

   
)               (

      

   
) , when           

          

 
 ̃     ̃   

 
{
 {    (        ̃             ̃        )}
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            (
      
   

)     (
      
   

)           (   (
      
   

)) 

   ̃     ̃   
  

               

       
 , when                     (here    stands for        or       ) 

TA6. Lemma 3 and proof 

This section develops the backward reasoning which is essential to develop the ultimate optimal 

policy quantitatively. 

Lemma 3. If      is convex on   
 , and  

  ̃     ̃   
 

{
 {    (      ̃           ̃        )}

     
} 

            (
    

 
)     (

    

 
)               (

    

 
) , when           

          and    ̃     ̃   
 {

 {    (      ̃           ̃        )}

     
}            (

    

   
)  

   (
    

   
)             (

    

   
) , when                    , where   (

      

 
)  

          
            

  

         
  

 and  (
      

   
)  

        
          

  

         
  

, then the following holds: 

(a) The minimizer     which minimizes         over all real value     fulfills  (
    

 
)  

        
          

  

         
  

 and  (
    

   
)  

      
        

  

         
  

. 

(b)  The optimal base-stock level in period    is also    . 

(c)     is jointly convex on   
  and    ̃   ̃ 

 {
 {  (        ̃           ̃      )}

       
} 
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              (
      

 
)     (

      

 
)                 (

      

 
) , when 

                and   
 ̃   ̃ 
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 {  (        ̃           ̃      )}

       
}              (

      

   
)  
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)               (

      

   
) , when                . 

Proof: (a) As in Lemma 2 (a),    is jointly convex on            . To see     fulfills  (
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When        , according to the assumption in Lemma 2 above 
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                      (
    
 
)                (

    
 
)      (

    
 
) 

   

and 

   (         )

     
           

 ̃     ̃   

  
             ̃           ̃          

     
  

                  (
    
   

)              (
    
   

)      (
    
   

) 

   

So     indeed fulfills  (
    

 
)  

        
          

  

         
  

 and  (
    

   
)  

      
        

  

         
  

 

(b) supported by Lemma 2 (b) directly. 

(c) Lemma 2 (c) ensures that    is jointly convex on   
 . By calculating the consequences of 

using the optimal base-stock level in period  , we get:  

  ̃   ̃ 
 {

 {  (        ̃           ̃      )}

       
}               (

      

 
)     (

      

 
)        

         (
      

 
) , when                  
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  ̃   ̃ 
 {

 {  (        ̃           ̃      )}

       
}             (

      

   
)     (

      

   
)        

       (
      

   
) , when                . 

In the following section, the reader is going to see how the ultimate optimal policy expressions 

are speculated based on the backward reasoning results and all the preliminary work done in the 

previous sections. 

TA7. Proof of Theorem 2 

As proven in Section TA3,      is jointly convex on   
 , and 

  ̃     ̃   
 {

 {    (        ̃             ̃        )}

       
}               (

      

 
)  

   (
      

 
)                 (

      

 
) , when                    , and  

  ̃     ̃   
 {

 {    (        ̃             ̃        )}

       
}             (

      

   
)     (

      

   
)  

             (
      

   
) , when                    , as proven in result 4, where  

 (
      

 
)  

          
            

  

         
  

 and  (
      

   
)  

        
          

  

         
  

 according to Result 

1. 

So according to Lemma 3, in each period, the optimal order up to points exist and can be defined 

as follows: 

 (
    

 
)  

        
          

  

         
  

,            . 

 (
    

   
)  

      
        

  

         
  

,            . 

Up to here, part one is over. As proved in this part, the problem studied in Section 3 has a 

structured optimal procurement policy for each period. The proofs associated with Section 4 and 

Section 5 are presented in Part two and three respectively. Part two covers TA8 up to TA14, with 

TA8 up to TA10 constitutes in a sub-part and TA11 up to TA14 together act as the second sub-

part. In part 3, we develop the optimal downward substitution policy. 
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Part two 

TA8. Lemma 4 and proof 

Lemma 4. Suppose that            is a convex function defined on   
  and the real valued 

function    is defined on   
  by                              , where   and   are 

random variables following a probability density function      and a general probability density 

function      accordingly, and      . Then    is convex on   
 . 

Proof:  ,  ̅,   and  ̅ are four arbitrary none negative real values and       and  ̅     , 

then 

       ̅   ̅      ̅               ̅           ̅            ̅          

              ̅               ̅        ̅          

               ̅           ̅        ̅           

                ̅          ̅           ̅  ̅           [because   is a convex 

function defined on   
 ] 

           ̅       ̅   ̅ ̅          

        ̅    ̅   ̅ ̅  

So    is convex on        , i.e. convex on   
 . 

TA9. Lemma 5 and proof 

Lemma 5. If      is convex on   
 , then the following hold: 

a)    is convex on            . 

b) A base-stock policy is optimal in period   . Indeed, any minimizer of    is an optimal base-

stock level. 

c)    is convex on   
 . 

Proof: a) if      is convex on   
 , according to Lemma 1,   ̃     ̃     ̃

            ̃    ̃      

 ̃       ̃   is convex on            .               and             are also convex on 

           , thus    is the positive linear combinations of three convex functions. Hence    is also 

convex on            . 



34 

 

b) Let     denote a minimizer of         over all real value    . If        , then the minimizing 

        is at        , whereas, if        , then the minimizing     is at        . That is, a base-

stock policy with base-stock level     is optimal for period  . 

c) All the possible value of       constitues a convex set   
 , and all the possible value of 

            constitute a nonempty set 

   {(         )|     [          ]
 
      [              ]

 
} for every given      , the 

set                         
          is a convex set. Moreover, since –              , 

            ,       ,       ,              ,             and         are all convex on   , 

their positive combination –                                                   

                         is convex on C  too and  

  (                         )                                       

                                                  

and   (                         )     for every          
  constitues a convex set 

since the cost is always none negative, according to Theorem A.4 in Porteous (2000),     is a 

convex function on                , i.e. convex on   
 . 

TA10. Proof of Theorem 3 

According to the definition of terminal value function in Section 4, the function is convex on   
 . 

Thus, by Lemma 5 (a) and (b),       is jointly convex and a base-stock policy is optimal for 

period    . By Lemma 5 (c),      is convex as well. Thus, the argument iterates backward 

through the periods in the sequence                . 

TA11. Proof of Result 2 

Let's examine the one-period problem at the end of the time horizon. The expected ordering, 

holding, and shortage cost, less any expected salvage value, in that period, starting with zero 

inventory and ordering up to       units can be written as 

                                               

    ̃   ̃   ̃
            ̃  ̃         ̃     ̃   

                                      ̃   ̃   ̃
  [ ̃  ̃        ]

 
          

 [ ̃     ̃        ]
 
        [ ̃  ̃        ]
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 [ ̃     ̃        ]
 
            

                                    

             ∫ ∫ (            )                  
 

      
 

    
 

 

 

           ∫ ∫ (                )                      
 

            

 

 

 

                ∫ ∫ (            )                  
        

 

 

 

     

              ∫ ∫ (                )                      
            

 

 

 

 

Let       denote a solution to 

    
           

Then 

    
 (      )                        ∫ ∫                       

 

        

 

 

 

                ∫ ∫                       
        

 

 

 

   

    
 (      )                    ∫ ∫                       

 

            

 

 

 

              ∫ ∫                       
            

 

 

 

   

i.e.  

∫  (
      
 

)         
 

 

 
                        

           
 

∫  (
      
   

)         
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TA12. Result 5 and proof 

Result 5. At time point     

 
 ̃     ̃     ̃
 

{
 {    (        ̃    ̃         ̃       ̃ )}

       
} 

             ∫  (
      

 
)         

 

 
   ∫  (

      

 
)         

 

 
         

   ∫     (
      

 
)         

 

 
, when                     

  ̃     ̃     ̃
 

{
 {    (        ̃    ̃         ̃       ̃ )}

       
} 

           ∫  (
      

   
)         

 

 
   ∫  (

      

   
)         

 

 
          ∫    

 

 

 (
      

   
)         , when                     

Proof: Let's examine     , by plugging in the optimal decision for each state: 

     (                             )               [      

      ]
 
          [                ]

 
 [            ]

 
   

[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

     (                             )  {             [      

      ]
 
          [                ]

 
 [            ]

 
   

[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

     (                             )  {             [      

      ]
 
          [                ]

 
 [            ]

 
   

[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

     (                             )               [      

      ]
 
          [                ]

 
 [            ]
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[                ]
 
   [            ]

 
            [          

      ]
 
              (             )}, when               and               

So at time point      

 
 ̃     ̃     ̃
 

{
 {    (        ̃    ̃         ̃       ̃ )}

       
} 

             ∫  (
      

 
)         

 

 
   ∫  (

      

 
)         

 

 
         

   ∫     (
      

 
)         

 

 
, when                     

  ̃     ̃     ̃
 

{
 {    (        ̃    ̃         ̃       ̃ )}

       
} 

             ∫  (
      

 
)         

 

 
   ∫  (

      

 
)         

 

 
         

   ∫     (
      

 
)         

 

 
   ̃     ̃     ̃

  
               

       
 , when                     

(here    stands for        or       ) 

  ̃     ̃     ̃
 

{
 {    (        ̃    ̃         ̃       ̃ )}

       
} 

           ∫  (
      

   
)         

 

 
   ∫  (

      

   
)         

 

 
          ∫    

 

 

 (
      

   
)         , when                     

  ̃     ̃     ̃
 

{
 {    (        ̃    ̃         ̃       ̃ )}

       
} 

           ∫  (
      

   
)         

 

 
   ∫  (

      

   
)         

 

 
          ∫    

 

 

 (
      

   
)            ̃     ̃     ̃

  
               

       
 , when                     (here    

stands for        or       ) 

TA13. Lemma 6 and proof 

Lemma 6. If      is convex on   
 , and    ̃     ̃     ̃

 {
 {    (      ̃    ̃       ̃       ̃ )}

     
} 



38 

 

           ∫  (
    

 
)         

 

 
   ∫  (

    

 
)         

 

 
          ∫    

 

 

 (
    

 
)         , when                     and  

 
 ̃     ̃     ̃
 {

 {    (      ̃    ̃       ̃       ̃ )}

     
}           ∫  (

    

   
)         

 

 
 

  ∫  (
    

   
)         

 

 
        ∫     (

    

   
)         

 

 
, when                    , 

where  ∫  (
      

 
)         

 

 
 

          
            

  

         
  

 and ∫  (
      

   
)         

 

 
 

        
          

  

         
  

, then the following holds:  

(a) The minimizer     which minimizes         over all real value     fulfills 

∫  (
    

 
)         

 

 
 

        
          

  

         
  

 and ∫  (
    

   
)         

 

 
 

      
        

  

         
  

.  

(b) The optimal base-stock level in period    is also    . 

(c)     is jointly convex on   
  and    ̃   ̃   ̃

 {
 {  (        ̃  ̃         ̃     ̃ )}

       
} 

             ∫  (
      

 
)         

 

 
   ∫  (

      

 
)         

 

 
         

   ∫     (
      

 
)         

 

 
, when                 and  

 
 ̃   ̃   ̃
 {

 {  (        ̃  ̃         ̃     ̃ )}

       
}            ∫  (

      

   
)         

 

 
 

  ∫  (
      

   
)         

 

 
          ∫     (

      

   
)         

 

 
, when         

       .  

Proof: (a) As in Lemma 5 (a),    is jointly convex on            . To see     fulfills 

∫  (
    

 
)         

 

 
 

        
          

  

         
  

 and ∫  (
    

   
)         

 

 
 

      
        

  

         
  

 

                                     ̃     ̃     ̃
            ̃    ̃      

  ̃       ̃   

When        , according to the assumption in Lemma 4 above 

   (         )

     
              ̃     ̃     ̃

  
             ̃    ̃       ̃       ̃   
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                     ∫  (
    
 
)         

 

 

 

           ∫     (
    
 
)         

 

 

    ∫  (
    
 
)         

 

 

 

   

and 

   (         )

     
           

 ̃     ̃     ̃
  

             ̃    ̃       ̃       ̃   

     
  

                 ∫  (
    
   

)         
 

 

 

         ∫     (
    
   

)         
 

 

    ∫  (
    
   

)         
 

 

 

   

So     indeed fulfills ∫  (
    

 
)         

 

 
 

        
          

  

         
  

 and ∫  (
    

   
)         

 

 
 

      
        

  

         
  

 

(b) supported by Lemma 5 (b) directly. 

(c) Lemma 5 (c) ensures that    is jointly convex on   
 . By calculating the consequences of 

using the optimal base-stock level in period  , we get:  

  ̃   ̃   ̃
 {

 {  (        ̃  ̃         ̃     ̃ )}

       
}              ∫  (

      

 
)         

 

 
 

  ∫  (
      

 
)         

 

 
            ∫     (

      

 
)         

 

 
, when         

         

   ̃   ̃   ̃
 {

 {  (        ̃  ̃         ̃     ̃ )}

       
} 

           ∫  (
      

   
)         

 

 
   ∫  (

      

   
)         

 

 
          ∫    

 

 

 (
      

   
)         , when                .  
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TA14. Proof of Theorem 4 

As proven in Section TA10,      is jointly convex on   
 , and  

 
 ̃     ̃     ̃
 {

 {    (        ̃    ̃         ̃       ̃ )}

       
}  

            ∫  (
      

 
)         

 

 
   ∫  (

      

 
)         

 

 
         

   ∫     (
      

 
)         

 

 
, when                    , and 

 
 ̃     ̃     ̃
 {

 {    (        ̃    ̃         ̃       ̃ )}

       
} 

           ∫  (
      

   
)         

 

 
   ∫  (

      

   
)         

 

 
          ∫    

 

 

 (
      

   
)         , when                    , as proven in result 5, where  

∫  (
      

 
)         

 

 
 

          
            

  

         
  

 and 

∫  (
      

   
)         

 

 
 

        
          

  

         
  

  according to Result 2. 

So according to Lemma 6, in each period, the optimal order up to points exist and can be defined 

as follows: 

∫  (
      

 
)         

 

 
 

          
            

  

         
  

,            . 

∫  (
      

   
)         

 

 
 

        
          

  

         
  

,            . 
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Part three 

TA15. Proof of Theorem 5 

At time             

 {  (                         )}

   
                      

So, when                    , the miller would try to slove the shortage issue of 

type   wheat by substitution as much as possible, i.e.                      
           

       
  ;; when                   , the miller would not substitute at all, i.e. 

    . 

At time     

 {  (                         )}

   
              

So, when              , the miller would try to slove the shortage issue of type   wheat 

by substitution as much as possible, i.e.                      
                  

  ;; 

when             , the miller would not substitute at all, i.e.     . 


