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Abstract—A new camera architecture for high-end video cameras 

is presented featuring a flexible and heterogeneous coprocessor-

based architecture, independently executing image operations in 

parallel suited for an implementation in a high-end 20-Mpixel 

camera. The dataflow graph and the involved processors are 

programmable, enabling different image pipeline-paths for 

different use cases. In order to facilitate smooth function 

execution and programming of the hardware system, we have 

developed a system model which estimates performance figures 

of the function execution. This model is based on the proven Y-

chart Architecture Algorithm (YAAM) model. Furthermore, we 

have added a diagnostic feature, measuring the start and ending 

times of tasks, to evaluate the temporal and dynamic behaviour 

of the functional flow graph. To verify that our model alignments 

with the actual implementation, we have implemented two use 

cases for the camera system. The applied use cases are based on 

multi-window processing of signals and a dynamic execution of 

functions. We have found that the model is within a few 

percentages of the actual execution performance. The built-in 

diagnostics prove to be useful for quality-of-service at the level of 

input rate control.  

Keywords-component; video camera architecture; YAAM; 

architecture models; built-in diagnostic; programmable co-

processor array; performance models; embedded system 

I.  INTRODUCTION 

The development of new and innovative (video) camera 
designs is triggered by the request for next-generation cameras 
for video surveillance. A continuous trend can be observed 
where visual sensors become increasingly sensitive for 
capturing signals at low-light conditions as well as higher pixel 
densities are achieved. Current camera systems offer single 
video streams up to HD resolution or even higher but lack 
image quality to allow identification of people posteriori, often 
called forensic zooming. Furthermore, some cameras are 
equipped with Pan-Tilt and Zoom (PTZ) functionality to zoom 
into a Region-Of-Interest (ROI), thereby discarding the total 
overview due to zooming, panning or tilting. These non-
reactive cameras may integrate Video Content Analysis (VCA) 
applications to notify users about e.g. detected motion. Such 
systems have many disadvantages, of which the most important 
one is loss of view when panning, tilting and/or zooming. 
Furthermore, situations with extreme high dynamic lighting 
may have poor image quality in bright and/or dark regions at 
the same time.  

Another, non-technical argument for improvement is found 
in cost, i.e. Total Cost of Ownership (TCO). TCO is the sum of 
purchasing a piece of equipment, making use of it, maintaining 
it and eventually disposal costs. Technological improvements 
can lower the TCO of video surveillance systems by reducing 
the amount of required cameras. Fewer cameras results in a 
reduction of costs in the infrastructure, maintenance and 
reduces the power consumption of the back-end (i.e. 
datacentre). 

From this observation, we can derive a number of 
requirements for a new and innovative camera architecture: 

1) A high-resolution sensor rendering analogue PTZ 

superfluous. 

2) Support for flexible and adaptable image-operation paths 

such that a versatile architecture supports different use 

cases of the camera. 

3) Independent video streams enabling reuse of the camera-

sensor for multiple virtual cameras 

4) Event detection or VCA (e.g. motion) such that the 

camera can be responsive to its environment. 

 

Current video cameras employ a single image stream, have 

static processing paths, and are optimized for the sole purpose 

of providing video footage. Such systems are heavily 

optimized for costs. 

Figure 1 shows a camera system which features feedback 

from VCA to image quality control and image operations.  

Both feedbacks are required to use dynamic image paths e.g. 

capture image with different sensor settings to enhance image 

quality in darkness or bright image areas, or use different 

ROIs to transmit. 

One of the main disadvantages of a high-resolution image 

sensor is the high-bandwidth requirement when 

communicating image data at a high resolution. The concept 

of a reactive camera uses Video Content Analysis (VCA) as 

an event detector to select which images are being sent for 

further observation. In our case the selection mechanism is 

triggered by motion analysis in the scene. 
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Figure 1: Block diagram of a reactive camera system. 

High-resolution cameras challenge the architecture design 

with high bandwidth and processing demands. The image-

operation-pipeline depth highly influences the amounts of 

memory required. Depending on the reactive feedback, 

different types of image-operations are required, resulting into 

dynamic run-time memory usage and processing-load 

footprints. 

The reactive camera contains an electronic device which 

integrates all video processing. This device has a general-

purpose communication interface which allows connecting 

externally available video processing devices, such as motion 

detection. This approach allows fast time-to-market and 

reduces costs. 

Current state-of-the-art research on camera architecture 

shows solutions for smart cameras [1] multiple views [2] and 
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Table 1: Computing and bandwidth requirements for a high-end camera for a typical set of image operations (GOPS = 109 operations per second) 

Function Operations 
Input 

data type 
Output data type Computations 

Inbound Memory 

Bandwidth 

Outbound Memory 

Bandwidth 

Total Memory 

Bandwidth 

Input grabber 
Pixel Sampling, 

filtering, pre-processing 
- 

CFA +  

1280×960 YCbCr 
57.7 GOPS - 960 MB/s 960 MB/s 

Demosaicing Matrix operations CFA YCbCr 0 – 20.2 GOPS 0 - 250 MB/s 0 - 490 MB/s 0 - 740 MB/s 

VideoOutput Video protocol YCbCr - 0 – 74 MOPS 110 MB/s - 110 MB/s 

Compression 

Various (e.g. wavelet, 

entropy encoding, 
quantization) 

YCbCr JPEG2000 0 – 40 GOPS 0 - 480 MB/s 0 - 40 MB/s 0 - 520 MB/s 

CA Engine Communication X1 X1 0 – 350 MOPS 0 - 200 MB/s 0 - 150 MB/s 0 - 350 MB/s 

MotionDetect Various YCbCr Motion Events 40 GOPS 110 MB/s 0 - 1 MB/s 111 MB/s 

Remarks: 

1) X is used to denote don’t care  

high-resolution HD [3] and QUAD HD [4]. However, these 

solutions have either a static configuration (e.g. no task or 

graph switching at run-time) or have resolutions up to 4×HD. 

Our proposed architecture is capable of dynamic runtime 

switching of the signal-processing graph and can cope with 

10× HD (or 64× VGA) images at 30 Hz. But more importantly 

we provide an accurate model which predicts the system load 

and throughput. Such a model is important to be able to 

predict the throughput when simultaneous dynamic views are 

required, delivered by a single architecture implementation. 

The above-mentioned literature suggests that the only 

major improvement is the increase in sensor resolution. 

However, at the same time the application scenarios for 

surveillance cameras have been strongly expended all 

requiring some different form of processing and video 

analysis. The purpose of our research is to enable a camera 

platform that allows flexible re-usage of the system for a 

multitude of applications, with the development benefit to use 

a built-in diagnostics feature for fast application analysis prior 

to implementation.  

The remainder of this paper is organized as follows. 

Section II presents the camera architecture, important system 

considerations and aspects. Section III elaborates on the image 

operations typically found in cameras. Section IV describes 

the hardware models. Section V addresses the quality-of-

service and mode adaptions found in dynamic reactive 

systems in the context of the proposed camera architecture. 

Section VI covers two typical example use-cases. Section VII 

gives an overview of the applied test system to validate the 

models. Section VIII gives the results for both scenarios 

compared to the test-system. Section VIII.B.1) concludes this 

paper with future work proposals in Section X. 

II. SYSTEM ARCHITECTURE 

Although mapping all image processing functions of a 

camera system into software yield a highly flexible 

architecture, this concept is rarely used as it is too expensive 

for large-scale applications. This is due to increase complexity 

of image processing and coding and higher resolutions of 

visual sensors.  

A heterogeneous approach offers more optimizations for 

the application-specific tasks [5], which lead to clearly lower 

system costs. Therefore, our system architecture modelling 

involving performance analysis, is based on heterogeneous 

camera systems. Our performance-estimation approach is 

based on the Y-chart methodology [6], the roofline model [7] 

and the Architecture Algorithm Model (AAM) [8]. The Y-

chart methodology is based on the observation that typically 

development team work involves the joint development of an 

application, a platform (hardware) and the mapping of the 

application onto the platform. This allows us to reason about 

the individual aspects and the system as a whole. 

The roofline model describes a “roof” for the intrinsic 

performance of a processing unit in terms of communication 

bandwidth and computational complexity. Analysing an 

application delivers the computation complexity and its 

corresponding communication requirements per processed 

input unit, e.g. as in [7] and [9]. Let us first analyse how much 

computing power and memory is involved in a set of typical 

high-end high-resolution image processing tasks for a 

corresponding camera system. 

Typical image operations for high-end cameras are shown 

in Table 1. For high-end ultra-HD, we assume the camera has 

20 megapixels (Mpixel) at 30 frames/second with 12 bits/pixel 

(   ) and YCbCr 4:2:2 colour images. The details and usage 

for each of the functions is explained further in Section III. 

The numbers from Table 1 are the result of research and 

project evaluations of the company Prodrive B.V., which is 

active in high-end camera design. From Table 1 we can draw 

the following conclusions. 

 Each processing function has asymmetric bandwidth 

footprints i.e. the ratio between input and output 

bandwidth is clearly unequal to unity. 

 Regularly, the input data type does match with the output 

data type, and not all outputs are compatible to the input 

of other processing functions. 

 It may be possible that a processing function does not 

perform actual operations on the video data, but is 

assisting in communication of it. 

 Most functions have variable memory bandwidth  

characteristics depending on the Region-Of-Interest (ROI) 

requested. 

 

From the above analysis and Table 1, we clearly observe 

that for different use cases involving different ROIs and 

various image operations, quickly more than 160 GOPS are 

required with a memory bandwidth consumption of more than 

3 GB/s. A typical high-end x86 processor is capable of only 

delivering several tenths of GOPS. From this observation, it is 

reconfirmed that, as already mentioned, an application-

specific architecture is simpler, more power efficient and more 

cost-effective when compared to general-purpose computing 

platforms.  

This survey delivers a good insight which is required to 

construct a new flexible architecture for high-end camera 

systems. The processing functions are composed of a mixture 

of operations and are heterogeneous in nature. Furthermore, 

we can expect different bandwidths and different image 

processing dataflow graphs for different use cases.  Flexible 

reuse of the architecture requires now that the dataflow graphs 

becomes also programmable, which involves additional 
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aspects like buffering, synchronization and control. The 

system and application control can be outsourced to a low-

power low-cost CPU. Furthermore, due to the high inter-data 

dependency of the image processing functions, the application 

processor requires a large and local private memory. The 

communication-assist function offloads from the CPU to a 

hardware-specific function for the video communication, 

featuring reliable streaming of video and image data. A block 

diagram of the proposed architecture is depicted in Figure 2. 

The architecture consists of a CPU controlling a coprocessor 

Array (COPA), executing the image operations. 
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Figure 2: Flexible reusable architecture for a camera platform. 

Selecting a task-specific coprocessor solution releases the 

CPU from intensive computations, while the high-bandwidth 

communication is between the coprocessor and its local 

memory. If in- and output formats are compatible, virtually 

any order of operations can be programmed, also by 

modifying the access order of the CoProc modules. Once all 

operations have completed, the resulting image can be 

transferred to the CPU. In this architectural concept, the CPU 

only has to manage the tasks it assigns to the coprocessors and 

control the dataflow from image to its output.  

In the following section, the image operations are analysed 

in more detail such that the corresponding coprocessors are 

defined. 

III. CAMERA IMAGE OPERATIONS 

This section describes the typical camera image operations 

(Table 1) in more detail. For each operation, a computational 

and bandwidth model is given. Table 2 gives an overview of the 

used mnemonics in the mathematical models.  

 
Table 2: Overview of model parameters and functions. 

Mnemonic Description 

Ops Operations 

    Pixels 

B Bandwidth 
t Time 

    Bits per pixel 

D Data bus width 
C Cycles 

 

The computational model is expressed in operations per 

image and denoted with O. The bandwidth model is expressed 

in MByte/s (abbreviated hereafter as MB/s) and denoted with 

parameter B. The amount of pixels is expressed by     

pixels. 

A. Input grabber 

A typical image sensor is a CCD or CMOS chip, which is 

sensitive to photons in the visible light spectrum to humans 

and converts the light to the time-discrete digital image signal. 

A digitized image frame is characterized by the spatial 

resolution of the sensor, throughput rate (assumed linear to its 

communication frequency) and amplitude resolution per pixel, 

expressed in bits per pixel (   ). Furthermore, image quality 

is mainly characterized by the signal-to-noise ratio and image 

contrast. 

The image processing input is concerned with acquiring 

the digital image from the sensor, which is abbreviated as 

“input grabber”. Whereas conventional cameras have 

resolutions in the order of HD (2 Mega pixels, abbreviated as 

Mpix), we wish to achieve a tenfold of that resolution. 

Effectively, this means that the sensor bandwidth scales 

linearly to the communication frequency with a factor 10. The 

following set of equations describes the model for the input 

grabber.  
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By default, the input pre-processor delivers two image 

formats from the sensor: the original full-size 20 MP image 

and a scaled version (Equation (1)). From Equations (2), (3) 

and (4), we derive the bandwidth requirements for the input 

grabber and the sample frequency for the sensor given the 

number of communication channels to the sensor and its 

operating frequency. These numbers describe the first 

requirements for CoProcinput and its interface to the global 

memory.  

The amount of operations required for a single image is 

modeled in Equation (5). The constants 88 and 35 result from 

analysing various algorithms used in the pre-processing steps, 

typically found in cameras (Table 1).  

 
Figure 3: Typical image sensor CFA pattern. 

B. Demosaicing 

An image sensor is typically overlaid with a Colour Filter 

Array (CFA) pattern such that pixels are sensitive to a limited 

spectral frequency, i.e. blue, red or green, as depicted in 

Figure 3. To reconstruct an image from the CFA, an operation 

called demosaicing or sometimes called de-Bayering, is 
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required. Demosaicing reconstructs a colour representation 

with three channels per pixel (e.g. YCbCr). The demosaicing 

process is visually depicted in Figure 4.  

 

   

 
Demosaicing 

 

 
Figure 4: Demosaicing process going from CFA to a 

reconstructed full colour image. 

The bandwidth requirements for demosaicing depend on 

the amount of requested pixels per second and the 

demosaicing duration (tdemosaic, Equations (6) and (7)). 
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The model of the CoProcessor uses streamlined I/O 

registers for data capturing and outputting. If the clock 

frequency of the CoProcessor is increased, the data fetching 

and outputting speeds increase accordingly, so that the I/O 

bandwidths do not have to be incorporated in Equation (9) as 

an operation. Equations (6) and (7) provide upper bounds for 

the bandwidths depending on the computational speeds of the 

coprocessors.  The amount of required operations for the 

demosaicing function is modelled with Equation (8). The 

constant 123 is extracted from analysing a linear demosaicing 

algorithm, using a combination of 3×3 and 5×5 matrix kernels. 

In Equation (9), the min function is used such that the 

application is under the roof of the roofline model, i.e. it is 

either constrained by bandwidth or computational limitations, 

or both if around the pivot point of the roofline model. 

C. Compression 

Typically every camera offers image compression to 

reduce the required external bandwidth. Without compression 

a high-resolution camera would easily saturate a 1-Gbit/s IP 

network link and only achieve 2.1 frames per second, if we 

assume full-frame YCbCr-encoded images. Obviously, we 

could select another type of interface, however, then the 

camera would become less attractive as it would require a 

significant amount of video storage (e.g. 24-hr. recording). 

Image compression easily reduces the bandwidth exploiting 

spatial and temporal redundancy. 

JPEG2000 is a compression standard gaining interest in 

the professional video and imaging industry (e.g. digital 

cinemas use this type of compression for 4K movies). 

Bandwidth is typically reduced by at least a factor 10 (high-

quality) up to 100 (low-quality). The encoding time (or 

number of required cycles) is content-dependent, e.g. images 

with high-entropy require more processing cycles. 

In our camera system, the JPEG2000 encoder is 

implemented for one of the coprocessors in hardware (i.e. 

programmable logic) and is able to process up to 120 

Mpixel/s. This processing power can be used for various 

image sizes, such as 1280×960 pixel frames, and can be 

processed at roughly 100 frames per second. However, when 

processing full-frame images, the frame-rate lowers to 

     ⁄  6 frames per second (Equation (11)). The following 

equations describe the bandwidth requirements for the 

compression unit, when starting at computing the pixels 

involved for processing. 
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 Equation (10) describes the amount of pixels selected 

from a region of interest for compression. Equations (12) and 

(13) give the bandwidth requirements for the compression 

function.  Parameter    is used to denote the timespan to 

compress the images, the factor   

 
 provides a worst-case 

upper bound for low-entropy images. Equation (13) provides 

an upper bound for the output bandwidth, since low-entropy 

images can often be encoded using fewer symbols. The timing 

model is given by Equation (15), which uses the computation 

complexity from Equation (14). Again the min function is 

applied such that it operates under the roof of the roofline 

model. 

D. Video output 

To allow easy integration into other video processing 

systems, a video output port is provided. A video port is a 

digital output for streaming video often used in industrial 

applications, which connects e.g. a TriMedia processor to the 

COPA for further image processing functions. In our case, we 

use it to connect an H.264 encoder + motion detector (see  

Figure 5). 
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Equation (16) denotes the bandwidth requirements for a 

continuous video stream at frame rate       . Equation (17) 

denotes the amount of required operations. The timing model 

is constructed from Equation (18) which includes the roofline 

model. The computed time (       ) describes the effective 

operation time required. 

 

                 
   

 
             (16) 

                          (17) 

          (
      

       

 
            

                

) 

 

(18) 

 

E. Motion Detection 

As has been explained in the introductory section, we 

employ motion analysis for selecting the communication of 

images. This motion analysis involves a motion detector 

which is described below.  

CO-Proc

CPU-NodeIn
te

rc
o

n
n

e
ct

External 
device

Motion 
Events

Video communication Port

 
Figure 5: Coprocessor featuring a video communication port to 

connect external (legacy) hardware 

Motion detection is a broadly researched field and the 

industry has many ASIC
1

 implementations for motion 

detection. The COPA has been designed to connect such 

available processors for specific processing tasks, such as 

motion detection. The video port from Section D is used 

(Figure 5) for that purpose.  

A function block diagram of the video communication port 

is depicted in Figure 5. An external device implementing 

motion detection is connected to the video communication 

port which sends the motion events to the controlling CPU-

node.  

An important property for a reactive camera is its response 

(latency) time defined by Equation (19) which will be 

discussed in the hardware model in Section IV.  

F. Communication Assist 

Ultra-high-definition images (UHD) are significantly 

larger in terms of data size when compared to regular SD or 

HD images. To prevent the CPU from wasting expensive 

cycles for communicating images, a Communication Assist 

(CA) is proposed. The CA has several advantages [10]: 

1) The worst-case execution time of a task is decoupled from 

the communication. 

2) The CA can decrease the worst-case execution time 

(instead of stalling the processing, the CA is stalled until 

the communication infrastructure accepts the data). 

3) The communication infrastructure can be designed for the 

average communication bandwidth requirements, because 

the CA can send the data in small messages at a regular 

                                                           
1
 Application-Specific Integrated Circuit: an integrated circuit 

(IC) customized for a particular application 

interval, whereas in the architecture without a CA the 

communication infrastructure is designed to absorb the 

communication bursts as fast as possible. 

 

Additionally, by adding a data-request queue to the CA, 

the transactions can be pipelined improving its efficiency 

while reading from the memory (e.g. burst reads). The model 

for the CA is constructed using the following equations. 
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A CA does not implement a particular operation in terms 

of computational operations to an image, it merely transfers 

the image. The frame rate (      ) is sometimes variable since 

it may depend on the amount of frames selected by the motion 

detection. The amount of computations expressed in ops is 

modelled using Equation (20), in which 4 Bytes require 1 

operation (read/write) to the memory. The throughput of the 

CA is thus determined by the minimum (Equation (21)) of the 

allocated memory bandwidth defined in Equation (19) and the 

computation throughput (Equation (20)). 

IV. HARDWARE MODEL 

This section describes the hardware model for the COPA 

architecture. In the previous sections we have discussed the 

individual functional requirements per functional block. 

To enable dynamic image pipelines i.e. a reactive camera 

proactively changing image paths, a solution has been chosen 

that uses a coprocessor array (COPA) sharing memory and an 

inter-communication infrastructure (depicted in Figure 2).  To 

obtain performance estimates for each of the image functions, 

we have to map the function onto a coprocessor. Each function 

is mapped to a particular coprocessor such that the model for 

the actual COPA operation is relatively simple: one function 

per coprocessor and the COPA total is bounded by the number 

of coprocessors, both in operation and bandwidth. The 

roofline model which uses the min function in the previous 

sections, restricts both bandwidth and computational speed 

limited by the modelled available hardware resources. This 

means that after the mapping, the throughput of each function 

is upper-bounded by the roofline model incorporating both 

bandwidth and processing aspects. 

 

 This analysis requires a hardware model which describes 

the resources offered by the COPA. The CPU-COPA 

architecture has the following upper bounds for processor-to-

processor and processor-to-memory communication. 

           
          

                 

     

                      

                       

          
      

         

     

          
                         

                             
 

                         
 (22) 
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      (23) 

                                 ⁄     ⁄  (24) 

                           (25) 

 

 The maximum bandwidth to memory (CPU or COPA) is 

defined by Equation (23). The bandwidth between COPA and 

CPU is defined by Equation (24) and facilitates an 8-10 bit 

encoding mechanism to transport the clock signal along with 

its communications. The computational performance upper 

bound of the coprocessors is described by Equation (25). 

Typically a coprocessor has a core frequency (F) at which it 

operates and an amount of operations it can process in parallel 

(    ).  Image processing is often stream-oriented processing 

with identical operation(s) for each pixel such that parallelism 

can be exploited. 

Table 3 lists an overview of the values for the hardware 

model parameters used to compute performance parameters of 

the COPA. The values are equal to the hardware of the test 

system as described in Section VII. From the numbers we can 

observe that most application-specific processors within the 

COPA have low operating frequencies with high parallelism 

in the executed operations per cycle. Only the communication 

channels (e.g. DDR memory) have high operating frequencies 

up to 2.5 GHz. 

V. QUALITY-OF-SERVICE 

The integrated camera contains multiple functions for high 

flexibility in application, but not all functions can be used 

simultaneously. This is because those functions are already 

embedded in the programmable hardware platform. To 

overcome this issue we may introduce Quality-of-Service 

(QoS) when the requested computations cannot be directly 

implemented. QoS controls the quality of individual functions 

such that the desired functionality just fits to the computation 

power of the execution platform. In our case, QoS requires a 

controller based on a feedback mechanism to control the 

quality of individual functions. For example, a QoS 

component can guarantee real-time properties of services (e.g. 

an overview video stream) by reducing some other function in 

computation power. Furthermore, to enable QoS in a smooth 

way, we introduce built-in diagnostics for each function to 

monitor and analyse the system’s behaviour. Section VI 

introduces two example scenarios. The built-in diagnostics are 

used in Section VIII to display the temporal behaviour of the 

camera functions and the influence of the QoS.  

A. Built-in diagnostics 

To analyse the temporal behaviour of the functions 

executed at the coprocessor, a diagnostic component is 

implemented as a standard function in programmable 

hardware. This component makes use of timestamps. The 

timestamps denote the arrival time of a request and the 

completion time of the involved task. Each coprocessor is 

given a job queue, which is scheduled by the CPU (Figure 6). 

Once a job enters the job queue a timestamp is generated, 

while a second timestamp is generated after completion. The 

difference between the two timestamps yields the actual 

execution time of the processing. 

Table 3: Overview of hardware model parameters 

 Parameter Value Unit 

CPU-Node   

      667 MHz 

        32 b 

          2.7 GB/s 

      1.3  GHz 

        32 b 

CPU – COPA   

                 2.5   GHz 

             250 MB/s 

COPA – Memory   

      800 MHz 

        32  b 

             3.2  GB/s 

Coprocessors   

             
 160  MHz 

                   120 MHz 

                 160 MHz 

                      130 MHz 

             120 MHz 

                120 MHz 

             
 360 Ops 

                   130 Ops 

                 34  Ops 

                      350  Ops 

             3  Ops 

                1  Ops 

Jobs

Job 
Queue

CO-Proc

In
te

rc
o

n
n

ec
t

 
Figure 6: Coprocessor diagnostics, indicating timestamps for job 

arrivals and completions. 

B. Quality: Prioritizing 

Quality control is only required if a (sub-)system’s 

throughput reaches the roof of its roofline model. This is 

called an overload, i.e. there is simply too much load for the 

system. Once a system enters the overload condition, FIFOs 

and work queues tend to fill up. If a system is in overload for a 

sustained period, the FIFOs and job queues saturate such that 

no other work can be committed to coprocessors and the 

system becomes partly halted. We would like to prevent this 

scenario to happen. For our system, we distinguish three types 

of overload situations: 

1) External overload, 

2) Static systematic overload, 

3) Dynamic overload. 

The first type of overload is a scenario in which the system 

receiving the camera output cannot accept input from the 

camera. The second type of overload occurs when the static 

(e.g. non-reactive) configuration yields a performance request 

that cannot be handled by the available resources. An example 

is a video stream at 100 frames/s, while the sensor delivers a 

maximum of 30 frames/s. Such a situation can be prevented by 

computing the resource utilization in advance. 

The third type of overload is dynamic and is caused by the 

reactive nature of the proposed high-end camera. It occurs 

when a plurality of jobs is activated (or overlapping) in time. 

If jobs are running well distributed over time without overlap, 

the system can execute all jobs, although the combined load 

exceeds the available systems resources. 
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Our QoS should prevent Types 1 and 3, and we assume 

that Type 2 can be prevented by simply constraining the 

resource utilization at design (or configuration) time. Type 1 

and 3 are solved by dropping frames in FIFO order with a 

greedy algorithm, based on assigned priorities to jobs. This 

approach allows certain jobs (e.g. views) to have higher 

priorities than other jobs. The high-priority jobs are 

guaranteed to be uninterrupted, whereas low-priority jobs may 

be delayed or supplied with less input data.  

VI. EXAMPLE USE CASES 

This section introduces two use cases which are employed 

to verify the model in Section VIII. For both use cases, 

(dynamic) flow diagrams are presented 

A. Use-case 1: Petrol Station Surveillance 

The first use case is inspired by the well-known problem 

of petrol theft. Figure 7 shows such a petrol station in which 

several pumps are available for service. A regular HD-camera 

does not capture sufficient detail to allow reading the license 

plates or identification of faces. Placing additional cameras is 

a costly operation. With our proposed reactive high-resolution 

camera, several ROIs can be processed, resulting in an 

overview and the three additional windows in Figure 7 (red, 

yellow, green) with high detail. 

 

 
Figure 7: Example Use-case 1 - Petrol Station Surveillance 

This use case is implemented with a static assignment of 

four ROIs. Furthermore, we provide an additional 20-MPixel 

image for high detail overview of the complete scene. In this 

use case, the low bandwidth H.264 and four ROIs can be 

captured and recorded, while PTZ functionality is enabled by 

providing a high-resolution image which is not required to be 

recorded such that less storage space is required. The flow-

graph for Use-case 1 is depicted in Figure 8. 

In Figure 8, the image path is split right after the image is 

captured from the sensor into two paths: one for an overview 

image and the other for high-detail windows selected from the 

overview. The latter path conveys images with various sizes, 

depending on the windows and the corresponding parameters. 

In this use case we employ four SD (640×480 pixels) windows 

and a 20-Mpixel window. 
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CPU-Node
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VideoPort
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Mem

Mem
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+ 
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CA-engine

Mem
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Figure 8: Flow-graph for Use-case 1 

B. Use-case 2: Construction Site Surveillance 

The second example shows the reactive properties of the 

proposed architecture. This use case is based on surveillance 

of a construction site. During night time, most of these sites 

are typically abandoned, making them vulnerable to theft of 

tools/equipment and vandalism. Long periods of time may not 

show any event such that video recording is switched off. At 

the onset of a serious event, recording is started and images 

are captured containing e.g. activities with identifiable persons 

or cars. 

For this use case we employ the integrated motion 

detection to record activities. An example is shown in Figure 9 

in which a camera is used for delivering a scene overview. 

  

 
Figure 9: Use-case 2 with motion detection. 

Under normal circumstances, only a regular video stream 

is created, whereas in case of motion detection, several high-

quality images are captured and supplied to the video 

monitoring system. In such a case, the bandwidth is 

significantly increased for a certain period of time. 
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Figure 10: Flow graph for Use-case 2 

The flow graph for Use-case 2 is depicted in Figure 10. A 

conditional flow graph is shown to denote the reactive 

feedback from the motion detector, which influences the 

image path. In this use case, a 20-Mpixel image is transferred, 

including a 640×480 pixel ROI of the area with motion. 

VII. TEST SYSTEM 

To verify the results derived from the mathematical model, 

a comparison is made with a high-end camera implementation. 

With this implementation, we execute the system for the two 

proposed use cases. The test system is depicted in Figure 11 

and features a 20-Mpixel sensor and an implementation of the 

CO-Processor Array (COPA) and a CPU node.  

 
Figure 11: High-end camera test system. 

The test system has a power consumption of 20 Watts, 

resulting in approximately 8 GOPS/Watt. For the evaluation, 

we have developed a new programmable application 

implementing the two use cases, featuring dynamic multi-

window processing and motion detection. The application is 

designed to execute a user-defined flow graph which describes 

the image-data path(s). This application tool is used to extract 

the utilization, throughput and temporal behaviour of the 

system. The results of these measurements are compared to 

the results from the model in section VIII. 

 

VIII. RESULTS 

This section covers the results from the model-based 

performance estimation, the actual system behaviour and 

system-level diagnostics. The roofline model [7] is used to 

determine a feasible point according to the performance of the 

mathematical system model. For both use cases, we have 

predicted the performance results in terms of throughput based 

on the model provided in Section III (task models) and  

Section IV (hardware model). The model results are compared 

to the results from the actual camera system described in 

Section VII. 

A. Use-case 1: Petrol Station Surveillance 

This case describes the results from the model, the test 

system and the timing diagnostics for the surveillance 

application.  

1) Model performance 

The results of the model-based estimation for Use-case 1 

are denoted in Table 4. From Table 4 we observe that the 

majority of the memory transactions are within the COPA, 

thereby relaxing the CPUs memory bandwidth usage. 

According to the model, the system is capable of providing a 

video stream with 30 frames/s, four additional ROIs and a 

supplementary high-resolution image for PTZ functionality.  

 
Figure 12: Use-case 1 – temporal behaviour in a timing diagram. 

 



9 

 

2) Implementation results 

The implementation results for Use-case 1 are given in 

Table 4. The table results show that the system is well capable 

of providing the required video stream at various resolutions.  

The input and video processors both show high utilization as 

predicted in the model, but provide a 30 frames/s video 

stream.  The CA module and compression processor show 

slightly less utilization.  Due to the pipelined implementation 

the model is conservative.  Summarizing, the model is well 

capable of describing the camera system performance for this 

use case. Using the diagnostics feature, we can also inspect the 

temporal behaviour. 

3) Implementation Temporal behaviour 

The internal diagnostic system (Section V.A) allows us to 

capture the activities and display this as a timing diagram. The 

timing diagram of Use-case 1 is depicted in Figure 12. This 

figure displays a section of the captured second. Figure 12 

shows that in one second, 30 frames are captured, processed 

and transferred to the video port. At a lower frequency (4 Hz), 

demosaicing of frames is performed. The frames appear to be 

processed in bursts of two frames. This is due to the latency 

introduced by the frame retrieval which can only process one 

frame at a time. After arrival of the frame information (e.g. 

spike at 3482 ms) a new demosaicing task is started. This 

aliasing issue occurs when the CA co-processor is busy, while 

the application is waiting for the next frame information.   

After demosaicing, 5 different images (4 ROI, 1 full-

frame) are compressed. This is depicted in Figure 12 by two 

lines: active and waiting. Initially, a frame enters the waiting 

work queue. Once the co-processor is ready to accept a frame, 

the processing task becomes active. From Figure 12 it can be 

noted that the work queue quickly ramps-up and ramps down 

due to the four ROI images. The full-frame image takes 

considerably more time to process. Parallel to compression, 

the image after demosaicing is retrieved by the CA-engine and 

sent to the CPU.  

From the complete timing diagram we observe that the 

temporal behaviour has a repetitive pattern which also can be 

noticed in the depicted time interval in Figure 12.  

B. Use-case 2: Construction site surveillance 

The results of the model-based estimation for Use-case 2 

are given in Table 5.  

 

1) Model performance 

According to the model, the system enters an overload 

period due to compression tasks for the images. The 

bandwidth of the COPA to private memory (COPA-Memory) 

is exploited to reduce the memory bandwidth between CPU 

and its private memory (CPU-Memory). 

 

2) Implementation results 

The implementation results for Use-case 2 are given in 

Table 5. Comparing the table results between model prediction 

and measured performance, again we conclude the model is 

somewhat conservative. Furthermore, the required bandwidth 

for CA is low, which saves bandwidth when transporting the 

images.  

 
Table 4: Use-case 1 model-based analysis results 

 Parameter Model prediction Measured 

Throughput   

 Input, Video 30 [Hz] 30 [Hz] 

 Demosaicing 4 [Hz] 4 [Hz] 

 Compression 
(4×640×480 + 5120×3840) 

16 + 4 [Hz] 16+4 [Hz] 

 CA 147 [MB/s] 150 [MB/s] 

Utilization – communication paths  

 COPA-Memory 71% 70% 
 CPU-COPA 73% 65% 

 CPU-Memory 11% 10% 

Utilization – computational  

 Input 92% 93% 
 Video 98% 98% 

 Demosaicing 64% 64% 

 Compression 69% 52% 
 CA 73% 65% 

 
Table 5: Use-case 2 model-based analysis results 

 Parameter Model prediction Measured 

Throughput   

 Input, Video 30[Hz] 30 [Hz] 
 Demosaicing 6 [Hz] 6 [Hz] 

 Compression 
(5120×3840 + 640×480) 

6 + 6 [Hz] 6 + 6 [Hz] 

 CA 30 [MB/s] 30 [MB/s] 

Utilization– communication paths  

 COPA-Memory 83% 80% 
 CPU-COPA 15% 12% 

 CPU-Memory 2% 2% 

Utilization – computational  

 Input 92% 92% 
 Video 98% 98% 

 Demosaicing 96% 96% 

 Compression 105% 99% 

 CA 15% 15% 

 

 
Figure 13: Use-case 2 – temporal behaviour in a timing diagram 

 



10 

 

1) Implementation Temporal behaviour 

For Use-case 2, a timing diagram is depicted in Figure 13. 

Again frames are captured at 30-Hz frame rate in Figure 13. It 

is clear that the system is almost completely used for 100%. 

The compression processor is only occasionally idle around 

3300 ms, 3450 ms and 3630 ms.  

IX. CONCLUSION 

We have presented a new flexible heterogeneous high-end 

camera architecture, featuring dynamic programmable image 

processing paths suited for ultra-high definition 20-Mpixel 

images. The architecture of the system is based on an array of 

application-specific coprocessors. Due to the programmable 

signal flow graphs, defining the image operations, a highly 

flexible versatile camera is created, applicable to many 

scenarios. Furthermore, we have introduced a simple model 

for performance estimation of the camera system. 

Additionally, we have also discussed two use cases, exploiting 

the cameras features in different ways. The estimations are 

compared to an implementation of the camera architecture. 

Due to the various possibilities of mapping and flexibility in 

programming, we have investigated a model for system 

analysis and performance based the integrated image 

processing functions. 

The proposed model is based on the Architecture 

Algorithm Model (AAM), the Y-chart methodology and the 

roofline model. Our model uses relatively simple equations to 

express the systems throughput and performance in terms of 

frame rate, bandwidth, timing estimates for throughput and 

operations count. We have shown that a relative simple model 

(without cycle or cache dependencies) based on native signal 

processing operations delivers a reliable framework to predict 

dynamic system behaviour based on the proposed COPA. The 

framework was already tested for other applications. In our 

case we have evaluated this model for the heterogeneous 

camera system and integrated the roofline model to define a 

high-throughput high-performance point for the camera 

system executing an arbitrary use case. This performance 

point is guided by the integrated roofline model based on the 

pre-programmed video functions.  

We have validated the model by implementing two typical 

use cases: a petrol station surveillance case using multiple 

video windows requiring bandwidth, and a construction site 

surveillance case with more dynamic task processing. We 

have found that the model provides performance estimates that 

are close to the actual execution performance of the system. 

Typically, the model produces performance numbers which 

are within a few percentages of the actual performance 

figures. The model performance is relatively reliable due to 

the strict nature of the pre-programmed video functions. 

However, we have found that the control of the COPA and its 

embedded functions is critical for the performance, and 

requires a deterministic approach for task switching and 

meeting the timing deadlines for execution of those tasks. 

We have added a feature to the architecture that is 

beneficial for assessment of the dynamic behaviour of the 

COPA function execution. To this end, we have integrated a 

diagnostic tool that measures start and ending of a computing 

task and accumulates these values for all functions in 

software. This allows us to analyse the run-time behaviour of 

the COPA functions. The system allows the display of the 

timing of function execution in a graphical diagram. This 

concept also has been validated in the use cases experiments. 

These experiments have shown that this provided a useful tool 

for design time analysis of flow graphs, particularly for 

quickly localizing performance bottlenecks. Performance 

analysis is also helped by a Quality-of-Service (QoS) 

component, offering a run-time control of the input rate for 

each job. The QoS uses the same diagnostic feature as 

previously mentioned. 

The camera platform is mainly constrained by bandwidth. 

The application-specific coprocessors are running at a fraction 

of the maximum clock frequencies while the communication 

channels are running at considerably higher frequencies. This 

is a clear advantage of the chosen architecture, because power 

consumption is now saved when the use case allows it. When 

looking at the utilization numbers the footprints for both 

bandwidth and computations are comparable. From this we 

can conclude that if increased throughput (or even higher 

resolutions) with more functionality are required, then the 

memory communication architecture needs to be upgraded.  

The system has been extensively tested in the field for 

periods ranging from several weeks up to four months of 

continuous operation. During the field tests, the system 

showed no irregularities and was capable of providing a 

continuous video and image stream. Because of the success of 

these tests, the camera system is further commercially 

developed and extended in a new business unit called 

Ampleye. 

X. FUTURE WORK 

To extend the functionality of the proposed high-end 

camera, the COPA architecture requires extensions for better 

scalability support. As mentioned in the previous section, the 

platform is limited by memory bandwidth. A hierarchical 

COPA infrastructure may solve these issues by providing 

multiple memory channels and several interconnection busses. 

This is especially required to prevent the memory bandwidth 

from becoming the system bottleneck. However, this adds 

more complexity to the mathematical model and scheduling 

becomes more complicated. To solve this issue, a multiport 

memory access unit could be introduced to abstract from 

several independent memory channels, providing a load-

balancing type of functionality for memory access at the frame 

level. 

Currently, each image operation has no adjustable quality 

control. Adding quality-control means reduces the amount of 

involved operations. This is especially beneficial to video 

content analysis algorithms, as they have a very dynamic 

behaviour in computation requirements. However, the 

proposed model should be further extended for such quality 

control and deterministic nature of the control needs to be 

reconsidered. 
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