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Abstract 
This research report focuses on the need of reliable travel time predictions for logistical models. 
Although there exist approaches to incorporate stochastic and dynamic travel time information in 
logistical models, there exists a lack of data to reliably determine these travel time distributions 
over a whole network. Secondly the effect of stochastic and dynamic travel time estimations on a 
real life network has not been extensively analyzed. The data used in this report originates from 
TomTom and comprises a very large number of floating car velocity observations. This dataset 
enables statistical analysis on virtually every road segment of the road network. Using these 
observations a method is derived and tested to predict the time dependent travel time distribution. 
These travel time predictions are then applied in some simple logistical models to verify whether 
the reliability of the results can be improved. Reliability is hereby defined as the probability that 
the predicted travel time is not exceeded.  

 
 
  



Using Travel Time Predictions based on TomTom’s Big Data in Logistical Models 
 

4 
 

Acknowledgements 
I would like to shortly express my gratitude towards my supervisors, who have pointed me in the 
good direction several times. I would like to thank Tom van Woensel for his guidance throughout 
this project, and his comments on my preliminary work. Secondly I would like to thank Wim 
Nuijten for his time to review my work. But I’m also grateful for all the time and critical 
comments, from a commercial viewpoint, given by George de Boer, and his invitations to several 
interesting seminars during the last six months. 
 
But last I would like to thank my girlfriend, who took care of me when I busy working on my 
project.   



Using Travel Time Predictions based on TomTom’s Big Data in Logistical Models 
 

5 
 

 
Contents 
ABSTRACT'...............................................................................................................................................'3!

ACKNOWLEDGEMENTS'...........................................................................................................................'4!

CONTENTS'..............................................................................................................................................'5!

1.! INTRODUCTION'...............................................................................................................................'6!

2.! LITERATURE'....................................................................................................................................'8!

3.! PROBLEM'DESCRIPTION'AND'METHODOLOGY'..............................................................................'10!

3.1! BACKGROUND!....................................................................................................................................!10!
3.2! USING!TOMTOM’S!BIG!DATA!.................................................................................................................!11!

4.! SOLUTION'METHOD'......................................................................................................................'13!

4.1! DATASET!...........................................................................................................................................!13!
4.2! NOTATIONS!.......................................................................................................................................!14!
4.3! DETERMINATION!OF!DATA!SET!...............................................................................................................!15!
4.4! THE!RELATION!BETWEEN!VELOCITY!AND!TRAVEL!TIME!.................................................................................!15!
4.5! COMPARISON!BETWEEN!ESTIMATED!AND!REALIZED!VELOCITY!.......................................................................!16!
4.6! ROUTE!SIMULATION!USING!SAMPLE!OBSERVATIONS!...................................................................................!17!
4.7! PROCESSING!THE!DATA!.........................................................................................................................!17!

5.! ANALYSIS'......................................................................................................................................'19!

5.1! NUMBER!OF!OBSERVATIONS!..................................................................................................................!19!
5.2! DISTRIBUTION!OF!THE!TRAVEL!TIME!........................................................................................................!19!
5.3! DISTRIBUTION!OF!VELOCITIES!.................................................................................................................!20!
5.4! INCLUDING!STOPS!IN!THE!TRAVEL!SPEED!ESTIMATIONS!................................................................................!21!
5.5! OBSERVED!DRIVING!SPEED!VERSUS!YEAR!AND!TIME!OF!THE!YEAR!...................................................................!22!
5.6! DRIVING!SPEED!VERSUS!TIME!OF!THE!DAY!.................................................................................................!24!
5.7! WEATHER!AND!DRIVING!SPEED!..............................................................................................................!25!
5.8! WEATHER!AND!THE!TIME!OF!YEAR!..........................................................................................................!25!

6.! ANALYSIS'OF'UNRESTRICTED'VELOCITIES'PER'ROAD'SEGMENT'.....................................................'27!

6.1! PERIOD!WITH!BEST!PREDICTIVE!POWER!OVER!FUTURE!TRAVELING!SPEED!.........................................................!27!
6.2! RELIABILITY!OF!PREDICTED!PERCENTILE!SCORES!..........................................................................................!28!

7.! RESULTS'FOR'TRAVEL'TIME'PREDICTIONS'FOR'ROUTES'.................................................................'31!

7.1! PREDICTION!COMPARED!WITH!SIMULATED!ROUTE!......................................................................................!31!
7.2! REALISTIC!ROUTES!...............................................................................................................................!31!

8.! IMPLICATIONS'FOR'THE'VEHICLE'ROUTING'MODEL'.......................................................................'34!

9.! CONCLUSION'................................................................................................................................'36!

REFERENCES'.........................................................................................................................................'37!

APPENDICES'.........................................................................................................................................'39!

 
  



Using Travel Time Predictions based on TomTom’s Big Data in Logistical Models 
 

6 
 

1. Introduction  
 
The current paradigm of travel time predictions comprises both static and time dependent figures, 
both are often discrete values, for example based on a postal code matrix or a simple routing 
algorithm using static velocities per road segment. The time dependent predictions include the 
dynamic behavior of travel times in their prediction, caused by congestion. The dynamics are 
often captured in speed profiles, indicating a ratio between the velocity at a certain time interval 
and the free-flow velocity. However, the travel time for an individual trip is determined by many 
variables, which cannot all be predicted. Therefore it will be an improvement if travel time 
predictions are modeled as a stochastic variable, indicating the probability that a trip will last a 
certain time, or will not last longer than a certain time. Using these dynamic travel time 
distributions, and their confidence intervals, in logistical models might result in more reliable 
outcomes. Although the definition of reliability for travel time predictions heavily depends on the 
application and context, the shape of the distribution all necessary information. A narrow travel 
time distribution is for example more reliable, as it is more likely to encounter a value close to the 
expected value. Intuitively it can be assumed that there might be a trade off between the 
reliability of a route and the average travel time.  
 
When using software to solve planning problems, the software needs travel time approximations 
between al sets of locations. Depending on the methods, data and software used, the planning 
software uses estimates from very aggregated, to reliable and realistic. Software can use a 
straight-line distance or a postal-code matrix to determine the approximation, these methods do 
not, or only roughly take the actual road network into account. More reliable solutions would 
arise if the software uses a street map as an input and calculates the best route over the road, using 
velocity parameters per road. But even better travel time estimations take the time dependency of 
travel times into account, resulting in ‘dynamic travel time estimations’. 
 
However, there exists an important information gap between on-line planning phases, which can 
rely on live data for their travel time predictions, such as live traffic feeds with information on 
accidents, reduced speeds or blocked road, and off-line planning phases, which have to rely on 
historic data alone. Historic data, from various sources, is already widely used to make travel time 
estimations, but data is often obtained using stationary equipment, such as counting loops or 
camera’s, or from departure-arrival observations for a specific route. The results from these 
measurements are not generable to the whole road network and therefore have limited 
applicability. The ideal situation for predicting traveling times, would be if one could measure 
travel speeds on the whole road, during the whole day, and for every road of the road network. 
Some examples of this type of data exist, but often the number of observations is limited. 
 
Therefore this paper investigates the predictive power of historic data, which originates from 
many TomTom Personal Navigation Device (PND) users and includes measures for almost every 
road. The data covers the metropolitan area of Eindhoven, a city in the south of the Netherlands,  
over a period of more than 5 years and includes over 3.2!!!10!individual measurements. After 
presenting a literature background on the problem in Chapter 2, the problem is formally 
introduced in Chapter 3. The solution method is descried in Chapter 4, followed by the analysis of 
the data in Chapter 5. Then, a method is presented that makes acceptable predictions of future 
traveling velocities in Chapter 6. The transition from future velocities to travel time estimations, 
incorporating the stochasticity, is described in Chapter 7. Last it is analyzed whether logistical 
problems, in particular the vehicle routing model, can actually benefit from the improved travel 
time predictions in Chapter 8. 
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The contributions of this report are threefold, first, the data used in this report is quite unique as it 
is dynamically recorded (car floating) data from a very large pool of users, and contains 
observations for a large part of the road network, including local roads. Secondly, because of the 
timeframe over which measurements are available, the predictions can actually be tested against 
control observations. Last, the emphasis is often on improving the heuristics of planning tools or 
on improving travel time estimations for highways, however, limited research is done on 
improving travel time estimations that included local roads. Therefore it is investigated whether 
the reliability of travel time predictions for in city distributions can be improved, based on 
TomToms’ historic data. 
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2. Literature 
 
 
Logistics, which is the planning and execution of transporting goods and people, is the backbone 
of our current society and economy. According to Peeters et al. (2009) logistics provide the 
Netherlands with 600,000 jobs, divided over 12,000 firms and yearly add about 30 billion Euros 
to the Dutch economy. Improving efficiency in this sector will have a positive effect on the Dutch 
economy and is therefore an important field of research. A good introduction on the importance 
of logistics with an extensive overview on the background in which logistics has developed is 
given by Rodrigue et al (2006). 
 
This report focuses on travel time prediction for road logistics, as unpredictable travel times are 
one of the costs associated with logistics. Many companies use software tools to plan their 
operations, but not all include time dependent congestion in their modeling. An analysis on the 
costs associated with congestion related delays in a manufacturing and cross docking 
environment is done by McKinnon (1998). The author states that small and predictable 
fluctuations in arrival time can be accounted for, but vehicles arriving outside these time windows 
cause hold ups or inefficient use of vehicles. Another paper by Fosgerau and Karlstrom (2010) 
describes a relation between the economic value and travel time reliability when both the mean 
and standard deviation are dependent on the departure time. A real life example, where the 
Canadian Post adds customer value by decreasing tardy and repeated-deliveries, is given by 
LeBlanc (2010).  
 
Planning models are an important field within logistic research, as they provide insights and 
solutions to problems encountered by all companies that have logistic processes. These models 
are, for example, used to determine the ideal locations to build a warehouse, or couple vehicles, 
loads and customer locations in cost efficient routes. These models are also widely discussed in 
literature, an introduction to planning models in freight transportation is given by Crainic and 
Laporte (1997) and Ghiani et al. (2004). Most planning models use travel time predictions as one 
of their inputs, the vehicle routing problem (VRP), as introduced by Dantzig and Ramses in 1959, 
is one of them and this problem often has to be solved before live data is available. The 
characteristics of the standard VRP are: (1) A single warehouse in which goods are stored and (2) 
a set of customers that have (3) a set of demands requiring a certain capacity. (4) A set of arcs 
between the warehouse and customers and between customers, for which (5) a cost for traveling 
each arc is formulated (based on distance, travel time or fixed travel costs) (Laporte, 2009). An 
overview of the VRP with many examples is given by Giani et al. (2004). Further additions to the 
model are also described in literature, such as capacity constraints, which yield the Capacitated 
Vehicle Routing Problem (CVRP) (Toth & Vigo, 2002) and the application of Time Windows to 
the VRP (Desrossiers et al., 1995), (Andersen et al., 2009) and (Crainic et al., 1993), resulting in 
the VRPTW. An overview over algorithms to solve the (C)VRP(TW) are presented by, for 
example, Gendreau et al. (1994). Because the number of solutions for the VRP increases when 
applying dynamic travel times, the problem becomes increasingly harder to solve. An application 
of congestion avoidance by delaying departure times in the VRP is descried by Kok et al. (2011).  
 
The calculation or prediction of dynamic travel times, which can be incorporated in the VRP 
remains an interesting topic of research.  The determination of dynamic travel time observations 
based on a combination of subjective estimates by humans, combined with historic data is 
presented by Hill and Benton (1992). Estimations based on data from stationary measurement 
devices, such as counting loops and camera’s, are used be, for example, Woensel et al. (2008), 
Lecluyse et al. (2009) and Chien and Kuchipudo (2003). The estimations in the first paper are 
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based on a queuing approach, incorporating the 
stochastic properties of the data, the queuing model is 
extended in the second paper. The latter paper 
describes real time travel time predictions for a toll-
road, based on a combination of historic and live data.  
 
Since travel times are the result of many factors, a 
model is introduced by Van Lint et al. (2008) which 
represents the interplay between demand and supply 
fluctuations in Figure 2. The changes in the distribution 
of travel times over the week, for a stretch of freeway, 

are also described by Van Lint and Van Zuylen (2005) 
and a graphical overview is given in Figure 1. These 
distributions of the travel time are based on a 
trajectory algorithm (van Lint & Van der Zijpp, 2003) 
using data from inductive detector loops in the road 
surface. The authors define the reliability of a travel 
time prediction as the width and skew of the travel 
time distribution. The wider the distribution, the less 
reliable a prediction obviously is. However, they found 
that especially the skew of the distribution has a 
substantial economic effect. As in some peak periods 
the 5% most ‘unlucky drivers’ incur almost 5 times as 
much delay as the 50% most fortunate travelers. In 
their 2005 paper some metrics are introduced to 
quantify the reliability as a function of the skew of the 
distribution.  
 
 
 

 

  

Highway Capacity Manual (Transportation Research Board, 2000), where phase (a) would match with LOS A
to B, phases (b) and (d) with LOS C to E and phase (c) with LOS F.

ad. (a) Free flowing traffic.
In these conditions, median travel times are low and also the spread of the distribution is small. The dis-
tribution of travel times is approximately symmetric and travel time can be considered reliable in these
circumstances.
ad. (b) Congestion onset.
In these conditions median travel times are increasing, but the distribution is strongly skewed to the left.
This implies that in some cases traffic conditions are still free flow, but there are an increasing number
of days on which on this particular TOD already congestion occurred resulting in travel times much higher
than median.
ad. (c) Congested traffic.
In this case median travel times are high, while the day-to-day travel time distribution is wide and either
symmetric or slightly right skewed. In these periods congestion can be expected, albeit in different degrees
of severity, yielding a wide range of possible travel times. The (slight) right skewness relates to the fact that
in (a few) cases no congestion occurred. When comparing the results in this article with the results in (van
Lint and van Zuylen, 2005) it appears that the right skew gradually disappears as the route becomes longer.
This makes sense: on a longer route (with more than one potential bottleneck) the chances grow small that
on some days no congestion occurred anywhere on the route during the peak hours. Note this is a tentative
conclusion, since one may expect a strong correlation between congestion changes along the same route.
Further analysis is needed to clarify this matter.
ad. (d) Congestion dissolve.
Finally, in these conditions, median travel times are decreasing, but the distribution is strongly skewed to
the left again, reflecting the fact that in some cases congestion dissolved at this TOD, but in a – decreasing –
number of cases still heavy congestion occurred.

Fig. 6. schematic representation of the evolution of the shape of the day-to-day travel time distribution over peak-hour periods.

J.W.C. van Lint et al. / Transportation Research Part A 42 (2008) 258–277 267

 

Figure'2:'Schematic'overview'(not'exhaustive)'of'

factors'influencing'the'distribution'of'travel'times'

(van'Lint'et'al.,'2008) 

Figure'1:'Shape'of'the'day]to]day'travel'time'

distribution'from'free'to'congested'conditions'(van'

Lint'&'van'Zuylen,'2005) 
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3. Problem description and methodology 
 

3.1 Background 
Planning software relies on an Origin Destination matrix, filled with estimated travel times (TTs) 
between all connected locations. Unreliable or incorrect TT estimations would therefore yield 
unreliable or incorrect results. However, there is often a lack of data to formulate reliable TT 
estimations. In the current paradigm, estimations are often based on stationary measurements, 
observed TTs between fixed locations or a limited number of vehicle based measurements (Lin et 
al., 2005). Stationary measurement techniques, such as inductive loops and cameras, lack 
generalizability and accuracy, as it is economically infeasible to measure every road, between 
every intersection. This problem is most evident for non free-way roads, as these roads form a 
complex network with many interconnections. Measuring TTs between two fixed locations yields 
reliable results, but these results cannot be generalized over a larger set of locations. Car based 
measurements or car floating data, in which a car equipped with GPS receiver and data logger, 
yield the most reliable results, but in most cases the number of probe vehicles is relatively low 
and the time frame over which observations are available is very limited. Because of the difficulty 
of obtaining sufficient and accurate data that covers the entire road network, and the lack of 
generalizability of stationary measurement techniques, the formulation of accurate and reliable 
OD-matrices, for large sets of locations, is very hard. Therefore there exists a need for a better 
source of data, which both covers the entire road network and yields a sufficient number of 
observations, over a sufficient long time period.  
 
Secondly, average TT estimations do not automatically 
result in more reliable solutions for logistical models. 
The definition of reliability of TT approximations 
heavily depends on the context and application, a long 
haul transporter for which fuel costs should be 
minimized will have a very different perspective on 
reliability than an urgent courier. Also, the distributions 
are potentially heavily skewed (van Lint & van Zuylen, 
2005), this implicates theoretically that, using only 
estimated average travel times, the travel time of an 
unlucky driver could be located very far from the 
estimated value. A potential wide and skewed 
distribution therefore results in very unreliable travel 
time predictions. An example is given in Figure 4, Figure 4in 
which the expected arrival time for route 1 (red) is 
earlier than for route 2 (blue), if the goal is to minimize 
the yearly average travel time, route 1 would probably 
be the best choice. But, route 1 has a relative wide and 
positive skewed distribution, which results in a larger 
volatility of the travel time per individual trip. Therefore, 
if a reliable route is defined as the fastest route for 95% 
of the trips, route 2 would be optimal. 
 
Using the same theoretical background, choosing 
another departure time based on estimated average travel 
times, does not include the width and skew. Imagine a 
narrow distributed TT (free flow) when departing, for 

Difference based on 95th 
percentile 

Difference based 
on average 
estimate 

Route 2 is more 
reliable, as the longest 
travel time (for 95% of 
the time) is shorter 
than the longest travel 
time of route 1 

Route 1 is faster 
on average 

Figure'4:'Comparison'between'the'travel'time'

distributions'of'two'routes'with'differently'shaped'

distributions 

Figure'4:'Comparison'between'the'travel'time'

distributions'of'a'route'for'two'different'departure'

times 
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example, at 7am and a strongly positive skewed distribution at 8am, see also Figure 4. Although the 
estimated averages might only indicate a relative small difference, there are many individual 
occasions in which the later departure causes large delays. Therefore comparing the 95th 
percentile will, for many applications, result in a more reliable prediction. 
 
From the theoretical description, it follows that neither the average, median nor the variance of 
the distribution alone, provide sufficient information as the distribution is potentially skewed. 
Most existing sources of dynamic TTs only incorporate a discrete value per time interval, 
completely omitting the distribution’s shape. Research in which the shape of the TT distribution 
is incorporated suffers from a lack of data, for example the papers by Van Lint (2003), (2005) and  
(2008) are only based on a stretch of freeway. Local roads however, might have a totally different 
profiles as these roads include traffic lights, pedestrian crossings and other disturbances.  
 
Although logistical models are widely discussed in literature, and dynamic travel times are now 
frequently incorporated in these models, the effects of the travel time distributions have not been 
intensively investigated. Most research efforts agree that people are risk averse and therefore 
often prefer routes with a higher mean travel time and small variability over a route with a lower 
mean travel time but higher variability (Bogers & Van Zuylen, 2004). For example for the VRP, a 
custom defined level of reliability, might result in different combinations of commodities and 
demand locations, which results in a longer average TT, but with lower volatility. 
 

3.2 Using TomTom’s big data 
 
The solution for the data problem is found by 
using the floating car data gathered by the 
Dutch company TomTom. TomTom, founded in 
1991, has a history of selling navigation 
products and services since 2001, they 
introduced their HD Traffic product line in 
2007. Since this introduction, users can approve 
for their travelling data to be shared with 
TomTom. TomTom has obtained a very large pool 
of users over the years and this has led to an 
enormous amount of data which, at the moment, 
comprises over 4 trillion anonymous, consumer-driven, GPS based and map matched 
measurements, which are geographically dispersed over the total road network. The data sources 
are graphically presented in Figure 5. 
 
This data opens an opportunity to investigate whether it is possible to solve the problems 
described before. Therefore the main research question for this report is whether planning tools, 
the VRP in particular, can be improved on accuracy and reliability, by using detailed velocity 
distributions to model departure time depend traveling times.  
 
The first step was analyzing how the best predictions for future travel times per single road 
segment, !!!"#$!" (!), could be made using TomTom’s historic data, from now on referred to as 
historic data. Let !!!"#$!" !  denote the predicted stochastic travel time over edge !" at time !. 
The second step was to summate the predicted distributions per segment into routes to yield the 
travel time predictions per route !!!"#$! (!). The predictions for single segments and routes are 
tested against observation from a control set, !!!"#$%"&, and against estimations from other 

maps & content | real time & historical tra!c | lbs

www.tomtom.com/licensing

4

TomTom Historical Traffic Data 

Historical traffic information is collected by millions of TomTom navigation device 
users who voluntarily agree to share their anonymous usage statistics. When 
connecting their GPS device to their computer - using free desktop software 
TomTom HOME - these users report data anonymously for each of their journeys. 
As a result, TomTom now has a database containing more than 4 trillion 
measurements, collected since 2007 from millions of TomTom users. Every day, 
more than 4 billion new measurements are added to the database and this figure 
increases exponentially. 

TomTom is the only company in the world leveraging this kind of information 
primarily from passenger vehicles. Over 45 million TomTom users globally make this 
possible. The devices provide an anonymous log file of speed measurements on 
the roads over which the devices have travelled. All of this information was initially 
collected to provide TomTom’s customers with a superior navigation experience, 
based on services such as HD Traffic and IQ Routes. Today, TomTom provides these 
anonymous data sources to the government and enterprise market in new forms, 
including through the Traffic Stats internet portal. 

Although TomTom uses both GPS-based FCD and GSM-based FCD in the real time 
traffic services, the historical database used by TomTom for the historical traffic 
products described in this white paper uses only GPS measurements and does not 
include any cell phone derived trace data.

Figure 1 - Different sources contributing to TomTom historical traffic database
Figure'5:'Different'sources'contributing'to'TomTom'historic'

traffic'database. 
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sources, !![!"#$%&] to determine the reliability and performance of the prediction. Last, it is 
analyzed whether these predictions can be used to find better solutions for logistical problems. 
The estimated costs, ! !!"# , using the new predictor variables are compared with the costs 
using traditional methods ! ! !"#$%& . This methodology is depicted in Figure 7. 
 
This research follows a phenomenological approach, however, some factors influencing the TT 
can be controlled for. Therefore the scope of this research, concerning exogenous influences is 
limited to three factors. This results in a simplified version of the model as introduced by Van 
Lint et al. (2008), see Figure 2, and is depicted in Figure 6. 
 
 

   

Subset of 
historic data 

Predicted travel time 
per road segment 

!!!"#$!" (!) 

Predicted travel 
time per route 
!!!"#$! (!) 

 

Logistical model: 
results in e.g. 
expected costs 
!(!!"#) 

Internet, 
ArcGIS and 

tables 

Realized travel 
time !!!"#$%"& 

Control set Reliability/ 
Performance 

TomToms’ 
Historic data 

Simulation of 
routes, resulting in 

realized costs 
!!![!"#$%&]! 

 

 

Other sources of travel time 
estimations, resulting in 

expected travel time !!!"#$%& 

Comparison 

 

Comparison 

 

Probabilistic!model Weather 

Time dependency 
! !"(!) 

 

Season 

!!!"(!) 
 

Figure'7:'Graphical'representation'of'research'methodology 

Figure'6:'Scope'of'research'concerning'factors'influencing'the'distribution'of'travel'times,'based'on'Van'Lint'et'al.'(2008) 
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4. Solution method 

4.1 Dataset 
The dataset used for this report, which is only a small subset of the total database, contained over 
3.2!!!10!individual observations, gathered in a period of just over 5 years for metropolitan area 
of Eindhoven, a city in the south of the Netherlands. The roads have all been divided into small 
segments with a unique identifier. The characteristics for one single segment, such as road type, 
road geometry and speed limit, are constant. Due to the relative small length per segment, it is 
assumed a speed observation can be generalized over the whole segment. This enables the 
calculation of the travel times over each segment. 
 
The data source in this report originates from TomTom devices and software, which record traces 
from users that enable information sharing. One trace consists of successive location samples, 
with a speed attribute to every sample. Precision of GPS devices has its limitations, which cause 
difficulties matching a trace to a road when roads are located close together. Secondly, although 
the devices and software are car centric, which means they are primarily intended for motorized 
use, the devices are also used by, for example, cyclist and pedestrians. Therefore TomTom uses a 
map-matching algorithm to only include measurements that can be reliably matched to a road 
user on a certain road segment.  
 
The data set contains data from 2006 until October 2012. But for the early years, the number of 
observations is limited and data is fragmented, therefore no data before 2008 is used in the 
analysis. The number of observations for the last weeks of 2012 is also limited, as users have to 
connect their devices to the Internet before any data is shared. Therefore no data later than 2012 
week 35 is used in the analysis. In order to verify the results found in this research, the dataset is 
split in two. The latest data is used as control data. This cut-off date is set to week 36 of 2011, this 
leaves one year of data for the control set. This is graphically represented in Figure 8. 

Due to the size of the historic dataset and the limited computational power and time available, 
only a subset of roads has been analyzed. This subset comprises both domestic as an industrial 
area and includes a stretch of free-way. The resulting dataset contains single velocity 
observations, for every observation the following information is used in the analysis:  
[segment_id[-], length[m], frc[-], speed_limit[kph], speed[kph], timestamp[ms]] 
Each road segment is unidirectional, for a bidirectional road, two segment ids in either direction 
are used. The functional road class (frc) indicates the type of road, e.g. 0: highway, 2: major road 
and <2: Local roads, the full list is given in appendix X. The timestamp is the UNIX time, which 
are the number of seconds that elapsed after January 1st, 1970, recorded in UTC. Last, the length, 
speed and speed limit are trivial. 
 
In order to perform the analysis, a random sample of observations is drawn from the datasets. To 
analyze the predictions, the control sample set is introduced, which comprises 14,000 randomly 
selected observations from the Control dataset. Secondly the historic sample set is introduced, 
which contained over 10,000 observations from the historic dataset. 
 

←2008w35 2008w36       2011w35 2011w36  2012w35 2012w36 → 

Historic dataset Control dataset Omitted Omitted 

Figure'8:'Division'of'data'into'Historic'and'control'dataset 
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The length for every road segment is given and there exists an inverse linear relationship between 
the driving speed and travel time. Because roads of similar road classes have similar legal driving 
speeds but various lengths, the majority of the analysis is based on velocities, rather than travel 
times. However analyzing driving speed observations is analogue to analyzing travel times.  
 
 

4.2 Notations 
From the dataset, distributions of the travel speed per road segment can be deducted. Road 
segments are identified by a unique number, let !" denote that unique number and let set ! denote 
the list of segments with ! = !!!,… , !!!  and ! = ! the total number of segments in the set. 
The subset used in this report then denoted by !! with !! ⊆ !.  Secondly, let !!!" !!, !! ,∀!" ∈ !! 
denote the set of  all historic observations taken over period !! to !! with !! < !!, and let 
!!!" ! ,∀!!" ∈ !! denote a single historic observation with !! ≤ ! ≤ !!, then 
!!!" ! ∈ !!!" !!, !! ,∀!!" ∈ !!. Next !!!" !!, !! ,∀!!" ∈ !! is divided into smaller subsets 
containing only the measurements that fall within a certain time of day (TOD) and day of the 
week (DOW). Let ! denote the whole set of intervals, ! = {!!,… , !!"#}, then !! describes the 
unique interval number. Typically, 12 blocks an hour, 24 hours a day and 7 days a week are used 
thus 1 ≤ ! ≤ 2016!(= !!"#). The subsets are then denoted by !!!"

! !!, !! ,∀! ∈ !, !" ∈ ! 
with, 

!!!"
!(!!, !!)

!!"#

!!!
= !!!" !!, !! ,∀! ∈ !,∀!!" ∈ !!

For the remainder, the sets always contain data for an individual segment, therefore the !"-label is 
dropped, resulting in !!!(!!, !!).  
 
An observation of a vehicle traveling faster than the legal speed limit indicates that at least the 
legal speed limit is possible. Because it would be unethical to predict or promote illegal 
velocities, all observations are topped to +15%!of the legal speed limit. The 15% is chosen to 
include some margin, as there will also be drivers whose velocity is below the legal speed limit 
while a free flow is possible. This correction yields the legal speed corrected dataset, which only 
contains observation denoted as !!!!" ! ! . These observations are thus derived from the original 
observations according to the following equation: 
 

!!!!" ! = min !!!" ! , 1.15! ∙ !!"#$!!!"#!" !"# !"! ∈ 0,1,2 , ∀! ∈ !
min !!!" ! , !!"#$!!!"#!" !"# !"# ∉ 0,1,2 , ∀! ∈ ! 

 
The same notations as for the original sets are 
followed and thereby the !" label is dropped and 
the sets are split per time interval !, the corrected 
sets are then denoted by then !!!! (!!, !!). Also the 
algorithm to adjust the sample size is similar for 
the corrected sets, resulting in !!!! !!, !! , ∀!! ∈
!.  
 
In order to fit a distribution to the subsets, the 
number of observations within the subset should at 
least be 30, therefore a sample size correction set, 

!! = 1 

!!!!! (!!, !!) = !!!! (!! , !!) 
While !!!!!! (!! , !!)! ≤ 30, ∀!! ∈ !: 

!! = !! ! + ! !"!! + ! ≤ !"#
(! + !) − !!"# !"!! + ! > !"# 

!! = !! ! − ! !"!! − ! ≥ 0
!"# + (! − !) !"!! − ! < 0 

!!!!! (!!, !!) += !!!!
!(!!, !!)+ !!!!

!(!! , !!) 
Algorithm'1:'Creation'of'sample'size'corrected'set 
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!!!! (!!, !!) is introduced, with !!!! (!!, !!) ≥ 30. If the set !!!! (!!, !!) does not contain the 
minimal amount of observations, the observations from adjacent subsets are added. Because the 
Sunday night and Monday morning are also adjacent subsets, there is a correction if ! < 0 or 
! > !"#, this results in Algorithm 1. To each set !!!! (!!, !!) a distribution can be fitted. This yields 
the random variable !!(!!, !!), which is always based on the sample size corrected and legal 
speed corrected datasets. 
 
From the analysis later in this paper, it followed that the Gamma distribution gave the best 
representation of the travel, and as the distribution of !!(!!, !!) depends on the time window, the 
distribution can be defined shape and scale parameters of the Gamma distribution (! and !): 
 

!! !!, !! ~Γ(!!!(!!, !!),!!!(!!, !!)), ∀!! ∈ !!
 
For the control set, the same notation is followed where !!!" !!, !! ,∀!!" ∈ ! denotes this set of 
control observations taken from a period !! to !! with !! < ! < !! < !!, for all segments in !. A 
single observation is denoted by !!!" ! , !! ≤ ! ≤ !!,∀!!" ∈ !, thus !!!" ! ∈ !!!" !!, !! ,∀!!" ∈ !. 
Again the edge identifier is dropped from the notation and the sets are split up in weekly 
intervals, resulting in observations!!!! ! ∈ !!! !!, !! ,∀!! ∈ !. Similar to the historic data, the 
data in the control set is topped to 115% of the legal speed limit. Thus: 
!!"!" ! = !"#(!!!" ! , 1.15 ∙ !!"#$!!!"#!" ),∀!!"!" ! ∈ !!"!" !!, !!  
If only the unrestricted observations are Important is that sample observations are not included in 
the set of historic observations, thus  !!! ! ∉ !!! !!, !! , ∀!!! ! ∈ !!! !!, !! ,∀!" ∈ !. 
 

4.3 Determination of data set 
If the dataset contains data from adjacent weeks, the dataset can be identified with the values for 
!! and !!. But when the dataset contains not-adjacent periods of time, these periods can be 
identified by vectors !! and !!, for which !! = !!! , !!!! ,… , !!!

!
  and !! = !!! , !!!! ,… , !!!

!
. The ! 

periods are then given by !!! → !!!  and further. Possible datasets can contain a number weeks of 
the most recent historic data, data from the same periods over the last years or data from similar 
week numbers. The latter is not used in this report as the influence of one single week is very 
large and errors, due to occasional situations, are not averaged out. In the future this approach 
might be plausible if more years of data is available.  
 
The prediction for a Monday, week 28 in 2012 might for example be based on the data from: (a) 
52 weeks of most recent available data, on (b) data from 3 ‘summers’ or on (c) on data from 3 
‘weeks 28’ only (these weekly datasets are not used in this report). The data examples are 
depicted in figure X. 

4.4 The relation between velocity and travel time 
As stated before, there exists an inverse linear relation between the velocity and travel time 
according to !!! ! = !∙!.!"

!!(!) !!!!
[!]∙!"

[!"!]∙!""" , with ! the length of the road segment. This implicates 

however that the TT distribution is the inversed distribution of the velocity, which, for the 

…-12-14-16-18-20-22-24-26-28-30-32-34-36-38-40-42-44-46-48-50-52-2-4-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-38-40-42-44-46-48-50-52-2-4-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34- 

Figure'9:'Examples'of'possible'datasets 
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Gamma distribution, results in the inverse Gamma distribution. Let ! denote a stochastic variable 
for which !~!(!,!) then, as the inverse of  ! is given as ! = !

!  for which !~!!! !, !! . A 

linear product of the inverse Gamma distribution and a constant ! is given as !! = ! ∙ ! with 

! ∙ !~!!! !, !! . Thus a stochastic TT prediction for a road segment, based on historic data, can 

be denoted as !!!!"
! !!, !! . If the !" label is again dropped, this results for every edge in 

!!!! !!, !! = !∙!.!"
!!(!!,!!)

, thus: 

!!!! !!, !! ~Γ!! !!! !!, !! ,
!

!!! !!, !!
, ∀!! ∈ ! 

 
As routes are a concatenation of road segments, the 
speed distributions for all individual segments are 
estimated and the length per segment is known, the 
distribution of the travel time for a route can be 
calculated as the convolution of its segments’ inverse 
distributions. The sum of inverse Gamma distributed 
variables however, has no exact solution and there 
exists, no easy approximation (Witkovsky, 2001). 
However, using numerical calculations, it is known 
that the convolution of inverse Gamma distributed 
variables resembles again an inverse Gamma 
distribution. Therefore, in this report, a simulation 
approach was used. The travel time per route was 
generated 1000 times as the sum of !  inverse Gamma-
random generated variables, with !  the number of road segments in a route. Over this dataset an 
inverse Gamma distribution was fitted and the resulting parameters were used to define the 
distribution for that route. An example is given in Figure 10: Sum of simulated travel times and the Inverse Gamma 
distribution fitFigure 10, where the red line indicates the fitted distribution. 

4.5 Comparison between estimated and realized velocity 
The next step was to determine the distribution of !!(!!, !!), for different values of !! and !! and 
test these distributions against observations found in the control set.  The expected value for the 
Gamma distribution by ! !! !!, !! = !!! !!, !! ∙ !!! !!, !! . The error of the estimation is 
then defined as the difference between a randomly picked observation from the control set and 
the predicted mean velocity: 

! = !!!! ! − ! !! !!, !!  
 
From the predicted distributions of the travel speed, also the percentile scores can be calculated, 
which predict that !%, 0 ≤ ! ≤ 100, of the observations will lay within a certain range. If the 
distributions reliably describe the future observations, p% of the control observations should 
actually be located in the p% confidence interval. The confidence intervals are characterized by a 
upper and lower bound, !! !, ! , !! !, ! , with  

! !! !, ! ≤ ! ! ≤ ! ! ! = !! ! ! ! ≤ ! ! ≤ !! !, ! = 0.5 ∙ ! 
 

Figure'10:'Sum'of'simulated'travel'times'

and'the'Inverse'Gamma'distribution'fit 
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4.6 Route simulation using sample observations 
For a single road segment, the travel time simulation is simply a single observation from the 
control dataset. But as a route consists of many segments, multiple observations need to be 
concatenated. Therefore an algorithm was developed that finds a string of observations, which 
sum represents a fictive vehicle driving that particular route. First the list 
! = {!!!, !!!,… , !!!"#$} is introduced which contains all road segments in the appropriate order 
and let ! denote the !th segment in list !. Then !!"#$"!  denotes the start on which the fictive 
vehicle starts driving on segment ! and !!! !!"#$"!   denotes the corresponding travel time. Then 
the value for the start time at the next edge would be !!"#$"!!! = !!"#$"! + !!! ± Δ!. A relaxation, 
±Δ!, is introduced because the probability that, for all segments in the route, an observations for 
!!! is found that exactly matches !!"#$"! , is very small and decreases with the length of the route. 
Δ! is a user defined relaxation parameter, the lower the value of Δ! , the more veracious the TT. 
 
The algorithm starts with a user defined route !, value Δ! and an initial start time !!"#$"! . It 
searches for possible candidate observation that satisfy !!"#$"! ± Δ! and randomly pick one of 
these observations. Secondly !!! is calculated using the segments’ length and the next candidate 
observations are searched for, which have to satisfy !!"#$"! = !!"#$"! + !!! ± Δ!. This process 
continuous until observations for all segments are found, or no observations are found for one of 
the segments. In the latter case, the algorithm starts again with !!!"#!! !"# = !!"#$"! + Δ! 

4.7 Processing the data 
The amount of data required smart processing of the data in order to limit IO-actions (reading 
writing to a hard disc), to limit total disk space and to keep the amount of RAM within its limits. 
The process was tweaked to work on a MacBook Pro with a 2.2 GHz Intel Core i7 Processor, 
8Gb 1333MHz DDR3 memory, a 750 GB 5400 rpm hard disc and a 120 GB solid state hard disc. 
PYTHON v2.7 is used as programming language and the GZIP algorithms are used to compress 
data. 
 
The data is processed in several steps, these steps are depicted in Figure 11. First the data was split 
into smaller files containing only the observations for one particular week. For each observation 
only the important data was stored, which were the segment’s identifier, velocity and the time of 
the observation. The observations were not sorted but appended to the end of each file to limit IO-
actions. The files were also compressed to save disk space and all other variables were stored in a 
legend file, including the other characteristics such as the length, the legal speed limit and the 
functional road class.  
 
In the next step the data was processed per week and sorted per segment, only weeks in the period 
of 2008 week 36 until 2012 week 35, and segments within the subset were stored. Again, each 
line of data is appended to the end of each file, limiting the IO-actions. The SSD hard disk was 
used because of the large number of files. The third step is processing the data per individual 
segment, such as fitting distributions to the data. The amount of data can now be processed and 
stored in the computer’s RAM, which makes allocation of data, such as sorting, possible. The 
output is stored in files on the hard disc. The data is processed using dynamic tuples, for which 
many standard actions are available in the PYTHON language.  
 
For all time or date related actions, the UNIX time stamp is converted into a tuple containing the 
year, month, day, weekday, hour and minute. Because the time is recorded in GMT, the time 
should be corrected to the Dutch time zone. A module returning the exact time delta is used to 
ensure accurate transition to the Dutch Time zone. As this time delta is either 1 hour during the 
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winter, or 2 hours during the summer, and the transition between standard and daylight-saving-
time depend on the year, the module uses a database to determine the exact time delta. 
 

 
Figure'11:'Graphical'representation'of'the'data'process'
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5. Analysis 
 

5.1 Number of observations 
The dataset contained over 3.2!!!10!individual measurements, divided over roughly 350,000 
individual edges. The distribution of the data is depicted in Error! Reference source not found., 
which depicts (a) the number of observations per TOD (N=106), (b) per DOW (N=106) or (c) per 
week (N=2.2e9). There are clearly more observations during daytime, and the majority of 
observations are taken during the afternoon or evening. The weekend days are also well 
represented compared to weekdays, although traffic density during the weekend is often less 
heavy. The weekly number of observations is relative constant, except for ISO weeks 1, 52 or 53. 
This is due to the fact that these weeks not always contain 7 days. 
 
These properties of the data have two reasons, (1) as a portion of the road users is using a PND, 
the number of observations will increase with the total number of vehicles on the road. And (2), 
people tend to make more use of their PNDs when travelling to unfamiliar locations. According 
to (Wessels, 2012) and (Mulder, 2011), home-work (or reversed) trips are underrepresented in the 
TomTom data, trips to non-home or non-work locations occur more frequently in the afternoon 
and weekends. Therefore the assumption is made that the number of observations does not fully 
correspond with the flow density on the roads.  

 

5.2 Distribution of the travel time 
The travel time distributions for one randomly chosen 
road segment per frc are plotted in Figure 13. The 
histograms resemble the distribution found and 
explained by (van Lint et al., 2008). All distributions 
have a long positive tail, suggesting that the 
distributions, on general, are heavily skewed. The red 
lines are inverse Gamma distributions, which are fitted 
to the data. The fitted distributions seem to follow the 
histograms quite good, the theoretical background of 
using the inverse Gamma is discussed later in this report. 
The distribution for frc 7 however, which represents the 
smallest roads, is an outsider that does not seem to 
follow any known distribution. This is most probably 
due to the nature of these roads, as these are often very 
short and are often only used by residents, also, only a 

Figure'12:'Distribution'of'observations'a)'over'the'day'(TOD),'b)'per'day'of'the'

week'(DOW)'and'c)'per'week'of'the'year'

Figure'13:'The'TT'distributions'for'a'randomly'

chosen'road'segment'per'frc'and'the'fitted'

inverse'Gamma'distribution'
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very limited number of observations is available. Contrary to what Figure 13 suggests, not all roads 
follow a nicely shaped distribution, many road segments seem to be a combination of multiple 
distributions, as can be seen in Figure X. This behavior can be explained by the characteristics of 
these road types. On some roads drivers might come across traffic lights, pedestrian crossings or, 
for example, playing children. However, these obstructions are often of a temporary but recurrent 
nature. When a driver does not have to stop or slow down, this results the unrestricted flow. If a 
driver however has to stop or slow down, this results in the restricted flow. This is discussed in 
more detail in Chapter 5.3. 
 

5.3 Distribution of velocities 
The velocity, rather than the TT, is analyzed because the TTs are dependent on the various 
lengths of the segments. Therefore the velocities of road segments from the same frc are easier to 
compare and velocity measures are also easier to interpret than an arbitrary TT. The first step is to 
verify whether the velocities from the historic observations follow a known distribution. This 
should be a continuous distribution, which is able to describe data with different expected values 
and standard deviations. Looking at the histograms in Error! Reference source not found., in 
which a selection of one randomly selected segment per frc1 is presented, using the data from 
2010, the data appears to be bell-shaped with a long tail and, for some of the local roads. For frc 
3, the histogram shows a spike at low velocities and a long tail towards higher speeds.  
 
Distributions that could fit this type of data are for example the Normal, Logistic or (family of) 
Gamma distribution. As the velocity is defined as a random variable and the distribution of some 
road segments appears to follow the well-known bell-shape, the Normal distribution is included 
in the analysis. The positively skewed distributions for the smaller roads, with lower speed, might 
indicate that a skewed distribution better represents these observations, therefore the Gamma 
distribution is also analyzed. Other distributions might be usable as well, but it is assumed that 
either the Gamma or Normal distribution are well suited to describe the distribution of the driving 
speed observations. For example, the logistic distribution was found to be narrower but cannot 
represent a skewed distributed variable. Also the other distributions from the Gamma-family, 
such as the Exponential ! = 1 , Erlang ! ∈ ℕ  or Chi-squared can be expressed as a special 
case of the Gamma distribution itself and are therefore omitted.  
 
Theoretically, the differences between the Normal and Gamma distributions should, according to 
the Central Limit Theorem, diminish for higher expected values. For the local roads, with lower 
average velocities, the differences between the Gamma en Normal distribution are more apparent. 
Moreover, the Gamma distribution  satisfies the non-negative property, which holds that for ! 
with !~Γ(!,!) that !(! < 0) = 0. In the case of driving velocities this is a very welcome 

                                                        
1 There are no roads with frc 1 in the data set for Eindhoven and surroundings. 

Restricted flow 
 

Unrestricted flow 

Figure'14:'Distribution'of'a'road'segment'in'the'effects'of'both'the'restricted'and'

unrestricted'flows'are'visible. 
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property, as the velocity is measured as a positive variable only. Consequently, both the Normal 
and Gamma distributions are used for further analysis. 
 
For local roads, frc 3, 6 and 7, no known distribution describes the shape of the histogram. This is 
obvious caused by a large number of observations below 10 [kph]. These slow observations, 
below 10 [kph] were visible for more local roads and can be explained the by the restricted flow, 
as introduced in Chapter 5.2. In Figure 15 the histograms for the higher frc’s are plotted with (blue) 
and without (red) observations below 10 [kph]. Removing the low velocities resulted in a much 
better fit for the Gamma distribution on the unrestricted data. 

5.4 Including stops in the travel speed estimations 
In the analysis it was found that for some roads the velocity either 
follows an unrestricted distribution, or there exists a restriction and 
the velocity is very low. Let !!"#$!%&$"'!"  denote the probability a 
vehicle has to stop or significantly slow down on road segment !". 
For one single road segment, this results a velocity that either follows 
the restricted distribution, or the unrestricted distribution. The overall 
average driving !!"(!) will be a velocity between the mean restricted 
and unrestricted speed, but the probability this exact driving speed is 
encountered is very small. Let !!! !!, !!  denote the restricted 
velocity and !!.!! !!, !!  the unrestricted velocity, then !!(!!, !!) can 
be characterized by the probability tree depicted in Figure 18. 

Fitted 
distributions:  
Solid line:  
Gamma 
distribution  
Dashed line: 
Normal 
distribution  

Figure'15:'The'distributions'for'the'higher'frc’s'including'(blue)'and'excluding'(red)'the'

observations'below'10'[kph]'

Fitted distributions: 
Solid line: Gamma distribution 
Dashed line: Normal distribution  
Dotted Line: Logistic distribution 

Figure'16:'Distributions'for'a'selection'of'road'segments,'one'per'frc,'and'the'fit'

of'the'Gamma,'Normal'and'Logistic'regression.'

Unrestricted flow Restricted flow 

!̿ !"(!) 
 

Figure'17:'Restricted'and'unrestricted'

velocity'observations 
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The shape of the distribution, for a road segment that contains both restricted and unrestricted 
velocities, might seem problematic. For a route however, there is a probability that one has to 
stop on any of the edges, but the exact stopping location is not that important. Thus, as long as the 
effect of each potential stop is taken in to account the TT-prediction for a route is still reliable. 
Therefore the distribution for each road segment can be defined as the weighted sum of the 
restricted and unrestricted velocity. The weighted convolution, ! = !! ∙ !!!

!!!  with !! the 
corresponding weights, for Normally distributed variables is given by a mixture distribution, for 
the Gamma distribution no (exact) solution for the weighted convolution is known. An exact 
solution in the situation !! = !,∀! is described in (Di Salvo, 2006) and this appears to be a 
Gamma-like distribution.  
 
Because of the complex nature of the convolutions, it was first tested which distribution best 
described the unrestricted velocities, this part of the analysis is presented in Chapter 6. The best 
distribution appeared to be the Gamma distribution and also the restricted velocities can be 
expressed as a Gamma distribution, with a small value for the scale parameter. Therefore the 
convolution will be expressed as the weighted sum of Gamma distributed variables, which 
resembles again a Gamma distribution. As no exact solution to this convolution exists, a 
simulation approach could be used to estimate the parameters. However, this would yield the 
same result as if a Gamma distribution was directly fitted to the dataset containing both the 
restricted and unrestricted velocities. Altogether it is therefore assumed that, within a route, a 
Gamma distribution fitted over the entire dataset yields the desired distribution, with the 
requirement that the unrestricted velocities are well represented by a Gamma distribution. 
 
In the remainder of this report, the datasets will be identified as full dataset if all data, both from 
restricted and unrestricted observations are used, and unrestricted dataset if all observations 
below 10 [kph] are omitted. 
 

5.5 Observed driving speed versus year and time of the year 
A graphical representation of the data without corrections, for the same selected road segment as 
in Figure 16, is presented in Figure 19. Per graph, the boxplots for one segment is displayed, 
representing data from 2009, data from 2010 or data from 2011. Some differences in medians and 
box sizes are found, thus the observed velocities are not constant over the years. The boxplots in 
Figure 20 represent the same road segments, but this time the data is divided in four different times 
of the year (TOY). The year is divided into (1) summer, (2) spring, (3) fall and (4) winter and 
these periods roughly correspond with the seasons, the see Error! Reference source not found. 

!!(!!! , !!! ) 

Unrestricted!flow:!
!!.!! (!!, !!)~Γ!!!!!(!!, !!),!!!!(!!, !!)!, !"!
!!.!! (!!, !!)~N!!!!!(!!, !!),!!!!(!!, !!)!, ∀!! ∈ !!
 
Restricted!flow!
!!(!!, !!) = !!!(!! , !!)!
with!!!!(!!, !!)~! !!!!(!!, !!),!!!(!! , !!)! , !"!
!!!(!!, !!)~! !!!!(!!, !!),!!!(!!, !!)! , ∀!! ∈ !!

!!"#$!%&$"'
!"

 

1− !!"
#$!%&$

"'!"
 

 

Figure'18:'Probability'tree'of'the'restricted'and'unrestricted'velocity 
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for exact definitions. In Figure 20, also some differences are seen between the boxplots, although 
less than the intra-year differences.  

 
Figure'19:'Boxplot'of'the'data'for'a'selection'of'road'segments,'divided'per'year'

 
Figure'20:'Boxplot'of'the'data'for'a'selection'of'road'segments,'divided'per'season'

 
These finding are also tested for a larger set of observations. Therefore the historic sample set 
was analyzed for correlations between the velocity and time related variables. The time related 
variables are the timestamp, year and TOY. In contrast to what the boxplots showed, the resulting 
correlations indicate that the TOY has a significant predictive value over the driving speed for frc 
0, 2, 3, 4 and 5 (. 001 ≤ ! ≤ .041 <.!"). However, the coefficients indicate that effects are 
limited, as only about 4% of the variance in the driving speed is explained by the TOY (! ≤ 0.2). 
It was also found that freeways and major roads were negatively influenced by the TOY, thus the 
driving speeds show a minor, but significant, decrease when the TOY-number increases. Striking 
though is that the local roads have a minor, but again significant, positive correlation with the 
time of year, indicating that speeds increase with the TOY-number. This opposite effect might be 
explained by the fact that the population of road users on these roads are less homogenous, which 
means that the population comprises both motorized and non-motorized road users, such as 
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cyclists and pedestrians. During the summer or spring the number of non-motorized road users 
will probably increase, which in turn attenuates the velocity. Last, the speeds on the smallest local 
roads, frc >5, appear not to be influenced by the time of year.  
 
In the examples for segments in the boxplots, differences between years were found. For the 
whole dataset, these differences are only significant for the highways, frc 0 ! = .000 < .05  and 
the larger local roads, frc 4 (! = .007 < .05). The positive correlation coefficient (! ≈ 0.2) 
indicates that the speed slowly increased over the years on the highways, which might be caused 
by improvements made to the road network. For the local roads the speeds slowly decreased 
(! ≈ −0.1) over the years. This might be caused by traffic calming and media attention to drive 
carefully on local roads. The exact causes are however outside the scope of this report. 
 
Future velocities might thus by seasonal and in- or decrease over the years. Therefore travel time 
predictions based on different datasets, defined by !! and !!, are used for further analysis. It 
should be analyzed whether it is beneficial split the data per TOY to incorporate seasonality. 
Secondly the effect of the time period, from which the data is sourced, on the reliability of the 
velocity predictions should be analyzed. 

5.6 Driving speed versus time of the day 
The differences and distributions of the data over the day is of great importance for this paper, as 
it underpins the necessity of dynamic travel times. Figure 21 and Figure 22 depict the data over 2010, 
for an edge of frc 0, for different times of the day. From Figure 21, it follows that for a particular 
road segment, the velocities are not constant over the day, also, the number of outliers increases 
with the number of observations. From Figure 22 it appears that the subsets can still be 
approximated by a Gamma or Normal distribution. The correlation between the hour and speed is 
also tested for the historic sample set, to investigate whether the velocity is time dependent in 
general. Because the speed will not have a linear correlation to the variable ‘hour’, a dummy 
variable is introduced, see Error! Reference source not found.. The dummy variable is expected 
to roughly indicate hours of decreasing speed. For frc 0,2 and 4, a significant correlation is found 
. 000 ≤ ! ≤ .006 <.!"  between the dummy variable and velocity. The relation is a negative 

one, which, in line with the expectations, indicates that the driving speeds decrease for a higher 
value of the dummy variable. However the correlation coefficients are very small and for the 
other road classes, there is no significant difference between the velocities for the different times 
of the day.  

!
Figure'21:'Boxplots'of'the'data,'divided'per'hour,'for'

an'edge'of'frc'0''

!
Figure'22:'Histograms'for'the'distributions'for'

different'times'of'the'day'

 

Fitted distributions: 
Solid line: Gamma 
distribution 
Dashed line: Normal 
distribution  
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In spite of the fact that the results 
from this analysis do not yield 
conclusive evidence that the 
velocities are dynamic, the 
assumptions is that travel time 
should be modeled as a dynamic 
variable. The reason for these 
results might be that congestion 
occurs at different times for 
different days. There are probably 
also differences between roads. Therefore the time dependent behavior of the velocity is further 
analyzed in this report. 
 

5.7 Weather and driving speed 
One of the factors expected to have its influence on the driving speed, and for which historic data 
is available, is the weather. From the Dutch weather institute KNMI, a dataset was downloaded, 
containing the following measures from weather station Eindhoven: 

• Wind speed (daily average [0.1 m/s]) 
• Temperature (daily average [0.1 dgr Celcius]) 
• Min ground temperature (height 10 cm) 
• Sunshine (daily sum, [0.1 hours]) 
• Rain (daily sum [0.1 mm]) 
• Minimal visability {0,…,89} (from 100 meters until >70km) 
• Clouds {1,…,9} (from fully visible to fully invisible sky) 
• Relative Humidity (daily average [%]) 

The correlation between the velocity and the daily weather variables was tested for the historic 
sample set and it was found that for frc 0-4, the average and minimal temperature had a 
significant correlation (. 001 ≤ ! ≤ .038 <.!") with the driving speed, although the effects were 
very limited (! < 0.1). Also the humidity seems to have its influence, despite the fact that the 
humidity did not correlate significantly with the visibility. On the whole, these results indicate 
that it might be beneficial to correct the data for weather influences. 
 
Of course it can be expected that some combination of weather variables might have an even 
greater influence on the velocity, for example the combination of freezing temperatures and rain, 
which might result in snow or icy roads. Therefore these two variables are combined into a binary 
variable and the correlation between this variable and the velocity is tested. The results were only 
significant for the larger roads, frc 0 and 2 (. 000 ≤ ! ≤ .002 < 0.05), but the effects were 
limited, as only 1% of the variance was explained by this variable.  
 

!"#$$%&'_!"#$%! = ! 1 !"!!"#_!"#$ < 3!!"#!!"#$ > 20%
0 !"#!  

5.8 Weather and the time of year 
Because weather predictions are another field of research, including these forecast in driving 
speed estimation is not feasible for long-term predictions. But the weather roughly follows the 
local climate, which pattern is a yearly cycle. Therefore the TOY might be a predictor for the 
average weather and could be used to correct for some of the variance caused by the weather. As 
the average and minimal temperatures per week had the strongest correlation with the velocity, 

Dummy!Variable!for!Time!of!Day!
Time'window' Start'[!"#$]' End'[!"#$]' Period' Expected'driving'

velocity'

1! 22! 5:59!(next!
day)!

Night!! !

2! 19! 21:59! Late!evening! !
3! 10! 15:59! Day]time! !
4! 16! 18:59! Evening!rush!hour! !
5! 6! 9:59! Morning!rush!hour! !

‘Start’ and ‘End’ hours are found using trail-and-error to optimize correlation 
Table'1:'Definitions'of'Time'of'day'(TOD)'
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the TOY is based upon chronologically successive weeks, which average and minimal 
temperatures fall within a certain range.  
 
Both the week and the time of year might therefore have a strong correlation with the weather. If 
true, the week number or the time of year could be used to incorporate the influence of the 
weather in the model. Because the ISO week numbers are based on the calendar, not on the 
weather, this numbering is not useful. And thus the weeks 
are renumbered based on the (1) average temperature, (2) 
the average minimal temperature and (3) the absolute 
minimum temperature. The correlations between these 
renumbered weeks. The correlations between the TOY and 
weather variables were tested. Significant result were 
found between the TOY variables and the all weather-
variables ! < .05 , except between for the rain. 
 
The combination of the findings that the weather has its influence on the velocity, and the 
weather is correlated with the TOY, might partially explain the seasonality found in Chapter 5.5. 
Altogether this strengthens the argument to analyze the predictive power of data split per TOY. 
 
 
  

Time!of!the!year!
Time'window' Start'!!' End'!!' Period'

1! week!21! week!37! Summer!
2! week!11! week!20! Spring!
3! week!38! week!48! Fall!
4! week!1! week!10!! Winter!
! week!49! week!53! !

Table'2:'Definitions'of'Time'of'Year'(TOY)'



Using Travel Time Predictions based on TomTom’s Big Data in Logistical Models 
 

27 
 

6. Analysis of unrestricted velocities per road segment 
 

6.1 Period with best predictive power over future traveling speed 
 
Different sets of data, represented by !! and !!, resulted in different estimations for the velocity. 
In order to compare the predictive power of these different datasets, the errors of the estimated 
value, !!(!) = !!!! ! − ! !! !!, !!  and Mean Square Error (MSE) are calculated for the all 
observations in the control sample set. The errors for both the Normal and Gamma distributions 
were very similar, this can be explained by the fact that the average velocity for many roads is 
larger than 30 [kph] and it was already established that the Gamma distribution resembles the 
Normal distributions for mean values above 30. 
 
First, the overall characteristics of the error distribution was investigated, a negative or positive 
mean of the error distribution indicates a biased estimator and, in practical sense, means that the 
driving speed is respectively over- or underestimated. The standard deviation indicates the width 
of the error distribution, a narrower width indicates that the predictions are more reliable, in the 
sense that it is more likely that a single observation of the driving speed equals the expected 
value. The errors are normally distributed, except for the errors of frc 7. An example of these 
errors, using a data set containing 2 years of recent data, is given in Figure 23.  

 
The next step was comparing the results between datasets. The resulting error distributions for the 
Gamma distribution are given in Appendix 2, the results for the Normal distribution were similar 
for the decimal places presented in the table. It is clear that the use of split data yields a much 
better result than using recent data, as the average error, MSE and standard deviation are lower. 
This smaller average error is most probably caused by the build-in seasonal and weather-
corrections. For the datasets containing recent data, the set containing two years of data obviously 
performs best. The explanation for the lesser performance when using 13 or 26 weeks of data is 
that these datasets only contain observations from the summer period, as the recent period ends at 
2011 week 35. Therefore the predictions based on these datasets overestimate the velocities for 
the major roads in the wintertime. As a result it is chosen no longer to use the datasets containing 
only 13 or 26 weeks of recent data in this report. 
 
The average errors for the split are relative close together, although the speed corrected, 
unrestricted dataset seemed to perform best. This is of course a logical result from the fact that the 

Figure'23:'Example'of'error'distributions'
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unrestricted sample dataset itself only contains unrestricted observations. Surprisingly, the dataset 
containing both the restricted and unrestricted observations, resulted in the lowest overall MSE 
and standard deviation. Altogether, the data set containing 2 years’ worth of restricted and 
unrestricted split data has the best performance based on the error analysis.  
 
Last, it was also checked whether the errors were time related, as that would mean the prediction 
for a certain TOY, time of the week or TOD should be adjusted. The results, using 2 years of split 
data, are depicted in Figure 24. The error does not seems to be time related, although the line for frc 
7 is whimsical, but this is due to the low sample size for this class. The same effect is noticeable 
in the early morning, as only limited observations are made during these hours. On average, the 
absolute error equals about 10 [kph]. Similar graphs have been made based on other datasets, 
which resulted in similar outcomes. 
 

6.2 Reliability of predicted percentile scores 
From the predicted distributions of the velocity, confidence intervals can be calculated, which 
predict that !% of the observations will lay within a certain range. If the distributions reliably 
describe the future observations, the predicted and actual percentiles should match. As the 
Normal probability density function is symmetric, the observations should be symmetrically 
distributed above and below the mean. The Gamma distribution however, can be positively 
skewed, which indicates that the number of observations above the mean can transcends the 
number of observations below the mean. This results in a range, characterized 
by !! !, ! , !! !, ! , with  

! !! !, ! ≤ ! ! ≤ ! ! ! = !! ! ! ! ≤ ! ! ≤ !! !, ! = 0.5 ∙ !!
A graphical representation for a road segment of frc 0 and 4, are given in Figure 25. In these 
figures the velocity is plotted against the TOD, for a Tuesday and Saturday. The predictions are 
either based on the Normal, or the Gamma distribution, as is indicated on the left. The dark lines 
represent the expected velocities based on 52 weeks of most recent corrected data, the light green 
area should contain 50% of the observations, the light blue area 95%. A random selection of 
observations from the control set are colored green or orange when they are located within the 
50% or 95% area, or red when located outside both areas. The differences between the Gamma 
and Normal distributions are very small for the example of frc 0, as was expected as the average 

Figure'24:'Errors'over'time,'a)'error'over'the'year,'b)'error'over'the'week'and'c)'error'over'the'day'
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speed vastly exceeds the 30 [kph]. For the example of frc 4 however, the larger tail of the Gamma 
distribution clearly captures more observations within the 95% range. 
 
The accuracy of the confidence intervals is also analyzed for the entire control sample set. For 
each observation in this set, it is determined in which confidence interval the observation is 
located. The distribution that best predicts the confidence intervals is preferred, as that indicates 
that the distribution reliably predicts the shape of the future velocity. The results are given in 
Appendix 3 and are clearly in favor of the 1 and 2 years of recent data, containing both restricted 
and unrestricted observations. The confidence intervals from the other distributions seem to be to 
narrow.  
 
The results from the analysis point out two potential datasets that perform best. The uncorrected 
split data, containing both restricted and unrestricted observations and the most recent data 
containing 2 years of data. The former datasets results in estimations with a small average error 
and the smallest error distribution, and thus the predicted values are the most accurate. The latter 
dataset however, best describes the shape of the future velocity distribution. As the remainder of 
this report focuses on the effect of the distribution’s width and skew of the TT distributions, it is 
chosen to use the full dataset containing 2 years of most recent data. The full dataset is used 
because possible stops should be incorporated in the TT predictions for routes. The average 
overestimation of the velocity found in Chapter 6.1 is a disadvantage of this dataset that is taken 
for granted. Last, the choice for the Gamma distribution is strongly supported by the fact that the 
Normal distribution was unable to describe the shape of future observations.   
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Figure'25:'Graphical'representation'of'velocity'distributions'for'two'road'segments'

  

Legend:  
-  Estimated velocity 
--  50th percentile 
--  95th percentile 
! Observation within P50 interval range 
! Observation within P95 interval range 
! Observation outside P95 interval range 
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7. Results for travel time predictions for routes 
 

7.1 Prediction compared with simulated route 
Using the results from the analysis per road segment, it is possible to calculate the dynamic travel 
time distributions for a route. As it was found that the driving speeds are very well represented by 
a Gamma distribution, it is implicated that the travel times follow an inverse-Gamma distribution. 
This is again in line with the findings by Van Lint et al. (2008), as the inverse Gamma 
distribution is positively skewed. This dynamic TT distribution can then be compared to observed 
travel times for these routes. The results of a dynamic travel time distribution for a randomly 
chosen, non existing, route, for two randomly picked days (15 and 16 May 2012) are presented in 
figure X. The travel time is given as a function of the departure time. The observed travel times 
are generated using the simulation algorithm described in Chapter 4.6 and are colored to indicate 
whether the observation falls within the 50th percentile (green), 95th percentile (orange) or outside 
the 95th percentile (red). In order to find a sufficient number of simulated routes, an accuracy of 
±30!"# is used, which means that an observed traveling time for a segment should be within a 
30-minute range from the actual time. The simulation algorithm found routes between 6 am and 
10 pm for the specified dates. 
 

 
The expected travel time is higher during daytime and the longest travel times are, as expected, 
found during the morning and evening rush hours, these times are also far more volatile, as 
shaded area is wider. The positive skew is represented by the larger area above the expected 
value, in comparison to the area below the expected value. And, in line with what was expected 
from literature, the skew is much more severe during congested hours than during free flow 
hours.  
 

7.2 Realistic routes 
The simulated routes in chapter 7.1 only contained a limited number of edges, for which 
sufficient data per day was available to simulate the route for a specific day. However, realistic 
routes are longer and often include roads of different road classes, therefore two randomly chosen 
routes between two sets of addresses are created, the former route uses a large main road and the 
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Figure'26:'Graphical'representation'of'the'travel'

time'

Legend:  
-  Estimated Travel Time 
--  50th percentile 
--  95th percentile 
! Observation within P50 interval range 
! Observation within P95 interval range 
! Observation outside P95 interval range 
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latter stays within the city borders. Figure 27 depicts a small segment of the map of Eindhoven with 
Route 1 (red, 1 → 2) and Route 2 (blue, 3 → 4). The directions, distances and some static travel 
time estimations are given in Table 3.  
 

!
Figure'27:'Subsection'of'Eindhoven’s'roadmap'

Distances:! Route!1! Route!2!
Straight!line! 3,016![m]! 1,251![m]!
Over!road! 4830.7![m]! 2041.2![m]!
Postalcode!start! 5652XJ! 5616KD!!
Postalcode!finish! 5655JW! 5652NX!

Static!Travel!time:! ! !
Google! 8![min]! 6![min]!
TomTom!(internet)*! 7![min]! 6![min]!
TomTom!(static)! 5.512![min]! 2.517![min]!
Postalcode!table! 7![min]! ! 4![min]!

*middle!of!the!day,!no!congestion!

Route!1!Welschapsedijk!–!Warmelo!!(red)!(65!edges)!
Directions:! Distance![m]!
Start!at!1! !
Go!northeast!on!Welschapsedijk! 64.7!
Turn!right!on!Noord!Brabantlaan! 234!
Turn!right!onto!ramp!to!N2! 559.7!
Bear!right!on!N2! 423.8!
Bear!right!onto!ramp!to!Meerveldhovenseweg! 1877.3!
Turn!left!on!Meerveldhovenseweg! 379.9!
Turn!right!on!Ulenpas! 516!
Turn!right!on!Twickel! 229.3!
Turn!left!on!Warmelo! 477!
Turn!left!to!stay!on!Warmelo! 67.8!
Finish!at!2! 1.3!

Route!2!Schoenerstraat!]!Vigliuslaan!(blue)!(43!edges)!
Directions:! Distance![m]!
Start!at!1! !
Go west on Schoenerstraat toward Botterstraat! 103.2 m!
Turn right on Tjalkstraat! 150.1 m!
Turn left at Klipperstraat to stay on Tjalkstraat! 85.1 m!
Turn left on Strijpsestraat! 140.6 m!
Turn right on Beukenlaan! 29.1 m!
At fork keep left on Beukenlaan! 112.4 m!
At roundabout, take 1st exit to proceed north 
on Beukenlaan!

448 m!

Make sharp right! 7.1 m!
At fork keep left! 112.8 m!
Turn right on Noord Brabantlaan! 622.8 m!
Turn right on van der Muydenstraat! 8.7 m!
Turn left on Noord Brabantlaan! 72.9 m!
Turn right on Vigliuslaan! 148.4 m!
Finish!at!2! !
Table'3:'a)'Static'travel'time'estimations,'b)'and'c)'the'driving'

directions'for'Route'1'and'2'
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Figure'28:'TT'predictions'for'a'Monday,'for'Route'1'and'2 
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Figure 28 depicts the travel time predictions for routes 1 and 2. The straight lines represent static 
travel time predictions based on two internet-planners: Google maps (blue) and TomToms’ online 
route planner (Purple). The third prediction is based on TomTom’s routable maps (Green), the 
travel times are calculated using the maximal legal speed and should theoretically identify the 
lower bound of all predictions. The last static prediction is based on a Postal Code Matrix2 
(Cyan). A dynamic travel time prediction, based on TomToms’ speed profiles (Red) resulted in a 
virtual straight line, as speed profiles were only provided for a very small number of road 
segments.  
 
For Route 1, the internet-planners’ predictions either coincide with the expected peaks (google 
maps) or expected lower value (TomTom internet planner) of the expected prediction. As the 
TomTom internet-planner is set to 1 pm and congestion was not taken into account, the results are 
in line with the findings in this report. TomToms’ static speed calculation does underestimate the 
travel time, as it does not incorporate stops and assumes that a vehicle always travels at the legal 
velocity.  
 
For Route 2, which is a more inter-city route, the expected travel time shows a flatter profile. The 
95th percentile shows that the distribution is much wider during daytime then during nighttime. 
However, the distribution seems to be relative flat over the day. The internet-planners from both 
Google and TomTom coincide and have a longer estimate travel time than the static and dynamic 
speeds obtained from TomToms’ routable map. Both internet-planners seem to overestimate the 
travel time. And both estimations based on TomToms’ routable map seem to underestimate the 
travel time.  
 
On a whole, the estimated travel time, based on 2 years of recent data, is in line with the 
estimations from other sources, but the differences in the width and shape of the distributions are 
fully omitted by the other sources’ predictions.  
  

                                                        
2 http://www.eenmanierom.nl/afstand-te-berekenen-in-kilometers-tussen-postcodes-voor-je-reiskostendeclaratie 
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8. Implications for the Vehicle Routing Model 
In this section of the report, it is investigated, for a small 
subsection of Eindhoven, whether information obtained from 
travel time distributions result in more reliable solutions for the 
VRP. First the vehicle routing problem (VRP), comprising 1 
distribution center, 4 vehicles and 11 demand locations is 
introduced in Figure 29. Using ESRI ArcGIS, the VRP was 
solved such that all demand locations are assigned to exactly 
one vehicle and should be visited in a particular order. The 
resulting routes were optimized solely on time. 
 
As a reference, the VRP was solved using the legal speed limit 
as velocity per road segment. The resulting routes are depicted 
in Figure 30, including the order in which the locations should 
be visited. Then  the VRP was solved using the expected travel 
times for a Monday at 7am, 8am, 9am, 10 am and 3pm. This 
resulted in small changes for the route, as well as small 
changes in the expected travel time per route. The only major 
change was a reversed sequence for demand locations 5, 3 and 10. It can therefore be concluded 
that time dependent travel times do have an effect on the solutions found by the VRP. An 
example of a change in route is given in Figure 31. Let the routes, which are the result of the VRP 
when the estimate velocities are used, be denoted as average estimate centric routes for time x. 
 

5]3]9! 8]10! 7]4]1! 11]2]6!

! ! ! !
Figure'30:'VRP'Solved'for'using'the'legal'speed'limit.'Similar'routes'were'found'when'using'estimated'travel'times.'

It got more interesting when the TT 
estimations were based on the 95th 
percentile velocity. The allocation 
of the demand locations per route 
changed and a transition from the 
small local roads and freeway 
towards the main local roads was 
visible, see Figure 33. This indicates a 
that the smaller local roads have a 
relative higher penalty. Let these 
routes be denoted as the p95 
estimate centric routes for time x. 
 

Figure'29:'VRP'for'subsection'of'

Eindhoven 
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Figure'31:'Example'of'a'change'in'route'between'8am'and'9am,'while'using'the'

estimated'travel'times'as'input. 
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9]3]5! 11]8]10! 7]4! 2]1]6!

! ! ! !
Figure'33:'Routes'based'on'the'95

th
'percentile'velocity'at'8am'

'

The main question remains whether 
the average estimate centric routes for 
time x are indeed less reliable than the 
p95 estimate centric routes for time x. 
Therefore, two parts of the suggested 
routes are identified that have the 
same start and end point, see Figure 33. 
For these two routes the distributions 
is calculated for a Monday at 8am. 
 
The resulting distributions are 
presented in Figure 35, and the 
characteristics are exactly as expected. The expected travel time is 
minimal for the average estimate centric route and the 95th percentile 
is minimized for the p95 estimate centric route. The distance 
between the expected value and 95 percentile score is an indication 
of the width of the distribution. Therefore is can be concluded that, at 
least for this example, the p95 estimate centric route resulted in a 
more reliable route. The differences are very small however, due to 
the short length of the routes. 

 
 
  

9am 

 

7am 

 
 

Figure'32:'Example'of'a'change'in'route'between'8am'and'9am,'while'using'the'P95'

travel'times'as'input. 

start location 
end location 
average estimate centric 
route 
P95 estimate centric 
route 

 Figure'34:'Two'parts'of'a'route'with'

similar'start'and'end'point 

s 
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P95(P95)   P95(avg.est) 
 

Figure'35:'Resulting'distributions'for'the'average&estimate&centric&route&
and'the&p95&estimate&centric&route&on&a&Monday&at&8am'
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9. Conclusions and recommendations 
As travel times are stochastic variables and the shape of their distributions changes over the day, 
the traditional discrete travel time prediction, either static or dynamic, does not provide sufficient 
information. Finding reliable data, which can be used to predict the future travel time distribution 
is however a bottleneck. In this report a dataset from TomTom is used and it is shown that this 
data has a good predictive power over the future distribution of the travel times. The predicted 
distributions have been tested against observations from a control set and proved to be accurate 
up to frc 6. This is an enormous improvement compared to other available data sources. 
  
For the logistical models, the VRP in particular, it can be concluded that the use of, for example, 
the 95th percentile of the velocity distribution resulted in routes with a lower volatility. On the 
other hand, the average travel time increased. The tradeoff between reliability and the, on 
average, shortest route should be considered by the user. Therefore, the overall conclusion is that 
planning tools, the VRP in particular can benefit from velocity distributions.  
 
However, a lot more research should be conducted to investigate the influence of the travel time 
distributions on the VRP. In this report only a few simple examples are presented. Secondly the 
data comprised only a very small subset of the total dataset, and although the general line of this 
report might be generalizable, the data and suggested applications should be investigated on a 
much larger scale. In this research, only the 95th percentile score is used, however, there might be 
another percentile score which has a much better balance between risk evasiveness and average 
travel time. Also, the observations marked as future observations were all made within a one year 
period since the end of the dataset used as historic data. It would be interesting to know if 
predictions over a longer time would still be reliable. 
 
An important shortcoming during this report was a solution method that uses stochastic travel 
times directly as its input. The methods available were only able to solve the VRP with discrete 
variables. The devious method used in this report, using ESRI ArcGIS, was time consuming, took 
a lot of manual labor and was far from ideal. It is therefore recommended to use a specialized 
solution method in order to compare the effects of travel time distributions on a larger scale. 
 
The last hurdle that had to be taken for this report was the amount of data. Now that an initial 
proof is provided, it is interesting to further analyze the potential of TomTom’s Big Data. There 
will be better, more sophisticated analysis techniques, which can be used to further improve its 
predictive power or include more exogenous variables.   
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Appendices 
 
Description!of!Functional!Road!Classes!(FRC)!

FRC! Description! In!data!

0! Motorway,!Freeway,!or!Other!Major!Road!! Yes!
1! a!Major!Road!Less!Important!than!a!Motorway! No!
2! Other!Major!Road! Yes!
3! Secondary!Road! Yes!
4! Local!Connecting!Road! Yes!
5! Local!Road!of!High!Importance! Yes!
6! Local!Road! Yes!
7! Local!Road!of!Minor!Importance! Yes!
8! Other!Road! No!

Appendix'1:'Description'of'Functional'road'classes'

Error!distributions,!using!data!from!most!recent!data!or!split!data!
Δ(!!, !!)! ! ! Frc'0'

(N=3730)'

Frc'2'

(N=7891)'

Frc'3'

(N=495)'

Frc'4'

(N=399)'

Frc'5'

(N=461)'

Frc'6'

(N=574)'

Frc'7'

(N=51)'

13'weeks'of'data'

!! = ′11!23!
!! = ′11!35'

Uncorrected'data'

'

Mean' ]2.8794! ]2.8005! ]2.4875! ]2.4125! ]1.4350! ]2.0272! ]2.4931!

Std'dev' 12.5089! 12.8460! 13.9325! 12.5540! 12.3696! 12.7996! 14.8365!

' MSE' 164.6815! 171.3509! 197.3087! 167.6663! 160.5013! 168.8313! 256.0750!

Corrected'&'

unrestricted'data'

Mean' ]2.1719! ]2.1679! ]2.0003! ]1.6412! ]0.6458! ]1.2758! ]1.7124!

Std'dev' 12.2839! 12.6837! 13.7130! 12.2130! 12.1956! 12.7227! 14.5232!

' MSE' 161.9022! 168.8797! 197.0709! 171.1957! 163.6015! 165.4934! 239.9674!

26'weeks'of'data'

!! = ′11!10!
!! = ′11!35'

Uncorrected'data' Mean' ]2.7185! ]2.6376! ]2.5678! ]2.2188! ]1.1826! ]2.1008! ]2.4755!

Std'dev' 12.4327! 12.7912! 13.8775! 12.7714! 12.5112! 12.6409! 14.4409!

' MSE' 166.9229! 172.6206! 201.6329! 172.5601! 167.8979! 168.2659! 255.1680!

Corrected'&'

unrestricted'data'

Mean' ]2.0068! ]1.9955! ]2.0422! ]1.4983! ]0.4034! ]1.2717! ]1.4852!

Std'dev' 12.1737! 12.6121! 13.6031! 12.4083! 12.2237! 12.4983! 14.1577!

' MSE' 167.8893! 173.6693! 203.0382! 169.0304! 173.0522! 170.7265! 252.8965!

52'weeks'of'data'

!! = ′10!36!
!! = ′11!35'

Uncorrected'data' Mean' ]3.0570! ]2.9877! ]2.8178! ]2.6015! ]1.6227! ]2.3419! ]3.0116!

Std'dev' 12.5555! 12.8528! 14.0172! 12.7599! 12.6654! 12.7305! 14.7426!

' MSE' 155.5280! 164.1141! 189.1312! 156.9877! 154.8169! 164.8141! 242.4342!

Corrected'&'

unrestricted'data'

Mean' ]2.2719! ]2.2518! ]2.2630! ]1.7818! ]0.7297! ]1.4319! ]2.0519!

Std'dev' 12.2274! 12.6341! 13.6638! 12.3524! 12.2801! 12.5924! 14.5286!

' MSE' 152.1575! 161.4117! 186.8490! 160.4912! 155.2045! 159.8996! 226.4461!

104'weeks'of'data'

!! = ′09!36!
!! = ′11!35'

Uncorrected'data' Mean' ]2.6233! ]2.5323! ]2.1317! ]1.8639! ]1.2896! ]1.9511! ]2.6733!

Std'dev' 12.6917! 12.9891! 14.1930! 12.6544! 12.8986! 12.9253! 14.8582!

' MSE' 154.5965! 163.2631! 189.0103! 159.8810! 157.3961! 162.5346! 241.5669!

Corrected'&'

unrestricted'data'

Mean' ]1.6873! ]1.6734! ]1.4276! ]0.9931! ]0.2047! ]0.9223! ]1.3830!

Std'dev' 12.2802! 12.6504! 13.7424! 12.1663! 12.3471! 12.6434! 14.2549!

' MSE' 153.5710! 161.4296! 187.8093! 155.1461! 158.3451! 161.3213! 227.1403!

2'years'of'SPLIT'

data'

'

Uncorrected'data' Mean' 0.7320! 0.8007! 0.7431! 1.3048! 0.9511! 0.7241! 0.8303!

Std'dev' 11.3847! 11.4999! 11.6662! 11.8693! 11.5533! 11.4545! 9.9732!

' MSE' 130.1259! 132.8832! 136.5145! 142.3856! 134.2350! 131.5930! 98.9463!

Corrected'&'

unrestricted'data'

Mean' 0.0389! ]0.0401! 0.2377! 0.5342! 1.3969! 0.7139! ]0.1906!

Std'dev' 12.2168! 12.6072! 13.6150! 12.4188! 12.5295! 12.8102! 13.8249!

' MSE' 149.1744! 157.4786! 182.1423! 159.0131! 160.7210! 164.3904! 200.6802!

3'years'of'SPLIT'

data'

Uncorrected'data' Mean' 0.7783! 0.8424! 0.7642! 1.3935! 0.9849! 0.7811! 0.8758!

Std'dev' 11.4698! 11.6023! 11.7761! 11.9201! 11.6739! 11.4997! 9.9440!

' MSE' 132.1526! 135.3177! 139.1944! 143.9378! 137.1803! 132.7883! 99.0833!

Corrected'&'

unrestricted'data'

Mean' ]0.0924! ]0.1270! 0.1491! 0.4330! 1.2074! 0.6211! ]0.2207!

Std'dev' 12.4735! 12.8730! 13.9808! 12.4718! 12.8376! 13.1163! 13.4648!

' MSE' 155.5207! 164.3991! 192.9133! 160.0212! 167.9626! 170.9591! 197.6967!

Legend: Lowest mean, lowest standard deviation and lowest Mean Square Error (MSE) 
 
Appendix'2:'Error'between'estimation'and'observations'from'the'unrestricted'control'sample'set.'
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Appendix'3:'Percentile'scores'per'dataset'

Percentile!scores!
! GAMMA! NORMAL!

FRC! 10%! 20%! 30%! 40%! 50%! 60%! 70%! 80%! 90%! 10%! 20%! 30%! 40%! 50%! 60%! 70%! 80%! 90%!

1yr! 0! 10.14%! 20.96%! 29.90%! 40.84%! 51.01%! 62.47%! 71.57%! 82.09%! 91.08%! 8.06%! 16.47%! 24.19%! 31.98%! 40.82%! 50.05%! 59.48%! 69.27%! 81.10%!
uncor! 2! 10.67%! 21.18%! 32.09%! 42.82%! 53.61%! 64.33%! 74.11%! 82.85%! 90.51%! 8.92%! 17.92%! 26.65%! 35.70%! 44.82%! 53.45%! 62.16%! 70.37%! 78.79%!
! 3! 6.95%! 15.33%! 23.89%! 33.87%! 45.45%! 56.33%! 69.34%! 80.57%! 88.77%! 4.28%! 8.91%! 13.01%! 17.47%! 22.82%! 28.34%! 35.29%! 45.99%! 56.15%!
! 4! 9.45%! 17.66%! 24.13%! 32.84%! 43.53%! 58.71%! 71.39%! 81.84%! 91.79%! 7.46%! 13.68%! 21.64%! 27.86%! 35.57%! 41.54%! 50.25%! 59.20%! 71.64%!
! 5! 11.29%! 21.34%! 30.34%! 43.03%! 56.08%! 65.08%! 72.84%! 83.60%! 90.48%! 7.94%! 14.99%! 22.05%! 28.92%! 38.98%! 49.56%! 56.97%! 67.55%! 76.90%!
! 6! 12.77%! 23.08%! 33.22%! 43.54%! 53.19%! 62.19%! 72.83%! 83.80%! 88.87%! 10.97%! 18.17%! 25.86%! 33.39%! 40.26%! 49.10%! 57.12%! 66.61%! 78.23%!
! 7! 11.94%! 20.90%! 34.33%! 40.30%! 50.75%! 62.69%! 65.67%! 71.64%! 80.60%! 5.97%! 16.42%! 23.88%! 34.33%! 40.30%! 47.76%! 52.24%! 59.70%! 71.64%!
2yrs! 0! 10.12%! 20.15%! 29.63%! 40.52%! 50.88%! 61.83%! 72.29%! 82.92%! 92.82%! 7.02%! 14.28%! 21.09%! 28.16%! 35.45%! 43.30%! 52.27%! 61.69%! 73.38%!
uncor! 2! 11.23%! 23.10%! 34.13%! 45.71%! 56.06%! 67.00%! 76.36%! 84.68%! 92.08%! 7.70%! 16.24%! 24.25%! 32.70%! 40.91%! 49.16%! 58.10%! 66.42%! 76.20%!
! 3! 6.60%! 14.97%! 24.06%! 33.51%! 45.99%! 57.22%! 69.70%! 80.93%! 89.66%! 3.57%! 7.84%! 12.83%! 17.47%! 22.64%! 25.67%! 32.62%! 42.07%! 54.72%!
! 4! 8.21%! 16.67%! 25.62%! 37.06%! 49.50%! 61.69%! 75.37%! 83.33%! 90.30%! 5.97%! 15.17%! 22.89%! 31.09%! 38.81%! 45.52%! 51.00%! 61.19%! 72.64%!
! 5! 11.64%! 24.69%! 33.86%! 43.92%! 56.26%! 64.73%! 75.84%! 84.66%! 91.18%! 7.76%! 16.93%! 23.46%! 29.81%! 39.33%! 47.97%! 56.26%! 66.14%! 77.60%!
! 6! 10.95%! 22.55%! 35.62%! 45.10%! 56.70%! 65.20%! 73.86%! 83.66%! 90.52%! 8.66%! 17.81%! 26.63%! 33.99%! 41.67%! 48.20%! 58.01%! 67.81%! 79.58%!
! 7! 13.24%! 26.47%! 35.29%! 44.12%! 57.35%! 64.71%! 66.18%! 73.53%! 83.82%! 8.82%! 17.65%! 26.47%! 32.35%! 38.24%! 47.06%! 63.24%! 64.71%! 67.65%!
1yr! 0! 12.23%! 22.43%! 31.05%! 41.07%! 52.51%! 63.85%! 73.00%! 81.79%! 90.77%! 9.23%! 17.85%! 24.63%! 31.31%! 40.19%! 49.43%! 59.63%! 69.31%! 80.65%!
cor! 2! 8.01%! 16.28%! 26.08%! 35.54%! 45.25%! 56.19%! 65.84%! 75.11%! 83.31%! 4.76%! 9.06%! 14.98%! 21.01%! 26.18%! 32.13%! 38.70%! 46.26%! 55.04%!
! 3! 6.78%! 13.92%! 22.16%! 30.77%! 40.48%! 49.08%! 59.34%! 69.05%! 77.11%! 4.21%! 6.96%! 11.54%! 16.30%! 22.34%! 27.11%! 32.05%! 37.55%! 48.17%!
! 4! 7.02%! 10.37%! 18.06%! 26.76%! 31.10%! 42.47%! 51.84%! 59.53%! 70.23%! 4.00%! 6.00%! 11.67%! 16.00%! 21.33%! 25.00%! 30.33%! 38.67%! 48.33%!
! 5! 8.19%! 14.94%! 20.72%! 29.16%! 37.59%! 46.27%! 56.14%! 67.23%! 76.14%! 5.54%! 9.40%! 15.90%! 19.76%! 26.27%! 30.84%! 37.35%! 43.61%! 54.22%!
! 6! 7.85%! 14.78%! 21.17%! 28.65%! 33.76%! 41.24%! 49.64%! 61.13%! 72.26%! 6.93%! 11.50%! 16.42%! 19.34%! 25.36%! 31.39%! 35.40%! 41.79%! 50.91%!
! 7! 2.63%! 5.26%! 10.53%! 13.16%! 18.42%! 23.68%! 31.58%! 36.84%! 47.37%! 2.50%! 2.50%! 5.00%! 5.00%! 10.00%! 10.00%! 15.00%! 17.50%! 22.50%!
2yr! 0! 11.45%! 21.88%! 32.30%! 43.87%! 53.04%! 63.12%! 73.42%! 83.28%! 92.55%! 8.82%! 14.89%! 21.19%! 28.29%! 34.71%! 41.70%! 50.63%! 61.05%! 72.74%!
corr! 2! 8.03%! 16.92%! 25.81%! 35.59%! 45.24%! 56.58%! 66.62%! 75.25%! 84.37%! 4.66%! 10.53%! 15.36%! 20.45%! 25.38%! 31.41%! 37.87%! 44.72%! 54.21%!
! 3! 6.04%! 14.47%! 23.26%! 32.23%! 40.29%! 50.00%! 59.52%! 70.33%! 77.84%! 3.11%! 7.33%! 11.17%! 15.75%! 20.70%! 27.11%! 32.78%! 38.83%! 46.15%!
! 4! 7.02%! 12.37%! 17.06%! 24.08%! 33.11%! 40.80%! 51.84%! 58.86%! 69.23%! 2.33%! 7.00%! 11.33%! 13.67%! 18.67%! 22.00%! 28.33%! 37.67%! 46.33%!
! 5! 6.67%! 15.80%! 23.46%! 28.89%! 38.77%! 47.41%! 56.79%! 69.14%! 78.02%! 5.41%! 9.83%! 15.72%! 20.15%! 24.82%! 30.47%! 36.36%! 42.51%! 54.30%!
! 6! 8.03%! 14.53%! 22.56%! 30.21%! 34.80%! 42.26%! 51.82%! 62.14%! 72.47%! 6.30%! 10.69%! 13.74%! 19.27%! 25.57%! 30.73%! 37.21%! 41.41%! 49.62%!
! 7! 2.44%! 9.76%! 12.20%! 14.63%! 19.51%! 26.83%! 29.27%! 34.15%! 43.90%! 2.38%! 4.76%! 9.52%! 11.90%! 11.90%! 14.29%! 19.05%! 19.05%! 26.19%!
t.o.y.! 0! 8.38%! 16.62%! 26.20%! 36.97%! 46.78%! 55.94%! 67.08%! 78.41%! 89.41%! 7.44%! 15.07%! 22.69%! 32.61%! 40.97%! 49.47%! 59.72%! 70.00%! 82.04%!
2yrs! 2! 7.43%! 15.27%! 23.23%! 30.92%! 39.81%! 48.73%! 57.40%! 66.32%! 74.52%! 5.17%! 10.25%! 15.56%! 20.73%! 26.40%! 32.09%! 38.53%! 46.22%! 54.51%!
corr! 3! 6.53%! 15.14%! 23.24%! 31.07%! 38.90%! 49.87%! 57.44%! 67.36%! 75.46%! 4.70%! 9.92%! 13.84%! 17.75%! 24.28%! 30.55%! 35.25%! 42.82%! 53.00%!
! 4! 1.95%! 7.42%! 14.45%! 21.88%! 28.91%! 39.06%! 49.61%! 61.33%! 73.44%! 2.71%! 5.04%! 9.69%! 13.18%! 20.54%! 24.42%! 31.78%! 41.09%! 50.78%!
! 5! 7.73%! 13.60%! 21.33%! 29.87%! 37.87%! 48.00%! 57.60%! 66.67%! 77.33%! 4.79%! 9.57%! 14.36%! 19.95%! 26.60%! 32.71%! 39.63%! 48.94%! 57.71%!
! 6! 6.48%! 14.46%! 21.95%! 28.43%! 36.16%! 43.14%! 51.62%! 59.60%! 71.07%! 5.97%! 10.70%! 15.42%! 18.41%! 25.37%! 29.85%! 35.57%! 41.79%! 51.99%!
! 7! 9.09%! 9.09%! 9.09%! 13.64%! 18.18%! 18.18%! 18.18%! 22.73%! 27.27%! 8.70%! 8.70%! 8.70%! 8.70%! 8.70%! 17.39%! 17.39%! 17.39%! 17.39%!
t.o.y! 0! 9.24%! 18.12%! 27.29%! 37.39%! 47.35%! 57.44%! 67.86%! 79.26%! 89.32%! 8.22%! 15.65%! 23.87%! 32.25%! 40.80%! 49.87%! 59.66%! 70.40%! 81.96%!
3yrs!! 2! 7.38%! 15.20%! 23.92%! 33.41%! 42.10%! 50.94%! 60.15%! 68.64%! 76.84%! 4.30%! 8.82%! 13.80%! 19.09%! 24.29%! 29.84%! 35.81%! 41.92%! 50.44%!
corr! 3! 7.23%! 14.29%! 24.05%! 31.83%! 40.69%! 50.09%! 58.41%! 68.54%! 77.58%! 4.52%! 8.68%! 15.55%! 19.89%! 24.95%! 28.57%! 35.26%! 42.13%! 49.37%!
! 4! 5.79%! 12.12%! 18.18%! 24.24%! 33.06%! 42.42%! 50.69%! 59.50%! 71.90%! 2.47%! 6.58%! 10.68%! 17.26%! 22.47%! 27.40%! 33.70%! 41.92%! 51.23%!
! 5! 6.40%! 13.76%! 23.06%! 31.40%! 38.76%! 48.64%! 59.50%! 67.25%! 76.94%! 2.90%! 7.74%! 13.15%! 19.73%! 26.11%! 33.08%! 40.43%! 50.29%! 58.61%!
! 6! 6.79%! 13.76%! 21.43%! 27.35%! 35.37%! 42.86%! 49.65%! 60.63%! 71.78%! 4.52%! 9.04%! 13.74%! 19.13%! 24.70%! 28.35%! 34.78%! 40.52%! 49.74%!
! 7! 5.00%! 7.50%! 15.00%! 17.50%! 20.00%! 27.50%! 27.50%! 32.50%! 37.50%! 8.06%! 16.47%! 24.19%! 31.98%! 40.82%! 50.05%! 59.48%! 69.27%! 81.10%!
t.o.y! 0! 9.43%! 18.60%! 28.27%! 37.70%! 48.26%! 57.15%! 68.30%! 79.37%! 9.43%! 8.14%! 16.05%! 24.06%! 32.34%! 40.35%! 48.97%! 58.53%! 68.81%! 81.26%!
2yrs!! 2! 7.98%! 15.78%! 23.32%! 31.43%! 40.07%! 48.19%! 55.96%! 64.17%! 7.98%! 5.05%! 9.87%! 14.92%! 19.79%! 24.75%! 30.09%! 35.50%! 42.55%! 50.67%!
uncorr! 3! 6.42%! 15.69%! 23.71%! 31.73%! 43.49%! 54.55%! 68.98%! 79.14%! 6.42%! 4.63%! 8.02%! 11.05%! 13.90%! 20.86%! 26.02%! 33.33%! 39.75%! 48.48%!
! 4! 5.75%! 11.75%! 16.50%! 22.75%! 32.00%! 43.00%! 54.00%! 65.25%! 5.75%! 4.23%! 8.46%! 11.69%! 14.18%! 18.16%! 26.12%! 30.85%! 39.30%! 50.00%!
! 5! 8.47%! 17.99%! 26.28%! 35.27%! 47.44%! 59.79%! 69.31%! 80.25%! 8.47%! 5.29%! 10.05%! 15.34%! 22.05%! 29.45%! 34.39%! 43.21%! 52.20%! 62.26%!
! 6! 8.20%! 15.57%! 27.21%! 33.77%! 42.95%! 51.80%! 62.13%! 72.30%! 8.20%! 3.60%! 10.31%! 15.22%! 19.64%! 25.20%! 31.59%! 35.84%! 41.90%! 51.55%!
! 7! 10.71%! 14.29%! 21.43%! 23.21%! 32.14%! 41.07%! 41.07%! 46.43%! 10.71%! 1.75%! 7.02%! 8.77%! 10.53%! 12.28%! 15.79%! 21.05%! 26.32%! 31.58%!
t.o.y! 0! 9.38%! 18.35%! 28.10%! 37.53%! 47.90%! 57.25%! 68.52%! 79.53%! 9.38%! 8.06%! 15.73%! 23.93%! 32.07%! 40.11%! 48.87%! 58.18%! 68.79%! 8.06%!
3yrs!! 2! 7.73%! 15.46%! 23.89%! 32.29%! 41.31%! 49.78%! 58.06%! 65.94%! 7.73%! 4.98%! 9.46%! 14.46%! 19.06%! 24.26%! 29.45%! 34.73%! 41.47%! 4.98%!
uncorr! 3! 6.42%! 13.90%! 22.82%! 31.19%! 43.85%! 54.90%! 68.63%! 79.14%! 6.42%! 3.92%! 7.66%! 11.23%! 15.69%! 21.03%! 26.56%! 33.16%! 39.75%! 3.92%!
! 4! 7.23%! 12.22%! 17.71%! 25.44%! 32.92%! 41.40%! 54.11%! 64.84%! 7.23%! 4.23%! 7.96%! 12.19%! 15.92%! 21.39%! 25.87%! 31.34%! 40.05%! 4.23%!
! 5! 7.41%! 18.52%! 26.63%! 36.33%! 48.85%! 58.55%! 69.31%! 80.42%! 7.41%! 4.41%! 10.58%! 15.17%! 22.05%! 27.69%! 34.57%! 43.21%! 52.38%! 4.41%!
! 6! 8.20%! 15.25%! 26.39%! 34.59%! 43.11%! 52.13%! 61.80%! 71.48%! 8.20%! 4.75%! 9.00%! 14.57%! 19.64%! 24.22%! 30.77%! 35.84%! 41.41%! 4.75%!
! 7! 9.26%! 14.81%! 22.22%! 25.93%! 37.04%! 46.30%! 48.15%! 51.85%! 9.26%! 0.00%! 3.64%! 7.27%! 7.27%! 16.36%! 20.00%! 21.82%! 29.09%! 0.00%!

 


