
 Eindhoven University of Technology

MASTER

Performance modelling and application analysis of a flexible heterogeneous video camera
architecture

Janssen, E.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/31ac4ff3-1c20-4204-a2ff-4f594ba8e316

1

Performance Modelling and Application Analysis of a

Flexible Heterogeneous Video Camera Architecture

Eric Janssen
(1,2)

,

(1) Eindhoven University of Technology, The Netherlands (2) Prodrive B.V., The Netherlands

Abstract—A new camera architecture for high-end video cameras

is presented featuring a flexible and heterogeneous coprocessor-

based architecture, independently executing image operations in

parallel suited for an implementation in a high-end 20-Mpixel

camera. The dataflow graph and the involved processors are

programmable, enabling different image pipeline-paths for

different use cases. In order to facilitate smooth function

execution and programming of the hardware system, we have

developed a system model which estimates performance figures

of the function execution. This model is based on the proven Y-

chart Architecture Algorithm (YAAM) model. Furthermore, we

have added a diagnostic feature, measuring the start and ending

times of tasks, to evaluate the temporal and dynamic behaviour

of the functional flow graph. To verify that our model alignments

with the actual implementation, we have implemented two use

cases for the camera system. The applied use cases are based on

multi-window processing of signals and a dynamic execution of

functions. We have found that the model is within a few

percentages of the actual execution performance. The built-in

diagnostics prove to be useful for quality-of-service at the level of

input rate control.

Keywords-component; video camera architecture; YAAM;

architecture models; built-in diagnostic; programmable co-

processor array; performance models; embedded system

I. INTRODUCTION

The development of new and innovative (video) camera
designs is triggered by the request for next-generation cameras
for video surveillance. A continuous trend can be observed
where visual sensors become increasingly sensitive for
capturing signals at low-light conditions as well as higher pixel
densities are achieved. Current camera systems offer single
video streams up to HD resolution or even higher but lack
image quality to allow identification of people posteriori, often
called forensic zooming. Furthermore, some cameras are
equipped with Pan-Tilt and Zoom (PTZ) functionality to zoom
into a Region-Of-Interest (ROI), thereby discarding the total
overview due to zooming, panning or tilting. These non-
reactive cameras may integrate Video Content Analysis (VCA)
applications to notify users about e.g. detected motion. Such
systems have many disadvantages, of which the most important
one is loss of view when panning, tilting and/or zooming.
Furthermore, situations with extreme high dynamic lighting
may have poor image quality in bright and/or dark regions at
the same time.

Another, non-technical argument for improvement is found
in cost, i.e. Total Cost of Ownership (TCO). TCO is the sum of
purchasing a piece of equipment, making use of it, maintaining
it and eventually disposal costs. Technological improvements
can lower the TCO of video surveillance systems by reducing
the amount of required cameras. Fewer cameras results in a
reduction of costs in the infrastructure, maintenance and
reduces the power consumption of the back-end (i.e.
datacentre).

From this observation, we can derive a number of
requirements for a new and innovative camera architecture:

1) A high-resolution sensor rendering analogue PTZ

superfluous.

2) Support for flexible and adaptable image-operation paths

such that a versatile architecture supports different use

cases of the camera.

3) Independent video streams enabling reuse of the camera-

sensor for multiple virtual cameras

4) Event detection or VCA (e.g. motion) such that the

camera can be responsive to its environment.

Current video cameras employ a single image stream, have

static processing paths, and are optimized for the sole purpose

of providing video footage. Such systems are heavily

optimized for costs.

Figure 1 shows a camera system which features feedback

from VCA to image quality control and image operations.

Both feedbacks are required to use dynamic image paths e.g.

capture image with different sensor settings to enhance image

quality in darkness or bright image areas, or use different

ROIs to transmit.

One of the main disadvantages of a high-resolution image

sensor is the high-bandwidth requirement when

communicating image data at a high resolution. The concept

of a reactive camera uses Video Content Analysis (VCA) as

an event detector to select which images are being sent for

further observation. In our case the selection mechanism is

triggered by motion analysis in the scene.

Image
Sensor

Image
Operations

Encoder

Video Content
Analysis

Reactive
feedback

Video Stream

Video Analysis
InformationImage Quality Control

Figure 1: Block diagram of a reactive camera system.

High-resolution cameras challenge the architecture design

with high bandwidth and processing demands. The image-

operation-pipeline depth highly influences the amounts of

memory required. Depending on the reactive feedback,

different types of image-operations are required, resulting into

dynamic run-time memory usage and processing-load

footprints.

The reactive camera contains an electronic device which

integrates all video processing. This device has a general-

purpose communication interface which allows connecting

externally available video processing devices, such as motion

detection. This approach allows fast time-to-market and

reduces costs.

Current state-of-the-art research on camera architecture

shows solutions for smart cameras [1] multiple views [2] and

2

Table 1: Computing and bandwidth requirements for a high-end camera for a typical set of image operations (GOPS = 109 operations per second)

Function Operations
Input

data type
Output data type Computations

Inbound Memory

Bandwidth

Outbound Memory

Bandwidth

Total Memory

Bandwidth

Input grabber
Pixel Sampling,

filtering, pre-processing
-

CFA +

1280×960 YCbCr
57.7 GOPS - 960 MB/s 960 MB/s

Demosaicing Matrix operations CFA YCbCr 0 – 20.2 GOPS 0 - 250 MB/s 0 - 490 MB/s 0 - 740 MB/s

VideoOutput Video protocol YCbCr - 0 – 74 MOPS 110 MB/s - 110 MB/s

Compression

Various (e.g. wavelet,

entropy encoding,
quantization)

YCbCr JPEG2000 0 – 40 GOPS 0 - 480 MB/s 0 - 40 MB/s 0 - 520 MB/s

CA Engine Communication X1 X1 0 – 350 MOPS 0 - 200 MB/s 0 - 150 MB/s 0 - 350 MB/s

MotionDetect Various YCbCr Motion Events 40 GOPS 110 MB/s 0 - 1 MB/s 111 MB/s

Remarks:

1) X is used to denote don’t care

high-resolution HD [3] and QUAD HD [4]. However, these

solutions have either a static configuration (e.g. no task or

graph switching at run-time) or have resolutions up to 4×HD.

Our proposed architecture is capable of dynamic runtime

switching of the signal-processing graph and can cope with

10× HD (or 64× VGA) images at 30 Hz. But more importantly

we provide an accurate model which predicts the system load

and throughput. Such a model is important to be able to

predict the throughput when simultaneous dynamic views are

required, delivered by a single architecture implementation.

The above-mentioned literature suggests that the only

major improvement is the increase in sensor resolution.

However, at the same time the application scenarios for

surveillance cameras have been strongly expended all

requiring some different form of processing and video

analysis. The purpose of our research is to enable a camera

platform that allows flexible re-usage of the system for a

multitude of applications, with the development benefit to use

a built-in diagnostics feature for fast application analysis prior

to implementation.

The remainder of this paper is organized as follows.

Section II presents the camera architecture, important system

considerations and aspects. Section III elaborates on the image

operations typically found in cameras. Section IV describes

the hardware models. Section V addresses the quality-of-

service and mode adaptions found in dynamic reactive

systems in the context of the proposed camera architecture.

Section VI covers two typical example use-cases. Section VII

gives an overview of the applied test system to validate the

models. Section VIII gives the results for both scenarios

compared to the test-system. Section VIII.B.1) concludes this

paper with future work proposals in Section X.

II. SYSTEM ARCHITECTURE

Although mapping all image processing functions of a

camera system into software yield a highly flexible

architecture, this concept is rarely used as it is too expensive

for large-scale applications. This is due to increase complexity

of image processing and coding and higher resolutions of

visual sensors.

A heterogeneous approach offers more optimizations for

the application-specific tasks [5], which lead to clearly lower

system costs. Therefore, our system architecture modelling

involving performance analysis, is based on heterogeneous

camera systems. Our performance-estimation approach is

based on the Y-chart methodology [6], the roofline model [7]

and the Architecture Algorithm Model (AAM) [8]. The Y-

chart methodology is based on the observation that typically

development team work involves the joint development of an

application, a platform (hardware) and the mapping of the

application onto the platform. This allows us to reason about

the individual aspects and the system as a whole.

The roofline model describes a “roof” for the intrinsic

performance of a processing unit in terms of communication

bandwidth and computational complexity. Analysing an

application delivers the computation complexity and its

corresponding communication requirements per processed

input unit, e.g. as in [7] and [9]. Let us first analyse how much

computing power and memory is involved in a set of typical

high-end high-resolution image processing tasks for a

corresponding camera system.

Typical image operations for high-end cameras are shown

in Table 1. For high-end ultra-HD, we assume the camera has

20 megapixels (Mpixel) at 30 frames/second with 12 bits/pixel

() and YCbCr 4:2:2 colour images. The details and usage

for each of the functions is explained further in Section III.

The numbers from Table 1 are the result of research and

project evaluations of the company Prodrive B.V., which is

active in high-end camera design. From Table 1 we can draw

the following conclusions.

 Each processing function has asymmetric bandwidth

footprints i.e. the ratio between input and output

bandwidth is clearly unequal to unity.

 Regularly, the input data type does match with the output

data type, and not all outputs are compatible to the input

of other processing functions.

 It may be possible that a processing function does not

perform actual operations on the video data, but is

assisting in communication of it.

 Most functions have variable memory bandwidth

characteristics depending on the Region-Of-Interest (ROI)

requested.

From the above analysis and Table 1, we clearly observe

that for different use cases involving different ROIs and

various image operations, quickly more than 160 GOPS are

required with a memory bandwidth consumption of more than

3 GB/s. A typical high-end x86 processor is capable of only

delivering several tenths of GOPS. From this observation, it is

reconfirmed that, as already mentioned, an application-

specific architecture is simpler, more power efficient and more

cost-effective when compared to general-purpose computing

platforms.

This survey delivers a good insight which is required to

construct a new flexible architecture for high-end camera

systems. The processing functions are composed of a mixture

of operations and are heterogeneous in nature. Furthermore,

we can expect different bandwidths and different image

processing dataflow graphs for different use cases. Flexible

reuse of the architecture requires now that the dataflow graphs

becomes also programmable, which involves additional

3

aspects like buffering, synchronization and control. The

system and application control can be outsourced to a low-

power low-cost CPU. Furthermore, due to the high inter-data

dependency of the image processing functions, the application

processor requires a large and local private memory. The

communication-assist function offloads from the CPU to a

hardware-specific function for the video communication,

featuring reliable streaming of video and image data. A block

diagram of the proposed architecture is depicted in Figure 2.

The architecture consists of a CPU controlling a coprocessor

Array (COPA), executing the image operations.

Coprocessor Array

CPU Node

MemCoProc

MemCPU

DMACoProc2

CoProc4

CoProc3

CoProc1CoProcINPUT

In
te

rc
o

m
m

u
n

ic
a

ti
o

nSensor

CPU

Output

Figure 2: Flexible reusable architecture for a camera platform.

Selecting a task-specific coprocessor solution releases the

CPU from intensive computations, while the high-bandwidth

communication is between the coprocessor and its local

memory. If in- and output formats are compatible, virtually

any order of operations can be programmed, also by

modifying the access order of the CoProc modules. Once all

operations have completed, the resulting image can be

transferred to the CPU. In this architectural concept, the CPU

only has to manage the tasks it assigns to the coprocessors and

control the dataflow from image to its output.

In the following section, the image operations are analysed

in more detail such that the corresponding coprocessors are

defined.

III. CAMERA IMAGE OPERATIONS

This section describes the typical camera image operations

(Table 1) in more detail. For each operation, a computational

and bandwidth model is given. Table 2 gives an overview of the

used mnemonics in the mathematical models.

Table 2: Overview of model parameters and functions.

Mnemonic Description

Ops Operations

 Pixels

B Bandwidth
t Time

 Bits per pixel

D Data bus width
C Cycles

The computational model is expressed in operations per

image and denoted with O. The bandwidth model is expressed

in MByte/s (abbreviated hereafter as MB/s) and denoted with

parameter B. The amount of pixels is expressed by

pixels.

A. Input grabber

A typical image sensor is a CCD or CMOS chip, which is

sensitive to photons in the visible light spectrum to humans

and converts the light to the time-discrete digital image signal.

A digitized image frame is characterized by the spatial

resolution of the sensor, throughput rate (assumed linear to its

communication frequency) and amplitude resolution per pixel,

expressed in bits per pixel (). Furthermore, image quality

is mainly characterized by the signal-to-noise ratio and image

contrast.

The image processing input is concerned with acquiring

the digital image from the sensor, which is abbreviated as

“input grabber”. Whereas conventional cameras have

resolutions in the order of HD (2 Mega pixels, abbreviated as

Mpix), we wish to achieve a tenfold of that resolution.

Effectively, this means that the sensor bandwidth scales

linearly to the communication frequency with a factor 10. The

following set of equations describes the model for the input

grabber.

(1)

 [

]

(2)

 (

)

 ⁄ (3)

 (4)

 (5)

By default, the input pre-processor delivers two image

formats from the sensor: the original full-size 20 MP image

and a scaled version (Equation (1)). From Equations (2), (3)

and (4), we derive the bandwidth requirements for the input

grabber and the sample frequency for the sensor given the

number of communication channels to the sensor and its

operating frequency. These numbers describe the first

requirements for CoProcinput and its interface to the global

memory.

The amount of operations required for a single image is

modeled in Equation (5). The constants 88 and 35 result from

analysing various algorithms used in the pre-processing steps,

typically found in cameras (Table 1).

Figure 3: Typical image sensor CFA pattern.

B. Demosaicing

An image sensor is typically overlaid with a Colour Filter

Array (CFA) pattern such that pixels are sensitive to a limited

spectral frequency, i.e. blue, red or green, as depicted in

Figure 3. To reconstruct an image from the CFA, an operation

called demosaicing or sometimes called de-Bayering, is

4

required. Demosaicing reconstructs a colour representation

with three channels per pixel (e.g. YCbCr). The demosaicing

process is visually depicted in Figure 4.

Demosaicing

Figure 4: Demosaicing process going from CFA to a

reconstructed full colour image.

The bandwidth requirements for demosaicing depend on

the amount of requested pixels per second and the

demosaicing duration (tdemosaic, Equations (6) and (7)).

 ⁄ (6)

 ⁄ (7)

 (8)

(

[

]

)

(9)

The model of the CoProcessor uses streamlined I/O

registers for data capturing and outputting. If the clock

frequency of the CoProcessor is increased, the data fetching

and outputting speeds increase accordingly, so that the I/O

bandwidths do not have to be incorporated in Equation (9) as

an operation. Equations (6) and (7) provide upper bounds for

the bandwidths depending on the computational speeds of the

coprocessors. The amount of required operations for the

demosaicing function is modelled with Equation (8). The

constant 123 is extracted from analysing a linear demosaicing

algorithm, using a combination of 3×3 and 5×5 matrix kernels.

In Equation (9), the min function is used such that the

application is under the roof of the roofline model, i.e. it is

either constrained by bandwidth or computational limitations,

or both if around the pivot point of the roofline model.

C. Compression

Typically every camera offers image compression to

reduce the required external bandwidth. Without compression

a high-resolution camera would easily saturate a 1-Gbit/s IP

network link and only achieve 2.1 frames per second, if we

assume full-frame YCbCr-encoded images. Obviously, we

could select another type of interface, however, then the

camera would become less attractive as it would require a

significant amount of video storage (e.g. 24-hr. recording).

Image compression easily reduces the bandwidth exploiting

spatial and temporal redundancy.

JPEG2000 is a compression standard gaining interest in

the professional video and imaging industry (e.g. digital

cinemas use this type of compression for 4K movies).

Bandwidth is typically reduced by at least a factor 10 (high-

quality) up to 100 (low-quality). The encoding time (or

number of required cycles) is content-dependent, e.g. images

with high-entropy require more processing cycles.

In our camera system, the JPEG2000 encoder is

implemented for one of the coprocessors in hardware (i.e.

programmable logic) and is able to process up to 120

Mpixel/s. This processing power can be used for various

image sizes, such as 1280×960 pixel frames, and can be

processed at roughly 100 frames per second. However, when

processing full-frame images, the frame-rate lowers to

 ⁄ 6 frames per second (Equation (11)). The following

equations describe the bandwidth requirements for the

compression unit, when starting at computing the pixels

involved for processing.

 ∑

 (10)

 (11)

 (12)

 (13)

 (14)

(

[

]

)

(15)

 Equation (10) describes the amount of pixels selected

from a region of interest for compression. Equations (12) and

(13) give the bandwidth requirements for the compression

function. Parameter is used to denote the timespan to

compress the images, the factor

 provides a worst-case

upper bound for low-entropy images. Equation (13) provides

an upper bound for the output bandwidth, since low-entropy

images can often be encoded using fewer symbols. The timing

model is given by Equation (15), which uses the computation

complexity from Equation (14). Again the min function is

applied such that it operates under the roof of the roofline

model.

D. Video output

To allow easy integration into other video processing

systems, a video output port is provided. A video port is a

digital output for streaming video often used in industrial

applications, which connects e.g. a TriMedia processor to the

COPA for further image processing functions. In our case, we

use it to connect an H.264 encoder + motion detector (see

Figure 5).

5

Equation (16) denotes the bandwidth requirements for a

continuous video stream at frame rate . Equation (17)

denotes the amount of required operations. The timing model

is constructed from Equation (18) which includes the roofline

model. The computed time () describes the effective

operation time required.

 (16)

 (17)

 (

)

(18)

E. Motion Detection

As has been explained in the introductory section, we

employ motion analysis for selecting the communication of

images. This motion analysis involves a motion detector

which is described below.

CO-Proc

CPU-NodeIn
te

rc
o

n
n

e
ct

External
device

Motion
Events

Video communication Port

Figure 5: Coprocessor featuring a video communication port to

connect external (legacy) hardware

Motion detection is a broadly researched field and the

industry has many ASIC
1

 implementations for motion

detection. The COPA has been designed to connect such

available processors for specific processing tasks, such as

motion detection. The video port from Section D is used

(Figure 5) for that purpose.

A function block diagram of the video communication port

is depicted in Figure 5. An external device implementing

motion detection is connected to the video communication

port which sends the motion events to the controlling CPU-

node.

An important property for a reactive camera is its response

(latency) time defined by Equation (19) which will be

discussed in the hardware model in Section IV.

F. Communication Assist

Ultra-high-definition images (UHD) are significantly

larger in terms of data size when compared to regular SD or

HD images. To prevent the CPU from wasting expensive

cycles for communicating images, a Communication Assist

(CA) is proposed. The CA has several advantages [10]:

1) The worst-case execution time of a task is decoupled from

the communication.

2) The CA can decrease the worst-case execution time

(instead of stalling the processing, the CA is stalled until

the communication infrastructure accepts the data).

3) The communication infrastructure can be designed for the

average communication bandwidth requirements, because

the CA can send the data in small messages at a regular

1
 Application-Specific Integrated Circuit: an integrated circuit

(IC) customized for a particular application

interval, whereas in the architecture without a CA the

communication infrastructure is designed to absorb the

communication bursts as fast as possible.

Additionally, by adding a data-request queue to the CA,

the transactions can be pipelined improving its efficiency

while reading from the memory (e.g. burst reads). The model

for the CA is constructed using the following equations.

(19)

 ⌈

⌉

(20)

 (

) (21)

A CA does not implement a particular operation in terms

of computational operations to an image, it merely transfers

the image. The frame rate () is sometimes variable since

it may depend on the amount of frames selected by the motion

detection. The amount of computations expressed in ops is

modelled using Equation (20), in which 4 Bytes require 1

operation (read/write) to the memory. The throughput of the

CA is thus determined by the minimum (Equation (21)) of the

allocated memory bandwidth defined in Equation (19) and the

computation throughput (Equation (20)).

IV. HARDWARE MODEL

This section describes the hardware model for the COPA

architecture. In the previous sections we have discussed the

individual functional requirements per functional block.

To enable dynamic image pipelines i.e. a reactive camera

proactively changing image paths, a solution has been chosen

that uses a coprocessor array (COPA) sharing memory and an

inter-communication infrastructure (depicted in Figure 2). To

obtain performance estimates for each of the image functions,

we have to map the function onto a coprocessor. Each function

is mapped to a particular coprocessor such that the model for

the actual COPA operation is relatively simple: one function

per coprocessor and the COPA total is bounded by the number

of coprocessors, both in operation and bandwidth. The

roofline model which uses the min function in the previous

sections, restricts both bandwidth and computational speed

limited by the modelled available hardware resources. This

means that after the mapping, the throughput of each function

is upper-bounded by the roofline model incorporating both

bandwidth and processing aspects.

 This analysis requires a hardware model which describes

the resources offered by the COPA. The CPU-COPA

architecture has the following upper bounds for processor-to-

processor and processor-to-memory communication.

 (22)

6

 (23)

 ⁄ ⁄ (24)

 (25)

 The maximum bandwidth to memory (CPU or COPA) is

defined by Equation (23). The bandwidth between COPA and

CPU is defined by Equation (24) and facilitates an 8-10 bit

encoding mechanism to transport the clock signal along with

its communications. The computational performance upper

bound of the coprocessors is described by Equation (25).

Typically a coprocessor has a core frequency (F) at which it

operates and an amount of operations it can process in parallel

(). Image processing is often stream-oriented processing

with identical operation(s) for each pixel such that parallelism

can be exploited.

Table 3 lists an overview of the values for the hardware

model parameters used to compute performance parameters of

the COPA. The values are equal to the hardware of the test

system as described in Section VII. From the numbers we can

observe that most application-specific processors within the

COPA have low operating frequencies with high parallelism

in the executed operations per cycle. Only the communication

channels (e.g. DDR memory) have high operating frequencies

up to 2.5 GHz.

V. QUALITY-OF-SERVICE

The integrated camera contains multiple functions for high

flexibility in application, but not all functions can be used

simultaneously. This is because those functions are already

embedded in the programmable hardware platform. To

overcome this issue we may introduce Quality-of-Service

(QoS) when the requested computations cannot be directly

implemented. QoS controls the quality of individual functions

such that the desired functionality just fits to the computation

power of the execution platform. In our case, QoS requires a

controller based on a feedback mechanism to control the

quality of individual functions. For example, a QoS

component can guarantee real-time properties of services (e.g.

an overview video stream) by reducing some other function in

computation power. Furthermore, to enable QoS in a smooth

way, we introduce built-in diagnostics for each function to

monitor and analyse the system’s behaviour. Section VI

introduces two example scenarios. The built-in diagnostics are

used in Section VIII to display the temporal behaviour of the

camera functions and the influence of the QoS.

A. Built-in diagnostics

To analyse the temporal behaviour of the functions

executed at the coprocessor, a diagnostic component is

implemented as a standard function in programmable

hardware. This component makes use of timestamps. The

timestamps denote the arrival time of a request and the

completion time of the involved task. Each coprocessor is

given a job queue, which is scheduled by the CPU (Figure 6).

Once a job enters the job queue a timestamp is generated,

while a second timestamp is generated after completion. The

difference between the two timestamps yields the actual

execution time of the processing.

Table 3: Overview of hardware model parameters

 Parameter Value Unit

CPU-Node

 667 MHz

 32 b

 2.7 GB/s

 1.3 GHz

 32 b

CPU – COPA

 2.5 GHz

 250 MB/s

COPA – Memory

 800 MHz

 32 b

 3.2 GB/s

Coprocessors

 160 MHz

 120 MHz

 160 MHz

 130 MHz

 120 MHz

 120 MHz

 360 Ops

 130 Ops

 34 Ops

 350 Ops

 3 Ops

 1 Ops

Jobs

Job
Queue

CO-Proc

In
te

rc
o

n
n

ec
t

Figure 6: Coprocessor diagnostics, indicating timestamps for job

arrivals and completions.

B. Quality: Prioritizing

Quality control is only required if a (sub-)system’s

throughput reaches the roof of its roofline model. This is

called an overload, i.e. there is simply too much load for the

system. Once a system enters the overload condition, FIFOs

and work queues tend to fill up. If a system is in overload for a

sustained period, the FIFOs and job queues saturate such that

no other work can be committed to coprocessors and the

system becomes partly halted. We would like to prevent this

scenario to happen. For our system, we distinguish three types

of overload situations:

1) External overload,

2) Static systematic overload,

3) Dynamic overload.

The first type of overload is a scenario in which the system

receiving the camera output cannot accept input from the

camera. The second type of overload occurs when the static

(e.g. non-reactive) configuration yields a performance request

that cannot be handled by the available resources. An example

is a video stream at 100 frames/s, while the sensor delivers a

maximum of 30 frames/s. Such a situation can be prevented by

computing the resource utilization in advance.

The third type of overload is dynamic and is caused by the

reactive nature of the proposed high-end camera. It occurs

when a plurality of jobs is activated (or overlapping) in time.

If jobs are running well distributed over time without overlap,

the system can execute all jobs, although the combined load

exceeds the available systems resources.

7

Our QoS should prevent Types 1 and 3, and we assume

that Type 2 can be prevented by simply constraining the

resource utilization at design (or configuration) time. Type 1

and 3 are solved by dropping frames in FIFO order with a

greedy algorithm, based on assigned priorities to jobs. This

approach allows certain jobs (e.g. views) to have higher

priorities than other jobs. The high-priority jobs are

guaranteed to be uninterrupted, whereas low-priority jobs may

be delayed or supplied with less input data.

VI. EXAMPLE USE CASES

This section introduces two use cases which are employed

to verify the model in Section VIII. For both use cases,

(dynamic) flow diagrams are presented

A. Use-case 1: Petrol Station Surveillance

The first use case is inspired by the well-known problem

of petrol theft. Figure 7 shows such a petrol station in which

several pumps are available for service. A regular HD-camera

does not capture sufficient detail to allow reading the license

plates or identification of faces. Placing additional cameras is

a costly operation. With our proposed reactive high-resolution

camera, several ROIs can be processed, resulting in an

overview and the three additional windows in Figure 7 (red,

yellow, green) with high detail.

Figure 7: Example Use-case 1 - Petrol Station Surveillance

This use case is implemented with a static assignment of

four ROIs. Furthermore, we provide an additional 20-MPixel

image for high detail overview of the complete scene. In this

use case, the low bandwidth H.264 and four ROIs can be

captured and recorded, while PTZ functionality is enabled by

providing a high-resolution image which is not required to be

recorded such that less storage space is required. The flow-

graph for Use-case 1 is depicted in Figure 8.

In Figure 8, the image path is split right after the image is

captured from the sensor into two paths: one for an overview

image and the other for high-detail windows selected from the

overview. The latter path conveys images with various sizes,

depending on the windows and the corresponding parameters.

In this use case we employ four SD (640×480 pixels) windows

and a 20-Mpixel window.

Input processor

Image sensor

Demosaic

Compression

CA-engine

CPU-Node
Video

management
System

IP network

VideoPort

Mem

Mem

Mem

Mem

4x 640x480
+

5120x3840
1280x960

5120x3840

1280x960 + 5120x3840

CA-engine

Mem

5120x3840

Figure 8: Flow-graph for Use-case 1

B. Use-case 2: Construction Site Surveillance

The second example shows the reactive properties of the

proposed architecture. This use case is based on surveillance

of a construction site. During night time, most of these sites

are typically abandoned, making them vulnerable to theft of

tools/equipment and vandalism. Long periods of time may not

show any event such that video recording is switched off. At

the onset of a serious event, recording is started and images

are captured containing e.g. activities with identifiable persons

or cars.

For this use case we employ the integrated motion

detection to record activities. An example is shown in Figure 9

in which a camera is used for delivering a scene overview.

Figure 9: Use-case 2 with motion detection.

Under normal circumstances, only a regular video stream

is created, whereas in case of motion detection, several high-

quality images are captured and supplied to the video

monitoring system. In such a case, the bandwidth is

significantly increased for a certain period of time.

8

Input processor

Image sensor

Demosaic

Compression

CA-engine

CPU-Node

Video
management

System

IP network

VideoPort

Motion
detection

?

Mem

Mem

Mem

Mem

640x480 + 5120x3840

5120x3840

1280x960 + 5120x3840

1280x960
Overview

Figure 10: Flow graph for Use-case 2

The flow graph for Use-case 2 is depicted in Figure 10. A

conditional flow graph is shown to denote the reactive

feedback from the motion detector, which influences the

image path. In this use case, a 20-Mpixel image is transferred,

including a 640×480 pixel ROI of the area with motion.

VII. TEST SYSTEM

To verify the results derived from the mathematical model,

a comparison is made with a high-end camera implementation.

With this implementation, we execute the system for the two

proposed use cases. The test system is depicted in Figure 11

and features a 20-Mpixel sensor and an implementation of the

CO-Processor Array (COPA) and a CPU node.

Figure 11: High-end camera test system.

The test system has a power consumption of 20 Watts,

resulting in approximately 8 GOPS/Watt. For the evaluation,

we have developed a new programmable application

implementing the two use cases, featuring dynamic multi-

window processing and motion detection. The application is

designed to execute a user-defined flow graph which describes

the image-data path(s). This application tool is used to extract

the utilization, throughput and temporal behaviour of the

system. The results of these measurements are compared to

the results from the model in section VIII.

VIII. RESULTS

This section covers the results from the model-based

performance estimation, the actual system behaviour and

system-level diagnostics. The roofline model [7] is used to

determine a feasible point according to the performance of the

mathematical system model. For both use cases, we have

predicted the performance results in terms of throughput based

on the model provided in Section III (task models) and

Section IV (hardware model). The model results are compared

to the results from the actual camera system described in

Section VII.

A. Use-case 1: Petrol Station Surveillance

This case describes the results from the model, the test

system and the timing diagnostics for the surveillance

application.

1) Model performance

The results of the model-based estimation for Use-case 1

are denoted in Table 4. From Table 4 we observe that the

majority of the memory transactions are within the COPA,

thereby relaxing the CPUs memory bandwidth usage.

According to the model, the system is capable of providing a

video stream with 30 frames/s, four additional ROIs and a

supplementary high-resolution image for PTZ functionality.

Figure 12: Use-case 1 – temporal behaviour in a timing diagram.

9

2) Implementation results

The implementation results for Use-case 1 are given in

Table 4. The table results show that the system is well capable

of providing the required video stream at various resolutions.

The input and video processors both show high utilization as

predicted in the model, but provide a 30 frames/s video

stream. The CA module and compression processor show

slightly less utilization. Due to the pipelined implementation

the model is conservative. Summarizing, the model is well

capable of describing the camera system performance for this

use case. Using the diagnostics feature, we can also inspect the

temporal behaviour.

3) Implementation Temporal behaviour

The internal diagnostic system (Section V.A) allows us to

capture the activities and display this as a timing diagram. The

timing diagram of Use-case 1 is depicted in Figure 12. This

figure displays a section of the captured second. Figure 12

shows that in one second, 30 frames are captured, processed

and transferred to the video port. At a lower frequency (4 Hz),

demosaicing of frames is performed. The frames appear to be

processed in bursts of two frames. This is due to the latency

introduced by the frame retrieval which can only process one

frame at a time. After arrival of the frame information (e.g.

spike at 3482 ms) a new demosaicing task is started. This

aliasing issue occurs when the CA co-processor is busy, while

the application is waiting for the next frame information.

After demosaicing, 5 different images (4 ROI, 1 full-

frame) are compressed. This is depicted in Figure 12 by two

lines: active and waiting. Initially, a frame enters the waiting

work queue. Once the co-processor is ready to accept a frame,

the processing task becomes active. From Figure 12 it can be

noted that the work queue quickly ramps-up and ramps down

due to the four ROI images. The full-frame image takes

considerably more time to process. Parallel to compression,

the image after demosaicing is retrieved by the CA-engine and

sent to the CPU.

From the complete timing diagram we observe that the

temporal behaviour has a repetitive pattern which also can be

noticed in the depicted time interval in Figure 12.

B. Use-case 2: Construction site surveillance

The results of the model-based estimation for Use-case 2

are given in Table 5.

1) Model performance

According to the model, the system enters an overload

period due to compression tasks for the images. The

bandwidth of the COPA to private memory (COPA-Memory)

is exploited to reduce the memory bandwidth between CPU

and its private memory (CPU-Memory).

2) Implementation results

The implementation results for Use-case 2 are given in

Table 5. Comparing the table results between model prediction

and measured performance, again we conclude the model is

somewhat conservative. Furthermore, the required bandwidth

for CA is low, which saves bandwidth when transporting the

images.

Table 4: Use-case 1 model-based analysis results

 Parameter Model prediction Measured

Throughput

 Input, Video 30 [Hz] 30 [Hz]

 Demosaicing 4 [Hz] 4 [Hz]

 Compression
(4×640×480 + 5120×3840)

16 + 4 [Hz] 16+4 [Hz]

 CA 147 [MB/s] 150 [MB/s]

Utilization – communication paths

 COPA-Memory 71% 70%
 CPU-COPA 73% 65%

 CPU-Memory 11% 10%

Utilization – computational

 Input 92% 93%
 Video 98% 98%

 Demosaicing 64% 64%

 Compression 69% 52%
 CA 73% 65%

Table 5: Use-case 2 model-based analysis results

 Parameter Model prediction Measured

Throughput

 Input, Video 30[Hz] 30 [Hz]
 Demosaicing 6 [Hz] 6 [Hz]

 Compression
(5120×3840 + 640×480)

6 + 6 [Hz] 6 + 6 [Hz]

 CA 30 [MB/s] 30 [MB/s]

Utilization– communication paths

 COPA-Memory 83% 80%
 CPU-COPA 15% 12%

 CPU-Memory 2% 2%

Utilization – computational

 Input 92% 92%
 Video 98% 98%

 Demosaicing 96% 96%

 Compression 105% 99%

 CA 15% 15%

Figure 13: Use-case 2 – temporal behaviour in a timing diagram

10

1) Implementation Temporal behaviour

For Use-case 2, a timing diagram is depicted in Figure 13.

Again frames are captured at 30-Hz frame rate in Figure 13. It

is clear that the system is almost completely used for 100%.

The compression processor is only occasionally idle around

3300 ms, 3450 ms and 3630 ms.

IX. CONCLUSION

We have presented a new flexible heterogeneous high-end

camera architecture, featuring dynamic programmable image

processing paths suited for ultra-high definition 20-Mpixel

images. The architecture of the system is based on an array of

application-specific coprocessors. Due to the programmable

signal flow graphs, defining the image operations, a highly

flexible versatile camera is created, applicable to many

scenarios. Furthermore, we have introduced a simple model

for performance estimation of the camera system.

Additionally, we have also discussed two use cases, exploiting

the cameras features in different ways. The estimations are

compared to an implementation of the camera architecture.

Due to the various possibilities of mapping and flexibility in

programming, we have investigated a model for system

analysis and performance based the integrated image

processing functions.

The proposed model is based on the Architecture

Algorithm Model (AAM), the Y-chart methodology and the

roofline model. Our model uses relatively simple equations to

express the systems throughput and performance in terms of

frame rate, bandwidth, timing estimates for throughput and

operations count. We have shown that a relative simple model

(without cycle or cache dependencies) based on native signal

processing operations delivers a reliable framework to predict

dynamic system behaviour based on the proposed COPA. The

framework was already tested for other applications. In our

case we have evaluated this model for the heterogeneous

camera system and integrated the roofline model to define a

high-throughput high-performance point for the camera

system executing an arbitrary use case. This performance

point is guided by the integrated roofline model based on the

pre-programmed video functions.

We have validated the model by implementing two typical

use cases: a petrol station surveillance case using multiple

video windows requiring bandwidth, and a construction site

surveillance case with more dynamic task processing. We

have found that the model provides performance estimates that

are close to the actual execution performance of the system.

Typically, the model produces performance numbers which

are within a few percentages of the actual performance

figures. The model performance is relatively reliable due to

the strict nature of the pre-programmed video functions.

However, we have found that the control of the COPA and its

embedded functions is critical for the performance, and

requires a deterministic approach for task switching and

meeting the timing deadlines for execution of those tasks.

We have added a feature to the architecture that is

beneficial for assessment of the dynamic behaviour of the

COPA function execution. To this end, we have integrated a

diagnostic tool that measures start and ending of a computing

task and accumulates these values for all functions in

software. This allows us to analyse the run-time behaviour of

the COPA functions. The system allows the display of the

timing of function execution in a graphical diagram. This

concept also has been validated in the use cases experiments.

These experiments have shown that this provided a useful tool

for design time analysis of flow graphs, particularly for

quickly localizing performance bottlenecks. Performance

analysis is also helped by a Quality-of-Service (QoS)

component, offering a run-time control of the input rate for

each job. The QoS uses the same diagnostic feature as

previously mentioned.

The camera platform is mainly constrained by bandwidth.

The application-specific coprocessors are running at a fraction

of the maximum clock frequencies while the communication

channels are running at considerably higher frequencies. This

is a clear advantage of the chosen architecture, because power

consumption is now saved when the use case allows it. When

looking at the utilization numbers the footprints for both

bandwidth and computations are comparable. From this we

can conclude that if increased throughput (or even higher

resolutions) with more functionality are required, then the

memory communication architecture needs to be upgraded.

The system has been extensively tested in the field for

periods ranging from several weeks up to four months of

continuous operation. During the field tests, the system

showed no irregularities and was capable of providing a

continuous video and image stream. Because of the success of

these tests, the camera system is further commercially

developed and extended in a new business unit called

Ampleye.

X. FUTURE WORK

To extend the functionality of the proposed high-end

camera, the COPA architecture requires extensions for better

scalability support. As mentioned in the previous section, the

platform is limited by memory bandwidth. A hierarchical

COPA infrastructure may solve these issues by providing

multiple memory channels and several interconnection busses.

This is especially required to prevent the memory bandwidth

from becoming the system bottleneck. However, this adds

more complexity to the mathematical model and scheduling

becomes more complicated. To solve this issue, a multiport

memory access unit could be introduced to abstract from

several independent memory channels, providing a load-

balancing type of functionality for memory access at the frame

level.

Currently, each image operation has no adjustable quality

control. Adding quality-control means reduces the amount of

involved operations. This is especially beneficial to video

content analysis algorithms, as they have a very dynamic

behaviour in computation requirements. However, the

proposed model should be further extended for such quality

control and deterministic nature of the control needs to be

reconsidered.

ACKNOWLEDGMENTS

This research has been supported by Point-One under the
project Optimization of Modular Embedded Computer-Vision
Architectures (OMECA).

11

REFERENCES

[1] A. K. a. C. S. Jai Gopal Pandey, “An embedded

architecture for implementation of a video acquisition

module of a smart camera,” Paper, IEEE, Central

Electronics Engineering Research Institute, Pilani,

Rajasthan, India.

[2] J. U. C. a. J. W. J. Seung Hun Jin, “Pipelined Virtual

Camera Configuration for Real-Time Image Processing

based on FGPA,” Paper, Proceedings of the 2007 IEEE,

Sungkyunkwam University, Korea, 2008.

[3] A. A. B. S. a. A. D. Richard Kleihorst, “Camera Mote

with a high-performance parallel processor for real-time

frame-based video processing,” Paper, NXP Research

and Philips Research, Eindhoven, The Netherlands, 2007.

[4] W.-M. C. a. L.-G. Chen, “Pyramid Architecture for

3840X2160 Quad Full High Definition 30 Frames/s

Video Acquisition,” Paper, IEEE, Department of

Electrical Engineering, National Taiwan University,

2010.

[5] A. J. Moonen, “Predictable Embedded Multiprocessor

Architecture for Streaming Applications,” PhD Thesis,

Eindhoven University of Technology, Eindhoven, The

Netherlands, 2009.

[6] A. C. J. Kienhuis, “Design Space Exploration of Stream-

based Dataflow Architectures : Methods and Tools,” PhD

Thesis, Delft University of Technology, Delft, 1999.

[7] R. v. d. Voort and M. Spierings, “Embedded platform

selection based on the roofline model,” Master Report,

Eindhoven University of Technology, Eindhoven, The

Netherlands, 2011.

[8] T. G. a. Y. Sorel, “From algorithm and archtecture

specification to automatic generation,” in

MEMOCODE’03: Proceedings of the First ACM and

IEEE international Conference on Formal Methods,

Paper, Washington, 2003.

[9] R. Albers, “Modelling and control of image processing

for interventional X-ray,” PhD Thesis, Eindhoven

University of Technology, Eindhoven, The Netherlands,

2010.

[10] A. Moonen, M. Bekooij, R. v. d. Berg and J. v.

Meerbergen, “Analysing the impact of a communication

assist in a multiprocessor system-on-chip,” Paper,

University of Technology, Eindhoven, The Netherlands.

[11] Y. Bondarau, “Design-time Performance Analysis of

Component-Based Real-time systems,” PhD Thesis,

Eindhoven University of Technology, Eindhoven, The

Netherlands, 2009.

[12] M. Gries, “Methods for Evaluating and Covering the

Design Space during Early Design Development,”

Technical Memorandum, University of California,

Berkeley, 2003.

[13] G. Palermo, C. Silvano and V. Zaccaria, “Multi-objective

design space exploration of embedded systems,” Journal

of Embedded Computing, Politecnico di Milano, Italy,

Advanced Computing Group STMicroelectronics,

Switzerland, 2005.

[14] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S.

Schliecker, P. Henia, R. Racu, R. Ernst and M. Harbour,

“Influence of Different System Abstractions on the

Performance Analysis of Distributed Real-Time

Systems,” Paper, EMSOFT '07 Proceedings, Computer

Engineering and Network laboratory Zurich, Switzerland,

Institute of Compuer and Communication Network

Engineering, TU Braunschweig Germany, 2007.

[15] S. Schliecker, J. Rox, M. Ivers and R. Ernst, “Providing

Accurate Event Models for the Analsysis of

Heterogeneous Multiprocessor Systems,” Paper, Institute

of Computer and Communication Network Engineering,

Technical University of Braunschweig, 2008.

[16] N. Trčka, M. Hendricks, t. Basten, M. Geilen and L.

Somers, “Integrated Model-Driven Design-Space

Exploration for Embedded Systems,” Paper, Electrical

Engineering, Department of Mathematics, Computer

Science Department, Eindhoven University of

Technology, Embedded Systems Institute, Océ

Technologies, The Netherlands, 2011.

