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This report presents the findings of the application of a Bayesian Belief Network for reliability prediction.
Bayesian Belief Networks are able to reason under uncertainty and to combine heterogeneous data, such
as expert opinion, historical failure data and other data that become available during the product
development process. A Bayesian Belief Network is constructed at Philips Healthcare as a feasibility
study. The study focuses on the building process and theproblems identified during the modeling process,
instead of on the resulting model itself, since this is a feasibility study.
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Executive SUlTlmary
This report is the result of a graduation project executed by Jaap Houben. The research project was
conducted at Philips Healthcare and is part of the research at the Quality and Reliability Engineering
section of the department of Technology Management at the Eindhoven University of Technology.

The topic of the research project was the application of Bayesian Belief Networks for reliability
prediction. Bayesian Belief Networks are able to reason under uncertainty and to combine heterogeneous
data, by quantifying the expert opinion and combine it with the already available historical failure data
and other data that become available during the product development. Additionally, "Bayesian Belief
Networks combine the advantages of an intuitive visual representation with a sound mathematical basis in
Bayesian probability" (Neil et al., 2005).

Modeling Process
Following the literature study on the theory of Bayesian Belief Networks, a case study was conducted at
Philips Healthcare to apply the methodology in practice. The aim of the project was to walk through the
whole modeling process of building and using a Bayesian Belief Network to identify the problems arising
at the different stages of the modeling process. For the construction of the Bayesian Belief Network, the
stages of the modeling process identified by Sigurdsson et al. (2001) were used. These modeling stages
are depicted in Figure SI. Figure Slalso shows the steps that were executed within each of the stages and
the techniques used to execute the steps.
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Figure SI. Overview of the techniques used in each of the modeling stages

Inferenee

(Chapterol

InstantIation

(Chapter5)

TU) Technische Universiteit
ElndlltMlae Unlvel1lly ofTechnology

Problem
Structuring

(Chapter4)

••
•••••••••••••
••
••
••••••••
•••••
••



IV

Figure S2. Resulting Bayesian Belief Network

The Bayesian Belief Network that resulted from the research project is shown in Figure S2. The network
structure is based on the functional structure of the module that is modeled. The white top node represents
the reliability of the module. The blue nodes represent the failure rates of its functions and sub-functions.
Finally, the yellow nodes represent the failure rates of the components which determine the reliability of
the functions.
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Results

The relationships between the variables are deterrnined by treating the network as a series connection of
components that lead to the reliability of the module. Although the relationships were determined by
using a series connection, the network in Figure S2 is structured as a Bayesian Belief Network. In contrast
to the representation of a series connection, the Bayesian Belief Network also gives insight in the
influences of the components on the functions of the product by visualizing the functional structure.
Bayesian statistics were used, as a result of the uncertainties incorporated in the model. Additionally, also
expert opinion is included in the model. What is missing in the Bayesian Belief Network resulting from
this research project is are the interaction effects between variables. By using the software as a
"summation machine", the full functionality of the methodology is not used.

Tule



The problems which were identified during the modeling process were the following:

v

In literature, the steps to take to build a BBN seem easy, but to apply them in practice appeared a very
difficult task in this research project.

Although the possibility of Bayesian Belief Networks to model interactions between variables is not
included in the model, the benefits of being able to reason under uncertainty. to combine heterogeneous
data and to give a visual representation of the relationships are used in this research project.

sénle and limplicity
PHIUPS

• Flexibility of the model
• Choice of generic or specific factors
• Size of the network
• Exploding Node Probability Tables
• Bias in the calculated probability distributions

Of the problems that were identified during the modeling process, the choice which factors to include was
the main issue. This issue relates to the flexibility of the model, the choice between general and specific
factors and the size of the network. In this research project, this issue was resolved by using the type of
network structure that was preferred by Philips Healthcare. For a feasibility study, this choice was not a
problem, but in other applications the issue of which factors to include in the model can be a large barrier.
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The goal of the case study for the research project was to gain experience with the application of Bayesian
Belief Networks in practice and to identify problems during the different modeling stages. This resulted in
a quantified Bayesian Belief Network, but the step of specifying the conditional probabilities by eliciting
expert opinion became unnecessary, because the relationships became trivial in the series connection.
Since the elicitation of expert opinion to quantify the conditional probabilities is an important step in the
construction Bayesian Belief Networks described in literature, the absence of this step is a drawback of
this project.

For Philips Healthcare, the main benefit of the project is the functional structure. The structure is a
visualization of the relationships between the module, its functions and its components. Another benefit
are the insights gained from this project. By closely monitoring the project, Philips Healthcare has seen
the application of the Bayesian Belief Network and could decide to apply it again, either for the same, or
for a different purpose.
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Next to the fact that the largest part of the costs is already decided in the early development phases,
changes in the design also become more costly over time. The reliability should be predicted early enough
in development to enable corrective action (Kerscher et al., 1998). Therefore, to save money and effort in
the later stages of the development, a proactive approach should be adopted throughout the development
cycle that immediately uses the information at the time it becomes available. Assessing the reliability at
the time the product is in use is relatively easy, but to do this during the early development requires
information that is scarcely available. As aresult, prediction methods that are abIe to make predictions
already early in the development rely on indirect as well as qualitative information about the reliability of
the product. This indirect and qualitative information, however, increases the uncertainty of the reliability
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The increasing attention for a Life Cycle Cost (LCC) approach is a second reason for the growing
importance of reliability. Researchers have identified that operating and support costs are the most
significant portion of the LCC and although operating and support costs are not only dependent on
reliability, a significant part of the LCC is spent on maintenance alone. Since maintenance aims at
preserving reliability, reliability has a major impact on the LCe. In this way, increasing the reliability
decreases the LCe. Yates and Beaman (1995) show that 66% of the life cycle costs are already decided at
the end of the concept phase (Figure 1.1). This indicates that if one wants to make design changes to
improve the reliability and thus minimize the LCC, these changes should be made already before or in the
concept phase. To be able to improve the reliability at this stage of the development, reliability
predictions are needed at that time. For this reason, the reliability should already be predicted as early as
possible. On the ODe hand, improving the reliability brings costs during development, and on the other
hand, it saves costs later on. The challenge is to find a good balance between these costs.

The emerging technology has created agiobal economy. Due to this globalization, companies are able to
market their products all over the world. On the one hand, this creates opportunities, on the other hand, it
stimulates global competition. Due to the large global competition, the consumers demand with respect to
delivery times, costs, quality and reliability have risen. "Today's manufacturers face intense global
competition, pressure for shorter product-cycle times, stringent cost constraints, and higher customer
expectations for quality and reliability" (Meeker and Escobar, 2004). As aresuit an increased pressure is
put upon the reliability of the product.

75

1 Introduction

Figure 1.1. Over 65% of Life Cycle Cost (Inherent Reliability) is Determined by the End of the Concept
Phase of Product Development (Yates and Beaman, 1995).
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prediction. Therefore, when considering reliability prediction, it is important to not only take into account
the reliability estimate, but also the uncertainty of this estimate.

Quantitative methods like PoF, ALM and FEA make use of simulation tools to determine the failure
probability of a product or system. However, to be able to use these tools, the failure mechanisms must be
known, together with some quantitative data concerning these failure mechanisms. Early during product
development, these data are not available yet.

Also qualitative methods have been advocated, such as HALT/HASS, or quantitative methods such as
Physics of Failure (PoF), Accelerated Life Models (ALM) and Finite Element Analysis (FEA)
(Economou, 2004). HALTIHASS has the problem that to be able to perform accelerated tests, it needs a
physical product, or prototype, as a result of which it can not be applied very early in the product
development process.
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1.2 Criticism
According to Yadav et al. (2003) the reliability community only recently started realizing that the
reliability prediction made by existing methods hardly matched with reality. These methods fail to
provide the required accuracy, especially during the development phase. One of the problems of these
methods is the use of wrong assumptions. The constant hazard rate, for example, "does not seem
appropriate for any failure mechanism that can be attributed to fracture, fatigue, corrosion, andJor wear
mechanism" (Yadavet al., 2003). Also "the assumption of independent failure mechanism is not realistic"
(Yadav et al., 2003). However, Wong (1990) already questioned these methods in 1990. Additionally,
Wong states that "many of the first-order effect factors are not explicitly included in the prediction
methods" (Wong, 1990). And "the models were often simple approximations without scientific basis"
(Wong, 1990).

1. 1 Existing Reliability Prediction Methods
The first comprehensive reliability handbook, TRl100 was developed in 1956 and the methods that were
described in it were designed to predict the reliability of electronic equipment. "Refinements were made
and it became a forerunner of MIL-Hdbk-217" (Wong, 1990). MIL-Hdbk-217 as weIl as its forerunner,
MIL-Std-217, have been used for decades to predict the reliability of a product. "The main premise is that
reliability depends on a Part-Count and Part-Stress approach, where the reliability of individual
components determines the reliability of the system or product" (Economou, 2004). While adding more
part types and parameters, this handbook evolved from the first version to version 217E. At the mean
time, companies like for example BeIlcore were also trying to develop their own reliability prediction
methods (RPP) (Wong, 1990). The main problem of MIL-base methods, as weIl as RPP, is that they rely
on databases filled with field failure data and "since field failures depend mainly on design and
application, these data are not representative of all cases" (Economou, 2004). As aresult, predictions
made with these methods have proven to be inaccurate.

Another technique, developed in a military context, is Reliability Growth Testing (RGD. In this
traditional context, a product was used to put on a test after it was developed, and could then be delivered
to the customer with a demonstrated reliability. To be able to put the product to a test, a physical product
is needed, either the finished product, or a prototype. The fact that these long-term tests required
additional time as weil as costs was accepted (Kerscher et al., 1998). In those days, the focus was more on
the accuracy of the reliability estimate and tests were less constrained by time. However, in modern
industrial settings, where manufacturers face a shorter time-to-market and higher customer expectations,
this additional time and money are not available.
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Figure 1.2. Observed vs. predicted fallures with MiI-Hdbk-217B (Woog, 1990)
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Although this figure sterns from 1990, Economou (2004) and Yadav et al. (2003) repeat the opinion that
the existing prediction methods are still far from accurate. Despite these accuracy problems, MIL-based
predictions are still extensively used and required by many customers (Economou, 2004). Although much
criticism has been written by researchers on the available reliability methods, still some prediction is
needed early in the product development.

1.3 Research Problem
An increased pressure in put on the reliability of products and the reliability must be predicted already
early during the product development process. Several reliability prediction methods exist, but they all
have their drawbacks. MIL-based predictions rely on failure databases and because the actual failures
depend the design and application, wrong assumptions are being made, resulting in inaccurate predictions.
Qualitative methods need physical products, which are not available early during product development.
Simulation methods need failure mechanisms, whichcan only be found with the use of a physical
product.

Figure 1.2 illustrates how the reliability estimates deviate from the observed failure data. In this study,
Mil-Hdbk-217B was used to predict the failure rates (FR) of several memory boards. From this figure it
can be seen that not only do the predicted failure rates deviate from the observed failure rates, also only in
three of the twelve cases the observed failure rate falls within the confidence interval of the predictions.
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The quantification of the network is done in the instantiation stage. This stage of the modeling process is
described in chapter 5. The relationships between the variables in the network must be quantified as weIl

In the problem structuring stage the network structure is identified. Chapter 4 describes the execution of
the activities within the problem structuring stage. The result of this stage is a network structure which is
not quantified yet.

An option would be to use other reliability prediction methods than the classical ones described above.
An example of a reliability method that is becoming increasingly popular and will be used in this research
project is the so-called Bayesian Belief Network (BBN) (Fenton and Neil, 2000; Neil et al., 2000; Neil et
al., 2005).

•
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1.5 Report Structure
In the first half of this chapter, the research context, the reason to examine reliability prediction and in
particular the use of BBN's in reliability prediction have been discussed. The company at which the
research project was perfonned is Philips Healthcare. In chapter 2, the company introduction, Philips
Healthcare and module that is modeled will be discussed.

Usually, the only infonnation that is available early during product development are historical failure data
on similar products and the opinion of experts. However, these expert opinions are qualitative and
therefore hard to use in a model. More infonnation becomes available later on in the product development
when prototypes are tested. However, the reliability methods discussed in section 1.1 are not able to deal
with the heterogeneity of all different incoming data.

1.4 Alternative of the Bayesian Belief Network
BBN'scan be used to quantify the expert opinions and combine them with the already available historical
failure data. AIso, "BBN' s model problems that involve uncertainty" (Neil et al., 2000). The promising
prospect of being able to combine heterogeneous data and to reason under uncertainty was the reason to
examine this specific reliability method in more detail. The name already indicates that BBN's are
networks in which Bayesian probability theory is involved. "Although Bayesian probability theory has
been around for a long time it is only since the 1980s that efficient algorithms (and tools to implement
them) have been developed" (Neil et al., 2000). The word "belief' in the name of the method refers to the
beliefs (in the fonn of expert opinions) on which the method is partially based.

In literature, applications of BBN's in practice are described. They mainly show the results of the
modeling which are the model itself and the conclusions that are drawn from it. The focus is on proving
that the use of the BBN worked weIl. However, the modeling process itself, and especially the
encountered problems, are described minimaIly. To gain insight into the process of building a BBN in
practice, in this project a BBN will be used to model the reliability of a module at Philips Healthcare. The
result of this research project is not the BBN itself, but the insights gained from the process of
constructing a BBN. For this reason, the whole process walkthrough of building a BBN is prioritized over
the quality of each modeling step.

BBN's were already introduced shortly in section 1.4, but will be discussed in more detail in the first part
of the research project chapter, section 3.1. The theory on BBN's is explained more extensively because
this is the methodology that will be used in the project. The process of building and using a BBN is done
in three stages, namely the problem structuring stage, the instantiation stage and the inference stage. The
research questions (section 3.2) and the research approach (section 3.3) are linked to these stages of the
modeling process.
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as the marginal probability density functions of the variables. When the network structure is quantified,
the BBN is finished an can be used.

The third stage of the modeling process is the inference stage, which will be discussed in chapter 6. This
is not really a stage of the building process, but of the use of the BBN. Evidence can be entered to update
the network. In this research project, the inference stage is only used to "play" with the model, because no
evidence was available to be entered.

Finally, in chapter 7, the project will be reviewed. Thereview gives an overview of the steps that were
taken in this research project to built a BBN. The resulting model is reviewed and answers are given to
the research questions. The answers to the research questions are discussed in the discussion section and
the chapter will end with a conclusion on what was done and what was not during this research project.
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Philips Healthcare is a global leader in diagnostic imaging systems, healthcare information technology
solutions, and patient monitoring and cardiac devices. In Table 2.1, a number of other facts about Philips
Healthcare are listed.

2 Company In'troduction
The company at which the project was executed is Philips Healthcare. This section starts with global
information about Philips Healthcare and ends with the more specific description of the product that will
be modeled.

2.1 Philips Healthcare
To give an idea of the situation in which the method is applied, the context of the product under
investigation will be discussed in this section, starting with background information on Philips
Healthcare. The background information in this section is extracted from the Philips Healthcare website
http://www.medical.philips.com.

••••••••••••••••••••••••••••••••••
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Philips Healthcare is involved in four businesses:
• Imaging Systems - This business consists of X-ray machines, CT, MR, Ultrasound and nuclear

medicine imaging equipment, used to create images of various parts of the body in varied detail
for radiologists and cardiologists.

• Ultrasound and Monitoring Solutions - This includes Ultrasound imaging, patient monitoring
systems and cardiac systems.

• Information - This includes healthcare informatics and document services.
• Customer Services - This includes consultancy, clinical services, education, equipment financing,

asset management and equipment maintenance and repair.

Tule

I'H-e-a-dq-u-art-e-r-s-------IAndover, MA, USA and Best, the Netherlands

IPresident and CEO ISteve Rusckowski

!Employees 133,000 (27% of Philips total)

ISales and Services Operations IIn more than 63.countries with more than 6,000 service technicians

!Countries of Distribution lOver 100

The Netherlands: Best and Heerlen.
Germany: Hamburg and Böblingen.
Finland: Helsinki.

Development and
Israel: Haifa.
USA: BothelI and Seattle, Washington; Reedsville and Philadelphia,

manufacturing sites
Pennsylvania; Andover, Massachusetts; Latham, New York, Milpitas
and Oxnard, Califomia and Brisbane, Califomia; Cleveland, Ohio;
Chicago, IlIinois; Madison and Pewaukee, Wisconsin; and Gainesville,
Melboume and Orlando, Florida.

Research and advanced At 22 Philips sites and over 40 medical and technical institutions
development worldwide

Affiliate Companies (Philips
Medquist (72%), Philips Medical Capital (40%), Trixell (24.5)share):
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2.2 ModuleX

Within the business of Imaging Systems, the unit Magnetic Resonance (MR) is involved in Magnetic
Resonance Imaging (MRI). This imaging technique is discussed in appendix A.

Parallel to this research project at Philips Healthcare a Black Belt project was running, concemed with the
reliability of module X. In this Black Belt project, classical reliability prediction methods were used. For
information about module X, the Black Belt team had to be consulted fITst, to use the time of the
development team as efficient as possible.
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Due to confidentiality reasons name of the module that was modeled will not be used in this report. It will
therefore be called "module X". Also its functions and components will be indicated with "function 1",
"function 2", "component A", "component B", etcetera. The module is a small but critical part of a larger
system which is being developed at the business unit MR. A description of the module and a list of the
functions and components to which will be referred in this report can be found in the confidential
appendix F.

Predicting the reliability of a product is most difficult when it is in the early stages of its development,
because hardly any data are available yet. One of the advantages of BBN's is that they can overcome this
problem by including expert opinion. Choosing a product that was still in the beginning of its
development could help to fully cover all the aspects of constructing a BBN in practice. At the start of the
project, module X was in the early stage of the development process and therefore it was chosen to be
modeled during this research project.

During this research project, three main experts were interviewed to gather information about module X.
The reliability champion at MR, who is working fulltime on reliability improvement projects within MR,
is referred to as the "reliability expert". The "product expert" is a hardware architect at MR and is
responsible for the architecture of the larger system, of which module X is a part. As such, he is an expert
on the module itself as well as on the function of the module within the larger system. The third expert is
the "temperature expert". The temperature expert is occupied with temperature simulations and test for
product development at MR.

•
••••
••••••••
••••
••
•••
••••
•••
•••••
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The network consists of a number of quantified, causa! relationships between discrete variables. Factors
that directly or indirectly influence the reliability are included in the model and are represented by nodes.
The statistical relationships between the variables are represented by arcs which connect the nodes. An
advantage of the use of a network as opposed to the use of direct relationships (like in a regression model)
is that it gives a better understanding of how the final reliability is derived. ''The causal model is telling
the story that is missing from the regression approach" (Fenton and Neil, 2000).

3.1 Bayesian Belief Networks
BBN's are able to reason under uncertainty and to combine heterogeneous data, by quantifying the expert
opinion and combine it with the already available historical failure data and other data that become
available during the product development. The property of being able to reason under uncertainty is
important because the aim of combining different types of data is not to reach a point estimate of the
reliability, but to also monitor the uncertainty of the estimate.

3 Research Project
In section 1.4, a brief introduction was given of the advantages of BBN's. In section 3.1 of this chapter,
BBN's are discussed more extensive1y. The aim of the project was to examine the methodology of
building a BBN in practice. This methodology consists of three main stages, the problem structuring
stage, the instantiation stage and the inference stage. The research questions (section 3.2) are therefore
linked to these stages of the modeling process. The approach to applying the methodology of BBN's in
order to answer the research questions was by doing a case study at Philips Healthcare. In section 3.3, the
research approach of doing a case study is described.

•••••
•
•
••••
•••
•••
••••••••
•••
••••••
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Another advantage of the dependencies among variables is that variables can also be estimated indirectly,
via related variables. By using a network perspective, experts can specify the relationship between two
variables in which they are knowledgeable, instead of having to specify the direct relation between the
variabie and the reliability. "BBN's enable reasoning under uncertainty and combine the advantages of an
intuitive visual representation with a sound mathematical basis in Bayesian probability" (Neil et al.,
2005). This reasoning under uncertainty is possible due to the Bayesian probability theory, which enables
the combination of probability distributions. The mathematical basis makes it possible to not only
generate reliability estimates, but also to investigate the impact of new evidence on the reliability estimate
as well as the uncertainty of this estimate. "BBN's allow an injection of scientific rigor when the
probability distributions associated with individual nodes are simply expert opinions" (Neil et al., 2005).

3.1.1 Child and Parent Nodes
In Bayesian Networks, "child" and "parent" nodes are used to represent the variables that (in)directly
influence the reliability. Several parent nodes can be connected to one child node, but one parent node can
also point to several child nodes. The child node is influenced by its parents. The relationship between de
child en the parent nodes is quantified. With the help of Bayesian probability theory it is possible to say
something about the child node based on information on the parent nodes and the other way around.
When these parent nodes also have other parent nodes themselves, a network arises. The probability
distribution of the child node is calculated from the probability distributions of its parents in combination
with the quantified relationship between the child and its parents. The probability distributions of the
parents are calculated from the probability distributions of their parents again. For the nodes that do not
have parents the modelIer must quantify the distribution. These distributions are called marginal
distributions, they are situated at the start of the "variable chain", and are the input for their child nodes.

Tule
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Figure 3.1. Example of a NPT
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In the example given in Figure 3.1, the probability of variabie A being in state Blue, given that the state of
parent variable C is Large and the state of parent variable B is Squared, is 0.9. In this example the
variables A, Band C each only have 2 possible states, but variables are allowed to have more. When the
number of parents and possible states of the variables increases, the number of conditional probabilities
that need to be specified grows exponentially.

The structure of the network is decided by the developer of the network in cooperation with
product/process experts. All parent-child relations, which are represented by the arrows, can be causalor
influential and are defined with the help of expert opinion and historical data. According to Fenton and
Neil (2000), "regression models often lead to misunderstanding about cause and effect, because a
correlation does not provide evidence of a causal relationship", which is why the causal nature of the
relationships in the Bayesian network is so important.

3.1.3 Bayesian Updating
In the previous section, it is explained how the probability distributions of the variables in the network are
related to each other as a result of the statistical relationships between them (represented by the arrows).
The distributions that appear when the model is finished, but not yet "used" are called prior distributions.
When quantitative information about the distribution of a variabie becomes available, this can be entered
into the network as evidence on this variabie. As a result of the entering of this evidence, the prior
distribution changes and is updated to a posterior distribution. Due to the statistical relationship of this
variable with its childs and its parents, the probability distributions of these variables are also updated to
posterior distributions. The child and parent nodes of these updated nodes will also be updated as aresult
of the change and that is how the incoming inforrnation is propagated through the whole network. In this
way, the whole network is updated as a result of the new data that is entered at one variabie.

3.1.2 Node Probability Tables
The conditional probabilities are stated in a so-called Node Probability Table (NPT). This NPT indicates
the statistical relationship between the node corresponding to the NPT and its parents. In the table the
probability of the variabie being in each possible state is indicated, given the variable states of its parents.
An example of a NPT is shown in Figure 3.1, for a fictive situation.

In addition to the importance of the use of causal relationships between the nodes, close attention should
also be paid to the direction of the relationship. When trying to influence the pdf estimate of a node, one
should adjust the nodes that cause this estimate, and not the nodes that are affected by it.

•••••••••
••••••••
•••••••••••••••••
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Variables A and B are independent given C. This can be illustrated by a small example. Two colleagues,
Tom (A) and John (B), both travel to work by train (D). Tom finishes his joumey by bike (C) while John
takes the bus (E). The probability that Tom and John will be late partly depends on the train being delayed
(see Figure 3.2).

3.1.5 Conditionallndependence
The updating of the nodes is done using Bayesian probability theory. "The underlying theory of BBN's
combines Bayesian probability theory and the notion of conditional independence to represent
dependencies among variables" (Neil et al., 2005). Two variables A and Bare conditionally independent
on C if:

•••••
•••
•••
••••
••
•••
••••••
•
••••
••
•

(3.7)
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Bus Delayed (E)

John late (B)

Train Delayed (D)

P(A n BIC) = P(A I C) .P(B I C)

Tom late (A)

Figure 3.2. Example of conditional independenee

Flat Tire (C)
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3.1.4 Acyclic Graph
Each time when new evidence is entered into the network, the whole network is updated. However, each
node is only updated once as a result of this specific evidence. The node structure is acyclic, which means
that there is no directed path starting and ending at the same node. Therefore, each node can only be
updated once per updating stage. When, for example, node A is updated, it can trigger the update of nodes
Band C, but due to the acyclic nature of the structure, node A is not updated by Band C again.

3.1.6 Building Process
In the previous sections of this chapter, the most important aspects of BBN's have been discussed. In this
section, the stages of the building process of a BBN will be clarified. The stages which are used in this
report are the ones defined by Sigurdsson et al. (2001). These stages, the problem structuring,
instantiation and inference stage were already mentioned in section 1.5 and are shown in Figure 3.3.

If John is late, the probability of the train having been de1ayed increases. This may seem strange, because
John does not cause the train to be de1ayed. VariabIe Bis the effect and D the cause and not the other way
around. However, if B has occurred, this is the effect of either cause D or the cause E. As aresult, the
probability of occurrence of both D and E increases. Because the increased probability of D does on its
turn influence the probability of A, variables A and Bare dependent. P(A n B) t:- P(A) . P(B) because

P(A) and P(B) partially have the same cause. However, if Dis known, information on variabIe B does
not influence the probability of A anymore, so A and Bare conditionally independent given D:
P(A n BID) =P(A ID) . P(B ID). From Figure 3.2 we can also see that C and E are conditionally
independent given A or B or D. However, C and E are not conditionally independent given A and B.
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Figure 3.3. Flowchart showing the steps of building and using a BBN (Sigurdsson et al., 2001)
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In the second stage, the initiation, the conditional probabilities are specified. The conditional probabilities
represent the causal statistical relationships between the variables. When the network structure is

The first two steps, within the problem structuring stage, are the identification of the factors and the
network structure. This is also pointed out by Kerscher et al. (1998), who state that "one of the first
activities of an organized reliability program is the construction of a reliability logic flow diagram of the
product under development" (Kerscher et al., 1998). "BBN' s provide an altemative representation of fault
trees and reliability block diagrams" and "they essentially provide a framework for graphically
representing the logical re1ationships between variables and capturing the uncertainty in the dependency
between these variables using conditional probabilities" (Sigurdsson et al., 2001). The third step of the
problem structuring stage is expressing the statistical variables. The factors that have been identified in
the first step must be expressed as statistical variables and the set of possible values should be specified in
order to be able to define the statistical relationships between the variables. Note that the second and the
third step can be interchanged, because they will probably need to be performed iterative1y, before
proceeding to the next stage. In this report, the variables will be referred to as factors, until they are
expressed as statistical variables in the third step, since one could assume variables to be statistical by
nature. In the first step, the factors are identified and in the third step the factors are specified as statistical
variables.

••••••••••••••••••••••••••••••••••
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1. What are the problems and risks encountered when constructing a Bayesian node
structure?

The research questions, which will be discussed in the next section, are based on the modeling stages
defined by Sigurdsson et al. (2001).

2. What are the problems and risks when quantifying the relationships between the factors
that determine the product reliability?

••••••••••••••
•••
••••
•••••
••••••••
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determined and the conditional probabilities are specified, the network is ready to be used, which will be
done in the third stage. In this stage, the evidence will be entered and propagated through the network.
Then, finally, the results must be interpreted, which can be done with the help of expert and developers.

3.2 Research Questions
In theory, BBN's seem prornising to overcome the problems of the more classical methods named in
section 1.1. In the existing literature on BBN's, the main focus is placed on the benefits of the
methodology. However, when applying the methodology in practice, problems will arise. The aim of this
project was to identify these problems, so that they can be anticipated in the future. In section 3.1.6, three
stages identified by Sigurdsson et al. (2001) are given which can be followed to build and use a BBN.
These stages are the problem structuring, instantiation and the inference stage. The research questions that
are discussed in this chapter are based on the problems arising in these stages. In the problem structuring
stage, a Bayesian node structure is constructed. The first research question is dealing with the problems
that occur during this stage. During the instantiation stage, the relationships within the node structure are
quantified and this is what the second research question is based on. After the quantification, the network
is finished and can be used, which is the third stage. The third stage is the inference stage, in which
evidence is entered and propagated and the results are interpreted. Because the model is already finished
at this point in time no problems are anticipated in this stage with respect to the building of the network,
but more to the interpretation of the model. An issue that re1ates to the interpretation of the results is the
validation of the model. The third research question focuses on validation, but has a lower priority than
the first two research questions.

The product is still in the design phase of its development and as aresuit quantitative data on this product
are scarcely available. The same holds for quantitative data on sirnilar products, because it is the first
generation of a new product. One of the benefits of BBN's is that they can be applied without quantitative
data, already early during product development, by using expert opinions. However, if experts are the
only information source, the development of the model becomes very dependent on this information
source.

The relationships between the variables in the BBN must be quantified. If no quantitative data are
available on these re1ationships, the quantification must be done by experts. In the case of new products,
the relationship between certain variables may be unknown to the experts. The fact that certain
re1ationships are unknown to the experts can be represented by a large variance of the estimated
probability distributions. A larger variation of a probability distribution is not a problem, because the
network is perfectly capable of handling this uncertainty. However, it is not sure whether experts can say
something quantitative about the relationships at all.
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This case study, concerning the construction of a BBN in practice follows the stages of the modeling
process defined by Sigurdsson et al. (2001), described in section 3.1.6. The first stage in this modeling
process is the problem structuring stage. The problem structuring stage will be discussed in the next
chapter.

3.3 Research Approach
The methodology that will be investigated in this project is the BBN. The research approach is the way in
which this is done, which is by doing a case study at the business unit MR at Philips Healthcare. The
software that will be used to model the BBN is AgenaRisk. For this master thesis project, the choice of a
case study seems quite trivial, but when generalizing the results afterwards it remains important to keep in
mind that the sample size is just one, because only one BBN was constructed.

In the case of this project the goal of the case study is not to 'give rise to a statistical study that could
validate or eliminate a theory or general model,' because there is no theory or general model involved.
Instead, the study will examine the applicability of a tooI and as such, it will be a feasibility study.
Foreman (1948) distinguishes case studies focused on development, resulting in a case history, and case
studies that obtain a panoramic view of the present, which can be called photographic. The case study of
this project focuses on the feasibility to develop a Bayesian Belief Network. The resulting model itself
could he useful for Philips Healthcare, but not particularly for the study. What contributes more to the
study is the way in which the model is developed. This is why this report describes the building process,
following the different stages of the modeling process, instead of only describing the resulting model and
its predictive performance.
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3. How to validate the resulting Bayesian Network?

When a model is finished, one normally wants to validate the model. In the case of a BBN which is
applied to a product under development, there is hardly any evidence to validate the model with. Test data
cannot be used to validate the model because they are incorporated in it. In a later stage, field data can be
used to compare the reliability predicted by the model to the field reliability. Even then, the comparison
does not say much, because the reliability following from the model evolves over time. Validation based
on just a single reliability estimate from the model may therefore be too simpie. The purpose of the BBN
is to combine the available, up-to-date information, and as aresuit the accuracy of the predictions made
using the BBN largely depends on the input data used. Therefore, the accuracy of the predictions are not a
good measure of the performance of the methodology. What will be validated for this third research
question is the way in which the BBN propagates the probability distributions of the variables.
Independent of the question whether the BBN represents the reality, it can be exarnined whether the BBN
propagates the probability distributions of the variables in the anticipated way.

The case study can be a useful tooI in research, but it has also been criticized much in literature. One of
the most important critics on the case study is that "built on a single case, it can with difficulty measure a
theory's generality" (Hamel et al., 1993). The conclusions that follow from the application of the method
can hardly be generalized because they largely depend on the specific context in which the method is
applied. According to Hamel et al. (1993), another drawback of the case study is the problem of the
subjectivity of the researcher. This subjectivity plays a role in every research, but is even larger when the
researcher becomes a part of the research field himself. In that case he does not only add subjectivity by
setting up the experiment and interpreting the results, but also by influencing the processes within the
research field just as a result of his presence. As aresult, "the case study became an exploratory
investigation, a preliminary survey giving rise to a statistical study that could validate or eliminate a
theory or general model" (Hamel et al., 1993).

••••••••••••••••••••••••••••••••••
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Figure 4.1 shows the steps that have been followed in this research project during the problem structuring
stage and the techniques that are used for each of the steps. In this research project, the main input to
build the network structure was the opinion of the experts. However, also other information sources like
the products functional requirement specifications and the results of an FMEA analysis were used, to use
expert time as efficient as possible.

•
••••••••
•
•••
••••
•••••••••
••
••••••
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Figure 4.1 also shows in which section of this chapter each step or technique is discussed. Section 4.1
describes the first modeling step within the problem structuring stage, namely the identification of the
factors. An FMEA analysis, the functional requirement specifications and individual interviews were used
to execute this step. The functional requirement specifications and the results of the FMEA were both
used as input for the interviews. The second modeling step, the identification of the network structure will
be discussed in section 4.2. and the third modeling step, in which the factors are expressed as statistical
variables is described in section 4.3. As shown in Figure 4.1, step two and three of the problem
structuring stage were also done by individual interviews. The interviews in the problem structuring stage
were done with the reliability expert and the product expert, who were both introduced in section 2.2. The
reliability expert decided the type of structure to use, while the product expert identified the factors within
this type of structure.

4 Problem Struc'turing
In the problem structuring stage, identified by Sigurdsson et al. (2001) in Figure 3.3, the network
structure is made. The network structure consist of a number of variables which are connected by arrows.
The arrows represent the causal relationships between the variables. In the problem structuring stage,
these relationships are not quantified yet. When the variables and the relationships between them are
quantified, the network is called a BBN. As long as the network is only qualitative in nature it is called a
network structure.

Problem
structurlng

(Chapter4)

In an interview with the reliability expert at MR, it became clear that Philips Healthcare preferred the
network structure to be based on the functions of the product. The reliability expert defined the reliability
of a product as being able ta fulfil its intended functians. The product only fails if one or more of its
functions fail. In this sense, the reliability of the product can be derived from the reliabilities of its
(sub)functions. By using a functional structure, the model shows how the reliability of the module is
influenced by its (sub)functions. ''The causal model is telling the story that is missing from the regression
approach" (Fenton and Neil, 2000). The reliability of the (sub-)functions depends on the components that
execute these (sub-)functions. Therefore, also components were included as factors in the network. An
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Figure 4.2. Example of a network structure based on functions

example of a network structure based on the functions and components of a product is shown in Figure
4.2.
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The advantage of using the FMEA results as input for the BBN would be that the experts would no longer
be necessary for the identification of the factors and a larger part of their time could be dedicated to the
quantification of the model. However, since the complexity of the model increases with the number of

4.1 Factor Identification
In their study, Sigurdsson et al. (2001) started with the engineers indicating which aspects of the system
they felt could lead to a system failure. Concerns were indicated on the level that the expert is
comfortabie with, but it is also important to explore their sub-concerns, which influence the top-level
concerns. In this graduation project, the experts had only very limited time available. Therefore a start
was made with the identification ofthe factors using other information sources, to use the experts' time as
efficient as possible. Because the module was still in the early stages of its development, there was only
little information available about the product. The FMEA analysis and the requirement specifications
were available and were therefore used to start the factor identification with. For the factor identification,
an FMEA analysis, the functional reguirement specifications and individual interviews were used.

4.1.1 FMEA Analysis
Shortly after the start of this master thesis project, a FMEA analysis was started. This analysis was part of
the Black Belt project described in section 2.2. The results of this analysis can be found in appendix B.

The choice to use the functions and components of module X as factors in the network structure was
made during the factor identification (section 4.1) and the network structure identification (section 4.2).
After a number of iterative loops of identifying factors, identifying the network structure, changing
factors and changing the network structure, the decision was made to use the type of network structure of
which an example is given in Figure 4.2. The first problem within the problem structuring stage was
encountered here. Due to the large flexibility of the model is it difficult to decide what factors to use in
the network. Besides the factors in Figure 4.2, other kinds of factors could be included, like the results of
an FMEA, or more abstract factors like "the complexity" of the module of the "quality of testing". As a
result of this large flexibility much effort was spend on examining the suitability of the alternatives.

••
•••••••
•••••
•••••••••••••••
••••
•
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A way to decrease the number of nodes in the model is to only include the failure modes, and not the
failure causes. Another option is to select the failure causes based on the values of their risk priority
numbers (RPN's).

nodes added to the model, including all failure modes and causes would result in a complex network. The
more complex the model is, the longer the calculation times are and the more relationships must be
quantified in the instantiation stage.

The FMEA described earlier did not include any functions, but only failure modes and causes. However,
Philips Healthcare's policy for the future is to start the FMEA analysis with defining the functional
structure of the product and then identify the failure modes belonging to each of the functions. By basing
the network structure of the BBN on the functional structure of the product, the BBN is also aligned with
the intended structure of future FMEA' s.

••
•••••••
••
••••••••••
•••••
•••
•••••
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A start was being made with the construction of a network structure based on the FMEA results. Due to
the large size of the resulting network, in combination with the large anticipated effort that would have to
be spend on the quantification in the next step, and the preference of Philips Healthcare to explicitly
include the module's functions in the network structure, the decision was made to use a network structure
depicted in Figure 4.2.

This is the second problem identified during the problem structuring stage; should the included factors be
generic or specific? In literature, most studies (e.g. Neil et al., 2000; Fenton and Neil, 2000) use generic
factors in their models for predicting the reliability, like the complexity of a product, the quality of testing
or the effort spend on development. These factors can be used to predict and monitor the reliability, but
are less useful for decision making during the development. Due to the generic nature of these factors, it
is difficult to point out the exact improvement areas of the product.

Although a large size of the network does not result in problems in the problem structuring stage yet, the
instantiation stage and the inference stage are effected by it. This is the third problem identified in the
problem structuring stage. Larger networks need more effort for their relationships to be quantified during
the instantiation stage. In the inference stage, large networks result in larger calculation times and
possibly calculation problems. These aspects must be taken into account when the network structure in
constructed.

Including many product specific factors, like the failure modes and causes of an FMEA, in the model
increases the size of the model. Additionally, when problem areas identified by the BBN, such as failure
causes, are solved, the network structure must be changed. Making the BBN more specific, increases the
probability that the network structure must be changed as a result of changes in the product design.
Monitoring the reliability of a product during its development is easier when only the numbers change
while the network structure remains the same.
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The interviews had three purposes:

The third purpose concerns the second step of the problem structuring stage, the identification of the
network structure (section 4.2). Since the modeling steps within the problem structuring stage were
performed iteratively, the identification of the network structure was also done in the interviews.

For confidentiality reasons, the real functions are not listed here. The functions to which is referred here
can be found in the confidential appendix F. The numbering of the functions is based on the structure of
the final BBN, which is why the function numbers may seem inconsistent.
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• Function 1
• Function 3
• Function 5.1
• Function 5.2
• Function 6.1.1
• Function 6.1.2
• Function 6.2.1
• Function 6.2.2
• Function 6.2.3
• Function 6.2.4
• Function 6.2.5
• Function 8
• Function 7
• Function 9

TU~
TechnischeUniversltelte Elndltoven
Unlv;'lrsity ofTechnology

1. verify the functions which are extracted from the functional requirement specifications and the
add other functions pointed out by the product expert.

2. identify the components that deterrnine the reliabilities of the functions.
3. structure the functions and components in such a way that a network arises.

4.1.3 Individual Interviews
Two interviews were executed with the product expert of module X. In literature, during the factor
identification, more experts are interviewed either individually or in group sessions to combine their
expertise (e.g. Sigurdsson et al., 2001). In this research project, only one expert was interviewed to
identify the factors and structure them. The reason for interviewing only one expert was the lirnited
amount of available time of the experts. Since this research project is a feasibility study, the priority was
to make a network structure, and the quality of this modeling step had a lower priority.

4.1.2 Functional Requirement Specifications
It was decided to base the network structure on the functions and the components of module X. The
functions of the product were extracted from the functional specifications of the product. These are the
following functions:

••••••••••••
••••••••••••••••••••••
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The functions and components to which is referred here can be found in the confidential appendix F.

The following functions were the result of the verification of the functions and the addition of other
functions:

Function 9 was removed from the list of functions resulting from the functional requirement
specifications, while the boldly written functions were added by the product expert. The components that
were identified by the product expert to be influencing the reliability of these functions are listed below:

••
•••••
•••••
••
•
•••••
••
•
•••
•••
•
•••
•

s.,ns., ""d simplIcity
PHIUPS

• Component A

• Component B

• ComponentC

• ComponentD

• Component E

• ComponentF

• Component G

• Component H

• Component I

• Component J

• Component K

• Component L

• ComponentM

• Function 1

• Function 1.1

• Function 1.2

• Function 2

• Function 3

• Function 4

• Function 5
• Function 5.1

• Function 5.2

• Function 6

• Function 6.1

• Function 6.1.1

• Function 6.1.2

• Function 6.2

• Function 6.2.1

• Function 6.2.2

• Function 6.2.3

• Function 6.2.4

• Function 6.2.5

• Function 7

• Function 8
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In the next section, these factors are structured into a network. However, as argued before, the two steps
of identifying the factors and the network structure were performediteratively.

The white top node, representing the reliability of module X, has a number of parents, representing the
functions of the module. These functions have other (sub-)functions or components as their parents. The
nodes representing functions are coloured blue, while the nodes representing components are yellow.

The functional requirement specifications of the module and individual interviews were used to identify
the factors to be included in the network. The option to use the results of an FMEA analysis was explored,
but refuted. The factors that were identified in this modeling step are listed in Table 4.1.
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Table 4 10verview of the identified factors
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A problem that arose during the identification of the network structure was the fact that the NPT of a
node, of which an example is displayed in Figure 3.1, grows exponentially with the number of so-called
node states and the number of parents connected to this node. This problem of large NPT's is the fourth
problem identified during the problem structuring stage. Fortunately, the NPT' s do not all have to be
filled manually, but expressions can be used to specify the relationships between the child and the parents
nodes. However, when a expression is entered by the modeller, AgenaRisk translates this expression to a
NPT. Calculations are made by using these NPT's. Growing NPT's increase the calculation time and can
ultimately lead to calculation problems. For this reason, AgenaRisk advises the user to keep the number
of parents of a node to a maximum of 3 to avoid memory issues. The problem of child nodes having too

4.2 Network Structure Identification
The identification of the network structure is done at the same time as the identification of the factors
during two interviews with a product expert. In the first interview a first draft network structure was
made, which was verified and adapted during the second interview. The network structure is constructed
using the factors identified in the previous section. This was done in the same way as has been done in
literature, by asking the expert to indicate the qualitative causal relationships between the factors. Only in
this research project only one expert was interviewed, instead of more experts in literature. Again, this
choice was made based on the limited availability of the experts and the research project being a
feasibility study. The interviews resulted in the network structure depicted in Figure 4.3 on the next page.
This structure visualizes the relationships between the factors, but the relationships are not quantified yet.

..
Interviews

Functional Requirement Functions added by product Components
Specifications expert
Function 1 Function 1.1 Component A
Function 3 Function 1.2 ComponentB
Function 5.1 Function 2 ComponentC
Function 5.2 Function 4 ComponentD
Function 6.1.1 Function 5 ComponentE
Function 6.1.2 Function 6 ComponentF
Function 6.2.1 Function 6.1 ComponentG
Function 6.2.2 Function 6.2 ComponentH
Function 6.2.3 Component I
Function 6.2.4 Component J
Function 6.2.5 Component K
Function 7 ComponentL
Function 8 ComponentM

••
•
•
•
•
•
•
•
••
•
•
•
•
•
•
•
••
•
•
•
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•
•
••
••
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Figure 4.4. Example of the use of dummy Bodes
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Figure 4.3. Network Structure
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many parents was solved with the use of "dummy nodes", which is explained with the example in Figure
4.4.
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When the factors are expressed as statistical variables, the problem structuring stage is finished. The
result of this first stage of the modeling process is a network structure in which the factors are expressed
as statistica! variables, but which is not quantified yet. The resulting network structure is depicted in
Figure 4.5.

Non-cohstant failure rates would cause difficulties with the quantification of the relationships. Interaction
effects between the functions or components would require extra effort during the quantificatlon of the
relatiomhips, but these effects could be added to the model afterwards. Since the research project is R,

feasibility study, the whole walkthrough of building a BBN is prioritized over the quality of each
modeling step. For this reason, constant FR's and the absence of interaction effects were assumed.

The result of the second step of the problem structuring stage is the network structure depicted in Figure
4.3. This structure consists of module X itself, the functions and sub-functions of the module and the
components that influence these (sub-)functions. However, a function or component is not a statistical
variabie. In the next section, the factors that were identified in the first step and structured in the second
step will be expressed as statistical variables. This is the third step of the problem structuring stage.

sense and simplidty
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This step is executed by doing interviews with both the reliability and the product expert. When talking
about the reliability of functions, which is determined by the reliability of the components, the most
logical choice would be to either use the Mean Time Between Failures (MTBF) or the Failure Rate (FR)
as statistical variable. When constant FR's and the absence of interaction effects are assumed, the FR's of
a number of components in series can be summed to calculate the FR of the chain, while this cannot be
done with MTBF's. FR's are therefore easier to use for calculations. All variables in the network structure
are expressed as the FR's of the functions and components.

4.3 Statistical Variables
The third step of the problem structuring stage is expressing the identified factors as statistical variables.
The factors which are identified in the first step are functions and components, without any numerical
meaning. In the next stage, the instantiation stage, the factors and the relationships between them will be
quantified. To be able to quantify the factors and the relationships, the variables must first be defined,
which is done here.

Node A has parents B, C, D and E (see the left structure in Figure 4.4). Suppose all five variabie have
three node states, for example "high", "medium" or "Iow". The NPT at node A will contain 35 = 243 cells.
When two dummy nodes (with the same node states) are added to the structure as depicted in the right
structure in Figure 4.4, the NPT at node A contains 33 =27 cells. The dummy nodes both also have NPT's
of 33 = 27 cells. The total number of cells in the example with dummy nodes is 81, which is one third of
the number of cells in the NPT without the dummy nodes. When the number of node states increases, the
effect of the dummy nodes will be even more apparent. In this way the dummy nodes help preventing the
network from exploding. The addition of dummy nodes changes the relationships between the variables.
For example, an interaction effect between the variables Band D can in the left structure in Figure 4.4 be
modeled in the NPT of node A. In the right structure this interaction effect cannot be modeled anymore,
because in none of the three NPT's variabie Band D are both available. Whether dummy nodes can be
added to the network without changing the relationships between the variables, depends on the
quantification of the variables. Therefore, the dummy nodes were only added to the network after the next
modeling stage, in which the relationships between the variables are quantified.

••
••••••
••••••••••••••••••••••••••



Figure 4.5. Network structure with factors expressed as statistical variables

TU~
TechnlscheUnlvernwlte Elndllovell
Unlvenlty ofTechnolosv

22

PHIUPS

•
•
•
•
•
•
•
•
•
••
•
•
••
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•



23

Figure 5.1. Techniques used in the instantiation stage

In the problem structuring stage, tbe network structure has been identified. The second stage of the
modeling process depicted in Figure 3.3 is the instantiation stage. In the instantiation stage, the
relationships between the variables and tbe marginal distributions of the variables are quantified. Figure
5.1 shows tbe techniques tbat have been used during tbe instantiation stage.
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5.1 Quantification of the Network Structure
In section 4.2, it was explained how the NPT of a node can explode as a function of the number of parents
connected to tbis node and the number of node states. Since the relationships between the variables are
expressed in the NPT's, the size of the NPT's was an important issue for determining how to quantify the
relationships between the variables. This issue was discussed with the reliability expert.

The conditional probabilities can be specified in a number of ways, using different data sources. The
relationships between the variables can for example be specified one by one using expert opinion, with
the help of historical failure data or by using tools like MTBF calculation software. The planning was to
use tbe "Sheffield Elicitation Framework" (SHELF) to specify the conditional probabilities. SHELF is a
technique, which uses the combination of individual interviews and group sessions to quantify the
conditional probabilities one by one using expert opinion. Since quantifying the relationships between the
variables one by one and asking a group of experts to do tbis was too time consuming for the experts, an
altemative strategy to represent the model as a series connection of components, was used. How this is
done in explained in section 5.1.2. The marginal distributions of the variables are calculated using the
software program BQR CARE (hUp.:.!!.'!Y.~.'!Y..,.Q.qr.cqm). Additionally, a thermal model was built to
determine the temperature values to be used as input for the calculations in BQR CARE.

The quantification of the network structure consist of two main activities, namely tbe guantification of the
relationships between the variables and the quantification of the marginal distributions of the variables.
The relationship between a child node and its parent nodes is expressed in tbe NPT of tbe child node. The
probability distribution of the child node is calculated from the combination of its NPT and the
probability distributions of its parents. For the nodes which do not have parents, the probability
distributions cannot be calculated like this. Therefore the probability distributions of the nodes without
parents, which are the components in the network structure in Figure 4.5, will be expressed as marginal
distributions.

InstantlatlQn

(Chepter 5)

5.1.1 Exploding NPT's
The FR's of the functions and components in the network are continuous distributions. However, for the
calculations, AgenaRisk only uses discrete variables. Therefore, when defining a probability distribution
for the FR, the distribution must be made discrete. This can be done manually, by making classes of FR­
values, which are the node states, or by entering a continuous distribution and letting AgenaRisk make it

5 Instantiation

••
•••••••••
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Known relationships can also be quantified using formulas. In the case of the network structure chosen
for module X, the relationship between the reliability of the components and the reliability of the product
is known and can be represented by a series connection, which is explained in the next section. The
relationships between the variables can therefore be derived from this altemative representation, which is
also clarified in the next section.

•
•
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discrete. Either way, the result is a discrete probability distribution with a number of possible value­
ranges. The relationships between the variables are quantified using a NPT like the one depicted in Figure
3.1. In the example in Figure 3.1, node A has two node states and two parents each also having two node
states, resulting in a NPT with 8 (=23

) cells. In the network structure of this project, in Figure 4.5, for
example a node with 3 node states and 3 parents with 8 node states each would have a NPT of 84 = 4096
cells. Making the product experts quantify all relationships manually would thus be unfeasible.

The FR's of the components were calculated using BQR CARE. Experts indicated to have no clue at all
about the FR' s of the components, which is the reason that this calculation software was used. These
calculations will be discussed in more detail in section 5.3. One of the input parameters of the calculations
with this software is the temperature of the components. To find out what temperatures to use in the
calculations, the temperature expert was consulted. In cooperation with this expert, a simplified thermal
model was constructed, to determine the temperatures of the components in the network structure. This
thermal model will be clarified in the next section.

5.1.2 Series Connection
In the case of the network structure for module X all of the components are critical. This means that if one
of the components fails, all the functions connected to this component fail, as well as the total system. In
the situation of a series connection, depicted in Figure 5.2, the FR of the module is equal to the sum of
FR's of its components.

The FR of a function in the network is the sum of the FR' s of all components that are connected to this
function, as (grand)parent nodes. These relationships can be modeled and expressed in formulas, so that
the NPT's do not have to be filled in manually. Therefore, if the FR's of the components are elicited, all of
the other FR's will be calculated by AgenaRisk. By deciding to use a series connection, it is assumed that
all components included in the BBN are critical. This assumption is supported by the reliability expert at
MR.

If interaction effects between components would be present, a failing component could lead to a failure in
another component. In that case, the FR of the system would no longer be the sum of the FR's of the
components. Therefore, summing the FR' s of the components to calculate the FR of the module, suggests
that there would be no interaction effects present. However, interactions could be added to the network
later, by adding relationships between components or by manually defining the NPT's of the nodes at
which interaction effects are anticipated. In this research project, interaction effects were not added to the
model due to time constraints.
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Rth = !1T/ <I>

However, since this research project is a feasibility study, it is preferred to use marginal distributions with
variations larger than zero, instead of point estimates. BBN's are able to reason under uncertainty, but
without variation in the BBN, there is no uncertainty in the model at all. To receive a FR distribution with
variation from the FR calculations, the input parameters must be varied.

When the temperature distributions of the components are known, they can be translated to FR
distributions with the help of the BQR CARE. The purpose of the thermal model was to simulate the
temperature distributions of the components. The mean temperatures were already available, but they will
be translated to temperature distributions using the thermal model.
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Only the parts on which the temperature simulations were performed are included in the simplified
thermal model, since they are the only parts on which thermal information is available. To indicate the
difference between the part/components in the thermal model and the BBN, the use of the word "parts"
refers to the thermal model, while "components" are used in the BBN. The differences and overlap
between the parts and the components will be discussed in section 5.2.3.

5.2 Thermal Model
One of the main input parameters of the FR calculations is the components temperature. It must be noted
that the static temperature is concemed here. For a number of parts, the static temperatures were
simulated by the temperature expert, independent of this research project. The temperatures resulting
from the simulations were the mean temperatures. Additionally the mean value of the heat generated by
each of the parts is available. The mean temperatures could be used as input for the FR calculations.
Entering the temperature of a component in BQR CARE results in exactly one estimate of the FR of the
component, which can be entered as its marginal distribution in the BBN.

The temperature within the module rises when it is tumed on, because heat is generated within the parts.
According to the temperature expert, there will be variation in the temperatures caused by variations in
the heat that is generated at the parts. The mean temperatures of the parts are known from the temperature
simulations run by the temperature expert earlier. Thepurpose of the thermal model is to translate the
variation in the heat generated by the parts to a variation in the temperatures.

5.2.1 Construction of the Model
When heat is generated at certain parts, other parts which do not generate heat themselves, also warm up
since the heat transfers through and between the different surfaces. The heat that is generated at a certain
part is transferred to the board to which this part is comi.ected. The heat of the board is transferred to the
shelf of module X. Finally, the heat of the shelf is transferred to the surrounding of the module. How weIl
the heat is transferred depends on the thermal resistance (Rth):

The parts on which the temperature simulation data were available were the parts that generate the heat.
However, the parts that generate the heat are not the same as the components used in the network
structure, since not all components are included in the BBN and not all parts were included in the
simulations. The temperature simulations were done by the temperature expert to try to find the extreme
temperatures. The components in the network structure do not all generate heat themselves and are
therefore not all included in the temperature simulations. These temperature simulations were done
independent of this research project and to do them again using the components of the network structure
would require too much effort from the temperature expert.

•••
•••••
••••
••••
••
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Figure 5.3. Simplified thermal model
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Using the model depicted in Figure 5.3 the following steps are executed:

1. Calculation of the all the values of Rth with the values of <I> and !1T which are known.
2. Fix the Rth's at the calculated values.
3. Vary the values of <I> to examine the impact on the temperatures.

T-driver board

~ PartA
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In which Rth is the thennal resistance (in W), !1T the temperature difference over a surface (in C\ and <I>
the heat transfer through the surface (in CO / W). The model is depicted in Figure 5.3.

With this simplified model, the impact of the variation in the heat that is generated by the parts on the
temperatures of the parts can be calculated.

In Figure 5.3, the heat that is transferred (<I» between "part A" and the "main board" is equal to the heat
generated by the part A. The heat that is transferred from the main board to the "shelf' is equal to the total
heat generated by the parts on the main board. The thennal resistances are working in a direction opposite
to the direction of the heat transfers.

The mean heat that is generated byeach of the parts is known. The variation in the heat generated by the
parts was predicted by the temperature expert. He estimated that the generated heat for each part was
nonnally distributed, with 5% and 95% intervals at -30% and +30% of the mean (/l). The estimated
probability distribution is depicted in Figure 5.4.
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Figure 5.4. Estimated probability density function of the generated heats
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cr = 0.3 ~ / 1.645

In a standard nonnal distribution, P(Z ::; -1.645) = 0.05, indicating that P(x ::; ~ - 1.645cr) = 0.05.
Similarly P(Z ::; 1.645) =0.95, indicating that P(x ::; ~ +1.645cr) =0.95. The estimation of the expert can
be translated to a nonnal distribution with mean ~ and standard deviation cr by solving the following
equations:

This results in a number of distributions of the generated heats with a given ~ and cr = (0.3~)/1.645. The
probability distributions estimated here by the temperature expert are used as input values in the thennal
model.

5.2.2 Temperature Distributions in the Thermal Model
Knowing the distributions of the generated heat of the parts in the simplified thennal model, does
however not automatically result in the temperature distributions of these parts. Since a change in the
generated heat of one part also influences the temperatures of other parts, the temperature of each part is a '
function of the heat generated by allother parts. To derive the temperature distributions from the
probability distributions of cD, simulations were used. It would have also been possible to explicitly
include the thermal model in the BBN. The reason that this was not done is that the results of the thennal
model are used as input for the FR calculations. When modeling the thennal model explicitly in the BBN,
the calculations done by BQR CARE would also have to be modeled in the BBN. This would have made
the BBN far more complex.

10,000 simulations were run, resulting in the same amount of temperature values for each part in the
thennal model. The resulting temperatures were rounded to integers. In Table 5.1, the resulting
temperature distributions of the different parts within the thennal model are given.

•••
••••
••••••••
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Table 5.1. Probabilities of the parts operating at a temperature T

T MainPCB PartM PartD PartJ PartK PCB Middle Shelf
60 0.0002
61 0.0006
62 0.0025
63 0.0005 0.0086
64 0.0003 0.0258
65 0.0022 0.0601
66 0.0001 0.0046 0.1084
67 0.0001 0.0109 0.16
68 0.0003 0.0002 0.0002 0.03 0.1902
69 0.0017 0.0002 0.0002 0.0002 0.0543 0.1737
70 0.0044 0.0001 0.0002 0.0007 0.0009 0.0849 0.1312
71 0.0125 0.0001 0.0002 0.0021 0.0022 0.1239 0.0782
72 0.0259 0.0002 0.0011 0.0067 0.0058 0.153 0.0402

73 0.0486 0.001 0.0036 0.0147 0.0161 0.1472 0.0138
74 0.0758 0.0017 0.0069 0.0311 0.03 0.1406 0.0052
75 0.1153 0.0051 0.0144 0.0516 0.055 0.1069 0.0013
76 0.1415 0.0101 0.0267 0.0831 0.0792 0.0732
77 0.1496 0.0172 0.0433 0.1182 0.1165 0.0365
78 0.1382 0.0309 0.0658 0.1334 0.1405 0.0184
79 0.114 0.0448 0.0839 0.1468 0.1426 0.0086
80 0.0765 0.062 0.1126 0.1312 0.1351 0.003
81 0.0512 0.0841 0.1283 0.1092 0.1025 0.0008
82 0.0248 0.0991 0.1252 0.0729 0.0787 0.0002
83 0.0113 0.1114 0.1132 0.0524 0.0468
84 0.0056 0.1173 0.0935 0.0248 0.0267
85 0,0022 0,1106 0,0706 0,0115 0,0133
86 0,0004 0,0915 0,0459 0,0065 0,005
87 0,Q71 0,0329 0,002 0,0021
88 0,0504 0,0177 0,0005 0,0005
89 0,0403 0,0081 0,0002 0,0001
90 0,0232 0,0033
91 0,014 0,0017
92 0,0079 0,0007
93 0,0029
94 0,0022
95 0,0007
96 0
97 0,0002
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Figure 5.5. Temperature distributions of the parts in the thermal model

The temperature values in Table 5.1 were used as the input parameters for the FR calculations.

-

-MainPCB

Part M

Part 0

-PartJ

-Part K

-PCB Middle

-Shelf

'5>ense ,"-nó sirnplkity

PHIUPS

Temperature Ranges

0.2

0.18

0.16

0.14

~ 0.12

:ei
~ 0.1
2
D. 0.08

0.06

0.04

0.02

o
roÇ) ro<'l, rob' roro ro'O "Ç) ,,<'I, "b< "ro ,,'0 'OÇ) '0<'1, cob< 'Oro '0'0 'liÇ) 'Ii<'l, ~ 'liro

Temperature Classes

TU} Te,hnische Universiteite Eindhoven
UnlversityofTechnology

5.2.3 Temperatures of the Components
Temperature simulations were perforrned independently of this research project by the temperature
expert. Since the parts included in these simulations are the only ones on which thermal information was
available, only these parts were included in the simplified thermal model, in Figure 5.3. However, these
are not the same parts as the components included in the BBN. This means that the parts from the thermal
model must be linked to the components in the BBN to determine what temperatures to use in the FR
calculations of the components. Of the components that were included in the thermal model the
temperatures are given in Table 5.1. The components that were not included in the thermal model are all
situated on the "main PCB". Since there are no alternative temperature estimates available for these
components, the temperatures of the "main PCB" will be used for the FR calculations of the components
that are included in the thermal model. In Table 5.2, the temperatures of the parts in the top row are used
as input for the FR calculations of the components undemeath them. It shows that six of the components
can be linked to the parts directly and the others (in the left column) are linked to the "main PCB".

The results in Table 5.1 are shown graphically in Figure 5.5.

•••••
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5.3.1 In BaR CARE

The fact that a prediction method was used that was refuted earlier, is specific for this project. However, it
does show that early during the product development, inaccurate quantitative information is still better
than having no information at all. The advantage of using the MiI-Hdbk217F calculations only as an input
for the BBN is that the values of the FR's can be updated when new, more accurate, information becomes
available.

With exception of component M, The FR's of the components included in the BBN were all calculated
using BQR CARE. The component M is developed by Philips Healthcare and is therefore not included in
the library used by BQR CARE. For component M, its supplier provided the formula with which the FR
can be calculated as a function of the temperature. The calculations of the FR of component M are
discussed in section 5.3.2.

One of the input parameters of these calculations was the operating temperature of the component. While
varying the temperature, the rest of the parameters were fixed at the Philips Healthcare default values.
Since every temperature input resulted in one FR output for each component, the temperatures in Table
5.1 were entered one by one, to calculate the resulting FR's. This was done for all temperatures that a
component can reach, according to Table 5.1. Part of the results of the calculations are shown in Table
5.3.

••••••••••••••••
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Table 5.2. Link between the thermal model and the BBN
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a e .. s In al nres per honrs or a range 0 operatmgtemperatnres
Temperature 60 61 62 63 64 65 66 67 68
Components J & K 15,600 16,200 16,800
ComponentL 0,049 0,051 0,053
ComponentD 12,403
ComponentC 1,707 1,803 1,903
ComponentB 11,547 12,078 12,631
Components E, F, G & H 1,916 2,004 2,096
Component A 3,259 3,352 3,449 3,549 3,652 3,759
Component I 1,465 1,482 1,498 1,514 1,531 1,548 1,564 1,581 1,599

MainPCB PartM PartD PartJ PartK PCB Middle Shelf

ComponentB ComponentM ComponentD ComponentJ ComponentK Component A Component I

ComponentC

ComponentE

ComponentF

ComponentG

ComponentH

ComponentL

5.3 FR Calculations

The calculations of the FR of all the components, except component M, were done using BQR CARE.
This software calculates the FR's based on Mil-Hdbk217F and assumes constant FR' s. In the introduction
to this project, it was argued that these predictions are far from accurate, partly because of the wrong
assumption of constant FR's. Still these calculations were used as quantitative input for the BBN. The
reason for this is that experts indicate that they have no clue at all what the FR of the components could
be and that the predictions based on Mil-Hdbk217F were the most accurate in that case.

Tule
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The tables containing the probability distributions of the FR's for each of the components are used for
entering the marginal distributions in the BBN. This is discussed in more detail in the next section.

Table 5.3, which links the temperatures to the FR's of the components, shows part of the FR's of the
components in the BBN, resulting from the calculations. The failure rates are given in failures per 106

hours. This table does not show all temperatures, but shows how the temperatures and the FR's of the
components are linked. The total table shows the FR's of the components for temperatures up to 92°C and
is depicted in appendix C.
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a e .. aI ure te pro a dies 0 componen
ComponentM

Temperature 70 71 72 73 74 75 76 77
Failure Rate 0,2332 0,2499 0,2676 0,2864 0,3064 0,3277 0,3504 0,3745
Probability 0,0001 0,0001 0,0002 0,0010 0,0017 0,0051 0,0101 0,0172

Table 5.1 shows the probabilities ofthe parts in the thermal model having a certain temperature. Table 5.2
shows which of these temperature probabilities can be applied to the components included in the BBN. In
Table 5.3, the FR's are given for the temperature ranges in Table 5.1. When these three tables are
combined, the probability of a component in the BBN having a certain FR, can be determined. For one of
the components, component L, this is shown in Table 5.4, for part of the temperature range. The FR
probabilities for the total temperature range, and of the other components, are given in appendix D.

5.3.2 Supplier Data tor Component M
Component M is developed by Philips Healthcare and as aresult it is not included in the library used by
BQR CARE. Therefore, to determine the FR for this component, data from the supplier were used. The
supplier provided the formula to be used for the estimation of the FR of component M. In this formula,
which can be found in appendix E, the FR is calculated as a function of the temperature. The probability
distribution of FR's of component M can therefore be determined in the same wayas it has been done for
the other components. Only for component M, the formula provided by the supplier was used to calculate
the FR'S. The calculated FR's for part of the temperature range of component M given in Table 5.1 are
shown in Table 5.5. The FR's for the total temperature range of component M can be found in appendix
D.

a e .. aI ure ate pro a I dies 0 component
ComponentL

Temperature 66 67 68 69 70 71 72 73
Failure Rate 0,0487 0,0507 0,0529 0,0551 0,0573 0,0597 0,0622 0,0647
Probabi1ity 0,0001 0,0001 0,0003 0,0017 0,0044 0,0125 0,0259 0,0486

•••••••••••••••••••
•••••••••••••••
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Figure 5.6. Overview of tbe steps towards tbe Failure Rate probabilities

What steps are taken until here in this chapter to arrive at the FR probabilities of the components is
depicted in Figure 5.6.

••••
••••••••••••••••
•••••
•••
•
•••••
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Figure 5.6 also shows the relationship between the steps that are taken and the resulting tables and
figures. The steps taken in the yellow part on the left are related to the parts which are included in the
thermal model. In table 5.2, the link is made between the parts in the thermal model and the components
included in the BBN. The steps on the green part on the right are related to the components. The next step
is the implementation of the results in the BBN.

5.4.1 Marginal Distributions
To start with the marginal probability distributions of the FR's of the components, the FR's must be
translated into classes of FR's to be able to enter them into the network. The results of the simulations
done with the thermal model were rounded to integers. This means for example that the probability of
component M being 71°e (see Table 5.5) is actually the probability of it being between 70.5°e and
71.5°e, which makes it a temperature class. When FR classes are made accordingly, the lower bound of
the FR class is defined as the mean of the FR belonging to 71oe and the FR belonging to 70oe.
eonsequently, the upper bound is defined as the mean of the FR belonging to 71°e and the FR belonging
to noc. To link the probability of the temperature classes to the probability of the FR classes, the
assumption of a linear relationship between the temperature and the FR must be made.

Figure 5.7 shows the relationship between the temperature and the FR's of the components resulting from
the FR calculations. From Figure 5.7, it can be seen that the relationship is not linear, but the relationship
approaches linearity and given the smalJ interval between the two temperatures over which linearity is
assumed, these FR classes will be used.

5.4 Implementation in the BBN
The probability distributions of the FR's of the components must be entered into the network and the
relationships between the variables, which were determined in section 5.1.2, must also be specified in the
model.
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Failure Rates vs. Temperatures

Figure 5.8. Series connection of the components influencing the functions
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Figure 5.7. Relationship between the temperature and the failure rate
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For each of the components, the FR classes were defined manually in AgenaRisk. Also, for the
components, the probability of each class was specified manually in AgenaRisk. The FR classes that were
used for each of the components can be found in appendix D.

5.4.2 Relationships between Variables
In the previous section, the marginal distributions of the components were modeled in AgenaRisk. In
section 5.1.2, it was argued that a series connection could be used as a model. The FR of the module is
equal to the sum of FR' s of its components. The FR of a function in the network is the sum of the FR' s of
all components that are connected to this function, which is depicted in Figure 5.8.

Tule
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Figure 5.10. Part of the network structure

Figure 5.11. Arithmetic expression used for the child nodes of component M
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The FR of a function is not always equal to the FR's of its parents. This can be iIIustrated with the help of
the network structure depicted in Figure 5.10.

Component M has six child nodes. In the arithmetic expression of each of these childs, depicted in Figure
5.11, it is defined that the probability distribution of the variabie is equal to the probability distribution of
its parent, component M.

The FR's of the functions are calculated by taking the sum of the FR's of the parents. This can be modeled
in AgenaRisk by summing the probability distributions of the parents in the arithmetic expression of the
NPT, which is shown in Figure 5.9. When the two parents are summed in the arithmetic expression this
means that the variables, being the FR's, are summed and not the probabilities.
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These six nodes together have one child, namely function 6.2. Although not connected directly, function
6.2 has only one component on which it is dependent, which is component M. As aresult, the FR of
function 6.2 must be equal the FR of any of its parents, instead of being equal to the sum of them. The
probability distribution of function 6.2 can not be expressed as a function of component M, because they
are not connected directly. Therefore, the probability distribution of function 6.2 was chosen to be defined
as being equal to the probability distribution of function 6.2.1. The choice of function 6.2.1 was random.
The six nodes in the previous example must always be the same, because they are all equal to the same
parent, so linking their child to only one of them should not be a problem. This will be tested in the next
stage, the inference stage. During the instantiation stage, the relationships between the variables in the
network structure were quantified. The result of the instantiation stage is the quantified BBN depicted in
Figure 5.12, which is ready to be used in the next chapter.

••••••••••••••••••••••••••••••••
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Figure 5.12. Final BBN resuIting from the instantiation stage
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In this research project, no evidence was available to be entered. Therefore, in the inference stage three
experiments will be conducted to test whether the propagation of the probability distributions through the
BBN complies to the expectations.

The third stage is the inference stage. The BBN was finished during the instantiation stage and is ready to
be used in the inference stage. The steps within this stage, described by Sigurdsson et al. (2001) are the
entering of evidence, the propagation and the interpretation of the results, which is also depicted in
Figure 6.1.
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Figure 6.1. Activities during the inference stage
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6 Inference

6.1 Updating the FR of a Function
In section 5.4.2, the specification of the relationships between the variables in AgenaRisk is discussed.
One of the issues identified there was that function 6.2 has six parents, that all have the same FR
distribution (Figure 5.12). The reason is that these six FR's are all equal to the FR of their common
parent, component M. Because these distributions are all equal, the FR distribution of function 6.2 was
linked to only one of the nodes, namely function 6.2.1. If the FR distributions of these six nodes are all
equal to the distribution of component M, it should not matter on which node the FR distribution of
function 6.2 is based. When the FR distribution of component M is updated, this will indeed not be a
problem. However, the question is what happens if one of the nodes, other than the 6.2.1 node, is updated.
The function 6.2 is not defined as a function of the other five nodes, so it could be that the six nodes will
not contain the same distributions anymore.

When testing this scenario in AgenaRisk, it shows that the nodes are updated correctly. Updating anyof
the functions 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.5 updates component M. Since the FR distribution of these
functions is defined as being equal to the FR distribution of component M, the FR distribution of
component M is updated to be equal to the FR distribution of the updated function. As a result of the
update of component M, its other child nodes are updated. The conclusion is that the BBN reacts in the
preferred way here.

6.2 Checking the Mean FR's Ca/cu/ated by the BBN
The relationships between the variables in the BBN are expressed as sums of their parents. The variables
are expressed as discrete variables, which could cause bias in the summations. Therefore it is checked
here whether the mean values of the FR's calculated byAgenaRisk comply with the manually calculated
FR's.

••••••••••••••••••
••••••••••••••••
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Figure 6.2. Numerical values of component M

Interestingly, in the BBN that was built for this research project the calculated mean values of the FR's
calculated by AgenaRisk were higher than the mean values calculated manually at all nodes.
Unfortunately, I do not have an explanation for this effect.
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6.3 Updating Othef Nodes
Knowing that the mean values of the FR's can differ from the anticipated values, it was tested how the
mean value of the FR of module X reacted to evidence entered at other nodes. Entering a FR value higher
than the mean FR value at this node, should result in a higher mean value of the FR of module X. When
entering a FR value lower than the mean FR value at a node, this should result in a lower mean FR value
of module X. Although the impact of the evidence largely depended on the node where the evidence was
entered, the model did react in the anticipated way. Increasing the mean FR value at any of the nodes,
resulted in an increased mean FR value of module X. Sirnilarly, decreasing the mean FR value at any of
the nodes, resulted in a decreased mean FR value of module X.

AgenaRisk calculated a mean FR of 112.3 failures per 106 hours for module X. Calculating the FR of
module X manually results in 109.08 failures per 10 hours, which is difference of 2.9%. At all nodes in
the BBN, the calculations by AgenaRisk deviate from the manual calculations. The reason for the
differences can be explained by the fact that AgenaRisk calculates with the FR classes, instead of with the
exact FR values. This can be clarified by Figure 6.2:

In Figure 6.2 evidence has been entered at component M that it's FR is 0.65. One of the node states of
component Mis the FR class "0.6494 - 0.7364", depicted in the top row of Figure 6.2. Component M has
a chance of 1 of being in this node state, since the evidence indicates that the FR is 0.65. Although the
exact value of the FR of component M is 0.65, the mean value of the FR class is calculated by taking the
average value of the boundaries of the class, which is 0.7364 - 0.6494) / 2 = 0.6929. Since the FR of
component M is within this FR class for sure, the mean FR of component M is also calculated by
AgenaRisk to be 0.6929 (third row in Figure 6.2). When evidence is entered that the FR of component M
is 0.73, the numerical values in Figure 6.2 remain exactly the same, since the FR of component M is still
in the same FR class with a probability of 1.

When the probability distributions of child nodes are calculated from the probability distributions of their
parents, again the classes are used for the calculations. Each time that a calculation is done at a node, the
results are allocated to the FR classes defined in this node. Since AgenaRisk does not differentiate
between low and high values in a class, this causes bias in the probability distributions.

The inference stage, three experiments were performed to exarnine the propagation of the probability
distributions through the BBN. For these experiments, fictive evidence was used. The most interesting
finding resulting from these experiments is that the FR of a child node, expressed as sum of the FR's of its
parents, is biased. Sumrning the FR's of the parents manually leads to a different FR. To find out whether
this is the result of the use of the methodology as a "summation machine", or that this bias is also present
when using other expressions could be a topic for future research.
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One of the results of the modeling process described in Figure 7.1 is a BBN. The relationships between
the FR's of the module, its functions and the components, were derived from an alternative representation
of the structure, namely a series connection. However, by not only including the components in the

The research approach to the total research project was a case study. The methodology of BBN's was
applied in practice at Philips Healthcare. Within the case study, the modeling stages on the left of Figure
7.1 were followed, each stage containing a number of steps. The techniques which were used during the
modeling stages were discussed in this report.
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Figure 7.1. Overview of the techniques used in each of the modeling stages
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7 Review, Discussion and Conclusions
In this chapter, first the research project will be reviewed (section 7.1). The review starts with an
overview of what has been done during the research project and a description of the resulting BBN. Then,
the research questions are answered one by one shortly. The answers to the research question are
discussed in section 7.2 and the conclusion ofthe total research project is given in section 7.3.

7.1 Review
Following three building stages identified by Sigurdsson et al. (2001), a BBN was built and used during
this research project. In the chapters 4-6 the execution of the steps within these modeling stage was
discussed, each chapter containing one modeling stage. Figure 7.1 shows an overview of what was done
during the research project and which techniques were used.

••••••••
••••••
••••••••••••••••••••
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• Exploding NPT's (resulting from large number of node states)

What are the problems and risks encountered when constructing a Bavesian node structure?

7.1.1 Research Question 1

••••••••
••••
••••••••••••••••••••••
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By including uncertainties in the FR's, the resulting reliability of the module is not given as a point
estimate of the FR, but as a probability density function of the FR. Additionally, by entering evidence on
the FR' s ofthe components or the FR' sof the functions, the estimated mean FR as weIl as the uncertainty
of this estimate can be monitored.

• Flexibility of the model
• Generic or specific
• Size of the network
• Exploding NPT's (resulting from a large number of parents)

Expert opinion is incorporated in the model in two ways. First, for the identification of the network
structure the expert opinion of the reliability expert and the product expert is used, although this was only
qualitative information. Second, for the quantification of the marginal probabilities of the components, a
thermal model was built in cooperation with the temperature expert. The probability density function of
one of the input parameters of this thermal model, the applied heat of the components, was also estimated
by the temperature expert.

network, but also the functions, the functional structure is visualized in a BBN. As aresult, one can derive
from the model which functions are critical and which are not.

In important part that is missing in the BBN are the interaction effects. Although BBN' s are specialized in
modeling interaction effects, the interaction effects are not included in the BBN of this research project,
because the relationships in this BBN are specified as the sums of the FR's of the components.

This research question concerns the instantiation stage. The main issues that were experienced in this
stage were the following:

This research question concerns the problem structuring stage. The main issues that were experienced in
this stage were the following:

The model itself is only one part of the results, the other part are the findings during the modeling
process. For each of the modeling stages a research question was defined in section 3.2. In the coming
three sections the findings within the modeling stages will be listed per research question. The identified
problems will be discussed in more detail in section 7.2.

7.1.3 Research Question 3
How to validate the resulting Bayesian Network?

The third research question, about the validation of the BBN, was added with a lower priority than the
first two research questions. The attempts to validate the model were by experimenting with it. This does

7.1.2 Research Question 2
What are the problems and risks when quantifying the relationships between the factors that determine
the product reliability?
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• Bias in the probability distributions

7.2 Discussion

The choice to use generic of specific factors will also be an issue in other applications of BBN's, because
in any research context, there are always generic as well as specific aspects of the situation which is
modeled.
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not validate the predictive ability of the model, but it can help exarnining whether the model propagates
the probability distributions in the way it is expected to, which is done in the inference stage. The main
issue that was experienced during this stage was the following:

7.2.2 Generic or Specific
The choice to use generic or specific factors in the network relates to the previous issue in section 7.2.1,
because it results from the large choice of factors to be included. In literature, most studies (e.g. Neil et
al., 2000; Fenton and Neil, 2000) use generic factors in their models for predicting the reliability, like the
complexity of a product, the quality of testing or the effort spend on development. These factors can be
used to predict and monitor the reliability, but are less useful for decision making during the development.
Due to the generic nature of these factors, it is difficult to point out the exact improvement areas of the
product. A product engineer, for example, wants to know what part of the product causes reliability
issues, instead of knowing that the bad reliability is mainly causes by the complexity.

7.2.3 Size of the Network
In the previous section, it was mentioned that with increasing the detail of the network, also the size
increases. Although a large size does not result in problems in the problem structuring stage yet, the
instantiation stage and the inference stage are effected by it. Larger networks also need more effort for
their relationships to be quantified during the instantiation stage. In the inference stage, large networks
result in larger calculation times and possibly calculation problems. These aspects must be taken into
account when the network structure in constructed. In this research project, the problem of the

Examples of specific factors are failure modes and failure causes identified during an FMEA. The
advantage of including these specific factors in the network is that trouble areas can be identified easier.
As aresult, the network can for example be used during development for prioritizing improvement
actions. A disadvantage of including specific factors is that by adding specific factors, the model becomes
more detailed which increases the size of the network. AdditionalIy, when problem areas identified by the
BBN, such as failure causes, are solved, the network structure must be changed. Making the BBN more
specific, increases the probability that the network structure must be changed as a result of changes ln the
product design. Monitoring the reliability of a product during its development is easier when on'îy the
numbers change while the network structure remains the same.

7.2.1 Flexibility of the Model
In the BBN, practically any factors can be included, as long as they can be quantified. One the one hand,
this is a advantage ofBBN's compared to other methodologies, which are more prescriptive. However, on
the other hand, this large flexibility increases the freedom of choice. The task of identifying the factors
that influence the reliability of the RX4 directly or indirectly becomes a very difficult task if these factors
can be anything. Especially when the madelIer is not farniliar with the product, and the product expert is
not farniliar with the methodology of BBN, it is difficult to capture the right factors. This issue is not the
result of this specific research project, but will also be apparent in other projects, where the influencing
factors must be identified.

••••••••••••
•••••••••••••••••
•••••
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Whether this problem can be solved by expressing the relationships between the variables in a different
way is a topic for future research.

The problem of NPT' s getting very large, resulting in long calculation times or calculation problems, will
also occur in other research contexts. In a smaller networks, this problem will occur less because the total
number of nodes is smal1er.

quantification of the relationships in a large size network, was solved by using an altemative
representation of the relationships between the variables, namely a series connection. However, when
interaction effects between the variables are taken into account, the relationships between the variables
are not so obvious and more time and effort must be spend on the quantification. Increasing the size of the
network would then significantly increase the effort to be spend.

•
••••
•••
•••
•
••
•••
•••••
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7.2.5 Bias in the Calculated Probability Distributions
The FR's of the functions and module X are expressed as the sum of the FR's of the components
influencing them. However, the mean FR values calculated by AgenaRisk deviate from the mean FR
values calculated mannally (up to 2% of the manually calculated values). The reason for the differences
can be explained by the fact that AgenaRisk calculates with the FR classes, instead of with the exact FR
values. When the probability distributions of child nodes are calculated from the probability distributions
of their parents, the classes are used for the calculations. Each time that a calculation is done at a node,
the results are allocated to the FR classes defined in this node. Since AgenaRisk does not differentiate
between low and high values in a class, this causes bias in the probability distributions. In the BBN that
was built for this research project the mean values of the FR's calculated by AgenaRisk were higher than
the mean values calculated manually at all nodes. Unfortunately, I do not have an explanation for this
effect.

7.3 Conclusions
A Bayesian Belief Network was constructed for this research project. The network was structured as a
BBN, although the relationships between the variables were derived from a series connection of
components. However, in contrast to the representation of a series connection, the BBN also gives insight
in the influences of the components on the functions of the product by visualizing the functional structure.
Bayesian statistics were used, as a result of the uncertainties incorporated in the model. Additionally, also
expert opinion is included in the model. What is missing in the BBN resulting from this research project
is are the interaction effects between variables. By using AgenaRisk as a "summation machine", the full
functionality of the methodology is not used.

7.2.4 Exploding NPT's
In Figure 3.1, an example was given of the NPT of a node with two parent nodes and each of the three
nodes having two node states. This results in a node probability table of 23 = 8 cells. To be able to predict
the reliability accurately, the number of states of the variables must be more than the two in the example.
If the three nodes would all have ten node states, the NPT would contain 103 = 1000 cells. Every time that
a parent is added to this node, the number of cells is multiplied by the number of node states of this
parent. Fortunately, the cells do not all have to be filled manually, but expressions can be used to specify
the relationships between the child and the parents nodes. However, when a expression is entered by the
modelIer, AgenaRisk translates this expression to a NPT. Calculations are made by using these NPT's.
Growing NPT' s increase the calculation time and can ultimately lead to calculation problems. This is why
AgenaRisk advises the user to keep the maximum number of parents to three. In this research project a
number of nodes had to be added to the network to be able to keep the maximum number of parents to
three.
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In literature, the steps to take to build a BBN seem easy, but to apply them in practice appeared a very
difficult task in this research project.

Although the possibility of BBN' s to model interactions between variables is not included in the model,
the benefits of being able to reason under uncertainty, to combine heterogeneous data and to give a visual
representation of the relationships are used in this research project.

Of the problems that were identified during the modeling process, the choice which factors to include was
the main issue. This issue relates to the flexibility of the model, the choice between general and specific
factors and the size of the network. In this research project, this issue was resolved by using the type of
network structure that was preferred by Philips Healthcare. For a feasibility study, this choice was not a
problem, but in other applications the issue of which factors to include in the model can be a large barrier.
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For Philips Healthcare, the main benefit of the project is the functional structure. The structure is a
visualization of the relationships between the module, its functions and its components. Another benefit
are the insights gained from this project. By closely monitoring the project, Philips Healthcare has seen
the application of the BBN and could decide to apply it again, either for the same, or for a different
purpose.

The goal of the case study for the research project was to gain experience with the application of BBN's
in practice and to identify problems during the different modeling stages. A network structure was built
and problems were identified during the problem structuring stage. In the instantiation stage, the decision
was taken to use a series connection to derive the relationships between the variables. This resulted in a
quantified BBN, but the step of specifying the conditional probabilities by eliciting expert opinion
became unnecessary, because the relationships became trivial in the series connection. Since the
elicitation of expert opinion to quantify the conditional probabilities is an important step in the
construction BBN's described in literature, the absence of this step is a drawback of this project.

•••••••••••••••••••••••••••••
•••••
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