EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Feasibility study on the reliability factor "system complexity"
a case study at the Cardio Vascular X-ray scanner at Philips Healthcare

Albers, S.

Award date:
2008

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners

and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8e6263d2-d4ea-424c-8846-05b5f6655c2a

Eindhoven, July 2008

Feasibility study on the reliability
factor “system complexity”:

A case study at the Cardio Vascular X-ray
scanner at Philips Healthcare

By S. Albers

Author: S. Albers
0492372
College of Education: Eindhoven University of Technology

MSc Operations Management and Logistics
Supervisor Philips Healthcare: Dr. G. Stoliman, Reliability manager, CV development

Supervisors TU/e, QRE: Dr. Ir. P.J.M. Sonnemans, TU/e, Industrial Design, BPD
Dr. J.A. Keizer, TU/e, Techonology Management, OSM

Preface

This master thesis report is the last trial of my study Industrial Engineering and Management at
Eindhoven University of Technology. The master thesis project is performed for the Cardio/Vascular
development department of Philips Healthcare in Best and for the Ph.D. project led by Kostas
Kevrekidis at the Quality & Reliability Engineering department of Eindhoven University of
Technology.

The start of the project wasn’t that fluent, it was hard to grasp the vague concept of “system
complexity” and express it in concrete measurable terms. Besides, the availability of all the required
data wasn’t that straightforward and simple to collect as was assumed beforehand. Here I got great
support from my direct colleagues: Kostas Kevrekidis, Noel Aben, Dirk in het Veldt, and Kenny van
Uden, who faced similar problems within their promotion and graduation projects.

Their companionship and sparring discussions provided a nice atmosphere to work in.

Besides, I would like to thank the employees of the Cardio/Vascular development department in
Philips Healthcare in Best. My special thanks go out to: Riny van Asten, Klaas Tanis, Krzysztof
Oborzynski, and Mark Loos, who provided me with great support to get the project on track in the
beginning.

Further, I would like to thank my supervisor of Philips Healthcare, Guillaume Stollman, who made it
possible to carry out this master thesis project within the Cardio/Vascular development department.
Moreover, he not only provided me guidance and advice regarding my project, but also put trust in this
rather theoretical and explorative study.

Next to the colleagues within Philips Healthcare, I would like to thank my direct supervisors of
Eindhoven University of Technology: Peter Sonnemans and Jimme Keizer, for their support and
constructive criticism on this thesis. In special I would like to thank my daily supervisor Kostas
Kevrekidis, who kept me focused and critical all along the project. Moreover, our cooperation went
fluently, which made me enjoy the project even more.

As alast remark I would like to notify to all readers that some paragraphs and tables are excluded
from the appendices due to confidential information.

Stijn Albers

Eindhoven, July 2008

II

Management Summary

Research area

There are several reliability factors that are still relatively unknown or their impact on reliability is not
known. Some examples are: supplier quality differences, environmental stress factors, system
complexity and system age. (o’Connor, 1991) Hence, this master thesis will focus on one of these
relatively unknown reliability affecting factors; system complexity.

Extended knowledge on system complexity should enable a classification of the systems according to
this factor and reduce the variance in the reliability performance of each classified group. It is
expected that this classification according to complexity enables better understanding of the
problems/issues that cause the high variance in reliability performance.

This relatively “unknown” reliability affecting factor is selected based on findings by the Ph.D.
research by K. Kevrekidis who applied the (social sciences) “Grounded theory” by Glaser & Strauss
(1967) to select relevant reliability influencing factors. This master thesis assumes that these reliability
factors found with this theory are truly relevant factors.

Problem definition:

More quantitative insight in the relationship between system complexity and the system’s reliability
performance level is required in order to determine if system complexity can actually explain the
variance within the reliability performance of professional systems.

Research question

The aim of this Master thesis is to investigate the relation between the factor “system complexity” and
the systems reliability performance. Therefore, this research should provide a methodology how to
measure/quantify the reliability factor “system complexity”. Finally, this research should establish if a
system classification according to “system complexity” can be made and if it actually reduces the
variance of reliability performance within subgroups among the Allura Xper Cardio Vascular (CV) X-
ray scanners at Philips Healthcare (Philips Medical Systems).

This led to the following central research question for this master thesis:

What is the impact of “system complexity” on the reliability performance of the professional
repairable systems under study and how can this gained knowledge be assimilated into decision rules
for product improvement?

Assignment

This master thesis will come up with the following deliverables:

- This research should define the way in which the reliability performance of the professional
system should be measured

- This master thesis provides a clear definition of “system complexity”. This definition is expressed
in measurable indicators which are representative for the actual system complexity.

- The expected relation between system complexity and reliability has been defined and are tested
in practice by a case study on the CV X-ray scanner of Philips Medical Systems (PMS).

- An attempt to create a classification model for the professional repairable systems according to the
reliability factor “system complexity” has been made.

- This master thesis investigated if the variance of the reliability performance level within a
classified group is smaller than the variance of the reliability performance for the group without a
classification according to complexity.

- Higher aim of this research was to provide the Ph.D. project with relevant and available data on
the reliability factor “system complexity”.

I

Theoretical and practical relevance

The main contribution to the scientific research is the overview of the complexity and reliability
metrics that are required in order to investigate the relation between these two variables. Moreover, a
data set and its limitations are provided, so other researchers can use and interpret this data set in a
correct way as well. This is important as this master thesis is a contribution to the Ph.D. research of K.
Kevrekidis at the Quality & Reliability Engineering department at Eindhoven University of
Technology. Furthermore, this research combines theoretical definitions and approaches of system
complexity and tries to apply them in practice. It shows that many theoretically important complexity
concepts (or software code metrics) are not applicable in practice or are not relevant for the relation
with system reliability for this CV X-ray scanner at Philips Medical Systems.

Research design
This research applies the Kumar’s (1999) research methodology. This methodology is specifically
suitable for a theoretical research, which is the case in this Master thesis project.

The methodology divides a research in several research phases and provides a format of the content
and activities for each phase. These phases are: formulation of the research problem, designing the
research concept, construction of the data collection instrument, selection of the sample, create the
research proposal, collect data and finally process the data.

Results

Software complexity versus reliability:

Software reliability and complexity definitions & availability and quality of required data

The following available reliability performance indicators were selected: Problem reports (PR) during
testing, Field programming errors (FPE) derived from the system log-files, Software failures (SWF),
derived from the failure classification by the FMEA developed by the PhD researcher K. Kevrekidis.
Furthermore, over 40 separate complexity metrics were derived and transformed into two common
complexity factors “size” and “structure”, for which composite factor scores were defined. For 17
observations (SW units) all complexity metrics and reliability metrics PR and FPE were available and
for 19 observations all complexity metrics and reliability metric SWF are available.

Established relations between complexity factors and reliability metrics

The established relations between the developed complexity factors and the reliability metrics FPE
and SWF are expressed in the following three ways:

- Correlation between reliability and complexity metrics:

Based on the Kendall’s tau correlations test between the two complexity factor scores and the
reliability metrics FPE, MTBF, Entropy, it can be stated that there is a significant correlation between
the complexity factor “size” and the reliability metric FPE. The same conclusion can be derived for
the complexity factor size and the reliability metric SWF (based on the Pearson correlation test).

- Explaining the variance within FPE and SWF based on the defined complexity factors:

Several regression models are developed in chapter 6 and can be used in order to explain the variance
within the reliability metrics FPE and SWF rather well. The variance in the FPE and SWF scores
among the observed SW units could be explained best by the complexity factor “size”.

- Prediction of the FPE and SWF based on the SW unit’s complexity factor scores:

The regression models based on one or two complexity factors “size” and “structure” are over-rated,
due to the small number of observations within the training group, and can therefore not be used in
order to predict reliability metrics FPE or SWF for the SW units in the control group accurately.

Classification of SW units based on the complexity factors “size” and “‘structure”

The SW units were classified into groups with similar complexity scores. This resulted in three
complexity classes: low, middle, and high. Subsequently some analyses for categorical data were
performed and the conclusions follow in the next paragraph.

v

Hardware complexity versus reliability:

Hardware reliability and complexity definitions & availability and quality of required data
There were no real hardware reliability metrics available for the Allura Xper systems within PMS.
Only the number of component replacements (during “corrective” maintenance) is available as an
indicator for the hardware reliability performance. Although a component replacement can also be
caused by a software failure, it is assumed that the replacements are all caused by hardware failures.
This assumption reduces the trustworthiness of the conclusions on the relationship between hardware
reliability and complexity. Nevertheless, the results still may present an indication of how the
hardware complexity and reliability are interrelated for the PMS Allura Xper systems.

Established relations between hardware complexity and reliability

No significant correlations have been found among the HW complexity attributes or classes and HW
failures. Therefore the complexity metrics cannot be used in order to explain the variance within the
HW failures, let alone predict the number of HW failures.

Categorizing the HW building blocks based on its complexity scores

The HW building blocks were categorized into two groups: low complexity and high complexity
scores. The average number of HW failures (and its variance) was larger for the group which included
the “low complex” building blocks. This result contradicts with the expectation that more complex
HW building blocks will on average have a higher number of HW failures. The only logical
explanation for this remarkable result is that the reliability metrics or the complexity scores are not
relevant or representative for the actual situation.

Conclusions

Reflection on the research question

This master thesis came up with some conclusions on this relationship for the software units as well as
the hardware building blocks based on the Allura Xper systems at PMS. Although, the relationship
between hardware complexity and reliability has been investigate less thoroughly, this thesis came up
with an overview of the required and available data at PMS for the reliability factor “system
complexity”.

All research questions are answered except for the last sub question: “How can extended knowledge
about system complexity and its relation with reliability performance assist the decision process in
product development”. Reason for this, was the lack of time to investigate the decision process in
product development. The other research questions and corresponding finding are as follows:

1. How should the reliability performance of the professional system be defined or measured?

This research defined several software related reliability indicators that could be used in order to
express the reliability performance of the Allura Xper system. These indicators were: test problem
reports (PR), field programming errors (FPE), mean time between programming errors (MTBF),
entropy and classified software failures (SWF). For hardware only one reliability indicator was
available, which was the number of component replacements from the panel analyses.

2. How should “system complexity” be defined in such a way that there will arise no misconceptions
in interpreting these factors?
First the required system complexity metrics were defined for both hardware and software.
Subsequently the available complexity metrics were defined / measured. For software complexity,
around the 40 code metrics were collected, these metrics were transformed into two complexity factors
“size” and “structure”. Furthermore, the metrics from different sources were compared in order to
validate if the complexity metrics scores were representing the software complexity consistently.
There were 8 hardware complexity attributes defined and quantified by a small survey among system
architects. These eight complexity attributes were transformed into an aggregated complexity measure.

3. How should the relationship between “system complexity” and the reliability performance of the
system be established?

Software complexity versus reliability: The relationship between system complexity and reliability has

been researched in several ways. First of all, several metrics are used to express system complexity

and the reliability performance and they are independently investigated. Secondly, there are several

types of tests performed: correlation tests among the metrics, regression analysis and chi-square tests.

These analyses were performed independently for the system’s hardware and software.

It shows that the complexity factor size does correlate with the number of FPE and SWF, and factor
“structure” does not. The correlation can be explained by the assumption that larger software code
leads to more FPEs or SWFs due to higher chance of mistakes by the programmer. However, the
absence of correlation between the factor structure and FPE and SWF can not be explained with
certainty, but probably the “structure” related metrics show less discriminative scores among the
software units and therefore cannot explain the variance in FPE or SWF.

Furthermore, the developed regression models are based on only a small number of observations.
Therefore there is a serious risk that the regression models are over-fitting the data and cannot be used
in order to predict the reliability performance in FPE or SWF accurately.

Hardware complexity versus reliability: There were no significant correlations found between the
hardware complexity attributes and the reliability indicator “component replacements”. Therefore no
conclusions on this relationship are found.

4. How to create a product classification process based on system complexity?

The software units and the hardware building blocks were classified according to its complexity scores
as well as its reliability performance level. Based on these classifications it can be concluded that the
means and variance of the reliability performance (expressed in SWF) increases when the group of
software units are classified as “high” complex. For the hardware building blocks, the variance within
reliability performance could not be explained by the classification of the building blocks according to
complexity.

Recommendations

Software complexity versus software reliability

The following topics and directions are recommended for further research within investigation of the

relationship between SW complexity and SW reliability:

- Find more discriminative complexity code metrics for “structure” related complexity.

- Repeat the regression analysis for a larger training group and investigate if the accuracy of the
reliability predictions based on the complexity scores improves.

- Add the (in literature) recommended complexity metric “fan in / fan out” to the code complexity
model and investigate if more complexity factors arise or if the ability to explain the variance in
the reliability scores among SW units by the complexity factors improves.

- Investigate which underlying reasons cause the increased variance in software errors and failures
for systems with high scores on the complexity factor “size”.

- As the complexity factor “size” seems to be related to reliability, the number of SWF could be
normalized by for example the Lines of Code (LOC) in order to provide more representative and
fair measures of the actual reliability performance of the SW units.

- Perform more case studies on other complex professional repairable systems that include
(embedded) software, and discover if there are similar findings and conclusions. Subsequently,
one can investigate if these findings can be combined into a general applicable regression model
that fits the SW of complex professional repairable systems in general.

- Find out how the established relations between complexity and reliability can provide more
focus/insight for the development team and support them in making product improvement
decisions.

VI

Hardware complexity versus hardware reliability
The following topics and directions are recommended for further research within investigation of the
relationship between HW complexity and HW reliability:

This master thesis investigated this relationship quickly and not very thoroughly, therefore more
extended investigation of this relationship is recommended. Especially because not much
quantitative research on this relationship has been carried out in literature yet.

Within PMS, effort should be spent on getting insight in the actual failure causes that have led to
the component replacements (during “corrective” maintenance). The required reliability measures
should be defined upfront the process of data collection and filtering, in order to make sure that all
required reliability data is available.

General recommendations for further research
Here follow some general recommendations for further research on the research topics system
complexity and system reliability:

A challenging research would be to quantify the interactions between hardware and software
reliability, and see how system complexity influences this interaction.

Carry out more quantitative case studies on several types of complex professional repairable
systems in order to see if the conclusions and regression models from this research can be
generalized.

Investigate other factors (for example the in this master thesis called extraneous variables:
“environment” and “user profile”) that could explain the variance within the reliability
performance.

VII

Table of contents

ADSEracCt. ... e e e e e e an e |

Preface.... ... s e]

Management SUMMArY.......c.iiiiiimiiiie it ccrc st r e s s s s s s a s s n s e man]

I 0o T 11 o T TV] (11 - O 1
1.1 INEPOQUCHION «..ovvinvieeeieieerenetnee it eceres e saeserese et st st sane e e st ssasseseeenessesseeseesansesntsmes s eesenessneneesnanas 1
1.2 Royal Philips EIECITOMICSc.coveoiiiririiiteieiecteeeetteie ettt esene s et e be e sesaesaesesaeesans 1
1.3 Philips MediCal SYSLEIMSc.eoverreierereriirieeeteieseeeeceee et esessesasesessessessesesssessneseessensenesnesseensenes 1
1.4 The Allura Xper Cardio/Vascular X-Tay SCAINETcc.eeerererueeerrenreeruesneessestrsessesesesseenesessenessens 2

2. Research oUtliNe ...t s e e s e mn e 5
2.1 Formulation of the IeSearch areaco.coceeeeueriereneriencicnineneneeseeeseese e eeeseeesaseneses 5
2.2 PrODIEIM STEUALION.eeiveteteieerenerteeertestiee e ee e sereestesseeses e eseesessesanesessassessessssanseessentensonteseesesnseaes 6
2.3 ReSEArCh OBJECHIVE.ceuiiieieeieetee ettt sttt et e sas st e resen e enaesataeenne 6
2.4 ReSearch qUESHIONSc.eeviieuieeieeriete ettt et et e et s tee st st e s e ssesueesaneebeeenesneneesaeensenns 8
2.5 Research approachi...... ..ottt ettt st ettt st e sene e ne et e s et 9
2.6 Research BOUNAATIES........c..ocueeverueeiierenienirieeeeceee sttt ae e e et sreesessessssne st e beeseessesmesnaes 9

3. Designing the research cCoONCeptccciiiiciirccccccmmmminrncscsss s ssseme e e s se s sesssnsnas 11
3.1 Defining the expected causal relationShip..........occeveevereeiereereereeenireeereereeeeereeeereeeseeesaeas 11
3.2 Decomposition of “system complexity & reliability”ccoeceeoerieeiirineie et 12
3.2.1 SYStEIM COMPLEXILY .enueeiieieeeieieeeeretaeteeeteeatsaeeeese e sesnesaseseeemsestesasetebeeasrestesatesnteneentesasennes 13
3.2.2 Decomposition into software and hardWare.............c.ceceeiieerieereeniireriinseeeeeeseeseseessasseeses 14
3.2.3 System reliability and reliability MEtriCS.......c.coveierrierreeeieeereeeree e e reee et eee e eneas 14
3.3 Sample selection & Data COLECIONcoemieieeiece ettt see e e e seen 15
3.3.1 Selecting a study design and SAMPIEccoeoieeiriieiree ettt enes 15
3.3.2 Selecting a method of data COIIECHON.cooeeeieeieieee ettt s enes 15

4. Software reliability.........ccooeiriiiriire s 16
4.1 Separate software into subSyStems and UNILS........cceeeeiireeriieieeeeeteeeeceetesseeeee st erse e eerenseenes 16
4.2 How to measure Software reliability?........ccccvvrvirieeniienireriinennneiesiieesisesiseseseesnseeeseeseneesesessesseneenas 16
4.3 Evaluation and selection of software reliability datac.cccecrviniievecrnncnneenrienrcenreeceneene 17
4.4 Data sources for reliability IndiCAtOTS..........cecereerteriteriricneenereerteree ettt e sane 18
4.4.1 Data source: SyStem LOZ-f11EScceeiruioririnririenenerceeneteeteteneeesr et sresseesesaesassassnenens 18
4.4.2 Data source: Problem TEPOTLScocceriicirririererieeerteteeeestreeessesaereseseesessneenseesesnesaeee 19
4.5 Findings and conclusions on available reliability data............ccoccevuerievenennccreniennienrccecienes 20
4.5.1 Source: SYStem LOZ-TI1ES......cccvciiiieiririrrienrirriiriresreereereressssessseessessaeessasestessseesansesseesseesanees 20
4.5.2 SoUTCE: PrODIEIMN TEPOILS ..ccvvvieiriirreririereesrureierrrraeseeeserarsessssssssssessntasstesentessseesansesneesseesanes 23
4.5.3 Correlation among reliability MEICS.....cccvveeieereieerieertereeeeerrerieeseeesneesseessrassseesssessssesssessaeas 23

vl

5. Software COMPIEXitY......cccuccmieiecirrrcreresnecsss s ss s s s s s s s assn e s s e m e e mmnanasas 25

5.1 How to measure Software COMPIEXItY?cocovrreererrererereemrmimmnicsieserenest st earae st 25
5.1.1 Quantitative physical software attributes (INELIICS)c.oeverriiriericrinenernsninrisiesriereeenienne 25
5.1.2 Qualitative software attributes (INELTICS)vveevivivieirerieeereeeeesaeesiessenessessessansesmeessesasessasses 26
5.1.3 Software complexity in embedded system SOftWArecccccocevereceernrerrnnicinciicreenens 26

5.2 Evaluation and selection of software cOmplexity MELriCS......ccoeeeruerrererererereieiriie et 27

5.3 Data sources for software cOmplexity MELHiCScorererrrucererreneerieenereneenieiisee e seenenes 28
5.3.1 Data source: Telelogic LOZISCOPE QUAILccuevereeeeiniinieiiecesececeerierereneene e essesae e 29
5.3.2 Data source: Audit by CV software development teamccoeveerirmemerneeesiricreseeeienens 30

5.4 Findings and conclusions on available complexity dataccccecermuivericninciineiecnieececeennnes 32
5.4.1 Available code metrics for the code complexity modeloccrieiiciinniininiinniceenenes 32
5.4.2 Reducing the number of software complexity MEetriCs.........c.coeveirrerirciririscriennieisieacannens 33

5.5 Validation of the used audit programs Logiscope and JAH...........ccocoeveeerneninncnnneriinecnneneee 36

6. Software complexity versus software reliabilityccooceicmncrismncrrcnnnnicniceninnane 38

6.1 Expected relation between SW complexity and reliabilityc.cocevevvrvrvninrnncisierinnninincnenns 38

6.2 Correlations with reliability MetriCS........coeieeeieieeerieirtecieeceeeresie st serereesecetecesraesreseeaeenenens 38

6.3 ReZIESSION MOMELScouieuieieiiieriicieteeeee et et e et sae st s e st et e st e ae e sstesesseeesseneneessensonnan 40
6.3.1 Explaining the variance in reliability metrics by regression analysis...........c.ceceueuevmnminnuaee 40
6.3.2 Predicting reliability metrics by the regression modelcoccoceeeiniinniniicniinnnrerinenns 41

6.4 Explaining variance within reliability by complexity Classescccceeremrerererernuernceermneneinnans 42

6.5 Conclusions on software complexity versus reliability..........coeeeerereemreeeserceererereniererereennseenenes 44

7. Hardware complexity versus reliability.........cccccomromiccmnsriecrmimnssnni i secceecaeens 45

7.1 Hardware reliability performance indiCators...........c.cococeceveeenecinniiinneiiminee i 45

7.2 Hardware complexity and selected complexity MEtriCsc.cceviirieriivnmeneieniince e eiereieaas 45

7.3 Relationship between hardware complexity and reliabilitycccccoeeeerennerenieirirenniniinencns 48
7.3.1 Expected relations between HW complexity attributes and reliabilitycc.c.ccoeeveceeecnee. 48
7.3.2 Verify assumed relations between HW complexity and reliabilitycccvnvnenenrennnnen. 49
7.3.3 Variance within reliability after complexity classification............cccoeereruenrercccrnceenrecnenen 50

7.4 Conclusions on hardware complexity versus reliability.........coceeueeueereeerreeoenrrerereneeeccrerecnnnees 51

8. Conclusions & recommendations..........ceeeeerrimrmsmsissecsnnsc s sesssasssenssnsnssasanenss 52
8.1 COMCIUSIONSoceeerereirrrir ettt sasn e bbb se e e e e s bt et et et en st st eneat e emeneaensassestane 52
8.2 RECOMMENAALIONScuouierriree ittt res ettt eeee et e esese s e s sstse st n st saeene s sscss 54
REfErENCES.......cc e s e e e s s 55
LiSt Of apPENAICES........ooiiereecreccccrrrcresseer s nee e s eerr s e erssasesssamasessmasessansessssees smnananan 60

1. Company profile

This chapter starts with a brief introduction of this master thesis, followed by a short description of the
company Philips Healthcare and the investigated product within this company.

1.1 Introduction

This master thesis is a feasibility study on the reliability factor “system complexity” for the Cardio
Vascular (CV) X-ray scanner of Philips Healthcare (i.e. Philips Medical Systems). It investigates how
to define the system complexity for this system and if it actually influences the reliability performance
of this system.

The first chapter of this thesis describes the company and the product that is investigated. The second
chapter describes the research outline of the thesis. Chapter three describes the research variables and
the design of the research concept; it also separates the research into software complexity and
hardware complexity.

Chapter 4 describes how to define software reliability and chapter 5 describes how to define and
measure software complexity. In chapter 6 the relation between software complexity and reliability is
tested in several ways.

Chapter 7 is subdivided into three parts, the first paragraph describes how to express the Hardware
reliability performance, the second paragraph describes how to define and measure hardware
complexity. The last paragraph investigated the relationship between hardware reliability and
complexity.

Finally, the last chapter contains answers to the research questions and recommendations for the CV
development department and further research.

1.2 Royal Philips Electronics

Royal Philips Electronics is one of the world leading electronics companies. Philips started as a lamp
factory in 1891 in the centre of Eindhoven and has developed into a multinational with annual sales
around € 27 billion in 2007. Philips is divided into four business divisions which are; Consumer
Lifestyle, Healthcare, Lighting, and Innovation & Emerging Business Group. Together these four
divisions employ around 125,000 people over 60 countries.

The corporate mission is to “Improve the quality of people’s lives through timely introduction of
meaningful innovations”, assisted by the following corporate vision “In a world where complexity
increasingly touches every aspect of our daily lives, we will lead in bringing sense and simplicity to
people”.

1.3 Philips Medical Systems

Philips first medical activities started in 1918, when it started to develop its first X-ray tube. In 1929
they sold their first Medical X-ray tube; called the Rotalix tube. Since 1993 Philips also started to
manufacture other medical equipment. Nowadays Philips Medical Systems (PMS) is next to GE and
Siemens a global leader in: diagnostic imaging systems, patient monitoring and cardiac devices, and
healthcare information technology solutions. In specific PMS is a leader in imaging systems which
also represents a major part in the total annual sales as shown in Figure 1.

Imaging
Systems
€2.7B, 41%

Home

Healthcare
Informatics.
Ultrasound.
Monitoring
Solutions.
1.9B, 28%

Healthcare Solutions
€0.2B, 3%

Customer
Services
€1.9B, 28%

Figure 1 Annual sales per product group

PMS employs around 30,000 people over 60 countries and has a total sale of around € 6.7 billion in
2007. PMS headquarter is located in Andover, United States of America. The business structure of
PMS is shown in figure 2. This master thesis takes place at the Cardio Vascular business line which is
highlighted in Figure 2. Within the Business Line Cardio Vascular (CV) this master thesis is

positioned in the sub-department “Development”.

(Phitips Medical Systemﬂ

Finance ‘

VVVVV Marketing, Strategy &
| Business Development
v | (U |
Healthcare Ultrasound and ‘ Imaging Global Sales
lnformaticsA Monitoring ‘ Systems ‘ New Ventures and Services
S —
X-Ray Computed Magnetic Resonance Nuclear Medicine
{XMR}) Tomography (CT) Imaging (MRI) {NM)
[H H
Cardio Components Electro General Eenerators, Tubes
Vascular P Physiology X-Ray ‘ & Third Party

Figure 2 Organization chart Philips Medical Systems

1.4 The Allura Xper Cardio/Vascular X-ray scanner

The CV Business Line makes the Allura Xper product line which is the successor of the Integris
Allura product line. The Allura Xper product line can be subdivided into cardio and vascular x-ray

systems and into Mono and Bi-plane systems (Table 1).

Name Mono / Bi plane Usage

Xper ED10 Mono-Plane Vascular imaging system

Xper FD10/10 Bi-Plane Cardio imaging system

Xper FD20 Mono-Plane Cardio imaging system

Xper FD20/10 Bi Plane Vascular / Cardio imaging system

Table 1 Systems within product line Allura Xper at PMS

These four types of systems are used in the following clinical areas:

Interventional Cardiology

Pediatric Cardiology

Electro Physiology

Interventional Neuro-radiology
Interventional Radiology

Diagnostic Radiology and Neuro-radiology

These systems are selected for the case study because of the following reasons:

These systems apply highly innovative and complex technologies and are used in a professional
environment by professional operators (Interventional radiologists).

These systems are capital investments and therefore are repaired instead of replaced when they are
failing.

PMS offered its time, experience and support to investigate this research concept.

PMS is a large enterprise with developed and monitored business processes which makes
generating the required data more easily.

This Master thesis is part of a PhD project which focuses on professional repairable systems.

System architecture of the Allura Xper product line

All systems within the Allura Xper product line follow the same subdivision into subsystems
(modules). However, there are two division methods applied; one division in Hardware subsystems
and another division into Software subsystems. This difference in architecture between Hardware and
Software is required because the Hardware subsystems cannot be mapped “one on one” with the
Software subsystems. Both subdivisions are briefly described in the following subparagraphs.

Software subsystems:

Figure 3 shows the subdivision in Software subsystems, each red encircled block represents one
subsystem that consists out of one ore more software units. These subsystems and their function within
the system are explained in appendix 1.

E

XP hest

Ao o

Apptrarn iy byne

Tarives tayer

s faryme
“y
%
S
L

Figure 3 Software subsystems and units (Source: System Design Specification Rocket C2)

Hardware subsystems:

From a hardware perspective the system can be subdivided into three groups of subsystems which
together form the Allura Xper CV scanner, these are: the Examination room, Control room and
Service room. (Figure 4). The Examination room is where the actual CV X-Ray system is placed and
where the patient is examined by the Interventional radiologist. In the Control room the pictures from
the examinations can be reviewed by the radiologists and other hospital employees like for example
surgeons. The Service room contains Software cabinets that contain all control and operating software
for the CV X-ray scanner in the Examination room.

Stand

N-Ea

v Dete%
e

M-Chrbinet
R-Cabinet

E2E-Cabinet

sl

Usey Interfice
. Module

X-Ray Tube

z
e [l
boom o ——

----- SN

Figure 4 Hardware bul]dmg blocks (Source: System Design Specification Rocket C2)

The Examination room can be divided in the following “building blocks” on which the system is build

up:

Stand: the stand holds the C-arm and the connected X-ray detector and X-ray tube. The stand can
be placed on the Floor or hanged on the Ceiling. (Floor stand and Ceiling stand) The selected
stand depends on if the system will be used for cardio or vascular applications.

X-ray tube and X-ray Detector: the X-ray tube creates the X-ray beam which is detected and
converted into a digital signal by the X-ray detector. The data is sent to the Cabinets in the Service
room, which further process this data into graphs and pictures that are sent back to the
Examination room and the Control room.

Table: the table holds the patient and can be turned in all kind of positions in such a way that the
patient is correctly placed between the X-ray tube and the X-ray detector.

Monitors and User Interface modules: The pictures that are retrieved from the scan are shown on
the monitors in the Examination and Control room. The User Interface modules are the control
tools like hand and food switches with which the Interventional Radiologist can direct the system.

A list of all the Hardware subsystems is presented in appendix 1.

2. Research outline

The research outline starts with a description of the research area followed by the description of the
problem situation. These two paragraphs explain the relevance and necessity of this Master Thesis.
Subsequently, the research objective is established and the accompanying research questions are
defined in the paragraphs 2.3 and 2.4. Paragraph 2.5 research approach, describes the followed
methodology. Finally, some general research limitations and boundaries of this Master thesis are
described in the last paragraph.

2.1 Formulation of the research area

This Master thesis project is an addition to the Ph.D. project “Monitoring and Predicting the
Reliability Behavior of Early Failures in the Field based on Decision Rules” (Kevrekidis, 2007). This
project will focus on the first two modules of the Ph.D. project solely.

To determine system reliability of a high complex technology system there are several factors that
have to be taken into account. Some of these factors are already investigated thoroughly and their
impact on reliability is well known, like physical processes and maintenance. (Wong, 1990) Generally,
these “reliability factors” and their impact on reliability are evidenced by experiments in which
operating conditions are simulated. However, these factors are not solely responsible for the reliability
performance of the system and in many situations (like in the case of professional complex systems)
carrying out an experiment in which factors can be kept constant in order to test the relation between a
single factor and reliability is impossible. Today, the actual reliability performance level still cannot
totally be explained due to unknown reliability influencing factors. Therefore accurate predictions
regarding system reliability are still not available. (Wong, 1990; o’Connor, 1991; Ascher and
Feingold, 1984)

Especially reliability prediction for the early use phase becomes more complex due to “hidden zero-
hour” failures (type 1) and “Early wear-out” (type 2). There are a few trends which cause an increase
in these failures (Brombacher et al., 2005):

- A strong pressure on “‘time-to-market” requires reliability assurance in an early phase of the
product development to approve the product launch. This early reliability prediction has to be
based on the field performance of preceding product versions. Due to the short time-to-market of
the new version there is little time to generate (reliable) information to correct/improve the
product design.

- Increasing customer demands on product quality and reliability, results in more customization and
more diversity in end products. This increased diversity due to complex product customization
complicates the reduction of failure types 1 and 2.

- Another trend in current product development is an increased number of product features and
options, which results in more complex products (Calvano and John, 2003; Prasad, 2001; Doty,
1989; Brombacher, et al., 2005). It is plausible that this increase in “system complexity” has a
(negative) impact on system reliability.

A more accurate explanation for the actual reliability for the early life phase will have the following

main benefits (o’Connor, 1991):

- Advance knowledge about reliability can improve the predictions of warranty costs, spare parts
requirements, support costs, and marketability of the new product (version).

- Reliability prediction can be used for comparing options and highlighting critical reliability
features of designs. This can improve the product design process.

- Might eliminate early life failures. A reduction of these early life failures is important for the
manufacturer because it will reduce the repair costs and time due to early life failures within the
warranty period.

2.2 Problem situation

There are several reliability factors that are still relatively unknown or their impact on reliability is not
known. Some examples are: supplier quality differences, environmental stress factors, system
complexity and system age. (o’Connor, 1991)

The following phenomenon supports the statement that these relatively “unknown” reliability affecting
factors lead to an increased impact on the system’s reliability performance. This phenomenon is “high
variance in the reliability performance for the same types of systems”. (Communications with Ir.
Kevrekidis, Ph.D. student at TU/e) The systems selected for this research are the Philips Allura Xper
CV X-ray scanners, which are complex and professional repairable systems. This large variance in the
reliability performance of these Allura Xper systems cannot be explained by the traditional reliability
affecting factors; physical processes and maintenance. Extended knowledge on the ‘“unknown
reliability factors” should enable a classification of the systems according to these factors in order to
gain less variance in the reliability performance of each classified group. It is expected that this
classification enables better understanding of the problems/issues that cause the high variance in
reliability performance.

The phenomenon “high variance in reliability performance” is tested based on field reliability data of
four panels of Allura Xper CV X-ray systems. This problem analysis shows that there is indeed a high
variance among the systems reliability performance. The data and analysis on which these conclusions
are based can be found in appendix 2.

The relatively “unknown” reliability affecting factors that could explain this variance in reliability
performance are identified in the Ph.D. research by K. Kevrekidis. This PhD project applies the (social
sciences) “Grounded theory” by Glaser & Strauss (1967) to select the relevant factors that are taken
into account. This master thesis assumes that these reliability factors found with this theory are truly
relevant factors. One of the reliability factors found by this method is “System complexity” and is
selected for further investigation in this Master thesis project. A literature study and a research
proposal on the factor “system complexity” are carried out as a preparation on this Master thesis.
(Albers, 2008)

The aim of this Master thesis is to investigate the relation between the factor “system complexity”
and the systems reliability performance. Therefore, this research should provide a methodology how to
measure/quantify the reliability factor “system complexity”. Finally, this research should establish if a
system classification according to “system complexity” can be made and if it actually reduces the
variance of reliability performance within subgroups among the Allura Xper CV X-ray systems at
PMS.

Problem definition:

More quantitative insight in the relationship between system complexity and the system’s reliability
performance level is required in order to determine if system complexity can actually explain the
variance within the reliability performance of professional systems.

2.3 Research objective
The type of research that is carried out depends on the chosen research objective and corresponding
research questions. According to Verschuren en Doorewaard (1995) there are two main research types:
theoretical research and practical research. The difference between these two approaches is as follows
(Verschuren en Doorewaard, 1995):
- Theoretical research: also called fundamental research, its aim is to solve problems in the
formulation of theories.
= Theory development: motive for this type of research are hiatuses or “blind spots or gaps” in
current theories or that current theories can not be generalized.
» Theory testing: this type of research tests existing theories and if necessary adapts or
optimizes the existing theory.

- Practical research: this type of research contributes to an intervention to solve a practical
situation or problem. To construct practical research efficiently, an intervention cycle should be
(partially) carried out:

1. Problem recognition: The problem itself should be clearly defined.

2. Diagnosis: The main causes and effects of the problem should be clearly defined.

3. Development: development of a realistic solution that will solve the problem as defined in
stage 1 and 2.

4. Implementation: Implementing the proposed solution.

5. [Evaluative: Does the intervention really solve the defined problem?

This Master Thesis project will focus on theoretical research in order to develop a theory that
describes the relationship between system complexity and reliability in a quantitative way. It focuses
on the blind spot of the incompetence of reliability engineering theories to come up with reliable and
accurate prediction of system performance because of a lack of understanding in the reliability
affecting factors (Wong, 1990; o’Connor, 1991; Ascher and Feingold, 1984). Based on the PhD
project by K. Kevrekidis, this Master Thesis assumes that theory development on the reliability factor
“system complexity” will increase insight in complexity and its effect on the reliability performance.

The theoretical objective of this research is to establish if there is a relation between system
complexity and system reliability. The practical objective of this research is to explore how system
complexity can be expressed in the case study at Philips Medical Systems (PMS) and which data is
available or can be gained.

These two objectives are combined into a desired situation to which this research should lead (Figure
5). In this desired situation the reliability performance of a new product version can be:

- improved by controlling the reliability influencing system complexity characteristics (focus)

- predicted based on its already known system complexity characteristics during development.

In order to come to this desired situation the relationship between complexity and reliability must be
evidenced first, which means that differences in the reliability can be explained by the reliability
factor “system complexity”. Therefore, complexity should be expressed by a set of characteristics
(metrics) that show significant correlation with system reliability performance.

The initial Master Thesis research proposal was to:

1. Create a methodology to quantify the reliability factor “system complexity”,

2. Carry out a feasibility study at PMS for the “CV X-ray scanner” in which the required data was
collected for several system versions in the field, and

3. Establish if this data can be used to fulfill the desired situation as expressed in Figure 5.

Predict
| -

Version 1 N Version 2 Version 3
characteristic* = A "| characteristic* = B .| characteristic C

A
Reliability Reliability
performance 1 performance 2

~ A

The reliability change is
caused by characteristic*
explain

l

predict

Reliability
performance 3

Provide design rules
focus

Figure 5 The desired objective of the Master Thesis Project

However, due to a time limitation and restrictions in the available data only the variables reliability
and complexity are expressed in quantitative measures and the relationship between theses variables
are tested. So the main objective of this Master thesis is to explain reliability changes by complexity
characteristics. Furthermore, this Master thesis concludes if and how these complexity characteristics
can be manipulated and controlled in order to improve the next system version (focus). Unfortunately,
this Master thesis cannot comply with the desired objective to predict the field reliability performance
based on the system’s complexity characteristics. The reason for this is the small number available
observations which will be further explained in chapters 4 till 7.

2.4 Research questions
The following central research question should be answered in order to get better understanding of the
relationship between system complexity and system reliability:

What is the impact of “system complexity” on the reliability performance of the professional
repairable systems under study and how can this gained knowledge be assimilated into decision
rules for product improvement?

In order to fulfill the objective of this research, as described in paragraph 2.3, this research question
should be specified in more detailed sub-questions.

Sub-questions and deliverables:
1. How should the reliability performance of the professional system be defined or measured?

- This research should define the way in which the reliability performance is measured.

2. How should “system complexity” be defined in such a way that there will arise no misconceptions
in interpreting these factors?

- The research should provide clear definitions of “system complexity”. This definition should
enable a quantification of this reliability factor. Furthermore, the quantification should be
representative for the actual system complexity.

3. How should the relationship between “system complexity” and the reliability performance of the
system be established?

- The actual included independent and dependent research variables (selection of complexity
and reliability metrics) for establishing the relationship between system complexity and the
reliability performance need to be defined.

- The expected relations between “system complexity” and “system reliability performance”
should be based on theoretical investigation (literature study) first before it’s quantitatively
investigated.

- The established relationship should be based on the case study at PMS.

4. How to create a product classification process based on system complexity?

- A classification model for the professional repairable systems should be designed based on the
investigated reliability factor “system complexity”.

- Investigate if the variance of the reliability performance level within a classified group is
smaller than the variance of the reliability performance for the group without a classification
according to complexity.

This classification process highly depends on the actual relationship between system complexity

and system reliability. When no relationship is found, a classification of the systems according to

complexity won’t result in more homogenous system groups.
5. How can extended knowledge about “system complexity” and its relation with reliability
performance assist the decision process in product development?

- The impact of “system complexity” on the system’s reliability performance should be
translated into design decision rules for the development process of each classified group.

- This research question is related to the PhD project and represents the higher aim of this
research project.

2.5 Research approach
This research applies the Kumar’s (1999) research methodology. This methodology is specifically
suitable for a theoretical research, which is the case in this Master thesis project.

The methodology divides a research in several research phases and provides a format of the content
and activities for each phase. These phases are visualized in Figure 6, on the next page, and each of
them is briefly explained within this research structure. A more detailed and chronological description
of each research phase is described in appendix 3.

Figure 6 should be interpreted as follows:

- The column “projects” contains the three subprojects within the Master thesis. The first two
projects “Preparation Master thesis Part 1 and Part 2” are carried out at the university, the last
project “Master thesis” is carried out at PMS within the development department of the Business
Line “Cardio Vascular”.

- The column “project phases” contains the just described seven main phases of the general research
methodology provided by Kumar (1999). The column “Actions” contains the concrete actions that
were carried out or were required during each research phase.

- The last column “Chapter” shows in which chapters the research phases are described. The project
phases 3 till 6 are carried out and described separately for the two main areas within “system

9,

complexity”: “software complexity” (Ch. 4, 5 6) and “hardware complexity” (Ch. 7).

2.6 Research boundaries

The case study restricts itself to the Cardio/Vascular department of PMS, and therefore also to the
available data and knowledge within this department. The initial plan was to develop a methodology to
express/measure the complexity of the system for the system’s hardware as well as the software. Due
to the limited available time, this thesis elaborates much more on the methodology to measure
“software complexity” than “hardware complexity”. The concept of measuring “qualitative structure
complexity” hasn’t been touched at all, due to difficulties with measuring and gaining the required
quantitative data.

The main reason for selecting software complexity above hardware complexity was the availability of
reliability related metrics. The reliability of the systems could initially only be expressed in component
replacements and the initial root cause (hardware or software failure) was unknown. The PhD project
started on retrieving reliability metrics for the system software by analyzing system log-files.
Furthermore, software complexity metrics were easier the collect than hardware complexity metrics.
The research on software complexity versus software reliability would provide quick results that might
endorse further research into system complexity.

Projects

Project phases }

Content / Actions

Chapter

Preparation on Master Thesis (Part 1
Literature review and Part 2 Research proposal)

—

—

1. Formulation of the
research problem

Problem definition: The influence of several factors on the system
reliability performance are unknown. To gain better insight in the causes
of reliability performance, one of these factors (system complexity) and its
effects on reliabitity performance is investigated.

CH1

Research question: How can the impact of “system complexity” on
reliability performance of professional repairable systems be measured
and how can this knowledge be translated or assimilated into decision

‘ rules for product improvement?

CH2

2. Designing the
research concept

Identifying variables and constructing hypotheses:

Independent variable: complexity in perspective of hardware & software
Dependent variable: reliability performance in test & field failures, and
system entropy (seperated into hardware and software failures)

Independent
vanable

Linking vanables

Dependent variable
Rediabifty performanco of complex \

Complexity aspects

repairable {professional) systems.

- Test Reliability performance

. - Field Relability patformance
S - Entropy level

Qualitative measure

N

Tomplexity meones
(software metms)

Soﬂwnre
ngm

measure

Functional fields

~

Complexity
charactenstics

Mechanlcd
Deslun

—l i i
}Hardwln 1 Software

-

)

CH3

Master Thesis Project
(Case study at PMS)

3. Construction of the data
collection instrument

Definition of required data regarding:
- Reliability: establiish the reliability performance and its variance

- Complexity indicators: with respect to hardware and software

[4. Selection of sample]

Sample: Cardio/Vascular X-ray scanner at Philips Medical Systems (pms)
- Selecting the group of system types with the required data available

5. Create the research
g proposal

Definition of sub questions for the selected samples
Definition of variables and its indicators that are desired in theory
Expected relations to be found between the indicators

6. Collect data

Data collection at the PMS department Cardio/Vascular (CV)

- Selection of the system types and systems for which the required data is
available (separately for Hardware and Software)

- Specify (for each variable or indicator) which or what kind of data is
required and how this data can be retrieved

- Selection of the required data sources: Databases & Interviews 1

CH4

CHS

CH7

7. Process data

. S/

| Data processing and testing the hypotheses

- Selecting the required statistical procedures
- Define/monitor the reliability/validity of the tests and results
- Results: answer the research question and sub questions

- Conclusions and remarks on the results

CH®6

CH7

[8. Construct the re p ortj \ Conclusions and recommendations based on the research findings

CH8

| E—

Figure 6 Research structure Master Thesis

10

3. Designing the research concept

Generally, one assumes that there is a logical relationship between system complexity and system
reliability. Much research has already been carried out in the investigation if “system complexity”
affects “system reliability” and if complexity can even be used to predict system reliability. In
literature (Albers, 2008), over 30 researches were found that discuss or are related to investigation of
“system complexity”. When reviewing the literature for software complexity in chapter 4, even more
researches have been found.

However, for “hardware” related complexity not much quantitative research on the relationship
“hardware complexity and reliability” has been carried out. In contrary, much quantitative research on
the relationship “software related complexity and reliability” has been carried out and many types of
software complexity metrics are defined. However, these researches come to different and sometimes
contradicting conclusions about which metrics are important and how these metrics influence
reliability.

In order to come to good research hypotheses, the relevant variables and the assumed causal relation
should be defined first (paragraph 3.1). To reduce the bias in the conclusions about the relationship
between complexity and reliability, the other “reliability influencing factors” should be kept constant
(paragraph 3.1). Furthermore, the vague variable “system complexity” needs to be decomposed into
several subareas within this research topic like “hardware and software complexity” (paragraph 3.2).
Finally, a short introduction on the selected sample and applied data collection methods is given
(paragraph 3.3).

3.1 Defining the expected causal relationship

One of the first research steps (Kumar, 1999), is to identify the variables of interest and quantify them
in metrics that represent the level of these variables. However, the perspectives from which these
variables should be analyzed need to be defined first. Kumar (1999) describes these perspectives as
followed:

- The causal relationship;

- The design of the study (paragraph 3.3.1);

- The unit of measurement (chapters 4, 5 and paragraphs 7.1 and 7.2).

The causal relationship under investigation in this thesis is the relation between the assumed relevant
independent variable “system complexity” and the dependent variable “system reliability
performance”. There are several possible extraneous variables that could moderate the research
outcome as well. When selecting the research design and/or the method of data collection, it is
extremely important that these extraneous (/moderating) variables are controlled and do not influence
the results from the tested hypotheses.

Based on the literature study and communications with: Kevrekidis, Sonnemans and Stollman, it is

assumed that the following actions need to be carried out in order to establish a causal relation

between the variables complexity and reliability:

- Translate the vague term “‘system complexity” in measurable characteristics (metrics).

- Translate the term reliability in measurable indicators.

- Establish which extraneous variables might influence the relation between complexity and
reliability and define how these can be controlled.

Figure 7 visualizes the causal relation that is under investigation. The vague term “system complexity”

is an aggregated research variable that can be decomposed into several sub variables. This
decomposition is explained further on in paragraph 3.2.

11

Translation of the vague terms “system complexity” and “system reliability” into measurable
characteristics or metrics are carried out separately for Software complexity in chapters 4, 5 and 6 and
Hardware complexity in chapter 7.

The last requirement “keeping the extraneous variables constant” is tackled as good as possible

upfront in this paragraph. Based on communications with G. Stollman and K. Kevrekidis, the next two

extraneous variables are identified as interfering variables and were attempted to keep constant in the
following way:

- Constant system environment: the complexity characteristics are defined on subsystem (module)
level which means that all subsystems are used in the same system environment. Each system is
placed within a hospital; however this does not automatically mean that each system interacts with
similar environmental stresses. The environmental stresses in Asia might differ from Europe
because of differences in the climate. Also governmental regulations on how to use or maintain
CV systems are different for each continent or even each country. To reduce the influence of this
extraneous variable “system environment” as low as possible all analyzed systems are placed
within the United States of America.

- Constant user profile: the systems are stressed in a different way among different users. The
clinical areas in which the system is used were already mentioned in paragraph 1.3, the CV
systems are stressed differently in each clinical area and users sometime use systems for a
combination of clinical areas. Although it is not possible yet to separate the systems according to
these clinical areas or user profiles. The Allura Xper systems can be divided into the two main
groups of cardio and vascular systems. At the moment this is the only subdivision of systems that
can keep the variable “user profiles” as constant as possible.

“Complexity” “Reliability”
Assurmed causal relation Myer
(search for corralation)
Product
characterislics
Trarslats Translate
Independent variable Dependent veriable
Systam complaxily _ | System performance
{product characieristics) & T {MTBF { # Faillures}
Extrancous variables
System User
envronment | peofile

Figure 7 Research variables and extraneous variables within the research

3.2 Decomposition of “system complexity & reliability”

In order to establish that there is a causal relation between system complexity and the reliability
performance, both variables have to be defined first. The reliability influencing factor “complexity”
cannot be expressed in a single measurable parameter (or variable). Therefore, some linking variables
are used to establish the relation between the independent and dependent variable. The linking
variables are subdivided into qualitative and quantitative complexity concepts. These concepts are
selected in the Master Thesis preparation (Albers, 2008).

12

Figure 8 shows both complexity concepts as well as the division of reliability performance into sub
measures. Both complexity concepts and the reliability sub measures will now briefly be described in
the following paragraphs.

indepandent variable Depsenden! variabla
o _ Religbility pedformance of complex
Linking veviahles ~ repairable (professiongl) systems;
Systern Complexity - Complexity aspects | - Rehatilty i "
- Retiabiity performance in the field
- Entropy level
Qualitalve meastire - General
~ Camplexity theories ~» Software
e {software mestrics} Dasign
Quantitative ; Functional fiolds
measure . ‘ Hardwars / Software
. Complexity] Mechanical
chamctenstics Design

Figure 8 Decomposition of research variables

3.2.1 System complexity

Qualitative complexity concepts: system complexity is expressed in (Flood and Carson, 1990):

The system symmetry: structure of control system;

The non-holonomic constraint: the system’s ratio of the total number of degrees of freedom
against the number of controllable degrees of freedom;

The perception of engineers/users: combining the level of education and the diversity in required
specialists.

Quantitative complexity concepts:

Complexity theories: one of these types of complexity measures lends itself for expressing the
complexity of the applied/used software in the systems. Because of the fact that software plays a
crucial role into the development and design of current highly innovative professional systems
(Hobday, 1998), this will be an important measure of complexity.

= Kolmogorov complexity: this measure uses the length of a description in a certain language to
express complexity. (Lofgren, 1977; Edmonds, 1999) The length/size of the software
program/codes could be used to express the complexity of the system from the “software
engineering” point of view. When software codes are unavailable or not measurable, other
measures of system size can be used like the number of software systems or programming
languages used.

» Software metrics: these are metrics that express the complexity / size or quality of the
software code. There are approximately 200 types of software metrics (Zuse, 1992), it is task
to select appropriate metrics to express software complexity for a complex professional
system.

Complexity characteristics: there are several researchers that used this concept to express

complexity (Calvano and John, 2003; Hobday, 1998; Ren and Yeo, 2006; Barclay and Dann,

2000; Lucas, 2000; Rodriguez-Toro, et al., 2003). In general, these researchers defined complexity

in the sense of manufacturing or assembly complexity (Rodriguez-Toro, et al., 2003) or as the

complexity of new innovative projects or products (Hobday, 1998). These complexity
characteristics are suitable to express the system complexity from the “mechanical engineering”
point of view.

The software, hardware (mechanical engineering) and their interactions are the main contributors to
the development of a new product and most likely also the reliability performance of that new product.
The decomposition into “hardware” and “software” is described in the next paragraph.

13

3.2.2 Decomposition into software and hardware
The hardware is separated from the software, as the building blocks differ for hardware and software.
The subdivision, i.e. building blocks, of the system is described in chapter, for software as well as
hardware. Due to the inconsistency in the subdivision and due to the area depended technology within
software and hardware, these two technology areas should be analyzed separately. The selection of the
hardware complexity characteristics and software complexity metrics (mentioned in Figure 8) should
be made correctly. The following criteria will be used in order to select the correct and representative
hardware complexity characteristics and software metrics:
- The characteristics must be measurable
= Required data must be available at the CV department of PMS
= Processing the data must be feasible within the Master thesis time limitation
- Characteristics must be derived from relevant (academic) literature
- The assumption that there will be a relationship between the complexity characteristic and
reliability performance must be realistic which means that it should be based on some theories or
logical/straightforward assumptions.
The next problem that should be tackled is to identify categories of complexity. The number of
complexity levels (for example: “high, middle, low” or “continuous”) has to be determined.
Furthermore, weight factors for each contributing metric to the aggregated measure of complexity
should be defined.

3.2.3 System reliability and reliability metrics

The system’s reliability performance should be expressed in quantitative metrics in order to find

correlations between the complexity metrics and reliability metrics. The following reliability metrics

are desired in order to test the relations with complexity:

- Failure occurrence in the field: The reliability performance of the system in the field should be
expressed in the number of failures found during a certain period of time and if possible the Mean
Time Between Failures (MTBF) of the systems should be derived. The MTBF provides a more
fair comparison between systems, because not all systems are observed for the same period of
time and are operated in the same extent within a certain time period. Therefore the MTBF
expresses the reliability field performance of the system in the best way.

- System performance before testing: All
new developed systems are tested before Weakly designed compo.n.ent \?_Vell desig:med cumpon_ept
they are launched for field use. The extent with high failure probability | |with low failure probability
and thoroughness with which the system or
subsystem is tested influences the
reliability performance in a great way.
Very complex or weakly designed
subsystems may perform in the same way Wgakly des%g;ned compcfz?ent Well desisned compon.ept
as “well designed” subsystems because with low failure probability | |with low failure probability
they all have the same expected failure Figure 9 Impact of testing on reliability performance
probability after they were tested. Figure 9 is composed in order to visualize this impact of testing
on the system performance. Because of this expected impact of systems testing, some metrics that
express system performance before testing are desired as well.

- Entropy: The entropy measures the chaos in the system, which for this master thesis is expressed
into the number of system failure types (states) and the distribution of failure over these failure
types. The more fatlure types and the more homogeneous the failure distribution over these failure
times, the higher the entropy level and the less reliable the system will be. However, this chaos in
the system can also be seen as a form of complexity as well. Therefore entropy is the perfect
reliability measure in order to verify if the found relationship between complexity metrics and
reliability are logical. More information about entropy can be found in appendix 4.

Testing and ‘
problem solving %

14

3.3 Sample selection & Data collection
The first paragraph describes the selected study design and sample, the next paragraph describes the
applied methods in order to collect the required data.

3.3.1 Selecting a study design and sample

The study design in this Master thesis can best be described as a fundamental research in which the
effect of system complexity on system reliability is investigated according to a comparison of this
theoretical concept (assumption) with empirical data (Primary empirical comparison) that is generated
from existing data (log)files (Desk research). This study will be carried out as a single case study on
the CV X-ray scanner at PMS, the established relationship between complexity and reliability will be
based on this case solely. Therefore, the developed model is solely applicable for the Allura Xper
systems at PMS.

3.3.2 Selecting a method of data collection

In order to establish the relationship between “system complexity” and reliability, quantitative data
will be preferred. However, the concept complexity is rather vague and can be interpreted in many
ways (Albers, 2008). Besides, the “technical system” knowledge of the researcher is limited.
Therefore, primary sources in the form of interviews with specialists are used to create/define realistic
measures for “system complexity” and “reliability performance”. For ‘“hardware complexity”,
interviews were the only source of information in contrast to “software complexity” where more
quantitative data was available for the Allura Xper systems.

15

4. Software reliability

This chapter starts with an introduction into the software version for the Allura Xper systems at PMS
in paragraph 4.1. Subsequently, a short description of software quality and reliability follows in
paragraph 4.2. Paragraph 4.3 describes the general process of defining and collecting reliability data.
In paragraph 4.4 all available reliability data sources are described and finally the available reliability
data and interpretation of the data is described in paragraph 4.5.

4.1 Separate software into subsystems and units

First of all some more understanding of the division of the software system into subsystems, units,
Product Base Lines (PBLs) and Service Packs (SPs) is required in order to understand how to measure
the reliability. The Allura Xper CV systems are subdivided into PBLs, there are two major types of
PBLs which are cardio CV scanners (FD10) and vascular scanners (FD20).

The first PBL for cardio scanners are named PBL10s and are succeeded by the PBL30s, PBL50s and
so on. The Vascular scanners are called PBL20s followed by the PBL 40s and PBL60s. Within each
Product Base Line some versions are made, for example the PBLAO consists out of the released PBLA41
and PBLA3 software versions, which can be seen as upgrades and are called 4.0.0 or 4.3.0. Again for
each of this software version some Service Packs (“bug solving”) were launched, these are called PBL
4.3.1, PBL4.3.2, and so on. An overview of all software versions and service packs can be found in
appendix 5. An overview of the selected scanners (FD20-PBLAO scanners) can be seen in Table 2.

PBL/ Commercial Software: Service Packs
Project Name New Version |SP-1 SP-2 SP-3 SP-4 SP-5

PBL_23/ PBL_2.0.0/ PBL_2.0.1/ PBL_2.0.2/ PBL_2.0.3/ PBL_2.0.4/ PBL_2.0.5/
Rocket-A___|Allura Xper FD20 |PDC 23.25.0 |PDC 23.25.1 |PDC _23.25.2 |PDC_23.25.3 |PDC_23.25.47 |PDC_23.25.53
PBL_41/ |Allura Xper FD20 _ |PBL_4.0.0/ PBL_4.0.1/
Rocket-B2 |Allura Xper FD20/10 [PDC 41.12.0 PDC 41,134 |- - -
PBL_43/ Allura Xper FD20 PBL_4.3.0/ PBL_4.3.1/ PBL_4.3.2/ PBL_4.3.3/ PBL_4.3.4/
Rocket-B2+ |Allura Xper FD20/10 |PDC 43.10.0 [PDC 43.10.14 [PDC_43.10.22 [PDC_43.10.39 [PDC_43.10.42 |-
PBL_61/ Allura Xper FD20 (PBL_6.0.0/ PBL_6.0.1/
Rocket-C2 | Allura Xper FD20/10 {PDC 61.18.0 |PDC 61.18.12

Table 2 FD20-PBL40 software releases (Source: JAH intranet site at PMS)

For each new PBL, new or extended functionality is added to the software while the SPs are
improvement changes for problems and bugs in the initial Software version or previous SPs.

4.2 How to measure software reliability?

First of all software reliability should be expressed in a quantitative measure. However, software
reliability is rather a qualitative than a quantitative variable. There are many ways in which software
reliability can be expressed and there are more methodologies to use. One way to express software
reliability is the methodology provided by the ISO quality handbook (Figure 10Figure 10).

Effect of
software product

Process

Software product

influences influences influences
—_— — » —_

quality
in use
attributes

external
quality
attributes

internal
quality
attributes

process
quality

depends on

depends on depends on

process internal external quality in use
measures measures measures measures

Figure 10 Quality model framework (ISO/IEC 9126-1:2001(E)

The model is built up out of process quality (the quality of the development process), internal quality
attributes (static measures of internal software characteristics of the actual source code), external

16

The system errors need to be filtered first in order to create a correct representation of the software

reliability performance. The following filtering is applied:

- Only programming errors are taken into account, because it is assumed that these errors are an
indicator for the software reliability performance.

- Only programming errors during “normal operation” are taken into account, because it is assumed
that errors outside this system state are not real errors and are caused due to system start-up or
system closure and do not influence the external quality attributes of the system.

- All software errors that occur with a time to failure of zero seconds are marked as “‘collateral
damage” and are excluded from the data. Assumption is that the first software error causes all the
succeeding errors with a time-to-failure of zero seconds, and these failures are solely caused by the
initiating programiming error.

After the programming errors are filtered based on these assumptions and knowledge, the following
steps in the data collection process are carried out. The filtered programming errors should be
analyzed and their actual failure causes should be identified. Identifying the actual failure causes is
done by constructing an Failure Mode and Effect Analysis (FMEA) based on the knowledge of system
experts. The failure causes of this FMEA are mapped with the errors which are derived from the
system Log-files. Based on the refined programming errors derived from the log-files and the FMEA a
relation between the programming errors and their probability that they result in a system failure or
system crash is known.

Limitations

However, this data analysis is very time consuming and extended programming skills are required.
Although this thesis has supported the PhD research by Kevrekidis in order to gain this data, this
Master thesis is solely responsible for the analysis of the data. Therefore only the system errors are
used within this research, they are filtered and than used to calculate the MTBFs based on these
programming errors. The FMEA and mapping of SWFs and crashes with the logged programming
errors took too long and therefore the results from this analysis were available very late. The only
reliability measures that could be used for data reduction by factor analysis (paragraph 5.4.2) are the
indicators “MTBF based on programming errors’” and “the amount of Programming errors” instead of
the actual SW failures or crashes. However, for investigating the relation between SW complexity and
reliability in chapter 6, also the indicator “software failure” (derived by translating the programming
errors with the FMEA) was available.

4.4.2 Data source: Problem reports

Next to the SW errors derived from the Log-files, the SW failures found during testing will be used as
well. Figure 14 visualizes the relationship between complexity and reliability with “testing” as a
moderator.

SW reliability performance
during testing
A
i
]
t
]
SW complexity ! SW reliability
characteristics ' performance in the field
A 1 A
[} 1]
1 t l
Provides ! Provides : : Provides
i ']
] L 1
SW Development Testing System operated
developed SW in the field
Chronologic order of phases in time
@ >

Figure 14 Development phases and corresponding “complexity’” and “reliability” measures

19

Critical software with many problem reports (PR) during testing will probably get more extended tests
and this will influence the impact on the SW reliability performance in the field. As a result the
relation between SW complexity and SW reliability might decrease due to extensive testing. To verify
if the impact of testing truly influences the relationship between SW complexity and reliability, it is
important to also express the dependent variable reliability in PRs during testing because these SW
failures are less influenced by the testing filter.

The Problem Reports are available through the JAH intranet site at PMS, there is an overview of all
the PRs and Change Requests (CRs) for each specific subsystem within the system SW. The CRs are
not taken into account because these are changes that have to be made due to changed (customer)
requirements. These CRs are no failures but are customization projects.

The PRs however, are SW failures that were detected during testing and are categorized according to
their severity. These severity categories are: critical, major, average, minor, and enhancement.
Critical and major PRs would affect the external quality attributes of the SW, while the minor and
enhancement PRs would only lead to illogical structure or unimportant programming errors.

Limitations:

Based on communications with M. Bouts (Project manager within CV department at PMS) it can be
concluded that there are standards for categorizing the PRs according to their severity. However, in
practice SW developers are biased in their decisions because they tend to categorize the problems they
detected as very important. Although they are important to the SW developer itself, the impact on the
external attributes of the SW systems are negligible. As it is assumed that this is a general habit of all
SW developers within the CV development team, the PR data will not be further processed in order to
exclude this bias.

Another remark should be made about the ability to allocate a problem during testing. The level of
testing and the easiness with which “problems” can be found are most likely not equal for each SW
subsystem or unit. Unfortunately this noise in the PR data has not been excluded due to the scope of
the thesis and time restrictions.

4.5 Findings and conclusions on available reliability data

The test PRs and Field programming errors are not available on each hierarchic level and/or for each

unit within that level. The SW architecture and the way it is developed are already described in

paragraph 4.1. The following groups are made:

- Architecture: systems, subsystems and units

- Development approach: new PBLs (20, 41, 43 and 61) which contain “added functionality” and
new service packs which contain “problem solutions”.

4.5.1 Source: System log-files

The analyzed log-files are solely from PBLAO systems. There were two reasons for selecting PBL40
systems in order to start our analysis. Based on communications with SW developers at PMS it was
concluded that the log-files from the earlier PBL systems were inconsistent and therefore less reliable
for our analysis. However, the later PBL systems have shorter log-files because they are less long in
the field, which results in a shorter observation. The PBL40 systems are the best option considered
these two conditions.

Available direct measures for PBL 40 systems:

- Normal operating time during the observation period (length of the log-file)

- Operating time and errors separately for each software version (or service pack)
- Error events logged on software unit level

A sample of 30 PBL40 systems were analyzed, for all these 30 systems the log-files were filtered on
the total normal operating time per system and all the error events that were logged. The error events
are logged on Software unit level, there were 20 software units found. After filtering on programming
errors and filtering out collateral damage, as described in paragraph 4.4.1, only 12 units with

20

programming errors remained. It is shown that these other 8 units do log errors. However, they only
contain “collateral damage” errors or errors that are not found during “normal operation”. It is
assumed that these 8 units do not contain any programming error, and therefore the Mean Time
Between Failures (MTBF) will be equal to the observed time period, as will be described further on
under MTBF.

Filtered field programming errors during normal operation

After analyzing the results from the log-files for these 30 systems, it immediately stroke that a small
number of systems caused the major part of all programming errors. However, not all systems were
reviewed for the same time period; therefore the number of programming errors should be normalized
first in order to proof this conclusion. These “normalized” programming errors are calculated by
dividing the number of programming errors by the normal operation time of the system and
multiplying this by 1500 hours. Extended data can be found in Appendix 7. The Pareto of the
“normalized” programming errors is shown in Figure 15. Nine systems (30% of the sample) cause
around 80% of the total amount of “normalized” programming errors.

Pareto Programming Errors per system
— 100

80

70

50 %
40

30

programming errors / 1500 hrs
Confidential

20

10

123456 78 910111213141516171819 20212223 24 252627 28 29 30

Number of systems

Figure 15 Pareto on “normalized” programming errors per system

Besides, a small group of software units also produces considerably more programming errors than the
other units. Four software units (20% of the sample) cause around 80 percent of all field programming
errors. The Pareto analysis for the software units can be found in Appendix 7.

Mean Time Between Failures (MTBF)

The MTBFs are calculated for each system and also for each software unit separately. The MTBF for
each system (i) is calculated by dividing the “Normal Operating Time” (NOT) for each system by the
number of filtered programming errors (FPE) plus one.

NOT,
FPE, +1

The MTBF for the software unit (u) is calculated by dividing the aggregated NOT for all systems by
the number of FPE within this unit plus one.

30
Y NOT,
UnitMTBF, = —=L—
Y FPE, +1

u=1

System MTBF, =

21

In this approach, the data is censored by the assumption that if no failures are found the MTBF is
equal to the observation time, which might not be the case in practice (Figure 16-B). From the other
side, if failures are found within a short observation period, this will result to a short MTBF while in
fact the MTBF is much longer (Figure 16-A).

- i P | A]
X ! XX XJ Xy J
A B
Figure 16 Censored data

This type of censored data is called “interval censored”, it can be the case that units didn’t fail within

the time interval and it can also be that failures occurred within the observation interval but the

previous and succeeding failures were outside the time interval (ReliaSoft, 2007). There are four

approaches in order to establish that the censored data still follows an exponential distribution (i.e.

constant failure rate), these are (Lewis, 1996):

- The exponential distribution might be assumed based on experience with similar research;
Kitchenham (1987), Khoshgoftaar and Munson (1990A) and Ebert (1996) did research the impact
of some software metrics on software reliability by the same dataset of Kitchenham (1987). This
dataset does describe the software errors as changes in the software (which are assumed to be
made due to software errors or failures), there are no descriptions of how they tackled this problem
with censored data. Software changes can also be compared with the Test Problem Reports within
this thesis, the indicator of the field reliability performance in programming errors is more
different. Therefore no experience with similar datasets can be used in order to verify if constant
failure rate can be assumed.

- It may be argued from the failure mode whether the failures are random as opposed to early or
aging failures; the failure modes and their underlying distributions are not known.

- The exponential distribution might be identified by using one of the standard statistical goodness-
of-fit criteria;

- Visualize the failure rate by probability plotting (QQ plots) to examine if it is a straight line;

The last two methods should be applied for all units where programming errors are found. However,
this requires the “time between failures” for all the errors and therefore the log-files should be
analyzed for each software unit separately. As this is a time consuming task, these separate filters are
not applied for every software unit and “‘constant failure rate” is assumed.

Entropy measures

The entropy is measured for each software unit. The unique descriptions of the “programming errors”
are taken as the possible failure states in which the software unit can be. The frequency with which
this unique programming error is logged is used in order to estimate the probability is in this failure
state. The entropy value is calculated by the following formula:

H(p)=-) plogp,,

i=1
with H(p) being the level of entropy, m being the maximum number of failure states and p; being the
probability that the system is in state i. The entropy value is calculated by the sum of all the
probabilities for each possible system state (Heylighen, 2002). Table 3 shows an example how the
entropy is measured for the software unit “Graphical UI”. An overview of all entropy values for the 17
investigated software units can be found in appendix 7.

22

Unit Failure | Failure description Frequency | p H(p) | H(p)
states (programming error) Istate
Graphical Ul 101 0,320
1] "GSC" 210,02 0,034
2 | "COM server not available." 80 | 0,79 | 0,080
"process terminated due to a fatal
3 | exception." 110,01] 0,020
4 | "starting Application failed” 10 | 0,10 | 0,099
5 | "unspecified exception.” 8 | 0,08 | 0,087

Table 3 Entropy measure for software unit “Graphical UI”

4.5.2 Source: Problem reports

The PRs are known for 10 subsystems and all units within these subsystems. (The subsystems “Image
detection” and “Image processing” are not available) Besides, these PRs are also available for all
PBLs, Software Versions and SPs. However, for this research only the PBL40 systems and related
Software Versions will be taken into account in order to compare and verify the “field programming
errors” with the “problem reports” during testing. The data is shown in appendix 7.

A Pareto analysis has been performed on the problem reports during testing. Again, a minor group of
software units (3 units which is 10% of the sample of 30 units that were tested) cause almost 90% of
the total number of problem reports found during testing. (Figure 17)

Pareto Problem Reports per unit

100
90
% 80
Bl = 70
§ 5 I 60
§‘é 50 %
"58 1 40
j: 30
5 20
10
§P9BSJCEEEDSSBER 800552 3P L8P
%5@;983380|018%§q%%gg%ggé‘ﬁmﬂégég
S PPEE S EE S RN LI Y)
T8 U585 882 558 522 g0 R L350
Y T LT RO S PR L L b
g. E% L 2z oo_§8@§>~.9% |§n'm s £.
<ES 8 < 68898 © SZ 33
> 8 5 8 2 Egm ° Ss

Figure 17 Pareto on Problem reports during testing per software unit

4.5.3 Correlation among reliability metrics

In order to establish if the reliability metrics do correlate among each other, the Kendall’s tau

correlation test is applied in SPSS15.0. This correlation test is selected because of the following

supportive circumstances for a Kendall’s tau correlation test (Field, 2005):

- The test applies a bivariate correlation between all the reliability metrics separately

- The test is applicable on non-parametric metrics, which is the case for the reliability metrics
because their underlying distributions are definitely not normally distributed (Figure 18).

- The available data set is very small (only 16 observations) with tied ranks.

23

The results from Kendall’s tau correlation test are shown in Table 4. Based on the observed 16
software units for which all reliability metrics were available, it can be concluded that the Field
Programming Errors (FPE) do correlate with the test Problem Reports (PR). In other words, software
units that contain many FPEs generally also contain many PRs during testing.

Besides, the pr‘oblem reports Normal 0-Q Plot of Field
were separated into total PRs Programming Errors
and severe PRs (only the | 1% Q
categories “catastrophic” and |2
13 R 1) . 75 ©
major””). Both metrics show |2 o
. . . [
high correlation, reason is that E ., o
most of the PRs are “severe” |2 o
o]
PRs (Table 4). % s
L34
[
Also the MTBF, which is E 0
calculated based on the FPEs °
and the Normal Operating Time 0 5 100 150
(NOT), shows high correlation Observed Value
with the FPE metric. Reason for
.. . Normal Q- Plet of Entro,
this is that the NOT is equal for i
all observed Software units. AN o 7
E /
g 4
A /
S / o
Z0,2-] {
3 /
8 v
20,1 S/
] /
w o}
00— T T T T
00 01 0,2 03 04
QObserved Yalue

Normal Q-G Plot of Problem Repoits

° 30 o
3
"a <]
2 204 o
it o
E o
O
2 107 o
k)
@
L=
& o
a 0
b
w
10 T T T T
0 20 40 60

Observed Value

Normal Q-G Plot of MTBF

40,000
L]
_:- 0
g 30.000
g 20.000] o
B [o]
= 10000 o
®
] 07]
(]
L%.m.ooo— o
-20.000 T T T
20000 O 20000 48.000

Observed Value

Figure 18 Normal Q-Q plots for reliability metrics

Kendall's tau Corelationtest
Problem Problem Programming
Reports (Total) | Reports (Severe) Errors Entropy MTBF

Problem Corr. Coefficient 1,000 1,0000*%) \528(") 0127 -,453(%)
?&‘iZSS >ig. (2-taiied) o514 B,685 6636

N 16 16 16 g 16
;robltre1 m Corr. Coefficient 1,000¢**) 1,000 528(%) 0127 - 453(%)

eports)

{Severe) Sig. (2-ailed) G.a14 0855 6,058

N 16 16 16] 16
Programmming | Corr. Coefficient 528(%) 528(% 1,000 0,147 -, 8200*)
Errors Sig. (2-taiiEd) 0,014 0014 0593 0,000

N 16 16 17 9 17
Erropy Corr . Coefficient 0127 0127 0,147 1,000 0118

Sig. (2-tailed) 0,655 0,655 0,593 0,667

N 9 g 9 g g
MTBF Corr. Coefficient - 4538 - 453(%) - B20(*%) 0,119 1,000

Sig. (2-tailed) 0,038 0,038 0,000 0,667

N 16 16 17 9 17
**_Correlation is significant at the 0.01 level (2-tailed).
*. Carrelation is significart at the 0.05 level (2-tailed).

Table 4 Kendall’s Tau correlation test on reliability metrics

24

5. Software complexity

Chapter 5 starts to describe several ways in which software complexity can be measured. The second
paragraph evaluates which metrics should be selected for which purposes. Paragraph 5.3 describes the
available data sources, paragraph 5.4 describes which software complexity metrics are selected.
Finally, paragraph 5.5 validates if the metrics scores from the two sources are representative.

5.1 How to measure software complexity?

As part of a study after system complexity, software complexity is a narrower focus within system
complexity and is less vague than the term “‘system complexity” itself. However, software complexity
is still a broad topic within software engineering. Since the 70s there are several researchers, among
others: Curtis , McCabe and Halstead, who tried to establish a definition for software complexity
(McQuaid, 1996). They came up with some directly measurable attributes that express software
complexity. These attributes are called software metrics and are defined and developed ever since.
This evolution resulted in many software metrics, which in some cases even contradict each other.
(McQuaid, 1996)

So even after thorough investigation by several researchers, it seems that there is not going to be one
unambiguous method or concept that will perfectly establish the relationship between software
complexity and reliability. Therefore the aim of this quantitative study between software complexity
and software reliability at PMS is to establish which metrics are relevant and applicable for the
professional system “Allura Xper CV scanner”.

In general, there are two ways to assess the software complexity level, which are a quantitative and a
qualitative approach. (McQuaid, 1996) Paragraph 5.1.1 provides an overview of the available
quantitative software complexity metrics developed over time. The more qualitative software
complexity attributes are briefly discussed in paragraph 5.1.2. The quantitative approach is the most
frequently applied methodology, because qualitative attributes are much less precise and are an
indirect measure (McQuaid, 1996).

5.1.1 Quantitative physical software attributes {(metrics)

According to Baker (1991) the use of applying software metrics is to provide engineers with tangible
evidence that the software programs are meeting their expectations and requirements. The use of
metrics reduces the subjectivity in establishing the software’s performance by providing objective,
visible data that reduces the guesswork in software development. (Baker, 1991) Which metrics are
required depends on the basic uses of software metrics, which can be:

- Project estimation

- Quality control

- Process analysis

- Product engineering

In this thesis only “quality control” and “product engineering” are fields of interest. Metrics that
contribute to these fields of interest should be selected as metrics for software complexity.

Quantitative physical software attributes are metrics, which means that they are precise and can be
measured directly. There are over 200 metrics developed over time (Zuse, 1990) and many of them are
also derived from each other. Some basic metrics that are frequently applied are (McQuaid, 1996): no.
of bytes, no. of lines of code (LOC), Halstead Fundamental Attributes, McCabe Fundamental
Attributes (cyclomatic complexity), and depth of nesting.

All metrics can generally be classified in the following categories (McQuaid, 1996): Software science
parameters, Control-flow metrics, Data-flow metrics, Information-flow metrics, Hybrid metrics,
Special-purpose metrics. These categories and related software complexity metrics are described in
appendix 8.

25

5.1.2 Qualitative software attributes (metrics)

Quahty. software a‘ttn.butcs are s9ft\y§re Factor Criteria Indicators/Metric

properties like; reliability, - -

maintainability, readability, testability Interactions/relations

or understandability (McQuaid, 1996; Structure

Lange, 2005). These properties are in Readability Segregation level

general factors that cannot be measured

directly and therefore are expressed in Overview Size (Lines of Code)

related direct measurable indicators. For

example: readability in Figure 19. No of applied
o)] programming methods

The principle behind these factors is that

this taxonomy of indicators will provide Figure 19 Example readability [Source: Fenton, 1996]

a general picture of the readability of the software program. Within this master thesis the factor is
“software complexity” and should be expressed in relevant criteria and accompanying metrics. This
qualitative software complexity model will be defined in the following paragraph.

5.1.3 Software complexity in embedded system software

In order to define software complexity for a complex repairable system like a cardio vascular X-ray
scanner, the software “should be” subdivided into system operating software and embedded system
software. Embedded software is software that directs the hardware components and therefore is a
subpart of a larger host (Coskun & Grabowski, 2005).

However, the discussion whether a software unit is a general system operating software or embedded
software is not that important. The defined model by Coskun and Grabowski (2005) to define software
complexity for embedded intelligent real-time systems could also partly be applied in order to define
“software complexity” for the Allura Xper systems as well. Table 5 provides an overview of the
software complexity types and corresponding related domains and metrics. This master thesis will
restrict itself to the “code structure” complexity, which is within the impact area “software
performance”. Reason for this restriction is the direct relation with the internal product characteristics
(software performance) and not interference with other impact areas like operator performance as is
shown in Table 5. This choice results into analysis of code structure related software complexity
metrics like; LOC, Software science metrics, and cyclomatic complexity.

Soltware complexity type Inpact area

Related domains

Motrics and measurements

| Code structure complesity * Soltware perlormance

Mathemnatics
Economics

Soltware engineening

sl mjle o

Data processing and
reasoning complesity

s Soltware performance
* Operator performance

Decision support and
explanation complexity

& Operator performance

User interface complexity
of information o user mterface

o Operator performance

Computer science

Dexision supporl systems
Intelligent systems

Psychology and cognitive sdence
System seicnee

Computer scienee/sofiware
enginecting

Control systems

® o 8 ¢ =

Decision support systems
Computer-aided decision-making
Cognitive sciences

Psychology

Hunan-computer inferaction

" ¢ » » &

Computer science
Human-computer interaction
Software engineering
Psychology

Cognitive sciences

Human faciors

¢ » 8 B 0 o

« Source lmes of code

s Sofiware science metrics

o Cyclomatic compleaity

« Language and design specilic
complexily metrics

o Task level metrics
« Representation leve]l metrics
o Implementation level metrics

* Qualhty and usability of
decision support

« User perception of decision
support provided

* Amount
* Quulity ol user interface
» Usability of user interface

« Understandability of user intetface

Table 5 EIRTS complexity; domains, metrics and measurements [Coskun and Grabowski, 2005]

26

However, this factor ‘“code structure

- . Factor Criteria Indicators/Metrics
complexity” needs to be expressed in
criteria and related metrics if you want to Size related metrics
quantify this factor (Fenton, 1996) in a Size
complexity index value. Based on Size and Structure
literature review (Lew, et al., 1988; related metrics
Khoshgoftaar and Munson, 1990(A); ||Complexity Structure
Khoshgoftaar and Munson., 1990(B); Structur;related
1991; Yin, et al., 2004), the following memes
main criteria for s.oftware complexity Criticality Criticality‘ related
returned frequently in other researches: metrics
Size, Structure and Criticality of the
software program. Figure 20 shows the Figure 20 Code Complexity Model

composition of complexity and its criteria and metrics. The actual selection of metrics for the 3 code
complexity criteria will follow in paragraph 5.2.

5.2 Evaluation and selection of software complexity metrics

The best metrics to express software complexity depends on some criteria. First of all the purpose for
which this metric is used has major impact on which metrics are best representing software
complexity. For this master thesis, in which the relationship between software complexity and
software reliability is investigated, the metrics should be logically linked to software reliability. Much
research on the relation between software metrics and the occurrence of software failures has been
done (Lew, et al., 1988; Khoshgoftaar and Munson, 1990(A); Khoshgoftaar and Munson., 1990(B);
1991; Yin, et al., 2004). Paragraph 4.4 describes the expected relations between metrics and reliability
and also discusses how to measure this in practice for the CV X-ray systems at PMS.

A second criterion that determines which software metrics to apply is the available data at PMS that is
required to measure these software metrics. This is an essential criterion, while generally you will not
be able to find all the required data to measure all these metrics mentioned in the paragraphs before.
Also the required time to gain the required data differs among the metrics. For example the required
data for McCabe’s metric is much harder to gain than the Halstead science parameters or Lines of
Code.

These two criteria should be taken into account when software metrics are selected. For example Lines
of Code is a simple metric which is easy to access and it’s relationship with software reliability has
already been proved in the past frequently (Munson and Khoshgoftaar, 1991; Yin e? al., 2004; Coskun
and Grabowski, 2005). These researchers mention that Lines of Code has a significant correlation
with the number of software errors, but they also mention that this metric cannot be used easily for
predicting the number of software errors.

The aim of this thesis is to explain the occurrence of software failures and its variance among systems
and provide focus for decision rules for product improvement. When feasible, a model/tool that can
predict the software reliability performance based on the software code metrics scores will be
developed. For each of these aims, different complexity data is required as described below. These
requirements form the criteria to select code metrics.

Research aims and requirements for software complexity code metrics:

Aim: Explain the software reliability performance based on complexity metrics

Requirements:

- There should be correlations between some of the software metrics and the software reliability
performance.

- Atleast some differences in the metrics scores among the software versions, SPs, software
subsystems or units should exist in order to establish a relationship between both variables
“complexity” and “reliability”.

27

- Also within the reliability performance some differences in the scores among software versions,
SPs, software subsystems or units are required. It can be stated that there is variance within the
SW reliability performance as this was proven in paragraph 4.5.

Aim: Creating a regression model for software units or subsystems that predicts their reliability

performance based on the known software metrics scores that are included in the model.

Requirements:

- All mentioned requirements for the previous aim.

- The minimum ratio of observations (of software versions, SPs, subsystems and units) and
variables should at least be 5:1. This means that a regression model] that includes 2 metrics should
at least require 10 observations. However, for a single metric (simple regression) at least 20
observations are required. (Hair, et al., 2006) Unfortunately, there are only 12 SW subsystems and
around 40 SW units within a Software version and for the Allura Xper systems less than 5 SPs or
Software versions do exists. Furthermore, not for every single SW version, SP, subsystem or unit
is data available which will even further decrease the number of observations. Therefore,
designing powerful regression models will be difficult.

Aim: Gain focus for design decision rules based on “historic information about the relation between

software code metrics and reliability”.

Requirements:

- All mentioned requirements for the pervious aims.

- The correlations between the SW metrics and reliability should represent causal instead of
coincidental relationships.

- The designer should be able to manipulate these metrics. (Example; you can’t just delete code in
order to reduce the LOC, because the program won’t perform its functionalities anymore.)

Aim: Predicting software reliability based on “historic information on the relation between the

metrics and reliability” and “the current software metric scores of the new developed Software”.

Requirements:

- All mentioned requirements for the pervious aims.

- Reliability measures and software code metrics for more than one SW version or SP.

- Noradical changes should occur in the underlying relationships between the SW code metrics and
the occurrence of SW failures or errors. This requirement is impossible to satisfy because one can
only predict the future but almost never know it for sure.

The next paragraph describes the available data and concludes for which aims all requirements can be
fulfilled with this available data set.

5.3 Data sources for software complexity metrics

The available SW code metrics differ for each layer within the SW architecture. This SW architecture

and its division in subsystems and units is described in appendix 1. However, not all subsystems

and/or units are taken into account. The reasoning behind the exclusion of the following subsystems
and units is:

- Excluded subsystems: The subsystems Infra, VwWorks, OS, FSFW are excluded because they are
within the infrastructural layer and contain generally standardized SW applications that have been
purchased. Subsystem Host is excluded because similar reasons and subsystems Geometry and
Positioning are combined into one subsystem.

- Excluded units: All the Field Service Code units (FSC) are excluded because they are code files
for the engineers themselves and not for running the software, this code is generally written fast
and unstructured and doesn’t represent the general standard of coding within PMS. Furthermore,
the units: FS Ulspecific and Storage Hardcopy are excluded because they did not contain any C++
source code.

There were two main sources for collecting SW complexity metrics. The first source is an audit of the
system source code by the Telelogic Logiscope tool and the second source is an audit of the source

28

code by the CV Software development team within PMS, who process data from Clear Case into a set
of software metrics.

5.3.1 Data source: Telelogic Logiscope audit

The Logiscope tool from Telelogic can audit source code files with a set of scripts that calculate some
standard SW code metrics. Figure 21 visualizes how the SW code metrics were gained by the
Logiscope Tool.

First, the Source Code files are loaded in the program and the Data file is built. During this building
process, Logiscope attempts to read and understand all the source code (C++ code and Header files),
therefore it requires a dialect. This dialect can read and understand the code programming standards.

Analyzing Source :
Systems in field Software Code (C++/h ; ‘ General Software Metrics
> A () Code files with scripts
s mé ChpicHVien OoClomsaleCrontenlan () e . “Halstead
* tantts g AT science parameters” “Nesting
o & s »
Y iy S A - g Lo
: ¢ izt 2. 12 22 g o d st metrics “McCabe's
g b . . .
e L e s Cydomatic complexity”
xclmk- el reibia(),
Ltzk[_n_mt o
. étxitnssogniia s Errrieszage|)}

Figure 21 Data collection and transformation into information

In this Master thesis the dialect “Rocket_logiscopeFilter” is applied, this filter has been designed for
the CV Software application Xtravision. Because there is a general programming methodology (TICS)
within PMS, this dialect will be able to read more than the general C++ dialect standard provided by
Logiscope. However, not all programming code can be standardized and after the “source file” has
been built with the dialect “Rocket_logiscopeFilter” some errors remain due to inability of the dialect
to understand this code. The source code files that contain errors are excluded entirely from the
analysis.

It is assumed that the proportions of excluded source code files are equal for each software subsystem
/ unit. This assumption has been made because it was too much work to include all the errors as
exceptions in the dialect “Rocket_logiscopeFilter” or measure how many errors or types of errors
occur.

Secondly, the data file is analyzed by programmed scripts that can calculate a specific metric. These
scripts are combined in one “Quality model” that can be selected in order to audit the built source file.
Two available standard Quality models provided by Telelogic (Logiscope) are used because of the
inability of the researcher to program software scripts in C++ code. These two Quality models were
“Logiscope.ref” and “Halstead.ref”.

Table 6 shows for each quality model which metrics are measured. Definitions of the metrics
(descriptions / interpretation) can be found in appendix 9.

In the past the Logiscope audit was performed on the Xtravision software (an additional software
application for Allura Xper). This audit concluded that most metrics were not able to grasp the
difference between the software versions for the Xtravision program. This master thesis will verify if
the Logiscope audit can be successful within other software subsystems or units and if it can grasp the
changes applied in new software versions and Service Packs. Another conclusion from the Xtravision
audit was that the “Fan in — Fan out” (FI/FO) metric was one of the few metrics that was able to grasp
the development changes. Also Kitchenham and Linkman (1990) mention that the FI/FO (appendix 8)
is an important metric with significant impact on reliability. Unfortunately this metric was not
available in the quality models “Logiscope.ref” and “Halstead.ref”. However, it is highly
recommended to measure this metric and gain the required quality model from Telelogic.

29

""Logiscope.ref" ""Logiscope.ref" "Halstead.ref™
(Class metrics) (Application metrics) (Class metrics)
Number of statements Depth of inheritance tree** Total number of operands
Comment frequency Average complexity of Number of distinct
functions** operands
Average size of statements | Call graph depth Total number of operators
Cyclomatic number (VG) Sum of cyclomatic numbers Number of distinct
of application functions operators
Maximum nesting level Number of lines Halstead intelligent content
Vocabulary frequency Number of application Halstead mental effort
functions
Number of paths Coupling factor** Halstead program level
Number of callers Polymorphism factor** Halstead difficulty
Structuring Attribute inheritance factor** | Halstead volume
Number of direct calls Method inheritance factor** | Halstead estimated length
Number of parameters Attribute hiding factor** Halstead length
Number of distinct operands | Method hiding factor** Halstead vocabulary
** MOOD = Metrics for Object Oriented Design

Table 6 Available metrics with Logiscope and Halstead Quality Models in Logsicope

The metrics within the Quality model Cassame

“Logiscope.ref” can be divided into Class metrics b Otes

and Application metrics. Each SW unit consists +Procedures()

out of some application functions which again Class name Class name

pp g

consist out of a set of classes. Figure 22 visualizes Attributes Attributes |

the building blocks of an application function Class name | [‘Proceduresq | [Procedures() |
P : -Attributes

within a SW unit. Procedorssl]

Furthermore, the ** marked metrics (Table 6) are =~ Figure 22 Example: Application function

rather design than code metrics and therefore specifically useful for Object Oriented (OO) designed
Software (McQuaid, 1996). OO software focuses more on modeling the real world and the software
system in terms of its objects, in contrast to the traditional approach which was function-oriented and
separated the data and procedures. Because of this different design approach, design related metrics
should be applied (Chidamber and Kemere, 1994). The source code for the Allura Xper systems is
generally written in C++ language with an OO design in mind (communications with Oborzynski,
Xtravision software developer at PMS). These Metrics for Object Oriented Design (MOOD) metrics
are therefore very important metrics to be measured.

5.3.2 Data source: Audit by CV software development team
The second main source for gaining software code metrics is the processed data from the “Clear Case”
database which is represented on the PMS intranet site “Just Another Homepage” (JAH). The Clear
Case database contains all source code for all software versions and accompanying documentation.
The CV software development team processes this raw data into general statistics (SW code metrics)
by running scripts on the source code files and places them on (JAH) for management and developers.
The following SW metrics on subsystem and unit level for each Software Version and accompanying
SPs are available at JAH:
- Number of lines of code (LOC)

= Total lines of code
Added lines of code
Modified Old: Modified lines in old base line
Modified New: Modified lines in new base line
Deleted lines of code
Same: Unchanged lines of code
- Number of empty lines of code
- Number of comment lines of code

30

- Number of files

- Number of directories

- Mondriaan: number of interactions between interfaces of subsystems

- Number of improvement changes / problem solutions

- New added or extended functionalities

These are all relative simplistic size metrics except for the “Mondriaan” metric.

The software code metric “number of lines of code” is
divided into some sub-metrics, the division tries to identify
how radical the new software version or SP has been
changed compared with its predecessor. This innovation
ratio is important in order to compare metrics scores
between software versions and SPs, because incremental
small changes won’t change the general structure of the
software code, the metrics will only measure marginal
structure changes or stay constant. Figure 23 compares two
consecutive SPs and shows all sub-metrics of LOC. It also
shows that the majority of the software code remains the
same, which means that the general structure or

characteristics of the software probably won’t change for
the new SP. Figure 23 Comparing old base with new base

(derived from; JAH intranet site PMS)
Table 7 shows all PBLs (PBL20, PBL40, and PBL60), Software versions and SPs for the Allura Xper
FD20 and FD20/10 product line. There are two major ways in which the software is improved, these
are: “Improvement by adding new / extended functionality” and ‘“Improvement by solving
problems (Software bugs)”’. The horizontal arrow shows the development in SPs which represents
the improvement by solving problems. The vertical arrow shows the development in new PBLs
(complete new software version), which means added functionality to the previous PBL.

> 4> >

PBL/ Commercial Software: Service Packs
Project Name New Version |SP-1 SP-2 SP-3 SP-4 SP-5
PBL_23/ PBL 200/ o [PBL 2.0.1/ [|PBL 20.2 [PBL 2.0.3 [PBL_2.0.4/ [PBL _2.0.5/
Rocket-A Allura Xper FD20 PDC 23.25.0 PDC 23.26.1 |PDC 23.25.2 |PDC 23.26.3 |PDC 23.25.47 |PDC_23.25.53
PBL_41/ Allura Xper FD20 [PBL_4.0.0/ PBL_4.0.1/
Rocket-B2 |Allura Xper FD20/10 |PDC 41.12.0 | |PDC 41.13.4 |- - - -
PBL_43/ Allura Xper FD20 |PBL_4.3.0/ PBL_4.3.1/ |[PBL_4.3.2 |PBL_4.3.3/ |PBL_4.3.4/

Rocket-B2+_|Allura Xper FD20/10 |PDC_43.10.0 | |PDC_43.10.14 [PDC_43.10.22 [PDC_43.10.39 |PDC_43.10.42
PBL_61/ Allura Xper FD20 PBL_6.0.0/ v |PBL_6.0.1/
Rocket-C2__|Allura Xper FD20/10 |PDC 61.18.0 _ [PDC 61.18.12 - - - -
® >
Table 7 Overview of Software versions and SPs PBL40’s (JAH intranet site PMS)

In the case of “bug solving” only minor changes in the software occur. After measuring the Software
Code metrics by Logiscope for all the SPs of the PBL43 subsystem Acquisition (a major and critical
subsystem), hardly any changes in the metrics scores could be found. (Appendix 10) It can be
concluded that the general code structure metrics from Logiscope cannot be used in order to explain

the changes between the SPs.

The JAH metrics are now more useful, because they register how many lines of code are added or
modified in order to create this new functionality. Besides, the number of improvement changes /
problem solutions is registered for each new SP. However, the question remains if these minor
changes in the product characteristics should be considered as an increased system complexity. From
the other side, it is not illogical to think that these changes in reliability between the SPs might be
explained by these minor changes in the product characteristics. The next paragraph will elaborate on
this issue in more detail.

31

5.4 Findings and conclusions on available complexity data
The findings and conclusions about the data provided by the two data sources are described in
paragraph 5.4.1 and paragraph 5.4.2.

5.4.1 Available code metrics for the code complexity model
Not all software code metrics are available for all hierarchical system levels (paragraphs 5.3.1 and
5.3.2). Now the available and applicable metrics for the “code complexity”” model will be defined.

As the Logiscope audit takes much time, because loading the data into the Logiscope program is time
consuming; only one PBL is selected for the Logiscope audit. This is the Allura Xper FD20 / FD20/10
(PBLA41 Rocket B2 and PBL.43 Rocket B2+), this PBLA40 is selected because this system has also been
selected for the Reliability performance as described in paragraph 4.5.

The Logiscope and JAH metrics are available on the hierarchic levels “subsystem” and ‘“unit” for all
Software versions and SPs of the Allura Xper FD20 and FD20/10 series. On system level only the
Mondriaan metric is available, therefore we restrict the research to subsystem and unit level only
(Table 8). Also the Service Packs (4.3.0 - 4.3.4 and 6.1.0) are not taken into account, because the
changes between the Software Versions and the SPs were negligible (see Figure 24).

Level: Available Seftware Metrics:

System Mondriaan metric

Subsystem Logiscope metrics and JAH metrics excl. the Mondriaan metric
Unit Logiscope metrics and JAH metrics excl. the Mondriaan metric

Table 8 Availabe Software metrics at PMS

——— Number of parameters
Number of direct calls

- Structuring

- Number of callers

Vocabulary frequency
Number of distinct operands
Maximum nesting level

»»»»» ~ Cyclomatic number (VG)

—— Awerage size of statements

—+— Comment frequency

—e— Number of statements

o @ <
3 3 I3
~ < <

o =}
] o -
< A4 0

—»— Method hiding factor (MOQOD)

Figure 24 Changes in some code metrics among Software versions and Service Packs

An overview of the metric scores gained by the audit with Logiscope and the data from the JAH
intranet site are represented for each Software subsystems and unit in appendix 11.

Now the available code metrics are known, the complexity factor diagram from paragraph 5.1.3 can be
finished by coupling the metrics to each specific criteria of software complexity based on the
descriptions of the metrics in appendix 8 and appendix 9. Table 9 shows all the metrics mapped with
the complexity criteria from the “code complexity” factor diagram. The cursive marked metrics are
from the JAH intranet site and the other metrics are from the Logiscope audit. The correlations
between the metrics and the criteria are investigated by a factor analysis in paragraph 5.4.2.

32

Factor Criteria Metrics

Complexity | Size 1. Number of statements 10. Halstead volume
2. Comment frequency 11. Halstead estimated length
3. Number of parameters 12. Halstead length
4. Sum of Cyclomatic Numbers 13. LOC sub-metrics
5. Number of lines 14. Empty lines of code
6. Number of application functions 15. Comment lines of code
7. Number of classes 16. Number of files
8. Total number of operands 17. Number of directories
9. Total number of operators 18. Additions and changes

Structure 1. Average size of statements 12. Attribute inheritance factor**
2. Cyclomatic number (VG) 13. Attribute hiding factor**
3. Maximum nesting level 14. Method hiding factor**
4. Number of paths 15. Number of distinct operands
5. Structuring 16. Number of distinct operators
6. Number of direct calls 17. Halstead intelligent content
7. Number of parameters 18. Halstead mental effort
8. Depth of inheritance tree** 19. Halstead program level
9. Average complexity of functions™ 20. Halstead difficulty
10. Coupling factor** 21. Halstead vocabulary
11. Polymorphism factor** 22. Call graph depth
Criticality | 1. Number of callers 2. Number of direct calls
“* Metrics for Object-Oriented Design
cursive marked metrics are from JAH others are from Logiscope

Table 9 Complexity criteria and related metrics

5.4.2 Reducing the number of software complexity metrics

There are too many metrics in order to create a regression model, especially because there are only 17
observations for which all metrics are available. Purpose of the factor analysis is to reduce the number
of metrics according to the three criteria mentioned in Table 9. Therefore the principle components
analysis has been carried out for the 40 software units for which the metrics were known. (Hair, 2006)
The factor analysis searches for linear relationships exhibited in the data. When variables are high
correlated with each other they share the same variance, the more the variance can be explained by
both variables the higher the factor loadings. The first factor found is the factor that can be seen as the
single best summary of linear relationships in the data. The second factor is than the second best
summary of all linear relationships in the data and so on. (Hair, 2006) In order to apply this principle
components analysis, some conditions should be met. The sample size should be at least 50
observations and for each variable that is taken into account at least 5 observations should be
available. There are around 40 complexity metrics and only 41 observations. In order to get a more
reliable analysis and higher factor loadings, some complexity metrics should be excluded from the
research.

The number of complexity metrics is reduced by selecting only the software complexity metrics that

show some correlation with the reliability metrics: “field programming errors” or “problem reports”.

Therefore, a correlation test among the complexity metrics was performed. (Appendix 12) The result

of the extraction of metrics by the correlation with the reliability metrics resulted in the following

selection:

- Logiscope: Call graph depth, Depth of inheritance tree, Number of application functions, Number
of lines, Sum of cyclomatic numbers of the application functions, Average size of the statements,
Cyclomatic complexity (this metric did not have high correlation with any of the reliability

33

metrics, but it is a well accepted software complexity metric and therefore not excluded for the
factor analysis), Maximum nesting level, Number of callers, Number of paths, Number of
statements, Halstead intelligent content, Halstead mental effort

- JAH: Total no of lines, No of empty lines, No of comment lines, No of files, No of directories

Now only 18 metrics are left of the 40 initial metrics, and all three criteria for the code complexity
factor are represented in the list by one or more metric(s). Now the principle component analysis is
carried out with SPS15.0. The first factor analysis resulted into 3 factors and also some metrics that
had multiple loadings on 2 or 3 factors or even didn’t had any factor loadings at all. The worst metrics
were deleted one by one and every time the principle components analysis was repeated until the
component matrix in Table 10 was found.

Component
Metric: 1 2
CS|2_NumberofApplicationFunctions 0.956
CSI_JAH3 CommentLines 0.955
CSl4_SumofCyclomaticNoofApplicationFunctions 0.937
CSI3_NumberoflLines 0.928
CS|_JAH4_Files 0.881
CSI_JAH5_Directories 0.778
CST10_MaximumNestingLevel 0.879
CST9_CyclomaticNumberVG 0.835
CST8_AverageSizeofStatements 0.832
CCR1_NumberofCallers 0.813
CST17_ HalsteadMentalEffort 0.796
Extraction Method: Principal Component Analysis.

Table 10 Component matrix after Principal Component

As you can see this component matrix includes only 2 factors and 11 metrics, 11 metrics is still quiet a
lot for 41 observations, because the minimal sample size should at least be 50 observations. However,
the factor loadings are all pretty high, 0.75 or higher, and the factors seem logical too. Besides, the
Bartlett’s test of sphericity in SPS15.0 was significant and also the Kaiser-Meyer-Olkin measure of
sampling adequacy (0.617) was suitable.

Besides, the component score covariance matrix also showed that the two factors were independent
from each other (Table 11).

Component Size Structure
Size 1,000 000
Structire 000 1,000

Extraction Method: Principal Component Analysis
Table 11 Component score covariance matrix in SPS15.0

In order to validate if the categorization of the metrics into two factors is influenced by underlying
distributions in the code metrics scores among software units, the sample of 41 systems was divided
into two groups. The principle component analysis was repeated and resulted in the two component
matrixes in Table 12 and component plots in Figure 26. Both show that the factors and corresponding
loadings for each code metrics remain almost the same.

34

seems that components can be sub-divided into “size”
and ‘“structure” related metrics. Only the metric
“number of callers” (indicates the frequency with
which the application function is called by other
functions) seems to correlate with the component
“structure” as well. Due to the fact that this metric also
correlates with reliability, it is not excluded from the
analysis and will be an indicator for the component
“structure”.

Component Matrix sample 1 Component Matrix sample 2
Camponent Cormponert
Metrics: 1 2| Metrics: 1 2
CS12_Numberdf ApplicationFunctions 0,973 CS|_JAH3_CommertLines 0953}
CSI_JAH3 CommertLines 0,943 CSI2_Numberof ApplicationFunctions 0,940
CSI_JAH1_TdalLires 0,916 CSK_SumafCyclomaticNoof ApplicationFunctions 0,934
CSl4_SumafCyclomaticNoofApplicationFunctions 0, CSI3_NumberdfLines 0,925
CS13_NumberdfLines 0,89 CS JAH4_Files 0910
CSI_JAH4 Files 0,75 CS|_JAH1_TdtdLines 0,840}
CSI_JAHS Directories 0,65 CS|_JAH5_Directaries 0827
CST10_Maximumestingl evel 0,938]CST_CyclomaticNumber VG 0,866}
CCR1_NumberofCallers 0,917|CST10_MaximumNestingLevel 0,827]
CST8_AverageSizeoStatements 0,898] CST17_HalsteadMentalEffort -0,407] 0,790
CST9_CyclomaticNumberVG 0,880]CST8_AverageSized Statements 0,467] 0,543
CST17_HalsteadMentalEffort 0,802] CCR1_NumberofCallers 0,501
Extraction Method: Principal Componert Analysis.
Table 12 Component matrix for both control groups
Th . . 1,0 CST‘ID{
e two components plotted in Figure 25 show that CSTe o ctrig

there are two major factors, these factors were also csty| ST
found in Figure 26 where the component plots are | s
shown for the two control groups. # U

& CSI_JAHD @

. . cas . £ cs10

When analyzing the metrics within each component, it g B0 g

Q CSI_JAH4

§

Q

-0.5-

1
-05 00

U T
05

Component 1: Structure

Figure 25 Component plot with factor
loadings for each code complexity metric

Sample 1 Sample 2
- CST0 comy .
10 csrso P S 14 £sTi0 CPCST}’
csTEC
CSf7 csmy csTe
05 CS13 ¢S4 05
z:_a Y o CCRY [SSNETE
o
'.: CSl_JaH G, E CSEMH3 g0
g [u] CS::‘:) g 08 L5t
a CSI_JAH o DEIELUE SV
3 o B
-3 CEl_JaHS -3
(%4 =W ©
05 05
<107 1.0
1 { ¥ 3 T 3 1 H
-0 05 88 05 10 10 o5 on 05 10
Component 1 Component 1

Figure 26 Component plots for both control groups

These metrics should now be aggregated into composite factor scores. There are several ways to

aggregate the metrics into a summated scale, which are (Hair, 2006):
- Take the average score of all the metrics that are within the component.
- Different weights for each metric, the next methods are available in SPSS15.0 (Field, 2005):

= Regression method: The scores that are produced have a mean of 0 and a variance equal to the
squared multiple correlation between the estimated factor scores and the true factor values.

The scores may be correlated even when factors are orthogonal. (SPSS15.0)

35

= Barlett scores: The scores that are produced have a mean of 0. The sum of squares of the
unique factors over the range of variables is minimized. (SPSS15.0)

» Anderson-Rubin Method: a modification of the Bartlett method which ensures orthogonality
of the estimated factors. The scores that are produced have a mean of 0, have a standard
deviation of 1, and are uncorrelated. (SPSS15.0)

First of all, a factor score is a composite score for each observation on a particular factor. The Barlett
method ensures composite scores that correlate only with their own factor. However, the factor scores
can still correlate with each other. The Anderson-Rubin method, a modification of the Barlett method,
ensures that the factor scores are uncorrelated and standardized with a mean of 0 and a standard
deviation of 1. (Field, 2005) The objective in this research is to reduce the number of variables into a
few factors which can be used in order to develop a single or multiple regression model.
Multicollinearity among the predicting variables can negatively affect the regression model, therefore
uncorrelated factor scores are desired in order to prevent the occurrence of multicollinearity among the
predicting variables (Field, 2005). The Anderson-Rubin method is selected in this research in order
to create the factor scores.

5.5 Validation of the used audit programs Logiscope and JAH

It is hard to validate if the used complexity code metrics are well designed and give correct indications
for the actual code complexity. In order to come up with some sort of validation, some of the metrics
are compared between the different data sources (Logiscope and JAH) and the audit by the TIOBE
Coding Standard (TICS) analyzer. The TICS analyzer checks if the code is developed according to the
general programming guidelines defined by PMS in order to get more standardized code among
different software developers. There is only a limited number of complexity metrics available in the
TICS analyzer; these are Lines of Code (LOC) and Cyclomatic complexity (VG).

The comparison for the metric LOC between Logiscope, JAH and TICS is shown in Figure 27.
Among the three sources you can see for the metric LOC that these differ between the sources. This
difference arises from the different scripts that are used by Logiscope and JAH in order to audit the
source code. However, the differences in the measures do appear to be consistent among the software
units. It seems that in general the LOC scores from JAH are larger than from Logiscope, this can be
explained by the dialect of both audits, while the JAH dialect is much more complete than the
Logiscope dialect. Therefore the JAH audit can read more files with PMS specific programming
language which are excluded by the Logiscope dialect because it doesn’t understand this PMS specific
programming code.

o 3

3|8

Olo

5| =

w‘o—4

A=

2| S

5|0

2

>
0 AL ,
_— — . K4 a3 = O p=d
233865E8588325¢8:283:2£8855¢8¢
2 00 =2 == 3 ® =0 & = 5 £ T C == <
"z SE8BEESgQ EZ L xe8 2”92 wCTH
= s58=8¢% &£2 ga ES2 & Eo

- = > T £ w g S %

| TICS mgmgm% - = ‘(-B'Og 5 8

M Logiscope Q< G a é’ a I8

fod
OJAH 3

Figure 27 Comparing LOC between Logiscope and JAH

36

The exclusion of some parts of the source code by Logiscope doesn’t seem to affect the correctness of
interpreting the size of the software units in LOC. The Kendall’s tau correlation test (Table 13) shows
that the three measures of LOC have high and significant correlation among each other. This fact

supports the conclusion that the metrics retrieved from Logiscope and JAH give representative metric
scores.

Kendall's tau Correlations

Lines of Code (LOC) TICS Logiscope JAH
Corr. Coefficient 1,000 ,740(™) ,684(™)
TICS Sig. (2-tailed) . 0,000 0,000
N 25 25 23
Corr. Coefficient ,740(™) 1,000 710
Logiscope Sig. (2-tailed) 0,000 | . 0,000
N 25 25 23
Corr. Coefficient ,684(*") 710 1,000
JAH Sig. (2-tailed) 0,000 0,000 | .
N 23 23 23

**. Correlation is significant at the 0.01 level (2-tailed).
Table 13 High correlations among LOC scores for: TICS, Logiscope and JAH

Besides LOC, the metric cyclomatic complexity (VG) was available in TICS and Logiscope. The same
correlation test between TICS and Logiscope’s VG is performed and shown in Table 14.

Kendall's tau Correlation test

Cyclomatic Complexity (VG) TICS Logiscope
TICS Corr. Coefficient 1,000 A12(*)
Sig. (2-tailed) . 0,004
N 25 25
Logiscope Corr. Coefficient LA12(M) 1,000
Sig. (2-tailed) 0,004 | .
N 25 25

**. Correlation is significant at the 0.01 level (2-tailed).
Table 14 High correlations among VG scores for: TICS, Logiscope and JAH

Based on these validations by multiple data sources for the complexity metrics LOC (size related) and
VG (structure related), this research concludes that the metrics measured by Logiscope and JAH do
represent the actual code complexity well.

37

6. Software complexity versus software reliability

This chapter starts to describe the expected relationships between SW complexity SW and reliability,
based on findings from other researchers (paragraph 6.1).

Subsequently, these general relationships are tested by correlation tests on the metrics for reliability
and complexity from chapters 4 and 5 (paragraph 6.2). These correlation tests give answer to the
question if SW reliability (in terms of PRs, FPEs and SW failures) is affected by SW complexity. And
if so; which “complexity code” metrics do correlate with which reliability metrics? This paragraph
provides insight in the relations between SW complexity and reliability.

Paragraph 6.3 constructs several regression models in order to explain the variance in the reliability
metrics by the complexity factors “size” and “structure” (paragraph 6.3.1) and some others to predict
the FPEs or SW failures for a SW unit based on its complexity scores (paragraph 6.3.2).

Paragraph 6.4 investigates if a categorization of the SW units into groups with similar “complexity”
scores will reduce the variance in the reliability metric “SW failures” within each complexity class. In
this case, the SW complexity can explain the differences in the reliability performance among SW
units. Finally, paragraph 6.5 summarizes the results and findings in this chapter.

6.1 Expected relation between SW complexity and reliability

Based on literature (Lew, et al., 1988; Khoshgoftaar and Munson, 1990(B), 1991; Yin, et al., 2004) it
is generally assumed that an increase in complexity will have a negative impact on the reliability
performance. However, this increase in complexity doesn’t unconditionally correspond with an
increase in the software design and code metrics. Because in some cases there will exist negative
correlation. The code complexity model in paragraph 4.2.3 shows the complexity criteria and the
related metrics which are described in Table 9.

It is assumed that the software complexity criteria (and its metrics) have different impact on reliability.
The Size and Structure metrics are assumed to have a positive correlation with the reliability metrics
(Field programming errors or Test problem reports), because the larger the program and the more
complex it structure the lower the reliability performance. In contrast, the Criticality metrics are
assumed to have a negative correlation with the reliability metrics, the more critical a component
(e.g. the more frequent the component is used/called) the more testing is applied and the lower the
reliability metrics scores (programming errors and problem reports) will be.

However, there can also be exceptions to these general assumed relationships. For example, some
researchers like Mc Cabe who developed the metric “cyclomatic complexity” (McQuaid, 1996), argue
that a large sized software program doesn’t necessary influence the SW reliability performance in a
negative way. This opinion is shared by software developers at PMS (communications with J. Boot;
metrics officer at PMS). They argue that large sized software may include more standard code or
repeated code which positively influences the software reliability.

This argument should be captured by the factor “structure” within the complexity factor diagram; a
large sized software code should correlate with low scores on its structure metrics or the compiled
structure factor scores. However, this argument will be rejected in paragraph 6.3

6.2 Correlations with reliability metrics

The following reliability metrics and complexity metrics/factors are available for investigating the
relation between SW reliability and SW complexity:

38

- Reliability metrics: test problem reports, field programming errors, error types, entropy (based on
programming errors), and software failures (derived by mapping programming errors with FMEA
failure causes).
- Complexity metrics: subdivided into the factors:
= Size: no. of application functions, no of lines of code, sum of cyclomatic complexities of all
application functions (Logiscope), and no. of code and comment lines, no. of files, no. of
directories (JAH).

= Structure: cyclomatic complexity, average size of statements, maximum nesting level,
Halstead mental effort, number of callers (Logiscope)

The complexity metrics are available for all SW units of the PBL40 Allura Xper systems. The

reliability metrics “PR and FPE” are only available for 17 SW units and the reliability metric

“software failure” (SWF) is available for 19 SW units. These data sets are available in appendix 12

and appendix 13.

In order to get a better understanding of the underlying relations between the reliability metrics and the
complexity metrics and factors, independent “bivariate” correlations between all metrics are
performed in SPSS15.0 (Table 15).

Kendall's tau Correlation test
5 2 5 g | = 2
5 | |2, 3 |8 |a g |s |2 5
t |8 [E2l3 |5 |8 |5 | 3| |8 |28 -
g |35 2E|8 [|5 |2 |5 |2 |S |%)|2 g
5 |3E|8212 | |§ |3 Tl s |z|=s)sel:
= - s g E o B = 2 2 °© N =
2 8c|(s5|¥® P = B £ = 4 []
ee|E8les |58l |2 (2| 5|z |2 [z]|¢
35|l 2328 | <8O z < < < < 5 5
z32 z = 9“ B 0 E @ = - ,': - - '8 =, = - o o
gelos | x2 |- E|lE5|F8 |5 '3 gl 28] & | &)] °
nSs|oB | w aBlaf|la on £ Q @ D e 7] @D © S
_ s lo8losloglo=lodlon Qo oplogl o Q w [V
Test Problem Reports IEorr. Coefficient I 424('] 424(")] ,446(")] 0.0494 -0.079 -0.107] ,403()] -0.108 021 0.191] 0.266| 0.31F 0.382] 0.1
Sig. (2-1aled) 0.037] 0.037] o.028] 0834 0719 o0.602] 0047 0602 0.207] 0.349 0192 0.124 o0.060{ 0.602
N 16 1 16 19 16 16] 16 16 16 1§ 18] 1 16} 16
Field Programming Errors |Corr. Coefficient | ,456("§ 423(") .439()| 0.134 -0.241] -0.209] 0.02§ -390() .423(*) .456()] 0.366/ 0.277] ASG(W -0.041
Sig. (2-tailed) 0.01¢ 0.026 0020 0484 0204 0274 o089 0040 0.026f 0.014 0.054] 0.1494 0016 0.827]
N 17 17 17| 17] 17 17] 17} 1 17] 11 17 1 17] 17]
No of FPE types Corr. Coefficient 03400 0.217] 0217 650*)| -0.003 -0.464| 0.21 0093 0.217 0349 0.217| 0.354 0.217] 0.21
Sig. (2-talled) 0.229 0444 0.444] 0024 0743 0101 0444 0743 0444 0229 0.444| 0.22q 0444] 0.444
N 9 q 9 E 9) 9 E 9 E E 9
Entropy] Corr. Coefficient 0319 o0.261 0261 g67*)| -0.087] -0.208] 0.2619] -020d o0.145 0.261] 0.145 0.333 0.261] 0.435
Sig. (2-ailed) 0247 0338 0338 0014 o750] 0456 033 0456 0505 0334 0.595 0.233 0:338] 011
N 9 9 9f E| q q 9 E 9 qd o 4

**. Correlation is significant at the 0.01 level (2-tailed).
*. Corelation is significant at the 0.05 level (2-tailed).

Table 15 Bivariate Kendall’s tau correlation test between complexity factors & reliability metrics

The correlations between the reliability metrics and the complexity factors (created in chapter 5) are
not particular high. Besides, it seems that the reliability metrics: test PRs and the FPEs the
correlations, do correlate more with the factor “size” than the factor “structure’. This is also
expressed by low and insignificant correlations between these two reliability metrics and the
“structure” related complexity metrics like cyclomatic complexity and maximum nesting level.

The reliability metrics: number of FPE types and Entropy do even correlate less with the complexity
factors, which also reflects in the correlations with the independent complexity metrics. However, the
high correlation between the “entropy” and the complexity factor “structure” seems logical. A higher
entropy score for the SW unit (i.e.: more SWF states and more homogenous distribution of the errors
over the SWF states) correlates with a more complex structure of the SW unit.

Most of the correlations between the reliability and complexity metrics are not significant. Therefore
only the FPEs will be used for the regression analysis in the next paragraph.

Table 16 shows Kendall’s Tau correlation test on SWFs and the complexity metrics doesn’t show
much correlation. When applying the Pearson correlation test, which requires normal distributed
variables, there is a high and significant correlation found between SWFs and the complexity factor
size (Field, 2005). Although the variable “SWF” is not normally distributed, it seems that there is a
strong relationship between the reliability metrics (PR, FPE and SWF) and the complexity factor size

39

based on the Pearson correlation test (Table 16). Therefore this single relationship between the factor
size and reliability metrics FPE and SWF will be further investigated in the next paragraph. Because
of the low correlation scores between the complexity metrics and the reliability metrics “PR, FPE
types and entropy”, these metrics are not further investigated and are left out the regression model that
is developed in the next paragraph.

Kendall's tau and Pearson Correlation test (N = 19 for all correlations)

o P 8
t 2| s 8 2
3 k-] § - 2 € k= 5
3 F= S
5 |2 |2 |8 |5|3|¢ 8 | % £
8 s 2 » 2 | £ = o = g 5
§ 5 5 Z 8 2 pous @ B
5 8 @ B E| 8 tE | = s £ 8 8
g |3 § S| 8 Sz = | @ e 3 i & g
o |3 (sE| 2 ElElE sz 33|38
g E_|sd| ® E|E | 23] & 2 2 | 2| 8 |k
£ E®) es 5 2 E] 2 E - ® < 0] &
52| 5§ £e > > = T =4 T I I I - ~
28| 28|a3%7| < o P ~ | Z < < E = = N
5 @ L2 © @ = - =] 3 = = o Q
aelgtlzs| 2 | 2| % G382 |2 |2z |2a| 3 |3
— 1oz S1o2l & 8 & o1 o b o 141 41 i £
Kendalfs tau correlation |Con. Coefficient 0.1§| 0.293] 0.25 0.218] 0.006] 0.106 -0.012 0.08] 0.164 0.211] 0.112] 0.085| 0.188 0.23§
with SW tailures Sig. (2-tailed) 0.263] 0.080] 0123 0.195] 0.972 0.528] 0.944] 0.624] 0.327] 0.2 0.506] 0.574] 0.263] 0.161
Pearson correlation with| Pearson Correlation] 0.568'] 0.672"] 0.565°| 0.679""| -0.154] -0.024] 0.181] 0.007] 0.906""] 0.833""| 0.666™"| 0.432| 0.701""[0.29!
SW failures Sig. (2-tailed) 0.017] 0.002] 0.012] 0.001] 0.529] 0.924] 0.459[0.978]0,000 0.000] 0.002] 0.064] 0.001[0.220]

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Table 16 Kendall’s tau and Pearson correlation tests between complexity metrics and SW failures

6.3 Regression Models

The developed regression model could be used in two ways:

1. It can be used in order to explain the variance in the reliability metrics among SW units the
complexity metrics or factors.

2. It can also be used in order to predict the reliability metrics of a certain SW unit based on its
complexity metric scores and the established relations between reliability and complexity metrics
scores from other SW units.

Paragraph 6.3.1 describes the first approach and paragraph 6.3.2 the second approach.

6.3.1 Explaining the variance in reliability metrics by regression analysis

There are several regression models (Field, 2005):

- Single and multiple regression models; with 1 (single) or more (multiple) predicting variables

- Independent and dependent designs: independent designs use different groups for different
conditions of the predicting variables, while dependent designs have repeated measures on the
same sample group; however, it requires manipulative predicting variable(s).

- Models that assume that the variables are normally distributed (or parametric) and non-parametric
(distribution unknown) variables

Several models were built in order to come to the best regression model. First of all, single regression
models were made for both complexity factors and the reliability metrics FPE and SWF. Appendix 14-
A shows the results of this analysis, it can be concluded that the 2" polynomial single regression
model with predicting variable “size” and dependent variables “FPE and SWF” gave the best fit with
the observed data.

This regression model for the outcome variable FPE is expressed as:
FPE = 20.2*F1* + 17.9%F1 + 6.3, with FI being the “factor size” complexity score.

The regression model for the outcome variable SWF is expressed as:
SWF = 763.6*F1° — 428.9%F1 — 225.8, with F1 being the “factor size” complexity score

The fit of the regression model with the data is expressed in R?, it represents the amount of variation in
the outcome variable (FPE or SWFs) that can be explained by the model based on the predicting
variable(s) (Field, 2005). For the formulas that are used to calculate the R” for the single and multiple
regression analysis I refer to Field (2005) and the SPSS15.0 help function.

40

The single regression models for the factor structure with the reliability metrics FPE and SW (both the
linear as well as the polynomial model) didn’t fit the data very well. In other words, no applicable
regression model for the predicting factor structure and the dependent reliability metrics has been
found. However, due to the opinion of other researchers and SW developers at PMS who claim that
the factor “size” cannot be used as the only single SW complexity aspect (paragraph 6.1), also a
multiple regression analysis is carried out including both complexity factors “size and structure”.

Based on all the regression models that are presented in appendix 14-B, it can be concluded that the
2" polynomial single regression models are showing the highest R? scores, even higher than the
multiple linear regression model which are based on both complexity factors.

However, when the reliability metrics FPE and SWFs are normalized and transformed into +/ FPE and
JSWFs , linear regression between the predicting variables and the outcome variables (+/ FPE and
Jswrs) could be expected. In this case the multiple linear regression model (including both

complexity factors) should be applicable and provide a better fit than the single linear regression
model based on the complexity factor “size” solely.

The multiple linear regression model including both complexity factors has a better fit (expressed in
R®) with the data than the single linear regression model based on size solely. The R for the multiple
regression model is 0.609 and the R? for the single regression model is only 0.607, it can be concluded
that this is a negligible difference. Therefore, it can be concluded that the 2™ polynomial single
regression model with the predicting variable “size” can explain the variance in the reliability metrics
FPE and SWFs pretty well for respectively 91% and 85% (when the outliers are excluded).

6.3.2 Predicting reliability metrics by the regression model

This paragraph investigates if the regression models, developed in the previous paragraph, can be used
in order to predict the reliability metrics FPE and SWFs for a next generation SW units based on their
complexity scores. In order to do so, the observations should be subdivided into a “training” group and
a “control” group. The parameters for the regression model are derived based on the training group,
subsequently the predicted reliability outcomes based on the complexity scores of the control group
will be compared with the actual amount of the reliability metrics. Appendix 14-C contains the
selection of the SW units into training and control SW units.

In order to predict the FPE for the SW units within the control group based on their complexity scores,
the following regression models are used:
A. 2™ polynomial single regression model (F1) to predict FPE

* FPE=2246*F1%+ 14.23*F1 + 4.79

B. Single linear regression model (F1) to predict v FPE
= JFPE =391*F1 +2.37

C. Multiple linear regression model (F1 + F2) to predict FPE
= FPE =45.5*F1 + 3.0*F2 + 184

D. Multiple linear regression model (F1 + F2) to predict v FPE
» JFPE =3.9*F1-0.13*F2 +2.3

In order to predict the SWFs for the SW units within the control group based on their complexity
scores, the following regression models are used:
E. 2" polynomial single regression model (F1) to predict SWF

= SWF =96.,15*F1% — 865.6*F1 — 382.06

F. Single linear regression model (F1) to predict v SWF

= JSWF =14.328*F1 + 11.098
G. Multiple linear regression model (F1 + F2) to predict SWF
= SWF = 1048.9*F1 + 1149.8*F2 + 306.604

H. Multiple linear regression model (F1 + F2) to predict v SWF
* JSWF =14.1*F1 + 14.1*F2 + 11.1

41

The outcomes of the predicted FPE and SWF scores for the SW units within the control groups are
shown in Table 17 and Table 18. It can be concluded that these predictions are not consistent; there are
SW units for which the predicted FPE or SWF score is higher than for other SW units that have higher
actual FPE or SWF scores than this specific unit. Besides, most of the predictions are not even coming
close to the actual scores. Therefore it can be concluded that these regression models (although their
relatively good fit with the data) do not produce reliable predictions for the FPE and SWFs.

This bad performance of these regression models can be explained by overrated R’s due to the small
samples (only 12 observations for FPE and only 13 observations for SWF) on which the regression
models are based.

Predicted FPE
Control SW unit* | Actual FPE | Model A | Model B | Model C | Model D
Acq_Collimator 0.00 2.99 0.33 -4.39 0.41
MiscSys Automation 3.00 12.41 2.12 -27.53 1,97
PandA_ArchNetwork 0.00 2.82 0.48 -0.72 0.43
UL NGUI 14.00 2.61 1.84 9.07 1.562
Viewing_Reviewing 22.00 16.80 18.02 39.62 18.00
Table 17 Actual and predicted FPE for the SW units within the control group
Predicted SWF

Control SW unit | Actual SWF | Model E | Model F | Model G | Model H
Acq_Coliimator 0.00 272.86 16.62 | -943.22 23.44
Geo_Geometry CV 394.00 | -525.97 | 203.07 502.86 191.03
IP_Image processing 6.00 | -326.66 104.82 | -135.77 31.60
MiscSys_Session Mgt 35.00 | 901.62 0.05 639.33 202.91
Uil Modules_UIDS 7.00 219.50 20.31 | -1141.72 52.49
Viewing_IPISLib 16.00 | -534.68 42249 [1194.32 523.05

Table 18 Actual and predicted SWF for the SW units within the control group

6.4 Explaining variance within reliability by complexity classes
Another approach to establish if the variance within the reliability performance among the SW units
can be explained by complexity, is not using the complexity factors “size” and “structure” as
independent factors but as a composite complexity class.

Just taking the average scores of the two complexity factors has the following drawbacks:

- The factor scores are based on different metrics and may not have the same underlying
distributions.

- Besides, one factor may have much more weight in the average score than the other. Based on the
correlation and regression analyses in paragraphs 6.2 and 6.3, it can be concluded that the
complexity factors “size” seems to correlate much better with the reliability metrics (FPE and
SWFs) than the complexity factor “structure”. Therefore, the “size” complexity scores should
weight more than the “structure” complexity scores.

Because of these two reasons it is decided to categorize both “factor” scores into “high”, “middle” and

“low” before they are aggregated into one composite complexity class in which the “size” scores have

more weight than the “structure” scores. The categorization prescriptions that are used to categorize

both factor scores into the three complexity classes: Low (1), Middle (2) and High (3) are mentioned

in Table 20. The categorization prescription for the composite complexity categories, again: Low (1),

Middle (2) and High (3), is shown in Table 19.

Composite Factor score size
complexity class 1 2 3
Factor classes |Low |Middle High Factor 1 1 2 3
factor size <02 |>0.28&<1 |>1 score 2 >) 3
factor structure |<0 >0, &<0.5 |50.5 structure 3 2 3 3
Table 20 Categorization Table 19 Categorization prescription
prescriptions for factor scores for composite complexity classes

42

The categorization of the SW units into these complexity classes is presented in appendix 15. The
categorization of the SW units by their complexity class resulted in the following means, standard
deviations and variances in SWFs for each complexity class (Table 21). It can be concluded that the
SWF means are ranked consistently with the complexity classes from low to high. However, the
variance in SWF among the SW units is not reduced for all complexity classes. The complexity class
“high” contains systems that have a much higher variance than the initial variance in SWF among the
SW units when no categorization was applied. In other words, categorizing the SW units according to
their complexity level does not lead to less variance in each of the complexity classes.

swW No categorization Categorization by complexity

High Middle Low
Mean 542,32 2728,33 172,63 92,25
Standard deviation 1423,63 3070,78 176,77 224,58
Variance 2026723,67 9429682,33 | 31249,13 | 50436,50

Table 21 Means, standard deviations and variance for categorized and uncategorized SW units

In order to establish if these means are significantly differing from each other, a comparing means test
is performed for non-parametric data. Based on this test it can be concluded that the average number
of SWF within complexity class “high” is significantly larger than the average SWF within complexity
class “middle or low”. The non-parametric tests are selected because the complexity classes are
categorical data and the SWFs also do not follow a normal distribution as the Kolmogorov-Smirnov
test in SPSS15.0 is significant and the Q-Q plot in Figure 28do not seem to follow a straight line. The
Kruskal-Wallis test is selected because it measures differences between several independent groups for
non-parametric data (Field, 2005). It is the counter method of the one-way independent ANOVA test
(assuming normal distributed data) used in paragraph 6.3. Performing the Kruskal-Wallis test in SPSS

resulted in the box-plots as shown in Figure 29. Sw
Normal Q-Q Plot of Failures
SW Failures
6000,00 —
o
O
b O
T g
= 4000,00 —
(]
4
2
1]
o 2000,00
> -1 0
w o &0
27 00 4 = B
T T T T T T 0 T T T
2000 0 2000 4.000 6.000 8.000 Low Middle High
Observed Value Complexity Class
Figure 28 Normal Q-Q plot for SWF Figure 29 Box-plots of SWF per complexity class

Figure 29 visualizes the high variance among the SWF between the SW units in complexity class
“high” (excluding the outlier MiscSys_Automation; SW unit with low complexity level and rather
high no. of SWF). However, the Kruskal-Wallis test statistic shows that the mean ranks (presented in
Table 22) do significantly differ among the complexity classes; as the calculated chi-square was 6.294

w%th 2 degrees of freedom which corresponds Complexity Class N | WMean Rank
with an asymptotic significance level of 0.043. [Goftware | Low 8 6.04
The Kruskal-Wallis test uses the ranking of | Failures Middle 8 10.68
both variables (SWF and complexity) because High 3 16.33
of the non-normal distributed data (Field, Total 19

2005). The mean rank represents the average ~ Table 22 Mean rankings of the complexity

rank of the SWFs in each complexity class. classes: low, middle and high.

43

6.5 Conclusions on software complexity versus reliability

Software reliability and complexity definitions & availability and quality of required data
This master thesis has defined the desired and available reliability indicators and complexity metrics
for the software within the Allura Xper CV X-ray scanner at PMS.

The available reliability performance indicators were:

- Problem reports (PR) during testing

- Field programming errors (FPE) derived from the system log-files

- Software failures (SWF), derived from the failure classification by the FMEA developed by the
PhD researcher K. Kevrekidis.

These reliability indicators did correlate among each other, so it can be assumed that they are all

representative for the actual reliability performance.

The complexity metrics for the SW subsystems and SW units where derived from the carried out
Logiscope audit and the JAH intranet site within the CV development department of PMS.

Over 40 separate complexity metrics were derived and transformed into two common complexity
factors “size” and “structure”, for which composite factor scores were defined.

For 17 observations (SW units) all complexity metrics and reliability metrics PR and FPE were
available and for 19 observations all complexity metrics and reliability metric SWF are available.

Established relations between complexity factors and reliability metrics
The established relations between the developed complexity factors and the reliability metrics FPE
and SWF are expressed in the following three ways:

- Correlation between reliability and complexity metrics:

Based on the Kendall’s tau correlations test between the two complexity factor scores and the
reliability metrics FPE, it can be stated that there is a significant correlation between the complexity
factor “size” and the reliability metric FPE. The same conclusion can be derived for the complexity
factor size and the reliability metric SWF based on the Pearson correlation test, the reason for the low
scores with Kendall’s tau correlation test cannot be explained.

- Explaining the variance within FPE and SWF based on the defined complexity factors:

The developed regression models in chapter 6 can be used in order to explain the variance within the
reliability metrics FPE and SWF rather well. The variance in the FPE and SWF scores among the
observed SW units could be explained best by the complexity factor “size”.

- Prediction of the FPE and SWF based on the SW unit’s complexity factor scores:

The regression model based on two factors F1 and F2 is over rated, due to the small number of
observations within the training group, and can therefore not be used in order to predict reliability
metrics FPE or SWF for the SW units in the control group accurately.

Classification of SW units based on the complexity factors “size”” and “structure”

The classification of the SW units into groups with similar complexity levels resulted in the following

conclusions about the complexity categories:

- The average SWF score of the SW units within a higher complexity classes is higher than the
average SWF score for SW units within the lower complexity classes.

- The ranked SWF means (by the Kruskal-Wallis test) within the higher complexity classes are
significantly higher than within the lower complexity classes.

- The variance in the SWF scores among the SW units is, in comparison with the unclassified group
of SW units, reduced for the lower complexity classes (low and middle). In contrary, the variance
in the SWF scores among SW units classified as “high” complex is increased compared to the
unclassified group of SW units. In other words; an increase in complexity also causes an increase
in the variance within the reliability performance (expressed in SWF).

44

7. Hardware complexity versus reliability

This chapter includes only a quick and short investigation on the relationship between hardware
complexity and hardware (HW) reliability. Due to the extended research on software (SW) complexity
and its relation with software reliability in chapter 4, only limited time was available for HW
complexity. This chapter consists out of a brief description on the available HW related reliability
metrics (paragraph 7.1) and a small survey that is used in order to establish the HW complexity for the
Allura Xper CV scanner at PMS (paragraph 7.2). Paragraph 7.3 describes the found relationships
between the complexity metrics and the reliability metrics. Finally, the results and findings are
summarized in paragraph 7.4

7.1 Hardware reliability performance indicators

In the Master thesis preparation (Albers, 2008) a number of indicators for HW reliability performance
were selected like, MTBF or Failure probability. However, none of the indicators are available for HW
components at PMS. The only available data that could indicate the performance of the HW is the
“refined” call data into component replacements (corrective maintenance) for a panel of 50 systems
for each Product Base Line (PBL). This translation is carried out quarterly by Customer Support
within the CV department of PMS. The component replacements can be caused by HW or SWFs, and
therefore this indicator is not very accurate but it is the best indication for the HW reliability
performance available and will be used in this master thesis.

The hardware of the Allura Xper CV scanner is subdivided into the following HW building blocks:
Table (ADS/AD7), M-Cabinet, Monitors, Operator controls, X-ray tube (PolyG2/Clea), R-Cabinet, X-
ray detector (Velara), and Xtravision. A more detailed description of these building blocks can be
found in appendix 1.

The reliability scores, expressed in “component replacements per HW unit”, are shown in Table 23 for
all the Product Base Lines of the Allura Xper CV scanner. The review period varies for each PBL: 4
years for PBL10, 2 years for PBL.30, 3 years for PBL.20, and 1.5 years for PBL40.

HW Units: PBL20 | PBL40 ‘ PBL10 | PBL30
AD5
M-Cabinet
Monitors
Operator Controls
X-ray tube
R-Cabinet
X-ray detector
Xtravision

Table 23 Overview of component failures over

Confidential

7.2 Hardware complexity and selected complexity metrics

Based on the literature review in the Master thesis preparation, the hardware system complexity can be

divided into two groups, which are:

- Qualitative complexity theories like: system symmetry (Flood and Carson, 1990), Non-Holonomic
constraint (Zhao and BeMent, 1992), shape complexity (Rodriguez-Toro et al.,, 2003), system
integration and differentiation (Heylighen, 1996), and simplicity (Bunge, 1962)

- Quantitative complexity attributes: these are group of system attributes that represent the
complexity of the product (Calvano and Joh, 2003; Hobday, 1998; Barlcay and Dann, 2000) like
for example the number of components.

45

The last approach is selected in order to come up with a “hardware” complexity measure for the Allura
Xper system. The following complexity attributes were found in the literature mentioned in the
paragraph above:

- Number of hierarchic layers in the architecture

- Number of unique components

- Relations and interactions between components

- Number of design updates or changes

- Criticality of the component

- Degree of technological novelty or required specialism

- Number of functional specialists involved

- Degree of embedded (control) software

All of these attributes seem to be plausible to express the complexity for the Allura Xper and are
selected in agreement of M. Loos, System architect in the CV development department at PMS. For
some of these attributes, it is possible to retrieve quantitative measures. These attributes are, the
number of hierarchic layers, number of components, number of design updates or changes and the
number of functional specialists involved. Quantitative measures for the other attributes are almost
impossible to retrieve. Due to the master thesis’s time limitation and the laboriously process, none of
the attributes are quantified based on available data at PMS.

However, these eight complexity attributes were transformed into a small survey in which the
subsystems mentioned in paragraph 7.1 were ranked in the categories: low, middle and high, by two
system architects in the CV development department at PMS. The subsystems were ranked by
comparing them with each other, this way it is not possible to score all subsystems “high” for a single
complexity attribute. The reason to rank the subsystems in this way was to prevent that all subsystems
score the same on all complexity attributes and no difference within and among the complexity
attributes is defined. This would make the complexity attributes inapplicable for explaining the
differences in the reliability performance among the subsystems.

Questionnaire:

1. How many hierarchic levels does each subsystem contain?

2. How many unique components does each subsystem contain?

3. How integrated are the components in each subsystem? Weakly integrated subsystems have
components that are hardly related or interfering with each other while highly integrated subsystems
contain many relations and interference between its components.

4. How many design updates/changes do occur in the subsystem? Is the subsystem a kind of constant
subsystem that doesn’t change much or is it changed radically in each new PBL or even during one
PBL?

5. How critical is the component? Criticality in terms of; “does a failure of this subsystem cause
serious hazardous situations during operation” and/or “does a failure of this subsystem affect the other
subsystems as well which results in expensive or time consuming repairs”.

6. How complex or unique is the applied technology within the subsystem?

7. How many functional specialists are involved in the design process for each subsystem? (System
architects, designers, software programmers, mechanical engineers, etc.)

8. How much control software is involved for running the subsystem?

Results of the questionnaire.

The results from the ratings by the two system architects are presented in appendix 16. The
subsystems are ranked according to their “overall” complexity, which is calculated by the average
score of all the attributes scores for each subsystem. In order to come to these complexity score, the
rankings: low, middle and high are translated into 1, 2 and 3. Therefore a higher score on the
complexity attributes represents a more complex subsystem.

46

The rankings of the raters were not totally consistent but - | ™ g °
when their rankings are categorized into subsystems with 8| 8 = 2
low complexity and high complexity, the ranking is °| £ 8 2
consistent for both raters and also corresponds with the gl 2] & 3
ranking of the average rater scores as can be seen in Table E E E 3
24. The ranges for low complexity are 1 till 3 for Rater 2 | Subsystem: T x| I 3
& Average rating, and. 1 till 4 for Rater 1. This difference monitors 1 1 1] Low
in classification is caused by the first rater, for which some | R_capinets 2| 3 2| Low
subsystems had equal ranks. Operator Controls 3] 1 3| Low

. . . o Xtravision 4 2 4| Low
Because of the consistent ranking in Table 24, it is X-ray detector 5 4 5 | High
assumed that the average scores of the two raters represent Table 6 5| 6| High
the complexity levels of the subsystems in a consistent X_ray tube 7]_—6 7 | High |
way. The overall complexity scores based on the averaged M-cabinet gl 4 > High
rating of the two system architects is shown in Table 25.

Table 24 Overview of complexity rankings

@
<
8| 4 3

| »| 5| 8| T % s
_ 9| 2| 2| 5| 5| 8|5 | 2
Complexity attributes: e} Q S g & O ® ©
E| =| S| 0| x| a&|x6| %
1 | Number of Hierarchic levels 3 2 1 1,5 3 1,5 15] 15
2 | Number of components 3[25 1 1 3 2 2 1
3 | Relations between components 3 2 1,5 1,5 3 1 2,5 1,5
4 | Number of design updates / changes 1,5 3 1,5 2 2 3 1,5 1
5 [Criticality of the component 2 3 1 1 2| 1,5 3 1
6 | Technology level 25| 25 1 15| 25 1,5 3 15
7 | Number of specialists involved 2| 25 1 1 3 1,5 2 1,5
8 | Degree of control software 2,5 3 1 15| 25 1,5 2 3
Overall complexity score | 244 | 256 | 1,13 | 138|263 | 169 2,19 1,50
Rankin 6| 7] 1| 2| 7] 4 5] 3

Table 25 Average results from raters 1 and 2

Validation and interpretation of the HW complexity metrics:
There is no standard metric or reference metric that can be used in order to validate if the complexity
attributes give a correct representation of the actual system complexity.

Validation of the HW complexity metrics isn’t that straightforward as for Software in which
standardized programming rules are used in order to verify if a code is correct or not. Still there are
some rules applied within PMS like: one aims for a maximum of 10 subsystems in the architecture.
(Communications with M. Loos, system architect at PMS) Also in literature, they generally apply
questionnaires (like in Barclay and Dann, 2000) instead of actual quantitative data. Therefore
validating the complexity scores for HW seems undoable and the questionnaire is used in order to
draw conclusions on the relationship between HW complexity and the HW reliability performance.

Furthermore, the number of observed HW subsystems is rather small (only 8 subsystems) and
therefore statistically grounded conclusions on correlations between the subsystem’s complexity
scores and reliability scores can not be extracted from this small sample.

In order to see if there are some similarities between the rankings in reliability and complexity, all
subsystems for all four PBLs will be joined together into a larger sample of 30 observations. (7
subsystems multiplied by 4 PBLS plus two times the optional subsystem “Xtravision” from the PBL20
and PBLA40). Based on this sample conclusions will be drawn on the relation between the complexity

47

classes (high/low) and the reliability performance of the subsystem, this analysis is described in
paragraph 7.3.2.

The classification of the average complexity scores over all complexity attributes into complexity
classes (low/high) are validated by a correlation test (Kendall’s tau correlation test within SPSS15.0)
between the complexity attributes scores and their assigned complexity class. Based on the results
from this correlation test (Table 26), it can be concluded that there is a significant correlation between
the complexity class and the complexity attribute scores. This supports the conclusion that the
complexity classes can be used as an aggregated complexity score for the attributes: no. of hierarchic
levels, no. of component, integration level, criticality, technology level, no. of specialists and degree

of control software.
Kendall's tau Correlations (N= 30)

Hierarchical No of Integration | Design | Criticality | Technology | Specialists | Control

Levels Components Level Changes Level Software
Complexity Classes Corr. Coefficient ,808(**) \TAB(*) 404(%)| 0,283 ,746("* ,808(*") T46(*) 559(**
Sig. (2-laiked) 0,000 0,000 0,021 0,107] 0,000 0,00 0,000 0,001

**. Carrelation is significant at the 0.01 level (2-taled).
*. Correlation is significant at the 0.05 level (2-tailed).
Table 26 Kendall’s Tau correlations between complexity classes and complexity attributes

7.3 Relationship between hardware complexity and reliability

This paragraph investigates if there are some similarities between the reliability metrics found in
paragraph 7.1 and the complexity attributes in paragraph 7.2 This paragraph is subdivided into two
subparagraphs, the first one describes the expected relationship between the HW complexity attributes
and the HW reliability performance based on logical reasoning and the findings in the literature study
during the master thesis preparation. Paragraph 7.3.2 visualizes the complexity and reliability metrics
and their similarities for all the subsystems of the Allura Xper system. Finally, paragraph 7.3.3
describes whether the categorization by complexity actually reduces the variance of the reliability
performance.

7.3.1 Expected relations between HW complexity attributes and reliability

The following relationships between the HW complexity attributes and the reliability performance are

assumed:

- Number of hierarchic layers in the architecture: the more hierarchic layers the harder it is to
understand the architecture and less orderly the subsystem will be. This is supposed to have a
negative impact on the reliability performance.

- Number of unique components: the more unique components are used, the more difficult the
system will be to understand and how more unique problems will arise.

- Relations and interactions between components: the more components depend on each other the
more vulnerable the entire system will be to a failure of a single component in the system.

- Degree of technological novelty or required specialism: the more complex technology is applied,
the more difficult it will be to cope with all factors that affect the system performance. The more
innovative the applied technology, the less is known about how this technology will behave in
practice and the more problems may arise.

- Number of functional specialists involved: a large number of functional specialists may result in
more contradictions in the functional interests, which makes weighing the interests more difficult.
Furthermore, a large number of functional fields may also lead to a wide scale of functional
related problems.

- Number of design updates or changes: When one assumes that design updates or changes are
carried out because of incompetence of the system to perform its function(s), the number of
changes or updates may be an indicator of many failures of this (sub)system in the past (field
reliability).

- Degree of embedded (control) software: By assuming that the level of control software resembles
the degree of interaction between system software and system hardware, an increase of this
interactions may lead to more failures because the HW performance now strongly depends on the
SW performance and vice versa.

48

These complexity attributes are supposed to have a negative impact on the reliability performance, in
other words; the more higher the attribute scores the lower the reliability performance of the system
and the more failures are found.

- Criticality of the component: Component criticality comprehends catastrophic consequences for
the system performance or its operators in case the component fails. The more critical the
component, the more effort will be spent in designing the component properly. Much effort spent
during the design and test phase may lead to less field failures.

Therefore this complexity attribute is supposed to have a positive affect on the system’s field
reliability performance.

7.3.2 Verify assumed relations between HW complexity and reliability
First of all, Kendall’s Tau correlation test (in SPSS15.0) is applied on the complexity attributes scores
and number of failure for all 30 observations.

Kendall's tau Comrelations (N = 30)

Hierarchical No of Integration Design Criticality | Technology Specialists Controt Complexity
Levels Components Level Changes Level Software Class
Failures Corr. Coefficient 0,117 0,067 0,165 0,037] -0,07 -0,045 0.067] -0.207] 0,019
Sig. (2-tailed) 0,422 0,646 0,259 0,809 0,59 0,760 0,64 0,157 0,901

*. Correlation is significant at the 0.05 level (2-tailed).
Table 27 Correlations between number of failures and complexity attribute scores

As Table 27 shows, there was not even a single significant correlation found between the failures and
complexity attributes. Therefore it was decided to also classify the number of failures into failure
classes and compare the categorical variables with each other into a contingency table.

A contingency table with a Chi-square test is suitable two establish if there is a relation between two
categorical variables (Hair, 2006), therefore this method is selected in order to analyze the relation
between the variables HW complexity and HW reliability.

However, this failure classification for the variable “HW reliability”, expressed in the number of
failures found in the panel analysis for PBL.10 till PBL40, needs to be carried out first. The failures are
categorized in two ways: one with 2 failure classes (high and low) and another one with 3 failure
classes (high, middle, and low). Failure class “high” stands for a subsystem with many failures and
failure class “low” represents subsystems with a low number of failure found, the failure
classifications are shown in Table 28.

Subsystem PBL10 | PBL30 | PBL20 | PBL40 | PBL10 | PBL30 | PBL20 | PBL40
Table 2 2 6 5 2 2 6 5
M-cabinet 4 5 5 6 \ 4 5 5 6
Monitors 3 3 3 4 3 3 3 4
QOperator controls 7 7 8 8 7 7 I 8 8
X-Ray Tube 6]_ 6 7 7 6 6 7 7
R-Cabinet 5 4 4 2 5 4 4 2
X-Ray Detector 1 1 2 3 1 1 2 3
Xtravision X X 1 1 X X 1 1
Sample size: 30 Two failure classes: Three failure classes:
. High | Low | High ‘ Middle ‘ Low |
The failures of the units within PBL10 and PBL30 are ranked from 1 till 7
The failures of the units within PBL20 and PBL40 are ranked from 1 till 8

Table 28 Reliability classifications

Thanks to these failure and complexity classifications the contingency tables could be created and the
Chi-square tests were performed (in SPSS15.0). There are two contingency tables, one including the
failure classification low/high and another including the classes: low, middle, and high. Table 29

49

shows that, as expected, the largest proportion of subsystems with a low complexity score are placed
under failure class “low” (£65%). The subsystems with a high complexity score do not show such an
obvious difference in the proportions over the failure classes, only around 55% is placed in failure
class “high”. One could conclude that subsystems with a low complexity score do experience only few
failures in the field and that complex subsystems do naturally experience many field failures.

Failure classes
Low High Total
Complexity Low g 5 14
Classes High 7 g9 16
Total 16 14 30

Table 29 Contingency table complexity with failure classes “low” and “high”

However, in order to confirm this conclusion the null hypothesis from this contingency table should be
rejected in order to proof that these two variables are truly not independent form each other. In order
to do so, the chi-square should be 2.71 for a confidence coefficient of 90% in a contingency table with
only one degree of freedom. The calculated chi-square is only 1.265 and therefore the null hypothesis
cannot be rejected at a confidence level of 90%, it could only be rejected at a significance level of
0.261 (a confidence coefficient of 74%). Therefore it is concluded that there is not a strong significant
relation between a subsystem’s complexity class and its failure class for the 30 observed subsystems
within PBL10, PBL30, PBL20 and PBL40.

The contingency table for the failure classification into low, middle and high resulted even in a lower
chi-square (0.268) and it also didn’t satisfy the conditions that all cells are filled with at least 5
observations. All contingency tables, calculated chi-squares and corresponding significance levels can
be found in appendix 16.

7.3.3 Variance within reliability after complexity classification
The categorization of the subsystems into high and low (from paragraph 7.2) and the related failure
scores for each subsystem can be found in appendix 17.

Table 30 shows the mean and variance for subsystems with and without the categorization according
to complexity. The variance between the failure scores without categorization is 4002 failures. After
categorizing the subsystems into “high” and “low” complexity scores, the variance in failures for the
complexity class “high” was reduced till 2671 failures. However, for the subsystems in complexity
class “low”, the variance increased till 5775 failures.

Therefore, it can also be concluded that categorizing the subsystems according to their complexity
classes will not reduce the “within group” variance for both complexity classes and create more
homogeneous groups. This is not such a surprising conclusion, it is a confirmation that the conclusion
in paragraph 7.3.2 (complexity and failures are not related) is correct.

No categorization Categorization by complexity
High Low
Mean 68,73 63,56 74,64
Standard deviation 63,26 51,68 76,00
Variance 4002,27 2671,20 5775,48

Table 30 Variance for subsystems with and without categorization according to complexity

50

7.4 Conclusions on hardware complexity versus reliability

Hardware reliability and complexity definitions & availability and quality of required data
There were no real hardware reliability metrics available for the Allura Xper systems within PMS.
Only the number of component replacements (during “corrective” maintenance) is available as an
indicator for the hardware reliability performance. Although a component replacement can also be
caused by a software failure, it is assumed that the replacements are all caused by hardware failures.
This assumption reduces the trustworthiness of the conclusions on the relationship between hardware
reliability and complexity. Nevertheless, the results in chapter 7 still present an indication of how the
hardware complexity and reliability are interrelated for the PMS Allura Xper systems.

As the investigation of software complexity and its impact on software reliability was very time
consuming, the HW complexity metrics for the HW building blocks were based on the results of a
short questionnaire among 2 system architects within the CV development department of PMS.

For 30 observations (HW building blocks) all defined complexity attributes and the reliability metric
“hardware failures” (no. of component replacements in panel analyses) were available.

Established relations between hardware complexity and reliability

No significant correlations have been found among the HW complexity attributes or classes and HW
failures. Therefore the complexity metrics cannot be used in order to explain the variance within the
HW failures, let alone predict the number of HW failures.

When categorizing the HW building blocks by complexity and HW failures (low/high), a contingency
table was used in order to establish if there is a relationship. However, the test was not significant and
increasing the number of classes would only deteriorate the significance of the chi-square test.

Categorizing the HW building blocks based on its complexity scores

The HW building blocks were categorized into two groups: building blocks with low complexity
scores and building blocks with high complexity scores. The average number of HW failures (and its
variance) was larger for the group which included the “low complex” building blocks. This result
contradicts with the expectation that more complex HW building blocks will on average have a higher
number of HW failures. The only logical explanation for this remarkable result is that the reliability
metrics or the complexity scores are not relevant or representative for the actual situation.

51

8. Conclusions & recommendations

This final chapter contains the conclusions (paragraph 8.1) and recommendations (paragraph 8.2)
based on the research finding in chapters 4 till 7.

8.1 Conclusions

Reflection on the research question

The general research question was to gain more insight into the relationship between system
complexity and the system’s reliability performance. This master thesis came up with some
conclusions on this relationship for the software units as well as the hardware building blocks based on
the Allura Xper systems at PMS. Although, the relationship between hardware complexity and
reliability has been investigate less thoroughly, this thesis came up with an overview of the required
and available data at PMS for the reliability factor “system complexity”.

Furthermore, all research questions are answered except for the last sub question: “How can extended
knowledge about system complexity and its relation with reliability performance assist the decision
process in product development”. Reason for this, was the lack of time to investigate the decision
process in product development. The other research questions and corresponding finding are as
follows:

1. How should the reliability performance of the professional system be defined or measured?

This research defined several software related reliability indicators that could be used in order to
express the reliability performance of the Allura Xper system. These indicators were: test problem
reports (PR), field programming errors (FPE), mean time between programming errors (MTBF),
entropy and classified software failures (SWF). For hardware only one reliability indicator was
available, which was the number of component replacements from the panel analyses.

2. How should “system complexity” be defined in such a way that there will arise no misconceptions
in interpreting these factors?
First the required system complexity metrics were defined for both hardware and software.
Subsequently the available complexity metrics were defined / measured. For software complexity,
around the 40 code metrics were collected, these metrics were transformed into two complexity factors
“size” and “structure”. Furthermore, the metrics from different sources were compared in order to
validate if the complexity metrics scores were representing the software complexity consistently.
There were 8 hardware complexity attributes defined and quantified by a small survey among system
architects. These eight complexity attributes were transformed into an aggregated complexity measure.

3. How should the relationship between “system complexity” and the reliability performance of the
system be established?

Software complexity versus reliability: The relationship between system complexity and reliability has

been researched in several ways. First of all, several metrics are used to express system complexity

and the reliability performance and they are independently investigated. Secondly, there are several

types of tests performed:

- Correlation tests among complexity factors and the reliability indicators: SWF, FPE, PR, MTBF
and entropy.

- Regression analysis among complexity factors and the reliability indicators FPE and SWF.

- Chi-square tests (contingency tables) for the software units and hardware building blocks
categorized according to its complexity and reliability.

These analyses were performed independently for the system’s hardware and software.

It shows that the complexity factor size does correlate with the number of FPE and SWF, and factor
“structure” does not. The correlation can be explained by the assumption that larger software code

52

leads to more FPEs or SWFs due to higher chance of mistakes by the programmer. However, the
absence of correlation between the factor structure and FPE and SWF can not be explained with
certainty, but probably the “structure” related metrics show less discriminative scores among the
software units and therefore cannot explain the variance in FPE or SWF.

Furthermore, the developed regression models are based on only a small number of observations.
Therefore there is a serious risk that the regression models are over-fitting the data and cannot be used
in order to predict the reliability performance in FPE or SWF accurately.

Hardware complexity versus reliability:
There were no correlations found between the hardware complexity attributes and the reliability
indicator “component replacements”. Therefore no conclusions on this relationship are found.

4. How to create a product classification process based on system complexity?

The software units and the hardware building blocks were classified according to its complexity scores
as well as its reliability performance level. Based on these classifications it can be concluded that the
means and variance of the reliability performance (expressed in SWF) increases when the group of
software units are classified as “high” complex. For the hardware building blocks, the variance within
reliability performance could not be explained by the classification of the building blocks according to
complexity.

Contribution to scientific research

The main contribution to the scientific research is the overview of the complexity and reliability
metrics that are required in order to investigate the relation between these two variables. Moreover, a
data set and its limitations are provided, so other researchers can use and interpret this data set in a
correct way as well. This is important as this master thesis is a contribution to the Ph.D. research of K.
Kevrekidis at the Quality & Reliability Engineering department at Eindhoven University of
Technology. Furthermore, this research combines theoretical definitions and approaches of system
complexity and tries to apply them in practice. It shows that many theoretically important complexity
concepts (or software code metrics) are not that relevant in practice or cannot be used at all in order to
investigate the relation with system reliability.

Strengths and weaknesses of the research

Weaknesses:

Weak point in the research is the selection of code complexity metrics based on their correlation with
the programming errors instead of the (by FMEA) classified software failures. This decision is made
due to the available data at that time, but for repeated factor analyses it is recommended to limit the
number of software code metrics by selecting the with software failures correlated code metrics. A
second weak point is the limited number of observations in the training group on which the regression
models are based. This led to overrated regression models, not applicable for prediction of the
software failures based on the complexity factor scores. Another weak point is that the impact of other
extraneous moderating variables is not quantified. However, creating an experimental setting is rather
difficult when investigating an expensive and complex professional system like the Allura Xper
system at PMS.

Strengths:

Strength of this research is that not just a general data set (like the dataset provided by Kitchenham,
1987) is used in order to investigate the relation between complexity and reliability, but an actual and
updated data set has been created and used for investigation. Therefore the conclusions can be
interpreted in a more corrective way, which is very important when vague concepts like system
complexity and system reliability are investigated. By working closely together with the system
architects and software developers within the CV department of PMS, the selection and measurement
of the complexity metrics is not only based on theoretical knowledge but also on practical relevance.
Together with the fact that several information sources are used (in order to validate the metric scores
among the sources), it can be concluded that the used complexity metrics do represent the actual
system complexity well.

53

8.2 Recommendations

Software complexity versus software reliability
The following topics and directions are recommended for further research within investigation of the
relationship between SW complexity and SW reliability:

Find more discriminative complexity code metrics for “structure” related complexity.

Repeat the regression analysis for a larger training group and investigate if the accuracy of the
reliability predictions based on the complexity scores improves.

Add the (in literature) recommended complexity metric “fan in / fan out” to the code complexity
model and investigate if more complexity factors arise or if the ability to explain the variance in
the reliability scores among SW units by the complexity factors improves.

Investigate which underlying reasons cause the increased variance in software errors and failures
for systems with high scores on the complexity factor “size”.

As the complexity factor “size” seems to be related to reliability, the number of SWF could be
normalized by for example the Lines of Code (LOC) in order to provide more representative and
fair measures of the actual reliability performance of the SW units.

Perform more case studies on other complex professional repairable systems that include
(embedded) software, and discover if there are similar findings and conclusions. Subsequently,
one can investigate if these findings can be combined into a general applicable regression model
that fits the SW of complex professional repairable systems in general.

Find out how the established relations between complexity and reliability can provide more
focus/insight for the development team and support them in making product improvement
decisions.

Hardware complexity versus hardware reliability
The following topics and directions are recommended for further research within investigation of the
relationship between HW complexity and HW reliability:

This master thesis investigated this relationship quickly and not very thoroughly, therefore more
extended investigation of this relationship is recommended. Especially because not much
quantitative research on this relationship has been carried out in literature yet.

Within PMS, effort should be spent on getting insight in the actual failure causes that have led to
the component replacements (during “corrective” maintenance). The required reliability measures
should be defined upfront the process of data collection and filtering, in order to make sure that all
required reliability data is available.

General recommendations for further research
Here follow some general recommendations for further research on the research topics system
complexity and system reliability:

A challenging research would be to quantify the interactions between hardware and software
reliability, and see how system complexity influences this interaction.

Carry out more quantitative case studies on several types of complex professional repairable
systems in order to see if the conclusions and regression models from this research can be
generalized.

Investigate other factors (for example the in this master thesis called extraneous variables:
“environment” and “user profile”) that could explain the variance within the reliability
performance.

54

References

Ascher, H.E., Feingold, H., 1984, Repairable Systems Reliability: Modeling, Inference,
Misconceptions and their Causes, New York: Dekker, 1984

Baker, M.D., 1991, Implementing an Initial Software Metrics Program, Proceedings - IEEE National
Aerospace and Electronics Conference, 3, pp 1289-1294

Barclay, L., Dann, Z., 2000, New-product-development performance evaluation: a product-
complexity-based methodology, IEE Proceedings-Science, Measurement and Technology, 147(2)

Brombacher, A.C., Sander, P.C., Sonnemans, P.J.M., Rouvroye, J.L.., Managing product reliability in
business processes ‘under pressure’, Reliability Engineering and system Safety, 88, pp 137-146

Bunge, M., 1962, The complexity of Simplicity, The Journal of Philosophy, 59(5), pp 113-135

Calvano, C.N,, John, P., 2004, Systems Engineering in an Age of Complexity, Systems Engineering,
7(1), pp 25-34

Chidamber, S.R., Kemerer, C.F., 1994, A Metrics Suite for Object Oriented Design, IEEE
Transactions on Software Engineering, 20(6), pp 476-493

O’Connor, P.D.T., Practical Reliability Engineering, Chichester: Wiley, 1991

Cornacchio, J.V., 1977, Maximum-entropy complexity measures, International Journal of General
Systems, 3(4), pp 215-225

Coskun, C., Grabowski, M., 2005, Software complexity and its impacts in embedded intelligent real-
time systems, The Journal of Systems and Software, 78, pp 128-145

Da-Wei, E., 2007, The Software Complexity Model and Metrics For Object-Oriented, IEEE
International Workshop on Anti-counterfeiting, Security, ldentification, ASID,

pp 464-469

Doty, L.A., 1989, Reliability for the technologies, 2™ edition, New York: Industrial Press, 1989

Ebert, C., 1996, Classification techniques for metric-based software development, Software Quality
Journal, 5, pp 255-272

Edmonds, B., 1999, What is Complexity? - the Philosophy of Complexity per se
with application to some examples in evolution, In F. Heylighen and D. Aerts, The Evolution of

Complexity, Dordrecht, Kluwer

Fenton, N.E., Pfleeger, S.L., Software metrics: a rigourous and practical approach, London:
International Thomson Computer Press, 1996

Field, A., Discovering statistics using SPSS, London: SAGE publications, 2005

Flood, R.L., Carson, E.R., 1990, Dealing with complexity: an introduction to the theory and
application of systems science, 3™ edition, London, Plenum, 1990

Glaser, B.G., Strauss, A.L., The discovery of grounded theory: strategies for qualitative research,
Chicago: Aldine, 1967

55

Hair, I.F., Black, W.C., Babin, B.J., Multivariate data analysis, Upper Saddle River: Prentice Hall,
2006

Harrison, W., 1992, An Entropy-Based Measure of Software Complexity, IEEE Transactions on
Software Engineering, 18(11), pp 1025-1029

Henry, S., Kafura, D., 1981, Software structure metrics based on information flow, IEEE Transactions
on Software Engineering, 7(5), pp 510-518

Heylighen, F., 1996, The Growth of Structural and Functional Complexity during Evolution,
published in: F. Heylighen & D. Aerts, "The Evolution of Complexity”, Kluwer Academic Publishers,
1996

Heylighen, F., 2002, Complexiteit en Evolutie, Cursus nota’s 2003-2004 Vrije Universiteit Brussel

Hobday, M., 1998, Product Complexity, Innovation and Industrial Organization, working paper by
CoPS Innovation Centrim at CENTRIM/SPRU funded by the ESRC

Kantz, H., Koza, C., 1995, The Elektra Railway Signalling-system: Field experience with an actively
replicated system with diversity, Proceedings — IEEE Annual International Conference on Fault-
Tolerant Computing, pp. 453-458

Khoshgoftaar, T.M., Munson, J.C., 1990(A), The lines of code metric as a predictor of program faults:
A critical analysis, Proceedings - IEEE Computer Society's International Computer Software &
Applications Conference, pp 408-413

Khosgoftaar, T.M., Munson, J.C., 1990(B), Predicting software development errors using software
complexity metrics, IEEE Journal on Selected Areas in Communications, 8(2), pp 253-261

Kitchenham (1987), Towards a Constructive Quality Model: Part I : Statistical Techniques for

Modelling Software Quality in the Esprit Request Project, IEEE Software engineering journal, 2(4),
pp 114-126

Kitchenham, B.A., Linkman, S.J., 1990, Design Metrics in Practice, Information and Software
Technology, 32(4), pp 304-310

Kumar ,R., Research methodology: a step-by-step guide for beginners, London: SAGE publications,
1999

Lancon, E., Saclay, C.E., 1995, Software Metrics to Improve Software Quality in HEP, CHEP ’95
Computing for the Next Millennium, Rio de Janeiro, September

Lange, C.F.J,, 2005, Course in Software Architecting (21110), Faculty: Mathematics & Computer
Science at the Technical University Eindhoven.

Lew, K.S., Dillon, T.S., Forward, K.E., 1988, Software Complexity and Its Impact on Software
Reliability, IEEE Transactions on Software Engineering, 14(11), pp1645-1655

Lewis, E.E., 1996, Introduction to Reliability Engineering, New York: Wiley, 1996

Lofgren, L., 1977, Complexity of Descriptions of Systems: A foundational Study. International
Journal of General Systems, 3, 197-214.

Markopoulou, A., lannaccone, G., Bhattacharyya, S., Chuah, CN., Diot., C., 2004, Characterization of
Failures, in an IP Backbone, Proceedings - IEEE INFOCOM , 4, pp 2307-2317

56

McQuaid, P.A., 1996, Profiling Software Complexity, A PhD dissertation submitted to the graduate
Sfaculty of Auburn University, Alabama, August 30.

Miller, J.E., Kulp, RW., Orr, G.E., 1984, Adaptive probability distribution estimation based upon
maximum entropy, IEEE Transaction on Reliability, 33, pp 353-357

Munson, J.C., Khoshgoftaar, T.M., 1991, The Use of Software Complexity Metrics in Software
Reliability Modeling, Proceedings - IEEE International Symposium on Software Reliability
Engineering, pp. 2-11

Munson, J.C., Khoshgoftaar, 1993, Measurement of Data Structure Complexity, IEEE Software, 9(11),
pp 217-225

Nakagawa, T., Yasui, K., 2003, Note on reliability of a system complexity considering entropy,
Journal of Quality in Maintenance Engineering, 9(1), pp 83-91

Neufelder, A.M., Ensuring software reliability, New York: Dekker, 1993
Prasad, B., 2001, Product, Process and Methodology, Systematization to Handle Structural and

Computational Complexity in Product Realization, Systems research and behavioral science, 18, pp
523-543

Ren, Y.T., Yeo, K.T., 2006, Research challenges on complex product systems (CoPS) innovation,
Journal of the Chinese Institute of Industrial Engineers, 23(6), pp 519-529

Rodriguez-Toro, C.A., Tate, S.J., Jared, G.E.M., Swift, K.G., 2003, Complexity metrics for design
(simplicity + simplicity = complexity), Proceedings of the institution of mechanical engineers, 217(5),

pp 721-725

Roelfsema, S., Ion, R.A., 2004, Early reliability prediction on field data, Master thesis at Technical
University Eindhoven, Eindhoven: Technische Universiteit Eindhoven

Shepperd, M., 1988, A Critique of Cyclomatic Complexity as Software Metrics, Software Engineering
Journal, 3(3), pp30-36

Verschuren, P., Doorewaard, H., 1995, Het ontwerpen van een onderzoek, 1* edition, Utrecht: Lemma,
1995

Wong, K., 1990, What is wrong with existing reliability prediction methods?, Quality and reliability
engineering international, 6, pp 251-257

Yin, M-L., Peterson, J., Arellano, R.R., 2004, Software Complexity Factor in Software Reliability
Assessment, IEEE Proceedings of the Annual Reliability and Maintainability Symposium, pp. 190-194

Zhao, Y., BeMent, S.L., 1992, Kinematics, Dynamics and Control of Wheeled Mobile Robots, in
Proceedings on 1992 IEEE International Conference on Robotics and Automation, Nice, France, pp
91-96

Zuse, H., Software Complexity: Measures and Methods, New York; Walter de Gruyer & Co., 1990

Zuse, H., 1992, Properties of Software Measures, Software Quality Journal, 1, pp 225-260

57

Websites:

Garlikov, R., 2000, http://www.garlikov.com/science/sciteach.htm

Lucas, C., 2000, Quantifying Complexity Theory, CALResCo Group
http://www.calresco.org/lucas/quantify.htm

Philips Healthcare intranet site — Just Another Homepage (JAH)

ReliaSoft, 2007, ReliaSoft Corporation,
http://www.weibull.com/LifeDataWeb/lifedataweb.htm#tdata_classification.htm

Sethna, J.P., Statistical Mechanics: Entropy, Order Parameters, and Complexity, Oxford University
Press 2006,
http://pages.physics.cornell. edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf

Snoeyink, C., 2007, http://craigsnoeyink.blogspot.com/2007/06/worst-death-scene-ever-goes-to-
universe.html

Telelogic Logiscope, http://www.telelogic.com/products/logiscope/index.cfm

TIOBE Coding Standard (TICS) analyzer,
http://www.tiobe.com/index.php/content/company/Home.html

Alternative sources:

Albers, 2008, Master Thesis Preparation, Internal paper within the Quality & Reliability Engineering
department at the Technical University Eindhoven

Asten, van R., Product data analyst at the Customer Service department at Philips Medical Systems

Bouts, M., Project manager at the Cardio/Vascular development department at Philips Medical
Systems

IEEE standard 1061-1992, Standard for a Software Quality Metrics Methodolgy, The Institute of
Electrical and Electronics Engineers, December 1992

ISO/IEC 9126-1, 2001(E), Software engineering — Product quality

Kevrekidis, K., PhD student at the Quality & Reliability Engineering department at the Technical
University Eindhoven.

Kevrekidis, 2007, Monitoring and Predicting the Reliability Behavior of Early Failures in the Field
based on Decision Rules, Internal PhD Research paper within the Quality & Reliability Engineering
department at the Technical University Eindhoven

Loos, M., System architect at the Cardio/Vascular development department at Philips Medical
Systems

Oborzynski, K., Software developer at the Cardio/Vascular development department at Philips
Medical Systems

Sonnemans, P.J.M., Researcher at the Industrial Design department at the Technical University
Eindhoven.

58

Stollman, G., Relability manager at the Cardio/Vascular development department at Philips Medical
Systems

Telelogic AB, Telelogic Logiscope: Audit — Basic Concepts, Malmd: Telelogic Logiscope manual,
http://www.telelogic.com/support, 2006

Wolvekamp, C., Product data analyst at the Customer Service department at Philips Medical Systems

59

List of appendices

(T3 o) B T o o T g Lo [T 60
Appendix 1 System architeCtureccoooceeecricecrereerrr s s cnmnn e 61
Appendix 2 Problem analysis........ccccccoecmeicveceererresssemmsresesmessererssassensssssossseesnsnsassssss 62
Appendix 3 Research outlinecccooereececcccrrcrcinssnserns s s snss s 65
AppendiX 4 SYSteM @NIrOPY ...coceecrerrerrsmrserrsnsrssssssssnsansssnsssss s sssssssassssnssssnssassasssnssss 67
Appendix 5 Overview of software releases..........ccvveeeeeimrrrerinsessns s rnrseasnnanas 69
Appendix 6 Software reliability performance...........ccoocuiimiemnssresnnscssscsnsessssnnssneanes 70
Appendix 7 Software reliability Metrics.......c.ccccveeemiiiccnnicrr s 75
Appendix 8 Overview of physical software metrics........c.cccceeervmrnrsmsssscnsscessnnnann 79
Appendix 9 Logiscope code metrics descriptions.........ccccveecrrveresmsssesecsrsccersacenss 81
Appendix 10 Code metrics for FD20 SW releasesccccccveeeceresssrsssssssssssssscmsnnnes 84
Appendix 11 All available SW Code Metrics.......ccccceveceeeeemerverecrrssssressemsrrescesssssemsenns 85
Appendix 12 Reduction of code MetriCs..........cccccvrvercrrvrmrrsccerrssneesensessssceresssassesenes 88
Appendix 13 Correlating code metrics with SWF ... 90
Appendix 14 regression Models.........ccccoeciceecrerercmrrierrscscscemsrsssmn s ssmnssssennsassamsassnes 92
Appendix 15 SW units categorized by complexity..........cccocmrcmicmimssmssnssrssncsnsanannas 99
Appendix 16 Results questionnaire..........ccccecurieecmreecesesesrssccrsss s 101
Appendix 17 Categorization of HW subsystems.........ccccoemmiemmremnecenicrvencceancannn 103

60

Appendix 1 System architecture

The Allura Xper CV scanner consists out of the following Software subsystems:

User Interface (UI): software that is related to the user interface monitors that are shown to the
operators

User Interface Modules (UI Modules): all software units that are related to the user interface
modules for controlling the system. Examples are: footswitch, keyboard, viewpad, etc.

Field Service system (FS): software for configuration of system-level parameters and system-wide
performance tests.

Misc. system: software to automatically switch between acquisition and reviewing

Acquisition: Software that is related to the tube or acquisition of the X-ray beam.

Viewing: Software for reviewing the pictures after they are processed and stored.

Printing and Archiving (PandA): Software that is required for printing and archiving the pictures.
Geometry and Positioning (POS): Software that is required in order to control the moving parts of
the CV scanner like the stand and the table.

Database (DB): Database for storing settings ad pictures.

Image detection (ID): Software that is related to the flat detector which detects the X-ray beam.
Image Processing (IP): Software that processes the detected data into pictures with optimal
quality.

Host: the host server which includes much embedded software and hosts all other software units.
Infrastructure (Infra):

Vx Works (VxW): contains all VxWorks support code, like for example a transport layer and a
download manager.

Operating System (OS): this subsystem provides the host Operating System, which is a
standardized Windows software application.

Field Service FrameWork (FSFW): The subsystem “FSFW” contains the Field Service
FrameWork. It provides the plug-in framework, along with base classes that can be used by the
subsystems for the implementation of the Field Service Component (FSC) plug-ins.

A list of all the Hardware subsystems is presented:

X-ray Tube

X-ray Detector
Table (AD5/AD7)
M-cabinet
R-Cabinet

Monitors

Operator controls
Xtravision (optional)

61

Appendix 2 Problem analysis

The following phenomenon supports the statement that there are an increased number of relatively
“unknown” reliability affecting factors or at least these factors cause a large variance in the system’s
reliability performance, specifically in the early life phase.

High variance in the reliability performance among systems

This phenomenon is based on communications with Ir. Kevrekidis, PhD student at TU/e, and on the
findings of the Master thesis by Roelfsema (2004) who investigated a sample of 20 Allura Xper FD10
CV systems.

Roelfsema used “call data” from the Service Database in order to express the reliability performance
of these 20 systems by the number of registered calls. Roelfsema mentions that there is a high spread
in the failure patterns among the 20 systems, which indicates a high variance in the failure calls per
system. When analyzing the data set (table 2.1) this indeed shows a high spread in the variance of
failure calls and the data even seem uniformly distributed which even worsens the predictability of the
number of failures calls for an individual system. This corresponds with Roelfsema’s conclusion that
the predictive model he developed doesn’t fit individual systems.

| Failtres] Failures i Faxlures
Unfiltered | Filtered Unfiltered | Filtere Unfiltered T Filtered [|

Confidential

Table 2.1 Fallures of filtered and unfiltered data for the 20 systems (Roelfsema, 2004)

This large variance in failure calls for the sample of 20 systems is also expressed by the “uniform”
distribution shown in figure 2.1. The data and conclusions from Roelfsema will be verified with all
call data for the systems placed in the USA.

62

Histograms of Unfiltered and Filtered data set Roelfsema
Normal Distribution Fit

Unfiltered 365 days Unfiltered 730 days Unfltered 1000 days Unfiltered 365 days
3 34 3 ST

Wi et

£

5 Unfiltered 730 days
s (5
ErH

29

14 Unfiltered 1000 days
Mg W
] e s
o 5 ke

. i " | | Filtered 365 days
Filtered 730 days Filtered 1000 days M L

g
et

e =

Frequency

Filterad 730 days
g 40
Filtered 1000 days
Mpar %

W T

Number of failures
Figure 2.1 Histograms from data set Roelfsema

Roelfsema applied the following filtering principles for the raw call data:

- Filter corrective maintenance calls

- Filtering out the calls before the installation date of the system in the field

- Filtering out calls without jobs, and jobs without calls. (by job is meant a visit at the customer by a
service engineer and a call means contact between the customer and the service desk)

- Filter out the Field Change Orders (specific customization of the product to the customer wishes is
not seen as a failure of the system)

- Manually filter out all planned maintenance calls, installation activities and site visits incorrectly
booked as corrective maintenance.

Selected data set and filtering for validating the data set from Roelfsema (2004)

At the beginning of this research there was only a single data source available, which is the service
database. This service data contained the number of calls received from the customer and the number
of jobs performed at the customer by the service engineer. In order to get the most representative
estimate of the reliability performance of the systems, some filtering on the data is required.

First of all only systems that are placed in the USA are selected for the analysis, because:
- The calls are written in English language

- In general customers complain more frequently in the USA than in other countries.

- The USA represents roughly 50% of the total customers for CV systems

Beside this first selection of solely USA systems, the next filtering is applied:

- Only systems that contain a service contract or are within their warranty period are selected,
because these customers do contact the service desk more easily because it doesn’t result in extra
service costs for these customers.

- Only “corrective maintenance” calls are selected because planned maintenance and installation
activities calls should not be interpreted as a system failure.

- Filtering out the Field Change Orders (specific customization of the product to the customer
wishes is not seen as a failure of the system)

63

- Filtering out calls before the installation date of the system in the field, these negative Failure
times do not represent system failures because the system was not used in practice yet.

Furthermore the failure times are calculated by distracting the installation date from the call date.
Therefore these failure times are expressed in days. The actual mean time between failures can’t be
calculated because the exact operating times were not known in the start of this Master thesis.

Next to these filtering procedures a last filtering has been applied by the Information analysts Riny van
Asten (Product Data Analyst) and Cees Wolvekamp (Product Data Analyst). For each system type
they selected a panel of 50 systems for which they filtered out incorrect calls. Incorrect calls are calls
that resulted in a non-successful service job, which required a follow-up call and service job in order
to tackle the actual root cause of the failure. Next to this filtering they established which part of the
system was actually responsible for the system failure (service call).

About the sample:

- 4 sets of 50 systems: PBL10, PBL20, PBL30, PBL40
- Sample = 200 systems

- Population = 2000 systems

- Location: all systems are placed in US

Histograms of xper10pbl 10 and xper10pb|30
Normal Distribution Fit

¥per 10pbl10 xper 10phl30 1per10pbl10

"lf"i‘ N.S §<

[\
an
i

i
1per10pbl30

RO 11

AN
[}
!

Rt o N &

P

Frequency
—
an

10+

Number of failures

Figure 2.2 Histograms of call based failures for PBL10 and PBL30

Conclusions:

As figure 2.2 shows, the failure calls are not uniformly distributed but rather normally distributed.
Although the histograms indicate that the calls are normally distributed, the variance in failure calls
differs strongly among the systems. The majority of the systems has between 0 and 15 failures during
there first year after the installation date, which corresponds with the warranty period. Extended
knowledge on the relatively unknown reliability factor system complexity should enable a
classification of the systems according to this factor, which can explain this variance in the reliability
performance. It is expected that a classification according to system complexity enables better
understanding of the problems/issues that cause the high variance in reliability performance.

64

Appendix 3 Research outline

The following research phases have been carried out subsequently:

Formulation of the research problem

First of all reviewing the literature in order to get a better understanding of the research topic
(complexity) and its implications has been carried out in the Master Thesis preparation (Albers, 2008).
This literature review revealed some “blind spots” in the research field on “system complexity”. These
“blind spots” were translated in a problem situation, followed by a research question and research
assignment. (Paragraphs 2.1 till 2.3)

The assumptions in the problem situation (the assumed phenomena “increasing early life failures
trend” and “increased variance in the reliability performance among systems”) are verified by the
problem analysis which can be read in chapter 2 and appendix 2.

Designing the research concept:

In order to make a concept for the research design, the research structure has to be defined and the
applied study design that fulfills this research structure has to be selected. The definition of the
research structure and the selected study design are described in the first two paragraphs of chapter 3.
In these paragraphs the related / investigated variables are defined and decomposed into subgroups of
variables first.

This research concept (in paragraph 3.1 and 3.2) is designed in order to come up with good
hypotheses. These are defined in paragraph 3.3 and will provide answers to the research questions in
chapter 2. These answers might contribute to more insight in the relationship between system
complexity and system reliability as described in the problem situation in paragraph 2.2.

The research concept and the corresponding hypotheses are based on literature and communication in
the beginning of the research. The extent to which this theoretical research concept can be followed
depends heavily on the findings in the next research steps described in the chapters 4, 5, 6 and 7. The
findings from these research phases and their constraints limited the hypotheses that could be tested
and even slightly changed the research concept.

Construction of the data collection instrument

After the problem analysis has been finished and the research design concept is defined, the method of
data collection should be established. In the Master Thesis preparation Part 2, all methods of data
collection were mentioned and regarding the situation at PMS the best data collection methods were
selected. Not all methods were applicable, the problems and solutions regarding the data collection are
discussed in the research phase 6 “Data Collection™.

Selection of sample

The case study takes the Allura Xper product line as the sample for investigation. However, this
product line is subdivided in several similar but not equal systems. The selection of the actual system
types depends on the available data, which differs for each system type and each variable of interest.
The selection of the actual system type will therefore be discussed in the variable specific chapters
separately.

Next to the selection of the sample type also the sample size will depend on the available data for each

system type. Again, the availability differs per system type and variable of interest and therefore will
be described in the concerning chapters.

65

Create the research proposal
The research proposal is described in chapters 2 & 3 and includes an overview of all the previous
research phases and the proposal of the theoretical research concept.

Data collection

This thesis report will elaborate on which data was required for each research variable. The required
data selection has been separated in two types for Hardware as well as for Software. The variables
Software complexity and Software reliability will be described in chapter 4 and 5. The variables
Hardware complexity and Hardware reliability will be described in chapter 7. For each of the variables
is described which indicators are desired in theory and which indicators can actually be collected in
practice for the CV X-ray systems at PMS. Besides, these chapters also describe how these indicators
and their values should be interpreted.

Process data

In order to actually establish the relationship between system complexity and system reliability, the
raw data has to be processed. The data should be valid and reliable in order to come to correct
conclusions. This requires some processing and validation of some data (sources). This processing and
validation of data (sources) is again carried out separately for: system reliability, hardware complexity
and software complexity and is discussed in chapter 4 and 5.

Besides validating and processing the gained data, the relationship between the variables needs to be
investigated. Therefore the correct statistical procedures should be selected and carried out properly.
These activities are dealt with separately for Software in chapter 6 and Hardware in chapter 7.

Conclusions and Recommendations

Finally, the conclusions and recommendations that follow from the analysis results and finding in
chapter 6 and 7 are described in the last chapter 8.

66

Appendix 4 System entropy

Entropy is a pure mathematical approach to measure the complexity. Entropy stands for an indicator
that measures the level of disorder in a closed system. Entropy is extensively used in the field of
thermodynamics. However, in this preparation master thesis the scope is limited to the relation
between (maximum) entropy and reliability.

There is much confusion about what entropy really means, there are several fields that use entropy all
in a different way. Generally there are 3 interpretations of entropy (Sethna, 2007):

- Entropy measures the disorder in a system

- Entropy measures the interpreters ignorance about a system

- Entropy measures the irreversible changes in a system

However, within these fields there is still criticism among researchers, in specific Physicists,
(Snoeyink, 2007; Rick Garlikov, 2000) who blame each other of incorrect definitions of entropy. This
research will not focus on the debate about the soundness of entropy definitions or formulas. It will
only focus on applying the concept of entropy (as measuring the disorder in a system) to solve
reliability issues regarding system complexity.

This focus is chosen based on Nakagawa and Yasui (2003) who state that the concept of entropy can
be very useful when a measure of complexity is required to analyze the influence of complexity on
reliability. The concept of entropy is already applied several times in the past on reliability problems.
For example Cornacchio (1977) uses maximum entropy to classify complexity. Or Miller et al. (1984)
uses maximum entropy to estimate probability distributions. Summarized, entropy is a mathematical
concept with which the complexity can be quantified. But, entropy is a difficult concept and it will
require the necessary training and expertise of the researcher before this concept can applied on a
higher level, for example in reliability.

The concept of entropy is about “describing the level of uncertainty that remains after influencing
system characteristics are known”. So, according to the concept of entropy a system can be in several
states, these states can be separated in micro and macro states. Micro-states are variables in the
system for example disorder/order, defect/running, or number of components. Macro-states are
variables outside the system that can influence the system itself, for example the air quality in an
operation room is a Macro-state for a medical system/device. When the entropy for complex devices
with different Micro states are measured, they should be measured in the same Macro-state, in other
words; under the same circumstances.

Finally, the entropy measures the degree to which the probability of the system being in a certain
system state is distributed over the different system states. In other words; the better the actual
distributions for all the Micro-states can be predicted, the higher the entropy value will be. Entropy
could be used to measure complexity regarding reliability performance as well. In the following
example (table 4.1), a system consist of 2 main components and can be in 3 system states. From this
example one could also retrieve the reliability performance which is 80%.

Components: | System state 1: System state 2: Break System state 3:
Operating down C1 Break down C2
Cl Operating Failure Operating
C2 Operating Operating Failure
Distribution: 80% 15% 5%

Table 4.1: Example of probability distributions over several systems states

The accuracy with which one can predict the system’s state in which the system in practice will be,
determines the level of entropy. The more chaos, the higher the level of entropy will be. Generally an
increased number of system states also increases the chaos in the system.

67

The standard formula for entropy (S) in the field of statistical mechanics is S =k, InQ =k, , with k,

as the Boltzmann constant (depending on macro-state temperature) and € representing the number of
the Micro-states of the system. This formula changes depending on the type of study that needs to be
carried out. (Sethna, 2007) A more relevant formula for measuring the disorder of a system could be:

H(p)= —z p;log p,, with H(p) being the level of entropy, m being the maximum number of

i=1
system states and p; being the probability that the system is in state i. The entropy value is calculated
by the sum of all the probabilities for each state in which the system could be. (Heylighen, 2002)

Ppi

When the system state can be predicted with 100% S
accuracy the entropy in the system would be zero 1
(minimum entropy). As Figure 4.1 shows, when we
know for certain that the system is in state sO we can

state: p(so) =1, and p(s * so) which results into

Minimum entropy

the following calculation; 1K
H(p)=-1.log1+m-0.log0 =logl =0, which
means minimum entropy. 0 i K state:s

S
Figure 4.1: Minimum entropy [Source: Heylighen, 2002]

In contrary, when we have no clue about which ‘t
state the system will be in and the distributions for]
each state are equal the entropy in the system is at

its maximum.

p; =1/ K, with K being the total number of

system states. This results in the entropy formula:
H(p)=-K- (I/K)log(I/K)z logK =eo,

which is the Maximum entropy as shown in figure 0 K state: s
4.2. (Heylighen, 2002)

Maximnm entropy

B

Figure 4.2: Maximum entropy [Source: Heylighen, 2002]
Pi

Generally we know in some extent which system }
state is more likely to be than (the) other(s) system 1 Intermediate entropy
state(s). For this case H(p) will be between zero and
infinity (0 < H(p) < «). The more difference there is
between the probability distributions for each
system state, the lower the level of entropy H(p) will 1K
be. (Heylighen, 2002) Figure 4.3 shows the —~— s BN . _
intermediate entropy. o K state: s

Figure 4.3: Intermediate entropy [Source: Heylighen, 2002]

Summary and conclusion

Advantage of the concept entropy is the mathematical approach to measure complexity which will
come up with quantitative results which are mathematically grounded. A disadvantage is the difficulty
to apply this concept in practice. It will require many assumptions and an abstract way of thinking
with accompanying limited results. Therefore entropy will be used as a metric for reliability
performance, the higher the entropy level the more failure states exist and the more homogenous the
numbers of failure occurrences are distributed over these failures states. In other words; the higher the
entropy level, the less reliable the system will be.

68

Appendix 5 Overview of software releases

PBL' Commercial Hame Software: Service packs

Project Full Version | SP-1 SP-2 SP-3 SP-4 SP-5 SP-6 SP-T
PBL_10/

BIS-3 Allura Xper FD10; rel. 1 PBL_1.2.0 PBL_1.2.4 PBL_1.2.2 PBL_1.2.3 PBL_1.2.4 PBL_1.2.5 PBL_1.2.6* -

PBL_23/ PBL_2.0.0¢ PBL_2.0.1/ PBL_2.0.2/ PBL_2.0.3/ PBL_2.0.4/ PBL_2.0.5/ PBL_2.0.6*¢

Rocket-A Allura Xper FD20; re/. 1 PDC_23.250 | PDC_23.251 PDC_23.252 | PDC_2325.3 | PDC 232547 | PDC_232553 [PDC_23.25xy | -

PBL 34/ Allura Xper FD10; rel. 2 PBL_3.1.0¢ PBL_3.1.4¢ PBL_3.1.2/ PBL_3.1.3¢ PBL_3.1.4¢ PBL_3.1.5/ PBL_3.1.6/ PBL_3.1.7%
Rocket-B Allura Xper FD10/10; re/. 1 PDC 3460 | PDC_34.64 PDC_34.6.2 PDC_34.6.42 | PDC 34651 PDC_346.58 PDC_34.6.66 | PDC_348.xy
PBL _#1/) Allura Xper FD20; re/. 2 PBL_4.0.0/ PBL_4.0.1/

Rocket-B2 Allura Xper FD20/10; re/, 1 PDC_41.12.0 | PDC_41.134 | - - - - - -

PBL_43: Allura Xper FD20; re/. 2.2 PBL_4.3.0/ PBL_4.3.1/ PBL_4.3.2/ PBL_4.3.3) PBL _4.3.4/ PBL_4.3.5%/

Rocket-B2+ | Allura Xper FD20/10; ref. 1.2 | PDC_43.10.0 | PDC_43.10.14 | PDC_43.10.22 | PDC_43.10.39 | PDC_43.1042 | PDC_4310xy | - -

PBL_51/ Allura Xper FD10; rel. 3 PBL_5.0.0/ PBL_5.0.1/ PBL_5.0.2/ PBL_5.0.3! PBL_5.0.4 PBL_5.0.5/ PBL_5.0.8/

Rocket-C1 Allura Xper FD10/10; ref. 2 PDC_51.220 | PDC_51.221 | PDC_51.222 | PDC 51.22.3 | PDC 51.224 | PDC 51.22511 | PDC_51.2261 | -

PBL_61/ Allura Xper FD20, re/ 3 PBL_6.0.0/ PBL_6.0.1/ PBL_6.0.2/ PBL_6.0.3!

Rocket-C2 Allura Xper FD20/10; vef. 2 PDC_61.18.0 | PDC 611812 | PDC 61.18.28 | PDC _61.18.31 | - - - -

69

Appendix 6 Software reliability performance

6-A Software reliability performance

First of all software reliability should be expressed in a quantitative measure. However, software
reliability is rather a qualitative than a quantitative variable. There are many ways in which software
reliability can be expressed and there are more methodologies to use. One way to express software
reliability is the methodology provided by the ISO quality handbook, as shown in figure 6.1.

Effect of

P
rocess Software product software product

influences
e

influences)
fl »/ quality
in use

attributes

influences

external
quality
attributes

internal
quality
attributes

process
quality

depends on depends on depends on
process internal external quality in use
measures measures measures measures

Figure 6.1 Quality model framework (ISO/IEC 9126-1:2001(E)

The model is built up out of process quality (the quality of the development process), internal quality
attributes (static measures of internal software characteristics of the actual source code), external
quality attributes (that measure the behavior of the code when it is executed) and quality in use
attributes (quality in the user’s point of view).

ISO focuses on improving the (development) process, because here the quality of the product starts.
ISO assumes that an improved development/building process will result in better internal quality, this
will result in better external quality, which in the end increases the quality in use. This concept is a
continuous (improvement) circle which is used in order to improve the product and set up the
requirements, as figure 6.1 visualizes.

This master thesis will restrict itself solely to the internal and external quality of the software product
because the “quality in use” will require insight in the user profiles and their user needs. This insight is
not available and is part of the PhD research by K. Kevrekidis.

According to the ISO handbook the external and internal software quality can be divided into 6 sub
characteristics, which are:

- Functionality; suitability, accuracy, interoperability, security, and functionality compliance.

- Reliability; maturity, fault tolerance, recoverability and reliability compliance.

- Usability; understandability, learn ability, operability, attractiveness, usability compliance

- Efficiency; time behavior, resource utilization and efficiency compliance.

- Maintainability; analyzability, changeability, stability, testability, maintainability compliance.

- Portability; adaptability, install ability, co-existence replace ability, portability compliance.

This research solely tries to establish a relationship between the software characteristics expressed in
quantitative metrics and the reliability performance of the software specifically. However, also
software reliability performance is an ambiguous term and should be expressed in quantitative metrics
as well in order to establish its relationship with the software complexity.

The ISO handbook describes software reliability as “the capability of the software product to maintain

a specified level op performance when used under specified conditions”. It also mentions that there is
no wear-out or ageing in software and failures are due to faults in requirements, design and

70

implementation. So failures occur due to the way the software product is used in instead of the elapsed
time, which is the case for hardware failures. The ISO handbook uses the following factors to express
the software performance: Maturity, Fault tolerance, Recoverability. A detailed description of each
performance criteria and the related metrics/indicators according to the ISO handbook can be found in
appendix 6B. This thesis restricts itself to the fault tolerance, which means only this aspect of
reliability will be taken into account.

Fenton (1996) provides the following description of Software Failure and its occurrence. A software
failure occurs when there is an error made during programming and this error remains in the software
even after it is tested and launched for field usage. When the system is used in the field and the
functions that require the code in which the error is made are executed, the system will fail. This
reasoning is best explained by the cartoons in figure 6.2. A human error during programming can lead
to a fault (Software bug) which again can result in a system failure. It should be mentioned that not all
errors result in Software bugs (faults) and not all software bugs cause a system failure. (Fenton, 1996)

can lead to

human error fault failure

Figure 6.2 From error to failures [Fenton, 1996]

Based on this reasoning the following definitions can be made for software reliability measures
(Fenton, 1996):

- SWerrors: A processing error is a system state when it has triggered a fault but the failure has
not occurred yet. These are not SW faults yet.

- SW faults: Occurs when a human error truly results in a mistake in the software product. The
fault is the encoding of the human error and is also called a “‘software bug”.

- SW failure: is the departure of a system from its required behavior (Fenton, 1996) which
corresponds with the external quality attributes and the quality in use attributes from the 1SO
handbook. A SWF can be discovered before system delivery (during testing) and after system
delivery (during operation in field).

- Crashes: these are a special kind of failures where the whole system is not able to perform its
function anymore.

As already mentioned before a fault does not always result into an actual failure (when the code is
never executed the fault does not result in a system failure). According to Fenton (1996) SW reliability
should be defined in terms of failures observed during operation rather tan in terms of faults. The
selection of the SW reliability measures in this thesis depends on the available and retraceable data at
PMS, which will be described in the next paragraph.

Of course, not all software errors and software failures have the same severity or are the same type of
errors/failures. The software errors and failures can be categorized according to fault types and fault
severity,

One way to categorize software errors into error/fault types is the methodology mentioned by
Neufelder (1993) who categorizes software errors in the following 5 areas:
- Regenerated errors: These errors are initially not in the software but are created when
software was adapted in order to correct another error.
- Undetected error: this is a programming error that hasn’t been discovered yet.

71

- Performance error: these errors actually impede the software program from executing its task;
this can be separated in lost functionality or in performance like response time / memory
usage / etc.

- Data error: these errors occur due to incorrect entered data or values

- Initialization error: occurs due to incorrect/incomplete initialization of variables.

Another approach to categorize the software faults/errors into classes is classification by IEEE
standard 1061 (1992). This standard provides the following categorizations: Logic problem,
Computational problem, Interface / timing problem, Data handling problem, Data problem, Document
quality problem, and Enhancement. These categories are again subdivided into root failure causes
which are shown in appendix 6C.

Next to this categorization of errors into types of software errors also the errors can be categorized
according to their criticality. Neufelder (1993) categorizes errors in 5 groups:
- Catastrophic: these errors may cause an irreversible mission failure, or a safety hazard that
may result in an injury or life threatening situation.
- Critical: these kinds of errors cause an unacceptable system failure that will result in long
system downtime or loss of important data.
- Moderate: these errors result into system failures that result into short or temporary system
downtime and / or some unavailable system functions.
- Negligible: these errors have no significant effect on the system performance, the system has
to be restarted or the errors don’t cause unavailable system functions.
- All others: all errors that cannot be categorized in the groups above or errors that are not
caused by the code itself but by incorrect operator’s actions or hardware failures.

6-B Reliability aspects defined by IEEE (standard 1061)

This part of the appendix describes the three reliability aspects for software as defined in the ISO
handbook: Maturity, Fault tolerance, and Recoverability.

B1. Maturity metrics

/g';te;:: a:l Metric Description
external Estimated latent fault | No. of faults detected during a defined trial period and predict ‘
density potential number of future faults using a reliability growth
estimation model
external Failure density Count the no of detected failures and performed test cases and
against test cases compare them
external Failure resolution Measure how many failure conditions are resolved.
external Fault density The number of detected faults and the fault density
external Fault removal The amount of faults removed during testing in comparison to
the total no. of faults detected and total no. of faults predicted
external Meant time between The no. of failures occurred during a defined period of
failures operation, the average time interval between software failures
external Test coverage the amount of required test cases executed during testing
internal Fault detection Number of faults detected in the reviewed period compared
with the estimated faults to be detected
internal Fault removal Count the number of faults removed and detected during the
design/coding and compare them
internal Test adequacy measures if there are enough tests runs

72

B2. Fault tolerance metrics

Internal

/External Metric Description
external Breakdown The number of breakdowns occurrence with respect to the no of
avoidance failures, measured by the log files
external Failure avoidance The number of avoided fault patterns (that could cause serious
and critical failures) found during testing in comparison to the
number of considered fault patterns
external Incorrect operation the number of test cases of incorrect operations which were
avoidance avoided to cause critical and serious failures and compare it to
the no of executed test cases of incorrect operation patterns to be
considered.
internal Failure avoidance The number of failure patterns that are found during
design/coding
internal Incorrect operation The number of functions that are implemented with incorrect

avoidance

operations avoidance capability

B3. Recoverability

Restore effectiveness

/E: ::1:::111 Metric description

external Availability Test the system in a production like environment for a specified
period of time performing all user operations and measure the
repair time period, each time the system is unavailable.

external Mean down time The mean time period in which the system is unavailable

external Mean recovery time | The recovery time that is required after the system breaks down

external Restart ability The number of system restarts within a specified time period
and compare this number of restarts when the system was
brought down during the specified trial period

external Restorability / the number of successful restorations compared with its required

Restore effectiveness | restoration in the specifications
internal Restorability / The capability of the system to restore itself after an abnormal

event or request and the effectiveness of the restoration.

73

6-C Software failure classification by IEEE standard 1061

Logic Problem

Forgotten cases or steps

Duplicate logic

Extreme conditions neglected

Unnecessary function

Misinterpretation

Missing condition test

Checking wrong variable

Iterating loop incorrectly

Computational
problem

Equation insufficient or incorrect
Missing computation
Operand in equation incorrect
Operator in equation incorrect

Parentheses used incorrectly

Precision loss
Rounding or truncation fault
Mixed modes

Sign convention fault

Interface / timing
problem

Interrupts handled incorrectly

Data problem

Sensor data incorrect or missing

Operator data incorrect or missing

Embedded data in tables incorrect or
missing

External data incorrect or missing

Output data incorrect or missing

Input data incorrect or missing

Ambignous statement

Incomplete item

Incorrect item

Missing item

Conflicting items

Redundant items

Confusing item

Nlogical item

Non-verifiable item

Unachievable item

I/0 timing incorrect
Timing fault causes data loss

Subroutine/module mismatch
Wrong subroutine
Incorrectly-located subroutine call

Non-existent subroutine called

Inconsistent subroutine arguments

Data handling
problem

Initialized data incorrectly

Document quality
problem

Applicable standards not met

Not traceable

Not current

Inconsistencies

Incomplete

No identification

Accessed or stored data incorrectly
Flag or index set incorrectly
Packed/unpacked data incorrectly

Referenced wrong data variable

Scaling or units of data incorrect

Dimensioned data incorrectly
Variable type incorrect
Subscripted variable incorrectly

Scope of data incorrect

Enhancement

Change in program requirements
Add new capability
Remove unnecessary capability

Update current capability

Improve comments

Improve code efficiency

Implement editorial changes

Improve usability

Software fix of a hardware problem

Other enhancement.

74

Appendix 7 Software reliability metrics

7-A Pareto analysis

amming errors

A.1 Field progr:

The Pareto of the “normalized” programming errors per system:

Pareto Programming Errors per system

100
90

%

80
70
60
50
0
0
0

4

3

2
0

1

[ENUSPIUO)

siy 00S1 / sdolla Bujwweiboud #

1234567 8 9101112131415161718192021222324 25262728 2930

Number of systems

The Pareto of the “normalized” programming errors per software unit:

Errors per Unit

ing

Pareto Programm

100
90
80
70
60
50
4
30
2

%

0
0
10

[ENUSPIUO)

yun Jad sious Burwwelboid #

uonoalep abew|—qj
Bunuudvpued
MIOMIBNYOIY ypuRd
uoIssag SASOSIN
SIMO sASosIN
uoljeiauary boy
Jorewjjon boy
wrjweag boy
[oPON eleg

jusijed

[apoweleq
uoljewoiny

IN [eolydeln-uoN

B soo1req 1IN
g OnSidl

Buimairay
Ajpwoan)
in resydeis

| aInjonnseyuFad

uonysinboy

75

9L

Acq_Acquisition
Viewing_Reviewing
Viewing_IPISLib
Database_EPX tool
UI_NGUI

FS Sys_User
UI_TSMUI

Acq BeamLim
Database_Dbmt
PandA_Dmt
UI_GUI
Acq_Collimator
Acq_Generation
Database_Datamod
Database_Dfu
Geo_Geometry CV
Geo_PandBPos
MiscSys_Automatio
MiscSys_CWIS
MiscSys_Session
PandA_ArchNetwork
PandA_InfraPMS
PandA_Papu
PandA_Printing
PandA_Ris

Ul Modules_TSM
Ul Modules_UIDS
Viewing_QA
Viewing_QAUIGlue
Viewing_lQ-Tooling

Number of problem reports

Confidential |

—_
o

yun Jjad suoday wajqoid o1died

02
o€
ot
09
0L
08
06

0oL

% 05

jrun aremijos 1ad Sunse) Suunp sppodor wA[qOI] UO OJaIR]

sjrodax ujqoad jsa, 7'V

LL

"Programmin Image Detector failure"

"Programming XRa Generatorf ilure"

"Programming error: DmCacheLib

"Programming error: unspecified exception,"”

7 Prgramming error:

CLE1 4157 dev_cls.c#1880 p,_task can_527

"Programming error:

GECO 4304 b\gsc\sre\gsc_tfgeco.cf#1845 Emb\bbisre\dev_cls.c:p_call_tsk"

"Programming er

"Programming error: GS

GECO 430A b\gsc\sre\gse_tfpeco.c#1845 Emb\bbisrc\dev,_cl

11_tsk"

11]"Programming error: COM server not available." 800,792 0,080
12} "Programming error: process terminated due to a fatal exception.” 110,010 0,020
13{"Programming error: starting Application failed” 1010,099 0,099

"Programming error: unspecified exception.”

"Programming error: a function call failed"

17{"Programming error: COM server not available.”

0,214

0,143

"Programming error:

. unspecified exception.”

"Programming error: COM server not available."

21{"Programming error: process terminated due to a fatal exception." 110,007 0,014
22| "Programming error: structured exception.” 89]0,586 0,136
23| "Programming error: unspecified exception.” 910.059 0,073
24 "Programnung error: process terminated due to a fatal exception.” 210,091 0,095

: unspecified exception

: unspecified exception.”

sanjeA Adonug g-7

7-C Problem reports during testing:

Subsystems

Rocket B2+ (PBL 43)

Units

Critical | Major | Average I Minor | Enhancement | Total | Severe

Acquisition

Acquisition

BeamLim

Collimator

Generation

DB

DBMT

Datamodel

Dfu

EPXTool

FSSys

UserCalibration

Geo/PBPos

GeometryCV

PandBPos

Misc Sys

Automation

CWIS

SessionMgt

PandA

ArchNetwork

Dmt

InfraPMS

PandA

Papu

Printing

Ris

Ul

GUI

Ngui

TsmUI

UIM

TSM

Uids

Viewing

IPISLib

QA

QAUiGlue

Rev

1Q-Tooling

Confidential

78

Appendix 8 Overview of physical software metrics

The main categories, in which the quantitative (physical) software metrics are grouped, will now be
explained in more detail.

Software science parameters:

These metrics are derived form the concept of Halstead’s software science metrics (1972) in which
Halstead attempts to derive software attributes like implementation efforts, clarity, structure, error
rates and language levels from basic metrics which are the number of unique operators/operands and
the total number of operators/operands. These quantitative metrics are related to some qualitative
attributes such as program size and effort. The corresponding formulas and reasoning can be found in
Halstead (1972). Simpler “program size” metrics are: no. of lines of code (LOC), no. of comments,
no. of bytes or no. of source statements (McQuaid, 1996) Furthermore, Kolmogorov complexity is used
to express the software complexity in measures of size/length as well. (Lofgren, 1977)

Control-flow metrics:

Control flow metrics are related to the order in which the statements in a program are executed. A well
known and widely applied metric of this kind is McCabe’s cyclomatic complexity metric. This metric
uses the number of control paths as an indicator of software complexity and can be calculated by the
following formula: m = e — n + 2p, with e is the number of edges, n is the number of nodes and p is the
number of connected components (Shepperd, 1988). Other control-flow metrics are NPATH, Knot
count and Nesting level complexity (McQuaid, 1996).

Data-flow metrics:

Data-flow metrics measure the complexity that is caused by data usage. In other words, the data
structure determines the software complexity. Examples of data-flow metrics are Attribute complexity
of a data structure (Munson and Khoshgoftaar, 1993) and Chapin’s Q measure. (McQuaid, 1996)

Information-flow metrics:
This metric measures software complexity as the number of information flows between the module
and its environment and is called the Fan-in Fan-out metric (Henry and Kafura, 1981).

Hybrid metrics:
Hybrid metrics are metrics that combine two or more other metrics into one metric.

Entropy based software complexity metric:
Harrison (1992) applied the general concept of entropy in order to measure software complexity. He

h
developed the Average Information Content Classification (AICC) metric: AICC = —Z:Llog2 S ,

i NV N,
with f; the number of occurrences of the i unique operator and N; the total number of non-unique
operators. AICC is an ordinal measure for software complexity and only can order software programs
from more to less complex but no conclusions about the actual distance between the programs can be
made. (Harrison, 1992)

Cohesion and coupling:

In the case of large software systems / programs, object oriented software designs are generally
applied to structure the program so the systems remains transparent. This is also the case for the
software in the CV X-ray systems at PMS. The software is grouped into functional blocks that are
connected to the core tasks of the CV systems like for example acquisition of viewing. The complexity
within these subgroups can be measured by the metrics as described above and is defined as the
cohesion. However, the relationships and interactions between these subgroups create complexity if

79

the software as well. The metric that expresses this kind of software complexity is called coupling.
(Lange, 2005; Da-Wei, 2007)

Figure 8.1 shows the coupling and cohesion of the software. The blue arrows represent the coupling
between the functional software blocks and within each module the red arrows represent the
complexity of the functional block itself which is called the cohesion. This complexity can be
measured by the interactions between the components, but also the number of components and the size
of these components is a metric to express the complexity of this functional block.

Figure 8.1 Coupling and Cohesion
[Derived from; Lange, 2005]

80

Appendix 9 Logiscope code metrics descriptions

The descriptions of the software code metrics are derived from the Telelogic Logiscope manual
(Telelogic AB, 2006) and the the research paper by Lancon and Saclay (1995).

Quality model "Logiscope.ref” (Class metrics):

Metrics

Description / Interpretation

Number of statements

Statements that are counted; 1--> control statements (break, continue,
do, for, go to, if, labels, return, switch, while, case, default) 2-->
statements followed by ; , 3--> Empty statements. (Telelogic AB, 2006)

Comment frequency

number of comments / number of statements (L.ancon and Saclay, 1995)

Average size of
statements

Program length / number of statements = (N1+N2)/lc_stat. This metric
detects components that have, on average, long statements. This
generally makes the code more complex to understand and harder to
analyze (Lancon and Saclay, 1995)

Cyclomatic number
(VG)

This metric is measured based on the number of nodes of decisions.
Formula v =1 + Sum (n;-1) --> n;is number of edges departing from the
node i. This metric quantifies the complexity of the control structure. It
indicates the effort the reader must make to understand the function’s
algorithm and how much tests should be ran (Telelogic AB, 2006)

Maximum nesting
level

maximum number of nested loops or conditions within a module
(Lancon and Saclay, 1995)

Vocabulary The average number of times the vocabulary is used in a component. =

frequency (N1+N2) / (n14+n2) --> when the value is high it means that it contains
very similar or even duplicated statements. Good indicator of the
required maintenance effort. Corrections have to be made at every place
where the code has been duplicated (Telelogic AB, 2006)

Number of paths A high value is often due to a the fact that the function has too many

executable statements. Solution is to reduce the no of statements by
subdividing the function or factorizing any code repetitions it contains.
(code with GOTO statements cannot be analyzed) (Telelogic AB, 2006)

Number of callers

No of functions calling the designated function. This number of calls to
a function is an indicator of criticalness. The more a function is called
the more it is critical and the more it should be reliable (Telelogic AB,

2006)
Structuring Unknown
Number of direct The number of edges starting from a component. (Lancon and Saclay,
calls 1995)

Number of direct calls in a function. Different calls to the same function
count for one call (Telelogic AB, 2006)

Number of
parameters

The number of parameters is a good indicator for the test effort required
for the function/software program; a small increase in the number of
parameters can result in a significant increase in the possible
combinations of execution scenarios (Telelogic AB, 2006)

Tries to capture coupling between modules. Understanding modules
with large number of parameters will require more time and effort
(assumption). Modifying modules with large number of parameters
likely to have side effects on other modules.

81

Quality model "Logiscope.ref" (Application metrics):

Metrics

Description

Depth of inheritance tree

Depth of the Inheritance Tree (DIT) --> no of classes in the
longest inheritance link. The longer the DIT the greater the no of
inherited functions and the more complex the application.
(Telelogic AB, 2006)

Average complexity of
functions

Weighted metrics per class (WMC), it is the sum of static
complexities (ct_vg) of class methods. Metric is almost the same
as ct_vg (Telelogic AB, 2006)

Call graph depth

The number op call graph levels --> the more hierarchy the more
complex the system

Sum of cyclomatic
numbers of the
application functions

Sum of the vg's of all application functions--> sum (ct_vg)
(Telelogic AB, 2006)

Number of lines

total number of lines in the function / software program (Telelogic
AB, 2006)

Number of application
functions

Sum of all VG for all functions in the application (Telelogic AB,
2006)

MQOOD = Metrics for Object Oriented Design:

Coupling factor (MOOD)

Coupling between classes within the appliction (software
program/unit) itself. It uses the client-supplier relations, and
excludes the couplings within the inheritance tree) (Telelogic AB,
2006)

Polymorphism factor
POF (MOOD)

The “pof” numerators are the sum of overriding methods in all
classes. This is the actual number of possible different
polymorphic situations. The “pof” denominator represents the
maximum nr of possible distinct polymorphic situation for that
class as the sum for each class of the nr of new methods multiplied
by the nr of descendants. The value will be high when all the new
methods defined in each class would be overridden in all of their
derived classes. (Telelogic AB, 2006)

Attribute inheritance AIF
factor (MOOD)

The “aif” numerator is the sum of inherited attributes in all classes
of the project. The AIF denominator is the total number of
available attributes (locally defined plus inherited) for all classes.
(Telelogic AB, 2006)

Method inheritance factor

The sum of inherited methods in all classes of the project.

(MOOD) (Telelogic AB, 2006)

Attribute hiding factor The “ahf” numerator is the sum of invisibilities of all attributes

AHF (MOOD) defined in all classes. The invisibility of an attribute is the
percentage of total classes from which this attribute is not visible.
The “ahf” denominator is the total nr. of attributes defined in the

roject. (Telelogic AB, 2006)
Method hiding factor The “mhf” numerator is the sum of the invisibilities of all methods
MHF (MOOD) defined in all classes. The invisibility is the percentage of total

classes from which this method is not visible. The “mhf”
denominator is the total nr of methods defined in the project.
(Telelogic AB, 2006)

82

Quality model "Halstead.ref" (class metrics):

Metrics

Description

Total number of operands

Total number of operands (Telelogic AB, 2006)

Number of distinct
operands

Number of unique/distinct operands used in the code. Operands
are: Literals (Decimal, Octal, Hexadecimal, Floating, Character,
String, Boolean), identifiers (variable names, type names,
function names, etc.), file names in #include clauses (ex:
#include<stdlib.h>), Operator names (Ex: new, delete, +, -, *=
and, >, +=, etc.). (Telelogic AB, 2006)

Total number of operators

Total number of operators (Telelogic AB, 2006)

Number of distinct
operators

Number of unique/distinct operators used in the code. Unary
operators, Binary operators, Ternary conditional operator,
assignment operators, statements, declarations, declarers, classes
derived classes, special member functions overloading
templates, preprocessing directives, declarations and types
(Telelogic AB, 2006)

Halstead intelligent content

I=L*V (Telelogic AB, 2006)

Halstead mental effort

E = V*D = (n1*N2 *(N1+N2)*log2*(n1+n2))/(2*n2) (Telelogic
AB, 2006)

Halstead program level

L=(2*n2) / (n1*N2) (Telelogic AB, 2006)

Halstead difficulty

D=(n1*N2)/(2*n2) (Telelogic AB, 2006)

Halstead volume

V=N*log2(n) (Telelogic AB, 2006)

Halstead estimated length

N=n1*log2(n1)+n2*log2(n2) (Telelogic AB, 2006)

Halstead length

N= N1+N2 (Telelogic AB, 2006)

Halstead vocabulary

n=nl+n2 (Telelogic AB, 2006)

83

Appendix 10 Code metrics for FD20 SW releases

The following table includes the software code complexity metrics for several service packs. The
PDCs represent new software releases. PDC 41.12.0, PDC 43.10.0 and PDC 61.18.0 are new software
versions (with added functionality) and the other PDCs represent service packs (updates of the
software versions). The standard deviation (StDev) and the ratio “StDev/Average score” represent the

degree of change in the code metrics over the PDCs.

Metrics: PDC43.10.0 |PDC43.10.13 |PDC43.10.22 |PDC43.10.34 |PDC4322.42 |PDC61.181 |StDev |StDev/Avg
Depth of inheritance tree 5 5.00 5.00 .00 5 7 0.82 0.153
Average complexity of functions 1.93 1.93 1.93 1.93 1.93 1.98 0.02 0.011
Call graph depth 26.00 26.00 26 26 26 29 1.22 0.046]
Sum of cyciomatic no. of

application functions 26,587.00) 26,587.00 26,591.00 26,620.00 2662200 27,719.00] 456.54 0.017]
Number of lines 281,798.00] 281,797.00] 281,826.00] 282,326.00] 282,352.00] 296,902.00| 6081.23 0.021
Number of application functions 13,802.00 13,802.00 13,802.00 13,818.00) 13,818.00] 13,996.00] 76.99 0.006,
Coupling factor 0 0 0 0| 0 0 0.00 X
Polymorphism factor 0.09) 0.09 0.09 0.09 0.09 0.09 0.00 0.000)
Attribute inheritance factor 0.04 0.04 0.04 0.04 0.04 0.04 0.00 0.000
Methad inheritance factor 0.43 0.43 0.43 0.43 043 0.43 0.00 0.000
Attribute hiding factor 0.91 0.91 0.91 0.91 0.91 0.91 0.00 0.000]
Method hiding factor 0.29) 0.29 0.29 0.29) 0.29 0.29 0.00 0.000)
Number of statements 7.04 7.04 7.04 7.04 7.04 7.22 0.07 0.010
Comment frequency 4.07 4.07 4.07 4.07 4.07 3.92 0.06 0.015
Average size of statements 3.46 3.46] 3.46 3.46 3.46 3.54 0.03 0.009
Cyclomatic number (VG) 1.93] 1.93 1.93 1.93] 1.93 1.98 0.02 0.011
Maximum resting level 053 0.53 0.53 053 053] 0.56 0.01 0.023
Number of distinct operands 5.62) 5.62) 5.62 563 563 5.78 0.06 0.011
Vocabulary frequency 154 1.54 1.54 1.54 1.54] 1.56 0.01 0.005)
Number of paths 54.3 54.3 54.3 54.28 54.28| 67.31 5.31 0.094)
Number of callers 0.96 0.96, 0.96 0.96) 0.96, 1.05 0.04 0.038}
Structuring 0.39) 0.39 0.39 0.39] 0.39 0.38 0.00 0.011
Number of direct calls 2.99 2.99 2.99 2.99 2.99 3.07 0.03 0.011
Number of parameters 0.91 0.91 0.91 0.91 0.91 0.89 0.01 0.009]
Total number of operands 11.13 11.13 11.13 11.16 11.16 11,57 0.18 0.0186]
Number of distinct aperands 5.62 5.62 5.62 5.63 5.63 5.78 0.06 0.011
Total number of operators 22,22 22.22 2222 22.26 2226 23.33 0.45 0.020
Number of distinct operators 9.73 9.73 9.73 9.73 9.73 9,97 0.10 0.010
Halstead intelligent content 11.91 11.91 11.91 11.92 11.92 12.49 0.24 0.020
Halstead mental etfort 5,770.39 5,770.32 5,770.32 5,799.67 5,808.86 6,376.36| 242.45 0.041
Halstead level 0.25 0.25 0.25 0.25] 0.25 0.24 0.00 0.016
Haistead difficutty 8.88 8.88 8.88 8.89 8.89 9.18 0.12 0.014]
Halstead volume 167.47 167.47 167.47 167.88 167.96 176.79 3.74 0.022
Haistead estimated length 57.71 57.71 57.71 57.79) 57.8 59.87 0.87 0.015
Halstead length 33.35 33.35 33.35 33.41 3343 34.9 0.62 0.019
Halstead vocabulary 15.35 15.35 15.35 15.36 15.36 15.76 0.17 0.011
Application metrics

Class metrics

Class meirics (Haistead)

84

68

2 g 3
2 < .
£ 5 g
: HERIR t 2 B .
é 3 3 S 5 8 & £ 3 s g @ o | £ =
: 2 & 3 s s 3| ¢ 3l g s| Bl o/ 3|2 o ¢
w = =4 =} =} L “w Q. 2 E o o = o] b] w|l ¥ e o E
El = El 5| B g & & g 5| £ - - ol ¥ g ¢ K 3|9 @ £
A% 3 2 & g S % il € @ 3 8 5 El ¢ € gl | % gl %
S % E E 5 5 o E] B] E 3 €l o| o ol o] ¢ W = =
® = R 3| 3| & s| 2| 3 s @ 5 ® sl 3 3 3| S g| ¥ 2 oz
b 3 a =z =z o a o E a a I o E r=1 a a o o 2 [[
a B B " | E E E E E E o E E E E E E| » n > E]
n] g -] o E] 2 =] =3 2 3 Q W =3 El El E] 2| £ = 4
I x I - [d = = (2] (&) =z =z - I Q = = = = < Q 1 |
4 _| ~ il O =i 5 ot I - ~l i @ i - i I I . o o
[75] w w w w w wm w w w w w Py w w wm wm (4] w w Q (&)
Subsystem %} 3] o o 2] o o [3) o [} (%) o] o o %) 2] ol o o o ©
Acquisition 167 95 22,26 4.07] 0,91 154320 18167 164| 052
Database 218 28.33 2.08(1.14 40452 39206 117] 007
FS Sys 138,47 18,53 643 075 48515 1208 6] 018
G eometryPositioning 201,39 24,44 3,44| 0,99 172559 10728 253 0,30
Image Detection 102,12 23,04 38| 141 X 10484 X X
Image processing 208,07 23,76 2,38 12 X 10860 3224| 482
Misc Sys 176,3 21,68 3,18] 0.77 63101 63156 2| 012
PandA 351.63 32.86 4,07] 1,12 129543 11685 172] 0,25
Ui 130,93 18,24 3.24| 0,72 111857 21011 104| 1,78
Ul Modules 291,75 247 4,15] 1,02 316805 3700 5| 2682
Viewing 185,51 22 89 3,14 08 128804, 15643 69958| 11,73
=
@ o %)
[44 [|2
5 - . 3 s 0 5| £ 8
£ 8 B 8l ¢ 8 4 @ T
g 5 > =1 g = = - s E| 2 [& z
g2 2 |l ¢ & & & 2 8 S S £ &l 3 5 =&
z § goE o3 8 g g s sl 5 8 3 3 % 8 3
= =] _ B 2 £ £ s & & £ s, 5| @ g | 2 gl %
3| = g £l B @ 3 & & B t = 2 Bl % &
g = 5 ® » & € c I3] Y 2
a € o = £ =] 2 = = 9 % + e £ 7] E = & o =
= b= = h= = o 2 5 s 9 =3 & 5| © ® § g £ 2 E
§ 8| & 8 8 & E| S| 5| g & Bl B §| g 5/ 2 B 3 3 ¢
B B # B ®B| E E| Bl B § ¢ B 0§ £l 8 8 = € 8 § £
[[S] [5 3 sl =5l 2] [y vl 2 s G| S o B
I I e T A) S E oL 4 F oz 6B 3 5
— [= [= — - - = - — = = = = = —_ — - = o
12 0] 7] 0) 0 nl w o 7 0 0 0| vl o wl o o (7)
Subsystem 8] 3] o 3] o o o ol o] o o 3] 8] o]l o] © ol ol o 5] 8]
Acquistion 8289 11,92 5809 091 0,04) 193 26 5 043 346(193] 053]543[0.33] 154
Deatabase 10,88| 13,62 10689 098] 048 3 7 391241 073] 195/ 0,58| 159
FS Sys 9.7 4480 096] 0,08 7 7 3/ 165| 046/1.99| 038
GeometryP ostioning 14,42 7558 087] 04 7 39] 21 05| 655] 054
|imsqe Detedtion 12,05 6984 0,95| 0,06 8 345|221| 064] 98,6| 0,58
{mege processing 1435 8878 0.88| 0,04 7 364| 215| 0,65]907] 073
Misc Sys 11 8446 0.588| 0,04 7 3.16] 1,89] 0,56 100] 0.4
PandA 70.04 11579 093] 0,07 7 3.39] 219] 066 136]| 064
ul 113 36823 085 011 7 347|178 042| 47 6| 067
Ul Modules 1343 10919 097] a1 7 349|221 069] 111| 0,47
iewng 1238 38156 0.89] 0,22 7 3331 205] 061 81] 0,48

SV

LIJ ‘9z

SOLI9N 9P0D MS 2lge|ieAe ||y |} xipuaddy

SWINSASQNS JBM)JOS J0J SOLIJIUI IPOI PIJE[AI 2INJINI)S pue AJ[edn)

98

]
w
£ £
5 r
5 . B H :
2 I | I 32 g
] o e k] ¢ @ o =) &
- 2 " =] £ E] 5 £ 5 5 u] |
= = 4 a =4] ® E | =]] .g 5 E
B Q| K= o @ N - = c o o o 3 E
- g £ 3 & ¢ 2] 3 2 E E 3 £ £
| 5 el 1 E § - a L] El 2 £ E 1
£ g ¥ 2 £ g H 2] & z z s T a
a 2 Q 2 2 - -] L]) [| [
> £ E g E E € L A Ll -} € - o o
o 3 El] 2 > m L] x — - T = be o
2 = Z “ 2) = " x| o <! o g g <
= o [v] o [o) [a @ @ - e s] N !
. @ 7] 0 w 0 n 0 W @ w 7 @ w w w
Softwarausnit 31 o 1] i} Q 5] 1] 1) 3] [2] 2] 4] Q o O
[Aca Acquisition 00 | 10866 | 21080 19716 421 &6 659 5462 3141 15372 9.97 21.14| 2527290 | 8679200 | 2407040
[Acq BeamlLim 02 881 21092 1862 4,30 1,20 8,81 63,50 42 B2 22484 18,78 25,66 [30497 03 | 6258,00 | 12502,00
Acg Collimator 01 998 2040 2108 383 80 784 55,23 3354 168,81 12,14 21,40 | 66499,00 | 16561,00 | 4138400
Acq_Generation 02 1073 30128 2936 288 1,16 10,08 87.25 48 84 281,84 17.67 31,28 | 112100,0 | 24857 00 | 54318.00
D atabase_Datamodel 00 10513 221505 18912 2,70 1,47 6.96 62,29 3432 170,08 11.97 22,22 7576833,0 | 2116300 | 414530 0
D atabase Dbmt 01 | 15744 IZB21 29438 181 k") 8,61 69,91 3738 191,67 14,07 23,31 13609800 1587210 3181050
D atabase_Diu 01 2280 89850 6757 1.4 1.30 16,01 127 81 9957 607,41 33,82 65,65 | 87807 ,00 | 18507.,00 | 204180,00
D stabase EPX tool 01 8352 167811 17683 1.63 t=rs 8,95 7371 4008 209,40 14,97 25,12 | 2007350 | 72345 00| 1691640
F S Sys_User Calibration 03 7 793 670 4,99 A0 8.75 61,83 3052| 20402 13,45 26,08 | 10500,00 | 3379,00 | 8639.00
Geo GeoCVEmMb 14 340 10021 1480 1.4 1,63 1384 99,15 563,14 369,37 2883 36,21 [3518700 | 88861.00] 184333 0
Geo_GeoDemo 03 87 23504 3690 44 1.38 13,30 104,78 7575 428,73 30,15 45,00 | 2134 .00 | 540400 | 5352,00
Geo_Geometiy CV 00 35 76638 6591 3.8 86 7.81 66,35 3058 208,684 14.51 256,00 | 159108.0 | 41384,00 | 1070870
Geo PandBPas 01 2780 83569 4505 388 80 6,48 5474 3046 141,58 287 20,69 | 82049 00 | 25658,00 | 76601,00
Geo_Took 01 595 1845 861 187 1,11 225 13.34 7.86 2455 238 5,40 | 1170140 | 18553.00 | 62336,00
10 CXA 04 1101 31300 310 351 1,00 1181 9553 5599 0160 19,93 36,00 .
1D _Image detection ,00 5942 114125 12730 3.80 1,11 7.53 63.09 3567 184.59 12.87 22,25
1P sSing 01 2940 60649 5786 2,70 101 761 81.00 36,13 183,56 13,77 22,37
IP_Infra VGA Driver A7 62 812 25 55 1,88 2094 170,58 118,85 88,99 43,68 70,18
iP_IS 04 1025 244985 2813 1,85 1,51 07 92,48 50,13 20438 17.54 28,14
ULSIL (1.1] 2204 £5870 0887 1.4 132 =X 87,17 4227 22937 16,26 25,74
iP_VPC 03 a2 13030 1313 2,88 4,00 784 68,88 3478 177,88 11,97 22,91 . . .
MiseSys Automation .00 p.<] 815 57 185 58 8,67 7425 3679 190,51 13,13 2367 75200 262 00 871,00
MiscSys _Automation Plugs 02 283 B15 403 525 52 462 3155 1775 78,88 576 12,00 [14798.00 | 481500 | 16328,00
MiscSys CWIS 00 2703 45945 4483 2,56 72 554 48,07 2822 149,48 846 18,78 | 122321,0 | 35463,00 ; 73062,00
MisoSys_Session mgt 02 7868 22504 2380 2,13 82 12,10 97,03 6150 34581 21,76 30,60 [46583.00 | 11383,00 | 21035,00
PandA_ArchNetwork 03 1364 33909 3020 382 1,08 .59 80,88 45 57 25153 16.08 20,98 | 76625,00 | 20584.00 | 58856,00
PandA Dmt 00 1685 54308 4330 453 1,40 11,12 101,87 5840 33707 25 38,37 | 9819500 | 25115,00 | 74658,00
PandA_InfraPmMsS 01 aza 19453 1814 3.3 1,55 830 70,02 3528 171,88 12,64 2284 |26371,00] 9210,00 | 24538,00
PandA Papu 01 1663 40853 3627 430 72 7,16 47 .01 2818 15458 8,51 18,66 [88818 00 | 25463 00 | 65013,00
PandA_Printing 03 808 14854 1344 3.4 88 7.3 6064 3083 157,44 10,78 20,05 | 4280400 | 14318,00 | 40609,00
|PandA Ris 02 1184 41392 3707 298 1,20 2132 357 .94 116.74| 116877 41,11 75,63 | 68177,00 | 12702,00 | 49691,0!
Ul Modules TSMNT .00 738 31365 2581 1.5 1,37 15,99 148.41 8283 551,40 37.73 55,20 | 42073.00 | 13033,00 | 21280,00
Ul Modules UIDS 01 1650 24219 2042 4,0 s)73 48,26 2777 14376 10,80 17,27 [60104.00 | 1267200 | 35880,00
Ui 6ul 00 11228 19513 17852 2.27 4 594 4600 2851 124,62 877 17,56 | 202260,0 | 56068,00 | 2071110
Ui_NoUI .01 2356 70716 7065 381 78 8.87 69.50 4008 20247 12,05 28,04 | 68940,00 | 21784.00 | 54832,00
Ul TSMUI Q1 4078 66644 8582 517 575 39,21 2333 11135 .29 15,04 {94268 00 | 3276200 | 144272 0
[Viewing IPISLib 01 5817 112084 12578 2,74 91 7,78 59,01 3346 163,83 12,64 20,55 | 210956,0 | 6771400 | 1192780
Viewing 10- Tooling (11 2e K5 41 2,33 85 1069 72,15 5412 278,39 2 .42 3169 5301,00 | 15410 334700
[Viewing QA 00 135 1767 23 548 87 452 32,55 18586 93,78 8.55 1341 | 394600 981,00 | 3787,00
[Viewing QAUIGIue (1¢] /3 a572 783 257 8 8,99 61,21 45 44 25691 14,490 31,04130089,00 | 7668,00 | 13672,00
Vieawing_R eviewing 01 5111 g7a83 8822 3.3 88 2.4 55.36 2825 212,62 13,87 258,20 [157743,0 | 49347.00 | 105010,0

v

TeAR

SIUN 3IBAA1JOS J0J SILIJIUI IPOI PIJB[II AJEINLID 2p IZIS I[qe[l

L8

SJIUN JIBM)JOS J0J SILIJIUI IPOD PIJe[II AINJONIJS I[QRB[IBAR [[V

z -
- B
S c =] -]
I |- B of o ¥ z g
8 %5 E. = s W a > = S 2
15 g £ o] 3 b E =4 g £] 2
u 5 3 £ & n S 4] £ = £ @ 3 2|
i £ 8 B k] wl 2 5 5 3 R Iy £ ¥
sl 2 el 4 3 € 2 8 3 % % 2 H g £
I 3 9 -4 £ I £ e i g 2 g 2 < 2
5 5 = 8 j -] E] o E £ 2] - & &
2 2 o o £ £ 2 n s % E 2 2] I
£ £ g ® o L B g 2 b 2 & > z z
) |) o, o EI SI & 9] i o ol o o
r & g2 8 [[E i g Q- e c s a -
. ® » w 0 ” ” 0 0 0 w ” 0 0 » w
Software unit o Q o o Q Q Q Q o 3] 3] %) 5] 5] o
Aog_Acquisition 82 01 1.81 28 5 29 A5 347 1.82 5] 37 1.62 8.56 1133
Aog BeamLim .86 02 2,11 12 2 20 02 339 2,1 I} 28 .71 43 168 9,68 1360
Acg _Collimator 97 46 2,11 9 5 ,36 58 312 211 5 141.88 40 154 7.866 13,68
|Acg_Generation 78 00 2,74 10 3 24 A4 373 2,74 B 8.5 55 1.87 12,61 1492
D gtabase Datamodel 28 04 180 13 4 22 51 475 1,85 6 45.79 75 1,66 783 17.30
D stabase_Dbmt 81 A7 1,81 ek] 29 54 3,39 2,08 7 70,35 B 1,53 11,09 11,36
ID atabase Dfu 59 46 295 28| 4 249 27 473 297 11 1843308 4 223 2080 17.60
D stabase EPXtool 93 19 2.11 30 5] 30 53 343 231] 284 52 156 11,57 1144
FS Sys_User Calibration .99 03 183 7 4 38 23 3,30 1,93 6 2,56 B 1.71 8,84 11,63
Geo GeoCWEmMD 84 A5 424 11 2 27 .08 3,95 4,24 8 282,75 51 184 989 2581
Geo GeoDemo 87 38 382 13 5 18 32 419 382 10 357,08 1,44 1,97 1525 18,14
Geo_Geometny CV 84 .00 2,00 10 5 30 32 408 2,02 5 31.60 B 1.64 8,31 16,47
Geo PandBPos 74 00 161 18 =] 28 33 388 1,64 4 190 43 154 8,44 11,73
Geo_Took b1 35 1,16 4] 18 J7 3,08 1,18 2 1,16 72 1.14 2,60 841
1D_CXA 81 .00 3,01 15 4 50 20 3,78 3.0 1.0 168,37 61 178 13.97 15,34
1D Image detection 98 .08 2,14 12 =] 33 a2 348 2,16 B ar o3 50 161 9,07 11,80
IP_lmage proocessing 84 02 1.96 11 5 .30 A6 3.68 197 7 72.14 BB 1.58 8,86 14.38
P _Infra VGA Driver (s]1] 00 363 6 2 A48 00 458 363 18 624,77 8 249 24,70 20,29
IP_IS 87 01 2,5 11 4 33 14 3,88 255 k") 23,75 57 1,86 11,91 17,32
IP_SIP 73 ,03 2,365 13 4 ,25 08 373 237 B 163,80 87 162 9,89 13,53
IP_VPC g9 01 190 11 4 33 13 371 1,90 (5] 283 C] 152 922 2384
MiscSys_Automation ,00 .00 2,18 4 1 ,00 00 3,15 2,20 9 392 = 1,51 11,55 9.99
MiscSys_Automation Plugs 1,00 .00 1,38 4 2 .08 00 2,868 1,495 3 78,90 A 1,30 4,449 9,38
{MiscSys CWIS 82 .04 1,66 11 3 29 27 311 1687 4 41,08 0 1,40 870 10,24
MiscSys_Session Mgt 83 Rale] 3.04 1 2 39 0o 3,80 3.04 12 360,68 855 181 14,08 15,45
PandA_ArchN etworc g2 10 2,21 19 3 A1 .18 342 229 8 53,40 55 1,56 11.09 1271
PandA Dmt 85 .08 2,30 13 4 .38 59 3,78 2,30 8 100,00 is) 171 13,49 14,09
PandA_InfraPMS 868 .03 2,06 7 2 28 25 3,54 2,08 8 43 .93 74 152 10,47 1153
PandA Papu 78 01 185 10 5 27 25 285 1,64 5 120,69 70 1,38 829 855
PandA_Printing .88 00 1.65 14 3 28 05 3.14 1,65 5 673 51 1,40 7.80 10,12
PandA_Ris .98 18 3.21 12 3 .26 28 422 3.21 8 §17.61 K] 1.69 11.02 432,75
Ul Modules TSk HT 4,00 01 3,63 11 2 28 04 488 364 1.3 413,39 53 204 17.88 21,45
Ul Modules UIDS 98 .20 1.78 10 4 .28 40 3.068 1,78 5 408 & 1.39 8,82 11,22
ul_eul .88 18 159 11 4 28 27 378 1.68 4 18.27 75 1,46 7.91 12,62
Ul NGUJ 1,00 00 3.0 g 4 44 17 348 3.01 9 135.01 20 163 2.00 1405
Ul _TSMI 1,00 ,00 161 11 5 A7 57 2,68 1,682 3 86,63 Nal 1,41 547 343
[Viewing IPISLib a8 28 2,16 19 4 32 56 329 2.18 8 31,18 (1] 159 9,08 12,78
[Viewing 1Q- Tooling il 00 228 g 3 33 00 404 2.20 9 379 C:] 199 12,84 16,56
Viewing QA 1,00 ,00 1,65 8 2 46 00 290 185 3 1,68 35 1,35 423 9,78
Viewing QAU IGIue 1,00 .00 204 8 3 25 09 3,23 2,04 4 404,59 =] 163 788 19,76
Viewing_Reviewing 78 20 1.82 18 =] 43 60 3,38 1.96] 127 88 B 1,54 10.54 11,54

Appendix 12 Reduction of code metrics

This appendix shows the tables with the Kendall’s tau correlation test between the complexity metrics
and the reliability indicators: problem reports (total and severe), field programming errors, MTBF
(Based on field programming errors and total operating time).

Kendall's tau C oirelations
© g
(=)
g |8 | =
(1 (1 [=]
E-| 58| 5. =7 | z
=8|s2| 52| 35| & i
ool o oo cE = =
s | g2l av | S i =
Structuring Corr. Coefficient | -0,257| -0,257 -0,192] -0,155 -0,145 0,332
Sig. (2-tailed) 0,210/ 0,210 0,314 0,585 0,595 0,087
N 16 16 17 9 g 17
Halstead intelligent Cotr. Coefficient -0,127] -0,127| -0,058 0,402 0,493 0,017
content Sig. (2-tailed) 0,531 0531 0,760 0,155 0,0700 0,928
N 16 16 17 g9 9 17
Halstead level Corr. Coefficient 0,299 0,299] 0,017| -0159 -0,209 -0,038
Sig. (2-tailed) 0,154 0,154| 0,930 0,581 0,452 0,856
N 16 16 17 9 9 17
Halstead mental effort Corr. Coefficient -0,106| -0,106] -,390("| -0,093 -0,203 0,229
Sig. (2-tailed) 0,602 0,602 0,040 0,743 0,456 0,24
N 16 16 17 g9 9 1
Number of distinct Corr. Coefficient | -0,266(-0,266] -0,333| -0,031| D087 0,14
operands Sig. (2-tailed) 0,192 0192 0,080 0,913 0,750 0,44
N 16 16 17 9 9 1
Number of distinct Corr. Coefficient -0,085) -0,085| -0,240| -0,093 0,029 0,121
operators Sig. (2tailed) 0,676/ 0,676 0,205 0,743 0915 052
N 16 16 17 9 9 1
Total number of Cotr. Coefficient]-0,127 -0,127| -0,274| -0,083) -0,145(010
operands Sig. (2tailed) 0,531 0,531 0,149 0,743 0,595 0,59
N 16 16 17 g g 1
Total number of Corr. Coefficient | -0,042 -0,042] -0,240 0,279 0,261 0,10
operators Sig. (2-tailed) 0,835 0,835 0,205 0,325 0,338 0,59
N 16 16 17 g 9 1
No of Totallines Corr. Coefficient 0,212 0,212 4239 0,217 0,148 -572(™)
Sig. (2-tailed) 0,297| 0,297 0,026 0,444 0,595 0,00
N 16 16 17 g9 9 1
No of EmptyLines Corr. Coefficient 0,212 0,212 ,456(") 0,279 0,203| - 554(™)
Sig. (2-tailed) 0,297| 0,297 0,016 0,325 0,456 0,00
N 18 16 17 g g 17
No CommentLines Corr. Coefficient 0,191 0,191 ,456(%) 0,340(0,261 -554(*)
Sig. (2-tailed) 0,348 0,348 00168 0229 0,338 0,004
N 16 16 17 g 9 17
No of Files Corr. Coefficient 0,266(0,266 0,366 0,217 0,145 - 513(*)
Sig. (2-tailed) 0,192 0,192 0,054 0,444) 0,595 0,008
N 16 16 17 g 9 17
No of Directories Corr. Coefficient 0312 0,312 0,277 0,356 0,333 -,385("
Sig. (2-tailed) 0,128 0,129 0,148 0,220 0,233 0,047
N 16 16 17 g 9| 17

**_Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

88

Kemdall's tau Correlations

a g
e E
£ |8 |8 |§
g & g =
o o E 2o
E~| E o g~ % = P
=8 22| 52| 35| 8 @
eoc|gg|l g | c= | E =
o= | 0 L, = 1y i
Average com plexity of fundtions Corr. Coefficient | 0,054) 0054 -0242| 0,093 -0145] 0,070
Sig. (2-tailed) 0794| 0794 0204 0743] 0595 0719
N 16 16 17 9 g 17|
Call graph depth Corr.Coefficient | 0,361 0361 0,094 0,083 -0118| 0,107
Sig. (2-tailed) 0,083| 0033 0628 0826 0669 0587
N 16 16 17 9 9 17
Depth of inherit ance tree Corr. Coefficient | 0372 0372 397(*) 0260 0,035| -405(*)
Sig. (2-tailed) 0,086 0086 0048) 0397 0906) 0048
N 16 16 17 9 9 17
Method inheritance fador (MOOD Corr. Coefiicient | 0279 0279 0302 0,217 -0,261| -0,350
Sig. (2-tailed) 0174 0174 0115 0444 07338 0,072
N 16 16 17 9 9 17|
Number of application functions Corr. Coefficient | 424¢*) 424¢*)| 456(*)| 0,340/ 0319 -0295
Sig. (2-tailed) 0037 0037 0016) 0,228 0242 0127
N 16 16 17 g 9 17]
Number of ines Corr.Coefficient | 424(*) 424(%| 423 0217 0261 -0295
Sig. (2-tailed) 0037| 0037 0026/ 0444 0338 0,127
N 16 16 17 9 9 17,
Sum of cydomatic numbers ofthe Corr. Coefficient | 446(*) 446(%)| ,43%(%)| 0217 0261 -0312
application functions Sig. (2-tailed) 0028/ 0028/ 0020 0444 0338 0,106
N 16 16 17 9 9 17
Average size of datements Corr. Coefficient | 0,042 0042 0,133 B50(*) 667(*") -0,043
Sig. (2-tailed) 0835 0835 0484 0022 0014 0822
N 16 16 17 9 g 17
Cydomatic number (v¥G) Corr. Coefficient | 0075 -0075 -0,241| 0,093 -0,087| 0,070
Sig. (2-tailed) 0715 0715/ 0,204 0743 0750 0719
N 16 16 17 9 g 17
M axim um nesting leve! Corr. Coefficient | 0,107| -0107| -0,209| 0,464 -0203| 0,035
Sig. (2-tailed) 0602 0602 0,274/ 0101 0456| 0857
N 16 16 17 g 9 17
MNumber of callers Corr. Coefficient | 403¢) 403(%| 0025 0217 0261| -0,139
Sig. (2-tailed) 0047 0047| 00296 0444 0338 0472
N 16 16 17 9 9 17
Number of paths Corr. Coefficient | 0149 0149 -0124| 07340 0377 0035
Sig. (2-tailed) 0465 0465 0512 0,229 0167 0857
N 16 16 17 g 9 17
Number of datements Cotr. Coefiicient | 0,106 -0,108| -373(* -0,031| -0,029| 07225
Sig. (2-tailed) 0602 0602 0049 0913 0915 0,243
N 16 16 17 9 9 17

*_Carrelation is significant at the 0.01 level (24ailed).
* Corrdation is significant at the 0.05 level (2-tailed).

89

Appendix 13 Correlating code metrics with SWF

This appendix shows the tables with the Pearson correlation test (assuming normal distribution)
between the code complexity metrics and the reliability indicators: software failures (SWF).

Correlations between size & criticality related code metrics and SWF:

Pearson correlation test (N= 19 observations)
Metrics: SWF
CSI2_NumberofApplicationFunctions Pearson Correlation ,569(*)
Sig. (2-tailed) 0,011
CS!3_NumberoiLines Pearson Correlation | 673(**
Sig. {2-tailed) 0,002
CSl4_SumofVGofApplicationFunctions Pearson Correlation ,565(*)
Sig. (2-tailed) 0,012,
CSI_JAH1_TotalLines Pearson Correlation ,806(**)
Sig. (2-tailed) 0,000
CSI_JAH3_CommentLines Pearson Correlation ,833(**)
Sig. (2-tailed) 0,000
CSI_JAH4 Files Pearson Correlation | 666(**)
Sig. (2-tailed) 0,002
CSI_JAHS_Directories Pearson Correlation 0,432
Sig. {2-tailed) 0,064
CSI1_CouplingFactor Pearson Correlation -0,322
Sig. (2-tailed) 0,178
CSI5_CommentFrequency Pearson Correlation -0,117
Sig. (2-tailed) 0,633
CSI6_NumberofParameters Pearson Correlation ,563(*)
Sig. (2-tailed) 0,012
CSI7_NumberofStatements Pearson Correlation -0,172
Sig. (2-tailed) 0,481
CSI8_HalsteadEstimatedLength Pearson Correlation -0,045
Sig. (2-tailed) 0,854
CSI9_Halsteadl ength Pearson Correlation -0,106
Sig. (2-tailed) 0,666
CSH0_HalsteadVolume Pearson Correlation -0,130
Sig. (2-tailed) 0,597
CSI11_TotalNumberofOperands Pearson Correlation -0,138
Sig. (2-tailed) 0,574
CSi12_TotalNumberofOperators Pearson Correlation -0,084
Sig. (2-tailed) 0,732
CCR1_NumberofCallers Pearson Correlation 0,007
Sig. (2-tailed) 0,978
CCR2_NumberofDirectCalls Pearson Correlation -0,078
Sig. (2-tailed) 0,750
**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

90

Correlations between structure related code metrics and SWF:

Pearson correlation test (N= 19 observations)

Metrics: SWF
CST1_AtiributeHidingFactor Pearson Correlation 0,079
Sig. (2-tailed) 0,747
CST2_AttributelnheritanceFactor Pearson Correlation -0,150
Sig. (2-tailed) 0,540
CST3_AverageCom plexityofFunctions Pearson Correlation -0,184
Sig. (2-tailed) 0,451
CST4_CallGraphDepth Pearson Cormelation 0,170
Sig. (2-tailed) 0,486
CST5_DepthoflnheritanceTree Pearson Cormrelation 0,023
Sig. (2-tailed) 0,925
CST6_MethodHidingFactor Pearson Correlation -0,209
Sig. (2-tailed) 0,391
CST7_MethodinheritanceFactor Pearson Cormrelation 0,262
Sig. (2-tailed) 0,279
CST8_AverageSizeofStatements Pearson Comelation | ,679(**)
Sig. (2-tailed) 0,001
CST9_CyclomaticNumberVG Pearson Comrelation -0,154
Sig. (2-tailed) 0,529
CST10_MaximumNestingLevel Pearson Correlation -0,024
Sig. (2-tailed) 0,924
CST11_NumberofPaths Pearson Correlation -0,105
Sig. (2-tailed) 0,670
CST12_Structuring Pearson Correlation 0,397
Sig. (2-tailed) 0,092
CST13_VocabularyFrequency Pearson Comrelation 0,022
Sig. (2-tailed) 0,928
CST14_HalsteadDifficulty Pearson Correlation 0,142
Sig. (2-tailed) 0,561
CST15_HalsteadIntelligentContent Pearson Correlation 0,427
Sig. (2-tailed) 0,068
CST16_HalsteadlLevel Pearson Correlation -0,341
Sig. (2-tailed) 0,154
CST17_HalsteadMentalEffort Pearson Correlation -0,181
Sig. (2-tailed) 0,459
CST18_HalsteadVocabulary Pearson Cormrelation 0,027
Sig. (2-tailed) 0,913
CST19_NumberofDistinctOperands Pearson Correlation 0,062
Sig. (2-tailed) 0,800
CST20_NumberofDistinctOperators Pearson Correlation -0,007
Sig. (2-tailed) 0,978
CST21_PolymorphismFactor Pearson Cormrelation -0,146
Sig. (2-tailed) 0,551

. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

91

Appendix 14 regression models

14-A Single regression analyses

Data for single regression models for complexity factor “size” (F1) & FPE
SW Unit F1 Size | F2 Structure FPE | Normalized FPE

Acqg_Acquisition
Acq BeamLim
Acq_Collimator
Acq_Generation
Database_Datamodel
Geo_Geometry CV
MiscSys Automation
MiscSys_CWIS
MiscSys_Session Mgt Confidential
PandA_ArchNetwork
PandA_Printing
Ul_GuUl
UL_NGUI
Ul Modules_UIDS
Viewing_IPISLib
Viewing _Reviewing
ID_Image detection

** Normalized FPE = (N FPE))

Single regression models for complexity factor “size” (F1) and FPE

There are several “single regression” models created in Microsoft Excel by adding linear and
polynomial trend lines to the data in the scatter diagrams. The related regression formulas are shown
in the scatter plots, with y (axis) representing FPE and x (axis) representing the F1 score.

The R*, which is calculated for both trend lines, shows how much of the variance within the FPE can
be explained by the factor “size”.

First regression model for factor F1 and FPE:

Linear (size)}

Poly. (size) |

92

The first single regression model for F1 and FPE includes a linear trend line and a 3rd polynomial
trend line. It seems that SW unit Database_Datamodel is an extreme outlier (extreme high F1 score
and rather low FPE score) and will be excluded in the next regression model.

Second regression model for factor ¥1 and FPE:

e size
Linear (size}
. | ~—Poly. (size)

<
=
o
Q
=
3}
=]
o
0

By excluding the outlier Database_datamodel, the model fit improves for the 2™ polynomial model as
well as for the linear regression model. Based on the Rsquare it can be concluded that the 2™
polynomial model gives a much better fit with the data than the linear model. In order to include F1 as
a variable for the multiple linear regression model, the variable F1 should be normally distributed
instead of quadratic which seems the case. In order to improve the fit of the linear regression model
with the data, the FPE scores are normalized by taken the square root of the FPE scores as input
variable in the following regression model.

Third regression model for factor F1 and Normalized FPE:

The fit of the linear regression model with the data is still not very high (R* = 0.698) but it already
improved a lot compared to the first regression model including the outlier Database_datamodel and
excluding the normalized FPE scores.

93

Data for single regression models for complexity factor “size” (F1) & FPE
Normalized
SW unit: F1 size F1 Structure SW Failures SW failures

Acg_Acquisition
Acq _BeamLim

Acq_Collimator
Acq_Generation
Database_Datamodel
Geo_Geometry CV
Geo_PandBPos
ID_Image detection

IP_lmage processing
MiscSys_Automation Confidential
MiscSys CWIS
MiscSys_Session Mgt
PandA_ArchNetwork
PandA_Printing

Ul Modules_UIDS
Ul_GUI

UL NGUI
Viewing_IPISLib
Viewing_Reviewing

** Normalized SW failures = | SWfailures

Single regression models for complexity factor “size” (F1) and SWFs

There are two “single regression” models created in Excel by adding linear and polynomial trend lines
to the data in the scatter diagrams. The related regression formulas are shown in the scatter plots, with
y representing SWFs and x representing the F1 score.

First regression model for factor F1 and SWFs:

o size and failures '
Linear (size and failures)

— Poly. (size and failures) '

Poiynﬁhial@del:,
06x° - 349.68x - 225.2

Confidential

SW failures

Factor size scores

Based on these two trend lines it shows again that there the 2™ polynomial trend line fits the data the
best, because this trend line has the highest R This means that the 2™ polynomial model can explain
the variance within the SWFs by F1 the best. In order to get more normalized SWFs, so we can use
this reliability metric as a dependent variable in the multiple linear regression model, the metric SWFs
is normalized by taking the square root of the SWFs. This resulted in the following linear regression
model.

94

Second regression model for factor F1 and SWFs:

& size and failures

Linear (size and failures)

: Confidential

By excluding the outlier MiscSys_Automation (extreme low score on F2 and high score on SWFs), the
linear regression model was improved until a linear regression model with a fitted R* = 0.6076.

Data for single regression models for the relation between complexity factor
“structure” (F2) & SWFs

The data for this relationship is already presented in this appendix. Again the y (axis) stands for the
SWFs, the x (axis) now stands for the second complexity factor “structure”.

First regression model for factor F2 and SWFs:

& structure
Linear (structure)
——BExpon. (structure)
—Poly. (structure)

g
g=
=
|2}
2
St
=
5}
@)

Both trend lines (polynomial and linear) show very bad fit with the data for complexity factor F2 with
SWFs. Normalizing the reliability metric “SWF” is not an option now. In order to improve the linear
regression model, the outliers MiscSys_Automation and Acq_acquisition (both with extreme high
SWF scores) are excluded from the analysis and a second regression model is calculated.

95

Second regression model for factor F2 and SWFs:

| & stcture
| Linear (structure)
| = Expon. (structure}|

=
B
1 g
5]
=
=
=
3
O

-1 -0.5 0 0.5 1 1.5

This simple linear regression model still doesn’t fit the data well, based on this scatter plot it seems
that there is not logical relation between F2 and SWFs. This corresponds with the finding in chapter 6
paragraph 6.2, that there is no significant correlation between F2 and SWFs, this also counts for the
reliability metric FPE which correlates with the metric SWFs.

Although, there doesn’t seem to be a linear correlation between the complexity factor structure and the
reliability metrics. The multiple regression model will also include the complexity factor “structure” in
the hope that this model will result in a better fit with the actual data and will result in more reliable
predictions.

Multiple regression models

The same data sets are applied as mentioned earlier in this appendix. Again the R* stands for the
degree in which the model can explain the variance within the reliability metrics (FPE, normalized
FPE, SWFs and Normalized SWFs) by the complexity factors “size” and “structure”. The following
multiple linear regression models are made in SPSS15.0 by using an Analysis of Variance (ANOVA):
1. Dependent variable FPE with the predicting variables F1 and F2

2. Dependent variable Normalized FPE with the predicting variables F1 and F2

3. Dependent variable SWFs with the predicting variables F1 and F2

4. Dependent variable Normalized SWF with the predicting variables F1 and F2

These multiple regression models can be used in order to explain the variance in the reliability metrics
by the complexity factors F1 and F2. In order to validate if these muitiple regression models can also
be used for predicting the reliability metrics for a certain SW unit based on its complexity scores, the
data is divided into two groups. One training group on which the multiple regression models 2 and 4
are created based on the ANOVA, and one control group that is used afterwards in order to compare
the predicted reliability metrics (for normalized FPE and normalized SWFs) with the actual reliability
metrics.

The following interpretations and prerequisites for the ANOVA analysis should be taken into account

before the results of this analysis are presented:

- The regression method “Forced entry” is selected (called the enter method in SPSS15.0), because
the stepwise methods (forward, backward and stepwise) rely on the program’s (SPSS15.0)
selection of variables based on its mathematical criteria. It is assumed that methodological
decisions are taken out of the hands of the researcher by the program itself (Field, 2005).
Therefore, the forced entry method is selected in order to keep the ANOVA as basic as possible.

96

Appendix 16 Results questionnaire

16-A Questionnaires:

Results questionnaire rater 1:

o
Subsystems g =
Slsg| -3
el 2|88
Product characteristics 38l slg|¢® g g | B
= = = Q X o x >
1|Number of Hierarchic levels 3 2 1 2 3 1 1 2
2|Number of components 3 3 1 1 3 2 2 1
3[Relations between components 3 3 1 1 3 1 3 2
4|Number of design updates / changes 2 3 2 3 2 3 1 1
5|Criticality of the component 2 3 1 1 2 1 3 1
6| Technology level 2 3 1 2 2 1 3 2
7|Number of specialists involved 1 3 1 1 3 1 2 2
8|Degree of control software 3 3 1 2 3 1 2 3
Average| 2,38 2,88] 1,13} 1,63 2,63 1,38] 2,13 1,75
Rank G 8] 1 3|07 2 5 4
Results questionnaire rater 2:
]
Subsystems £ 5
B 8] = E c
£ ® 5 S 5 @ 8
» « | 8lels |5 8]|%]|¢
Product characteristics 3 Q 5 g o Q g g
= = = Q X [is x x
1|Number of Hierarchic levels 3 2 1 1 3 2 2 1
2|Number of components 3 2 1 1 3 2 2 1
3|Relations between components 3 1 2 2 3 1 2 1
4|Number of design updates /changes 1 3 1 1 2 3 2 1
5|Criticality of the component 2 3 1 1 2 2 3 1
6] Technology level 3 2 1 1 3 2 3 1
7|Number of specialists involved 3 2 1 1 3 2 2 1
8|Degree of control software 2 3 1 1 2 2 2 3
Average| 2,50 | 2,25 1,13 1,13| 2,63 | 2,00] 2,25 1,25
Rank 5“ .4 1 1 6 3 4 2
Average results from raters 1 and 2:
e
€)
Subsystems . 5 2 . 5)
s1s|el2|5|¢2| 8
Product characteristics |8 ls|lzs| & |S| & g
= = = Q X i = X
1[Number of Hierarchic levels 3 2 1 1.5 3 1,5 15 1.5
2|Number of components 3 2,5 1 1 3 2 2 1
3|Relations between components 3 2 1,5 1,5 3 1 25 1,5
4|Number of design updates / changes 15 3 1,5 2 2 3 15 1
5|Criticality of the component 2 3 1 1 2 1,5 3 1
6|Technology level 2,5 2.5 1 1,5 2,5 1,5 3 1,5
7|Number of specialists involved 2 25 1 1 3 1,5 2 15
8|Degree of control software 25 3 1 15 2,5 1,5 2 3
Average| 2,44 256 1,13 1,38 2,63 1,69 2,19 1,50
Rank 8 7 1 2 7 4 5 3

101

Overview of complexity rankings:

5| 8| 2| 2
s| 8 §| =2
gl £ & 2
| 2| g| B
o
. | €| Z| 8
Subsystem:
Monitors 1 1 1| Low
R-cabinets 2 1 2 | Low
Operator Controls 3 2 3 | Low
Xtravision 4 3 4| Low
X-ray detector 5 4 5 | High
Table 6 4 6 I
X-ray tube 7 5 7
M-cabinet 8 6 7 | High |

16-B Contingency tables and calculated chi-squares:

Contingency table complexity with failure classes “low’’ and ‘“high’’:

Failure classes
Low High Total
Complexity Low £} 5 14
Classes High 7 g 16
Total 16 14 30
Chi-Square Tests
Asymp. Sig. Exact Sig. Exact Sig.

Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 1,265 1 ,261
Continuity Correctiona 575 1 A48
Likelihood Ratio 1,276 1 259
Fisher's Exact Test ,299 225
Linear-by-Linear
Associat‘ijon 1.223 1 268
N of Valid Cases 30

a. Computed only for a 2x2 tahle

b. 0 cells {,0%) have expected count less than 5. The minimum expected countis

6,53.
Contingency table complexity with failure classes “low”, “middle” and “high”:
Failure classes '
Low Middle High Total
Complexity Low 3 4 4 14
Classes High 6 b 16
Total 12 10 30

102

Appendix 17 Categorization of HW subsystems

Complexity |Failures Complexity | Failures
Unit Class Unit Class
PBL20 Table high PBL20 Table High
PBL20 M-Cabinet high| PBL20 M-Cabinet High
PBL20 Monitors low PBL20 X-ray Tube High
PBL20 Operator Controls io PBL20 X-ray Detector High
PBL20 X-ray Tube high PBL40 Tabie High
PBL20 R-Cabinet low PBL40 M-Cabinet High
PBL20 X-ray Detector high PBL40 X-ray Tube High
PBL20 Xtravision low] PBL40 X-ray Detector High
PBL40 Tabie high| PBL10 Table High
PBL40 M-Cabinet high| PBL10 M-Cabinet High
PBL40 Monitors low] PBL10 X-ray Tube High
PBL40 Operator Controls lo PBL10 X-ray Detector High
PBL40 X-ray Tube high| PBL30 Table High
PBL40 R-Cabinet low] PBL30 M-Cabinet High
PBL40 X-ray Detector high PBL30 X-ray Tube High
PBL40 Xtravision low] PBL30 X-ray Detector High
PBL10 Table high Mean|
PBL10 M-Cabinet high SD
PBL10 Monitors low] Variance|
PBL10 Operator Controls low] PBL20 Monitors Lo
PBL10 X-ray Tube high| PBL20 Operator Controls Lo
PBL10 R-Cabinet low PBL20 R-Cabinet Lo
PBL10 X-ray Detector high| PBL20 Xtravision Lo
PBL30 Table High PBL40 Monitors Lo
PBL30 M-Cabinet high| PBL40 Operator Controls Low|
PBL30 Monitors Low PBL40 R-Cabinet Lo
PBL30 Operator Controls Lo PBL40 Xtravision Low]
PBL30 X-ray Tube high PBL10 Monitors Low
PBL30 R-Cabinet low PBL10 Operator Controls Lo
PBL30 X-ray Detector high PBL10 R-Cabinet Lo
Mean| PBL30 Monitors Lo
SD PBL30 Operator Controls Lo
Variance PBL30 R-Cabinet Lo
Mean
SD
Variance

103

	Voorblad

	Preface

	Management summary

	Table of contents

	1. Company profile

	2. Research outline

	3.Designing the research concept

	4. Software reliability

	5. Software complexity

	6. Software complexity versus software reliability
	7. Hardware complexity versus reliability

	8. Conclusions & recommendations

	References

	List of appendices

	Appendix 1 System architecture

	Appendix 2 Problem analysis

	Appendix 3 Research outline

	Appendix 4 System entropy

	Appendix 5 Overview of software releases

	Appendix 6 Software reliability performance

	Appendix 7 Software reliability metrics

	Appendix 8 Overview of physical software metrics
	Appendix 9 Logiscope code metrics descriptions

	Appendix 10 Code metrics for FD20 SW releases

	Appendix 11 All available SW code metrics

	Appendix 12 Reduction of code metrics

	Appendix 13 Correlating code metrics with SWF

	Appendix 14 regression models

	Appendix 16 Results questionnarire

	Appendix 17 Categorization of HW subsystems

