
 Eindhoven University of Technology

MASTER

Priority budget scheduling using dataflow

Tomlow, E.A.W.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/df791909-a390-4328-bad4-bad2d757f5fb

Priority budget scheduling using
dataflow

By

E.A.W. Tomlow

Master Thesis
Eindhoven University of Technology
Department of Mathematics and Computer Science
Chair of Systems Architecture and Networking

Student:
E.A.W. Tomlow (0661784)
e.a.w.tomlow@student.tue.nl

Supervisor:
Dr. ir. P.J.L. Cuijpers
Assistant Professor
p.j.l.cuijpers@tue.nl

Tutor:
Dr. ir. O. Moreira
Principal DSP Engineer
ST-Ericsson B.V.
orlando.moreira@stericsson.com

ii

Abstract

For cost and efficiency reasons multiple applications of an embedded system must often
share the same hardware resources such as processors and memory. Since resources are
shared between applications, decreasing the resource usage of one application frees up
resources for other applications. We therefore want to minimize the amount of resources
we assign to each application.

A considerable number of embedded applications need to satisfy hard real-time require-
ments. In order to guarantee the timing requirements of an application, we must deter-
mine the worst-case timing effect of resource arbitration on the execution of an appli-
cation’s tasks. One way to do this is by arbitrating access to a shared resource using
a runtime budget scheduler. Budget schedulers guarantee each application a minimum
amount of processing time (called budget) in a certain time period, thereby allowing
us to bound the execution behaviour of an application independent of other applica-
tions.

There are various budget scheduler variants. One of the most notable differences between
these variants is whether or not a budget scheduler support application’s with different
priority levels. Non-priority based budget schedulers tend to have problems dealing with
applications with tight timing requirements. This thesis therefore focuses on resource
sharing using online priority budget schedulers (PBS), which allows one high priority
application preferred access to the processor resources at the cost of increased worst-case
behaviour of the other applications.

We develop an improved modelling technique that captures the worst-case temporal
behaviour of application in resource-shared environment where processor usage is shared
by PBS arbitration, and use this improved worst-case modeling technique together with
a scheduling strategy to derive application schedules and PBS parameters that allow
us to minimize the required resource reservation of applications running under PBS
arbitration.

We demonstrate that the proposed modelling technique and scheduling strategy can
actually improve the net reservation requirements of actual real-time application in the
software-defined radio domain.

iv

Contents

1 Introduction 1
1.1 Context . 2
1.2 Problem statement . 4
1.3 Project goals . 6
1.4 Approach . 6
1.5 Contributions . 7
1.6 Thesis organisation . 7

2 Dataflow 9
2.1 Synchronous dataflow . 9

2.1.1 Homogenous synchronous dataflow 11
2.2 Cyclo-static dataflow . 11
2.3 Firings and behaviour of dataflow models 14
2.4 Repetition vectors and iterations . 16
2.5 Conversion to single-rate . 18

3 Application modelling and analysis 21
3.1 Capturing application behaviour in dataflow 21
3.2 Including effects of resource arbitration 23
3.3 Temporal analysis of a dataflow model . 24
3.4 Existing resource arbitration models . 25

3.4.1 Response models for TDM arbitration 25
3.4.2 Response models for PBS arbitration 27

4 Problem Statement 31
4.1 Inflexibility of TDM with low latency requirements 31
4.2 Problems with existing PBS response models 33

4.2.1 Pessimism of Steine’s model . 33
4.2.2 Limited usability of Staschulat’s and Cai’s Models 33

4.3 Lack of PBS scheduling strategy . 34

5 Characterizing PBS arbitration 37
5.1 Definition of PBS arbitration . 37

vi

5.2 An exact PBS response time formula . 38
5.2.1 Task finish times of a high priority application 39
5.2.2 Task finish times of a low priority application 41

5.3 A worst-case PBS response model . 45
5.3.1 Approach . 45
5.3.2 Model construction . 45
5.3.3 Conservativity . 46

5.4 Summary . 46

6 PBS scheduling strategy 47
6.1 Optimization criteria . 49
6.2 Scheduling methodology . 49

6.2.1 Determining the high priority application 50
6.2.2 Determining high priority application schedules 50
6.2.3 Deriving suitable budget replenishment periods 51
6.2.4 Bounding the worst-case context switch overhead 53
6.2.5 Minimizing low priority application reservation 56

6.3 Runtime complexity . 57
6.4 Summary . 59

7 Experimental Results 61
7.1 Service-over-time . 61
7.2 Period versus minimum reservation . 62
7.3 Scheduling strategy . 66

8 Conclusions and further work 71
8.1 Contributions . 71
8.2 Limitations . 72
8.3 Further work . 73

8.3.1 Size reduction of multi-rate model 73
8.3.2 Improved upper bound on maximum number of context switches . 73
8.3.3 Scheduler switching during runtime 74

Chapter 1

Introduction

Computers are more prevalent in our daily lives than most people realise. Whereas
most people might think of a computer as the traditional desktop, laptop or tablet they
are familiar with, there are computers embedded in all kind of devices. Examples of
such devices range from telephones and televisions to cars and washing machines. These
special purpose computers are referred to as embedded systems.

An embedded system is the combination of the hardware of the device and the embedded
applications that run on it. For cost and efficiency reasons multiple applications must
often share the same hardware resources such as processors and memory. Since a pro-
cessor cannot be used concurrently by multiple applications, access to the processor is
arbitrated by a runtime scheduler. This scheduler controls which application is allowed
to run on the processor at any given time, and therefore has influence on the timing
behaviour of an application. A considerable number of embedded applications are time
critical, meaning the correctness and relevance of the results of an embedded application
not only depend on the value of the result returned by the application, but also on when
the result is returned. When designing an embedded system it is therefore imperative
that one can guarantee that for a certain combination of running applications and shared
resources, all application are always able to meet their timing requirements.

There are various techniques that can be used to verify wether an application can al-
ways satisfy its timing requirements in a resource shared environment. Based on these
techniques we can determine the minimum amount of resources an application needs
such that its timing requirements can be guaranteed. Due to problems of non-priority
based runtime schedulers to deal with applications with tight timing requirements, this
thesis will focus on resource sharing using online priority budget schedulers (PBS). We
will develop an improved modelling technique that captures the worst-case temporal be-
haviour of application in resource-shared environment where processor usage is shared
by PBS arbitration. We will use this improved worst-case modeling technique together
with a scheduling strategy to derive application schedules and PBS parameters that al-
low us to minimize the required resource reservation of applications running under PBS

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The stages of a radio transceiver (taken from [1]).

arbitration.

1.1 Context

The motivation behind the work discussed in this thesis is to decrease the required
processor usage needed for baseband processing of a multi-radio modem. Baseband
processing is performed when sending and receiving data over an analog channel. When
sending data the bytes that have to be sent over the analog channel are encoded and
modulated such that they are ready to be converted to an analog signal. When receiving
data baseband processing filters, decodes and demodulates the data received from an
analog-to-digital converter into meaningful data for higher level applications. Figure 1.1
shows the simplified architecture of a multi-radio modem, where the parts in white are
part of baseband processing.

When communicating between two parties using communication standards such as Wi-
Fi or TDS-CDMA, both standards require that at certain times transmitted data is
acknowledged by the receiving party. In case the sender does not receive an acknowl-
edgement within a certain time frame, it assumes the sent data has been lost due to
signal interference or other reasons and retransmits the data. Regulations concerning
efficient bandwidth usage of the radio spectrum mandate that once a radio correctly
receives data, the receival of the data must be acknowledge in time, thereby avoiding
unnecessary retransmissions. This mandate imposes timing requirements on the applica-
tion implementing the baseband transceiver, since both the incoming data and outgoing
data acknowledgement must be processed fast enough such that no unnecessary retrans-
missions occur. The time in which such an acknowledgement must be send can differ
between radio standards, meaning each transceiver application can have different timing
requirements.

Real-time applications are applications in which the correctness and relevance of the

1.1. CONTEXT 3

results of an embedded application not only depend on the value of the result returned
by the application, but also on the moment in time when the result is returned. Real-time
applications are often divided into three categories: soft real-time, firm real-time and
hard real-time, in which the occurrence of an untimely result is respectively undesirable,
unacceptable or catastrophic. An example of a soft-real time application is a video
player, in which dropping a few frames now and then is not very noticable and can
therefore be tolerated. Regulation of the radio spectrum makes a radio transceivers a
firm real-time application, meaning we do not accept a multi-radio modem that cannot
guarantee that all its transceiver applications meet their timing requirements. Hard
real-time applications are at times defined as application in which failure to meet timing
requirements would endanger human lives. However, since from a system viewpoint
the difference between an unacceptable and catastrophic event is not clearly defined,
some prefer to divide real-time application in either soft real-time or hard real-time
applications. We will discern two types of timing requirements a real-time application
can have; a minimum throughput requirement and a maximum latency requirement.
Throughput is a measure of the number of events per time unit, for instance the number
of displayed frames per second of a video. Latency describes a distance between two
events, for example the time between detection from a car crash and the firing of a car’s
airbag.

A radio transceiver is a steaming application. We define a streaming application as an
application that operates over a long - possible infinite - sequence of input data. Data
arrives from an external source (for instance another application) and must be processed
before the resulting data is output. A streaming application on itself does not need to
have timing requirements. However, in practice the memory available to the streaming
application is limited, and thus the application must be able to ’keep up’ with the data
that arrives for processing. The fact that a steaming application must processes its data
fast enough to keep up with the arrival of new data can be expressed as a minimum
throughput requirement. Examples of other streaming applications include audio and
video processing.

A steaming application such as a radio transceiver can be thought of to consist out of one
or more tasks. Each task represents a number of single-threaded operations that must
be performed on a (type of) processor in the embedded system. A steaming application
is data centric, meaning tasks can receive data from other tasks or an external source,
processes the data, and output the result to another task. The relation between the
input and output of data between the tasks of an application can be though of to define
a directed graph, in which the nodes represents tasks and edges represent tasks passing
data between each other. This graph is called the task graph of an application.

Since the execution of an application consists of a number of task executions, we can
derive the worst-case timing behaviour of the whole application by examining the worst-
case behaviour of all the application’s tasks. However, before we can determine the
worst-case task behaviour we must first bound the effects of resource sharing on a task
execution. In this thesis we assume that the only shared resources in a system are pro-

4 CHAPTER 1. INTRODUCTION

cessors, and that each processor has a local runtime scheduler that determines which
application is allowed to execute on the processor at any given time. Whenever an ap-
plication is given access to a processor by the processor’s scheduler, the application can
execute its tasks on that processor until the scheduler revokes its access. A budget sched-
uler guarantees that each application gets a minimum amount of processing time (called
a budget) in a periodically repeating time interval (called a replenishment period). If
we know an application’s task graph and each task’s worst-case computation time, then
we can transform a task graph into a temporal analysis graph, in which each task is
replaced by a task’s response model. A response model of a task is a graph component
that represents the worst-case temporal behaviour of the task under the effects of re-
source arbitration by a processor’s runtime scheduler. Since the temporal analysis graph
contains a response model for each task, it compositionally represents the worst-case
behaviour of all the application’s tasks, and can thus be used to derive the worst-case
temporal behaviour of the entire application.

Dataflow modelling is extensively used for modelling and analysis of embedded appli-
cations and their timing properties. The task graph of a data centric application such
as a steaming application can be naturally expressed as a dataflow model. When trans-
forming the dataflow task graph to a temporal analysis graph its tasks are replaced by a
dataflow response model that captures a task’s worst-case response time under resource
arbitration. The obtained temporal analysis dataflow model can be used to verify if
the applanation’s latency an throughput requirements hold using techniques such as
Maximum Cycle Mean analysis.

The creation of an accurate response model of a task is an important step in verifying
an application’s timing requirements. A response model should model the worst-case
time between the moment a task receives data to process, and the moment the task can
output the processed data. This time between the input and output of data in a task
is also called the response time of the task. An accurate worst-case response model of a
task must take into account the resource arbitration of the processor on which the task
must run, and therefore the worst-case behaviour of the runtime scheduler arbitrating
access to the processor.

1.2 Problem statement

For cost and efficiency reasons multiple applications of an embedded system must often
share the same hardware resources such as processors and memory. Since resources are
shared between applications, decreasing the resource usage of one application frees up
resources for other applications. We therefore want to minimize the amount of resources
we assign to each application, while respecting the application’s timing requirements. To
determine the minimum resource requirements of an application we need a technique that
can accurately capture the worst-case behaviour of an application’s tasks as a dataflow
response model, such that we can ensure that all applications are guaranteed to meet

1.2. PROBLEM STATEMENT 5

their timing requirements.

The most prevalent response models that capture the effect of resource arbitration by
budget schedulers are those that capture the effects of TDM arbitration [2, 3, 4, 5]. A
TDM scheduler is a budget scheduler that divides a fixed time interval (replenishment
period) into multiple - possibly differently sized - slices. Each application is assigned a
single slice during which it can execute its tasks on the processor. Slices are served in
a fixed order and a slice is consumed even if the application does not have a task ready
to execute. Advantages of a TDM scheduler are that they are easy to implement and
have negligible runtime overhead and predictable number of context switches. There
have recently been considerable advances in the accuracy of worst-case task response
time modelling under TDM arbitration using dataflow constructs [4, 5]. However, an
inherent problem of TDM schedulers is that when we have applications with tight timing
requirements then either we must accept that the application gets a considerably larger
slice in which it will only spend a fraction of the time executing its tasks, or we must
decrease the replenishment period of the TDM scheduler such that the time spend on
context switching becomes considerably large.

A WLAN transceiver is an example of an application that has tight timing requirements.
Since we want to be able to run a WLAN transceiver but do not want to suffer from the
resource over-reservation or context switching overhead associated with using a TDM
scheduler, we opt to choose another type of budget scheduler for resource arbitration,
namely Priority Budget Scheduling (PBS). There exist some literature on dataflow re-
sponse models for PBS scheduling [6, 7, 8], but all proposed models have limitations:
Staschulat’s model [7] requires that every task assigned to the same processor has the
same worst-case computation time, and does not allow this worst-case computation time
to be smaller than the application’s budget. Cai [8] proposes two different response mod-
els based on wether the application’s budget is either smaller, or larger or equal to a
task’s response time, which means we cannot use static ordering of tasks that execute on
the same processor, and therefore requires increased resource reservation. Steine’s model
[6] is based on the the latency-rate model for TDM arbitration as proposed by Wiggers
[3] and can therefore be excessively pessimistic with respect to the capturing the actual
task’s response, such as which was shown to be the case for TDM arbitration by Butala
in [5]. Finally, all of these PBS arbitration models assume there is always a minimum
wait time for the high priority application before it can execute on a processor, even if
it has sufficient remaining budget. This wait time can be as large as a the largest low
priority task budget in Steine’s model. Although this assumption is made such that one
can bound the maximum number of context switching, we belief it is possible to find
another method to bound these context switches such that we can eliminate this added
pessimism from our proposed PBS response time model.

Once we have an appropriate response model that accurately captures the effects of PBS
arbitration we can verify if an application’s timing requirements can be met for a given
amount of resource reservation. However, this does not tell us how to obtain sufficiently
small resource reservation: There is no clearly defined methodology for choosing appli-

6 CHAPTER 1. INTRODUCTION

cation schedules and PBS scheduler parameters such as replenishment period and appli-
cation budget given a set of applications that a system must run. Currently the choice
of scheduler parameters is done my an educated guess of a domain expert, but we would
like to propose a methodology that given a set of applications and information about
their timing requirements the methodology can come up with schedulers and scheduler
parameters that should yield acceptably low resource reservation requirements.

1.3 Project goals

We want to show that by using priority budget schedulers instead of non-priority based
budget schedulers we can reduce the total required processor reservation needed for
running certain applications, while still being able to guarantee that every application’s
timing requirements can be met. We discern the following goals of this project:

• Define a new dataflow PBS arbitration response time model that:

– Provides accurate estimation of the worst-case behaviour of an application’s
tasks under PBS scheduling.

– Does not make unnecessary assumptions about the characterizes of PBS ar-
bitration, such as imposing limits on application budget of worst-case task
computation times.

• Define a heuristic that given a set of applications and their timing requirements can
come up with application schedules and scheduler parameters for each processor’s
priority budget scheduler such that the timing requirements of both high priority
and low priority applications can be fulfilled using an acceptable amount of resource
reservation requirements.

1.4 Approach

We can make use of the recent improvements on the state-of-the-art in TDM response
models as introduced by Lele and Butala in [4, 5] to come up with an improved PBS
response model. By making a small change to the the latency actor of the proposed
TDM response model we can make the model accurately represent the worst-case timing
behaviour of task executions under PBS arbitration.

The scheduling strategy heuristic is based on the assumption that tasks with tight tim-
ing requirements are more sensitive to the choice of scheduling parameters that other
applications. The application with the tightest timing requirements is given high prior-
ity, and the heuristic will initially set the processor replenishment periods of the runtime
priority budget schedulers to be equal to the required production period of the high

1.5. CONTRIBUTIONS 7

priority application. This allows the high priority application to have the lowest reserva-
tion theoretical possible, significantly reducing the minimum required reservation of the
application when compared to a budget scheduler without different priority levels. The
heuristic will then try to improve the required reservation of the low priority applications
by reducing the replenishment period of the PBS arbitrated processors by certain inte-
ger factors. Reducing the replenishment period by an integer factor allows the budget
of the high priority application to be reduced by this same factor, thereby keeping the
reservation for the high priority application to the lowest value possible, while poten-
tially decreasing the minimum required reservation of the low priority applications. The
combination of replenishment periods that allows the low priority application to have
the minimum amount of processor reservation is found using a binary search.

1.5 Contributions

This thesis makes the following contributions:

• We define a generally applicable dataflow response model for capturing the worst-
case temporal effects of PBS arbitration. The introduced response model does
not make any restrictive assumptions and is most likely less conservative than the
current state-of-the-art PBS response models.

• We formulate equations that can give the exact finish times of task executions
under PBS arbitration.

• We define an approach for bounding the worst-case number of context-switches
under PBS arbitration. This bound is derived based on analysis of the task graph
and schedule of the high priority application.

• We propose a PBS scheduling strategy that given a set of applications and their
timing requirements can find application schedules, scheduler parameters and the
minimum required reservation for all applications.

• We conduct experiments with the proposed PBS response model and scheduling
strategy, verifying that using PBS arbitration can indeed improve the minimum
required resource reservation for actual applications in the software-defined-radio
domain.

1.6 Thesis organisation

Chapter 2 and chapter 3 will provide a basic introduction to dataflow and how dataflow
can be used to verify timing requirements of jobs. Chapter 4 will more elaborately define
the problems with the current dataflow response models for TDM and PBS. Chapter 5
will introduce the proposed new response model that accurately captures the resource

8 CHAPTER 1. INTRODUCTION

arbitration effects of a PBS scheduler. Chapter 6 will introduce the scheduling heuris-
tic that can be used to obtain scheduler parameters and application schedules given a
set applications and their timing requirements. Chapter 7 will discuss the various ex-
periments performed to come up with a scheduling strategy and to show the potential
improvement of our proposed PBS response model over the state-of-the-art TDM re-
sponse model. Chapter 8 will give a summary of the highlight of this thesis, and also
discus its limitations and potential further work.

Chapter 2

Dataflow

A dataflow model expresses the flow of information through some modeled construct. In
a dataflow model information can travel between pairs of entities, where each of these
entities can consume and/or produce information when certain conditions hold. Due to
the fact that information always flows between a pair of entities, a natural interpretation
of a dataflow model is as a directed multigraph (V,E, src, snk), in which the set of
vertices V of the graph represent data consuming and/or producing entities, and the set
of edges E define how data can flow between these entities. The functions src : E → V
and snk : E → V define respectively the start and end vertex of an edge. The flavour of
dataflow under consideration defines with which additional information the vertices and
edges are annotated, and how this information should be interpreted. A dataflow model
annotated with sufficient information defines an execution model.

This chapter will introduce the flavours of dataflow that are relevant for this thesis. We
will introduce some basic properties of the dataflow variants under consideration, and
see how we can convert these dataflow variants to the single-rate variant we will be using
in most of this thesis.

2.1 Synchronous dataflow

A synchronous dataflow model [9] is a tuple (V,E, src, snk, τ, d, prod, cons), which is
essentially a multigraph annotated with additional information. Each vertex in V is
called an actor and represents a time-consuming entity, and the edges in E are called
arcs and represent First-In-First-Out (FIFO) queues for transferring data between actors.
The functions src : E → V and snk : E → V define which actors are connected by an
arc, where for arc e ∈ E we call actor src(e) the source of the arc and actor snk(e)
the sink. Data is abstracted as chunks, where each chunk of data is called a token. If
there are n data chunks in the queue of an arc we say that there are n tokens on that
arc. Each actor in a dataflow model can fire, during which it transfers data through the

10 CHAPTER 2. DATAFLOW

B CA

1

3 2 1 3

2

2
e1

e2 e3

Figure 2.1: A synchronous dataflow graph.

model by removing data from the queues of those arcs in which the actor is a sink and
appending data to the queues of those arcs for which the actor is a source. We call the
arcs for which an actor v is the source the output arcs of v and the arcs in which v is
a sink the input arcs of v. Each time an actor v fires it will start by consuming tokens
from all its input arcs. The number of tokens that will be consumed from each input
arc is defined by the function cons : E → N≥1. After consuming tokens from its input
arcs, actor v will wait a fixed time until it will produce a number of tokens on each of
its output arcs as defined by prod : E → N≥1. When an actor fires we consider the
actor to be executing. The time between token consumption and production of a firing
of actor v ∈ V is therefore called the execution time of v, and the execution time is a
constant defined by the function τ : V → R≥0. Each actor can only fire if its firing rule is
satisfied. The firing rule for a multi-rate dataflow actor is that all input arcs of the actor
should contain at least the number of tokens that the firing of the actor will consume
from that arc. Since actors require tokens to fire, a dataflow model can contain an initial
placement of tokens on one or more arcs. By convention the number of initial tokens on
an arc e is called the delay of e, which is given by the function d : E → N≥0.

Figure 2.1 depicts a synchronous dataflow model. It has three actors named A, B and
C which are represented by circles that contain their name. An arc is represented by
an arrow that points from the source actor to the sink actor. Each arrow has a number
attached to both its ends indicating the number of tokens produced on and consumed
from this arc by respectively the arc’s source and sink. If an arc has a non-zero delay
it contains a small black dot with next to it the delay of the arc. When relevant for
discussion arcs will be labeled with a name, where the arc’s name is placed near the
center of the arrow representing the arc. Actor execution times are usually not depicted,
but when they are an actor’s execution time is placed under its corresponding actor.
Note that in figure 2.1 arc e1 is the only arc with a non-zero delays in the depicted
model, and its delay is two. This implies that only the firing rule of actor A is satisfied,
and that a firing of A would consume one of the initial tokens from arc e1 and produce
two tokens on arc e2.

The production and consumption rates of arcs in a synchronous dataflow model define
how the firings of an arc’s source and sink actor relate to each other. However, allowing a
synchronous model to have arbitrary rates complicates the expression of certain desirable
properties of a dataflow model. We therefore discern a subset of synchronous dataflow
models in which every model has restricted production and consumption rates. We call

2.2. CYCLO-STATIC DATAFLOW 11

this subset homogenous synchronous dataflow.

2.1.1 Homogenous synchronous dataflow

A homogenous synchronous dataflow model (from here on out just referred to as homoge-
nous dataflow model) is a synchronous dataflow model (V,E, src, snk, τ, d, prod, cons)
for which for every arc e ∈ E it holds that prod(e) = cons(e) = 1. The production
and consumption rates of a homogenous dataflow model ensure that each actor firing
will consume exactly one token from all its input arcs and produce exactly one token
on all its output arcs. Expressing certain properties of a dataflow model is often less
complex when the model is homogenous. Examples of such properties include the rela-
tion between start times of actor firings and checking whether or not a dataflow model
is deadlock-free, which are both defined in section 2.3.

What a homogenous dataflow model gains with respect to ease of analysis when com-
pared with an arbitrary synchronous dataflow model, it tends to lack in the ease in which
certain concepts can be expressed. For instance, a synchronous dataflow model can triv-
ially express that some actor produces more data than one firing of another actor can
consume, just by setting the rates of the relevant arcs connecting these actors such that
they have an appropriate ratio. Expressing the same property in a homogenous model
is more complicated, since the rates are fixed and we are therefore forced to use more
complex modelling tricks to express the desired concept. Conveniently enough, section
2.5 shows that we can convert any dataflow model of the in this thesis relevant dataflow
flavours to a model in which all arcs have a production and consumption rate of one. We
can therefore first construct a dataflow model that expresses the desired relation between
actor firings without worrying about the rates of the whether the model is homogenous
or not, and can later derive from this model a homogenous model when needed.

2.2 Cyclo-static dataflow

The production and consumption rates and execution time of any actor of a synchronous
dataflow model is always constant across any of its firings. Cyclo-static dataflow [10]
relaxes the requirement for constant rates and execution times by allowing them to be
periodically recurring: Each arc has two sequences of respectively the consumption rates
of the arc’s sink and the production rates of the arc’s source. Furthermore, each actor
has a sequence of execution times. Now for any such sequence of arbitrary length p that
belonging to actor v, the k-th firing of v will use the (k mod p)-th entry of the sequence
as the actor’s relevant production/consumption rate or execution time.

More formally; A cyclo-static dataflow model is a tuple (V,E, src, snk, τ, d, prod, cons,
pτ , pprod, pcons) where V , E, src, snk and d are defined as in a synchronous dataflow
model. The functions pτ : V → N≥0 and pprod, pcons : E → N≥0 denote the length

12 CHAPTER 2. DATAFLOW

of respectively the execution time and production and consumption sequences of an
actor or arc. We define τ : (V × N≥0) → R≥0 such that τ(v, k) gives the execution
time of actor v ∈ V during its k-th firing, and for any firing k ∈ N≥0 it holds that
τ(v, k) = τ(v, k mod pτ (v)). Similarly we define cons, prod : (E×N≥0)→ N≥0 such that
cons(e, k) and prod(e, k) give respectively the consumption and production rates of an
edge e ∈ E during firing k ∈ N≥0 of its source and sink actor, such that cons(e, k) =
cons(e, k mod pcons(e)) and prod(e, k) = prod(e, k mod pcons(e)) hold. The firing rule of
a cyclo-static dataflow actor is the same as for a synchronous dataflow actor; an actor’s
firing rule is satisfied if all its input arcs contain at least the amount of tokens the firing
of the actor would consume.

Definition 2.1. The firing behaviour bf : (V ×N≥0)→ (P(E×N≥0)×P(E×N≥0)×R≥0)
of a firing k ∈ N≥0 of actor i ∈ V is a tuple (cn, pr, tm) where cn = {(e, cons(e, k)) | e ∈
E ∧ cons(e) = i}, pr = {(e, prod(e, k)) | e ∈ E ∧ prod(e) = i} and tm = τ(i, k).

If two firings of the same actor consume/produce the same amount of tokens from/to
each arc and both firings have the same execution time, then the two firings have the
same firing behaviour. The firing behaviour of an actor in a cyclo-static dataflow graph
will start to repeat after a finite number of firings.

Definition 2.2. The firing behaviour period pf : V → N≥1 of an actor is the minimum
number of actor firings necessary such that for any firing k ∈ N≥0 and actor i ∈ V it
holds that bf (i, k) = bf (i, k + pf (i)). The firing behaviour period of actor i ∈ V is given
by

pf (i) = lcm({pτ (v)} ∪ {pprod(e)|e ∈ E ∧ src(e) = i} ∪ {pcons(e)|e ∈ E ∧ snk(e) = i})

where the function lcm calculates the least common multiplier of the numbers in the
given set.

Now that we have defined both synchronous and cyclo-static dataflow we can make the
following observation.

Lemma 2.1. Every synchronous dataflow model (V,E, src, snk, τm, d, prodm, consm)
can be converted into a cyclo-static dataflow model (V,E, src, snk, τ c, d, prodc, consc, pτ ,
pprod, pcons) by defining the fucntion τ c, prodc, consc such that for any actor v ∈ V , arc
e ∈ E and actor firing k ∈ N≥0 it holds that τ c(v, k) = τm(v), consc(e, k) = consm(e),
prodc(e, k) = prodm(e) and pτ (v) = pprod(e) = pcons(e) = 1.

Since every homogenous single-rate dataflow model is a synchronous dataflow model,
and every synchronous dataflow model can be converted to a cyclo-static dataflow model
using lemma 2.1, cyclo-static dataflow is a generalization of both synchronous and ho-
mogenous dataflow. Since we want to avoid mixing the different notations of synchronous
dataflow and cyclo-static dataflow when specifying properties or algorithms, we will ex-
ploit the fact that cyclo-static dataflow is a generalization of the for this thesis relevant
dataflow flavours by specifying from this point onwards any dataflow model only as a
cyclo-static dataflow model. However, it is still convenient to be able to express that a

2.2. CYCLO-STATIC DATAFLOW 13

B

C

A
[1,0]

D
[0,2]

[1]

[1] [1]

[1]
[0,2]

[1][1]

[1,0]

1

e1

e2 e3

e4 e5

Figure 2.2: A cyclo-static dataflow graph.

certain cyclo-static dataflow has the same properties as a homogenous or synchronous
dataflow model, especially since we’ve seen that a homogenous dataflow model allows
for easier expression of certain desirable properties. We therefore introduce the notion
of a cyclo-static dataflow graph being single-rate or multi-rate, which expresses that a
cyclo-static model has the same properties as respectively a homogenous or synchronous
dataflow model.

Definition 2.3. A cyclo-static dataflow model is multi-rate if pτ (v) = pprod(e) =
pcons(e) = 1 for any actor v ∈ V and arc e ∈ E.

Definition 2.4. A cyclo-static dataflow model is single-rate if it is multi-rate and
prod(e, k) = cons(e,m) = 1 for any arc e ∈ E and firing k,m ∈ N≥0.

If a cyclo-static dataflow model is single-rate or multi-rate then there exists respectively
a homogenous or synchronous dataflow model that can be converted into this cyclo-static
dataflow model using lemma 2.1. Such a cyclo-static dataflow model will have the same
(for this thesis relevant) properties as the original homogenous or synchronous dataflow
model. The fact that we call a cyclo-static dataflow model single-rate if it has the same
properties as a homogenous dataflow model, or multi-rate if it has the same properties
of a synchronous dataflow model is no coincidence; single-rate and multi-rate are in
some dataflow literature used as synonyms of respectively homogenous and synchronous
dataflow. However, in this thesis single-rate and multi-rate refer only to a property of a
cyclo-static dataflow model.

Figure 2.2 depicts a cyclo-static dataflow model. Note that each arc has a sequence
of production and consumption rates, in which the rate of the first actor firing is the
left-most number in the sequence. Observe that actor A will produce one token on arc
e2 during its first and third firing, while it will produce two tokens on arc e4 during its
second and fourth firing.

14 CHAPTER 2. DATAFLOW

2.3 Firings and behaviour of dataflow models

Once we have a dataflow model we are interested in knowing when the actors of that
dataflow model will fire. We can talk about an actor firing in terms of its start, execution
and finish time. We denote the start time of firing k of actor i by s(i, k) and its execution
time by τ(i, k), where by convention k = 0 denotes the first actor firing. We can then
define a firing’s finish time as f(i, k) = s(i, k) + τ(i, k).

An actor’s firing rule enforces that an actor can only fire if there are enough tokens on
each of its input arcs. Every token in a dataflow model is either produced by an earlier
actor firing or is an initial token. This means that after a large enough number of firings
of actor j, an arc e for which src(e) = i and snk(e) = j will constrain the earliest
start time of the next firing of j such that it cannot start before a certain firing of i
has finished. This is due to the fact that j cannot fire if arc e does not contain enough
tokens, and since actor i is the only actor that produces tokens on the arc, a firing of
j will at some point need one or more tokens produced by a firing of i. If our dataflow
model is single-rate, we can express this relation between an arc’s source and sink actor
as follows.

Lemma 2.2. In a single-rate dataflow model an arc e with src(e) = i and snk(e) = j
constrains the earliest start time of a firing k of actor j in terms of the finish time of a
firing of i such that

s(j, k) ≥ f(i, k − d(e)) (2.1)

Although arcs constrain the earliest time an actor firing can occur, they do not define
when the actor should fire, nor enforce that an actor fires at all. When the start times
of all firings of the actors in a dataflow model are fixed to occur at a precise moment in
time, we say that the start times of the actor firings define a schedule.

Definition 2.5. A schedule of a dataflow model is a function sched : (V ×N≥0)→ R≥0
such that sched(i, k) defines the start time of firing k ∈ N≥0 of actor i ∈ V .

Definition 2.6. A schedule is admissible for a certain dataflow model if for every firing
of every actor in the dataflow model the by the schedule defined start time does not violate
an actor’s firing rule.

When we fire the actors of a dataflow model in accordance with a schedule, we say we
are executing the model under that schedule. There are a potentially infinite number of
admissible schedules for a given dataflow model, but in this thesis we will focus on one
important type of schedule.

Definition 2.7. A self-timed schedule is a schedule in which every actor fires as soon
as its firing rule is satisfied.

Note that when executing a dataflow model under a self-timed schedule, any actor firing
will occur at the earliest time possible. We will see in chapter 3 that when we execute

2.3. FIRINGS AND BEHAVIOUR OF DATAFLOW MODELS 15

a dataflow model under a self-timed schedule, the firings of the dataflow model have
certain interesting properties.

Lemma 2.3. When executing a single-rate dataflow model under its self-timed schedule
the start time of a firing k ∈ N≥0 of actor i ∈ V is defined by

s(i, k) = max
e∈E∧snk(e)=i

{
s(src(e), k − d(e)) + τ(src(e), k − d(e)) k ≥ d(e)
0 k < d(e)

(2.2)

When we execute a dataflow model - regardless of the schedule - we can either fire all
actors an infinite number of times, or there exists at least one actor for which after a
finite number of firings its firing rule will never be satisfied again during the model’s
execution.

Definition 2.8. A dataflow model is deadlocked if during execution of the model under
an admissible schedule at least one of its actors cannot fire an infinite number of times.

Since we want to be able to execute a dataflow model for an infinite amount of time,
we are only interested in models that will not deadlock. Whether or not an arbitrary
dataflow model can deadlock depends on which actors are connected by arcs and the
number of delays and rates of these arcs. A deadlock occurs when there is a cyclic
dependency between the firings of two or more actors such that each firing requires
tokens produced during the firing of the other to fire itself. Determining if a single-rate
model can deadlock is fairly easy.

Lemma 2.4. A single-rate dataflow model is deadlock-free if and only if all cycles in
the dataflow graph contain an arc with one or more delays. [11].

Checking if an arbitrary dataflow graph can deadlock is less straightforward, but as we
will see in section 2.5 we can always convert such a model such that it becomes single-
rate, and then check if the obtained single-rate model has at least one delay in each
cycle.

Even if a graph is deadlock-free, and each actor can thus theoretically fire an infinite
amount of times, it may not be feasible to execute a given dataflow model indefinitely.
When executing a deadlock-free dataflow model under some schedule for an infinite
amount of time, we will fire each actor infinite may times. However, there exist cyclo-
static dataflow models that can accumulate an unbounded number of tokens on some
of their arcs. Since an arc containing an unbounded number of tokens will need an
unbounded large FIFO queue to store the data represented by these tokens, we would
need infinite memory if we wanted to fire the model’s actors indefinitely. The assumption
that we have infinite memory is unreasonable in almost all cases, hence we are only
interested in dataflow models which we can execute indefinitely in finite memory. How
we can check if a dataflow model fulfills this requirement will be explained in section
2.4.

16 CHAPTER 2. DATAFLOW

2.4 Repetition vectors and iterations

By observing that the firing rule of an actor is solely dependant upon the number of
tokens on its input arcs - and thus distinguishing between different tokens on the same
arc is not meaningful - we can define the state of a cyclo-static dataflow model in the
following manner.

Definition 2.9. The state of cyclo-static dataflow model is defined by:

• The number of tokens on each arc.

• The number of performed actor firings of each actor modulo the actor’s firing
behaviour period.

• A sequence containing the remaining firing time for each active actor firing.

• A sequence containing per arc the number of tokens that will be produced on that
arc when one of the active actor firings finishes.

When we fire each actor in a dataflow model a certain number of times we may observe
that the model has the same state before and after these firings.

Definition 2.10. A repetition vector of a dataflow model is a vector ~r such that if every
actor i is fired a number of times equal to the i-th entry of ~r (denoted by ~r(i)), the state
of the dataflow model before and after performing these firings is the same.

Definition 2.11. An iteration of a dataflow model is a set of actor firings such that
each actor fires a number of times equal to its repetition vector entry.

We call the smallest non-trivial repetition vector the repetition vector, since if it exists
it is unique. Whether or not the repetition vector exists is an important property of a
dataflow model; if it exists, we know there is a schedule such that we can perform an
infinite number of actor firings using only finite memory, since after firing each actor the
finite number of times specified in the repetition vector, the number of tokens on each
arc is back to its initial value.

Definition 2.12. A dataflow model is consistent if and only if it has a non-trivial
repetition vector.

Since we want to the able to fire the actors of a dataflow model indefinitely using finite
memory, we are only interested in dataflow models that are consistent and thus have a
non-trivial repetition vector. From our definition of state we know we have a repetition
vector if we know how many times we need to fire all actors such that the number of
tokens on each arc after these firing remains unchanged, while ensuring we fire each actor
a number of times equal to an integer multiple of its firing behaviour period. We can
express this requirement as a linear constraint.

Lemma 2.5. To find a repetition vector of a cyclo-static dataflow model we must find

2.4. REPETITION VECTORS AND ITERATIONS 17

a vector ~q such that for each arc e ∈ E with src(e) = i and snk(e) = j it holds that

~q(i) ·
pf (i)−1∑
k=0

prod(e, k)− ~q(j) ·
pf (j)−1∑
k=0

cons(e, k) = 0 (2.3)

If such a vector exists, a repetition vector of the dataflow model is the vector ~r such that
~r(i) = ~q(i) · pf (i).

The equations obtained in this fashion are called the balance equations of the dataflow
model. Another way to express these balance equations and calculate a model’s repeti-
tion vector is by using a topology matrix. The topology matrix of a dataflow model is a
|E| × |V | matrix that describes the relation between token production and consumption
along the arcs of the model. Each row of a topology matrix represents an arc of the
dataflow model and each column an actor. The entry for each arc and actor combination
in a topology matrix is equal to the token production minus the token consumption of
the actor on that arc across a certain number of its firings.

A problem that we face when we want to create a topology matrix for a cyclo-static
dataflow graph is that a topology matrix cannot express that the production and con-
sumption rates of an actor can vary between firings. We therefore create a lumped
topology matrix, in which each matrix entry for an actor i ∈ V and arc e ∈ E corre-
sponds to the total number of tokens actor i consumes and produces on arc e during
pf (i) consecutive firings.

Definition 2.13. The lumped topology matrix of a cyclo-static dataflow model is a
|E| × |V | matrix M such that:

Me,i =


∑pf (src(e))−1

k=0 prod(e, k)−
∑pf (snk(e))−1

k=0 cons(e, k) if src(e) = snk(e) = i∑pf (src(e))−1
k=0 prod(e, k) if src(e) = i

−
∑pf (snk(e))−1

k=0 cons(e, k) if snk(e) = i
0 otherwise

Lemma 2.6. If there exists a non-trivial solution such that M · ~q = ~0 for a lumped
topology matrix M , then the repetition vector of a cyclo-static dataflow model whose
lumped topology matrix is M is equal to ~r(i) = ~q(i) · pf (i), for each actor i ∈ V .

As an example we will calculate the repetition vector of the cyclo-static dataflow graph
displayed in figure 2.2. Note that the firing behaviour periods of the actors in the
depicted model are pf (A) = pf (D) = 2 and pf (B) = pf (C) = 1. Using definition 2.13
we obtain the lumped topology matrix M .

M =



A B C D

e1 −2 0 0 2
e2 1 −1 0 0
e3 0 1 0 −1
e4 2 0 −1 0
e5 0 0 1 −2



18 CHAPTER 2. DATAFLOW

A non-trivial solution for ~q such that M · ~q = ~0 is the vector ~q =
[
1 1 2 1

]T
.

Multiplying each entry in ~q with its actor’s firing behaviour period yields the vector

~r =
[
2 1 2 2

]T
. Vector ~r is thus a repetition vector of the dataflow model depicted

in figure 2.2, meaning the model performs an iteration each time we fire actor B once
and actors A,B and C twice. Note that any scalar n ∈ N multiplied with ~r yields a rep-
etition vector, but because a non-trivial repetition vector cannot fire actor B less than

once, we know vector
[
2 1 2 2

]T
is the repetition vector of the cyclo-static dataflow

model shown in figure 2.2.

2.5 Conversion to single-rate

In earlier sections of this chapter we indicated that there are certain properties that
single-rate models have which arbitrary cyclo-static models lack. An example of such a
property is lemma 2.4, which allows us to easily verify that a single-rate dataflow model
is deadlock-free by checking if every cycle has at least one token. In section 3.3 we
will introduce the most significant reason why single-rate models tend to be preferable;
they can be analysed using maximum cycle mean analysis, thereby yielding information
about throughput and latency of the entities abstracted as actors. Since we will be using
maximum cycle mean analysis on all of our dataflow models, a single-rate model is for
our purpose the most desirable form of a dataflow model.

It is always possible to convert an arbitrary consistent cyclo-static dataflow model to a
single-rate dataflow model. Before we worry about how we can perform this conversion,
we first define the notion of equivalence that we want this conversion to preserve.

Definition 2.14. A dataflow model G with actors VG and execution time function τG
that is executing under schedule SG is execution equivalent to a dataflow model H with
actors VH and execution time function τH that is executing under schedule SH , if and
only if there exists a bijective function map : (VG×N≥0)→ (VH ×N≥0) such that for all
i ∈ VG and k ∈ N≥0 it holds that

• SG(i, k) = SH(map(i, k)) and SG(i, k) + τG(i, k) = SH(map(i, k)) + τH(map(i, k))

• map(i, k) = (j,m) such that actor j is an abstraction of the same entity as actor i

We thus want to convert an arbitrary consistent cyclo-static dataflow model to a single-
rate model such that when executing both models under their respective self-timed
schedules the models are execution equivalent. The main idea behind the conversion
is that each actor in the unconverted model will be represented by one or more actors
in the single-rate model, such that the k-th firing of such an actor im represent the
(k · ~r(i) +m)-th firing of the original actor i, where ~r is the repetition vector.

Lemma 2.7. We can transform an arbitrary consistent cyclo-static dataflow model G
with repetition vector ~r into an execution equivalent single-rate dataflow model H in the
following manner

2.5. CONVERSION TO SINGLE-RATE 19

1. For every actor i in model G we add ~r(i) actors to model H, where we denote these
actors by im with 0 ≤ m < ~r(i) and actor im has execution time τ(i,m). All of
these actors represent the same entity as the original actor i. We call each actor
im a copy of i.

2. For every arc e in model G with src(e) = i and snk(e) = j we have to add arcs
between the copies of i and j to model H. Any actor copy im with 0 ≤ m < ~r(i)
in model H should have prod(e,m) arcs connecting im to actor copies of j, and in
reverse any actor copy jn with 0 ≤ n < ~r(j) must have cons(e, n) arcs connecting
it to copies of i. We assume each actor copy im and jn has a number of ports
equal to respectively prod(e,m) and cons(e, n), where each of these ports represent
a begin or end point of a single arc. We number the ports such that an actor copy
im has port numbers in the interval [

∑m−1
k=0 prod(e, k),

∑m
k=0 prod(e, k)). The ports

for actor copies of j are numbered similarly, but based on the consumption rate of
edge e. Note that the actor copies of i and the actor copies of j have the same
total number of ports, which we designate with N . We can now define a bijective
function connect : [0 . . . N]× [0 . . . N] between the port numbers of the actor copies
of i and the actor copies of j. We define this function such that

connect(p) = (p+ d(e)) mod N

If connect(p) = q we introduce an arc epq in H such that it has as source the actor
copy of i with the port numbered p and as sink the actor copy of j with the port
number q. The delay of the arc epq is dmax(0, d(e)− q)/Ne.

When we convert a dataflow model to single-rate, the created single-rate model tends
to have more actors and arcs than the original model. An increase in the number of
actors and arcs in a dataflow model is generally undesirable, since it will increase the
storage space requirements and analysis time for the model. When converting a model
to single-rate the increase of both actor and arcs can be exponential, which can cause
problems for sufficiently large input models.

Figure 2.3 depicts a consistent cyclo-static dataflow model and its execution equivalent
single-rate model. Note that we did not depict the rates of the arcs in the single-rate
model to increase readability, but since the model is single-rate all of its arcs have a
production and consumption rate of one.

20 CHAPTER 2. DATAFLOW

A B
[2] [1,2]2

1

[1]

[1]

(a)

A2

B0

B1

B2

B3

A0

A1

1

1

1

(b)

Figure 2.3: A cyclo-static dataflow graph (a) and its execution equivalent single-rate
graph (b).

Chapter 3

Application modelling and
analysis using dataflow

A real-time application has certain timing requirements that must be satisfied for correct
operation of the application. Since there may be multiple real-time applications running
at the same time, and resources such as processors may have to be shared by multiple
applications, meeting these timing requirement is far from guaranteed. We can abstract
an application as a dataflow model which can then in turn be transformed such that it
includes the worst-case timing effects of resource arbitration. By analysing the resulting
dataflow model we can verify whether or not a application’s timing requirements can be
satisfied.

We will start this chapter by sketching how an application and its tasks can be converted
to a dataflow model. Afterwards we will define how we can modify this dataflow model
such that its execution includes the effects of resource arbitration, and how the modified
dataflow model can be analysed such that we can verify its timing requirements. We will
end this chapter by giving an overview of the relevant existing techniques for capturing
the worst-case temporal effects of resource arbitration in a dataflow model.

3.1 Capturing application behaviour in dataflow

A application can be thought of to consists of one or more tasks, where each task
represent a finite number of single-threaded operations that must be executed on a
processor. We assume that the in this thesis relevant applications are data centric,
meaning tasks receive data from other task or an external source, processes the data,
and output the result to another task. Since a task cannot execute if it has no input
data, an application defines a precedence relation on its tasks. This precedence relation
can be though of as a directed graph, in which the nodes represents tasks and edges
represent tasks passing data to each other.

22 CHAPTER 3. APPLICATION MODELLING AND ANALYSIS

(a) Dataflow model of a WLAN transceiver.
(b) Dataflow model of a TDS-CDMA
transceiver.

Figure 3.1: A WLAN (figure 3.1a) and TDS-CDMA (figure 3.1b) transceiver job ex-
pressed as a dataflow model. Both dataflow models are taken from [1].

We can try to abstract an application as a dataflow model by representing each of its
tasks as an actor and connecting actors by arcs as specified by the precedence relation
between the application’s tasks. The rates of the arcs must then be set such that they
match the relative amount of data consumed and produced during one execution of
each task, and actor execution times must be set to the worst-case computation time
of the task. However, converting an arbitrary application to a dataflow model solely
based on the precedence relation of its tasks is not trivial, since cyclo-static dataflow has
limited expressivity. If the behaviour of the application is not periodically repeating,
but for example dependant upon its data values, we cannot accurately express such
behaviour in a cyclo-static dataflow model. Furthermore, every dataflow model should be
consistent. It is therefore often necessary to create a dataflow model that approximates
the application’s actual behaviour. We therefore assume that a dataflow representation
of an applications behaviour is created by a domain expert and provided as input to any
further analysis. This dataflow model is called the task graph of the application.

Definition 3.1. A task graph of an application is a consistent dataflow model conser-
vatively approximating the execution behaviour of an application. The actors in a task
graph correspond to the tasks of the application, and the execution time of each actor
matches the worst-case computation time of the corresponding task.

An example of a real-time application is a WLAN transceiver, which has a task that
decodes received data and a task that calculates a CRC code of the decoded data. Figure
3.1a and figure 3.1b display the task graphs of respectively a WLAN and TDS-CDMA
transceiver. The production and consumption rates of all arcs without explicit rates is
1. An arc with rate other than 1 is indicated by the notation x : y, which means the arc
has a production rate of x and consumption rate of y.

3.2. INCLUDING EFFECTS OF RESOURCE ARBITRATION 23

3.2 Including effects of resource arbitration

Since the execution of an application consists out of one or more task executions, we can
derive the worst-case timing behaviour of the whole application by composing the worst-
case temporal behaviour of all the application’s tasks. The task graph dataflow model
abstracts the temporal behaviour of an application, but does not take into account
timing effects due to resource arbitration. Before we can determine an application’s
actual worst-case task behaviour we must bound the effects of resource arbitration on a
task execution.

In this thesis we assume that the only shared resources in a system are processors, and
that each processor has an runtime budget scheduler that determines which application
is allowed to execute on the processor at a given time. Whenever an application is
given access to a processor by the processor’s runtime scheduler, the application can
execute its tasks on that processor until the scheduler revokes its access. The time it
takes for a task execution to complete from the moment the task becomes enabled to the
moment it finishes can be divided into two parts; arbitration time and processing time.
The arbitration time of a task is the time it takes until the scheduler grants execution
resources to the task once it becomes eligible for execution. The processing time of a
task is the time between the moment a task can start executing and the moment it
finishes its execution.

If we have an application’s task graph dataflow model, we can transform the task
graph into a temporal analysis model, in which each task is replaced by task’s response
model.

Definition 3.2. A response model of a task is a dataflow construct that captures the
worst-case timing behaviour of a task under the effects of resource arbitration by a pro-
cessor’s scheduler.

Definition 3.3. A temporal analysis model is a dataflow model in which each task in
a task graph is replaced by its response model.

Figure 3.2 illustrates the replacement of actors in a task graph by their response models.
Each actor in the task graph is replaced by a latency-rate response model (which we
will introduce in section 3.4) that captures the worst-case response time of the replaced
actor. The obtained temporal analysis graph can can be used to verify an application’s
timing requirements.

Since all tasks in a temporal analysis model are replaced by their response models, it
compositionally represents the worst-case behaviour of all the application’s tasks, such
that we can derive the worst-case temporal behaviour of the entire application. The
creation of an accurate response model of a task is an important part in verifying an
applications temporal requirements. A response model should model the worst-case
time between the moment a task receives data to process and the task can output
the processed data. This time between the input and output of data in a task is also

24 CHAPTER 3. APPLICATION MODELLING AND ANALYSIS

B C

A

D

B C

D

AAL R

BRL

D

CRL

L R

Figure 3.2: Replacing the actors in a task graph with their latency-rate response models.

called the response time of the task. An accurate worst-case response model takes into
account the various factors that can affect the execution of a task, such as the resource
arbitration mechanism of the processor on which the task runs and settings such as
application budget, processor replenishment periods and application priorities.

Since we are interested in the worst-case temporal behaviour of the application, a task’s
response model is allowed to overestimate the response time of a task; if the composition
of the overestimated worst-case task temporal behaviour still fulfills the application’s
timing requirements, then the in reality ’better’ worst-case temporal behaviour will also
satisfy the requirements. We call a response model pessimistic if its modeled worst-case
behaviour is worse than the actual worst-case behaviour of a task. An overly pessimistic
response model can hide the fact that the actual application’s timing requirements might
also be satisfied with a reduced processor budget or larger replenishment period for some
of the processors, thereby leading us to overestimate the minimum amount of resources
needed to run the application. Underestimation of a task’s response time is not allowed,
since this could lead to an underestimation of the worst-case temporal behaviour of the
whole application.

3.3 Temporal analysis of a dataflow model

Once we have created a temporal analysis model we have a dataflow model that con-
servatively captures the worst-case temporal behaviour of an application. We discern
two types of timing requirements in this thesis; maximum latency requirements and
minimum throughput requirements. We can analyse a temporal analysis model using
dataflow analysis techniques such that we obtain its guaranteed minimum throughput.
A maximum latency requirement can be validated by first converting the maximum
latency requirement into a minimum throughput constraint as described in [12]. The
guaranteed throughput of a dataflow model can be computed using either static analysis
or simulation based analysis. We will only describe the static analysis approach, and
refer for information about the simulation approach to [13].

Static analysis of a dataflow model can be performed by calculating the Maximum Cycle

3.4. EXISTING RESOURCE ARBITRATION MODELS 25

Mean (MCM) of the single-rate version of the dataflow model of interest.

Definition 3.4. The maximum cycle mean of single-rate dataflow model G is defined
as

µ(G) = max
c∈C(G)

∑
i∈N(c) τ(i)∑
e∈E(c) d(e)

where C(G) is the set of simple cycles in dataflow model G and N(c) and E(c) are
respectively the sets of actors and arcs traversed by cycle c.

The inverse of the maximum cycle mean of a dataflow model is equivalent to the model’s
guaranteed minimum throughput. The maximum allowed MCM of an application such
that is does not violate its minimum throughput requirements is called the maximum
production period of the application. The production period of the application is the
time it takes for the application to complete a full iteration.

Note that both static and simulation based analysis techniques require that the dataflow
model is single-rate. As we have already mentioned in chapter 2 this conversion to
single-rate can lead to an exponential increase in the number of actors and edges of the
model.

3.4 Existing resource arbitration models

We will give a briefly overview of the most important dataflow response models to which
we will refer in this thesis. Some of the models have been superseded by less pessimistic
models, but are included for completeness and the fact that they are smaller and simpler
than current state-of-the-art models.

3.4.1 Response models for TDM arbitration

Although the focus of this thesis lies on PBS arbitration models, we will start with
introducing some of models that capture the effects of TDM arbitration, since this is
the resource arbitration method that is most extensively researched. In the formula
expressing the worst-case response times of TDM arbitration we will use the following
notation: P represents the replenishment period of a processor, S represents the slice
size (budget) of the task’s application and τ(i) represents the worst-case computation
time of the i-th activation of the task.

Single-Actor model

The singe-actor response model [2] replaces each task’s actor by a single actor with a
self-edge (a self-edge is an edge with delay one whose source and sink is the same actor).

26 CHAPTER 3. APPLICATION MODELLING AND ANALYSIS

X

Figure 3.3: Singe actor model.

XL

Figure 3.4: Latency-rate model.

Figure 3.3 shows the single-actor response mode. The execution time of actor X is
b τ(i)S c · P + (τ(i) mod S). This model represent one of the simplest response models
imaginable, but it can be excessively pessimistic.

Latency-Rate model

The latency-rate response model [3] improved on the single-actor response model by
discerning a separate latency and rate phase. Figure 3.4 depicts a latency-rate response
model. The execution time of actor L is P − S and of actor X is P · τ(i)S . Although this
response model is less pessimistic during burst arrival of tasks, can still be exceedingly
pessimistic.

Latency-Cyclic-Rate model

The latency-cyclic-rate response model [4] exploits the fact a continuous sequence of
consecutive task executions can be shown to have a cyclic pattern over a fixed number
of executions. Figure 3.5 depicts an example latency-cyclic-rate response model with
q = 4 X actors, but the actual number of X actor in the model depends on the value q
which is determined by the least-common-multiple between the task’s computation time
and its application’s budget. The execution time of the actors of the latency-cyclic rate
model are P −S for actor L, bk·τS c ·P + dk · τ mod Se−b (k−1)·τS c ·P + d(k−1) · τ mod Se
for actors Xk with k < q and actor Xq has execution time bk·τS c · P + dk · τ mod Se −
b (k−1)·τS c · P + d(k − 1) · τ mod Se − (P − S). The latency-cyclic-rate model captures
the worst-case response time of a task under TDM arbitration quite accurately, but its
problem is that there is currently no known way in which this response model can be
used together with the static ordering of tasks that execute on the same processor.

3.4. EXISTING RESOURCE ARBITRATION MODELS 27

X2

X1L

X3

X4

Figure 3.5: Instance of a latency-cyclic-rate model.

Multi-Rate model

The multi-rate response model (proposed in [4] and improved in [5]) is currently the most
accurate TDM arbitration model together with the latency-cyclic-rate model. Similar to
the latency-cyclic-rate model, the multi-rate response model takes into account previous
task executions to determine the response time of the current task execution. Whereas
all previously mentioned response models where single-rate, this model derives its name
from the fact that it is a multi-rate model (or even a cyclo-static model if it is used in
combination with static ordering). The model uses tokens to represent available budget,
whereby it divides a task in smaller slices of size z, consuming for each such an slice
execution one budget token. The value z is equal to the greatest-common-divisor of the
task computation time(s) and the application’s budget S. Figure 3.6 depicts a multi-rate
response model. Actor L has execution time P − S, actor X has execution time z and
actor W has execution time P − z. Actors S and C both have an execution time of
zero, since they are only used to split a single incoming token into multiple parts and
afterwards merge these multiple parts back into a single token. The number of initial
budget tokens n is equal to S/z. A problem with the multi-rate model is that although
it is both accurate and widely applicable, the fact that the response model is multi-rate
can lead to an excessively large single-rate temporal analysis model, which means it can
take a significant amount of time to verify an application’s timing requirements.

3.4.2 Response models for PBS arbitration

This section will introduce the current state-of-the-art response models for PBS arbitra-
tion. In the formula expressing the worst-case response times of PBS arbitration we will
use the following notation: P represents the replenishment period of a processor, BH and
BL respectively represent the budget of a high priority and low priority application and
τ(i) represents the worst-case computation time of the i-th activation of the task.

28 CHAPTER 3. APPLICATION MODELLING AND ANALYSIS

W

XS

n

CL
1 1

1

1 1

1

1 1
t/z t/z

Figure 3.6: Multi-rate model.

Steine’s Model

The response model as proposed by Steine [6] is an adaption of the latency-rate model
for use under PBS arbitration. Steine’s model assumes that a high priority task cannot
pre-empt a low priority task, but has to wait until the low priority task finishes its slice
before it can start to execute. The rate actor of the modified latency-rate model is
left unchanged for both the high and low priority variants, but the execution time of
its latency actor depends on the priority of the task’s application. For a high priority
application it has an execution time equal to the largest low priority task, whereas for
a low priority application the rate actor’s execution time is equal to P − BL + BH . A
disadvantage of Steine’s model is that it is uses the same rate actor execution time as
the latency-rate model, and therefore suffer from the same excessive pessimism as the
latency-rate response model.

Staschulat’s Model

Staschulat proposes a response model for a PBS arbitrated memory arbiter in [7].
Staschulat’s model defined a slot length S and required that the replenishment period
is a multiple of this slot length. Furthermore, both the budget of the high and low pri-
ority task are required to be a multiple of S, and the worst-case computation time of all
tasks must be equal to S. Figure 3.7 depicts Stachulat’s proposed response model. The
execution times of actor L is B and the execution time of actor W is P −B, regardless
whether the model is for a task of a high of low priority application. The execution time
of actor X is S for a high priority application and S plus twice the budget of all other
low priority applications for a low priority application. A disadvantage os staschulat’s
model is that it has very restrictive assumptions about acceptable budget and worst-case
task computation times.

3.4. EXISTING RESOURCE ARBITRATION MODELS 29

W

XL

n

Figure 3.7: Staschulat’s model.

Cai’s Model

Cai proposes a PBS response model in [8], but only for the tasks of a high priority
application. For a low priority application he proposes that the response model of Steine
is used. Cai defines a slot size of size S, which is the smallest granularity in which a
scheduling decision can be taken. The execution time of a task must be a multiple q of
this slot size and the budget of the applications should be a multiple p of this slot size.
Cai proposes two different response models based on wether the application’s budget is
either smaller or larger/equal to a task’s response time. The structure of the proposed
model is the same as Stachulat’s response model in figure 3.7, but the execution time of
its actors differ. In the response model for tasks with a execution time larger than the
application’s budget, the execution time for its actors are: Actor L has an execution time
of S, actor X has an execution time of p · S + d q·S−p·Sp·S e and actor W has an execution
time of P − p · S. The number of tokens indicated by n is one, since after one task
execution we have to wait for a budget replenishment to occur before we can execute
another task. For the response model suitable to tasks that have an execution time
smaller than the application’s budget the execution times of the model’s actors are: S
for actor L, q · S for actor X and P − q · S for actor W . The number of initial budget
tokens is bpq d. A disadvantage of Cai’s response model is that because it uses different
response models based on the computation time of a task, either every task that executes
on specific processor must be smaller than the budget of the application or every task
must be larger/equal than the budget of the application.

30 CHAPTER 3. APPLICATION MODELLING AND ANALYSIS

Chapter 4

Problem Statement

We would like to guarantee an application’s timing requirements can be met in a resource
shared environment while allotting the application only a minimum amount of processor
resources. Since an application cannot make progress unless it can execute its tasks on
a processor, the manner in which processor sharing is arbitrated has a critical impact on
the timing behaviour of an application and therefore its minimum resource requirements.
We can therefore define the following steps we should take when we want to minimize
an application’s resource requirements:

• Determine a suitable processor arbitration method.

• Have a response model that accurately represent worst-case arbitration effect, such
that the timing requirements of an application can be verified.

• Have a scheduling strategy that given a arbitration method and response model
can obtain application schedules and scheduler parameters that minimize the net
resource requirements.

We examine each of these points in more detail in the following sections.

4.1 Inflexibility of TDM with low latency requirements

There exists a considerable amount of research concerning the representation of the
worst-case effects of TDM arbitration using dataflow response models [2, 3, 4, 5]. A
TDM scheduler is a budget scheduler that guarantees each application an amount of
processor time per replenishment period equal to its budget. The replenishment period
of a TDM scheduler is denoted by P , and an application’s budget - called its slice - is
denoted by S. A TDM scheduler gives each application access to the processor at a
fixed interval in each replenishment period, gradually consuming its slice regardless of
whether the application executes tasks or not. Advantages of TDM schedulers are that

32 CHAPTER 4. PROBLEM STATEMENT

they are easy to implement, have negligible runtime overhead and cause a predictable
number of context switches.

The worst-case response time under TDM arbitration of a task with a computation time
of τ is equal to

(P − S) + d τ
S
− 1e · (P − S) + τ (4.1)

which consists out of a worst-case arbitration time of P − S and a processing time of
d τS − 1e · (P − S) + τ .

There have recently been considerable advances in the accuracy of worst-case task re-
sponse time modelling of TDM arbitration [5]. However, TDM arbitration has an in-
herent problem with applications with tight latency requirements due to its worst-case
P − S arbitration time. For an application with tight latency requirements a wait time
of P −S can be considerable larger than its task’s computation time, such that the task
gets an unacceptably large task response time. In such a case we must either decrease
the replenishment period P or increase the application’s allotted budget S to ensure the
application can meet its timing requirements.

Increasing the slice size of an application is one approach to decrease the worst-case
response time of a task. However, applications with low latency requirements tend
to consists out of tasks with relatively small computation times. Increasing such an
application’s budget just such that we can reduce its worst-case response times means
that a considerable amount of its assigned budget will be spend waiting until a task
becomes enabled, thereby wasting processor time that could have been used by another
application.

By decreasing the replenishment period P we let the TDM scheduler switch between ac-
tive applications more frequently, thereby improving the task’s response time. However,
each time the active application changes, the processor must make a context switch.
Since the context switch time of a processor is a constant, each decrease in P means
that the percentage of time the processor spends context switching increases. Because
a processor cannot execute tasks during context switching, an increase in the amount
of context switching wastes processor time that could have been used productively by
another application. Another potential problem with decreasing the replenishment pe-
riod P is that although applications may be served more often, it does not mean that
over-reservation of resources does not occur: Depending on the pattern in which an
application’s tasks are enabled, a small replenishment period increases the likelihood
that there exists a sequence of consecutive periods in which the application has no task
to execute, meaning the application wastes its full allotted budget of processing time
during such periods.

4.2. PROBLEMS WITH EXISTING PBS RESPONSE MODELS 33

4.2 Problems with existing PBS response models

Since different applications can have different timing requirements, it makes sense to give
applications with tighter timing requirements more flexible access to processor resources
than applications with more relaxed requirements. A priority budget scheduler guar-
antees each application a minimum amount of processing time in a time interval, but
allows the high priority application more flexibility about when it can spend its budget
at the cost of an increased response time for its low priority applications. By giving the
application with tight timing requirements a higher priority under PBS arbitration we
are able to avoid the problems encountered by TDM arbitration.

There exist a number of response models that capture worst-case timing behaviour of
PBS arbitration in literature [6, 7, 8]. However, all proposed models have a number of
limitations.

4.2.1 Pessimism of Steine’s model

The worst-case response time model proposed by Steine [6] uses the same rate compo-
nent as the latency-rate model [3], whose response times have been shown to be overly
pessimistic [4, 5]. Composing task response models that are overly pessimistic gives a
high over-estimation of the temporal behavior of the entire application, which in turn
would lead us to believe the application needs a higher resource reservation that its
actual minimum resource requirements.

Furthermore, Steine’s response model assumes the high priority job cannot actually pre-
empt running low priority applications; if the high priority application want to execute
it must wait until the current slice is completed. Its modeled worst-case arbitration time
for a task of the high priority application is therefore equal to the largest budget of the
low priority applications. We feel that this worst-case arbitration time is too large for
a high priority application, since the whole point of using a PBS scheduler is exploiting
the low arbitration time of its high priority task.

4.2.2 Limited usability of Staschulat’s and Cai’s Models

Staschulat’s response model [7] defines a slot length and requires that all worst-case
computation times are equal to this length. This means that when we use the proposed
response model to capture the the worst-case timing behaviour of tasks assigned to one
specific processor, these tasks must all have the same worst-case computation time.

Cai [8] proposes two different response models based on wether the application’s budget
is either smaller or larger/equal to a task’s worst-case computation time. Using different
response models based on the computation time of a task means that when we use such
a response model, either every task that executes on specific processor must be smaller

34 CHAPTER 4. PROBLEM STATEMENT

than the budget of the application or every task must be larger/equal than the budget
of the application.

We could theoretically satisfy the requirements posed by both Staschulat’s and Cai’s
on the worst-case task computation times by either increasing the task’s computation
times such that all tasks that execute on the processor either have the same computation
time (for Stachulat) or increasing all computation times such that they are larger than
the application’s budget (for Cai). However, rounding will almost always introduce a
significant amount of pessimism in the modeled response times.

4.3 Lack of PBS scheduling strategy

We would like to assign to each application only the minimum amount of resources
needed such that it can meet its timing requirements, since any time we reduce the
shared resources needed by one application we free resources that can be used to run
other applications. The choice of an application’s schedules and scheduler parameters
such as a replenishment period can have a significant impact on the minimum required
resource reservation of an application. It is therefore important that a good choice is
made when choosing application schedules and scheduler parameters.

There are a few basic goodliness that can help make appropriate scheduling decisions,
but even these guidelines are not always correct. For instance, a smaller period allows
each application to spend its budget more often, and may therefore allow us to eliminate
some of an application’s over-reservation it would normally need such that its tasks
can have a sufficiently small worst-case response time. However, for some combinations
of replenishment period, applications budget and task computation times, a smaller
replenishment period may actually increase a task’s response time, therefore potentially
requiring more processor resources instead of less. Figure 4.1 depicts the worst-case
response time of a task under TDM arbitration with computation time of 10 in two
scenarios. In scenario A the task is executed on a processor with replenishment period
10 and has a slice size of 5, yielding a worst-case task response time of 20. In scenario
B the task executes on a processor with replenishment period 8 and has a slice size of
4, such that it has a worst-case response time of 22. For a task with computation time
10 the larger period yields the better response time, but if the task’s computation time
would be 11 the scenario with the smaller period would again be better.

This example illustrates that the actual effect of a scheduling decision on an applica-
tion’s timing behaviour tends to depend on many factors. It is therefore in general not
desirable to require optimal application schedules and processor settings, since searching
for optimal solutions would not be feasible timewise. We would therefore like to define a
scheduling heuristic that given a set of applications and information about their timing
requirements, can come up with application schedules and replenishment periods that
yield acceptably low minimum resource reservation requirements.

4.3. LACK OF PBS SCHEDULING STRATEGY 35

Time

R R

Time

R R

R

R

R

0 10 20 30

0 8 16 24 32

20

R

R R R

22

A

B

40

40

Figure 4.1: Effects of replenishment period and slice size on a task’s response time.

36 CHAPTER 4. PROBLEM STATEMENT

Chapter 5

Characterizing PBS arbitration

A runtime priority budget scheduler (PBS) guarantees each application a minimum
amount of processing time per time interval, but allows a high priority application more
flexibility about when it can spend its budget at the cost of an increased task response
time for low priority applications. Using priority based resource arbitration is attractive
if the improved timing behaviour of a high priority application can offset the worsened
timing behaviour of the low priority applications, allowing a net increase of free resources
when compared with non-priority based budget schedulers.

This chapter will define our assumed variant of PBS arbitration, present formulas that
give the exact response times of task executions of high and low priority applications,
and introduce a dataflow response models that captures its worst-case temporal be-
haviour.

5.1 Definition of PBS arbitration

There are multiple variants of runtime PBS arbitration imaginable. Each variant can
have different rules about aspects such as the supported number of priority levels or
when a high priority application can pre-empt a lower priority application. We therefore
start this chapter by defining the characteristics of the priority budget scheduler whose
worst-case behaviour we want to represent.

We will consider a runtime priority budget scheduler with two priority levels; a high
priority and a low priority. Exactly one application can have a high priority and multi-
ple applications can have low priority. The scheduler defines a fixed size replenishment
period, after which the full budget of both high and low priority applications is restored.
Low priority applications consume their budget in a manner similar to TDM arbitra-
tion; the order in which low priority applications are given access to the processor is
fixed, and budget is consumed regardless of whether the active low priority application

38 CHAPTER 5. CHARACTERIZING PBS ARBITRATION

L H H L H L

Time

H

R R R

Figure 5.1: An example of task execution behaviour under PBS arbitration.

has a task to execute or not. A high priority application can preempt a running low
priority application at any time as long as is has non-zero remaining budget. Once the
high priority application has no more tasks to execute it can relinquishes control of the
processor, allowing the previously preempted low priority application to continue. If the
high priority application has more remaining budget than it can spend in the time left
until the next budget replenishment occurs, then this remaining budget is gradually idled
away over time, such that it has zero remaining budget the moment the next budget
replenishment occurs.

Figure 5.1 illustrates some of the PBS arbitration behaviour that might occur. It depicts
a time span of two budget replenishment periods in which a high and low priority
application execute their tasks. The application that has access to the processor (and
therefore consumes budget) is indicated by a white rectangle labeled either L for the low
priority application or H for the high priority application. The enabling and finish times
of tasks are depicted by respectively an incoming and outgoing arrow. The gray areas
indicate time internals in which the processor is executing a task. The response time of a
task is the time between its enabling and completion and is represented by a dotted arc.
Observe that in the first period the high priority application does not have an enabled
task until late in the period, such that it already started to idle away part of its budget.
The second task execution of the high priority task cannot be completed in the first
period, causing the high priority application to immediately claim the processor after
budget replenishment in the second period, thereby additionally delaying the completion
of the low priority application’s task.

5.2 An exact PBS response time formula

Based on our definition of a PBS arbitration we can give the exact finish time of a task
executions of both high and low priority applications. Subtracting an obtained task
finish time from its activation time yields the response time of a task execution. We will
make use of the following notation to describe the finish time formulas:

• HP : The high priority application.

• LPk: Low priority application k, where the k-th low priority application is the k-th

5.2. AN EXACT PBS RESPONSE TIME FORMULA 39

low priority application that can spend budget during after a budget replenishment.

• C(i) : Worst-case computation time of task execution i of the high priority appli-
cation.

• Ck(i) : Computation time of task execution i of the low priority application LPk.

• B : Maximum budget of the high priority application.

• Sk : Maximum budget (also called slice size) of low priority application LPk.

• P : Length of replenishment period. P is the sum of the budget of the high priority
application plus the slice sizes of all low priority applications.

• φ : Offset that specifies the moment in time the first budget replenishment occurs.
We assume 0 ≤ φ < P .

• i : Sequence number of a task executions, where i = 1 designates the first task
execution.

• aH(i) and aL(i) : Activation/enabling time of the i-th task execution of respectively
a high and low priority application.

• fH(i) and fL(i) : Finish time of i-th task execution of respectively a high and low
priority application.

5.2.1 Task finish times of a high priority application

If we want to know the finish time of a task execution i we need to know how much budget
is available at the moment execution i can start. If we do not know the current remaining
budget we cannot make an exact prediction of the finish time fH(i) of execution i, since
depending on the remaining budget and the task’s computation time we might have to
wait for one or multiple budget replenishments.

We define the start time of a task execution i of the high priority application as the
earliest time after the initial budget replenishment in which the task is enabled and
all previous task executions are finished. We thus define the start time of execution i
as:

sH(i) = max(aH(i), fH(i− 1)) (5.1)

Since the budget replenishment period is always of size P and we assume to know the
offset φ for the first budget replenishment, we can calculate for any given time t the
exact moment the last budget replenishment happened before the time t as:

r(t) = b t− φ
P
c · P + φ (5.2)

40 CHAPTER 5. CHARACTERIZING PBS ARBITRATION

To avoid complicating equations needlessly we will at times use an overloaded version
of function r to which we pass a task execution i instead of a time t. We thus define
r(i) = r(sH(i)) such that r(i) represents the start of the replenishment period in which
task execution i can potentially start executing for the first time.

Let us assume the finish time of a task execution i− 1 can be calculated. To determine
how much budget is available for task execution i, we need to look at all the previous
executions that consumed budget in the period that contains start time sH(i). This
period p is thus the first replenishment interval in which task execution i could execute
if there is enough remaining budget. Due to our definition of sH(i) we know that if
task execution i can start in period p, all previous execution must have finished before
or in period p. Since the budget is fully replenished at the start of each period, it is
sufficient to look at all executions that finished later than time r(i). Using the start time
of task execution i and the replenishment time of the period in which i can start, we can
calculate how much budget previous iterations spend since the last budget replenishment
by adding up the time intervals during which these task executions occurred since the
last replenishment:

uH(i) =
i−1∑
j=1

max(0, fH(i− j)−max(sH(i− j), r(i))) (5.3)

Once all low priority applications have completed their slices the budget of the high
priority application will linearly decrease with time, even if no task executions are per-
formed. Because we know how much budget the high priority application has spend
on its previous task executions, we know the moment all low priority applications have
finished their slices. We can thus define the exact time after which budget will be idled
away as the time interval [r(i) + P − B + uH(i), sH(i)). If this interval is not empty,
we know that the budget wasted by idling is equal to the length of this interval. We
can thus express the final budget that a task execution i can use during its first period
as:

bH(i) = B − uH(i)−max(0, sH(i)− (r(i) + P −B + uH(i))) (5.4)

We now know the exact moment when task execution i can start and for how long it is
guaranteed to be able to execute once started. We can make two observations that help
us determine the eventual finish time of the task execution:

• If the remaining budget in the first period in which execution i can run is sufficient
to finish the task execution, we know the iteration can finish after performing C(i)
work.

• If the remaining budget is not sufficient to perform all work of the task execution,
we will need to wait for one or more budget replenishments before completing the
task execution.

5.2. AN EXACT PBS RESPONSE TIME FORMULA 41

Translating these observations to a formula gives us the following definition of the finish
time of task execution i:

fH(i) =


0 if i = 0

sH(i) + C(i) if C(i) ≤ bH(i)

r(i) + P + dC(i)−bH(i)
B − 1e · (P −B) + (C(i)− bH(i)) if C(i) > bH(i)

5.2.2 Task finish times of a low priority application

When calculating the finish time of a task execution of a low priority application, we
assume that the activation and finish times of all high priority task executions are known.
Whereas there is but a single high priority application that can have multiple task
executions, there can be multiple low priority applications, each executing its own tasks.
Each low priority application LPk has an assigned slice of size Sk, during which it can
perform its task executions. Each of the low priority applications are served in a fixed
order, meaning that if (LP1, LP2, LP3) is the order in which low priority applications
are served their slice, then LP2 cannot execute before LP1 has executed in the same
period, and A3 requires both other applications to execute first in the same period. A
low priority application consumes its slice whenever its turn comes up, even if it has no
tasks it wants to run.

Low priority applications can be preempted immediately when a high priority applica-
tion has a non-zero budget and an enabled task. Because we define the replenishment
period as P = B +

∑
k∈LP Sk, all low priority applications are guaranteed to have the

opportunity to consume their whole slice within P time. Interference of the high priority
applications can however still introduce jitter in the start and end times of the slices
with respect to previous periods, which in turn has an effect on the finish times of task
executions of low priority applications.

Assume we know the finish time of all earlier executions of a low priority application
LPk. If we want to determine the exact finish time of a task execution i, we must
know exactly how long the high priority application will run during its execution. Every
task execution of a low priority application has an activation time aL(i). Since a task
execution cannot start before previous executions are finished we can define the start
time sL(i) as the earliest time task execution i is enabled and all previous executions
are completed. We thus define the potential start time of task execution i as:

sL(i) = max(aL(i), fL(i− 1)) (5.5)

Tasks of an application LPk can only be executed when its slice is being consumed.
Before a specific low priority application can consume its slice of size Sk, all preceding

42 CHAPTER 5. CHARACTERIZING PBS ARBITRATION

slices of other low priority applications must have been completed. The minimum time
it takes until the slice of application LPk can execute is the sum of the slice sizes of all
preceding applications. However, if the high priority task preempts at any time during
the execution of any of the preceding slices, the wait time until LPk can execute its
tasks will increase. We are therefore interested in knowing for some time t how long the
high priority application executes in the interval [r(t), t). We can define a formula for
calculating this time by making the following observations about the behaviour of high
priority task exsections:

• If a high priority execution starts after moment t or finishes before time r(t) it
does not execute in the time interval we’re interested in.

• A task execution i of a high priority application that finishes before moment t has
executed the whole time from either the start of the period or the start of the
task’s execution (whichever is larger), until the moment that it finishes.

• When task execution i start within the same period as time t but finishes later
then time t, the time it can execute from its start time until moment t is dependant
on whether or not the task execution runs out of budget before time t. We know
task execution i had only bH(i) budget when it started executing.

• When task execution i starts in a previous period and will finish after time t, the
task execution either executes the whole time up to time t, or runs out of budget
before time t. Since the maximum budget is B we know it can at most execute for
B time.

We can translate these observations into a formula that calculates the time h(t) repre-
senting the time the high priority application has been executing in the interval [r(t), t)
as:

h(t) =
∞∑
i=1


0 if fH(i) < r(t) or t ≤ sH(i)
max(0, fH(i)−max(sH(i), r(t))) if r(t) ≤ fH(i) < t and sH(i) < t
max(0,min(bH(i), t− sH(i))) if r(t) ≤ t ≤ fH(i) and r(t) ≤ sH(i) < t
max(0,min(B(i), t− r(i))) if r(t) ≤ t ≤ fH(i) and sH(i) < r(t) ≤ t

If execution of a low priority application’s slice is delayed due to interference of the high
priority application then the time at which the end of the low priority slice is reached will
also be delayed. Since the slice is thus active until a later moment in time, additional
preemptions by the high priority application can occur, delaying the end of the slice
even further. We can calculate the time until the slice of application LPk can start by
finding the maximum of a recursive equation that takes into account this interference
of the high priority application. For time t in which we want to start the work that
without preemptions would take w time, the time that all work is actually finished when
we take the preemptions by the high priority application into account is d(t, w). Note
that care should be taken to ensure that t and w are chosen in such a manner that the
actual finish time d(t, w) always lies in the same replenishment period as t. We define

5.2. AN EXACT PBS RESPONSE TIME FORMULA 43

the function d(t, w) as:

d0(t, w) = t+ w

dn(t, w) = t+ w + h(dn−1(t, w))− h(t) (5.6)

The maximum is reached when dn(t, w) = dn+1(t, w). This equation always has a finite
maximum since the maximum interference of the high priority application within a period
is limited by its maximum budget B. We can thus calculate the time until the slice of
application LPk can start in any given period by setting t as the replenishment time
that starts the period whose behaviour we’re interested in and setting w to the sum of
the slices of all preceding tasks.

Once a slice of an application is started, it will be consumed regardless whether there are
tasks executing or not. If task execution i wants to execute in its first period it not only
has to be enabled and any previous executions have to be finished, but the application’s
slice should also not have ended. We can make the following observations:

• If the start time of the task execution lies before the start time of its slice, we know
the previous task execution completed before the current period, since none of the
task execution of the application can have executed yet within this period. Task
execution i can thus execute for the full slice.

• If the start time of the task execution lies somewhere between the start and end of
its slice, task execution i can execute for a time that is equal to the length of the
interval between sL(i) and the end of the slice, minus the time the high priority
application will executes during this interval.

• If the start time of the task execution lies after the end of the slice - either due
to arriving too late or the previous task execution needing the whole slice - task
execution i cannot execute at all in its first replenishment period.

We can thus calculate the remaining slice budget in the first period of task execution i
as:

bL(i) =



Sk if sL(i) < d(r(i),
∑k−1

j=1 Sj)

(d(r(i),
∑k

j=1 Sj)− sL(i))− if d(r(i),
∑k−1

j=1 Sj) ≤ sL(i)

(h(d(r(i),
∑k

j=1 Sj))− h(sL(i))) and sL(i) < d(r(i),
∑k

j=1 Sj)

0 if d(r(i),
∑k

j=1 Sj) ≤ sL(i)

(5.7)

Due to the fact that every low priority application is guaranteed to get an opportunity
to execute its allotted budget every period, we can derive the exact finish time of task
execution i once we know how long the task can execute in its first period and what the

44 CHAPTER 5. CHARACTERIZING PBS ARBITRATION

amount of interference is by the high priority application in the execution’s last period.
We can define the following possible scenarios as:

• If there is not enough remaining slice budget bL(i) at the start time of the task
execution such that it can be completed in its first period, we know that we need
0 ≤ q additional full periods plus one final period to finish all work for task
execution i. The amount of work we will have to perform in the last period is
equal to Ck(i)− bL(i)− q ·Sk. Note that we do not care about the exact time task
execution i can start executing in the periods that are not its last period, since
knowing how much work it can perform in these periods is enough.

• If task execution i has enough remaining budget such that it can finish within the
first period in which it can execute, we do need to know the actual moment in time
task execution i can start executing. This time cannot be before task execution i
is enabled and the previous executions are completed. This condition is met from
time s(i) onwards. However, task execution i can also not start executing until
its slice is active. We can discern two sub-cases when looking at the relative slice
position of a low priority application:

– The start time sL(i) lies before the beginning of its slice. In this case task
execution i can start immediately once the slice is started, since this implies
that all preceding task execution have finish in earlier periods.

– The start time sL(i) lies on or after the beginning of the slice. Since sL(i) =
max(aL(i), fH(i− 1)) we can start task execution i at time sL(i). Note that
we’re never in this case if sL(i) lies after the end of the slice, since in that
case the remaining slice budget bL(i) would not be enough to complete the
task execution.

We can translate each of these scenarios into a start time and an amount of work that
has to be completed. We can then use the recursive formula d(t, w) to calculate at which
time all work is completed when taking into account preemptions of the high priority
application. The resulting time is the finish time of task execution i:

fL(i) =



0 if i = 0

d(r(i) + P + q · P,
∑k−1

j=1 Sj+ if Ck(i) > bL(i)

Ck(i)− q · Ck(i)− bL(i))

d(r(i),
∑k−1

j=1 Sj + Ck(i)) if Ck(i) ≤ bL(i) and

s(i) < d(r(i),
∑k−1

j=1 Sj)

d(s(i), Ck(i)) if Ck(i) ≤ bL(i) and

d(r(i),
∑k−1

j=1 Sj) ≤ s(i)

Where q = dC(i)−bL(i)
Sk

− 1e.

5.3. A WORST-CASE PBS RESPONSE MODEL 45

5.3 A worst-case PBS response model

This section will introduce the dataflow response model that we will use to capture the
worst-case timing behaviour of tasks executions under PBS arbitration.

5.3.1 Approach

The multi-rate response model (proposed in [4] and improved in [5]) accurately captures
the worst-case temporal effects of TDM arbitration. Although it is much less pessimistic,
the multi-rate response model resembles the latency-rate response model in that it can
essentially be divided into two parts; a latency part and a rate part. By looking at
both the latency and rate parts of the multi-rate response model we can come up with
an approach to modify the multi-rate model such that it can be used to capture the
worst-case effects of PBS arbitration.

The latency part of a response model expresses the worst-case arbitration time of a
runtime scheduler, meaning the worst-case time a task may have to wait until its ap-
plication can spend its budget. Under TDM arbitration with a replenishment period P
and a task of slice size S this arbitration time amounts for both the latency-rate and
multi-rate response model to P −S time. For PBS arbitration the worst-case arbitration
time of a high priority application’s task is 0, since we assume we can always pre-empt
the running low priority application. Wether the application actually has remaining
budget to spend is a concern for the rate part of the model. A task of a low priority
application suffers its worst-case arbitration time when its enabling occurs just after the
application consumes the last of its budget, and the high priority task still has its full
budget available. In such a scenario the high priority application is able to spend its
full budget twice before allowing the low priority application to execute. The worst-case
arbitration for a low priority application under PBS arbitration is therefore P − S +B.
Figure 5.2 illustrates this scenario.

The rate part of a response model must capture the time spend executing and waiting on
budget replenishments. The multi-rate model uses tokens to represent available budget,
which allows it to include the effects of previous task execution on a task’s response time.
Each time a budget token is consumed a new budget token will become available after
P time. This replenishment behaviour is conservative towards the worst-case budget
replenishment behaviour of PBS arbitration, since by definition both a high and low
priority task will have its budget replenished after waiting for a time equal to schedule
scheduler’s budget replenishment period.

5.3.2 Model construction

We propose to use a modification of the multi-rate response model defined for capturing
the effects of TDM arbitration as base for our response model for capturing worst-case

46 CHAPTER 5. CHARACTERIZING PBS ARBITRATION

L H

Time

R R R

H L

BP-S

P

S

P-S+B

Figure 5.2: Worst-case task enabling for a low priority application under PBS arbitration.

PBS arbitration effects. The construction of the response model for PBS is exactly the
same as for TDM, except for the execution time of its latency actor (the actor labeled
L in figure 3.6):

• In the PBS response model of a tasj of a high priority application the execution
time of the latency actor is 0.

• In the PBS response model of a task of a low priority application with slice size S
that should run on a processor with replenishment period P and must share the
processor with a high priority application with a budget of B, the execution time
of the latency actor is P − S +B.

Other aspects regarding usage of the modified multi-rate model as a PBS response model
- such as the composition of various response models and support for static ordering of
tasks - remain the same as for the original TDM model. We therefore refer for more
details about these aspects to [5].

5.3.3 Conservativity

We will not provide a formal proof of the conservativity of the proposed PBS response
time model due to time constraints. However, the multi-rate response model is proven
to be conservative under TDM arbitration, and the change to the latency node of the
response model are such that we consider the likelihood of the PBS multi-rate model
being conservative very high.

5.4 Summary

We have defined our flavour of PBS arbitration under consideration and introduced
a response model that is able to accurately capture the worst-case effects of resource
arbitration under PBS.

Chapter 6

PBS scheduling strategy

Scheduling is the act of determining when an application or task can make use of a
certain resource. We can discern two different type of scheduling approaches based on
the moment in time in which scheduling take place; during compile time or during run-
time. Compile time scheduling is also called offline scheduling, referring to the fact that
scheduling decisions are made in advance before the system’s applications are actually
executed. Runtime scheduling is also known as online scheduling. A runtime scheduler
takes scheduling decisions while the application of the system are actually running. The
choice between runtime scheduling versus compile time scheduling is a tradeoff between
flexibility and performance: A runtime scheduler can take into account current infor-
mation about the state of the system, such as which applications are running and the
current resource requirements of these applications, but these decisions must be made
fast in order to not waste too much processor time. A compile time scheduler cannot
base its scheduling decisions on actual runtime information, but because it has virtually
limitless time to make its scheduling decisions, it can base its decisions on significantly
more complex analysis methods.

In this thesis we will use a combination of compile time and runtime scheduling such
that we can have the advantages of both. The tasks of an application are scheduled using
compile time scheduling: We determine the task to processor mapping for an applica-
tion’s tasks, and the static order in which the tasks execute that are mapped to the same
processor. The decision which application gets access to a processor at any given time is
made by the local scheduler of the processor during runtime. This allows us to perform
all complex decisions such as determining the minimal budget that satisfies an applica-
tions timing requirements at compile time, while still allowing the system to consist out
of an arbitrary combination of applications that can start and stop independently. Note
that using a combination of both runtime and compile time scheduling also introduces
the disadvantages of both: The minimum reservation requirements of an application
determined during compile time scheduling cannot take into account whether or not an
application actual needs its allotted processing time in each replenishment period, and

48 CHAPTER 6. PBS SCHEDULING STRATEGY

can therefore waste processor resources. Similarly, the decision which application can
execute on a processor still has to made fast, limiting the complexity of the runtime
scheduler that determines which application to can execute. However, these disadvan-
tages are relatively minor; the more accurate minimum reservation bound obtained by
temporal analysis can more than compensate for the small over-reservation that may
occur in some periods, and the complexity restrictions of runtime schedulers are not an
actual problem since determining which application can execute is not a complex choice
anyway.

Running a combination of applications simultaneously in a environment with shared
resources requires that we make certain decisions about the applications and the system
in which they will run. These decisions include:

• Task to processor mapping, that is, determining for each application which task
executes on which processor.

• Static ordering of the executions of tasks, that is, determining the order in which
tasks from the same application that are mapped to the same processor are exe-
cuted.

• A choice of runtime scheduler type per processor (i.e. TDM, PBS), and its param-
eters such as replenishment period.

• A number of decisions for each application arbitrated by a specific runtime sched-
uler:

– The choice of budget for each application.

– The choice of priority level for each application.

We will refer to the combination of an application’s task-to-processor mappings and static
order decisions as a schedule of an application. The choices for application schedules,
runtime scheduler type and its replenishment period can have a significant impact on
the timing behaviour of an application, and therefore an application’s minimum resource
requirements. We would like to assign to each application only the minimum amount of
resources needed such that it can meet its timing requirements. It is therefore important
that we make a good choice when making these decisions.

In chapter 4 we have already discussed one of these decisions; the choice of runtime
scheduler type for the system’s processors. We argued that using PBS arbitration makes
sense when we know we have a combinations of applications in which one application
has tight timing requirements and the other applications had more relaxed timing re-
quirements. This chapter will propose a strategy how - given that we will be using PBS
arbitrations as our scheduler of choice - we can try to make good choices for the remain-
ing decisions, such that we end up with acceptably low minimum resource requirements
for each application.

6.1. OPTIMIZATION CRITERIA 49

6.1 Optimization criteria

We strive to let each application use the least amount of processor time as possible,
as this will increase the amount of processor time available to other application. We
express an application’s relative amount of processor usage as its reservation, which is
the ration between the application’s allotted budget B and the processor replenishment
period P , such that R = B/P .

An embedded application often has to execute its tasks on more than one processor,
where each processor may be optimized for a specific type of computation. If for such an
application we reduce its reservation on one processor, we may be required to increase
the application’s budget on other processors in order to guarantee the application’s
timing requirements can still be met. Determining for which processor a decrease in
reservation is more important is a choice that depends on knowledge outside the scope of
our scheduling strategy. We therefore assume to know for each processor in the system a
weight in the interval [0, 1] that expresses the relative cost of resource reservation on that
processor. Our proposed scheduling strategy will try to minimize the sum of weighted
processor reservations for each application.

6.2 Scheduling methodology

Determining optimal application schedules and scheduler parameters is complex. Al-
though there exist a few guidelines that can help narrowing down the number of reason-
able choices, the actual effect of a scheduling decision on our optimization criterion is
hard to predict, since every other scheduling decision can influence the net required min-
imum reservation. We therefore divide our search for scheduling decisions in a number
of phases, in which in each phase we try to make reasonable scheduling decision.

We propose the following heuristic to determine application schedules and scheduler
parameters given a set of application and their timing requirements:

1. We determine which application gets high priority based on the timing require-
ments of the applications.

2. We find one or more schedules for the high priority application.

3. We derive combinations of budget and replenishment periods that allow us to min-
imize the required reservation of the high priority application and give us options
to potentially decrease the required reservation low priority applications.

4. We determine an upper bound to the worst-case number of context switches that
can occur based on the schedule of the high priority application, which we use to
eliminate replenishment periods for which a processor might spend too much time
context switching.

50 CHAPTER 6. PBS SCHEDULING STRATEGY

5. We find schedules for the low priority applications and determine which of the
combinations of budget replenishment periods that we found earlier yields the
lowest required reservations.

We will examine each step in more detail in the following sections.

6.2.1 Determining the high priority application

The reasoning that lies at the base of our scheduling strategy is the following: Appli-
cations with tight timing requirements are more sensitive to scheduling decisions than
applications with more relaxed timing requirements, since the maximum time the ap-
plication has to complete its tasks is smaller. It therefore makes sense to base our
scheduling decisions primary on the requirements of the application with tightest timing
requirements.

PBS arbitration allows us to eliminate the arbitration time of the high priority appli-
cation at the expense of increased arbitration time for low priority applications. This
tradeoff is attractive if the high priority application would require significantly less over-
reservation under PBS arbitration than it would require under other arbitration schemes.
Since the application that requires the most over-reservation tends to be the application
with the tightest timing requirements, we assign this application the high priority.

6.2.2 Determining high priority application schedules

We assume the system can have different processor types, and that each task in an
application’s task graph is annotated with information specifying on which type of pro-
cessor the task must execute. We decide which task executes on which processor and
in which static order by using an offline scheduler that tries a processor mapping for a
task, and afterwards verifies whether this mapping still allows the timing requirements
of the application to be satisfied. Timing verification of an actor mapping is done by
creating a temporal analysis graph, and assumes for each yet unmapped actor a map-
ping that will give the best possible worst-case response time, such that valid schedules
are not unnecessarily rejected. Note that because we have not determined values for
local scheduler replenishment periods and application budget yet, the analysis graph for
verifying task mappings of the high priority application cannot yet take into account
the effects of resource arbitration. We can create an analysis graph without assumptions
about resource arbitration effects by choosing an arbitrary replenishment period for each
processor and settings the application’s budget such that it is equal to the processors
replenishment period. Doing this for our proposed multi-rate PBS response model will
result in an analysis graph that consist of response models whose response time is equal
to the task’s worst-case computation time.

Figure 6.1 illustrates the scheduling procedure as a flow diagram. Task mappings are

6.2. SCHEDULING METHODOLOGY 51

tried in the order as defined by a precedence graph. This precedence graph is derived
from the application’s task graph by removing all arc with non-zero delay, such that the
task of an actor without incoming arcs is a task that has all required input data and
can therefore can be executed. If a processor mapping does not cause the application
to violate its timing requirements it is kept, the task’s actor will be removed from the
precedence graph and a next task mapping will be tried. If a task mapping does cause a
timing violation it is undone and a mapping to another processor is tried, until we either
find a successful mapping or have tried all possible processor mappings for that actor.
If we unsuccessfully tried all mappings of an actor then the previous actor mapping is
undone an this previously mapped actor is tried on a different processor, until we have
either found a valid mapping for each application or tried all possible mappings and fail
to find a schedule.

6.2.3 Deriving suitable budget replenishment periods

The timing requirements of an application defines its maximum production period, which
represent the maximum time the application can take for finishing one iteration without
violating it timing requirements. We can exploit the fact that under PBS arbitration a
high priority application only has to consume its budget when it has actual tasks to ex-
ecution to derive budget and replenishment periods that allow the processor reservation
of the high priority application to be the lowest value theoretically possible.

By setting the replenishment period of each PBS processor to be equal to the maximum
production period of the high priority application, we can ensure the application is able
to complete its iteration within its maximum production period by giving it a budget
on each processor equal the computation times of the tasks mapped to the processor.
This choice of application budget and processor period will give the lowest reservation
possible for the application’s schedule: Using either a larger budget replenishment period
or smaller budget means the application does not have sufficient budget to perform a
full iteration each production period, while using a smaller budget replenishment period
or larger budget would increase the application’s required resource reservation.

We can find other combinations of budget and replenishment periods for the high prior-
ity application that allow for the same minimum processor reservation by dividing both
production period and sum of task computation times by their common factors. This
essentially divides the maximum production period of the application into a number of
smaller equally sized parts, in which the application gets a fraction of its original bud-
get. The combinations of budget and periods obtained in this fashion might not allow
the high priority application to satisfy its timing requirements, since that requires that
the application spends exactly the same amount of budget in each part of the produc-
tion period, something which keeps getting more and more unlikely with an increasing
number of parts. However, in case some of these reduced replenishment period and
budget combinations are valid for the high priority application, then using this smaller

52 CHAPTER 6. PBS SCHEDULING STRATEGY

Map actor to untried
processor

Undo mapping

Calculate MCM

Select unmapped actor whose
dependancies are mapped

Build analysis graph

Yes

Yes

No

No

Create dependancy graph
from task graph

Output schedule

MCM less than
 threshold?

All actors
mapped?

 Actor has
 untried processor?

No

Yes

Select previously
mapped actor

Has previously
mapped actor?

No

Fail

Yes

Figure 6.1: Simplified scheduling flow

6.2. SCHEDULING METHODOLOGY 53

replenishment periods may allow for a reduced required processor reservation for the low
priority applications.

6.2.4 Bounding the worst-case context switch overhead

Every time the active application of a processor is changed we need to save context
information of the previously running application and restore earlier saved context in-
formation of the newly active application. The time needed to perform these operations
is called the context switch time of a processor. When performing a context switch the
processor cannot execute tasks, which decreases the total available processor time for
applications. Overestimating the time we spend on context switches means we underes-
timate the available processing time on a processor, essentially wasting resources. We
therefore want to tightly bound the maximum number of context switches that can occur
per replenishment period.

For a TDM scheduler the number of context switches that have to be performed per
replenishment period is equal to the number of applications that run on the processor,
since each application’s slice is started exactly once per replenishment period. Bounding
the worst-case number of context switches that can occur under PBS arbitration is less
straightforward, since a high priority application can potentially cause a context switch
every time it is not active on the processor when one of its task’s becomes enabled. In
order to still derive an upper bound on the maximum number of context switches that
can occur per replenishment period, we must look at the the processors mappings and
static order of the task of the high priority application.

We can annotate the task graph of an application with the static order information of
the high priority application obtained during scheduling. Doing this creates a dataflow
model that captures the execution order of the application’s tasks as defined by both
the inter-task data dependencies and the schedule’s mapping decisions. By converting
this model to single-rate we ensure that each task execution during one iteration of
the application is represented by its own actor. We can derive an upper bound to
the maximum number of context switches the high priority application can cause on a
specific processor by examining the actors that represent task executions on the processor
of interest. We define all actors representing tasks mapped to the processor of interest
internal actors, and define all other actors to be external actors. Each arc that connects
an external actor to an internal actor represents a data dependency between two tasks
that are executed on different processors. If we count how many of the internal actors
have incoming arcs from external actors, we obtain an upper bound on the maximum
number of times a task of the high priority application can become enabled while the
high priority application is not executing. We can refine our upper bound further by
realising that each task in our modified single-rate task graph will fire exactly once per
iteration. This means that two tasks executing on the same processor cannot have to
wait both on data produced during the same iteration by the same external task. This
implies that if two internal actors both have an incoming delayless arc from the same

54 CHAPTER 6. PBS SCHEDULING STRATEGY

external actor, then only the execution of the first task in the static order can be enabled
by its data arrival such that it causes a context switch. The second task already has the
required data thus can immediately execute after the first task is complete. However,
note that if an external incoming arc has a non-zero delay, this delay represents data
produced during earlier iterations, which means that both tasks could receive data from
the same external actor during a different moment in time, and therefore both could
force a context switch.

We would like to obtain a dataflow model in which any of the previously discussed
redundant incoming external arcs are removed, such that only external arcs that can
potentially cause a context switch can be counted. By realising that each internal actor
is connected to each other by static order arcs, we can view the redundant external arcs
as ’shortcuts’ from an external actor to an internal actor that is also reachable through
an internal actor earlier in the static order. We can obtain a dataflow model without
these redundant external arcs in the following manner:

1. Annotate the application’s task graph with static order information of a schedule
and convert it to single-rate.

2. If there exist two arcs between the same source and sink actors then keep only
the arc with the least delay, since this arc represents the tightest constraint on the
task executions.

3. Remove all remaining arcs with non-zero delay, storing them for future use. We
obtain an acyclic graph, since each cycle in a dataflow graph must have at least
one delay.

4. Calculate a minimum equivalent graph. A minimum equivalent graph is a graph
with the minimum amount of edges that has the same transitive closure - and thus
reachability - of the original graph [14].

5. We add the previously removed arcs with non-zero delay back to the graph, since
we assume these arcs represent the arrival of data that can occur at any time
during an iteration, and therefore can cause context switches.

By counting the number of incoming external arcs for each internal actor in the obtained
dataflow model we obtain an upper bound on the maximum number of task enablings per
iteration while the high priority application is not running. Since we have seen in section
6.2.3 that we chose our replenishment period and high priority application budget such
that we can at most execute one iteration per period, the maximum number of context
switches per period on a processor under PBS arbitration is equal to two times the
maximum number of high priority task enablings per iteration (one at the start of a task
execution and one at the end), plus one context switch for each application that can
execute on the processor. We use this obtained upper bound on the maximum number
of context switches to calculate a minimum required replenishment period in which the
time spent context switching does not exceed our acceptable limit.

6.2. SCHEDULING METHODOLOGY 55

A

C

B

P1 P2

A

C

B

P1 P2

A

C

B

P1 P2

A

C

B

P1 P2

A

C

B

P1 P2

A

C

B

P1 P2

A

C

B

P1 P2

A

C

B

P1 P2

A

C

B

P1 P2

A

B

C

Figure 6.2: Various scenarios in which we try to remove redundant arcs to improve
maximum context switches bound.

Figure 6.2 illustrates three scenarios in which we apply minimum equivalent graph re-
duction to remove redundant external arcs. Assume that the processors P1 and P2
have to be shared by two applications; one high priority application and one low priority
application. In scenario S1 we are able to remove one redundant arc form the modi-
fied task graph of the high priority application, since actor C has already received its
data from actor A by the time actor B starts to execute. The bound on the number
of context switches in scenario A is therefore 0 + 2 = 2 on processor P1 (zero due to
external data dependencies, but one for each application) and 1 · 2 + 2 = 4 on proces-
sor P2 (2 due to actor B and one for each application). In scenario S2 actor B can
be finished before actor A is finished, thereby causing context switches for both actor
B and actor C, meaning the bound on the maximum number of context switcher per
period is 2 · 2 + 2 = 6 on processor P2. In scenario S3 our technique overestimates
the number of actors that can cause a context-switch. The arc between actor A and
C cannot be removed using minimum equivalent graph reduction due to the fact that
it as a non-zero delay. However, in this scenario C can never execute before B under
self-timed execution due to its static order constraint, and therefore C will not actually
cause a context switch. The estimated number of context switches on P2 is therefore
2 · 2 + 2 = 6.

Although our methodology of using minimum equivalent graph reduction on only the

56 CHAPTER 6. PBS SCHEDULING STRATEGY

A1

B1

A2

B2

B3

B4

B5

P1 P2

A1

B1

A2

B2

B3

B4

B5

P1 P2

Figure 6.3: Removing redundant arcs to improve maximum context switches bound.

delayless arcs in a modified task graph is fairly primitive, it can nevertheless significantly
improve the bound on the maximum number of context switches when we compare its
result to the bound we would get by simply counting all actors with external incoming
arcs. Figure 6.3 depicts a dataflow model before and after our procedure to reduce re-
dundant arcs. Note that the original dataflow model is in the shape typically obtained
by converting a multi-rate model to single-rate. Without removal of redundant arcs we
might assume that ever actor mapped to processor P2 might cause a context switch.
However, when we remove the redundant arcs with our proposed approach we immedi-
ately see that there are at most two actors whose task can get enabled while the high
priority application is not executing.

6.2.5 Minimizing low priority application reservation

Once we have derived suitable budget replenishment periods and high priority applica-
tion budgets that minimize the high priority application’s required reservation, we try
to determine which of the replenishment period combination can minimize the required
reservation of the low priority task.

We start by searching for each low priority application a schedule for each of the
processor-period combinations. This scheduling is performed with the application’s bud-
get set to the maximum allow budget (which typically is defined based on the number of
application the system must run simultaneously). If we do not manage to find at least
one period combination for which every low priority application has found a schedule
then the interference of the high priority application is must likely too large to satisfy the
timing requirements of all low priority applications. We can either try to increase our
maximum allowed reservation, or restart the scheduling flow using a new high priority
application schedule, which may interfere less with the low priority applications.

Assuming there is at least one period combination for which every low priority applica-

6.3. RUNTIME COMPLEXITY 57

tion has found a schedule, we can start searching for the period combination that allows
for the largest reservation reduction. We do this by sorting the processors in order of
importance as indicated by their weight, such that the processor whose reservation cost
is largest will be reduced first. For each processor we will performing a binary search
to find the minimum reservation under which at least one period combination still has
a valid schedule. We perform this search for each processor, reducing the reservation of
the low priority applications on each processor to the minimum that does not violate
their timing requirements. Once the reservation of every processor has been reduced, the
period combinations with the remaining valid low schedules are stored, together with
high priority application’s schedule and minimum reservations.

Figure 6.4 depicts a flow diagram of the various steps in our scheduling strategy.

6.3 Runtime complexity

The runtime complexity of the scheduling strategy is determined by the runtime complex-
ity of its subproblems. These some of these subproblems have an exponential worst-case
behaviour, such as determining application schedules and conversion of a dataflow model
to single-rate. Any scheduling strategy will thus always be exponential in its worst-case
behaviour. However, exponential worst-case behaviour does not mean a scheduler strat-
egy in not usable in practice, since the situations in which full worst-case behaviour is
realised may be unlikely to occur.

One aspect that will have an significant impact on the actual performance of our schedul-
ing strategy is the time it takes to verify whether a given application’s (partial) schedule
respects an application’s timing requirements. Performing this verification requires us
to build a temporal analysis graph based on the multi-rate response model and convert
the obtained dataflow model to single-rate. A multi-rate response model is known to
potentially cause a very large increase of actors and arc when converted to singe-rate [5].
The significance of this increase depends on the Greatest-Common-Divisor (GCD) be-
tween an application’s budget and the task computation times, where a small GCD can
cause a very large increase of actors and actors for the single-rate model. The likelihood
that we have a combination of task execution times and initial application budget that
yields a low GCD during normal scheduling is not very high, since an application’s initial
budget is often a number with many common factors, and worst-case task computation
times are usually rounded upward to a nearest 10 or 100 nanoseconds. However, when
we reduce an application’s processor reservation to its minimum value we are performing
a binary search through the possible budget values for an application. It is reasonably
likely that during this search we will try at least one budget value that is either prime or
otherwise has a small number of factors. The reservation reduction of low priority appli-
cation is therefore the most computationally expensive part of our scheduling strategy.
To give an indication of it’s performance; the scheduling strategy experiment discussed
in chapter 7 took roughly 30 days to complete, of which almost all time was spend on

58 CHAPTER 6. PBS SCHEDULING STRATEGY

Find schedules for
high priority app

Set tightest timing req.
app as high priority

 Has untried
high schedule?

No

Yes

Have stored valid
low and high app
 schedules?

Fail

Yes
Output schedules with

minimum weighted sum
of reservation

No

Mark processor as reduced
and store reservation

Verify still valid low prio app
schedules for each

period combi

Select untried schedule
as high priority app schedule

Find suitable periods and
high app budget based on

current high schedule

Find low priority app
schedules for each period

combi under max reservation

Select most important processor.
Set reservation to check

to res := (maxres + minres)/2

 Is res to check close
 enough to minres?

No

Yes

Is there a processor with
unreduced reservation?

YesNoStore high and low app
schedules for valid period

 combos and their res

Is at least one schedule
valid for some period
 combination?

Yes

Discard low priority task
schedules that are not

valid and set maxres := res

No
Keep all schedules and

set minres := res

Figure 6.4: Flow representation of scheduling strategy

6.4. SUMMARY 59

finding the minimum reservation for the low priority application.

6.4 Summary

We have introduced a scheduling strategy that given a set of applications and their tim-
ing requirements can obtain application schedules, scheduler parameters and minimum
required resource reservation for all the applications in the system. Chapter 7 contains
experiments comparing the results obtained with our proposed PBS approach to the
results obtained by TDM scheduling.

60 CHAPTER 6. PBS SCHEDULING STRATEGY

Chapter 7

Experimental Results

We have performed various experiments during the course of this project. Some of these
experiment were performed to gain insight in the behaviour of the various response
models in literature, while others where to gain an understanding of the relation between
a choice of a processor’s replenishment period and an application’s minimum reservation.
Finally, we performed an experiment comparing the processor reservation obtained by
our proposed response model and scheduling strategy for PBS arbitration to the results
obtained by using a state-of-the-art response model and scheduling strategy for TDM
arbitration.

7.1 Service-over-time

One of our first experiments entailed comparing the predicted worst-case task execu-
tion behaviour predicted by the various PBS response models. For this experiment we
implemented the behaviour of a number of the more interesting response models, after
which we used each implementation to calculate the finish times of simulated task en-
ablings given our choice of scheduler parameters. By plotting the amount of finished
task executions versus time we obtain each model’s predicted service over time.

We assume that we have a processor under PBS arbitration with a replenishment period
of 10. Both a high and a low priority application want to execute on their respective
tasks on this processor. Both applications have a budget of 4, and the worst-case task
computation time of the task of both applications is 3. We discern two scenario’s for
the task arrivals: In the first scenario both high and low priority task enablings arrive
at time 0, representing a burst of input data becoming available. In the other scenario
task enabling arrival periodically with a period of 10. We will consider the predicted
worst-case behaviour by four different response models for PBS arbitration:

• Our proposed modified multi-rate response model. Abbreviated in the figures as

62 CHAPTER 7. EXPERIMENTAL RESULTS

MR.

• The latency-rate response model, under assumption that we change its latency
node similar to our proposed model. Abbreviated as LR.

• The latency-cyclic-rate response model, also under assumption that we change its
latency node similar to our modified MR model. We abbreviated this model by
LCR.

• Cai’s response model. Abbreviated by JC.

Additionally, we will include in each service comparison the actual service over time
a task can realise, such that we get a better idea about the pessimism of the various
response models.

Figure 7.1 shows the modelled worst-case service over time for the high priority task, in
which task enablings either arrive in a burst at time 0 (figure 7.1a) or periodically (figure
7.1b). One of the things we can immediately observe in these service comparisons is that
the multi-rate gives the same expresses the same service over time as the latency-rate-
model. This is not surprising, since the multi-rate model is actually a generalization of
the latency-rate model. Furthermore, both the multi-rate and latency-cyclic-rate models
accurate capture the actual service over time of the high priority application in our two
scenarios. Another noteworthy observation is that figure 7.1a shows that Cai’s model can
actually be more conservative than the latency-rate model. This is caused by the fact
that Cai’s model assumes that if a task’s computation time C is less than an application’s
allotted budget B, the application can only execute bBC c tasks in each period before, after
which it has to wait for a new budget replenishment before it can start on a next task.
For our choice of budget and task computation times, this assumptions essentially wastes
a quarter of an application’s allotted budget each period.

Figure 7.2 depicts the modelled worst-case service over time for the low priority applica-
tion. Note that we assume that a low priority task execution can suffer from interference
from the task executions of the high priority application. The actual timing behaviour of
the low priority application is therefore calculated by our in chapter 5 introduced exact
response time formula. We can observe that both in figure 7.2a and in figure 7.2b none
of the response time models give an exact prediction of the actual task’s response time.
This is not surprising, since the response time models do not know if or when the high
priority application’s task executes, and must therefore make worst-case assumptions
about its behavior. Note that again the most accurate response times are given by the
multi-rate and latency-cyclic rate models.

7.2 Period versus minimum reservation

We have performed a number of experiments to gain a better understanding of the effect
the choice of replenishment period can have on an application’s required slice size. Given

7.2. PERIOD VERSUS MINIMUM RESERVATION 63

0 10 20 30 40 50 60

0
1

2
3

4
5

6

Time

To
ta

l s
er

vi
ce

Actual
LR
MR
JC
LCR

(a) Burst enabling of tasks at time 0.

0 10 20 30 40 50 60
0

1
2

3
4

5
6

Time

To
ta

l s
er

vi
ce

Actual
LR
MR
JC
LCR

(b) Periodic enabling of tasks with period 10.

Figure 7.1: Total service over time for a high priority task under PBS arbitration.

0 10 20 30 40 50 60

0
1

2
3

4
5

6

Time

To
ta

l s
er

vi
ce

Actual
LR
MR
JC
LCR

(a) Burst enabling of tasks at time 0.

0 10 20 30 40 50 60

0
1

2
3

4
5

6

Time

To
ta

l s
er

vi
ce

Actual
LR
MR
JC
LCR

(b) Periodic enabling of tasks with period 10.

Figure 7.2: Total service over time for a low priority task under PBS arbitration.

64 CHAPTER 7. EXPERIMENTAL RESULTS

an application and default choices for replenishment period and budget, we are interested
in exploring the effect that increasing or decreasing a processor’s replenishment period
has on the application’s minimum required budget.

The application whose behaviour we will explore during this experiment is a WLAN
transceiver under TDM arbitration. This application is schedules on three processors,
named EVP, ARM and SWC. Each processor has a replenishment period of 2000 and the
application’s budget on each processor is initially set to 900 (for a 45 percent reservation).
We start by finding a schedule for the application using these default processing settings.
Once we have obtain such a schedule, we change the replenishment period of the a
processor, and determine the minimum budget the WLAN application needs on the
processor whose replenishment period was changed such that it can still meet its timing
requirements.

Figure 7.3 and figure 7.4 depict the found relationship between processor replenishment
period and minimum required budget on respectively the ARM and EVP processor
according to both the multi-rate and latency-rate response models. Observe that the
figures illustrate that the latency-rate model is more conservative than the multi-rate
model, since the minimum budget according to the latency-rate model is an upper bound
for the multi-rate model. Whereas the period-budget relation depicted by the latency-
rate model is a smooth curve, the multi-rate model depicts a step pattern in figure 7.3a.
This step pattern is caused by the fact that an increase of processor period does not
mean that we always have to increase our budget, since the current minimum budget
is based on the worst-case behaviour of a task, and may therefore contain a certain
amount of slack time. This points can be illustrated by imagining a TDM processor
with replenishment period 9 and a task with computation time 2 that has a maximum
allowed response time of 10. The minimum budget to ensure the task can meet its
maximum response time is 2, which yields a worst-case response time of 9. However,
increasing the period to 10 yields a worst-case response time of 10, still within the
required response time.

If we wanted to determine a processor period that allows for the minimum amount of
resource reservation on a processor, then figure 7.3b and 7.4b may give the impression
that choosing an as small as possible period may be a good choice. However, this ignores
the fact that a smaller period also increases the relative amount of time a processor
spends on context switching. Figure 7.5 modifies the minimum reservation plot for a
period to include the relative time spend on context switches. This context switch time
is based on the assumption that the WLAN application has to share the processors
with one other application, and that the processors have a worst-case maximum context
switch time of 100ns. Figure 7.5a and figure 7.5b illustrate that many of the smaller
period values are not an optimal choice as replenishment period.

7.2. PERIOD VERSUS MINIMUM RESERVATION 65

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00

Period

M
in

im
um

 b
ud

ge
t

MR
LR

(a) Period vs minimum budget

0 2000 4000 6000 8000
0.

2
0.

3
0.

4
0.

5
0.

6
Period

M
in

im
um

 r
es

er
va

tio
n

MR
LR

(b) Period vs minimum reservation

Figure 7.3: Effects of the choice of replenishment period of an ARM processor on the
minimum resource requirements of a WLAN transceiver application.

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00

Period

M
in

im
um

 b
ud

ge
t

MR
LR

(a) Period vs minimum budget

0 2000 4000 6000 8000

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

Period

M
in

im
um

 r
es

er
va

tio
n

MR
LR

(b) Period vs minimum reservation

Figure 7.4: Effects of the choice of replenishment period of an EVP processor on the
minimum resource requirements of a WLAN transceiver application.

66 CHAPTER 7. EXPERIMENTAL RESULTS

0 2000 4000 6000 8000 10000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Period

M
in

im
um

 r
es

er
va

tio
n

MR
LR

(a) ARM

0 2000 4000 6000 8000 10000

0.
3

0.
4

0.
5

0.
6

0.
7

Period

M
in

im
um

 r
es

er
va

tio
n

MR
LR

(b) EVP

Figure 7.5: Effects of the choice of replenishment period on the minimum processor
reservation of on ARM and EVP processor, including effects of context switching.

7.3 Scheduling strategy

We have performed a number of experiments to determine the compare the results
obtained by using our proposed PBS response time model and scheduling strategy to
the results obtained by using a state-of-the-art response model and scheduling strategy
for TDM arbitration. For this experiment we have used two actual applications from
the software-defined radio domain: An implementation of a WLAN and a TDS-CSDM
transceiver. We want to derive schedules and scheduler parameter such that we can run
these two applications simultaneously in the same system.

We assume the system consists out of three processors; a general-purpose ARM proces-
sor, a EVP to handle detection, synchronization and demodulation tasks and an Software
Codec processor (SWC) that handles baseband coding and decoding functionally. We
assume each of these processor have a worst-case context switch time of 100 nanosec-
onds. We assume we would like to spend at most 10 percent of a processor’s time on
context switches.

The task graphs of both the WLAN and TDS-CDMA transceivers are depicted in figure
3.1. The number inside the actors represents the actor’s worst-case computation time in
nanoseconds, whereas the color coding denotes the different processors on which an actor
must execute. Note that the green and gray colored notes do not represent actual task,
but rather model respectively the source and timing constraints of the application. The
WLAN application has a maximum production period of 40000 nanosecond, whereas
the TDS-CDMA application has a maximum production period of 675000 nanoseconds.
The WLAN transceiver thus clearly has considerably tighter timing requirements than

7.3. SCHEDULING STRATEGY 67

EVP ARM SWC

WLAN 23.0 25.0 40.4
TDS-CDMA 20.4 25.0 7.5

CS 10.0 10.0 10.0

Total 53.4 60.0 57.9

(a) Reduction order EVP, ARM, SWC

EVP ARM SWC

WLAN 28.3 16.7 42.8
TDS-CDMA 44.1 0.8 7.5

CS 10.0 10.0 10.0

Total 82.4 27.5 60.3

(b) Reduction order ARM, EVP, SWC

Table 7.1: Percentage of processor reservation required for running a WLAN and TDS-
CDMA transceiver under TDM arbitration.

the TDS-CDMA transceiver.

The scheduling strategy for TDM arbitrations starts by determining the processor peri-
ods. It uses the reasoning that a lower replenishment period allows tasks to execute more
often, and can therefore mitigate over-reservation due to tight latency requirements. It
therefore sets each processor’s period to the minimum replenishment period that does
cause an application to spend more than 10 percent of its time context switching. Since
we assumed each context switch takes at most 100ns and each application can cause
one context switch per period under TDM arbitration, we set the replenishment period
for each processor to 2000. The available initial budget on each processor is divided
evenly between both applications; since we can spend up to 10 percent of the time con-
text switching and want to run two application simultaneously, each application gets
45 percent of the processor’s replenishment period as budget. After finding schedules
for both the WLAN and TDS-CDMA application’s, we try to reduce an application’s
reservation on each processor to the minimum value possible value. This reduction is
done one processor at a time using a binary search, in which we reduce the processor
we consider most important first. The resulting minimum percentage of minimum pro-
cessor reservation under TDM arbitration is displayed in table 7.1. The results clearly
illustrate that the order in which we reduce an application’s processor reservation has
a large impact on the eventually obtained minimum reservation per processor. This is
not surprising, since when we minimize an application’s budget on a processor we are
essentially increasing the worst-case response times of task executions on the processor
until the task execution can only barely be finished on time, leaving few slack time for
task executions on other processors.

When we apply our PBS scheduling strategy the the first thing that is done is deciding
which application should become the high priority application. Since the maximum
production period of 40000ns of the WLAN application is much tighter than than the
production period of the TDS-CDMA application the WLAN application will be set
as high priority application. Since we currently have only one processor of each type
in the system, after scheduling we will have found a WLAN application schedule that
maps actors to processors such that the sum of task execution times assigned to the

68 CHAPTER 7. EXPERIMENTAL RESULTS

EVP ARM SWC

WLAN 15.1 8.4 5.0
TDS-CDMA 21.5 30.1 7.8

CS 6.0 1.5 2.5

Total 42.6 39.7 15.3

(a) Reduction order EVP, ARM, SWC

EVP ARM SWC

WLAN 15.1 8.4 5.0
TDS-CDMA 41.5 0.9 7.5

CS 6.0 1.5 2.5

Total 62.6 10.8 15.1

(b) Reduction order ARM, EVP, SWC

Table 7.2: Percentage of processor reservation required for running a WLAN and TDS-
CDMA transceiver under PBS arbitration.

EVP, ARM and SWC processor is respectively 6035, 3360 and 2000 nanosecond. We
therefore know that we can meet the WLAN’s timing requirements by setting each
processor’s replenishment period to 40000 and giving the application 6035, 3360 and
2000 nanoseconds of budget on the system’s processors. Based on the common factors
of the WLAN application’s production period and mapped task computation time sum
per processor we can calculate various combination of alternative period combination.
However, when checking which of these processor period combinations and their implied
budget are valid for the high priority application we end up with only the default period
combination of 40000 on each processor. When determining the maximum number of
context switches that can occur per period we calculate that based on a modified task
graph that there can be at most 11, 2 and 4 tasks enabling on respectively the EVP, ARM
and SWC while the high priority application is not enabled. This allows us to bound
the maximum number of context switches to at most 24, 6 and 10 per period. Next we
search for a schedule for the TDS-CDMA application, initially allowing the application a
reservation of 45 percent of the processor’s resources, thus setting its budget to 18000ns
per period. Afterwards we reduce the TDS-CDMA application’s reservation on each
processor to the minimum value possible, starting with the processor whose reservation
we want to reduce the most. The final minimum required reservation for both the WLAN
and TDS-CDMA application - and the maximum time we will spend context switching
between them - is given by table 7.2.

Table 7.3 quantifies the budget reservation improvement we obtain when using our pro-
posed PBS model and scheduling strategy instead of the TDM scheduling strategy. As
expected we see that the required reservation of the WLAN application can be decreased
significantly under PBS when compared to TDM. Observe that the difference in mini-
mum reservation increases when the processors importance decreases. This is again due
to the fact that when we reduce processor reservations the first processor that we reduce
will consume most of the slack time within an iteration. The minimum required reserva-
tion of the TDS-CDMA application is slightly increased on most processors under PBS
arbitration, since its execution can suffer interference by the high priority application.
A slightly remarkable result is that this is not the case for the EVP processor in table
7.3b, in which we can see that the application’s minimum reservation actually slightly

7.3. SCHEDULING STRATEGY 69

EVP ARM SWC

WLAN 7.9 16.6 35.4
TDS-CDMA -1.1 -5.1 -0.3

CS 4.0 8.5 7.5

Total 10.8 20.0 42.6

(a) Reduction order EVP, ARM, SWC

EVP ARM SWC

WLAN 13.2 8.3 37.8
TDS-CDMA 2.6 -0.1 -0.1

CS 4.0 8.5 7.5

Total 19.8 16.7 45.2

(b) Reduction order ARM, EVP, SWC

Table 7.3: Reservation improvement when using PBS arbitration instead of TDM arbi-
tration.

improves. This is most likely another effect of the reservation minimization technique
we used in combination with the significantly different replenishment period between the
TDM and PBS approaches. Although the worst-case number of context switches per
period under PBS arbitration has significantly increased for all processor (in case of the
EVP from 2 to 24), the period increase from 2000ns to 40000ns more than compensates
for this, such that the percentage of time we spend context switching is actually smaller
under PBS than under TDM.

The time it took to run these experiment was considerable. A run of the scheduling
strategy for the WLAN and TDS-CDMA application with full precision took approx-
imately 30 days to complete in the current implementation of the analysis tool. The
primary cause of this excessively long run time is the fact that we use the multi-rate
model as our response model, which is known to potentially require very large single-rate
temporal analysis models. We observed single temporal analysis steps that took more
than a day to complete. Reducing the precision of the binary search step that mini-
mizes the required processing reservation can substantially reduce the needed number
of analysis steps that have to be performed, and therefore the required computation
time. One such experiment with reduced precision allowed the scheduling strategy to
complete within 20 days, while overestimating the minimum required reservation less
than a half percent. However, due to time constraints we did not further explore the
possible trade-off between analysis time and precision.

Our experiment proves that using PBS arbitration instead of TDM arbitration can be
a valid option for certain applications. However, we should keep in mind that there are
also cases in which PBS arbitration performs worse than TDM arbitration. For instance;
experiments with running two WLAN applications under PBS arbitration failed because
the high priority application causes too much interference such that the low priority
application cannot meet its timing requirements, even when we set its budget on each
processor to the largest value possible.

70 CHAPTER 7. EXPERIMENTAL RESULTS

Chapter 8

Conclusions and further work

This chapter summarises the contributions discussed in this thesis, discusses their limi-
tations, and contains suggestions for potential improvements and future work.

8.1 Contributions

We can summarise the contributions of this thesis as:

• We defined a generally applicable dataflow response model for capturing the worst-
case temporal effects of PBS arbitration. The introduced response model does not
make any restrictive assumptions and is most likely less conservative than the
current state-of-the-art PBS response models.

• We formulated equations that can give the exact finish times of task executions
under PBS arbitration.

• We defined an approach for bounding the worst-case number of context-switches
under PBS arbitration. This bound is derived based on analysis of the task graph
and schedule of the high priority application.

• We proposed a PBS scheduling strategy that given a set of applications and their
timing requirements can find application schedules, scheduler parameters and the
minimum required reservation of all applications.

• We conducted experiments with the proposed PBS response model and scheduling
strategy. These experiments showed that for actual software-defined ratio appli-
cations PBS arbitration may allow a considerably smaller net resource reservation
than TDM arbitration: Running WLAN and TDS-CDMA transceiver applications
under PBS arbitration allows us to reduce the minimum required resource reserva-
tion on the highest weight processor to 40 percent of the required reservation under
TDM arbitration, freeing 16 percent of the total processing time on the processor.

72 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

The reservation on lower weight processors can be reduced even more, where the
largest reservation reduction requires only 26 percent of the resources needed to
run the applications under TDM arbitration, freeing 45 percent of the processor’s
total processing time.

8.2 Limitations

We can identify several limitations that apply to this thesis’s contributions:

• Our proposed response model is a multi-rate model with modified latency actor.
Certain combination of application budget and task computation times can make
the single-rate version of the multi-rate response model excessively large. The
creation and analysis of such an excessively large dataflow model can take an con-
siderable amount of time. The running time of our proposed scheduling strategy
may therefore be unacceptably long, especially if there exist many valid replenish-
ment period combinations, since we have to determine an application’s minimum
resource reservation for each period combination.

• The minimum reservation for a low priority application is determine using a binary
search on the range of valid application budgets. An advantage of using this binary
search is that we can find the budget that minimizes an application’s reservation
in a logarithmic number of steps. A problem of this approach is that it does not
allow us to reduce an application’s reservation in accordance with each processor’s
relative weight. It instead removes all of the application’s slack time to reduce
the reservation of a single processor, which may not leave any slack left to reduce
reservation of other processors who may be equally important weight.

• PBS arbitration can yield improved net minimum reservation requirements in case
the high priority application has significantly tighter timing requirements than the
low priority applications. This improved reservation can be realised because set-
ting the application with tightest latency requirements as high priority application
allows us to remove all its over-reservation. This over-reservation tends be consid-
erable for an application with tight timing requirements, such that the reservation
reduction of the high priority application can more than compensate for the in-
creased reservation requirements of the low priority applications. However, when
we run a high and low application with roughly equivalent timing requirements or a
large number of low priority applications, the reduced over-reservation of the high
priority application may no longer compensate the increased required reservation
of other applications.

• Comparing the amount of free processor reservation for PBS and TDM may not
yield a totally fair comparison. Any additional application will most likely need
more resource reservation when running as a low priority application on a PBS
processor than processor is not reservation reductions of using PBS arbitration is

8.3. FURTHER WORK 73

not totally fair since any new low priority application will potentially suffer inter-
ference of the high priority application, thereby increasing its required reservation.

8.3 Further work

Due to scope and time constraints there are several ideas and potential improvements
that can serve as a stating point for future work:

8.3.1 Size reduction of multi-rate model

The proposed PBS response model is based on the multi-rate model [5]. The single-rate
representation of the multi-rate model can be excessively large for some combination of
task computation times and budget, severely increasing the time it can take to verify
an application’s timing requirements. How large the size expansion of the single-rate
representation of the multi-rate model is depends on the greatest-common-divisor (GCD)
between an application’s budget and the task computation times. A small GCD can
cause a very large increase of actors when we convert a multi-rate model to single-
rate. We can limit the size expansion of single-rate conversion of a multi-rate model
by guaranteeing that the GCD of budget and task computation times is at least some
minimum value. We can guarantee this minimum sized GCD at the cost of increased
conservativity by either increasing the modelled task computation times or decreasing
the modelled budget to values that yield the desired GCD.

8.3.2 Improved upper bound on maximum number of context switches

We currently obtain an upper bound on the maximum number of context switches per
processor by counting how many actors have incoming arcs from external actors. Al-
though we try to take into account that certain incoming external arcs cannot cause ad-
ditional context switches, there is a limit to how much we can reduce the over-estimation
of the number of context switches without knowing more about the execution of an ap-
plication’s tasks. One way to improve our bound on the maximum number of context
switches is if we know the best-case computation time of tasks.

Figure 8.1 depicts a task graph annotated with mapping and static ordering information.
Actor A and B execute on processor P1 and actor C and D execute on processor P2.
Since we do not know whether or not actor C is still executing while actor B finishes,
we must assume that both actor C and actor D can cause a context switch to occur
on processor P2. However, if we know the best-case computation times of actor C, we
can potentially improve our bound: If the best case response time of actor C is larger
than the worst-case response time of actor B, then we know that actor D cannot cause a

74 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

A

D

C

B

P2P1

Figure 8.1: A task graph annotated with mapping and static order information.

context-switch, since it can only become enabled immediately after actor C has finished
executing.

8.3.3 Scheduler switching during runtime

Although PBS arbitration can allow for lower resource reservation in certain scenario, a
non priority based scheduler such as TDM may actual perform better in other scenarios.
One way to ensure we can have the lowest reservation requirements in any scenario is by
switching to the optimal resource arbitration mechanism during runtime. For instance;
assume we are running an application with tight timing requirements under TDM ar-
bitration. If we detect a request to start an application with tight timing requirements
we first switch the arbitration type to PBS before starting the new application as a high
priority application. The difficulty about switching processor arbitration during runtime
is that we must be able to guarantee that each running application is still able to satisfy
its timing requirements during and after the switch.

Bibliography

[1] O. M. Moreira, Temporal Analysis and Scheduling of Hard Real-Time Radios on a
Multi-processor. PhD thesis, Eindhoven University of Technology, 2011.

[2] M. J. G. Bekooij, R. Hoes, O. M. Moreira, P. Poplavko, M. Pastrnak, B. Mesman,
J. D. Mol, S. Stuijk, V. Gheorghita, and J. Meerbergen, “Dataflow analysis for real-
time embedded multiprocessor system design,” in Dynamic and Robust Streaming
in and between connected consumer electronic devices, vol. 3, pp. 81–108, Springer,
2005.

[3] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Modelling run-time arbitration
by latency-rate servers in dataflow graphs,” in Proceedingsof the 10th international
workshop on Software & compilers for embedded systems, SCOPES ’07, pp. 11–22,
ACM, 2007.

[4] A. Lele, “Data-flow based temporal analysis for TDM arbitration,” Master’s thesis,
Eindhoven University of Technology, 2011.

[5] K. R. Butala, “Improved static data-flow model for TDM scheduler,” Master’s
thesis, Delft University of Technology, 2012.

[6] M. Steine, M. J. G. Bekooij, and M. Wiggers, “A priority-based budget sched-
uler with conservative dataflow model,” in Proceedings of the 2009 12th Euromicro
Conference on Digital System Design, Architectures, Methods and Tools, DSD ’09,
pp. 37–44, IEEE Computer Society, 2009.

[7] J. Staschulat and M. J. Bekooij, “Dataflow models for shared memory access latency
analysis,” in Proceedings of the seventh ACM international conference on Embedded
software, EMSOFT ’09, pp. 275–284, 2009.

[8] J. Cai, “Budget-scheduling for a real-time software-defined multi-radio on a hetero-
geneous multiprocessor system,” Master’s thesis, Eindhoven University of Technol-
ogy, 2010.

[9] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE,
vol. 75, no. 9, pp. 1235 – 1245, 1987.

76 BIBLIOGRAPHY

[10] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static data flow,”
in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International
Conference on, vol. 5, pp. 3255 –3258 vol.5, 1995.

[11] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Syn-
chronization. New York, NY, USA: Marcel Dekker, Inc., 1st ed., 2000.

[12] O. M. Moreira and M. J. G. Bekooij, “Self-timed scheduling analysis for real-time
applications,” EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1,
p. 083710, 2007.

[13] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij, B. Theelen,
and M. Mousavi, “Throughput analysis of synchronous data flow graphs,” in Ap-
plication of Concurrency to System Design, 2006. ACSD 2006. Sixth International
Conference on, pp. 25 –36, june 2006.

[14] H. T. Hsu, “An algorithm for finding a minimal equivalent graph of a digraph,”
Journal of the ACM, vol. 22, no. 1, pp. 11–16, 1975.

	Introduction
	Context
	Problem statement
	Project goals
	Approach
	Contributions
	Thesis organisation

	Dataflow
	Synchronous dataflow
	Homogenous synchronous dataflow

	Cyclo-static dataflow
	Firings and behaviour of dataflow models
	Repetition vectors and iterations
	Conversion to single-rate

	Application modelling and analysis
	Capturing application behaviour in dataflow
	Including effects of resource arbitration
	Temporal analysis of a dataflow model
	Existing resource arbitration models
	Response models for TDM arbitration
	Response models for PBS arbitration

	Problem Statement
	Inflexibility of TDM with low latency requirements
	Problems with existing PBS response models
	Pessimism of Steine's model
	Limited usability of Staschulat's and Cai's Models

	Lack of PBS scheduling strategy

	Characterizing PBS arbitration
	Definition of PBS arbitration
	An exact PBS response time formula
	Task finish times of a high priority application
	Task finish times of a low priority application

	A worst-case PBS response model
	Approach
	Model construction
	Conservativity

	Summary

	PBS scheduling strategy
	Optimization criteria
	Scheduling methodology
	Determining the high priority application
	Determining high priority application schedules
	Deriving suitable budget replenishment periods
	Bounding the worst-case context switch overhead
	Minimizing low priority application reservation

	Runtime complexity
	Summary

	Experimental Results
	Service-over-time
	Period versus minimum reservation
	Scheduling strategy

	Conclusions and further work
	Contributions
	Limitations
	Further work
	Size reduction of multi-rate model
	Improved upper bound on maximum number of context switches
	Scheduler switching during runtime

