
 Eindhoven University of Technology

MASTER

On the adoption of the business process execution language in the Everst Knowledge
Framework

Niks, R.W.C.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0f8107f3-262d-4e35-a9a9-4e98a91fbcf4

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computer Science

On the adoption of the

Business Process Execution Language

in the Everest Knowledge Framework

by

R.W.C. Niks

Supervisors:

prof. dr. ir. G.J.P.M. Houben (TU/e)

ir. ing. M. Mastop (Everest)

drs. L. Hermans (Everest)

Eindhoven, June 2008

University Web Site URL Here (include http://www.tue.nl)
Department or School Web Site URL Here (include http://)
file:r.w.c.niks@student.tue.nl

“Faith consists in believing when it is beyond the power of reason to believe.”

Voltaire (November 21, 1694 - May 30, 1778)

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Abstract

Business Information Systems

Department of Mathematics and Computer Science

Master of Science

by R.W.C. Niks

The subject covered by this research project involves increasing the interoperability of

the Everest Knowledge Framework by the adoption of the Business Process Execution

Language. Everest aims at increasing the compliance and interoperability of their pro-

cess implementation in the Everest Knowledge Framework and allow business engineers

to construct models from which a more generic process implementation can be derived.

The enterprise modeling paradigm will be used to make an assessment of the model-

ing and deployment strategy of Everest. Typical approaches adopted in the application

development life cycle of Everest are: enterprise architecture and model driven architec-

ture.

The first accomplishment of this thesis is to formalize the syntax of the languages used

by Everest to model and implement their processes. Closing the gap between the Everest

modeling language and the Business Process Execution Language requires and assess-

ment of the domain and technical spaces of both languages. This assessment should

reveal the issues and challenges which must be considered when transforming one lan-

guage into another. Finally, we propose an approach to transform the Everest specific

process models into code based on the Business Process Execution Language. Apply-

ing the transformation approach to a process example from the Everest practice, allows

us to derive conclusions about the correctness and completeness of the transformation

results.

For Everest the adoption of Business Process Execution Language implies the integration

of a corresponding engine in the Everest Knowledge Framework. Therefore best practices

will be proposed to discus the design decisions Everest should concider when adopting

BPEL in the Everest Knowledge Framework.

University Web Site URL Here (include http://www.tue.nl)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
file:r.w.c.niks@student.tue.nl

Acknowledgements

This Master Thesis is the result of a research project carried out from January 2007

to June 2008 at the research group Information Systems at the Department of Math-

ematics and Computer Science at Eindhoven University of Technology. The research

has been conducted in cooperation with Everest B.V. a company specialized in Business

Knowledge Modeling & Engineering. For me, this thesis is the final step to obtain the

Master of Science degree in Business Information Systems.

I would like to thank Geert-Jan Houben for his ideas and support during the project.

As my supervisors at Everest, I would like to thank Leo Hermans and Mark Mastop

for their patience and giving me the opportunity to conduct my research in a business

setting. Also, I would like to thank Eric Verbeek, Edwin Popkin and Elco Rombouts

for their willingness to provide me with valuable feedback.

Also Bram Hoefnagel, Bart van der Heijden, Koen Schuurmans and Jasper Verhoeven,

for reviewing my work, your comments made this thesis certainly better reading material.

Finally, I would like to thank my relatives and girlfriend for the moral support, especially

during the difficult periods of the project. And of course my friends and roommates,

allowing me, when needed, to escape the reality of graduation.

It would never have been finished without you!

Eindhoven, June 2008

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Research Context . 3

1.2 Problem Definition . 4

1.3 Research Questions . 5

1.4 Thesis outline . 5

2 Enterprise Modeling 8

2.1 What is Enterprise Modeling? . 8

2.2 The Enterprise Architecture . 9

2.2.1 Service Oriented Architecture . 11

2.2.2 Event Driven Architecture . 12

2.2.3 Process Driven Architecture . 12

2.2.4 Rule Driven Architecture . 14

2.3 Model Driven Architecture . 15

2.4 Enterprise architecture and MDA in the life cycle 17

2.4.1 Design Stage . 17

2.4.2 Implementation Stage . 18

2.4.3 Enactment Stage . 19

2.4.4 Analysis Stage . 19

3 Everest Knowledge Framework 20

3.1 EKF and Enterprise Modeling . 20

3.1.1 Enterprise architecture of the EKF 21

3.1.2 Model Driven Architecture in the EKF 23

3.1.2.1 Domain Modeling . 25

3.1.2.2 Rule Modeling . 26

3.1.2.3 Process Modeling . 30

3.1.2.4 Connectivity Layer . 36

3.2 How are the process models deployed on the EKF? 37

iv

Contents v

3.2.1 How is the process model implemented in the EKF? 37

3.2.2 How is the processes enacted on the EKF business engines? 38

4 Business Process Execution Languages for Web Services 43

4.1 Introduction to BPEL . 43

4.2 An overview of Web services technology 44

4.3 Process and partner links . 45

4.4 Activities . 46

4.5 Data Handling . 48

5 Transform the EKF process language into BPEL 51

5.1 Approach to transform the EKF process language into BPEL 51

5.2 Results of transforming the EKF process language into BPEL 55

5.2.1 Results of the domain transformation 55

5.2.2 Results of the technical spaces transformation 57

5.3 Issues & challenges as a result of the language transformations 60

6 Transform EKF process models into BPEL code 63

6.1 Approach to transform EKF process models into BPEL code 63

6.1.1 STEP 1: Translate the domain . 65

6.1.2 STEP 2: Translate the technical spaces 66

6.1.3 STEP 3: Decompose the (sub-)process into components 67

6.1.4 STEP 4: Translate the (sub-)process into BPEL code 69

6.2 Correctness and completness properties 72

6.2.1 Can we translate all EKF process models into BPEL? 72

6.2.2 What can we say about the correctness of the transformation? . . 73

7 Discussion 74

7.1 What best practices must be considered when integrating a BPEL engine
in the EKF? . 75

7.1.1 Interface 1 . 75

7.1.2 Interface 2 . 76

7.1.3 Interface 3 . 76

7.1.4 Interface 4 . 80

7.1.5 Interface 5 . 80

7.2 EKF process language versus formalized process modeling languages . . . 81

7.3 Related work . 81

7.4 Further research . 84

8 Conclusions 86

A One Step Refinement Approach Explained 96

A.1 Introduction . 96

A.2 Description . 97

B Domain transformation 99

B.1 Process, Sub-process and Task . 99

Contents vi

B.2 Events . 100

B.3 Flow and Decision-points . 104

B.4 Channel and Roles . 104

B.5 Data . 108

C Technical Spaces transformation 114

C.1 Interaction Patterns . 114

C.2 Basic control flow patterns . 118

C.3 Advanced branching and synchronization patterns 124

C.4 Iteration patterns . 129

C.5 Multiple Instance Patterns . 134

C.6 State based patterns . 138

C.7 Cancellation Patterns . 143

C.8 Termination Patterns . 152

D Case Study: The Everest Mortgage Process 156

D.1 Case study explained . 156

D.1.1 Mortgage domain model example 156

D.1.2 Mortgage rule model example . 159

D.1.3 Mortgage process example . 160

D.1.3.1 sub-process application 161

D.1.3.2 sub-process processing . 162

D.1.3.3 sub-process underwriting and bankguarantee 162

D.2 Transformation of the EKF process into BPEL 164

D.2.1 Transform the the sub-process application into BPEL 164

D.2.2 Transform the the sub-process processing into BPEL 168

D.2.3 Transform the the sub-process underwriting and bankguarantee
into BPEL . 174

D.2.4 Transform the the mortgage process into BPEL 179

List of Figures

1.1 Levels of Business Knowledge . 2

1.2 Outline of this thesis . 6

2.1 Layers in Enterprise Architecture . 10

2.2 Modeling layers in MDA . 16

2.3 Stages in the development life cycle . 17

3.1 Enterprise architecture in the EKF . 21

3.2 Modeling dimensions in the EK . 24

3.3 Meta-model of the EKF domain language 26

3.4 Meta-model of the EKF rule language . 29

3.5 Sub-process in the EKF process . 31

3.6 Task & flow in the EKF process . 32

3.7 Events in the EKF process . 32

3.8 Decision-points in the EKF process . 34

3.9 Meta-model of the EKF process language 35

3.10 UML class diagram of connectivity layer 36

3.11 Deployment of EKF process models in the EKF 39

3.12 State Transition Diagram EKF process . 40

3.13 Logical components in the rule engine . 41

4.1 The Web service stack . 45

4.2 Meta-model of the BPEL process . 46

4.3 Meta-model of the BPEL activity hierarchy 49

4.4 Meta-models of data handling in BPEL 50

5.1 Deployment of EKF process models onto BPEL engine 52

5.2 Transformation of EKF process language into BPEL 53

6.1 Steps in the transformation approach . 63

6.2 Running example: complaint handling process 64

6.3 Transformation of complaint handling process (Cont. STEP1) 65

6.4 Transformation of complaint handling process (Cont. STEP2) 67

6.5 Transformation of complaint handling process (Cont. STEP3) 69

7.1 WfMC Reference Model . 75

7.2 Continuum of EKF and BPEL engine integration 77

7.3 Point-to-point versus broker integration 77

7.4 Integration of EKF and BPEL engine . 78

vii

List of Tables

3.1 The syntax of the EKF process decision table 38

5.1 Classification of interaction [Barros et al., 2005b] & workflow [Aalst van
der et al., 2003] patterns . 54

5.2 Results of the domain transformation . 56

5.3 Results of the technical spaces transformation 58

7.1 Evaluation of the expressiveness of EKF process language compared to
AD, BPMN and YAWL . 82

viii

Chapter 1

Introduction

The rapid and constant changes that are very common in today’s business environments

affect not only business itself, but also its supporting Business Information Systems

(BIS). Due to the dynamic market, the business needs to adapt to changes from its

environment to remain competitive in that market. As a result, the business processes,

business rules and business domain require continuous changes, renovation and adap-

tation to meet actual business needs. This and the increasing need for business agility

will drive the rise for a new generation of BIS, which has implemented the business

knowledge and process flow as business content. In this way the business content is in-

terpreted by generic business engines responsible to derive the desired behavior directly

from business content.

Three levels of business knowledge can be identified (see Figure 1.1): strategic, tactic

and operational. Strategic business knowledge is represented by the business vision,

the mission, goals and strategy. The goal-oriented business knowledge can be redefined

to a point where it can be translated into tactical business knowledge expressed by:

policies, rules, objectives, tactics, products and procedures that together will achieve

the stated business goals [Rosca et al., 1995]. The tactic business knowledge is more

or less represented by intentional rules and procedures that need to be expressed more

specific such that they can be applied on the operational business level. The rules and

procedures that end up in the implementation of an application are called ‘executable

rules’ and ‘executable processes’, which refers to the rules and procedures that can be

expressed formally, such that they can be interpreted and executed by computers. The

goal is to automate the rules and procedures from the operative level to the system

level, so that the transformation of rules and procedures from the operational business

to its implementation is more transparent, by making the business rules and business

processes explicit and independent of the ‘programming logic’ (software code). This

1

Chapter 1. Introduction 2

Figure 1.1: Levels of Business Knowledge.

implies that the rules constrains, derive data and transforms data in domain model and

enables behavioral aspects (state transition) in the process.

Over the years, the business has sought ways to optimize the performance of business

applications and increase the flexibility, when adapting to changes in the business en-

vironment. Automating the business implies that more and more operative rules and

procedures must be translated into executable rules and executable processes, so that

they can be deployed and enacted by ‘business engines’. Following this approach the

operative procedures are managed by the ‘the world of business’ and the executable

processes by the ‘the world of technology’ [Morgan, 2002]. Enterprise modeling has

been adopted by the industry as a widespread strategy for developing flexible enterprise

applications in an evolutionary development life cycle. Both the enterprise architec-

ture and Model Driven Architecture (MDA) have emerged from the enterprise modeling

Chapter 1. Introduction 3

paradigm. The enterprise architecture focuses on the functional decomposition and in-

tegration of the business applications and MDA aims at providing high-level modeling

language (supported by tools), such that models composed with these languages can

be transformed into executable models, which can be enacted by business engines or

implemented as programming logic.

1.1 Research Context

Everest is a company that is specialized in knowledge engineering, which is the process of

acquisition, analyzing, validating and automating operational business knowledge from

several domains (e.g.: mortgage, insurance and banking). To serve their customers,

Everest has developed a knowledge based application development environment called

the Everest Knowledge Framework (EKF). The EKF is used for the development of

business applications, where business knowledge plays a central role when automating

the decision making. By increasing the interoperability of the EKF with other systems

and tools Everest aims at increasing their market share and maintaining their innovative

position.

The ultimate goal of the EKF is to provide an application development environment,

that is configurable and manageable by ‘business-oriented people’. This requires that

the supported tools and adopted modeling techniques must be understandable by the

‘business-oriented people’ [Hermans, 2007]. Although the development languages of the

EKF are much less technical compared to traditional programming languages, it still

requires people with engineering skills, qualified as ‘business engineers’, for modeling.

Business-oriented people do usually not express operative business knowledge by means

of models, but use natural language instead. For Everest the business engineers play

an important role when survey the business demands and creating models toward a

business solution. Because the business engineers have a more clear understanding of

the business needs, they are better able to make decisions with respect to the business

solution. Issues arise when the business engineers and ‘software engineers’ must syn-

chronize the design and the implementation. Technical considerations could result in

flaws or limitations of the application, such that frequent changes require increasing ef-

fort of communication between the business engineers and software engineers [Kontonya

and Sommerville, 2002]. Therefore Everest has adopted an approach where higher-level

models are developed by business engineers which are directly deployed onto the busi-

ness engines. Following this approach Everest aims at an increase in agility and decrease

of time-to-market, when developing business applications.

Chapter 1. Introduction 4

The customers of Everest have a demand for compliance in the business processes. This

has resulted in the increasing interest of Everest to adopt a more generic approach to

implement and deploy the processes in the EKF. Standardization in the business process

domain is maturing and various languages and vocabularies have emerged from both the

scientific and industry communities. Everest is mainly interested in the adoption of the

Business Process Execution Language (BPEL) in the EKF, as it is at the time of writing

the defacto standard for process enactment and interchange.

1.2 Problem Definition

The EKF supports modeling of certain aspects of applications in terms of executable

models, which are enacted by business engines. Each model corresponds to a certain

aspect of the system (e.g. domain, rule, process, task, etc.). Both the domain and

rules play an increasingly important role in the EKF, as a consequence of the increasing

degree to which primary customer-oriented processes from sale to delivery must be au-

tomated for different products via different channels. Everest uses a high-level modeling

language, called the ‘EKF process language’, for modeling their business processes at

the conceptual level. These conceptual models are implemented in terms of the EKF

domain and rule models for which business engines are responsible to produce the de-

sired process behavior. More specific, the domain and rule model are used as a basis for

the implementation of the processes. The drawback of this approach is that the deploy-

ment of the EKF processes is Everest specific and lacks for interoperability with other

applications and systems and therefore requires increasingly efforts of programming.

The EKF is used in various enterprise solutions where process interchanges becomes

an increasingly important factor. Everest is interested in the adoption of BPEL as a

language for process interchange or even integrate a BPEL engine within the EKF. In

this thesis we therefore directly address the need of Everest to be able to translate their

EKF process models into BPEL code. The transformation of one model into another,

requires an assessment of the way Everest models and deploys its processes. For Everest

this assessment is considered to be an important result, as no description of the syntax

and semantics of the EKF process language was available at the start of this project.

The insights into the syntax and semantics of the EKF process language should allow an

evaluation of the contextual and conceptual differences between EKF process language

and BPEL. The contextual and conceptual differences must be considered when bridging

the gap between the EKF process language and BPEL, toward an approach to translate

EKF process models into BPEL code. The assessment of the EKF process language

is an important result for Everest, which raises questions about expressiveness of the

Chapter 1. Introduction 5

EKF process language compared to BPEL. For Everest the adoption of BPEL implies

the integration of a BPEL engine in the EKF. Assessment of the consequences of the

EKF process language and integration of a BPEL engine in the EKF, should result in

a better understanding of the best practices which must be considered by Everest when

adopting a BPEL engine in the EKF.

1.3 Research Questions

Several research questions arise from the objective as defined in the previous section.

First, we specialize the objectives for modeling and deployment into the question: ‘How

the modeling and deployment is done from the enterprise modeling perspective?’. Sec-

ond, we determine: ‘How the modeling and deployment of models is specifically done in

the EKF’. This requires an assessment of the syntax and semantics of the EKF pro-

cess language, as no such specification was available at the start of this project. Third,

we perform a similar assessment for BPEL: ‘What are the key features and syntax of

BPEL?’. Fourth, we aim at answer the question: ‘How to make the EKF more inter-

operable by adopting BPEL?’ . Conceivable, this question is divided into the following

two partial questions: ‘What are the issues and challenges when closing the gap between

the EKF process language and BPEL?’ and ‘How EKF process models can be trans-

formed into BPEL code?’. Finally, we reflect our solutions and discuss the limitations

of our proposed solution, for which we aim at answering the question: What are the best

practices which must be considered when adopting our proposed solution?. The following

research questions should cover these objectives:

1. What are the principles used for enterprise modeling?

2. How does Everest apply enterprise modeling in the EKF?

3. What are the key features and syntax of BPEL?

4. How to make the EKF more interoperable by adopting BPEL?

5. What are the best practices which must be considered when adopting our proposed

solution?

1.4 Thesis outline

For the outline of this thesis we distinguish the structure of: problem definition, analysis,

design and evaluation (see Figure 1.2). As the problem definition and research objectives

Chapter 1. Introduction 6

have already been discussed in the previous sections, we will now focus on the analysis,

design and evaluation.

Figure 1.2: Outline of this thesis.

In our analysis we start by describing the notion of enterprise modeling (see Chapter

2), because the first research questions involves identifying the principles of enterprise

modeling as a strategy for development of business solution. We are mainly interested

in enterprise modeling approaches applicable in the software development life cycle. We

put enterprise modeling in the perspective of the EKF (see Chapter 3) to get more

insight in the way enterprise modeling is performed in the EKF. Followed by a more

detailed study of the way Everest models and deploys its processes in order to get more

insight into the syntax and semantics of the EKF process language. We perform a similar

study for BPEL to provide a more clear understanding of the key features, syntax and

semantics of BPEL(see Chapter 4).

In the research design we focus on the approach followed to increase the interoperability

of the EKF process design and implementation and aim at answering the fourth question:

‘How to make the EKF more interoperable by the adoption of BPEL?’. To provide a

proper answer to this question, we respond to two partial questions, namely: ‘What are

the issues and challenges to close the gap between the EKF process language and BPEL?’

and ‘How EKF process models can be transformed into BPEL code?’. Answering these

questions requires an assessment of the transformation of the EKF process language into

BPEL. In our approach we translate EKF process language into BPEL by performing

an analysis of the language contexts and language concepts, based on respectively the

domain and technical spaces transformation (see Chapter 5). The issues and challenges

which come from the domain and technical spaces transformation are important results,

as they must be considered when proposing an approach to translate the EKF process

Chapter 1. Introduction 7

models into BPEL code (see Chapter 6). By applying the proposed transformation

approach to a case study (see Appendix D), we draw conclusions with respect to the

correctness and completeness of our proposed transformation solution.

In the evaluation we reflect our solutions, for which we aim answering the last question:

‘What are the best practices which must be considered when adopting a BPEL engine in

the EKF?’ (see Chapter 7). To answer this question we first: compare the EKF process

language with alternative modeling languages, second: we start a discussion of the best

practices which must be considered when integrating a BPEL engine in the EKF, third:

we give an overview of the related work, and finally: we discuss the limitations of

our proposed solution. The conclusions are summarized in chapter 8, followed by the

bibliography.

Chapter 2

Enterprise Modeling

In this chapter we aim at answering the question: ‘What are the principles used for

enterprise modeling?’. Therefore we start with an introduction to enterprise modeling

(see Section 2.1), followed by a more detailed description of enterprise architecture (see

Section 2.2) and MDA (see Section 2.3). Both enterprise architecture and MDA are

considered to be important approaches in the context of the application development

life cycle of Everest (see Section 2.4).

2.1 What is Enterprise Modeling?

When new business applications are being developed, different kind of stakeholders are

involved. Each stakeholder has its own perception of the business applications and eval-

uates the problem from different angles, also referred to as ‘viewpoints’. The viewpoints

can be represented by a vocabulary that specifies a model, which can be used for com-

munication and synchronization purposes among the different stakeholder. Different

models are used to fulfill the need of the different stakeholders (e.g. scope, business

model, system model, technology model and detail representation). Each viewpoint has

several aspects, particular facets that need to be considered to completely describe each

viewpoint. The aspects are based around six basic questions as defined by [Zachman,

1987]: what (data), how (function), where (network), who (people), when (time) and

why (motivation).

Enterprise modeling is ‘the activity that is used to create abstractions of models that

captures different aspects of the business with a purpose to understand and share the

knowledge of how the enterprise is structured and how it operates’ [Bajec and Krisper,

2005]. A model is ‘the abstraction of its subject that includes information pertinent to

8

Chapter 2. Enterprise Modeling 9

its viewpoint and omits information to other viewpoints’. A model can be decomposed

into individual models that together describe all aspects of all viewpoints. Different

viewpoints can have common elements, but relations to other viewpoint can exist which

make the models interdependent. Different enterprise models are proposed to express

the different aspects of the business: business motivation model, business process model,

domain concepts model and organizational model.

The motivation model reflects the strategy, goals, policies, laws and regulations from

the business perspective and need to be made explicit in terms of the business rule

model. This is referred to as the ‘why’ of the business operation. The organizational

model reflects the organizational structure and the resources that are important for the

organization, which reflects the ‘who’ of the business operation. The business domain

concepts model captures the concepts (e.g. products, services and documents, etc.) that

a business maintains, and represents the ‘what’ of the business operation. The process

model reflects procedures an organization maintains, describing in which order the work

need to be performed to reach a certain business goal. The process model ensures certain

efficiency of the business and is focused on the ‘how’ of the business. The enterprise

models do not operate independent of each other, such that alignment between the

models is required through the business model, before they can be put to actual use

[Bajec et al., 2000, Atkinson and Kuhne, 2003].

Both the enterprise architecture (see Section 2.2) and MDA (see Section 2.3) are inter-

esting in the context of Everest, as they are the basis of the way Everest models and

deploys business applications as part of the Everest development life cycle.

2.2 The Enterprise Architecture

The enterprise architecture is the practice of optimizing and aligning the organizations,

decisions, processes and services a business maintains. It consists of describing the

current and future structure and semantics of the: processes, information systems, per-

sonnel and units, and how they are aligned with the organizations strategic direction. In

this thesis we are mainly interested in the technology aspect of the enterprise architec-

ture, which is focused on alignment of the functional components of an actual business

application. The technical aspects consider logical components to be a decomposition

into systems, which are responsible for controlling these aspects.

Figure 2.1 shows a conceptual overview of a generic enterprise architecture composed of

the following five layers1:

1Notice that the layered stack is extended with event and rule layer as an independent system de-
composition.

Chapter 2. Enterprise Modeling 10

Figure 2.1: Layers in the enterprise architecture [Wilkes and Veryard, 2004].

• The event layer exposes a predefined set of event patterns as services, used for

specifying communication protocols or the processing of (internal and external)

business events.

• The process layer combines the services in long running processes, where each

process itself is provided as a service.

• The service layer conceals the system functions and components and provides

them as services.

• The rule layer can be used to describe the structural and semantical constraints

of the actual service.

• The application layer is responsible for the integration of services across application

systems (e.g. Enterprise Resource Planning, Customer Relationship Management,

etc.).

Chapter 2. Enterprise Modeling 11

Instead of implementing each enterprise applications as a single purpose application, one

can use architectural styles as a blueprint for the design and implementation. Architec-

tural styles promotes reuse as they promote the modularity of components across the

enterprise architecture. Take for example a jigsaw puzzle is modular, but it can only be

composed in one way (close-ended). A tangram is a tiling puzzle that is also modular,

but can be composed to make an infinite variety of shapes (open-ended). Following the

tangram approach each layer in the enterprise architecture, promotes a style reflecting

one functional component in the enterprise architecture. The following architectural

styles can be identified: Service Oriented Architecture (SOA), Event Driven Architec-

ture (EDA), Process Driven Architecture (PDA) and Rule Driven Architecture (RDA)

[Kuster and Konig-Ries, 2007, Michelson, 2006, Martin, 2006]. In the following sections

we give a brief introduction to each of the architectural styles.

2.2.1 Service Oriented Architecture

The SOA is ‘a computer systems architectural style for creating and deploying packaged

services and defining an infrastructure to allow the interaction of these services’. The

services are reusable pieces of functionality that communicate with each other in some

meaningful way. The interface of the services are described by an universal language,

such that they can be invoked from applications or services independent of the platform

on which they operate and language in which they are implemented.

The SOA prescribes a mechanism to provide and consume services in a network. This

allows that the provided services can be reused by multiple consumers. Reuse of the

services reduces complexity when multiple parties need to interact with a single service.

A system which has adopted SOA consists of subsystems on the application layer that

interact in a loosely coupled manner. Loose coupling describes: ‘an approach where inte-

gration interfaces are developed with minimal assumptions between the sending/receiving

parties, thus reducing the risk that a change in one application will force a change in

other application2’. The subsystems are autonomous, such that they can be consumed by

different partners without knowing the processing details of the actual service. Services

are subject of reuse as they are decomposable (service can contain services). Another

important characteristic of services is that each service can be treated as a black box,

such that the consumers of services do not require a detailed definition of how the service

was implemented, but only the (semantic) specification of the service. Finally, services

increase scalability as each service should be dynamically discovered and bound to the

end-point, independent of the location or platform on which they operate. Different

communication protocols (e.g. CORBA, RMI, SOAP, COM, etc.) have been proposed,

2see: http://en.wikipedia.org/wiki/Loose coupling

Chapter 2. Enterprise Modeling 12

promoting implementations of SOA across different type platforms (e.g. Sun Microsys-

tems (J2EE) and Microsoft’s (.NET)).

2.2.2 Event Driven Architecture

The EDA can be defined as: ‘an architectural style for designing and implement applica-

tions and systems in which events transmit between loosely coupled software components

and services’ [Michelson, 2006]. An event driven system is typically comprised of event

consumers and producers. Event consumers subscribe to an event provided by an event

manager, the event producers publish the occurrence of the events to this manager.

When an event is received by the event manager it is forwarded to all subscribed con-

sumers. In case the consumer is not available, the manager can store the event and try

forward it at a later stage (store and forward).

EDA is typically useful for business-to-business and peer-to-peer interactions which

are highly dynamic across business applications. Therefore a more sophisticated a-

synchronous processing technique is quickly becoming apparent to support this task.

Building a communication model to exploit this power and allowing a certain flexibility

is a high priority for competitive software development. An event-driven communica-

tion model is superior when responding to run-time occurrences, compared conventional

synchronous request/reply mechanism. As the publisher has no knowledge of the events

subsequent processing or the interested parties, it is clear that the events are by nature

loosely coupled and highly distributed.

EDA is push-oriented and fills the gap of PDA which is generally pull-oriented. Take

for example a mortgage company detecting an increasing number of fraud situations for

which different controllers need to be notified.

2.2.3 Process Driven Architecture

The PDA can be defined as: ‘an architectural style for designing and implementing

applications and systems in which processes are exposed and interact between loosely

coupled software components and services. The origin of PDA3 comes from the workflow

management paradigm, which is focused on ‘the division of work, such that it can be

distributed among the different actors in the process’. In the typical workflow paradigm,

a business process is recursively decomposed into sub-processes and tasks, where the

task is an atomic entity. Here also lies the main difference between workflow and PDA,

3There is no agreement on the meaning of PDA, but there are topics with respect to business processes
that are commonly gathered under this terms, notably the design, analysis, modeling, implementation
and control of the business processes.

Chapter 2. Enterprise Modeling 13

as PDA exposes the atomicity of processes, sub-processes and tasks as services. This

principle is also referred to as the orchestration of services.

Workflow is related to three dimensions as identified by [Aalst van der and van Hee,

2004]: control flow, case data and resources. The control flow defines the order in

which the task must be performed; the case data defines the goal in form of information

that need to available after the completion of each task; and the resources refer to

the organizational structure such as: actors and their capabilities and responsibility to

perform tasks. The dynamic behavior of the process is conceptualized in terms of a

case following through the tasks and sub-processes according to a predefined process

model. A case can follow alternative choices or parallel-split routes through the process

model, where the split implies that the case can reside at several positions in the flow

simulations. A more elaborate description of the variations in control flow routing are

is described in the Workflow patterns [Aalst van der et al., 2003, Aalst van der and

Hofstede ter, 2002, Puhlmann and Weske, 2005].

Workflow has introduced various advantages with respect to modeling the procedures in

the operational business. The separation of control of work, can be distributed among

human and system actors and even third participating parties in the business environ-

ment. In this way workflow decreases the operational cost by automating the manual

tasks (e.g validate, retrieve and interchange of data on a timely basis.). Workflow enables

optimization of the business performance (e.g. decrease throughput time and waiting

times in the process), by performing measurements, analysis and redesign [Reijers and

Limam Mansar, 2005]. By modeling the process instead of programming it is possible

to validate its correctness4 or simulate the process before the they are put in actual use

[Aalst van der and Hofstede ter, 2002, Aalst van der, 1998, 2000, Jensen, 1997, Dijkman

et al., 2007]. Workflow also contributes to the compliance in the organization, such that

a process can be used as an agreement between multiple parties [Zaha et al., 2006].

Workflow solutions are better adaptable to changes from the business, because the pro-

cess is defined in a graphical language, understandable by business engineer. Changing

a graphical language instead of the programming logic increases the agility to adapt to

changes and decreases the time-to-market.

Drawbacks associated with the workflow paradigm are lack of flexibility, the atomicity

of tasks, context tunneling and the mix-up of distribution and authorization [Aalst van

der et al., 2005b]. The lack of flexibility refers to the push-oriented routing focusing on

what should be done instead of what can be done, resulting in rigid inflexible workflows.

The atomicity of tasks refers to the requirement that work should be straight-jacketed

into atomic tasks, while user performs them at a much more fine-grained level. Context

4Only possible when the semantics can formally described.

Chapter 2. Enterprise Modeling 14

tunneling refers to the lack of context during the processing of a task by an individual,

especially the processing history of a case. The mix-up between distribution and autho-

rization refers to the problem that workers can see all the work they are authorized to

do, but are not authorized to do anything outside of their worklist.

2.2.4 Rule Driven Architecture

The RDA can be defined as: ‘an architectural style for designing and implementing appli-

cations and systems in which the semantics of a set of rules are exposed as loosely coupled

software components and services’. The rules are declarative statements expressed in a

basic syntactical structure. The RDA encompasses improving the correctness, consis-

tency, changeability and agility of the decision taking an organization maintains. More

specific: RDA exposes the decision taking as services for which the semantics are defined

in terms of declarative rule statements.

The concept of business rules originates from the knowledge engineering5 and knowledge

representation6, which both have arisen from the cognitive science and artificial intel-

ligence. In these paradigms the knowledge is used to achieve intelligent behavior as to

facilitate inference (i.e. taking decisions or derive knowledge from explicit knowledge).

Rules are stored in a rulebase and are enacted by rule engines, which evaluate the con-

ditions of the rules and determine (at any point in time) which rules are eligible to fire.

Newell [1982] is one of the first that introduced the idea of knowledge modeling on the

conceptual level, his work states that: ‘knowledge is to be modeled at a conceptual level,

in a way independent of specific computational construct and software implementation’.

Other considerable research comes from the Database Research Community, which has

resulted in the development of active databases supporting data integrity, through pro-

cedures and triggers [Dayal et al., 1998, Tanaka, 1992, Widom and Ceri, 1996]. Further

research on rules has resulted in the development of deductive databases, which make

deductions based on rules and facts stored in a rulebase [Loucopoulos, 2000, Loucopou-

los et al., 1991]. These approaches have evolved into the rich knowledge based systems

we use today, where rules are separated from the data and processed by independent

engines [Ross, 2000, Schreiber et al., 2000]. The Business Rule Approach is the result of

the increasing interest of identifying and articulating the operational business rules in

a development life cycle [Ross, 2003]. The research community further investigates the

elicitation, analysis, classification, formalization and implementation of business rules

[Herbst, 1994, Rosca et al., 1995, Bajec et al., 2000]. The more common use of rules

has resulted in the development of vocabularies and standards for the interchange of

5see: http://en.wikipedia.org/wiki/Knowledge engineering
6see: http://en.wikipedia.org/wiki/Knowledge representation

Chapter 2. Enterprise Modeling 15

rules by means of services. Nevertheless, at the time of writing the development of these

standards is work in progress [OMG, 2006, W3C, 2005].

The Business Rule Manifest [Ross, 2003] specifies a number of guideline, which need to be

followed in order to take advantage of business rules. Traditional software engineering

is a slow and time consuming process, where the software (which will end up in the

programming logic) implicitly describe the executable rules. The business rules aim

at separation of the executable rules from the programming logic, by implementing the

rules as content [Herbst, 1994, EnixConsluting, 2005]. Like the process the business rules

increase the compliance in the organization as the rules explicitly define the policies &

regulations an organization maintains. The business rules are an important asset of

the business (reflecting the requirements of the business), but with traditional system

development these rules are buried deep into the programming logic.

The main difference between the rules and the process is that rules are modular and

have a declarative syntax compared to the imperative syntax of procedural processes.

The rules are most useful at a more fine-grained level of the process, where it becomes

increasingly difficult to express the business knowledge in terms of imperative languages.

The rules are modeled as independent rule statements, such that each rule can be seen

as the smallest unit of change [Goedertier and Vanthienen, 2006]. The changes of busi-

ness rules can be simulated without changing code, but by changing the rules instead

[Bajec et al., 2000, Bajec and Krisper, 2005]. Analysis can be performed at forehand

to evaluate if the newly implemented business rules meet the actual business objectives.

The declarative nature of rules allow a better understanding of the individual rules, such

that they can be modeled by the business engineers and allows validation of indepen-

dent rules more easily. By making business rules explicit and express them in syntax

understandable for business engineers, brings the rules one step closer to the business to

regain control of its rules. The software engineers do not have to translate the rules into

programming logic, but develop a rule engines that are responsible to enact the rules.

2.3 Model Driven Architecture

Another approach of enterprise modeling can be found in the MDA, which can be defined

as: ‘a model based representation of a part of the function, structure and semantics of

an application or system’ [Mellor, 2004]. MDA is not focused specifically on the func-

tional architecture, but more on the modeling perspective. MDA classifies three model

types: Platform Specific Model (PSM), Platform Independent Model (PIM) and Com-

putational Independent Model (CIM). MDA proposes high-level modeling languages,

which introduces a more abstracted modeling syntax reducing technical complexities.

Chapter 2. Enterprise Modeling 16

These models are referred to as CIM, which allows modeling independent of the actual

implementation, where the solutions will be limited by technical considerations (e.g.

BPMN, AD and YAWL, etc.). In MDA the models for which the platform independent

computation are considered are referred to as PIM (e.g. BPEL, XPDL, RuleML, etc.)

and the models which include platform specific specifications are referred to as PSM

(e.g. C# and Java, etc.).

At all levels of MDA models are governed with a syntax and semantics7. This allows

that models, for which the syntax and semantics are comparable, can be synchronized

through transformations from CIM into PIM and from PIM into PSM. To accomplish

this goal OMG [2003] has defined four modeling layers in MDA (see Figure 2.2). At the

M0 level, MDA specifies the executable code of a program. At M1 level, MDA considers

models from which the executable code can be constructed. At the M2 level, MDA

specifies the meta-models that define the syntax of the language used for modeling. The

M3 level, MDA specifies the meta-meta-model that defines a generic language, which

can be used to construct meta-modeling languages at the M2 level of MDA8.

Figure 2.2: Modeling layers in MDA from [Kleppe, 2003].

The goal of MDA is to transform models from one modeling layer into another9. An

alternative approach to pure MDA, is to define engines, which interpret the models at

M1 and produce the desired behavior based on a set of predefined semantics. In this

7 A model is formal if its syntax and semantics can be described formally.
8In figure 2.2 Meta Object Facility (MOF) is provided by OMG to fulfill this task.
9In this thesis we mainly focuses on the forward engineering principle, the backward engineering is

not considered.

Chapter 2. Enterprise Modeling 17

case it is not required to generate programming logic, but generic engines implement the

semantics of language concepts at the M0 level of MDA. This allows that the models

can be simulated at an early stage in the development life cycle, unlike the traditional

approach where programming logic drives the solution. MDA also ensures a certain

predictability of the end result and encourages efficiency of system models in the software

development life cycle. MDA also supports reuse of best practices when creating families

of systems, allowing the use of automated tools for the design and validation of models

and facilitate the transformation of models at different levels of abstraction.

2.4 Enterprise architecture and MDA in the life cycle

The life cycle plays and important role in enterprise modeling to enable different stake-

holders to manage their own viewpoints of a business solution. In this section we discuss

the role of the enterprise architecture and MDA in the application development life cy-

cle. A general development life cycle is composed of generally four repeating stages (see

Figure 2.3): design, implementation, enactment and analysis.

Figure 2.3: Stages in the development life cycle (from Muehlen zur [2004]).

2.4.1 Design Stage

At the design stage the business goals, policies and regulations (also known as busi-

ness requirements) are made explicit in terms of business requirements. These business

requirements must be translated into designs, which is the first step toward a more

Chapter 2. Enterprise Modeling 18

formalized representation of the business solution. The business requirements are dy-

namic and should be flexible toward changes in the business. Changes in the business

environment are driven by internal decisions or external forces, such as government laws

and regulation. The regulation imposes external legislations, such as business protocols,

legislation, long-term contracts, quality norms etc. Regulations often bring change re-

garding the process interaction with the business partners. The policies are internally

defined and come from intended strategies of management or procedures for the per-

sonnel. Take for example: an order acceptance policy, discount policy or risk rating

policy. The changes to the policies are motivated by strategic, tactic and operational

decisions. The strategic and tactic policies are not formal and need to be formalized

into operational policies, which can be expressed in the form of a design governing by a

syntax of the form: principles, procedures, facts, figures, formulas, etc.

The design stage is driven by business-oriented people, which are mostly not familiar

with formal modeling languages. At this stage modeling is performed at the conceptual

level, classified as CIM in MDA. No technical aspects of the enterprise architecture

are considered yet at this stage. Nevertheless, the organizational models describing

the geographic decomposition of the organization, already constraints aspects of the

enterprise architecture.

2.4.2 Implementation Stage

Business-oriented people have little understanding of programming languages, such that

involvement of business engineers and software engineers is required at this stage to

translate the design into an actual implementation. Unfortunately, this approach leaves

the business user with very little empowerment to manage and control the actual im-

plementation, because after the implementation the programming logic or executable

models hide the business requirements.

The implementation requires that the design is formalized at a more fine-grained level.

We can classify these models as PIM or PSM in MDA. These models are either im-

plemented as programming logic or executable models. Using formal models instead

of programming enables validation at an early stage of development. The technical

architecture specifies that actual targeted platform on which the executable models or

programming logic operates. The technical consideration at this stage directly affect

the selection of the platform or the way the business engines are implemented. Tech-

nical limitations arise as a result of these technical considerations which need to be

resolved for the design (e.g. resolve language concepts in design not supported by the

Chapter 2. Enterprise Modeling 19

implementation). This implies that the decomposition of components of the enterprise

architecture need to be accomplished before or during the actual implementation.

2.4.3 Enactment Stage

During the enactment stage the models (result of the implementation stage) are de-

ployed on the run-time environment. The run-time environment is the platform on

which the programming logic operates or the implementation of the business engine

(responsible to enact the executable models). The programming logic and executable

models are referred to as PSM in MDA, as they are translated from an implementation

into an operational business application. The deployed applications and the run-time

environments are part of the enterprise architecture.

2.4.4 Analysis Stage

During the analysis stage the goals, policies and regulations are evaluated and monitored

to determine if they have been met (e.g. performance, efficiency, etc.) by the operational

application. Either the violation or change of goals, policies and regulations could result

in change of the design, implementation and enactment. This included the validation of

the correctness and completeness of the actual implementation. Validation at this stage

is required, because programmers often disperse programming logic into pre-existing

implementations. Analysis could require that the design and implementation are re-

examined and modified according to the new objectives and goals of the business.

At the analysis stage models define how the actual evaluation must be performed and

who is responsible to take actions in case certain goals have been violated. The enterprise

architecture specifies the locations, where the information, required for the analysis can

be retrieved.

In this chapter we have presented that enterprise modeling is an approach for creating

models for different viewpoints of the business applications. Both enterprise architecture

and MDA have emerged as principles of enterprise modeling. The enterprise architecture

focuses on the functional decomposition of a system into components. MDA specifies

how modeling is performed, and allows transformation of these models at different levels

of abstraction. The enterprise architecture and MDA are important in the context of

the way Everest models and deploys business applications in the EKF. In the following

chapter we therefore continue to discuss how enterprise modeling is specifically applied

in the EKF.

Chapter 3

Everest Knowledge Framework

In this chapter we aim at answering the question: ‘How does Everest apply enterprise

modeling in the EKF?’. Answering this question is important as Everest has imple-

mented a framework for developing business applications, but limited documentation

exist that provides a more detailed overview how enterprise modeling is applied in the

EKF. In this chapter we therefore give a more clear understanding into the way enter-

prise modeling is supported by the EKF (see Section 3.1), which is considered to be

an important result for Everest. The EKF is a modeling and enactment environment

based on the enterprise architecture and MDA approaches, as presented in the previous

chapter. We discuss how the enterprise architecture and the MDA are covered by the

EKF to accomplish the development of business applications from design into the actual

implementation (see Section 3.1.1 and 3.1.2). This includes a more detailed study of the

EKF process modeling language as plays a central role in the preceding of this thesis (see

Section 3.1.2.3). Finally we discuss how the EKF process models are actually deployed

on the enterprise architecture of the EKF (see Section 3.2).

3.1 EKF and Enterprise Modeling

The EKF is a framework used for the development of knowledge intensive (front- and

mid-office) applications. Everest has adopted enterprise modeling as a strategy for de-

veloping business applications. MDA plays an important role in the development of a set

of models which together describe business application. For modeling, Everest considers

conceptual models at design-time, which are translated into executable models. The

executable models are deployed on business engines, which are considered to be part

of the functional components of the enterprise architecture. In the following sections

20

Chapter 3. Everest Knowledge Framework 21

we give more insight into of the enterprise architecture of the EKF, followed by a more

detailed study of how MDA is specifically performed in the Everest modeling approach.

3.1.1 Enterprise architecture of the EKF

The enterprise architecture of the EKF is composed of a number of logical components

including business engines and additional systems performing specific aspects in the

EKF. At design-time the models are implemented using the Everest Knowledge Studio

(EKS), from which they are deployed on the targeted business engines. Each logical

component specifies the semantics of the executable models at run-time. The following

logical components are supported by the EKF (see Figure 3.1): domain storage, trans-

formation engine, portal engine, event manager, rule engine, process engine, worklist

manger, and Enterprise Service Bus (ESB).

Figure 3.1: Enterprise Architecture in the EKF.

Everest Knowledge Studio

The EKS provides an environment, where the models can be implemented and deployed

on the engines. The models are stored in an extensible model repository from which the

different versions of the models are maintained.

Domain Storage

The domain storage maintains persistence, consistency and integrity of the domain data.

The domain models are deployed on the domain storage, from which instances of the

Chapter 3. Everest Knowledge Framework 22

models are instantiated and maintained. The domain storage is an abstraction of the

actual data storage (database) and exposes the data in terms of business objects instead

of relational database structures. The domain storage allows queries on the domain

data, such that application data is maintained and retrieved through the domain storage

component.

Transformation Engine

The transformation engine is responsible to transform one data format into another data

format. Transformation of data is specifically useful in case system-to-system integration

requires various data formats to be published and consumed.

Portal Engine

The portal engine uses a presentation model to drive the semantics of the user interac-

tion through a dialog interaction with the user. The behavior of the user interactions

are dynamically generated, from the presentation model. The presentation model de-

fines the semantics, affecting the user experience independent of the way its presented.

The presentation model allows the modeling of the dialogs and services in terms of

an application flow. This allows the realization of dialogs and navigation, such that

business-oriented people can develop these dialogs based on attributes from the domain

model. The dynamic behavior of the dialogs is controlled by the rule engine and the

presentation is generated through the transformation engine.

Event Manager

The event manager is responsible for managing event-driven aspects in the EKF. The

event manager is primarily an event processing concept that deals with processing mul-

tiple events. The event manager provides a platform for interaction between the other

components (e.g. portal engine, rule engine, process engine, etc.), such that each com-

ponent can publish and subscribe to events. All components subscribed for a certain

event are notified after the occurrence of that event.

Rule Engine

The rule engine interprets the rules and derives knowledge from the domain data. In

traditional computer programming, a program is composed of an algorithm and a data

structure. A rule based system uses a rule engine to derive knowledge by inference rules

included in the rule repository. The EKF supports backward chaining as a strategy for

the rule inferencing. Backward chaining starts with a list of goals or hypothesis and

works backwards to see if there are data attributes available that will support any of

these goals. A rule engine using backwards chaining, searches typically for rules for

which the then clause matches the desired goal and adds it to a list of goals if the if

clause is known to be true. In order to realize the goal the data that confirms these

goals must be provided.

Chapter 3. Everest Knowledge Framework 23

Process Engine

The process engine is responsible for the execution of the process specific aspects and

maintains the information of the control flow in the process. The process engine relies

on both the event manager and rule engine to determine when a certain action must be

performed. The process engine itself specifies, the order and through which channel the

actions must be performed. More specific the process engine is the central controller

and coordinator across the logical components involved in the business process.

Worklist Manager

The worklist manager is responsible for the distribution of work between the (system

and human) actors in the process. The worklist manger considers some kind of strategy

to determine who (actor) is responsible to perform the task. Roles are associated with

worklists (also called work queues or in-boxes), in which a workitem appears as soon

as a case is ready for processing. Users can pick-up a workitems from the worklist

associated with their roles, which result in the start of an application to complete the

task corresponding to the workitem. Tasks can be automated if they are governed

with a system roles, such that they are performed through a self contained application.

Another responsibility of the worklist manager is to prioritize workitems in the worklist

and specify the strategy in which the tasks are provided to the actor (push or pull

mechanism)1.

Enterprise Service Bus

The Enterprise Service Bus (ESB) enables the integration and communication with

external systems and components through different channels. The service logic conceals

the external applications, by providing services from which they can be invoked. The

service logic interacts with application layer by means of channels2. The EKF does not

support a model for specifying the service interaction, but programming is still required

to accomplish this property. The interaction is therefore implemented as modules in

the EKF supporting the interaction with different system-to-system protocols, which

promotes the interaction across different applications operating on different platforms

(e.g. JMS, EJB, IBM-MQ, HTTP, SOAP etc.).

3.1.2 Model Driven Architecture in the EKF

In the development approach of Everest, graphical models are used at the design stage,

mainly for the communication with the different stakeholders. The graphical models

are implemented in terms of the EKF executable models. These executable models are

interpreted by the business engines, which specify the semantics at run-time.

1In the EKF this strategy can be configured by means of rules.
2The EKF channel is the service of the EKF enterprise architecture

Chapter 3. Everest Knowledge Framework 24

The EKS is used for construction of respectively five types of executable models (see

Figure 3.2): domain model, rule model, task model, process model and interaction

model. These models can be used for defining models to describe the system behavior,

independent of how they are enacted by the underlying logical components. Each model

is interpreted by the logical component from which the desired behavior is generated at

run-time.

The domain model underlies all models, specifying the structural aspects of the appli-

cations. The rule model describes the dynamic aspects in terms of rules. The process,

task and interaction model are implemented in terms of a combination of the domain

and rule model. The process model specifies how control flow of tasks in the process

and how they are distributed among the different actors in the process. The task model

specifies how the goal in the process is accomplished in terms of a human-to-system or

system-to-system interaction at a more fine-grained level. The interaction model spec-

ifies how the human-to-system interaction takes place through a navigation of dialogs.

The task model and interaction model are outside the scope of this thesis. Therefore we

deal with tasks as synchronous channels provided by the EKF connectivity layer, which

require information on its input and provides information on its output when completed.

Figure 3.2: Modeling dimensions in the EKF.

The basic principle of the EKF is to separate the storage of domain and rules (content)

from the engines (programming logic). Everest uses a graphical languages for modeling

at design-time. These graphical models are used as a guideline to implement certain

aspects in the EKF in terms of the domain and rule models.

Chapter 3. Everest Knowledge Framework 25

The domain and rule languages are therefore considered to be modular as they are not

specifically designed to model a specific aspect of the system, but allow modeling an

extensive number of shapes (concepts). The domain model can be used for modeling

the business domain or to construct meta-models for modeling languages. The rule

model is used for data validation, derivation of knowledge from existing knowledge and

to accomplish the dynamic aspects in the EKF by making certain semantics explicit in

terms of rules. The process model inherits properties of the domain and rule model, as

the process language actually implemented in terms of domain and rule models. More

specific, the structural aspects of the process are implemented in terms of a domain model

and the behavioral aspects (e.g. state transition, decision taking) are implemented in

terms of a rule model.

Both the domain model and rule model are part of the process implementation in the

EKF and are required to completely understand the syntax of the EKF process. The

domain model and rule model are interpreted by respectively the domain storage and

rule engine, which specify some of the semantics in the process. In extension of the

domain and rule engine, a process engine is introduced to accomplish some of the process

specific semantics of the process. In the following sections we continue to provide a more

detailed description of the syntax of the domain model, rule model, process model and

connectivity layer.

3.1.2.1 Domain Modeling

The domain language captures the structural aspects in terms of entities, attributes

and relations, which is similar to Unified Modeling Language (UML) [OMG, 2005].

The domain language can used at the M2 level of MDA to construct meta-models of a

modeling language (e.g. process model, rule model, etc.) and on the M1 level of MDA

to model business concepts (e.g. organizational model and product model, etc.). An

example of the domain model is included in the case study (see Appendix D).

In figure 3.3 we present the UML meta-model expressing the syntax of the EKF domain

model. The EKF domain language supports two types of relations: association and

generalization. The association relation is comprised with cardinality relations between

two entities and generalization allow inheritance and specialization of entities. Entities

maintain a number of attributes and optional operations. Attributes in the domain

model support the following basic data types: integer, double, float, boolean, datetime,

string and enumerations. Each domain model maintains instances of domain data, for

which attributes refer to the values assigned to attributes. Notice that multiple instances

of the domain data for a single domain model can be maintained. The integrity rules

Chapter 3. Everest Knowledge Framework 26

Figure 3.3: Meta-model of the EKF domain language.

underlie the domain model and guards the integrity, persistence and consistency of the

domain data. The integrity rules do not prescribe a dynamic aspect of the system, but

constraint the domain model throughout its existence.

3.1.2.2 Rule Modeling

The rule language allows defining the rules instead of programming. The rules are

strongly related to the domain model, as the conditions are composed of domain at-

tributes and the actions are governed by the assignment of values to domain attributes

or invocation of operations. The goal of the rules is to derive knowledge (in terms of do-

main attributes from the domain model) from existing knowledge or perform predefined

actions through operations.

The rules are implemented as executable rules, which are part of the Event Condition

Action Alternative Action (ECAA) paradigm. This paradigm originates from the ac-

tive database field, where ECA rules are implemented as database triggers. The event

specifies some temporal behavior in terms of events; the condition is an expression com-

posed of terms and fact from the domain model; the action is a procedure or operation

that needs to be performed; and the alternative action must be performed for the set of

alternative conditions. The EKF rule language allows: Event Condition Action (ECA),

Event Action (EA) and Condition Action (CA) rules to be expressed in terms of either

Chapter 3. Everest Knowledge Framework 27

decision tables, decision trees or independent rule statements. Wagner [2002] has iden-

tified the following classification for executable rules, which is based on the syntactical

structure of the rules:

• The ‘integrity rules’ are described as constraints on facts or associations of two

or more terms. Notice that the integrity rules are supported by the EKF domain

model and are not part of the rule model. Example: the customer must be at least

18 years old.

• The ‘production rules’ are rules which specify that in case a certain condition

holds a corresponding action needs to be performed. Production rules are mainly

supported by forward chaining rule engines. Production rules are not supported,

as the EKF rule engine only supports backward chaining inferencing. Example: if

the customer credit is greater than 10.000 do calculate the discount .

• The ‘derivation rules’ are the statements of knowledge that are derived by explicit

knowledge through: inference of rules, logical expression or mathematical calcula-

tion. Derivation rules are processed by either a forward or backward chaining rule

engine. The EKF only supports backward chaining mechanism to process deriva-

tion rules. Example: if the monthly debt divided by yearly income is greater than 30

percent then the customer qualification is accepted else the customer qualification

is rejected .

• The ‘reaction rules’ are described as actions performed in response of some event.

Reaction rules are supported in the EKF through the event manger. Example: on

the occurrence of a risk exception and if the loan was accepted do send notification

message.

• The ‘transformation rules’ are the rules used for the transformation of one data

format into another data format, which is directly supported through EKF trans-

formation engine.

Three rule representations have been adopted in the EKF rule language: rule statements,

decision trees and decision tables. A rule statement is an expression of a single rule

independent of the other correlated rules. A rule expression is expressed in terms of:

derivation rule (if condition then action) or reaction rule (on event if condition then

action). A decision table is a tabular representation to describe and analyze decision

situations, where a number of conditions determine the assignment of a set of attributes.

Not just any representation, however, but one in which all distinct situations are shown

as columns in a table, such that every possible case is included in one column. A decision

tree is a graphical representation of a ruleset represented as tree of rule conditions, for

Chapter 3. Everest Knowledge Framework 28

which each leaf of the tree specifies a specific action. The decision table and decision

tree guard the properties of completeness and exclusivity as described in [Vanthienen,

1991, Kriz et al., 1998]. Additional symbols are adopted in the EKF rule language to

accomplish the following semantics:

• Hypen (∗), acts as a don’t care, which can be read as true.

• Unknown (?), evaluates to true if a certain data values is unknown at a certain

point in time.

• Else ([]), indicates all other possible condition alternatives.

• Empty (−), indicates that no additional events or conditions are considered or

actions are performed.

An example of the rule model (rule statement, decision table and decision trees) is

included in the case study (see Appendix D).

Figure 3.4 gives an overview of the syntax of the EKF rule repository expressed in

terms of an UML meta-model. The root element of the rule language is the ruleset,

which is a grouping of rules. A ruleset is composed of decision tables, decision trees

and rule statements. A ruleset is a sub-set of rules which are correlated by means of

their common conditions and actions. A ruleset therefore defines the total set of rules

that specifies the action taken considering all possible conditions and optional events.

A ruleset contains all correlated rules, which need to be executed at a common point in

time. The rules refer to other rules at the time of their execution, due to fact that rules

can use actions of preceding rules as a condition. Optional event triggers can be defined,

such that a certain ruleset is only evaluated after the occurrence of this event. For each

rule which is subscribed to the event the condition is evaluated and only the action for

which the condition evaluates to true is performed. Modeling the rules therefore does

not require a predefined ordering of the rules. The rule model specializes attributes

from the domain model into terms, where terms are combined into a simple-expression

of the syntax: < leftterm, comparisonoperator, rightterm >. Simple-expressions sup-

port the comparison-operators: =,6= >, <, ≥, ≤ and can be combined into a complex-

expression of the syntax: < simpleexpr, logicaloperator, simpleexpr >. The complex

expression support the logical operators: conjunction (AND), disjunction (OR) and

negation (NOT).

Chapter 3. Everest Knowledge Framework 29

Figure 3.4: Meta-model of the EKF rule language.

Chapter 3. Everest Knowledge Framework 30

3.1.2.3 Process Modeling

The process model specifies the flow of tasks to constrain the order in which tasks need

to be performed. The goal of the process is to define a number of tasks that separates

the control of work, such that each task is performed by a certain actor assigned to a

certain role in the process. Choices in the process can be constrained by rules, such that

the decisions influence the continuation of the control flow. A process model describes

what the business does and why this is done, but should not say how it is done in a

specific organization. In this way the process reflects the goal from sale to delivery an

organization maintains, which is part of the supply-chain throughout and across the

organizational boundaries. Examples of an EKF process models (mortgage process) is

included in the case study (see Appendix D).

The EKF process languages defines a Business Process Diagram (BPD), which is based

on a flowcharting technique tailored for creating graphical models of business process

operations. Everest adopted the graphical objects of the Business Process Modeling No-

tation (BPMN), but have defined Everest specific semantics when constructing models.

As the EKF process language does not complement the semantics of BPMN, we refer

to the BPD as EKF process language rather than BPMN. The EKF process models are

used for the communication of the process design among the stakeholders and forms the

basis for the actual implementation of the process in terms of domain and rule models.

The EKF process language bridges the gap of the business process design and process

implementation in the Everest modeling approach.

A BPD is a network of graphical objects, which are composed in such a way that they

constraining the order in which the task must be performed. A BPD is made up of a set of

graphical elements, which promote the development of simple diagrams. These elements

where chosen to be distinguishable from each other and to utilize shapes familiar to the

Everest business engineers. A BPD has a small set of core elements, so that modelers

do not have to learn and recognize a large number of different shapes. The elements

and relations between these elements are referred to as the syntax of the EKF process

language. The following elements are supported by the EKF process language: process,

sub-process, task, event, flow and decision-point.

The process and sub-process are semantical similar elements, the main difference between

them is that a process does not allow exception handling. The sub-process groups one or

more tasks into a hierarchical structure, which together aim to accomplish a certain goal

in the process. For the sub-process two representations can be identified: expanded sub-

process (see Figure 3.5(a)) for which the internal tasks of the sub-process are exposed

Chapter 3. Everest Knowledge Framework 31

or collapsed sub-process (see Figure 3.5(b)) for which the internal processing of the sub-

process is contained by the sub-process. The sub-process allows exception handling,

such that the exceptions affect all task contained by the sub-process. Three types of

exceptions are supported: timer exceptions, rule exceptions and message exceptions. The

timer exceptions are caused by the expiration of a timer constant; the rule exceptions are

caused by the violation of a rule; and the message exceptions are triggered by external

systems.

(a) Expanded Sub-process (b) Collapsed Sub-process

Figure 3.5: Sub-process in the EKF process.

The internal processing of the task is performed at a more fined-grained level in the

EKF modeling dimensions, such that the processing of the task itself is not part of the

process model. In the EKF the actual processing of the tasks is performed through

channels of the connectivity layer either as automated or manual tasks3. In this thesis

we consider the task as an atomic unit of work. A more specific definition: ‘the set of

actions a human or machine must undertake to accomplish a goal in the process’. In the

EKF process language a task is presented as a rounded rectangle, which allows multiple

incoming flows triggering the activation of the task and multiple exclusive outgoing flows

enabling the proceeding of the task after its completion (see Figure 3.6(a)). Actors are

assigned to roles to indicate which individual groups are authorized and responsible to

perform a certain task.

The flow specifies the order in which the tasks or sub-process must be performed or

events must be processed. A flow is represented by a solid line with a solid arrowhead,

constraining the order in which the tasks can be performed in the process or specify at

what point in the process events must be processed (see Figure 3.6(b)). Two types of

flows are supported in the EKF process language:

3The connectivity layer specialized various channel types allowing automated task by means of a rule
model and manual task by means of a combination of the interaction and presentation model.

Chapter 3. Everest Knowledge Framework 32

(a) Task (b) Flow

Figure 3.6: Task & flow in the EKF process.

• The conditional-flow requires to satisfy a certain condition expression, before the

flow can be preceded.

• The unconditional-flow directly results in continuation of the process.

The event controls the temporal semantics of the process, by causing a state change

on the occurrence of events. An event is represented by a circle and is something that

happens during the course of a business process. These events affect the flow of the

process and have a cause (trigger) and/or impact (result). In the EKF process language

the following classification of events are defined: start point events, specify only the

cause; intermediate event, specifies both the cause and impact; and end point events,

specifies only the impact.

Figure 3.7: Events in the EKF process.

The following event types are supported by the EKF process language (see Figure 3.7):

• The start events activates the process and results in the creating a new instance in

the process. The following start event types are supported: message event, timer

event or rule event. The timer events waits for the expiration of a timer constant;

the message event waits until a certain message has been received; and rule event

acts on the violation of a rule.

Chapter 3. Everest Knowledge Framework 33

• The trigger events is an external event which causes all task instances in the a

sub-process to be terminated and starts processing from the event forward, but

only if the condition-expression is satisfied.

• The intermediate events are the events, which need to be received before the

process can proceed. Various types of intermediate events are supported: timer

events, message events and rule events.

• The cancel events result in the termination of all task instances in the (sub-)

process and creates a new instance to proceed processing from the event forward.

Cancellation events are triggered as an impact, generally after the completion of

a task.

• The internal events are used to notify the process engine that a certain task has

been completed. Unlike intermediate events the internal events do not interact

with external systems, but are used for EKF internal purposes only.

• The end events is the final event resulting in the completion of the process.

• The terminate events is a final event resulting in the termination of the entire

process.

• The NOP events is a final event for which no additional actions are undertaken.

• The notification events are the events, which notify external actors or processes of

the occurrence of a certain event. The notification event result in actions, which

are accomplished through either system-to-system or system-to-human interaction.

• The cancel sub-process events allow the cancellation of a sub-process and termi-

nates the processing of all instances of tasks contained by the sub-process. Occur-

rence of this event directly results end of the sub-process.

The EKF process language specifies a decision-point for controlling the complex de-

cisions in the process. The decision-points in the EKF are implemented in terms of

process decision tables, for which conditions are evaluated to derive conclusions about

the continuation of the process.

The following types of decision-points are supported by the EKF language (see Figure

3.8):

• The OR-split-decision-point is a point in the process where the process can proceed

processing one or more branches based on the evaluation of a set of non-exclusive

conditions. Each branch for which the condition evaluates to true is considered as

Chapter 3. Everest Knowledge Framework 34

Figure 3.8: Decision-points in the EKF process.

the preceding of the process. Notice that the OR-split-decision-point also allows

unconditional branches, which are taken under all circumstances.

• The Conditional XOR-split-decision-point is a point in the process for which the

process can choose one branch of several branches through exclusive conditions.

Only the branch for which the condition evaluates to true is taken. Important is

to notice that the XOR-split can also be performed directly on a task, as multiple

exclusive outgoing flows.

• The Unconditional XOR-split-decision-point is a point in the process where the

branch is not selected based on a data based decision, but based on the reception

of events. Only the branch for which the first event occurs is preceded, such that

the other branches are discarded when the first event has been received.

• The XOR-merge-decision-point, is a point in the process for which multiple ex-

clusive branches are merged into a single branch. Important is to notice that a

XOR-merge-decision-point can also be performed directly (as multiple incoming

flows) on a task.

In this section we provided a more detailed description of the syntax of the EKF process

language, which is an important result as no such description is available to us at the

start of this project. Still we need to asses the semantics of the EKF process language

as the EKF process language does not directly satisfy a certain computational property.

Therefore we can classify the process model as a CIM model at the M2 level of MDA.

From the observation of the elements and their relations we derived the syntax of the

EKF process language and presented it as an UML meta-model (see Figure 3.9).

C
h
ap

ter
3.

E
verest

K
n
o
w

led
ge

F
ra

m
ew

o
rk

35

Figure 3.9: Meta-model of the EKF process language.

Chapter 3. Everest Knowledge Framework 36

3.1.2.4 Connectivity Layer

The connectivity layer4 provides the channels that can be used for the interaction and

the synchronization with external systems and tools. A more specific definition: ‘an in-

teroperable building bock for which the semantics are specified by the underlying models

or programming logic’. The connectivity layer operates independent of the channel im-

plementation (implemented as a generalization of extensible channel types) (see Figure

3.10). The channels are therefore strongly related to the services of the enterprise archi-

tecture. The EKF channel is specialized into different channel operations with each input

and output variables. The channel types are divided by its semantical properties: trans-

formation channel (transformation from one data format into another), decision channel

(derive data from the domain model by applying a set of rules), data channel (update

and retrieve data from the domain model), integration channel (programming logic).

Notice that the connectivity layer is based on a predefined set of services, implemented

as programming logic. The construction of the channels require technical insights and

considerations, such that software engineers are still needed for the construction of these

channels.

Figure 3.10: UML class diagram of the connectivity layer.

In the previous sections we have provided more insight into the EKF core modeling

languages and defined the syntax in terms of UML meta-models and UML class diagram.

This is considered as an important result for Everest, as at the start of this project no

such information was present. The insights of the EKF process language syntax are of

interest in the preceding of this thesis, as we aim at transforming EKF process models

4The connectivity layer is referred to as a layer rather than a model, because channels are deployed
as programming logic, not as executable models.

Chapter 3. Everest Knowledge Framework 37

(models constructed with the EKF process language) into BPEL code. In the remainder

of this chapter we focus on the way EKF process models are deployed on the EKF, to

get more insight into how the EKF process models are implemented and enacted in the

EKF. Enactment is important in the sense, that they control the run-time semantic of

the EKF process models.

3.2 How are the process models deployed on the EKF?

In the previous section we have focused on mainly the syntactical perspective of the

process modeling approach of Everest. In this section we give a more detailed study of

how the EKF process models are implemented and enacted in the EKF.

3.2.1 How is the process model implemented in the EKF?

In this section we give an overview of how the process models are actually implemented

in terms of the EKF domain and rule models. The structural aspects of the process,

described by the meta-model, is implemented in terms of entities, attributes and their

structural relations of the domain language. The state transition in the process (decision-

points and flows) are defined as a specialized decision tables (process decision table),

which directly inherit the properties of the decision table of the rule model. This process

decision table specifies the performing of actions through operations, triggering of an

events or activation of a tasks or sub-processes, based on the occurrence of certain

events and in case certain condition-expressions are satisfied.

The flows and decision-points are modeled explicitly, but are at deployment concealed

by the way the process decision table are implemented. Table 3.1 specifies the grammar

of the EKF process decision table for which the following rows are considered:

• The sub-process is optional and defines to which sub-process the decision point or

flow belongs.

• The event guards the preceding of the flow by waiting for the occurrence of a

certain event.

• The alternative events are optional and specify the second event guarding the

preceding of the flow.

• The condition, guards the preceding of the flow through the evaluation of a

condition-expression.

Chapter 3. Everest Knowledge Framework 38

• The action specifies the activation of: sub-processes, tasks, events or operations

(composed of input (β) and (α) output variables). Notice that multiple alternative

actions are optional.

EKF Decision Table

Sub-process (optional) SubProcess| ∗ |?|[]

Event Event| ∗ |?|[]

Alternative Event (optional) Event| ∗ |?|[]

Condition (optional) ConditionExpression| ∗ |?|[]

Alternative Condition (optional) ConditionExpression| ∗ |?|[]

Action SubProcess|Task|Event|Assign(α, β)

Alternative Action (multiple optional) SubProcess|Task|Event|Operation(α, β)

Table 3.1: The syntax of the EKF process decision table

3.2.2 How is the processes enacted on the EKF business engines?

The EKF process is controlled by interaction between the: portal engine, event manager,

process engine, rule engine and ESB. The portal engine enables the interaction with the

human actor and allows the request and retrieval of the workitems through the worklist

manger. The process engine is the central controller of the process and is responsible for

maintaining the process instances and acts on the events from the event manager. The

domain storage implements the structural aspects of the EKF process language (meta-

meta-model) and maintains the data in the process in terms of a domain model (meta-

model). The rule engine is responsible for the decision taking in the process, by deriving

conclusions from the domain model (see Figure 3.11). A more detailed description of

the process and rule engine is provided, as they control the most considerable part of

the actual process semantics.

The process engine maintains instances for a certain process model also referred to as a

case. A case is an independent instance that maintains the results of the (sub-)processes,

when routed through the process. The semantics of the routing of the cases through the

processes is presented in the UML state transition diagram of figure 3.12(a), for which

the following states are identified:

• Initialized, the domain storage has initialized the process syntax model and created

an instance to the domain data of this model for a specific case. Also the domain

model which is responsible to maintain the process data is initialized, for which

the instance is maintained by the process engine.

• Running, there still exist one or more active (sub-)processes mainainting active

tasks.

Chapter 3. Everest Knowledge Framework 39

Figure 3.11: Deployment of EKF process models in the EKF run-
time(impl.=implements).

• Completed, the process instance is completed, in case no more active sub-processes

exist in the process.

• Exception, the case has received an exception, such that the rule engine is requested

to update the state of the process. The active instances which belong to the process

are not affected by the exception state. After the state is updated the process

determines if new instances must be created in order to handle the exception.

• Terminated, the case has been terminated such that all active instances for the

case are stopped.

• Interrupted, the case has received a satisfied trigger event, causing the all active

instances for the case to be stopped. The rule engine is requested to determine

the continuation of the process after the occurrence of the trigger event.

• Canceled, the case is canceled through the occurrence of a cancel (sub-process)

event, causing all active instances for the case to be stopped. The rule engine is

requested to determine the continuation of the process to handle the cancellation.

The goal of each task is mostly related to the input of information, also referred to as

knowledge that becomes available when a task has been completed. As the case is routed

through the process, the information that has become available in one task is passed

though the next task. The cases in the process are controlled through variables derived

from the domain model, which abstract the goals that are accomplished throughout the

Chapter 3. Everest Knowledge Framework 40

(a) State Transition Diagram sub-process (b) State Transition Diagram task

Figure 3.12: State Transition Diagram EKF process.

process (the conditions that have been met in the process). The derivation and assign-

ment of this variable is the responsibility of the rule engine. The EKF process engine

has a considerable limitation, as only a single variable is supported in a (sub-)process.

Therefore it is not allowed to use multiple instances of a same task in the process5.

The semantics of the task are controlled on a lower-level of abstraction compared to

the (sub-)process. The semantics of the task is therefore represented as an independent

UML state transition diagram (see Figure 3.12(b)), for which the following states are

identified:

• Initialized, the domain model is initialized by the domain storage and an instance

to the domain data is received by the process engine.

• Running, a task is being performed and the process engine waits until the task is

either completed stopped or accepted.

• Completed, the task has satisfied its post-condition, resulting in the rule engine

to update its domain data. Based on the result of the rule engine: a new task is

activated in the (sub-)process and its state is either set to running or stopped (no

preceding actions for that task are required to be performed).

• Stopped, a (sub-)process has explicitly been aborted, such that all tasks contained

by this (sub-)process are aborted.

The domain storage is responsible to initialize the models and maintain the integrity

and consistency of the factual knowledge in terms of domain data. The rule engine plays

an important role in the state transition when the cases are routed through the process.

5Multiple instances are supported by the application flow at a more fine-grained level of the EKF,
which is not part of the process dimension in the EKF.

Chapter 3. Everest Knowledge Framework 41

After the completion of each task the data variables governing the state of the process

are updated, by deriving which goals in the process have been satisfied. The rule engine

uses backwards chaining inference mechanism to derive if these goals goals (described

by rules) have been met. Each decision in the process requires the rule engine to update

the state of the process variables.

Figure 3.13: Logical components in the rule engine.

To accomplish the inference of the domain data the rule engine is composed of mainly

three general components as presented in figure 3.13:

• The rule repository contains the heuristic knowledge. The heuristic knowledge

is the knowledge, which can be derived by judgment of the facts in the data

repository. The EKF mainly supports decision tables, decision trees and rule

statements to model rulebases in the rule repository.

• The rule engine controls the execution of the rules. The primary purpose of the

rule engine is to apply rules when the set of facts (domain data) is complete. The

working memory holds both the premises and conclusion of the rules, such that

the derivation of a conclusion can trigger the next rule to be fired. At run-time

the working memory allows the following actions on rules: assert, adds rules to the

working memory; retract, discards active rule from the working memory; modify,

updates and active rule in the working memory.

• The pattern matcher is responsible matches the facts with the rules and determine

if they are eligible to fire. The executable rules are eligible to fire if the facts fulfill

the required rules to derive its conclusions.

The ESB provides the actual channels through which the task is completed. The se-

mantics of the task is defined by the way the channel is implemented in the connectivity

layer. Each channel is governed with input and output variables, which represent the

Chapter 3. Everest Knowledge Framework 42

information flow through the task. In the preceding of this thesis we assume that chan-

nels are performed synchronous, which implies that the task is performed as an atomic

channel invocation.

In this chapter we have presented the enterprise architecture of the EKF and how Everest

adopted MDA as a strategy for modeling. We presented the syntax of the EKF process,

which is considered to be an important result for Everest as no such description was

available to us a the start of this project. We also presented a more detailed description

of how the EKF process is deployed in the EKF, to give more insight into the way Everest

implements the process models. The deployment is important as the semantics of the

EKF process are subsistent to the way the EKF process are enacted. In the following

chapter we continue with a more detailed study of BPEL, as Everest aims at adopting

this language to improve their deployment strategy in the EKF process available.

Chapter 4

Business Process Execution

Languages for Web Services

In this chapter we aim at answering the question: ‘What are the key features and syntax

of BPEL?’. To answer this question we start with a general introduction of BPEL (see

Section 4.1) and overview of Web service technology (see Section 4.2), this is followed

by a more detailed overview of the syntax1 and semantics of BPEL (see Sections 4.3,

4.4 and 4.5).

4.1 Introduction to BPEL

The Business Process Execution Language for Web Service (BPEL4WS or BPEL) was

introduced by (IBM, BEA and SAP, 2002) as a defacto standard for describing the

behavior of Web services in terms of process models at different levels of abstraction.

BPEL has emerged as a compromise between the Web Service Flow Language (WSFL)

[Leymann, 2001] and XLANG [Thatte, 2001]. BPEL therefore supports both block-

oriented language features from XLANG and graph-oriented features from WSFL. The

first version of BPEL (1.0) was published in August 2002 [IBM et al., 2002], the second

version (1.1) [BEA et al., 2003] in May 2003 and the latest version (2.0) [OASIS, 2006]

is at the time of writing in working draft. BPEL has been adopted by the industry as

the leading process interchange and enactment standard.

BPEL allows the business to keep the internal business protocols separate from the cross-

enterprise protocols. Separation of the private from the public protocols is important

for two reasons: first, the business does not want to reveal its internal processing (e.g.

1We used the ideas of [Akehurst, 2004] for formalizing the syntax of BPEL in terms of meta-models

43

Chapter 4. Business Process Execution Languages for Web Services 44

data management and decision taking) to their business partners; second, the private

protocols need to be changed without affecting the public protocols. BPEL defines the

coordination of multiple service interaction with the partners from a single-point and

can therefore be classified as orchestration language.

The BPEL process definitions can either be a fully executable model (executable BPEL)

or abstracted model (abstract BPEL). Abstract BPEL aims at defining the role of the

protocol, without considering the details of the process implementation (typical PIM).

Executable BPEL specifies the behavior of the process at a more fine-grained level, in

terms of the composition of Web services. The executable BPEL definition can directly

be executed by a BPEL engine (typical PSM). In this thesis we are mainly interested in

BPEL, as Everest main objective is to adopt a BPEL engine allowing the enactment of

executable BPEL in the EKF. BPEL provides a grammar based on eXtensible Markup

Language (XML), similar to a programming language, but is less complex and specifically

suited for defining business processes. BPEL is an extension of Web services and build

upon Web Service Description Language (WSDL) of the Web service stack to define the

interactions between the partners. The interaction with each partner occurs through

Web service interfaces, where the structure of the relationship at the interface level is

called a partner link. As Web services are an important aspect of BPEL we first give an

overview of Web service technology.

4.2 An overview of Web services technology

In this section we give an overview of the Web service stack, such that readers which are

already familiar with Web services can proceed reading the next section. The core Web

service stack (see Figure 4.1) consists of standards to accomplish interoperable platform

independent and loosely coupled services by means of Web services. BPEL is build on

top of the Web service stack, such that Web service are the backbone of BPEL.

XML2 is used as an generic data interchange format, through XML documents. XML

Path (XPath)3 and XQuery are languages for addressing portions of an XML document

(query) or computing values based on the content of an XML document.

The WSDL4 is a specification used for defining how to describe Web services. WSDL

enables clients to locate a Web service and invoke any of its publicly available functions.

The Simple Access Protocol (SOAP)5 is an XML based communication protocol for

2see: http://www.w3.org/XML
3see: http://www.w3.org/TR/xpath
4see:http://www.w3.org/TR/wsdl
5see: http://www.w3.org/TR/soap

Chapter 4. Business Process Execution Languages for Web Services 45

Figure 4.1: The Web service stack.

applications to access Web services on any platform. The XML Schema Definition

Language (XSD)6 is used to specify the layout of an XML documents, which are provided

as input or output of Web services. The eXtensible Stylesheet Language Transformation

(XSLT) is a language enabling the transformation of one XML document format into

another XML document format.

The Universal Description Discovery and Integration (UDDI)7 prescribes a set of stan-

dard interfaces for accessing information about Web Service location. UDDI is an in-

dustry effort to enable dynamic discovery for Web services.

BPEL is ans extension of the Web service technologies, specifically designed for defining

business processes characteristics by means of: partner links, base and structured activ-

ities, data, transaction, compensation, exception and event handling. In the following

sections we present the syntax and semantics, by providing a more detailed overview of

the key features.

4.3 Process and partner links

The top level element in BPEL is the process (see Figure 4.2), which contains one

or more subsequent elements. The process is a specialization of the structured scope

activity, which allows the process to be decomposed onto activities and maintaining

variables, transaction, compensation and exception handling. The specialization from

6see:.http://www.w3.org/XML/Schema
7see: http://www.oasis-open.org/committees/uddi-spec/

Chapter 4. Business Process Execution Languages for Web Services 46

the scope activity allows the nesting of activities, such that a hierarchy of activities can

be created as activities can contain activities. Every process is triggered by a receive

activity and ends with an invoke or reply activity. BPEL uses the concept of invocation

of Web services for the interaction by means of partner activities.

The partner links allow BPEL to interact with Web services in the process. The partner

link is assigned to a (WSDL) port type, which is uniquely identified through its name.

Each partner link is characterized by a partner link type defined in a WSDL definition.

For a partner link two type or roles can be set: a producer and consumer role. A

partner link with only a consumer role does not need to know about its callers (typical

a-synchronous). A partner link assigning both producer and consumer roles specifies a

typical synchronous interaction. In BPEL these interactions are accomplished through

the partner activities: receive, reply and invoke. These activities enable the use of

different type of partner interactions.

Figure 4.2: Meta-model of BPEL process.

4.4 Activities

The activities (see Figure 4.3) correspond to the tasks that have to be performed in

order to complete the process. The values, variables and expressions are considered to

determine the routing of the cases through the process. BPEL recognizes two types

of activities: base and structured activities. The base activities correspond to atomic

Chapter 4. Business Process Execution Languages for Web Services 47

actions, which cannot contain other activities: interact with a service, manipulate ex-

changed data or handle exceptions. The base activities have attributes and elements

that can be used to specify certain properties. The base activities allow modeling the

control flow, data and fault handling in the process. The structured activities allow

nesting of the activities, used to compose the order in which the base activities need to

be performed.

BPEL contains the following eight partner activities: receive, wait for message from

external partner; invoke, represents the synchronous operation of an external partner;

reply, an a-synchronous result to an external partner; wait, pauses for a certain period

of time; assign, copies data from one place to another; throw, indicate errors during

the process execution; compensate, rolls back transactions when errors occur; empty,

do nothing. Three partner activities are responsible for the invocation of Web services

in BPEL: invoke, receive and reply. For an invoke activity the partner link, service

operation and port type need to be specified to invoke services of the business partners.

The invocation can either be synchronous (request/reply) or a-synchronous (one-way).

BPEL provides services to its partners through the receive and reply activities. The

receive activity blocks the activity until the corresponding message arrives, while the

reply activity is used to send a request from a previously accepted receive activity. The

receive activity can also be used to initiate the process instance by setting the value of

the property createInstance to yes.

BPEL identifies the following six structured activities: sequence, switch, pick, while,

flow and scope. The sequence activity contains one or more activities that have to be

performed sequentially in a lexical order. The switch activity supports the conditional

routing of activities. It contains the ordered list of one or more conditional branches

defined by case elements, only the first branch for which the condition evaluates to true

is considered. The otherwise branch can be defined as the default branch to make sure

that there is an alternative path that can be taken, in case none of the case conditions

are satisfied. The switch activity is completed when the activity of the chosen branch

has been completed. The pick activity captures the race conditions based on timing or

external triggers. Like the switch the pick has a set of branches, but instead of conditions

it defines a number of events that need to be occurred before the corresponding activity

can be initiated. Two types of events are provided: message events (onMessage), waits

for occurrence of external event and alarm events; timer events (onAlarm), waits for the

expiration of a timer constant. The pick activity acts only on the occurrence of the first

event, such that the occurrence of the first events discards the occurrence of the events

of the other branches. The while activity supports repeated behavior of activities. The

while activity is performed until the (pre- or -post) condition no longer evaluates to

true. The flow activity provides the parallel execution and synchronization of activities.

Chapter 4. Business Process Execution Languages for Web Services 48

BPEL support control links to extend the control of the dependencies between activities

nested within the flow activity. The scope activity is used to group activities into blocks,

where each block is treated as a unit for which the same events, compensation and fault

handling is applicable. This means that the handlers are only visible from within the

boundaries of the scope activity. Because business processes are long running, it is

infeasible to keep open its transaction, therefore BPEL provides compensation handlers

rather than a mechanism to rollback transactions. The compensation handler is executed

using a compensation activity, which is explicitly triggered by fault handlers. The BPEL

engine is responsible to throw faults during the execution of the activities within a scope.

The generated faults can be handled in the BPEL code using a catch construct. The

event handler enables the scope to react to events or expiration of timers at any point

during the processing of the scope.

The structured activities: sequence, flow, switch, pick and while offer a mechanism to

model features where one activity cannot start until one or more activities on which

they depend are completed. In BPEL this concept is called control links, which can be

referred as a conditional transition between two activities. Two types of control links

are provided by BPEL: join-condition and transition-condition. A join-condition is as-

sociated to an activity, which expresses a condition that defines the dependency between

two activities. The conditional dependency defines the required synchronization between

activities during parallel execution. The transition-condition defines a condition, that

specifies when activities are enabled or disabled for execution.

4.5 Data Handling

Most processes need to maintain application data during the course of their execution.

The data is initialized when the process starts and is subsequently read and modified

during processing. BPEL supports defining a set of variables, which can be passed

through Web services as input and output variables in terms of XML documents. Vari-

ables in BPEL can be set in various ways: bound variable to an inbound activity such

as pick, receive or event handler; bound to the output of an invoke activity; explicitly

assigned through an assign activity (see Figure 4.4(a)).

The variables are used to hold information of the message exchange between the process

and its partners as well as internal data, which is private to the process. A process

variable has a name that is unique to its scope and the type defined in terms of a WSDL

message, composed of types from the XSD type definitions (see Figure 4.4(b)). BPEL

adopted XSD to define the layout of the XML data documents, which are defined as

input and output variables of the invoked WSDL operations (see Figure 4.4(c)).

Chapter 4. Business Process Execution Languages for Web Services 49

Figure 4.3: Meta-model of BPEL activity hierarchy.

In this chapter we provided an overview into the key features of BPEL providing more

insight into the syntax and semantics of BPEL. This is required in the following chapters,

where we determine the language translations between EKF process language and BPEL,

toward an approach to transform EKF process models into BPEL code.

Chapter 4. Business Process Execution Languages for Web Services 50

(a) Meta-model of the BPEL assign

(b) Meta-model of the BPEL WSDL extensions

(c) Meta-model of the BPEL XSD extensions

Figure 4.4: Meta-models for data handling in BPEL.

Chapter 5

Transform the EKF process

language into BPEL

In this chapter we aim at answering the question: ‘What are the issues and challenges to

close the gap between the EKF process language and BPEL?’, which is considered as a

partial question required to answer the research question: ‘How to make the EKF more

interoperable by adopting BPEL?’. In section 5.1 we give an overview of the approach

followed to close the gap between the EKF process language and BPEL, for which the

results are presented in section 5.2. The results of our observations is summarized

in section 5.3. In this sections we only aim at identifying the issues and challenges

which must be considered when translating the EKF process models into BPEL code.

In chapter 6 we use these observations to address the issues and challenges toward an

approach to translate the EKF process models into BPEL code.

5.1 Approach to transform the EKF process language into

BPEL

The aim of Everest is to adopt a more generic approach to deploy their processes,

increasing the interoperability of the process in the EKF. Everest is mainly interested in

the adoption of BPEL to fulfill this goal. Supporting BPEL in the EKF should result in

an increase of the process interoperability across the enterprise architecture, as BPEL

is supported by different tools and can be enacted by generic engines. For Everest the

adoption of BPEL implies that the properties and capabilities of EKF process language

must be translated (language) and deployed (code) in terms of BPEL. To accomplish

this we need to consider both the semantics and syntax of the EKF process models

51

Chapter 5. Transform the EKF process language into BPEL 52

and BPEL code. For the transformation of the EKF process models into BPEL code

we are only interested in one direction of the transformation. This implies that we

need to evaluate if BPEL is able to express concepts recognized in the EKF process

models. Nevertheless, Everest is also interested in the limitation of the EKF process

language. In extend of the forward transformation we also evaluate limitations of the

EKF process language by identifying concepts which are supported by BPEL, but can

not be modeled in terms of the EKF process language. These limitations directly affect

the expressiveness of the EKF process language.

In the Everest approach the EKF process models are translated into the EKF domain

and rule models, for which the actual semantics are defined by the a combination of

the EKF process engine and rule engine (as presented in Section 3.2). The adoption

of BPEL requires a different approach, where EKF process models are translated into

BPEL code which are deployed onto generic BPEL run-time engine(s) (e.g. IBM, Oracle

and Active BPEL, etc.) (see Figure 5.1).

Figure 5.1: Deployment of EKF process models onto BPEL engine
(impl.=implements).

To reduce the complexity of the model based transformation, we first consider the trans-

formation of the EKF process language into the BPEL. According to the approach of

[Bordbar and Staikopoulos, 2005] the transformation of one language into another lan-

guage requires bridging the gap between both the domains and the technical spaces. The

domains are defined as: ‘the context via specific application aspects or behavior, given by

programming language syntax’ and the technical spaces as: ‘a specific working context

with specific implementation technologies, tools and approaches, where applications are

specified, instantiated and utilized form various tools and engines’. To close the gap

between the technical spaces and domains of the EKF process language and BPEL we

need to cover both aspects by means of a domain transformation (see Section 5.2.1) and

technical spaces transformations (see Section 5.2.2). In this thesis we follow the One

step refinement approach of [Bordbar and Staikopoulos, 2005] for which a more detailed

description is presented in appendix A.

Chapter 5. Transform the EKF process language into BPEL 53

Figure 5.2: Transformation of EKF process language into BPEL.

The domain transformation focuses on closing the gap of the elements at the meta-

model level of the EKF process language and BPEL. To realize such an idea, we need to

establish a bridge between the EKF process language and BPEL. This is accomplished by

considering each element in the meta-model of the EKF process language and determine

if a corresponding (set of) element(s) exist in BPEL supporting similar semantics (see

Figure 5.2). This is not an easy task, because meta-models define a complex structure

for which the semantics are defined by its conceptual interpretation. Such a bridge

between two meta-models is referred to as a direct mapping, as a solution of an element

of the source language can directly be translated into one or more elements in the target

language. The direct mappings should give more insight into the contextual differences

between the EKF process and BPEL language at the M2 level of MDA (see Figure 5.2).

Sometimes, however it is not possible at the first attempt to close the gap of two meta-

models directly through only the context. This is mainly caused by the fact that the

technical spaces of languages could be rather different. Such problems often occur when

one space may define or posses characteristics that the other language does not account

for. A domain transformation is therefore not sufficient to close the gap between two

languages entirely, in such cases the languages are considered to be different from the

context. This implies that for some elements no direct mappings can be identified. This

implies that one should not consider a translation directly through the context, but

using concepts as a bridge between two languages. The technical spaces transformation

should therefore address these contextual differences, by using more generic concepts

supported by both the source and target languages. The aim of the technical spaces

transformation is to find a solution for a predefined set of patterns for both the EKF

Chapter 5. Transform the EKF process language into BPEL 54

process model and BPEL code. In this way the pattern is used an intermediate language

concept, to bridge the gap between the EKF process language and BPEL. The difference

between the supported patterns should give more insight into the conceptual differences

at the M2 level of MDA (see Figure 5.2). We also consider the patterns not supported

by the EKF process language, but which are supported by BPEL. For these patterns we

can draw conclusions with respect to the limitations of the EKF process language when

translating the EKF process models into BPEL code.

Patterns where traditionally the province of software design (e.g. widely referenced as

object-oriented design patterns), suitable to provide more insight into the expressiveness

of a language. Patterns have emerged from the PDA field as workflow patterns1 and

SOA field as interaction2 patterns. The value of patterns lies in their independence of

specific languages and implementation. A pattern, as conventionally specified, ‘captures

the essence of a problem, collects references by way of synonyms, provides real examples

of a problem and even possible solution for implementation in terms of concrete tech-

nologies’. In this thesis we follow a subset of the interaction and workflow patterns, for

which the selection is based on the relevancy of the pattern with respect to the EKF

process language. We adopted the classification of the interaction patterns and workflow

patterns as presented in table 5.1 for our technical spaces transformation as included in

Appendix C.

Classification of the pattern

Interaction Patterns

Basic Control flow patterns

Advanced branching and synchronization patterns

Interaction Patterns

Multiple Instance Patterns

State Based Patterns

Cancellation Patterns

Termination Patterns

Table 5.1: Classification of interaction [Barros et al., 2005b] & workflow [Aalst van
der et al., 2003] patterns

The semantics of the EKF process are not defined explicitly by Everest, but are embed-

ded in their process implementation. Therefore we need a way to define the semantics

of the concepts in the EKF process models more formally. By making the semantics

explicit, increases the understanding of the EKF process and promotes comparison of

the language concepts. Efforts of [Ouyang et al., 2005, 2006, Aalst van der and Lassen,

2005, Mulyar, 2005] already provide some interesting insights in the semantics of BPEL.

Nevertheless, we need to find a solution in BPEL, which complement the semantics of

1see also: http://www.workflowpatterns.com/
2see also: http://math.ut.ee/d̃umas/ServiceInteractionPatterns/

Chapter 5. Transform the EKF process language into BPEL 55

the patterns identified for the EKF process. More specific, we aim at finding a solution

for which the semantics of the EKF process model match the solution expressed in terms

of BPEL code. Implementing and simulating the BPEL solution of each patterns, should

give a more clear understanding of the behavior and confidence of the correctness of the

BPEL solution. Comparing concepts between languages is difficult, mainly when the

formal semantics are not defined explicitly. Therefore we use Colored Petri Nets (CPN)

[Aalst van der and Hofstede ter, 2002, Jensen, 1997] as a bases to formalize the semantics

of the EKF process language, such that should give us a more clear understanding of the

semantics of the concepts supported in the EKF process language. Especially, Petri-Nets

provide a more formal bases to analyze the semantics of process concepts. Important

is to notice that no previous attempts where undertaken by Everest to formalize their

process syntax and semantics explicit. The results of the domain and technical spaces

are therefore an important result for Everest, enabling a better basis to draw conclusions

with respect to the expressiveness of the EKF process language.

5.2 Results of transforming the EKF process language into

BPEL

Following the transformation approach of previous section we continue to present the

results of the domain transformation (see Sections 5.2.1) and technical spaces transfor-

mation (see Section 5.2.2).

5.2.1 Results of the domain transformation

The aim of the domain transformation is to determine, which meta-model elements

supported by the EKF process language, are directly supported through the syntax of

BPEL. Our goal is to find the direct mappings between EKF process language and BPEL

for all elements (e.g. sub-process, task and events, data, channel and role). Important

is to find a BPEL solution for which the underlying implementation is threated similar

compared to the EKF process implementation. The domain transformation should give

us more insight into the syntactical differences between the EKF process language and

BPEL, resulting in issues and challenges, when translating EKF process models into

BPEL code.

Table 5.2 shows the results of the domain transformations, for which the following mark-

ings are considered: (+) a direct mapping of the meta-model element exist in BPEL;

(+/−) a direct mapping of the meta-model element exist in BPEL, but this solution

has limitation compared to the formal semantics of the EKF; (−) no direct mapping for

Chapter 5. Transform the EKF process language into BPEL 56

EKF Element BPEL

Process -

Sub-process -

Task +

Start Timer Event +

Start Message Event +

Start Rule Event +/-

Trigger Event +

Intermediate Message Event +

Intermediate Timer Event +

Intermediate Rule Event +/-

Cancel Event +

Internal Event +

End Event +

Terminate Event +

NOP Event +

Cancel Sub-process +

Notification Event +

Role +

Channel +

Domain Instance +

Flow -

Decision-Point -

Table 5.2: Results of the domain transformation

the meta-model element exist in BPEL. Notice that this table gives an overview of the

detailed study of the domain transformation as included in Appendix B. In preceding

of this section we only discuss the issues and challenges, as a result of the domain trans-

formation, which we need to overcome when translating the EKF process models into

BPEL code (see Chapter 6).

For the task and event elements a direct mapping can be identified. Notice that for

the (start and intermediate) rule events only a partial BPEL solution can be identified.

BPEL only supports timer and message events and does not allow events driven by rules.

Adopting the use of an external rule engine in the EKF, should provide a sufficient

alternative to overcome this problem (see Section 7.1).

Transformation of the role, channel and data elements is more complex, as these ca-

pabilities are supported by the underlying WSDL and XSD definitions in BPEL. As a

solution to we presented a domain transformation of the EKF domain model into XSD

and EKF connectivity layer and WSDL (see Appendix B). This transformation is based

on the ideas of [Carlson, 2001a,b,c] who has proposed an approach to bridge the gap

between UML and XSD. In section 7.1 we use these observations to further address the

Chapter 5. Transform the EKF process language into BPEL 57

results of the domain mapping, providing more insights into the best practices, when

integrating an BPEL engine in the EKF.

Issues and challenges are identified when translating the process, sub-process, flow and

decision-point elements into BPEL, as no direct mappings between these elements can

be identified. For these elements the EKF process language and BPEL are considered

to be two different classes of languages. BPEL is based on a block-oriented structure,

while the EKF process language is based on a graph-oriented structure. The block-

oriented property3 of BPEL requires that the structured activities must have exactly

one entry point and one exit point. This requirement results in issues, when translating

the EKF (sub-)process, flow and decision-points into BPEL. The first problem occurs

when translating the EKF (sub-)process with multiple entry and/or multiple exit point

into the BPEL scope activity. The second problem is caused by the fact that the BPEL

sequence, switch, pick, flow and while activities have a nesting structure. This nesting

structure specifies that structured activities have a certain hierarchy, where activities

are contained by other activities. This requirement is clearly violated by the EKF

decision-points and flows, as the EKF process language allows modeling unstructured

process concepts. The transformation of the technical spaces should further reduce the

complexity of these issues, which is especially useful when translating the EKF process

models into BPEL code.

For the issues and challenges described in this section we desribed above need to be

resolved when translatating the EKF process models into BPEL code. These issues and

challenges will therefore resolved in chapter 6 where we present an approach to transform

the EKF process models into PBEL code.

5.2.2 Results of the technical spaces transformation

In the transformation of the technical spaces we aim at identifying patterns, which can be

used to bridge concepts of the EKF process model and BPEL code. Our main objective is

to provide an approach to transform EKF process models into BPEL code and therefore

we need to evaluate if for all concepts supported by the EKF process language a BPEL

solution exist. This implies that all patterns supported by the EKF process language

must be covered. In extension of these patterns, we also evaluate patterns not directly

supported by the EKF process language, but which are supported by BPEL. Including

these patterns in this study fulfills our secondary objective, to draw conclusions with

respect the limitations of the expressiveness of the EKF process language.

3The block-oriented property is the direct result of the XML based language concept of BPEL.

Chapter 5. Transform the EKF process language into BPEL 58

Pattern EKF BPEL

Request/Reply (CP1) + +

One Way (CP2) + +

Synchronous Polling (CP3) - +

Message Passing (CP4) + +

Sequence (WP1) + +

Parallel Split (WP2) + +

Synchronization Merge (WP3) - +

Exclusive choice (WP4) + +

Simple Merge (WP5) + +

Multi-choice (WP6) + +

Synchronizing Merge (WP7) - +

Multi-merge (WP8) - +/-

Structured Discriminator (WP9) +/- -

Arbitrary cycles (WP10) + +/-

Implicit Termination (WP11) + +

MI without Synchronization (WP12) + +

MI with Priori Design-Time Knowledge (WP13) - +

MI with a Priori Run-Time Knowledge (WP14) - +/-

Structured loops (WP21) + +

Deferred Choice (WP16) + +

Interleaved Parallel Routing (WP17) +/- +/-

Milestone (WP18) +/- +/-

Cancel Task (WP19) + +/-

Cancel Case (WP20) + +/-

Cancel Region (WP25 (a & b)) + +/-

Explicit Termination (WP43) + +

Table 5.3: Results of the technical spaces transformation

Table 5.3 shows the results of the technical spaces transformations, for which the fol-

lowing markings are considered: (+) a solution can be identified for the pattern in

corresponding language, which match the formal semantics of the pattern; (+/−) a so-

lution can be identified for the pattern in the corresponding language, but this solutions

has limitations with respect to the formal semantics of this pattern4; (−) no solution

can be identified for the pattern in the corresponding language. Notice that this table

gives an overview of the results of the technical spaces transfromation as included in

appencix C.

A conspicuous limitation of the EKF process language is the lack of support for synchro-

nization of parallel branches, caused by a limitation of the EKF process engine. This

limitation directly affect the lack of support for the patterns: CP3, WP3 and WP7.

Nevertheless, the EKF process language support alternative approaches to synchronize

4As patterns are formalized in a language, we need to follow a predefined set of semantics of this
language. This implies that minor differences between the formal CPN semantics and actual semantics
of EKF process pattern are inevitable.

Chapter 5. Transform the EKF process language into BPEL 59

parallel branches (e.g. WP9, WP11, WP19 and WP43). However, this limitation does

not result in considerable issues or challenges, when translating EKF process models

into BPEL code. At this point BPEL is noticeable more expressive than the EKF pro-

cess language. Still this observation results in limitations, as these concepts can not

be modeled in the EKF process language. They will therefore never be available as a

result after the transformation into BPEL. Therefore the EKF process language limits

the result of the transformation, as BPEL does not support these patterns.

The pattern WP9 allows multiple parallel branches without specifying a single point of

synchronization, this pattern is partially supported by the EKF process language. The

completion of one parallel task could result in the continuation of the process, while

the other task are synchronized at a point before its activation or after its completion.

The EKF process language is considered to be a partial solutions as this pattern is only

allowed at the level of the task in sub-process, not at the level of the (sub-)processes5.

BPEL does not have any construct to support the semantics of this pattern, which is

mainly caused by the fact that the link construct in combination with a join-condition

are evaluated first, and not as required at the occurrence of the first positive link. This

concept therefore results in considerable issues when translating EKF process models

into BPEL code.

Although BPEL directly supports WP21, it has considerable limitation with respect

to the support of WP10. This problem is mainly caused by the fact that BPEL does

not allow unstructured loops as it is not possible to jump back to arbitrary parts in

the process (i.e. only loops with one entry point and one exit points are allowed). As

the lack of support of WP10 would cause considerable issues when translating the EKF

process models into BPEL code. Therefore we follow an alternative implementation of

WP10 as proposed by [Ouyang et al., 2006], they propose to take advantage of the event

handler to accomplish the semantics of WP10. However, this solution is considered

to be a partial solution to the problem, as it introduces some complexity issues when

implementing this concept in terms of BPEL. These complexity issues directly arise from

the technical limitations of the BPEL event handler. The event handler is exposed as a

Web service as part of the process. BPEL does not allow that Web services that belong

to a process are invoked from the process itself, therefore an external process is required

to overcome this problem.

The EKF process language has considerable limitations with respect to the support of

the multiple instance patterns. Although a solutions can be identified for WP12, the

EKF process language does not support the patterns WP13 and WP14. This is mainly

caused by the fact that the EKF process engine does not allow multiple instances of

5This is caused by a limitations of the EKF process language rather than is was intended this way.

Chapter 5. Transform the EKF process language into BPEL 60

tasks in the (sub-)process. BPEL directly supports WP12 and even a partial solution

can be identified for WP13 and WP14. At this point BPEL is more expressive compared

to the EKF process language. This limitation does not result in issues when translat-

ing the EKF process models into BPEL code. Nevertheless, Everest should diagnose

this limitation as according to the workflow patterns multiple instances are important

concepts for process modeling6.

The transformation of the patterns WP17 and WP18 is more difficult as they allow

more complex routings in the process. In the EKF process the rules control the state

change in the process, such that conditions could be used to guard the activation of a

task or sub-process. The order in which the task are performed are driven by the rule

engine, where rules are used to drive the flow of the process. For both patterns we found

alternative EKF process solutions, but they have limitations compared to the formal

semantics. This is mainly caused by the fact that there are restriction when using these

patterns in parallel threads. A similar solution for WP18 can be identified in BPEL,

matching the semantics of the EKF process language. A BPEL solution matching the

semantics of the EKF process can also be identified for WP17, but this solution requires

the use of an external rule engine. As the solutions of BPEL complement the semantics

of the EKF process language, we can conclude that these patterns will not cause issues

for the transformation of EKF process models into BPEL code.

Limitation of WP19, WP20 and WP25 arise directly from the compatibility issues when

translating the (sub-)process of the EKF process language into the BPEL scope activity,

as already discussed in the domain transformation.

5.3 Issues & challenges as a result of the language trans-

formations

In this section we summarize the issues and challenges which are a direct result of the

domain and technical spaces transformation.

First, we consider the concepts which are supported by BPEL, but for which no EKF

process solution exist. These limitations does not result in issues and challenges for

the actual transformation, but directly affect the expressiveness of the transformation

result. It is out of the scope of this thesis to resolve these limitation, but we provide

Everest with insights into these limitations, such that its the responsibility of Everest

6Everest supports multiple instances only at a more fine-grained level, not part of EKF process
modeling dimension.

Chapter 5. Transform the EKF process language into BPEL 61

to be aware of, and possible resolve7, these limitations to take fully advantage of the

expressiveness power of BPEL. Notice that the following limitations come directly from

the domain and technical spaces transformation of previous section:

1. The EKF process language lacks for supporting synchronization of parallel branches,

resulting in the lack of support of the patterns: CP3, WP3 and WP7.

2. The EKF process engine does not allow multiple instances of tasks in the (sub-)

process, resulting the lack of support for the patterns: WP13 and WP14.

Second, we consider the concepts supported by the EKF process language, but for which

no solution exist in BPEL. These concepts are interested as they result in considerable

issues and challenges, which must be resolved in the preceding chapters where we: first,

aim at translating the EKF process models into BPEL and second, integrating an BPEL

engine in the EKF. The following issues have been identified when translating the EKF

process language into BPEL:

1. BPEL requires the adoption of a rule engine to accomplish semantics of the rule

based event types supported by the EKF process language.

2. The BPEL scope activity does not complement the semantics of the sub-process

in the EKF process language, because it does not allow multiple entry and/or

multiple exit points.

3. The structured activities in BPEL require a nesting structure, which is violated

by the decision-point(s) in the EKF process language allowing unstructured pro-

cess concepts. BPEL therefore requires an alternative implementation of WP10,

introducing some complexity issues.

4. BPEL does not support WP9. This pattern can be no means be translated into

BPEL as no solution or partial solution exist in BPEL.

5. The EKF process allows multiple entry and exit points for an (sub-)process, which

result in problems when translating the (sub-)process supported by the EKF pro-

cess language into the BPEL scope activity. This result in considerable issues when

translating the patterns: WP19, WP20 and WP25 into BPEL.

6. Closing the gap between the role, channel and data in EKF and BPEL requires

the adoption of WSDL and XSD in the EKF.

7Resolving theses issues requires language extensions in the EKF process language and engine imple-
mentation.

Chapter 5. Transform the EKF process language into BPEL 62

In this chapter we provided an overview of the results of the domain and technical

spaces analysis when closing the gap between the EKF process language and BPEL. We

only focus on aspect of the differences between the language context and concepts from

which we derived the issues and challenges that must be considered when transforming

the EKF process language into BPEL. In the following chapter we need to resolve these

issues and challenges to provide an approach to transform the EKF process language into

BPEL code. Which is different from this chapters as we present a plan to transform EKF

process models (composed with the EKF process language) into BPEL code (composed

of BPEL).

Chapter 6

Transform EKF process models

into BPEL code

In this chapter we continue answering the research question: ‘How to make the Everest

Knowledge Framework more interoperable by adoption of BPEL?’, but in preceding of the

previous chapter we focus on answering the partial question: ‘How EKF process models

can be transformed into BPEL code?’. First, we present an approach to transform the

EKF process models into BPEL code (see Section 6.1). Second, we discuss the issues and

challenges with respect to the completeness and correctness properties of our proposed

solution (see Section 6.2).

6.1 Approach to transform EKF process models into BPEL

code

In this section we describe the approach, composed of four steps (see Figure 6.1), used

to transform the EKF process models into BPEL code.

Figure 6.1: Steps of the transformation approach.

In the first step translate domain we use the results from the domain transformation

(see Appendix B) to decompose the EKF (sub-)processes into components (C), for which

each component can directly be translated into the corresponding BPEL code.

63

Chapter 6. Transform EKF process models into BPEL code 64

The decision-points and flows are not directly supported through the domain transfor-

mation. Therefore we apply the transformations of the technical spaces to reduce the

complexities introduced by the BPEL limitations. In the second step translate tech-

nical spaces we decompose the (sub-)process into components (C), by identifying and

translating each concept from the EKF process model into the corresponding BPEL

code.

In the third step translate unstructured (sub-)process we need to resolve the issues and

challenges which are not covered by the previous step. We address the limitation of

BPEL in case patterns are not directly supported by BPEL and the patterns for which

no solution exist in BPEL1. Notice that for the limitations for the cancellation patterns

(WP19, WP20 and WP25) are resolved in the following step, as the origin of the problem

is caused by the limitations of the BPEL scope activity.

In the fourth step translate (sub-)process into BPEL we need to resolve the issues and

challenges when translating the EKF (sub-)process into the BPEL scope activity. We

also need to address to transformation of additional events which belong to the EKF

(sub-)process, namely: trigger events, exception events and cancel events.

Figure 6.2: Running example: a complaint handling process.

To give more insight in how each translation step is performed, we present a running

example2 as shown in figure 6.2. This example describes a complaint handling process,

where first a complaint is registered (task registered), then in parallel a questionnaire

is sent to the complaint (sub-process questionnaire) and the complaint is processed

(sub-process complaint). If the complainant returns the questionnaire within two weeks

(event returned questionnaire), the task process questionnaire is performed. Otherwise,

1These are the patterns WP9 and WP10
2This example is the example from [Ouyang et al., 2006], but modeled in terms of the EKF process

language

Chapter 6. Transform EKF process models into BPEL code 65

the result of the questionnaire is discarded (event time-out). In parallel the complaint

is evaluated (task evaluate). Based on the evaluation result, the processing is either

completed or continues the task check processing. If the check result is NOK, the

complaint requires re-processing, otherwise the sub-process questionnaire is canceled

(only if it was still active) and the task archive is performed. Finally, the entire process

can be canceled through a cancel trigger, but only if the condition CANCELOK has

been satisfied.

6.1.1 STEP 1: Translate the domain

In the first step we identify the elements in the EKF process, in a way that each element

can directly be translated, following the domain transformation as included in Appendix

B. For the transformation of the elements we introduce a the function Ψi(Cm, Cn), for

which a certain component (Cm) from the EKF process model can be translated into

the BPEL code (Cn), iff the component is an element of type (i). For each element

for which this function can be applied the BPEL code is folded into a component Cx.

Notice that we consider only the elements which are directly supported by BPEL: the

(sub-)processes, flows and decision-points are not considered at this stage. Folding a

component in this step implies that the element references to the translated BPEL code

by means of the component Cx. This step is repeated until no more elements in the

EKF process model can be identified for which a direct mapping exist.

Figure 6.3: Transformation of complaint handling process (Cont. STEP1).

By applying the first step to the complaint handling example, we can identify the compo-

nents C1, C2, ..., C19 (see Figure 6.3). Notice that each component references to a BPEL

code fragment, which are translated using the domain transformation of Appendix B.

Chapter 6. Transform EKF process models into BPEL code 66

Take for example component C3 is and element of the type task, which can (according

to appendix B) be translated into a BPEL invoke activity as presented in listing 6.1.

1 <invoke operation ="Send Questionaire "/>

Listing 6.1: BPEL code of C3 in complaint handling example

6.1.2 STEP 2: Translate the technical spaces

In the second step we identify the components in the (sub-)process, in such a way that

each component is translated into a concept directly supported by means of the technical

spaces transformation as included in appendix C. For the transformation of the patterns

we introduce the function δi(Cm, Cn), for which a certain component (Cm) from the

EKF process model can be translated into the BPEL code (Cn), iff the component is a

pattern type (i). This step is repeated for each (sub-)process until no more patterns can

be identified. Notice that we only consider the patterns, which are directly supported

by BPEL. The patterns WP9, WP10, WP19, WP20, WP25 are therefore not considered

at this stage.

1 <scope ="Cmax">

2 <!-- Translation of the maximal component Cmax -->

3 </scope >

Listing 6.2: Event Action Rules in BPEL

To reduce the complexity of the transformation problems we aim at finding a maximal

component (Cmax), which groups several components into a new component supporting

a certain concept. A maximal component is only allowed, when the grouping of compo-

nents does not introduce an arbitrary cycle or crosses the boundaries of a (sub-)process.

By translating a maximal component into BPEL, we increase the readability of the re-

sulting BPEL code. More importantly we reduce the complexity of the problem, before

we try to resolve the issues. Finally, the BPEL code for the maximal component is

folded into a BPEL scope activity (see Listing 6.2). Folding a component in this step

implies that a BPEL scope activity substitutes the translated BPEL code for the maxi-

mal component, such that we can reduce the complexity of the problem by replacing the

maximal component Cx by a collapsed sub-process Cy. This step is recursively repeated

until no more maximal components can be identified within the (sub-)process.

Applying the second step to the complain handling example, we can identify the com-

ponents C20, C19, ..., C30, which directly correspond to the patterns from the technical

spaces transformation (see Figure 6.4). Several maximal components can be introduced

C31, C32..., C34. Take for example C21 and C3 are grouped into a new component C32 (see

Chapter 6. Transform EKF process models into BPEL code 67

Figure 6.4: Transformation of complaint handling process (Cont. STEP2).

Listing 6.3) as they are both part of a sequence pattern and do not cross the boundaries

of the sub-process questionnaire or introduces an arbitrary cycle.

1 <scope name="C32">

2 <sequence >

3 <invoke operation ="Send Questionaire "/>

4 <pick >

5 <onMessage operation =" Returned ...">

6 <invoke operation ="Start(C22)"/>

7 </onMessage >

8 <onAlarm name="time -out">

9 <invoke operation ="Start(C23)"/>

10 </onAlarm >

11 <sequence >

12 </scope >

Listing 6.3: BPEL code of C21 in the complaint handling example

6.1.3 STEP 3: Decompose the (sub-)process into components

This step is only required when the resulting (sub-)process after the second step still

contains issues which must be resolved (e.g. contains arbitrary cycles or unstructured

process components). To resolve these issues we follow the approach of [Ouyang et al.,

2006]. In this approach each maximal component as identified in the previous step must

be translated into an event action (E{A}) rule. These E{A} rules can be translated into

the onMessage event handler in BPEL, where the event (E) corresponds to the start

point of the maximal component and the action (A) specifies the folded BPEL code as

derived in the previous step. Listing 6.4 gives an overview of the BPEL code used for

the translation of the event action rule (E{A}). The (E{A}) rule is constructed for each

maximal component contained by the (sub-)process.

Chapter 6. Transform EKF process models into BPEL code 68

1 <onMessage =" Start(x)">

2 <!-- Translation of the code from step 2 -->

3 </onMessage >

Listing 6.4: Event Action Rules in BPEL

Following the third step we can translate the sub-process complaint into BPEL code

(see Listing 6.5). This sub-process is composed of the maximal components C25, C26

and C29, which can not be further decomposed. Each of the resulting components are

translated into event action rules.

1 <!--------------- Event Action translation of C33 --------------------->

2 <onMessage operation =" Start(C33)">

3 <scope name="C33">

4 <sequence >

5 <invoke operation =" Process Complaint "/>

6 <invoke operation =" Evaluate"/>

7 <switch >

8 <case condition ="NOK">

9 <invoke operation =" Start(C33)"/>

10 </case >

11 <otherwise >

12 <invoke operation =" Start(C25)"/>

13 </otherwise >

14 </switch >

15 </sequence >

16 </scope >

17 </onMessage >

18 <!--------------- Event Action translation of C25 --------------------->

19 <onMessage operation =" Start(C25)">

20 <scope name="C25">

21 <sequence >

22 <invoke operation =" Check Processing "/>

23 <switch >

24 <case condition ="NOK">

25 <invoke operation =" Start(C33)"/>

26 </case >

27 <otherwise >

28 <invoke operation =" Start(C34)"/>

29 </otherwise >

30 </switch >

31 </sequence >

32 </scope

33 </onMessage >

34 <!--------------- Event Action translation of C34 --------------------->

35 <onMessage operation =" Start(C34)">

36 <scope name = "C34">

37 <flow supressJoinFailure ="yes">

38 <invoke operation =" Start(C7) joinCondition =" NCOMPLETED "/>

39 <invoke operation ="End(C34)"/>

40 </flow >

41 </scope >

42 </onMessage >

Chapter 6. Transform EKF process models into BPEL code 69

Listing 6.5: Translate the sub-process complaint into BPEL

Figure 6.5: Transformation of complaint handling process (Cont. STEP3).

6.1.4 STEP 4: Translate the (sub-)process into BPEL code

In this step we need to resolve the limitations when translating a (sub-)process into a

BPEL scope activity. To accomplish this we introduce a scope activity resembling the

(sub-)process containing the result (event action rules) of the previous step as presented

in listing 6.6. The initial component Cx in the sub-process is triggered by the Start(x)

(see Line 8 in Listing 6.6) and the scope waits until it receives and End(y) (see Line 9 in

Listing 6.6) marking the completion of the scope activity. This step must be performed

for all (sub-)processes, which contain an arbitrary cycle or unstructured components.

By following this approach we can overcome the issues of multiple entry and exist points

for the (sub-)process and containment of unstructured process concepts.

There still remains a considerable problem when the EKF process model contains the

pattern WP9. There is no BPEL translation available to support this pattern, such

that we can by no means resolve this problem through BPEL. Resolving this problem

therefore requires either re-modeling (remove all WP9 pattern before the transformation)

or transform the entire pattern into a scope activity contained by a question mark (?).

The last solution requires intervention of a BPEL specialist, to resolve the question

marks before the BPEL code can be deployed. In the case study (see Appendix C)

provides an example of the transformation of a EKF process model including a WP9

pattern.

The (sub-)processes containing trigger, exception or cancel events (e.g. WP19, WP20,

WP25), require additional event and/or fault handlers in the BPEL scope activity.

Chapter 6. Transform EKF process models into BPEL code 70

Therefore we need to translate the event types, which specifically belong to EKF (sub-

)process, into the corresponding part of the event and fault handler of the BPEL scope

activity. The fault handers are required when the instance of a (sub-)process are explic-

itly terminated (e.g. WP19, WP20 and WP25a) and continue processing from a single

point forward. The fault handlers are required for trigger events, cancel events and

cancel sub-process event, while exception event only result in additional event handlers.

1 <scope name ="(sub -) process">

2 <faultHandler >

3 <!-- transformation of the fault handlers -->

4 </faultHandler >

5 <eventHandler >

6 <!-- translation of the event handlers -->

7 </eventHandler >

8 <invoke operaton =" Start(x)"/>

9 <receive operation ="End(y)"/>

10 </scope >

Listing 6.6: Arbitrary Cycle in BPEL

The component C31 is the initial component in the process complaint handling, such

that this is the first component that must be activated in the sub-process complaint

(see Line 69 in Listing 6.7). The component C29 is the final component in the process

complaint handling, such that this component is responsible to enable the completion

of the scope complaint (see Line 69 in Listing 70).

For the components C15 and C11 we introduce respectively two fault handlers: fCAN-

CEL, which terminates all process instances in case the process was explicitly canceled;

and fCANCELTRIGGER, which is required to terminate all process instances in case the

Cancel Trigger event has occurred and the condition CANCELOK was satisfied. Notice

that the process complaint also includes a typical WP19 pattern, allowing the termina-

tion of the sub-questionnaire can be terminated from within the sub-process complaint.

To accomplish this, one must include an additional fault handler in the scope activity

resembling the sub-process questionnaire.

1 <scope name=" COMPLAING HANDLING PROCESS">

2 <faultHandler >

3 <!--------------- Fault Handler for the cancel event ----------------->

4 <catch faultName =" fCANCEL">

5 <invoke operation =" Start(C29)"/>

6 </catch >

7 <!--------------- Fault Handler for the cancel event ----------------->

8 <catch faultName =" fCANCELTRIGGER">

9 <sequence >

10 <invoke operation =" Cancel Process "/>

11 <throw faultName =" fCANCEL "/>

12 </sequence >

13 </catch >

Chapter 6. Transform EKF process models into BPEL code 71

14 </faultHandler >

15 <eventHandler >

16 <!--------------- Event Action translation of C30 --------------------->

17 <onMessage operation =" CANCELTRIGGER ">

18 <scope name="C30">

19 <switch >

20 <case condition =" CANCELOK">

21 <throw faultName =" fCANCELTRIGGER "/>

22 </case >

23 <otherwise >

24 <empty/>

25 </otherwise >

26 </switch >

27 </scope >

28 </onMessage >

29 <!--------------- Event Action translation of C31 --------------------->

30 <onMessage operation ="Start(C31)">

31 <scope name="C31">

32 <sequence >

33 <receive operation =" Request" createInstance ="yes"/>

34 <invoke operation =" Register"/>

35 <flow >

36 <invoke operation =" Start(QUESTIONAIRE)"/>

37 <invoke operation =" Start(COMPLAINT)"/>

38 </flow >

39 </sequence >

40 </scope >

41 </onMessage >

42 <!--------------- Event Action translation of C28 --------------------->

43 <onMessage operation ="Start(C28)">

44 <scope name="C28">

45 <sequence >

46 <invoke operation =" Terminate Process "/>

47 <terminate name=" Terminated "/>

48 </sequence >

49 </scope >

50 </onMessage >

51 <!--------------- Event Action translation of C29 --------------------->

52 <onMessage operation ="Start(C29)">

53 <scope name="C29">

54 <sequence >

55 <invoke operation =" Archive "/>

56 <invoke operation ="End(COMPLETED)"/>

57 </sequence >

58 </scope >

59 </onMessage >

60 <!--------------- Event Action translation of QUESTIONAIRE ------------->

61 <onMessage operation ="Start(QUESTIONAIRE)">

62 <!-- code for Questionaire of previous step -->

63 </onMessage >

64 <!--------------- Event Action translation of COMPLAINT ---------------->

65 <onMessage operation ="Start(COMPLAINT)">

66 <!-- code for Complaint of previous step -->

67 </onMessage >

68 </eventHandler >

Chapter 6. Transform EKF process models into BPEL code 72

69 <invoke operaton =" Start(C31)"/>

70 <receive operation ="End(COMPLETED)"/>

71 </scope >

Listing 6.7: Translation of the running example into BPEL

6.2 Correctness and completness properties

In this section we primary discuss the correctness and the completeness properties of

the transformation result, when following our transformation approach. Based on a

mortgage process from the Everest practice, we present a case study for which we derive

the BPEL code following our transformation approach (see Appendix D). Because the

first and second step of our transformation approach is straightforward and is already

explained through the running example, we only describe the results of the third and

fourth step for this case study. We have identified that we can transform the complete

mortgage process into BPEL, following the proposed transformation approach. Still we

must consider some limitations with respect to our proposed transformation approach,

as this approach depends on the results from the domain and technical spaces transfor-

mation of the previous chapter.

6.2.1 Can we translate all EKF process models into BPEL?

The evaluation of the completeness should answer the question: ‘Can we translate all

EKF process models into BPEL?’. Answering this question is particular interesting when

using the transformation approach as a general approach to transform EKF process

models into BPEL code.

Validation of the completeness of the technical spaces is impossible as no absolute notion

or insight is available to us to draw conclusions about the completeness. This is mainly

caused by the fact that our transformation approach is based on the assumption that the

technical spaces are concidered to be complete. As this assumption is clearly violated in

case concepts are ‘overlooked’3, which require extensions in the domain and/or technical

spaces transformation of appendix B and C. Still we can say with considerable certainty

that we have reached a certain completeness in our approach, as the case study is con-

sidered to be a representative EKF process model from the Everest practice. Therefore

we assume that this process models covers all elements and concepts supported by the

EKF process language.

3Models consist of concpets which are not covered by our technical spaces

Chapter 6. Transform EKF process models into BPEL code 73

6.2.2 What can we say about the correctness of the transformation?

For the evaluation of the correctness we aim at answering the following two questions:

‘Is the’result of the transformation correct BPEL code?’ and ‘Is the resulting BPEL code

semantical equivalent to semantics EKF process model from which the transformation

was made?’. Notice that we are not interested in the correctness of the BPEL language

itself, but only the limitations of the target BPEL code as a result of our transformation

approach.

The validation of the correctness of our transformation approach requires the evaluation

of the correctness of the initial EKF process models and resulting BPEL code. The

EKF process language and BPEL are not based on formal languages like: Petri-Nets, π-

calculus or process algebra. Validation of the correctness based on a formal approach is

difficult and out of the scope of this thesis. Therefore we need another approach to draw

conclusions about the correctness of the transformation result. efore we need another

approach to draw conclusions about the correctness of the transformation result.

The EKF process model from our case study is an operational solution, which has

passed various testing stages before its delivery. This should give use some confidence

with respect to the correctness of this EKF process model. The EKF process models

from which the transformation is derived, must be correct otherwise the resulting BPEL

code will certainly be incorrect.

For the validation we used Oracle BPEL designer and Process Manager to check if

each concepts (from the technical spaces) can actually be implemented in BPEL and

determine based on simulation if the result produces the desired behavior. Following

this approach we can say that we have reached certain confidence with respect to the

semantical correctness of the individual patterns as included in appendix C. As the

EKF process is composed of these patterns, we assume that the transformation result is

considered to be correct under the condition that all individual patterns are considered

to be correct. Providing an actual implementation of case study in BPEL should increase

the certainty of the correctness. However, this is left to further research (see Section 7.4)

as it was not possible to accomplish the implementation of BPEL and gather the required

data, within the project time constraint. Especially the requirement of integrating the

BPEL engine and EKF rule engine makes it difficult to accomplish this in the limited

amount of time.

At this point, we provided an approach to close the gap between the EKF process models

and BPEL code, toward a solution to the problem as identified earlier in this report (see

Chapter 1). In the following chapter we start a discussion as a reflection and positioning

of our work.

Chapter 7

Discussion

Everest is interested in the issues and challenges which can deteriorate the competitive

strength of the development environment like the EKF. Specifically for Everest it is

important to keep-up with the latest developments, toward and extensible and interop-

erable EKF. In the previous chapters we provided a solution to the problem as identified

in chapter 1. As for every solution we need to consider limitations and trade-off that have

to be made when adopting a specific solution. In this chapter we therefore reflect and

position our work by starting a discussion of the best practices which must be considered

when adopting our proposed solution. This discussion should reveal insights, which are

not addressed by answering the research questions as done in the previous chapters, but

which are important in the context of Everest. In this chapter we therefore focus on the

reflection and positioning of our work, by answering the question: ‘What are the best

practices which must be considered when adopting our proposed solution?’.

To answer this question we first discuss the best practices which must be considered

when integrating a BPEL engine into the EKF (see Section 7.1). Integration of a BPEL

engine in the EKF is important as our solutions has identified that some aspect of the

EKF are are not covered by BPEL, such that integration of a BPEL engine and the

EKF is required to resolve these issues. Second, we evaluate the EKF process language

compared to alternative process modeling languages (see Section 7.2). This should allow

us to derive conclusions with respect to the competitive strength of the EKF process

language. Third, we position our work providing an overview of the related work (see

Section 7.3). Finally, we provide the objectives for further research that directly arise

from our work (see Section 7.4).

74

Chapter 7. Discussion 75

7.1 What best practices must be considered when inte-

grating a BPEL engine in the EKF?

In order to take fully advantage of BPEL, Everest should consider the integration of a

BPEL engine in the EKF. This implies that a BPEL engine should be integrated in the

enterprise architecture of the EKF. The integration of a process engine in the enterprise

architecture can best be illustrated through the WfMC Reference Model (see Figure 7.1).

This reference model specifies five interfaces, which must be considered when integrating

a process engine in the enterprise architecture.

Figure 7.1: WfMC Reference Model [Hollingworth, 1995].

7.1.1 Interface 1

Integration of a BPEL engine in the EKF requires that the EKF process engine ca-

pabilities are replaced by the BPEL engine capabilities. This implies that the process

definition tools for BPEL can be used by the business engineer or software engineer

to compose BPEL process definitions. Interface 1 therefore conciders an interchange

format and Application Programming Interface (API), which can support the exchange

of the process definition across a variety of tools and engines. This interface is directly

supported when adopting BPEL as the BPEL process definition can be used as a lan-

guage to interchange the process definition. An increasingly number of tools and engines

are available supporting BPEL, which is a direct result of the popularity of BPEL. For

Chapter 7. Discussion 76

Everest the implementation tools could also be of interest as our proposed solution still

requires manual implementation of BPEL.

7.1.2 Interface 2

The external activities in BPEL are exposed as Web service, so that the obvious busi-

ness activity of a human interaction (interface 2) is not covered by BPEL standard.

The implementation of BPEL is primarily designed to support automated business pro-

cesses based on Web services. However, the spectrum of activities that make up general

purpose business processes is broader than this, because people often participate in

the execution of business processes. The worklist manger is therefore not supported

by the BPEL standard, but this is mostly covered by its implementation. Standards

like BPEL4People propose extensions to BPEL in terms of scenarios involving people

within the BPEL process [IBM and SAP, 2005]. BPEL does not specify guidelines for

the engine and worklist implementation. The Workflow Management Application Pro-

gramming Interface (WAPI) [WFMC, 1998] could fill this gap, as it provides a standard

for specifying the required interfaces when implementing a workflow engine or worklist

manager.

7.1.3 Interface 3

The challenge of integrating a BPEL engine in the EKF lies in respectively the inter-

faces 3 of the WfMC reference model, which specifies the interaction with the logical

components in order to complete a task in the process. In chapter 3 we have identified

that both interfaces are provided by the EKF by means of ESB channels by means of

the connectivity layer. The integration of a BPEL engine in the EKF for the interfaces

3 can therefore be seen as a continuum from very tight, to very loose (see Figure 7.2).

Tight integration specifies that the BPEL engine and EKF are integrated such that

they are exposed as a single point of processing. The main drawback of this approach

is that applications must interact with a combined BPEL engine and EKF, also if it

only needs to interact with one of them. This approach lacks for scalability, as this

approach does not allow that the EKF and process engine are independently scalable. In

a loosely coupled integration approach the BPEL engine and the EKF operate completely

independent and are integrated on the level of the client. This integration approach lacks

for flexibility toward change, as changes require re-deployment of the client application.

A loosely coupled integration approach lies in-between a tight and loose integration,

taking advantage of the enterprise architecture as enabling a service based integration

approach. Adoption of a more loosely coupled approach should increase the scalability

Chapter 7. Discussion 77

Figure 7.2: Continuum of EKF and BPEL engine integration from [WfMC et al.,
2003].

and separation of concerns between the BPEL engine and EKF engine components,

promoting standardized interfaces between the logical components. This is an advantage,

as Web service technologies are the leading standard for specifying these interfaces in the

enterprise architecture. A drawback of this approach could be performance issues, due

to the fact that Web service protocols are known to have performance issues compared

to tight integration. Nevertheless, we think that a loosely coupling approach is most

suitable for the engine-to-engine integration of BPEL and the EKF.

(a) Point-to-point integration (6
connections)

(b) Broker integration (4 connections)

Figure 7.3: Point-to-point versus broker integration from [Harvey, 2005].

A loosely coupled integration of a BPEL engine and the EKF requires adoption of Web

service technology in EKF. Web service technology is the backbone of BPEL and provides

interoperability across various applications and platforms by facilitate the publishing of

applications as Web services. Following the loosely coupled integration strategy we can

continue to discuss the best practices which must be considered when closing the gap

between a BPEL engine and enterprise architecture of the EKF.

Chapter 7. Discussion 78

First we address the complexity issue of the integration, maintaining the connections on

a point-to-point basis (see Figure 7.3(a)). The drawback of point-to-point connections

between the BPEL engine and the EKF results in complexity issues, because of the

increasing number of interfaces required for the point-to-point solutions. Take for exam-

ple: N components, the number of point-to-point connections required is N ∗ (N −1)/2.

Therefore we propose the use of a message broker (see Figure 7.3(b)). The message

broker reduces the number of conncetions and decreasing the complexity of number of

interfaces which need to be considered when integrating N components.

Figure 7.4: Integration of EKF and BPEL engine based on idea from [Rosenberg and
Dustdar, 2005a].

To achieve the message broker following a loosely coupled integration approach, it re-

quires the adoption of Web services in the EKF connectivity layer. In this way the

generalized channel in the EKF should be exposed as Web services as proposed by [De-

bevoise, 2005]. This allows that all the specialized channel types are also exposed as

Web services: BPEL service, interceptor service, decision service and transformation

service (see Figure 7.4).

The interceptor service acts as a broker for the integration of the invoked applications on

interface 3. Directly invoke the rules from BPEL results in complexity issues (increasing

the number of activities to 2 ∗ N) as described by [WfMC et al., 2003]. A solution to

this problem is presented by Rosenberg and Dustdar [2005a], where they assign this

task to the interceptor service. The role of the interceptor service is to intercept each

incoming and outgoing BPEL service call to automatically apply the rules. The inter-

ceptor service applies through a decision service, before and after the invocation of the

channel task through the service gateway. Linking the BPEL activities to the rules can

Chapter 7. Discussion 79

be accomplished through a mapping file1.

Redeployment of the process is required, when BPEL is responsible for the binding

to the end points and the underlying service change. Maintenance issues arise when

the number of participating services in the process increase, which requires maintaining

the binding of an increasingly number of services. To overcome this problem, Kuster

and Konig-Ries [2007] proposes to dynamically bind the service end point at run-time

through the service gateway rather than explicitly define these end points in the BPEL

process. The service gateway should expose a generic function of the EKF by means

of Web services (e.g. interaction, transformation, decision and data, etc.). The service

gateway implies that channels in the EKF connectivity layer must be exposed as WSDL

operations. Each operation in the WSDL, need XSD’s to describe the layout of the XML

document for its input and output variables (transformation of the EKF domain model

into XSD and channels into WSDL is described into more detail in appendix B).

As each task is exposed as a Web service and BPEL specifies the orchestration of these

Web services. Therefore it is required that the output variables of one Web service

must be translated into the input variables of the preceded invoked Web service. As

these transformations must be performed before and after the actual invocation of the

task they are considered to be part of the interceptor service. The transformation ser-

vice is introduced to transform one XML data format into another XML data format,

by providing an XSLT transformation definition. However, this solution has a draw-

back as it is time consuming to create and complex to maintain the increasing number

of transformation definitions. Solution to this problem can possibly be found in the

Java Meta-modeling Protocol (JUMP)2, which offers a framework and structured meta-

language to consolidate multiple models into a single view [Jumper, 2006]. This view

captures the required integration details for correctly cleansing and mapping the domain

attributes and expose them as Web services.

The introduction of the decision service exposes the distinctive features of the rule engine

as a Web service. The concept of such a service is to derive knowledge from a set of

rules and data on its input [Martin, 2006]. Following the approach of Rosenberg and

Dustdar [2005b], we can define a decision service as a triple < R, I,O >, where R is the

ruleset composed of rules and I and O are respectively the input and output variables

of the ruleset. Considering a ruleset as an input parameter of a decision service requires

the use of a rule language defining the behavior of the actual Web service (referred

to as semantic Web service) [Gasevic et al., 2006]. The development of rule language

1This mapping file simply links the invoked activity to the rules which need to be applied, promoting
reuse of rules

2see: http://en.wikipedia.org/wiki/JUMP - Java metamodel protocol

Chapter 7. Discussion 80

is work in progress (e.g. Rule Meta Language (RuleML)3, Rule Interchange Format

(RIF)4 and Production Rule Representation (PRR) [OMG, 2006]), but no defacto rule

language has been adopted by the industry at the time of writing. Therefore we consider

the approach of Rosenberg and Dustdar [2005a], which proposes to expose each ruleset

as an independent Web services. In this way the Web service does not require the

ruleset as an input variable of the Web service, but exposes the entire ruleset as an

independent WSDL operation. Maintaining the increasing number (versions) of Web

service, when changes to the rules occur is the main concern of this approach. To

overcome this problem one could follow the approach of Orriens et al. [2003], Schmidt

[2002], proposing to generate WSDL operations directly from the ruleset definitions.

As each BPEL process is itself exposed as a Web service, it is possible for the portal

engine and event manger in the EKF to directly interact with the process through the

invocation of the process Web services.

7.1.4 Interface 4

This interface defines the way how multiple enactment services can be integrated. This

interface is directly supported by BPEL, by exposing each (sub-)process and events as

a Web service. Various implementations of BPEL can interact by means of invocation

of services across the deployed BPEL processes.

7.1.5 Interface 5

This interface includes standards for administration and monitoring function which al-

low one vendor management application to work with other engine(s). This promotes a

common interface which enables several workflow services to share a range of common

administration and monitoring functions. Take for example an interface for the inter-

change of overall status and metric information. Notice that it is outside the scope of

BPEL standard to define such an interface, but various BPEL implementations already

cover some implementation in terms of an API. This implies that the way this informa-

tion is stored in terms of the domain model could be expressed in terms of standardized

metric vocubularies (e.g. Business Motivation Model (BMM) or Business Process Defi-

nition Model (BPDM)). The interface must be exposed as a specific service and protocol

which is used to retrieve the status and statistical information at run-time.

3see: http://www.ruleml.org/
4see: http://www.w3.org/2005/rules/wg/charter.html and also [W3C, 2005]

Chapter 7. Discussion 81

7.2 EKF process language versus formalized process mod-

eling languages

The EKF process language is specifically developed for modeling the processes in the

EKF and does not support a formal basis in process modeling. This clearly deterio-

rates the competitive strength of the EKF process language as automated validation

and generation of BPEL from EKF process models is difficult and time consuming.

The adoption of a more generic and formal modeling language seems most suitable to

overcome this problem.

Various modeling language exist which have a formal background in either Petri-nets,

π-calculus or process algebra: Activity Diagrams (AD) [OMG, 2005], Business Pro-

cess Modeling Notation (BPMN) [White, 2004, Russell et al., 2006] and Yet Another

Workflow Language (YAWL) [Aalst van der and Hofstede ter, 2003]. We compare the

expressiveness by performing an evaluation of the supported workflow patterns. Various

efforts of Decker and Puhlmann [2007], Russell et al. [2006], Wohed et al. [2005a, 2006,

2005b] have already addressed the evaluation worklow patterns for: BPMN, AD and

YAWL. An overview of their results is presented in table 7.15.

Table 7.1 makes it clear that the EKF process modeling language has several limitations

supporting some of the workflow patterns. The main limitations of the EKF process

language are the support for: WP3, WP7, WP8, WP13 and WP14, which are noticeable

directly supported by AD, BPMN and YAWL. In chapter 6 we already have identified

that taking advantage of the expressiveness of BPEL requires extensions in the EKF

process language. Alternatively Everest could consider to adopt a more formal modeling

language, to increase the expressiveness and adopt a more formal approach for modeling.

Adopting AD, BPMN or YAWL could therefore increase the competitive strength of

Everest, promoting automated validation and transformation of models. It is outside

the scope of this thesis to reccomend specific modeling languages, but it is considered

the responsibility of Everest to be aware of the limitations of the EKF process modeling

language. In the following section we discuss the related work, including efforts of

transforming more generic modeling languages into BPEL.

7.3 Related work

Since BPEL is increasingly supported by various vendor implementation, it has become

interesting to link a modeling language with BPEL. Notice that BPEL more closely

5+directly supported; +/- partially supported; - not support

Chapter 7. Discussion 82

Pattern EKF AD BPMN YAWL

Sequence (WP1) + + + +

Parallel Split (WP2) + + + +

Synchronization Merge (WP3) - + + +

Exclusive choice (WP4) + + + +

Simple Merge (WP5) + + + +

Multi-choice (WP6) + + + +

Synchronizing Merge (WP7) - - +/- +

Multi-merge (WP8) - + + +

Structured Discriminator (WP9) +/- + + +

Arbitrary cycles (WP10) + + + +

Implicit Termination (WP11) + + + -

MI without Synchronization (WP12) + + + +

MI with Priori Design-Time Knowledge (WP13) - + + +

MI with a Priori Run-Time Knowledge (WP14) - + + +

MI without a Priori Run-Time Knowledge (WP15) - - - +

Deferred Choice (WP16) + + + +

Interleaved Parallel Routing (WP17) +/- - +/- +

Milestone (WP18) +/- - - +

Cancel Task (WP19) + + + +

Cancel Case (WP20) + + + +

Structured loops (WP21) + + + +

Cancel Region (WP25) + + + +

Explicit Termination (WP43) + + + +

Table 7.1: Evaluation of the expressiveness of EKF process language compared to
AD, BPMN and YAWL

resembles a programming language, while different vendors provide tools for modeling.

These tools have limited capabilities with respect to support any form of analysis (e.g.

behavior verification, performance analysis, etc.). In other words, BPEL definitions are

somewhere in-between the higher-level process models and fully-functional code. Hence,

there are interesting efforts for translations relation to BPEL: first, a translation from

a higher-level notation to BPEL (forward engineering in MDA) and second, translation

from BPEL to a model to establish analysis (backward engineering in MDA).

Several attempts have been made to capture the formal semantics of BPEL. A compar-

ative summary of formalizing BPEL can be found in [Wohed et al., 2003]. The first full

formalization of the control flow as presented in the work of [Ouyang et al., 2005] is based

on Petri-nets. Their work has resulted in a translation tool called BPEL2PNML and

verification tool called WofBPEL6. Important is to notice that these verification tools

only support a subset of the structured activities in BPEL. Alternative validation ap-

proach of BPEL is discussed in [Weidlich et al., 2007], where they evaluate BPEL based

on π-calculus. With respect to the verification issues related communication aspect in

6Extension of the woflan verification tool, see: http://www.bpm.fit.qut.edu.au/projects/babel/tools.

Chapter 7. Discussion 83

BPEL, the work of [Martens, 2005] discusses how to verify the correctness of a collection

of inter-communication BPEL processes, and similarly the work of [Fu et al., 2004] shows

how to check the compatibility of two services with respect to their communication.

Various tools to generate BPEL code from a grapical representation are being developed

by the Scientific, Open Source and Industry Communities. Tools such as Active BPEL7,

IBM WebSphere Choreographer8 and the Oracle BPEL Process Designer9 provide a

graphical notation for BPEL. However, this notation directly reflects the code, so that

the business oriented people still have to think in terms of BPEL constructs. More

interesting is the work of White [2006] that discusses the transformation of BPMN into

BPEL and the work of Koehler and Hauser [2004] on removing loops in the context

of BPEL. Non of these publications provide an approach to transform some graphical

process modeling language into BPEL, but merely present the problems, issues and

challenges. More resent work on the development of an approach to transform Workflow-

Nets into BPEL Aalst van der and Lassen [2005] and from a core sub-set of BPMN to

BPEL Ouyang et al. [2006] have contributed in more rich approaches to translate higher-

level process modeling language into BPEL code.

Other efforts focus on the backward engineering of BPEL, which come from the field

of process mining, where event logs are used to derive conclusions of the process model

[Aalst van der et al., 2004]. The work of Dongen van et al. [2005] has resulted in the

PROM10 tool and framework, which allows the analysis of different process definitions

including BPEL. Another approach of backwards engineering is proposed by Brogi and

Popescu [2006], where they present an approach to translate BPEL into YAWL.

Drawbacks associated with BPEL come directly from the limitations of the worfklow

paradigm as discussed in chapter 2: limited flexibility, the atomicity of tasks, context

tunneling and the mix-up of distribution and authorization. Case handling provides

an alternative strategy to model and implement process, which need to be increasingly

flexible to changes in the business environment [Aalst van der et al., 2005b]. Process

models tend to become rather complex, due to the abundance of rules that can be

described while analyzing only the business process [Vanthienen and Goedertier, 2005,

Goedertier and Vanthienen, 2006]. This enables that the process becomes susceptible

to design flaws, such that a substantial amount of effort is required for implementation

and maintenance. This is mainly due to the fact that the business rules are maintained

on a more fine-grained level compared to the process.

7see: http://www.activebpel.org
8see: http://www-306.ibm.com/software/websphere/
9see: http://www.oracle.com/technology/products/ias/bpel/index.html

10see: http://www.processmining.org

Chapter 7. Discussion 84

BPEL is mainly focused on the central coordination (orchestration) between participants

and does not address problems where the transactions define the order of processing.

For pure orchestration their remain challenges when managing processes, where coor-

dination and synchronization between independent participants becomes increasingly

complex [Aalst van der et al., 2005a]. The Web Service Choreography Definition Lan-

guage (WS-CDL) [Barros et al., 2005a] is the latest development of W3C, toward an

XML process language allowing choreography in the process. WS-CDL is not so much a

replacement for BPEL, but can be seen as an standard on top of BPEL (in the web ser-

vice stack) allowing to specify the interaction of global participating processes. Recent

work of Barros et al. [2005b], Decker et al. [2007, 2008] describe patterns and language

extensions to accomplish high-level interactions across processes. Nevertheless, at the

time of writing there is only a working draft of WS-CDL available, so that adoption of

this language depends of future success and implementations.

7.4 Further research

In this section we provide the insight in the further research and questions that arise

from the shortcomings our work.

As our soloution only addresses the theoretical perspective of the problem, it is key for

Everest that the solution is tanslated to an implementation. This requires an intergra-

tion of a BPEL engine into the EKF following a loosely coupled intergration approach.

Implementing our proposed solution allows validation of the correctness and complete-

ness, which is identified as a considerable obstacle as we only provided a pure theoretical

approach.

The procedural process language like BPEL can be used to manage the generic process

aspects independent of the business products and a specific organization. This implies

that the strenght of BPEL is most applicable for the coarse-grained processes main-

tained by the EKF. The processes at a more fine-grained level become rather complex,

when specified in a procedural langauge like BPEL. For such cases Everest aims at the

separation of the rules from the flow to increase the maintainability and flexibility of

the process. In this way the goals and choices are driven by rules rather than contained

by the process itself. For Everest rules tend to be more subtitle to changes and reduce

complexity issues as each rule can be seen as the smallest unit of change. Important

insights for Everest can be found in the trade-off between a procedural flow (at the

coarse-grained level) and a declarative flow (at a more fine-grained level). This level

of abstraction allows generalizaiton in the process, where specialized flows aspects are

implemented in terms of rules. An assessment of where to draw this line is therefore

Chapter 7. Discussion 85

important for Everest to increase the understanding which aspects of the process need

to be implemented in terms of procedural flow and which aspects as declarative rules.

Managing the rules at a more fine-grained level is difficult, because the rule based flows

become more complex when the number of rules (exception situations) increase. Man-

aging this type of flows requires a different approach, techniques and standards. Furhter

research should therfore adress the interoperability of the EKF on this fine-grained level

of the process, which is not covered by BPEL.

Chapter 8

Conclusions

From the literature review we can conclude that there are several theoretical perspec-

tives for enterprise modeling. Both the enterprise architecture and the model driven

architecture are considered to be important approaches in the context of the Everest de-

velopment life cycle for modeling and deployment of business applications. An extensive

study of the Everest Knowledge Framework has resulted in a more clear understanding

of the enterprise architecture and modeling dimensions adopted by Everest. The study

of the domain, rule and process languages part of the Everest modeling dimensions,

have resulted in a more clear understanding of the syntax of the supported languages.

A study of BPEL has resulted into a more clear understanding of the key features of

BPEL, including the underlying Web services technologies.

To determine how to increase the interoperability in the EKF by the adoption of BPEL

we defined two partial questions: ‘What are the issues and challenges to close the gap

between the EKF process language and the BPEL?’ and ‘How EKF process models can

be transformed into BPEL code?’. Although it is difficult to answer these questions from

a theoretical perspective, we provided Everest with some interesting insights and results.

The transformation of the EKF process language into BPEL resulted in a more formal

description of the syntax and semantics of the EKF process language and the contextual

and conceptual differences between both languages. This is considered to be an impor-

tant result for Everest as no previous attempt has been made by Everest to formalize

the semantics of the EKF process language.

The contextual differences between the EKF process language and BPEL are identified

when closing the gap of the meta-model elements. The conceptual differences between

the EKF process language and BPEL are identified when closing the gap between the

concepts of the EKF process language and BPEL. Various limitations arise from both

86

Bibliography 87

the contextual and conceptual differences, which needs to be considered when translat-

ing the EKF process language into BPEL. First, the EKF process language lacks for

supporting synchronization of parallel branches and does not allow multiple instances

of tasks in the process. Second, BPEL only partially support the arbitrary cycle and

structured discriminator patterns. This limitation introduces considerable complexities

when translating the EKF process models into BPEL.

Transforming the EKF process models into BPEL code can be accomplished by: first,

translate the domain; second, translate the technical spaces; third, decompose the (sub-

)process into components and finally, translate the (sub-)process into BPEL code. Unless

the difficulty to formally validate the completeness, we can say with considerable cer-

tainty that our approach can be applied to translate all EKF process models into BPEL.

Unless the difficulty to formally validate the correctness, we can say with considerable

confidence that our transformation result is correct.

On behalf of the results of this project we propose to either extend the expressiveness of

the EKF process language or adopt a more formal modeling languages. The limitations

of the EKF process modeling language need to be resolved in order to take fully advan-

tage of the expressive power of BPEL, especially when automating the transformation

of process models into BPEL code. Adopting a more formalized modeling language is

recommended when automated transformation of the process design into a BPEL im-

plementation is required. Automated generation of models fits the MDA strategy of

Everest and seems useful when frequent changes to the process occur.

We recommend that a loosely coupled integration approach when integrating a BPEL

engine into the EKF, as this approach promotes: interoperability, maintainability and

scalability of the enterprise architecture of the EKF. This implies the adoption of Web

service technologies in the EKF.

We recommend that further research covering the separation of a procedural flow at a

coarse-grained level and rule based flow at a more fine-grained level of the process is

valuable for Everest to promote flexible process management into the EKF.

Bibliography

W.M.P. Aalst van der. The Application of Petri Nets to Workflow Management. The

Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

W.M.P. Aalst van der. Workflow Verification: Finding Control-Flow Errors using Petri-

net based techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,

Business Process Management: Models, Techniques, and Empirical Studies, 1806 of

Lecture Notes in Computer Science:161–183, 2000.

W.M.P. Aalst van der and A.H.M. Hofstede ter. Workflow Patterns: On the Expressive

Power of (Petri-net-based) Workflow Languages. Wor. In K. Jensen, editor, Proceed-

ings of the Fourth Workshop on the Practical Use of Coloured Petri Nets and CPN

Tools (CPN 2002), 560 of DAIMI:1–20, August 2002.

W.M.P. Aalst van der and A.H.M. Hofstede ter. YAWL: Yet Another Workflow

Language (revised version). QUT Technical report, FIT-TR-2003-04, 2003. URL

http://www.citi.qut.edu.au/pubs/technical/yawlrevtech.pdf.

W.M.P. Aalst van der and K.B. Lassen. Translating Workflow-nets to BPEL4WS. BETA

Working Paper Series, 2005.

W.M.P. Aalst van der and K. van Hee. Workflow Management. MIT Press, 2004. ISBN

0-262-72046-9.

W.M.P. Aalst van der, A.H.M. Hofstede ter, B. Kiepuszewski, and Barros A.P. Workfow

Patterns. Distributed and Parallel Databases, 14(3):5–51, June 2003.

W.M.P. Aalst van der, A.J.M.M. Weijters, and editors. Process mining. Special Issue

of Computers in Industry, 53(3), 2004.

W.M.P. Aalst van der, M. Dumas, A.H.M. Hofstede ter, N. Russell, H.M.W. Verbeek,

and P. Wohed. Life After BPEL? In Proc. of the 2nd Int. Workshop on Web Services

and Formal Methods (WS-FM), 3670 of LNCS:35–50, 2005a.

W.M.P. Aalst van der, M. Weske, and D. Grunbauer. Case handling: a new paradigm

for business process support. Data Knowl. Eng., 53(2):129–162, 2005b.

88

http://www.citi.qut.edu.au/pubs/technical/yawlrevtech.pdf

Bibliography 89

D.H. Akehurst. Validating bpel specifications using ocl. Technical report., August 2004.

C. Atkinson and T. Kuhne. Model-driven development: a metamodeling foundation.

Software, IEEE, Publication Date: Sept.-Oct. 2003, 20(5):36– 41, 2003.

M. Bajec and M. Krisper. A methodology and tool support for managing business rules

in organisations. Information Systems, 30(6), September 2005.

M. Bajec, R. Rubnik, and M. Kisper. Using Business Rules Technologies To Bridge

The Gap Between Business and Business Applications. Information Technology for

Business Management (G Rechnu, Ed), Proceedings of the IFIP 16th World Computer

Congress 2000:77–85, 2000.

A. Barros, M. Dumas, and P. Oaks. A Critical Overview of the Web Service Choreog-

raphy Description Level (WS-CDL). BPTrends Newsletter, 3(3), March 2005a.

A. Barros, A. Hoftede ter, and M. Dumas. Service Interaction Patterns. BPM 2005,

LNCS 3649:302–318, 2005b.

BEA, Microsoft, IBM, SAP, and Siebel. Business Process Execution Language for Web

Services (Version 1.1). IBM Developerworks, 2003.

B. Bordbar and A. Staikopoulos. Bridging Technical Spaces With A Metamodel Refine-

ment Approach. Electronic Notes in Theoretical Computer Science, 2005.

A. Brogi and R. Popescu. From BPEL Processes to YAWL Workflows. Springer, 4184

Lecture Notes in Computer Science:107–122, December 2006.

D. Carlson. Modeling XML Vocabularies with UML: Part I. O’Reilly, August 2001a.

URL http://www.xml.com/pub/a/2001/08/22/uml.html.

D. Carlson. Modeling XML Vocabularies with UML: Part II. O’Reilly, September

2001b. URL http://www.xml.com/pub/a/2001/09/19/uml.html.

D. Carlson. Modeling XML Vocabularies with UML: Part III. O’Reilly, October 2001c.

URL http://www.xml.com/pub/a/2001/10/10/uml.html.

U. Dayal, A.P. Buchmann, and D.R. McCharty. Rules are Objects too: A Knowledge

Model for an Active, Object-Oriented Database Management System. Springer Berlin,

Advances in Object-Oriented Database Systems (Ed. K.R. Dittrich):29–143, 1998.

T. Debevoise. Business Process Management With a Business Rules Approach: Im-

plementing the Service Oriented Architecture. Business Knowledge Architects, 2005.

ISBN 0-9769048-0-2.

http://www.xml.com/pub/a/2001/08/22/uml.html
http://www.xml.com/pub/a/2001/09/19/uml.html
http://www.xml.com/pub/a/2001/10/10/uml.html

Bibliography 90

D. Decker, O. Kopp, F. Leymann, and M. Weske. Modeling Service Choreographies

using BPMN and BPEL4Chor. Proceedings of the 20th International Conference on

Advanced Information Systems Engineering (CAiSE), June 2008.

G. Decker and F. Puhlmann. Extending BPMN for Modeling Complex Choreographies.

Proceedings of the 15th International Conference on Cooperative Information Systems

(CoopIS), 4803 of LNCS:24–40, November 2007.

G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Extending BPEL for

Modeling Choreographies. In Proceedings International Conference on Web Services

(ICWS), 2007.

R. M. Dijkman, M. Dumas, and C. Quyang. Formal semantics and automated analysis of

BPMN process models. Preprint 7115, Queensland University of Technology,Brisbane,

Australia, 2007.

B. Dongen van, A.K.A. Medeiros de, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P.

Aalst van der. The ProM framework: A New Era in Process Mining Tool Support.

In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri Nets 2005,

3536 of Lecture Notes in Computer Science:444–454, 2005.

EnixConsluting. Business rules are from Mars & processes from Venus. Technical Report,

2005. URL http://www.bpmlabs.net/images/paper/Rules.pdf.

X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL Web services. In Proceedings

of the 13th International Conference on World Wide Web, pages 621–630, 2004.

D. Gasevic, A. Giurca, S. Lukichev, and G. Wagner. Rule-Based Modeling of Seman-

tic Web Services. Proceedings of 2nd International Workshop on Semantic Web

Enabled Software Engineering (SWESE 2006), pages 5–9, November 2006. URL

http://km.aifb.uni-karlsruhe.de/ws/swese2006/final/gasevic_short.pdf.

S. Goedertier and J. Vanthienen. Compliant and Flexible Business Processes with Busi-

ness Rules. In 7th Workshop on Business Process Modeling, 2006.

M. Harvey. Essentials Business Process Modeling. O’Reilly, 2005. ISBN 0-596-00843-0.

H. Herbst. The specification of business rules: a comparison of selected methodologies.

Life Cycle, Amsteredam et al., Elsevier, pages 29–46, 1994.

H. Hermans. 5GL springlevend (dutch). Computable, Feburari 2007. URL

http://www.computable.nl/artikel.jsp?rubriek=1509029&id=1855254.

D. Hollingworth. The Workflow Reference Model. Workflow Management Coalition,

January 1995. URL http://www.wfmc.org/standards/docs/tc003v11.pdf.

http://www.bpmlabs.net/images/paper/Rules.pdf
http://km.aifb.uni-karlsruhe.de/ws/swese2006/final/gasevic_short.pdf
http://www.computable.nl/ artikel.jsp?rubriek=1509029&id=1855254
http://www.wfmc.org/standards/docs/tc003v11.pdf

Bibliography 91

IBM and SAP. WS-BPEL Extension for People. Technical Report, July 2005.

IBM, BEA, and Microsoft. Business Process Execution Language for Web Services

(Version 1.0). Technical Report, July 2002.

K. Jensen. Coloured Petri Nets: Analysis Methods and Practical Use. Springer-Verlag,

Vol. 1: Basic Concepts Monographs in Theoretical Computer Science, 1997.

Jumper. Making BPEL Transformations Dynamic. Jumper Newsletter, October 2006.

URL http://www.jumpernetworks.com/Making_BPEL_Transformations_Dynamic.pdf.

A. Kleppe. The Model Driven Architecture (MDA): Practice and Promise. Addison-

Wesley, 2003. ISBN ISBN 0-321-19442-X.

J. Koehler and R. Hauser. Untangling unstructured cyclic flows: A solution based

on continuations. In Proceedings of OTM Confederated International Conferences

CoopIS, DOA, and ODBASE 2004, pages 121–138, 2004.

G. Kontonya and I. Sommerville. Requirements Engineering. Wiley, 2002. ISBN ISBN

0-471-9720-8.

K. Kriz, J. Gehrke, D. Kriz, J. Vanthienen, C. Mues, G. Wets, and K. Delaere. A tool-

supported approach to inter-tabular verification. Expert Systems with Applications

15, pages 277–258, 1998.

U. Kuster and B. Konig-Ries. Dynamic binding for BPEL processes: A Lightweight

Approach to Integrate Semantics into Web Services. Service-Oriented Computing

ICSOC 2006, 4652 Lecture Notes in Computer Science:116–127, September 2007.

F. Leymann. Web Services Flow Language (WSFL). IBM Software Group, 2001. URL

http://www-306.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf.

P. Loucopoulos. From Information Modelling to Enterprise Modelling. in Information-

Systems Engineering: State of the Art and Research Themes, (Ed: S. Brinkkemper,

E. Lindencrona,A. Solvberg), pages 67–78, 2000.

P. Loucopoulos, B. Theodoulidis, and D. Pantazis. Business Rules Modelling: Con-

ceptual Modelling and Object Oriented Specifications. Proceedings of the IFIP

TC8/WG8.1 Working Conference, pages 323–342, 1991.

A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, editor,

Proceedings of the 8th International Conference on Fundamental Approaches to Soft-

ware Engineering (FASE 2005), 3442 of Lecture Notes in Computer Science:19–33,

2005.

http://www.jumpernetworks.com/ Making_BPEL_Transformations_Dynamic.pdf
http://www-306.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf

Bibliography 92

S.A.R.L. Martin. The role of business rules in SOA. Technical Report, 2006. URL

http://www.visual-rules.com/pdf_en/whitepaper-business-rules-soa.pdf.

S. Mellor. Principles of Model Driven Architecture. Addison-Wesley Professional, 2004.

ISBN ISBN 0-201-78891-8.

B. M. Michelson. Event-Driven Architecture Overview. Patricia Seybold Group, Febuary

2006.

T. Morgan. Business Rules and Information Systems: Aligning IT with Business Goals.

Addison-Wesley, 2002. ISBN 0-201-74391-4.

M. Muehlen zur. Workflow Based Process Controlling. Logos Verslag Berlin, 2004. ISBN

3-8-325-0388-9.

N.A. Mulyar. Pattern-based Evaluation of Oracle-BPEL (v.10.1.2). Technical report,

Center Report BPM-05-24, 2005.

A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982.

OASIS. Web Services Business Process Execution Language (Version 2.0). Public Review

Draft, August 2006.

OMG. Unified Modeling Language (UML) 2.0. Object Management Group, 2005. URL

http://www.omg.com/uml/.

OMG. Production Rule Representation (PRR) (proposal). Draft Response to OMG

RFP br/2003-09-03, 6 2006.

OMG. MDA Guide (Version 1.0.1). Document Number: omg/2003-06-01, June 2003.

URL http://www.omg.org/docs/omg/03-06-01.pdf.

B. Orriens, J. Yang, and M.P. Papazoglou. A Framework for Business Rule Driven Ser-

vice Composition. In Proceedings of the Fourth International Workshop on Conceptual

Modeling Approaches for e-Business Dealing with Business Volatility, 2003.

C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. Hofstede ter, and

H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.

BPM Center Report BPM-05-15, 2005.

C. Ouyang, W.M.P. Aalst van der, M. Dumas, and A.H.M. Hofstede ter. Translating

BPMN to BPEL. BPM Center Report BPM-06-02, 2006.

F. Puhlmann and M. Weske. Using the π-calculus for Formalizing Workflow Patterns.

In BPM 2005, 3649 of Lecture Notes in Computer Science:153–168, 2005.

http://www.visual-rules.com/pdf_en/whitepaper-business-rules-soa.pdf
http://www.omg.com/uml/
http://www.omg.org/docs/omg/03-06-01.pdf

Bibliography 93

H.A. Reijers and S. Limam Mansar. Best Practices in Business Process Redesign: Vali-

dation of a Redesign Framework. Computers in Industry, 56(5):457–471, 2005.

D. Rosca, S. Greenspan, C. Wild, H. Reubenstein, K. Maly, and M. Felowitz. Application

of a decision support mechanism to the business rules life cycle. Proceedings of the

10th Knowledge-Based Software Engineering Conference, pages 114–121, November

1995.

F. Rosenberg and S. Dustdar. Business Rules Integration in BPEL - A Service-Oriented

Approach. In: CEC., pages 476–479, 2005a.

F. Rosenberg and S. Dustdar. Towards a Distributed Service-Oriented Business Rules

System. Proceedings of the Third European Conference on Web Services (ECOWS05),

2005b.

R.G. Ross. Business Rules Manifesto (version 2.0). The principles of Rule Independence,

2003.

R.G. Ross. Principles of the business rules approach. Data Base Systems: Design,

Implementation and Management, 2000.

N. Russell, W.M.P. Aalst van der, A.H.M. Hofstede ter, and P. Wohed. On the suitability

of UML 2.0 Activity Diagrams for business process modelling. In to appear in Proc. of

The 3rd Asia-Pacific Conf, on Conceptual Modelling (APCCM 2006), January 2006.

R. Schmidt. Web services based execution of business rules. In Proceedings of the Inter-

national Workshop on Rule Markup Languages for Business Rules on the Semantic

Web, 2002.

G. Schreiber, H. Akkermans, A. Anjewierden, R. Hoog de, N. Shadbolt, W. Velde van

de, and B. Wielinga. Knowledge Engineering and Management: The CommonKADS

Methodology. IT Press, 2000. ISBN 0-262-19300-0.

A.K. Tanaka. On Conceptual Design of Active Databases. PhD Thesis, 1992.

S. Thatte. XLANG Web Services for Business Process Design. Technical Paper, 2001.

J. Vanthienen. Knowledge Acquisition and Validation Using a Decision Table Engineer-

ing Workbench. Proceedings of the World Congress on Expert Systems, pages 16–19,

1991.

J. Vanthienen and S. Goedertier. Rule-based business process modeling and execution.

In: Proceedings of the IEEE EDOC Workshop on Vocabularies Ontologies and Rules

for The Enterprise (VORTE 2005), CTIT Workshop Proceeding Series (ISSN 0929-

0672), 2005.

Bibliography 94

W3C. Rule Interchange Format Working Group Charter (RIF). W3C Charter, 26(3),

2005. URL http://www.w3.org/2005/rules/wg/charter.html.

G. Wagner. How to design a general rule markup language? In Workshop XML Tech-

nologien fuer das Semantic Web (XSW), Berlin, June 2002.

M. Weidlich, G. Decker, and M. Weske. Efficient Analysis of BPEL 2.0 Processes us-

ing π-calculus. Proceedings of the IEEE Asia-Pacific Services Computing Conference

(APSCC), Tsukuba Science City, December 2007.

WFMC. Workflow Management Application Programming Interface Specification (Ver-

sion 2.0). Technical report, July 1998.

WfMC, FileNet, ILOG, and W4. Business Processes and Business Rules:

Business Agility Becomes Real. Workflow Handbook 2003, 2003. URL

http://www.ilog.com/solutions/business/bpm/WfMC_article_BPM_and_BRE.pdf.

S. White. Business Process Modeling Notation (BPMN) (version 1.0). Business Process

Management Initiative, May 2004.

S.A. White. Using BPMN to model a BPEL process. BPTrends, 3(3):1–18, October

2006. URL http://www.bptrends.com/.

J. Widom and S. Ceri. Active Database Systems: Triggers and Rules For Advanced

Database Processing. Morgan Kaufmann, 1996.

L. Wilkes and R. Veryard. Service-Oriented Architecture: Considerations for Agile

Systems. Microsoft Architects Journal, pages 11–23, April 2004.

P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. Hofstede ter. Analysis of

web services composition languages: The case of BPEL4WS. In Proceedings of 22nd

International Conference on Conceptual Modeling (ER 2003), volume 2813, of Lecture

Notes in Computer Science:200–215, 2003.

P. Wohed, W.M.P. Aalst van der, M. Dumas, A.H.M. Hofstede ter, and N. Russell.

Pattern-based analysis of the control-flow perspective of UML Activity Diagrams. ER

2005, pages 63–78, 2005a.

P. Wohed, W.M.P. Aalst van der, M. Dumas, A.H.M. Hofstede ter, and N. Russell.

Pattern-based analysis of BPMN. Queensland University of Technology, 2005b.

P. Wohed, W.M.P. Aalst van der, M. Dumas, A.H.M Hofstede ter, and N. Russell. On the

suitability of BPMN for Business Process Modeling. In Proceedings 4th International

Conference on Business Process Management (BPM 2006), 2006.

http://www.w3.org/2005/rules/wg/charter.html
http://www.ilog.com/ solutions/business/bpm/WfMC_article_BPM_and_BRE.pdf
http://www.bptrends.com/

Bibliography 95

J.A. Zachman. A Framework for Information Systems Architecture. IBM Systems

Journal, 26(3), 1987.

J. M. Zaha, M. Dumas, A. Hofstede ter, A. Barros, and G. Decker. Service Interaction

Modeling: Bridging Global and Local Views. In Proceedings 10th IEEE International

EDOC Conference (EDOC 2006), October 2006.

Appendix A

One Step Refinement Approach

Explained

In this thesis we use the “one step refinement” approach which aims at bridging the

gap between between the technical spaces and domains of languages. Both the technical

spaces and domain should be considered when mapping the two meta-models, where

the technical spaces focuses on the technology issues and implementation issues and

the domain on the conceptual differences, which includes the semantics of the model

execution.

A.1 Introduction

The idea of one step refinement is to bridge two technical spaces by considering a source

and destination. In order to map two technical spaces, one needs to identify and match

their corresponding meta-model elements and supporting characteristics. This is not an

easy task, because the meta-models define a complex structure for which the behavior is

defined by its conceptual interpretation. Therefore each match on the technical spaces

must be evaluated by determine the semantical equivalence of the mapping. Still there

exist elements in the source language for which no direct mapping between the elements

can be identified, due to the syntactical differences between the languages. One step

refinement handles such cases by decomposing the source element, that can not directly

be mapped to the destination. This can be done by introducing it a new concept in the

destination language. The following definitions give a more formal representation of the

one step refinement approach.

96

Appendix A. One Step Refinement Approach Explained 97

A.2 Description

Assuming that the aim is to define a model transformation from a technical space mod-

eled via a meta-model M (EKF process) into a technical space modeled via a meta-model

N (BPEL) (see Figure A.1). At this example, emphasis is placed upon one-way mappings

from M to N, where the meta-model of the source M is assumed to be more expressive or

richer than the target meta-model N, in the sense that there is a considerable number of

meta-model elements of M, which cannot be directly mapped into meta-model elements

of N.

In some cases, it might be possible to map some of the model elements of M into N

as depicted by the ψ0 mapping. Now, consider a model element β1 of M that cannot

be directly mapped into any model elements of N. However, suppose that it is possible

to construct β1 via model elements of N := N0. This leads to one step refinement

M1 := N1 ⊕ α1 such that β1 can be mapped to α1. The process can be repeated until

an extension Nk (after k stages) is created, such that all model elements of M can be

mapped successfully and meaningfully into model elements of Nk.

As a result of the refinement, the technical spaces of Nk and M are now close enough

to be mapped completely, as depicted by Ψk. Now, if all step refinements from N to

M are decomposable, then it is possible to define model transformations Ψi from Mi to

Mi−1(1 ≤ i ≤ k) such that the mapping ϕ = ψ0 ◦ ψ1 ◦ ψ2...ψk−1, ψk maps M to N.

Step 1: Assume that a source meta-model M and a destination meta-model N and N

needs to be mapped to M , under the condition that the meta-model of N is more

expressive than the meta-model ofM . The total mapping can be defined by a finite

set of mappings k between M ψ N , which can be expressed by ∀(1≤i≤k)(M ψi N).

Step 2: A direct mapping α ψi β is a mapping where the a source element αi ∈ M

can be directly be mapped to a destination element βi ∈ N .

Step 3: If no direct mapping α ψi β then a One step refinement N ⊕ αi must be

performed by introducing αi to N . Then, we say that N⊕iα is decomposable, if

we can define a transformation pattern (in terms of a function) ⊕i from ϕ := M⊕iα

to N , without losing essential information as described by the α ∈ N that is being

mapped.

The difficulty of the meta-model transformation approach is clearly the third step, to

find the transformation pattern for the concepts, which can not directly be mapped onto

the destination concepts. For this step a more detailed study is required to find matching

Appendix A. One Step Refinement Approach Explained 98

Figure A.1: One Step Refinement Approach.

pattern that exist in both languages, for which a pattern can be defined as: ‘a family of

solution of a class of recurring design problems’. In our study we use an abstraction of

these concepts to be added as meta-model elements in the target langauge.

Appendix B

Domain transformation

The aim of the domain transformation is to determine for which language elements sup-

ported by the EKF process language a BPEL equivalent exists. This all the elements

from the meta-model of the EKF process language: (sub-)process, task, event types,

flows, decision-points, channel, role and data. Important is to determine the main dif-

ferences in how both language elements are threaded by the underlying implementation.

B.1 Process, Sub-process and Task

The process and sub-process in the EKF process language specify a hierarchical grouping

of correlated tasks sharing the same exception handling and trigger events (see Figure

B.1). In BPEL this can be achieved through the scope activity. Complexity issues

arise as the scope requires one entry and one exit point, which is clearly violated by

the process and sub-process elements of the EKF process language. A solutions to the

problem requires that the process and sub-process in the EKF process language must be

translated into respectively an abstract (sub-)process and abstract process element for

which the BPEL scope requirement must be satisfied (see Figure B.3). Exceptions are

translated into an event handler in the scope activity and the cancel sub-process event

are translated into a combination of an event and fault handler. Notice that the process

element in the EKF process language is translated into a BPEL process and sub-process

into the scope activity.

The tasks in the EKF process language can directly be mapped onto the invoke activity

in BPEL (see Figure B.2 and B.3). In the EKF the actual execution of the task directly

relates to the execution of a certain channel, for which a certain role is required. The

channel prescribes the operation, which must be performed in order to pursue a certain

99

Appendix B. Domain transformation 100

Figure B.1: Translate sub-process element.

goal of the task. The role and channel in the EKF relates to a partnerlink and porttype

of the BPEL invoke activity. The channel specifies the operation and input and output

variables can directly be mapped onto respectively the operation, input-variable and

output-variable of the BPEL invoke activity. A more detailed discussion on translating

the channel and role into BPEL is presented in section B.4.

Figure B.2: Translate task element.

B.2 Events

The EKF process language support start point events, intermediate events and end

point events. We continue to describe the mapping of each event type to the corre-

sponding BPEL equivalent. An overview of the meta-model mapping of the EKF events

is presented in figure B.6.

Appendix B. Domain transformation 101

Figure B.3: Meta-model mapping of process, sub-process and task.

The EKF process requires minimal one start event. The start of the process results in

the creation of an instance in the process and can directly be mapped onto the receive

activity in BPEL, for which the property createInstance is set to yes (see start event in

Figure B.4).

The process language allows multiple start events. Translating the multiple start events

into BPEL requires the use of a pick activity for which the occurrence of the first

onMessage or onAlarm results in the creation of the process instance. This also allows

that the process is activated through either the expiration of a timer, violation of a

rule or the reception of a message (see multiple start events in Figure B.4). The rule

events are not directly supported by BPEL, but could alternatively be implemented as

a message event, which is triggered by an external rule engine.

The trigger event is more or less an interrupt, which can occur only if a certain condition

is satisfied. After the occurrence of a trigger event and if the condition is satisfied

Appendix B. Domain transformation 102

Figure B.4: Translate start point events element.

then all instances in the (sub-)process are aborted and processing is continued from an

alternative point in the process (event forward). In case the condition is not satisfied,

no additional actions are preformed. In BPEL the trigger event can be implemented as

an event handler throwing a fault. The occurrence of the fault results in the abortion

of all the active instances within a scope activity, such that the processing is performed

by the corresponding catch of the fault handler (see trigger event in Figure B.4).

The intermediate message and timer events can directly be mapped onto respectively

the BPEL receive activity (see intermediate message event in Figure B.5) and wait

activity (see intermediate timer event in Figure B.5). The receive activity waits for the

Appendix B. Domain transformation 103

Figure B.5: Translate intermediate events element.

reception of a message from an external system or process and the wait activity waits

for the expiration of a timer constant. The intermediate rule events are not directly

supported by BPEL, such that integration of an external rule engine in BPEL is required

to accomplish rue based events.

The end event in the EKF process specifies the completion of the process, such that no

further actions can be performed. The end event can be mapped onto an invoke activity,

under the condition that this activity is the last activity in the process (see end event

in Figure B.6).

The termination event is directly supported by BPEL through the terminate activity

(see termination event in Figure B.6).

The NOP event is directly supported by the BPEL through the empty activity (see nop

event in Figure B.6).

The notification event interacts with external systems or processes by means of a system-

to-system interaction. In the EKF the system-to-system interaction is implemented in

terms of a channel in the connectivity layer. Translating the notification event into

BPEL implies that the channel is exposed as Web-services. Therefore the notification

Appendix B. Domain transformation 104

Figure B.6: Translate end point events element.

message can directly be mapped onto the invoke activity in BPEL (see notification event

in Figure B.6).

B.3 Flow and Decision-points

The flow and decision-points link the set of elements as presented in previous sections

to define the control flow in the process. For both the flow and decision-points no direct

mappings can be identified in BPEL. This is mainly caused by the fact the EKF and

BPEL process language belong to two fundamentally different classes of languages for

these elements. The EKF process language is based on a block-oriented language, while

the EKF process language is based on a graph-oriented language. The block-oriented

structure of BPEL is directly inherited by the nature of XML and limits the basic

activities to have one entry point and one exist point. As a result of this observation,

we define the flow and decision-points elements of the EKF process language to be

fundamentally different from the activity hierarchy adopted by BPEL.

B.4 Channel and Roles

In the EKF an channel describes the services required for the actual execution of the

task at a more fine-grained level of the process. BPEL uses a similar concept, which

A
p
p
en

d
ix

B
.
D

o
m

a
in

tra
n
sfo

rm
a
tio

n
105

Figure B.7: Meta-model mapping of events.

Appendix B. Domain transformation 106

is completely based around Web services. BPEL requires a WSDL definition, which

specifies the Web service operations used to reference to the partner activities (e.g.

invoke, receive and reply). In BPEL a partner link is used to glue the WSDL operations

and the BPEL activities through roles. A partner link in the BPEL references to the

partner link type in the WSDL definition, where the WSDL definition specifies the the

actual service details, such as role and port type. In the WSDL definition the details

of the Web service, includes the mappings between the operations and the partner link

types. The partner link type could be composed of multiple roles as BPEL allows both

a-synchronous and synchronous communications for the partner activities. In listing B.1

we give an example of the concept of partnerlinks, partnerlink types and port types in

the BPEL and underlying WSDL definitions.

1 <-- Example of partner links in the BPEL definition -->

2 <partnerLinks >

3 <partnerLink name=" ChannelName"

4 partnerLinkType =" WSDLpartnerLinkType "

5 myRole ="Role" partnerRole ="Role"/>

6 </partnerLinks >

7 <-- Example of partner link types in the WSDL definition -->

8 <partnerLinkType name=" Channel">

9 <role name=" RequestRole">

10 <portType name=" WSDLportType "/>

11 </role >

12 <role name=" ReplyRole">

13 <portType name=" WSDLportType "/>

14 </role >

15 </partnerLink >

16 <-- Example of operation in the WSDL definition -->

17 <portType name=" WSDLoperation ">

18 <operation name=" WSDLOperation ">

19 <input message =" WSDLmessage "/>

20 <output message =" WSDLmessage "/>

21 </operation >

22 </portType >

Listing B.1: Mapping EKF channels to BPEL partnerLinks

From these observation we can further discuss the transformation of the channel and

role into the partner links and port types of BPEL. The EKF channel can directly be

mapped to a WSDL definition in BPEL as each channel operation should be exposed

as a Web service. BPEL allows both synchronous an a-synchronous configurations for

Web-services, therefore it is required that the role in the EKF is specialized into a

consumer and provider role. The channel operation in the EKF directly corresponds to

a WSDL operation, for which the input and output variables are defined in terms of an

WSDL message. The WSDL message are defined in terms of XSD elements, for which

a more detailed description of transforming the data of EKF into XSD is presented in

the following section.

Appendix B. Domain transformation 107

From these observations we can provide an extensible meta-model presenting the direct

mappings between the EKF and BPEL + WSDL (see Figure B.8).

Figure B.8: Meta-model mapping of EKF and WSDL.

Appendix B. Domain transformation 108

B.5 Data

In the EKF the domain model only specifies the format and constraints of the data. In

BPEL the data is defined in terms of a WSDL messages, which is composed of XSD

elements. Closing the gap between the data perspective of the EKF and BPEL therefore

requires transformation of the EKF domain model into XSD.

The data types supported by the EKF domain language can directly be mapped to the

data types as supported by the XSD (e.g. string, integer, double, float, datetime, etc.).

The data types for which no direct mapping exist can be extended in the XSD type

library. In the EKF domain language two distinct entities can contain attributes with

the same name. The XSD enables this through the namespaces1, as an unique identifier

for an entity. An entity in the EKF domain models defines a complex structure (and

associated behavior) that can directly be mapped by default onto the complex type in

XSD. The attributes could optionally have a multiplicity indicated by [0..∗], which can

directly be mapped to the minOccurs and maxOccurs in XSD. In Listing B.2 we give

an example of the translation of the entity MortgageRequest into XSD.

1 <xs:ComplexType =" MortageRequest">

2 <xs:all >

3 <xs:element name=" debt_to_income_ratio" type=" double"

4 minOccurs ="0" maxOccurs ="1"/>

5 <xs:element name=" loan_to_value_ratio " type=" double"

6 minOccurs ="0" maxOccurs ="1"/>

7 <xs:element name=" loanamount" type=" double"

8 minOccurs ="0" maxOccurs ="1"/>

9 <xs:element name=" propertyvalue " type=" double"

10 minOccurs ="0" maxOccurs ="1"/>

11 <xs:element name=" monthlyincome " type=" double"

12 minOccurs ="0" maxOccurs ="1"/>

13 <xs:element name=" monthlydebt" type=" double"

14 minOccurs ="0" maxOccurs ="1"/>

15 <xs:element name=" insurancerate " type=" double"

16 minOccurs ="0" maxOccurs ="1"/>

17 <xs:element name=" taxrate" type=" double"

18 minOccurs ="0" maxOccurs ="1"/>

19 <xs:element name=" state" type=" string"

20 minOccurs ="0" maxOccurs ="1"/>

21 <xs:element name=" status" type=" string"

22 minOccurs ="0" maxOccurs ="1"/>

23 <xs:element name=" monthly_debt_list " type=" double"

24 minOccurs ="0" maxOccurs =" Unbound "/>

25 <xs:element name=" monthly_income_list " type=" double"

26 minOccurs ="0" maxOccurs =" Unbound "/>

27 </xs:all >

28 </xs:ComplexType >

Listing B.2: Example translation of the entity and attributes into XSD

1see: XML Namespaces primer W3C at http://www.w3.org/TR/REC-xml-names/

Appendix B. Domain transformation 109

In the EKF language the entities associate to other entities in the domain model. An

association specifies the role of the relation and the multiplicity of the source and target

entities. The association relation can be directly mapped onto a multiplicity relation of

XSD complex type (see Listing B.3).

1 <xs:ComplexType =" MortageRequest">

2 <xs:all >

3 <xs:element name=" ResultsIn">

4 <xs:complexType >

5 <xs:sequence >

6 <xs:element ref=" Offer"

7 minOccurs ="1" maxOccurs ="1"/>

8 </xs:sequence >

9 </xs:ComplexType >

10 </xs:element >

11 <xs:element name=" BasedOn">

12 <xs:complexType >

13 <xs:sequence >

14 <xs:element ref=" Product"

15 minOccurs ="1" maxOccurs ="1"/>

16 </xs:sequence >

17 </xs:ComplexType >

18 </xs:element >

19 </xs:all >

20 </xs:ComplexType >

Listing B.3: Example translation of the association relation into XSD

Generalization is a fundamental concept in the EKF domain model, for which the special-

ized entities, which inherit the attributes, operations and associations from its parent.

For the generalization the complex type definition is abstracted using XSD property

abstract and substitution group (see Listing B.4).

1

2 <!-- Generic product from case study -->

3 <xs:element =" Product" type=" Product" abstract ="true"/>

4 <xs:ComplexType name=" Product" abstract ="true">

5 <xs:sequence >

6 <xs:element name="name" type=" string"

7 minOccurs ="1" maxOccurs ="1"/>

8 <xs:element name=" max_debt_to_income_ratio " type=" double"

9 minOccurs ="1" maxOccurs ="1"/>

10 <xs:element name=" max_loan_to_value_ratio " type=" double"

11 minOccurs ="1" maxOccurs ="1"/>

12 </xs:sequence >

13 </xs:ComplexType >

14 <!--Product A from case study -->

15 <xs:element =" ProductA" type=" ProductA"

16 subsitutionoGroup =" Product "/>

17 <xs:ComplexType name=" ProductA">

18 <xs:sequence >

19 <xs:complexContent >

20 <xs:extension base=" Product">

Appendix B. Domain transformation 110

21 <xs:sequence >

22 <xs:element name=" paymentform"

23 minOccus ="1" maxOccurs ="1"/>

24 </xs:sequence >

25 </xs:extension >

26 </xs:sequence >

27 </xs:ComplexType >

28 <!-- Product B from case study -->

29 <xs:element =" ProductB" type=" ProductA"

30 subsitutionoGroup =" Product "/>

31 <xs:ComplexType name=" ProductB">

32 <xs:sequence >

33 <xs:complexContent >

34 <xs:extension base=" Product">

35 <xs:sequence >

36 <xs:element name=" coverageform"

37 minOccus ="1" maxOccurs ="1"/>

38 </xs:sequence >

39 </xs:extension >

40 </xs:complexContent >

41 </xs:sequence >

42 </xs:ComplexType >

43 <!--Product C from case study -->

44 <xs:element =" ProductC" type=" ProductC"

45 subsitutionoGroup =" Product "/>

46 <xs:ComplexType name=" ProductC">

47 <xs:sequence >

48 <xs:complexContent >

49 <xs:extension base=" Product">

50 <xs:sequence >

51 <xs:element name=" insuranceform "

52 minOccus ="1" maxOccurs ="1"/>

53 </xs:sequence >

54 </xs:extension >

55 </xs:complexContent >

56 </xs:sequence >

57 </xs:ComplexType >

Listing B.4: Example translation of the generalization into XSD

In the EKF the enumeration refers to an element that specifies a bounded list of a certain

data type. The XSD supports an enumeration of attributes in through the simple type

(see Listing B.5).

1 <xs:simpleType name=" propertyTypes ">

2 <xs:restriction base="xs:string">

3 <xs:enumeration value ="1 unit property"/>

4 <xs:enumeration value ="2 unit property"/>

5 <xs:enumeration value ="2 unit property"/>

6 <xs:enumeration value ="4 unit property"/>

7 </xs:restriction >

8 </xs:simpleType >

Listing B.5: Example translation of the enumeration into XSD

Appendix B. Domain transformation 111

The EKF domain model allows integrity rules to guard the consistency of the domain

model through a set of predefined operations (e.g. Length, RegulairExpression and

Between). The integrity rules of the EKF domain model can directly be mapped onto the

restrictions in XSD (e.g. Length, maxLength, minLength, maxExclusive, minExclusive,

Pattern, etc.) (see Listing B.6).

1 <!-- Example: Length(customer.name) < 20 -->

2 <xs:element name="name">

3 <xs:simpleType >

4 <xs:restriction base="xs:string">

5 <xs:maxLength value ="20"/ >

6 </xs:restriction >

7 </xs:simpleType >

8 </xs:element >

9 <!-- Example: ReguarExpression(Z i p c o d e ,Customer.zipcode)=TRUE -->

10 <xs:element name=" zipcode">

11 <xs:simpleType >

12 <xs:restriction base="xs:string">

13 <xs:pattern value ="[0 -9]{4}[A-Z]{2}"/ >

14 </xs:restriction >

15 </xs:simpleType >

16 </xs:element >

17 <!-- Example: Between(Offer.riskrating ,0 ,1000)= TRUE -->

18 <xs:element name=" riskrating">

19 <xs:simpleType >

20 <xs:restriction base="xs:integer">

21 <xs:minInclusive value ="0"/>

22 <xs:maxInclusive value ="1000"/ >

23 </xs:restriction >

24 </xs:simpleType >

25 </xs:element >

Listing B.6: Example translation of the integrity rules into XSD

The EKF process references to the domain data through a domain model instance. In

BPEL the references to the case data is done through a correlation set, which specifies

unique keys used to identify the case data (see Listing B.7).

1 <correlationSets >

2 <correlationSet name=" DataInstance" properties =" DomainModelInstance "/>

3 </correlationSets >

Listing B.7: Mapping EKF data instance to correlation set in BPEL

In extend to observation above the attribute values of the EKF domain should be exposed

as and XML following the definition of the XSD. In the BPEL definition the message

(x) are assigned to BPEL variables (y) or the other way around (see Listing B.8). In

extend to this approach, XSLT can be used to define transformations between one XSD

into another XSD, allowing the transformation from one XML definition into another

XML defintions. However, XSLT is out of the scope of this thesis.

Appendix B. Domain transformation 112

1 <assing >

2 <copy >

3 <from >x</from ><to >y</to >

4 </copy >

5 </assign >

Listing B.8: Mapping EKF data instance to correlation set in BPEL

From these observations we can provide a meta-model presenting the mappings between

the EKF domain and XSD (see Figure B.9).

A
p
p
en

d
ix

B
.
D

o
m

a
in

tra
n
sfo

rm
a
tio

n
113

Figure B.9: Meta-model domain transformation of EKF and XSD.

Appendix C

Technical Spaces transformation

The aim of the technical spaces transformation is to determine for which process mod-

eling concepts supported by the EKF, a solution can be found in terms of BPEL. We

follow the classification of the service interaction and workflow patterns as intermediate

concepts for the translation of the EKF process language concepts into BPEL. Enabling

comparison of the semantics of the EKF process language we express the formal seman-

tics of each concept in CPN, toward a first attempt to formalize the semantics of the

EKF process language.

C.1 Interaction Patterns

The interaction patterns specifies a number of concepts that describe the run-time mes-

sage passing. Specifically, a set of service interaction patters supported by the EKF

connectivity layer play an important role in the process. The following interaction

patterns are considered: Request/Reply (CP1), One way (CP2), Synchronous Polling

(CP3), Message Passing (CP4) and Publish/Subscribe (CP5).

Request/Reply pattern (CP1)

The request/reply is a form of synchronous communication, where a sender makes a

request to a receiver and waits for a reply before continuing processing (see Figure C.1).

The reply may influence further processing on the sender side.

Solution of (CP1) in EKF

In the EKF this communication pattern is modeled as presented in figure C.2, where an

event E1 triggers the activation of a task A and with a notification event E2 marks its

completion.

114

Appendix C. Technical Spaces transformation 115

Figure C.1: CPN solution for CP1.

Figure C.2: EKF solution for CP1.

Solution of (CP1) in BPEL

In BPEL the request/reply is modeled by the invoke activity (see Listing C.1). Further-

more, the invoke activity must specify two different variable: one input-variable, where

the outgoing data from the process is stored (or input data for the communication);

and one output-variable, where the incoming data is stored (or the output data for the

communication).

1 <sequence >

2 <invoke operation ="A" inputvariable =" Request" outputvariable =" Result"/>

3 </sequence >

Listing C.1: BPEL code for CP1

One way pattern (CP2)

The one way pattern is a form of synchronous communication where a sender makes a

request to a receiver and waits for a reply that acknowledges the receipt of the request.

Since the receiver only acknowledge the receipt, the reply only delays further processing

on the sender side.

Solution of (CP2) in EKF

In the EKF this pattern can be modeled as presented in figure C.4, where the receiver

waits for the reception of an event E1, which afterward directly result in sending a

notification message E2.

Solution of (CP2) in BPEL

The one way pattern differs from the request/reply implementation in BPEL (see Listing

Appendix C. Technical Spaces transformation 116

Figure C.3: CPN solution for CP2.

Figure C.4: EKF solution for CP2.

C.2) by sending a reply immediately after the reception of the message (i.e. no processing

is performed between the receipt and reply activities).

1 <sequence >

2 <receive operation ="E1"/>

3 <reply operation ="E2"/>

4 </sequence >

5 </scope >

Listing C.2: BPEL code for CP2

Synchronous polling pattern (CP3)

This communication pattern is a form of synchronous communication, where a sender

communicates a request to a receiver, but instead of blocking, continues processing. At

intervals the sender checks to see if a reply has been send. When it detects a reply it

directly stops any further polling for a reply.

Solution of (CP3) in EKF

This pattern can not be modeled with the EKF process language. The problem is caused

by the lack of support for a synchronization point in the EKF process language, which

is required to define at what point the process polling result should be finally accepted.

Solution of (CP3) in BPEL

In BPEL this pattern is captured through the utilization of two parallel flows: one for

the receipt of the expected response, and one for the sequence of activities not depending

Appendix C. Technical Spaces transformation 117

Figure C.5: CPN solution for CP3.

on the this response (see Listing C.3). The initialization of the communication patterns

is done beforehand through an invoke action. To be able to proceed, the invoke action

is specified to send data and not wait for a reply. This is indicated by the use of an

input-variable and by omitting the specification of an output-variable.

1 <sequence >

2 <invoke operation ="E1" ... inputvariable =" Request "/>

3 <flow >

4 <sequence > ... </sequence >

5 <receive operation ="E1" ... outputvariable =" Result"/>

6 </flow >

7 <sequence >

Listing C.3: BPEL code for CP3

Message passing pattern (CP4)

Message passing is a form of a-synchronous communication where a request is send from

a sender to a receiver. When the sender has made the request, it essentially forgets it

has been send and continues processing (see Figure C.6).

Figure C.6: CPN solution for CP4.

Solution of (CP4) pattern in EKF

The message passing is directly supported by the process language EKF through the

notification message as presented in figure C.7. The notification message triggers an

external system or process, without any requirement of synchronization.

Appendix C. Technical Spaces transformation 118

Figure C.7: EKF solution for CP4.

Solution of (CP4) in BPEL

This solution is has already been demonstrated as part of the solution of CP3, namely

the invoke activity with only an input-variable (see Listing C.3).

C.2 Basic control flow patterns

This class of patterns captures the elementary aspects of the process control. The

basic control flow patterns include the sequence pattern (WP1), parallel split (WP2),

synchronization merge (WP3), exclusive choice (WP4) and simple merge (WP5).

Sequence pattern (WP1)

The sequence pattern is defined as being an ordered series of tasks, for which one task

is started after the completion of a previous task. The semantics of the messages and

timers in a sequence result in respectively waiting for the reception of the message or

the expiration of a timer.

Figure C.8: CPN solution for WP1.

Solution of (WP1) in EKF

In the EKF process language a sequence is modeled as a series of preceding tasks or

intermediate events with one incoming and one outgoing (unconditional) flow (see Figure

C.9). The flow constraints the order in which the task need to be executed, or events

must be processed.

Appendix C. Technical Spaces transformation 119

Figure C.9: EKF solution for WP1.

Solution of WP1 in BPEL

In BPEL a sequence pattern is implemented as a sequence activity containing one or

more invoke, receive and wait activities (see Listing C.4).

1 <sequence >

2 <invoke operation ="A"/>

3 <receive operation ="E1"/>

4 <invoke operation ="B"/>

5 <wait name="E2"/>

6 <invoke operation ="C"/>

7 </sequence >

Listing C.4: BPEL solution for WP1

Parallel split (WP2)

The parallel split pattern is defined as the divergence of a branch into two or more

parallel branches each are performed concurrently.

Figure C.10: CPN solution for WP2.

Solution of WP2 in EKF

In the EKF process language this can be modeled as an OR-split-decision-point with

multiple unconditional outgoing flows (see Figure C.11). The unconditional flow specifies

that all outgoing flows are activated. The OR-split-decision-point allows multiple tasks,

notification messages and occurrence of intermediate events, to be controlled in parallel.

Notice that notification messages does not contain a post-condition, such that after the

completion of the interaction, the branches with a notification message are considered

to be completed.

Appendix C. Technical Spaces transformation 120

Figure C.11: EKF solution for WP2.

Solution of WP2 in EKF

The parallel split is directly supported by the BPEL flow activity, for which all activities

contained by the flow are executed in parallel (see Listing C.5). Particularly, the parallel

split does not require additional join-conditions or links.

1 <flow >

2 <invoke operation ="E1"/>

3 <invoke operation ="A"/>

4 <invoke operation ="B"/>

5 </flow >

Listing C.5: BPEL code for WP2

Synchronization merge (WP3)

The synchronization merge pattern is defined as the converge of two or more branches

into a single subsequent branch, such that the thread of control is passed to the subse-

quent branch when all input branches have been enabled. The synchronization merge is

the result of a parallel split earlier in the process and waits for the completion of all the

branches in order to proceed processing (see Figure C.12).

Figure C.12: CPN solution for WP3.

Solution of WP3 in EKF

This pattern is not supported by the EKF process engine, as the EKF process engine

does not allow the synchronization of multiple parallel branches. This is mainly caused

by an implementation limitation of the EKF process engine.

Appendix C. Technical Spaces transformation 121

Solution of WP3 in BPEL

In BPEL the synchronization merge is directly supported though the flow activity, for

which each contained task waits for the completion of all other tasks nested in the flow

as presented in listing C.6.

1 <flow >

2 <invoke operation ="A"/>

3 <invoke operation ="B"/>

4 </flow >

Listing C.6: BPEL code for WP3

Exclusive choice pattern (WP4)

The exclusive choice pattern is defined as being a location in the process where the flow

is split into two or more exclusive alternative paths. The branches are exclusive such

that only one of the alternative paths may be chosen to continue the process (see Figure

C.13).

Figure C.13: CPN solution for WP4.

Solution of WP4 in EKF

Since additional control is needed to create an exclusive choice pattern, the EKF pro-

cess language uses multiple conditional outgoing flows from either a task or a conditional

XOR-split-decision-point. The conditional flow is governed by a condition expression,

which will be preceded only if its evaluates to true. This implies that after the com-

pletion of each task the expressions are evaluated and only the first flow for which the

condition expression evaluates to true is preceded, such that all other paths are dis-

carded. Two approaches exist in the EKF process language to model this pattern: in

the first alternative the exclusive choice is performed directly after the completion of

a task (see Figure C.14(a)) and the second alternative the exclusive choice is explicitly

modeled an an XOR-split-decision-point (see Figure C.14(b)).

Solution of WP4 in BPEL

In BPEL the exclusive choice is modeled as a switch activity, where a condition defines

the preceding of the process based on the evaluation of exclusive conditions. The first

Appendix C. Technical Spaces transformation 122

(a) Exclusive Choice (alternative a) (b) Exclusive Choice (alternative b)

Figure C.14: EKF solution for WP4.

case element in the switch activity from which the condition evaluates to true will be

considered as the preceding of the process. An otherwise element is required in the

switch activity, specifies the alternative path, which must be available in case case none

of the case conditions are satisfied. In BPEL the otherwise is requires to avoid deadlocks.

The BPEL translation for the alternative (a and b) is presented in listing C.7. Notice

that the main difference between both approaches (a) and (b) is that (a) requires that

a task is performed before exclusive choice. Line 1,2 and 13 in Listing C.7 are therefore

only required for alternative (a).

1 <sequence >

2 <invoke operation ="A"/>

3 <switch >

4 <case condition ="C1">

5 <invoke operation ="B"/>

6 ...

7 </case >

8 <otherwise >

9 <invoke operation ="C"/>

10 ...

11 </otherwise >

12 </switch >

13 </sequence >

Listing C.7: BPEL code for WP4

Simple Merge pattern (WP5)

The simple merge pattern is defined as being a location in the process where a set of

exclusive paths are joined into a single path (see Figure C.15).

Solution of WP5 in EKF

The EKF process language supports two approaches for modeling the simple merge

pattern (see Figure C.16(a) and C.16(b)). In alternative (a) two or more exclusive

sequence flows are merged directly on a task, resulting in the immediate start of a task

in case one of the branches become active. Alternative (b) allows the merge of two or

Appendix C. Technical Spaces transformation 123

Figure C.15: CPN solution for WP5.

more branches one an XOR-merge-decision-point, for which the outgoing flow specifies

a single point from which the process continues.

(a) Simple Merge (alternative a) (b) Simple Merge (alternative b)

Figure C.16: EKF solution for WP5.

A structured exclusive choice is composed of a single exclusive choice for which all

branches are merged into a single simple merge, such that the process concept is com-

posed of exactly one entry point and one exist point (see Figure C.17(a) and C.17(b)).

(a) Structured Exclusive Choice (Alternative a) (b) Structured Exclusive Choice (Alterna-
tive b)

Figure C.17: EKF solution for WP5.

Solution of WP5 in BPEL

The structured exclusive choice can directly be mapped onto the BPEL switch activity

(see Listing C.8). Notice that the lines 1, 2, 11 and 12 are only required when translating

the alternative (a). The more complex combination of exclusive choice(s) and simple

merge(s) are defined to be part of a more complex process structure namely the arbitrary

cycle (WP10) pattern.

Appendix C. Technical Spaces transformation 124

1 <sequence >

2 <invoke operation ="A"/>

3 <switch >

4 <case condition ="C1">

5 <invoke operation ="B"/>

6 </case >

7 <otherwise >

8 <invoke operation ="C"/>

9 </otherwise >

10 </switch >

11 <invoke operation ="D"/>

12 </sequence >

Listing C.8: BPEL code for WP5

C.3 Advanced branching and synchronization patterns

The advanced branching and synchronization patterns present the characteristics of the

more complex branching and merging concepts, supported by the EKF process. The

following patterns are considered: Multi-choice (WP6), Synchronizing Merge (WP7),

Multi-merge (WP8) and Structured Discriminator (WP9).

Multi-choice pattern (WP6)

The intent of the multi-choice pattern is to choose one or more branches, in which each

branch is taken only if it satisfies a particular condition. A multi-choice is a composition

of parallel-split and exclusive-choice patterns, such that one or more branches are enabled

after the evaluation of a condition (see Figure C.18). The multi-choice only specifies how

split of the branches is accomplished, not how they are eventually joined.

Figure C.18: CPN solution for WP6.

Solution of WP6 in EKF

In the EKF process language the multi-choice is modeled as an OR-split-decision-point,

which allows the activation of multiple conditional or unconditional flows (see Figure

Appendix C. Technical Spaces transformation 125

C.19). Notice that the conditional flows does not satisfy the property to be exclusive,

such that a deadlock can occur when none of the conditions on the branches are satisfied.

In the EKF the conditions must satisfy the property that minimal one branch is preceded,

either directly through an unconditional flow or indirectly through the composition of

the conditions.

Figure C.19: EKF solution for WP6.

Solution of WP6 in BPEL

In BPEL the multi-choice can be implemented as a flow consisting of join-conditions

(see Listing C.9). The flow activity waits for each contained activity to complete (i.e.

joins them) before exciting. The BPEL flow mechanism offers several features to model

the situation where one activity cannot start until one or more activities on which they

depend are completed. Each conditional branch of the multi-choice is implemented as a

join-condition, guarding the activation of that specific branch. Notice that unconditional

flow of the EKF process language does not require such a join-condition, because they

are directly activated. The flow activity requires the property suppressJoinFailure set

to yes support the death path elimination semantics1 preventing deadlocks.

1 <flow supressJoinFailure ="yes">

2 <invoke operation ="E1" joinCondition ="C1"/>

3 <invoke operation ="A"/>

4 <invoke operation ="B" joinCondition ="C2"/>

5 <flow >

Listing C.9: BPEL code for WP6

Synchronizing merge (WP7)

The structured synchronizing merges specifies that two or more branches (which diverged

earlier in the process at a uniquely identifiable point) into a single subsequent branch

such that the incoming tread of control is passed to the subsequent branch when each

active incoming branch has been enabled (see Figure C.20).

1Defines that when a transition condition evaluates to false, the link to the target is discarded.

Appendix C. Technical Spaces transformation 126

Figure C.20: CPN solution for WP7.

Solution of WP7 in EKF

The EKF process language does not allow the synchronization of multiple parallel

branches. This pattern can therefore not be modeled with the EKF process language.

Solution of WP7 in BPEL

In BPEL this pattern is directly supported by the flow activity (see Listing C.10). The

semantics of the flow requires that all including activities able to execute need to be

fulfilled in order to complete the flow. Understanding flow in BPEL requires insight into

the order in which the activities are executed, and whether a particular branch is even

performed at al. Specifically, a flow can defines a set of links, each originating from a

source activity in the flow and termination at a target activity in the flow. The target

links must be satisfied before the subsequent activity can be activated. The links can

even be guarded by a transition-condition (optional), such that the transition-condition

must be satisfied in order to activate the link between the activities.

1 <flow suppressJoinFailure ="yes">

2 <links >

3 <link name="AB">

4 </links >

5 <invoke operation ="A" joinCondition ="C1">

6 <source linkName ="AB" transitionCondition ="..." >

7 </invoke >

8 <invoke operation ="B" joinCondition ="C2"/>

9 <target linkName ="AB"/>

10 </invoke >

11 <invoke operation ="C" joinCondition ="C2"/>

12 </flow >

Listing C.10: BPEL code for WP7

Multi-merge (WP8)

The multi-merge specifies the converge of two or more branches into a single subse-

quent branch such that each enabling branch results in an instance being passed to the

Appendix C. Technical Spaces transformation 127

subsequent branch.

Figure C.21: CPN solution for WP8.

Solution of WP8 in EKF

This pattern is not supported by the EKF process, although modeling this pattern in

the EKF looks quite straight forward (e.g. merging multiple parallel branches through

an XOR-merge-decision-point). The lack of support of this pattern is mainly caused by

the limitation of the EKF process engine, as it does not allow the creation of multiple

instances of tasks in the sub-process.

Solution of WP8 in BPEL

This pattern is not directly supported by the structured activities in BPEL, because it is

not allow two activate threads following the same path without creating new instances

of another process. Alternatively, this pattern can be implemented with a flow for

which multiple instances are created (see Listing C.11) through an external process (see

Listing C.12). Some complexity issues arise as this solution requires an external process

to accomplish the sematnics of WP8.

1 <flow suppressJoinFailure ="yes">

2 <links >

3 <link name="AX">

4 <link name="BX">

5 <link name="CX">

6 </links >

7 <invoke operation ="A" joinCondition ="C1">

8 <source linkName ="AX">

9 </invoke >

10 <invoke operation ="B">

11 <source linkName ="BX">

12 </invoke >

13 <invoke operation ="C" joinCondition ="C2">

14 <source linkName ="CX">

15 </invoke >

16 <invoke operation =" Start(X)">

17 <target linkName ="AX"/>

18 </invoke >

19 <invoke operation =" Start(X)">

20 <target linkName ="BX"/>

Appendix C. Technical Spaces transformation 128

21 </invoke >

22 <invoke operation =" Start(X)">

23 <target linkName ="CX"/>

24 </invoke >

25 </flow >

Listing C.11: BPEL code for WP8 (part I)

1 <process >

2 <receive operation =" Start(X)" createInstance ="yes">

3 <invoke operation ="D"/>

4 ...

5 </process >

Listing C.12: BPEL code for WP8 (part II)

Structured Discriminator (WP9)

The structured discriminator specifies the converge of two or more branches into a single

subsequence branch following a corresponding divergence earlier in the process model,

such that the thread of control is passed to the subsequent branches when the first

incoming branch has been enabled. Subsequent elements of incoming branches do not

result in the thread of control being passed, but they continue processing until they are

completed (see Figure C.22).

Figure C.22: CPN solution for WP9.

Solution of WP9 in EKF

This pattern is modeled as an OR-split-decision point which activates the execution

of multiple parallel tasks (see Figure C.23). The first task which completes triggers

the continuation of the process, while the parallel running tasks continue processing

until they are completed. This behavior is accomplished through a condition, which is

assigned to false after the completion of the first task. Notice that this solution differs

from the formal semantics of WP9 as this pattern is only supported for tasks contained

by sub-processes, caused by the limitation of the EKF process engine.

Solution of WP9 in BPEL

This pattern is not supported by a flow activity construct in BPEL. The reason for not

Appendix C. Technical Spaces transformation 129

Figure C.23: EKF solution for WP9.

being able to use the link construct in combination with a join-condition, is caused by

the fact that a join-condition is evaluated first, when the status of all incoming links are

determines and not, as required in this case, when the first positive link is determined.

C.4 Iteration patterns

The interaction patterns deal with the repetitive behavior in the process, the follow-

ing iteration patterns are considered: Arbitrary cycles (WP10) and Structured loops

(WP21).

Arbitrary cycle (WP10)

The arbitrary cycle pattern is a mechanism for allowing a certain segment of the process

to be repeated. The arbitrary cycle pattern repeats a task or set of tasks by cycling

back to it in the process (see Figure C.24).

Solution of WP10 in EKF

Figure C.25 gives an example of an arbitrary pattern modeled in the EKF process

language (see Figure C.25). Notice that the arbitrary cycle is composed of a combination

of: exclusive choice, deferred choice and simple merge patterns. The arbitrary cycle can

be identified on its property to allow revisiting certain points in the process multiple

times.

Solution of WP10 in BPEL

The arbitrary cycle is not directly supported by the basic activities in BPEL. Although

the while activity allows structured loops (WP21), it is not possible to jump back to

arbitrary parts in the process (i.e. only loops with one entry point and one exit point

are allowed). Alternatively, one can implement the arbitrary cycle to take advantage of

the BPEL event handler. The arbitrary cycle is translated into a scope activity which is

Appendix C. Technical Spaces transformation 130

Figure C.24: CPN solution for WP10.

Figure C.25: EKF solution for WP10.

triggered by an event handler (Start(A) in our example) and continues waiting until it

receives an end event which is the event (End(D) in our example). This implementation

allows that each point in the process which resembles to the event handler can be

revisited. In this way the event handler is used as a return point which is called through

the invoke activity (see Listing C.13). This solution results in several complexity issues as

it is based on the abuse of the event handler. These complexity issues directly arise from

the technical limitations of the event handler in BPEL. The event handler is exposed as

a Web service as part of the process to which it belongs. BPEL does not allow that Web

services that belong to a process are invoked from the process itself. This limitation

requires that an external process is required to process to create stubs that control the

event handlers of the arbitrary cycles.

1 <scope name="WP10">

2 <eventHandler >

Appendix C. Technical Spaces transformation 131

3 <!-- Revisit of activity A -->

4 <OnMessage operation =" Start(A)">

5 <sequence >

6 <invoke operation ="A"/>

7 <wait name="E1"/>

8 <invoke operation ="Start(B)"/>

9 </sequence >

10 </OnMessage >

11 <!-- Revisit of activity B -->

12 <OnMessage operation =" Start(B)"/>

13 <sequence >

14 <invoke operation ="B"/>

15 <switch >

16 <case condition ="C1 and C2">

17 <invoke operation =" Start(C)"/>

18 </case >

19 <case condition ="C1 and C2">

20 <sequence >

21 <receive operation ="E4"/>

22 <invoke operation =" Start(D)"/>

23 </sequence >

24 </case >

25 <otherwise >

26 <invoke operation =" Start(D)"/>

27 </otherwise >

28 </switch >

29 </sequence >

30 </OnMessage >

31 <!-- Revisit of activity C -->

32 <OnMessage operation ="Start(C)">

33 <sequence >

34 <invoke operation ="C"/>

35 <switch >

36 <case condition ="C3">

37 <invoke operation =" Start(B)"/>

38 </case >

39 <otherwise >

40 <pick >

41 <onMessage operation ="E2">

42 <invoke operation =" Start(A)"/>

43 </onMessage >

44 <onAlarm name="E3">

45 <invoke operation =" Start(D)"/>

46 </onAlarm >

47 </pick >

48 </otherwise >

49 </switch >

50 </sequence >

51 </OnMessage >

52 <!-- Revisit of activity A -->

53 <OnMessage operation ="Start(D)">

54 <sequence >

55 <invoke operation ="D"/>

56 <invoke operation ="End(D)"/>

57 </sequence >

Appendix C. Technical Spaces transformation 132

58 </OnMessage >

59 </eventHandler >

60 <!-- Start point for the scope -->

61 <sequence >

62 <invoke operation =" Start(A)"/>

63 <receive operation ="End(D)"/>

64 </sequence >

65 </scope >

Listing C.13: BPEL code for WP10

Structured Loops (WP21)

The structured loops allows performing tasks or sub-processes repeatedly until either an

associated pre-condition (at the beginning of of the loop) or post-condition (at the end

of the loop) is satisfied. Three types of structured loops can be identified: repeat until,

while and while + repeat loop. The repeat until loop requires a task to be performed

minimal once and is repeated until a certain condition has been satisfied (see Figure

C.26(a)). This is similar to the while loop, but different from the repeat as the task

must be performed minimal once (see Figure C.26(b)). The while + repeat loop is a

combination of both the repeat until and while loop, composed of two tasks. Take for

example the tasks A and B of figure C.26(c). Task A is performed minimal once, followed

by performing a sequence of the task A and B until a certain post-condition is satisfied.

Solution of WP21 in EKF

The three structured loop types are directly supported by the EKF process language

(see Figure C.27(a), C.27(b) and C.27(c)).

Solution of WP21 in BPEL

The various structured loops are also directly supported by the basic activities of BPEL

(see Listing C.14, C.15 and C.16). Notice that the repeat until and repeat + while loop

require multiple invocations of the same task.

1 <sequence >

2 <invoke operation ="A"/>

3 <while condition ="C1">

4 <invoke operation ="A"/>

5 </while >

6 </sequence >

Listing C.14: BPEL code for WP21(c) (Repeat Until)

1 <while condition ="C1">

2 <invoke operation ="A"/>

3 </while >

Listing C.15: BPEL code for WP21(b) (While)

Appendix C. Technical Spaces transformation 133

(a) Repeat Until

(b) While

(c) Repeat + While

Figure C.26: CPN solutions for WP21.

(a) Repeat Until (b) While

(c) Repeat + While

Figure C.27: EKF solutions for WP21.

Appendix C. Technical Spaces transformation 134

1 <sequence >

2 <invoke operation ="A"/>

3 <while condition ="C1">

4 <sequence >

5 <invoke operation ="A"/>

6 <invoke operation ="B"/>

7 </sequence >

8 </while >

9 </sequence >

Listing C.16: BPEL code for WP21(c) (Repeat + While)

C.5 Multiple Instance Patterns

The multiple instance patterns describe the situations where there are multiple threads of

control active in the process model, which relate to the same task (hence share the same

implementation definition). We consider the following multiple instance patterns: Mul-

tiple Instances without Synchronization (WP12), Multiple Instances with Priori Design-

Time Knowledge (WP13) and Multiple Instances with a Priori Run-Time Knowledge

(WP14).

MI without synchronization (WP12)

The intent of the multiple instance without synchronization pattern to perform multiple

concurrent instances of a task, but let each run on its own with no overall synchronization

(see Figure C.28). The instance might be created consecutively, but they will be able to

run in parallel, which distinguishes this pattern from the arbitrary cycle pattern (WP10).

Figure C.28: CPN solution for WP12.

Solution of WP12 in EKF

With the EKF process language this pattern can be modeled as two processes for which

Appendix C. Technical Spaces transformation 135

the first process (see Figure C.29(a)), contains a while loop, which creates multiple

instance of another process (see Figure C.29(b)).

(a) Part I (b) Part II

Figure C.29: EKF solutions for WP12.

Solution of WP12 in BPEL

In BPEL this pattern can be created by using the invoke activity embedded in a while

loop (see listing C.17 and C.18). The creation of a new process instance is accomplished

at line 4 of listing C.17, triggering the process of listing C.18.

1 <sequence >

2 <invoke operation ="A"/>

3 <while condition ="C1"/>

4 <invoke operation =" Start(X)"/>

5 </while >

6 <invoke operation ="B"/>

7 </sequence >

Listing C.17: BPEL code for WP12 (Part I)

1 <process >

2 <receive operation =" Start(X)" createInstance ="yes">

3 <invoke operation ="B">

4 ...

5 </process >

Listing C.18: BPEL code for WP12 (Part II)

MI with a Priori Design-Time Knowledge (WP13)

The intent of the multiple instances with a priori design-time knowledge pattern is to

perform i multiple concurrent instances of a task, where i is a constant at run-time. In

addition, it joins these instances before continuing with a remainder of the process (see

Figure C.30).

Solution of WP13 in EKF

This pattern is not supported by the EKF process language, as it does not allow multiple

instances of a task in the process. Alternatively, the number of task could be replicated

as many times as needed, but this is not allowed as the EKF process language does not

allow the synchronization of parallel branches.

Appendix C. Technical Spaces transformation 136

Figure C.30: CPN solution for WP13.

Solution of WP13 in BPEL

If the number of instances to be synchronized at design-time, a simple solution is to

replicate the activity as many times as it needs to be instantiated, and run the replicas in

parallel by placing them in a flow activity (see Listing C.19). Different implementations

of BPEL have introduced language extensions to directly support this pattern (e.g.

flowN activity of Oracle BPEL).

1 <!-- Create 3 instances -->

2 <flow >

3 <invoke operation ="C">

4 <invoke operation ="C">

5 <invoke operation ="C">

6 </flow >

Listing C.19: BPEL code for WP13

MI with a Priori Run-Time Knowledge (WP14)

The intent of the multiple instances with a priori run-time knowledge is to perform

i multiple concurrent instances of a task, where the value of i is known at run-time

before the Multiple Instance loop is started. In addition, it joins these instances before

continuing with the remainder of the process (see Figure C.31).

Solution of WP14 in EKF

This pattern is not supported by the EKF process language, which is mainly caused

by the limitation of the EKF process langauge to allow multiple instance of task or

sub-process in the process.

Solution of WP14 in BPEL

The BPEL solution becomes more complex if the number of instances to be created and

synchronized is only known at run-time (WP14). A solution in BPEL for this pattern

is presented in listing C.20, where a pick activity within a while loop is used, enabling

Appendix C. Technical Spaces transformation 137

Figure C.31: CPN solution for WP14.

repetitive processing triggered by three different messages: one indication that a new

instance is required; one indicating the completion of a previously initiated instance; and

one indication that no more instances need to be created. Depending on the received

message results eitehr in the invocation of and activity (iteration of the loop) or directly

results in the completion of the loop. However, this is only a work-around solution since

the logic of this pattern is not directly captured by a BPEL construct. Instead the logic

is encoded by means of a loop and a counter, which is incremented each time that a new

instance is created, and is decremented each time that an instance is completed. The

loop is exited when the value of the counter is zero and no more instances need to be

created. We therefore consider this solution to be a partial solution of WP14.

1 <sequence >

2 <assign ><from >true </from ><to >moreInstances </to ></from >

3 <assign ><from >0</from ><to >i</to ></from >

4 <while condition =" moreInstances OR i>0">

5 <pick >

6 <onMessage operation =" StartInstance (A)">

7 <invoke operation ="A"/>

8 <assign ><from >i+1</from ><to >i</to ></assign >

9 </onMessage >

10 <onMessage operation =" EndInstance(A)">

11

12 </onMessage >

13 <onMessage NoMoreInstances >

14 <assign ><from >false </from ><to >moreInstnces </to ></assign >

15 <onMessage >

16 </pick >

17 </while >

18 </sequence >

Listing C.20: BPEL code for WP14

Appendix C. Technical Spaces transformation 138

C.6 State based patterns

The state based patterns reflect the situations for which the solutions are most easily

accomplished through the notion of a state. In this context, we consider the state of the

process instance to include the broad collection of data associated with current execution

including the state of various tasks, as well as process relevant working data such as the

case data elements. The following state based patterns are considered: Deferred Choice

(WP16), Interleaved Parallel Routing (WP17) and Milestone (WP18).

Deferred Choice pattern (WP16)

The deferred choice represents a type of choice, similar to the exclusive choice pattern,

however the basis for determining the path that will be taken is different. The exclusive

choice pattern is based on the evaluation of process data, while the deferred choice

pattern is based on the occurrence of an event. The branch for which the first event

occurs is activated and the alternative paths are withdrawn (see Figure C.32).

Figure C.32: CPN solution for WP16.

Solution of WP16 in EKF

In the EKF modeling language the deferred choice is modeled as an XOR-split-decision-

point, which is contains unconditional sequence flows, which link the XOR-decision-point

with two or more intermediate events (see Figure C.33(a)). The first event received by

the process engine specifies the continuation of the process and the other paths are

withdrawn. In extend to the deferred choice, the structured deferred choice specifies

that all branches are eventually merged into a single point (see Figure C.33(b)).

Appendix C. Technical Spaces transformation 139

(a) Deferred Choice (b) Structured Deferred Choice

Figure C.33: EKF solution for WP16.

Solution of WP16 in BPEL

A deferred choice is directly supported by the BPEL pick activity as presented in listing

C.21.

1 <pick >

2 <onMessage operation ="E1">

3 <invoke operation ="A"/>

4 </onMessage >

5 <onAlarm operation ="E2">

6 <invoke operation ="B"/>

7 </onAlarm >

8 <onMessage operation ="E3">

9 <invoke operation ="C"/>

10 </onMessage >

11 </pick >

Listing C.21: BPEL code for WP16

Interleaved Parallel Routing (WP17)

The intent of the interleaved parallel routing pattern is that several tasks are to be

performed in sequence (each task is perfromed only once and not in parallel, as the

name of the pattern suggests), but the order of execution is arbitrary and not known at

design-time (see Figure C.34).

Solution of WP17 in EKF

In the EKF process this pattern is modeled as a number of tasks, for which the condi-

tional flow specifies that transitions from one task to another (see Figure C.35). This

solution still allows that multiple paths from start to end are allowed. This is accom-

plished through the semantics of the rule engine, as it is allowed to implement rules in

such a way that a certain conclusion can only be reached if a previous conclusion has

been satisfied. The run-time requirement is also satisfied, because the rule engine is

Appendix C. Technical Spaces transformation 140

Figure C.34: CPN solution for WP17.

responsible to derive conclusions with respect to the pre-condition of a task. Notice that

a deadlock can occur, as rules conclusions are not properly aligned with the process. We

consider that this pattern is only partially supported by the EKF process language, as

an additional rule engine is required to accomplish the semantics of WP17.

Figure C.35: EKF solution for WP17.

Solution of WP17 in BPEL

The semantics of this pattern can be implemented using the EKF rule engine, by invo-

cation of an operation decision service as presented at line 9 and 37 in listing C.22. The

result retrieved from the decision is assigned to a BPEL variable state. This variable

represents the unique state in the process of the WP17 pattern. A while activity enables

the iteration of interleaved parallel routing until the END state has been satisfied (end

of the interleaved routing). A switch activity nested in a while activity results in the

activation of only one task for which pre-condition is satisfied. In extend of the EKF

solution, faults in the rule implementation could result in the introduction of unhanded

states, which could cause deadlocks. Unhanded states should therefore result in a con-

dition violated exception causing the termination of the process through a fault handler.

Notice that for this solutions the same limitation as considered for the EKF solution for

WP17.

1 <scope name="WP17">

2 <faultHandler >

3 <catch faultName =" fConditionViolatedException ">

4 <invoke operation =" Terminate "/>

Appendix C. Technical Spaces transformation 141

5 </catch >

6 </faultHandler >

7 <sequence >

8 <!-- Get the state value from the rule engine -->

9 <invoke operation =" decisionservice " inputvariable =" request"

10 outputvariable =" result"/>

11 <assign ><from >result </from ><to >State </to ></assign >

12 <!-- repeat until the end state has been reached -->

13 <while condition =" State=END">

14 <sequence >

15 <switch >

16 <case condition =" State=A">

17 <invoke operation ="A"/>

18 </case >

19 <case condition =" State=B">

20 <invoke operation ="B"/>

21 </case >

22 <case condition =" State=C">

23 <invoke operation ="C"/>

24 </case >

25 <case condition =" State=D">

26 <invoke operation ="D"/>

27 </case >

28 <case condition =" State=E">

29 <invoke operation ="E"/>

30 </case >

31 <otherwise >

32 <!-- state must be handled otherwise throw exception -->

33 <throw faultName =" fConditionViolatedException ">

34 </otherwise >

35 </switch >

36 <!-- Update the state for the next iteration -->

37 <invoke operation =" derivedecision" variable =" result"/>

38 <assign ><from >result </from ><to >State </to ></assign >

39 </sequence >

40 </while >

41 </sequence >

42 </scope >

Listing C.22: BPEL code for WP17

Milestone (WP18)

The intent of the milestone pattern is that a task can be performed only when a certain

milestone has been met and cannot be performed after the milestone expires. The

milestone pattern describes the scenario in which a task can be performed multiple

times only after the occurrence of an enabling event, but before the occurrence of a

disabling event (see Figure C.36).

Solution of WP18 in EKF

In the EKF process language this pattern can be modeled as a deferred choice in a

while loop, such that a task is performed an arbitrary number of times based on the

Appendix C. Technical Spaces transformation 142

Figure C.36: CPN solution for WP18.

evaluation of a post-condition (see Figure C.37). The post-condition of the while loop

defines under which conditions the milestone has been met. The deferred choice in the

while loop specifies, that the task A can be performed an arbitrary number of times, until

the milestone has been satisfied. The limitation of this solution is that the activation of

task can not be restricted by any parallel treads, this solutions is therefore considered

to be a partial solution for WP18.

Figure C.37: EKF solution for WP18.

Solution of WP18 in BPEL

In BPEL there does not exist a basic activity for capturing this pattern. We therefore

consider a work-around for the BPEL solution based on the EKF solution (see Listing

C.23). A deferred choice between execution the task C, or execution task A, is made.

A while loop is used to guarantee that as long as C is chosen, A can be execution an

arbitrary number of time. Notice that for the BPEL solution the same limitation are

considered as defined for EKF solution for WP18.

1 <sequence >

2 <invoke operation ="B"/>

3 <assign ><from >true </from ><to >isCompleted </to ></assign >

4 <while condition =" isCompleted=true">

5 <pick >

6 <onMessage operation ="E1">

7 <invoke operation ="A">

8 </onMessage >

9 <onMessage operation ="E2">

10 <assign ><from >false </from ><to >isCompleted </to ></assign >

11 </onMessage >

Appendix C. Technical Spaces transformation 143

12 <pick >

13 </while >

14 <invoke operation ="C">

15 </sequence >

Listing C.23: BPEL code for WP18

C.7 Cancellation Patterns

Various concepts of exception handling in the process are based on cancellation. The

cancellation patterns allow the cancellation of task or a grouping of task through the

patterns: Cancel Task (WP19), Cancel Case (WP20) and Cancel Region (WP25).

Cancel Task (WP19)

The cancel task pattern describes the completion of two parallel task, such that one

task signals the completion of the other task. The signal mechanism results in the

cancellation of the task being signaled (see Figure C.38).

Figure C.38: CPN solution for WP19.

Solution of WP19 in EKF

In the EKF this pattern is implemented as two task activated through and OR-split-

decision-point. Each task belongs to a different sub-process, for which the completion of

task A results in the cancellation of task instances of the sub-process C. In our example

as presented in figure C.39 the cancellation is only performed if the task was activated

such that flow condition C2 must be satisfied. In the EKF the condition C2 is derived

based on the variables of the sub-process C maintained by the EKF process engine.

Solution of WP19 in BPEL

In BPEL this pattern can be implemented for two parallel running scope activities, such

that the completion of one scope activities throws a fault(s) triggering the completion

Appendix C. Technical Spaces transformation 144

Figure C.39: EKF solution for WP19.

of the parallel running scope activity (see Listing C.24). Notice that the fault can only

be thrown in case the condition C2 is satisfied. In BPEL the occurrence of the fault

causes all instance in the scope to be aborted and continues handling the fault through

the corresponding catch. In the fault handler the post-condition of the canceled task is

performed and the end event signals the completion of the scope. The BPEL solution

of WP19 is considered to be a partial solution as their still remain limitations when

translating the sub-process of the EKF process language int the BPEL scope activity.

1 <process name="E">

2 <!-- faulthandler required to terminate task t2 in case it was still active -->

3 <faultHandlers >

4 <catch faultName =" Start(E2)">

5 <sequence >

6 <invoke operation ="E1"/>

7 <invoke operation ="End(C)"/>

8 </sequence >

9 </catch >

10 </faultHandlers >

11 <eventHandlers >

12 <!-- eventHandler to process task B -->

13 <onMessage operation ="Start(A)">

14 <sequence >

15 <invoke operation ="A"/>

16 <switch >

17 <case condition ="C2">

18 <throw name=" Start(E2)"/>

19 </case >

20 <otherwise >

21 <invoke operation ="End(C)"/>

22 <otherwise >

23 </switch >

24 </sequence >

25 </onMessage >

26 <!-- eventHandler to process task B -->

27 <onMessage operation ="Start(B)">

Appendix C. Technical Spaces transformation 145

28 <sequence >

29 <invoke operation ="B"/>

30 <invoke operation ="E1"/>

31 </sequence >

32 </onMessage >

33 </eventHandlers >

34 <!-- start point of the scope -->

35 <flow supressJoinFailure ="yes">

36 <invoke operation =" Start(A)"/>

37 <invoke operation =" Start(B) joinCondition ="C1"/>

38 </flow >

39 </process >

Listing C.24: BPEL code for WP19

Cancel Case pattern (WP20)

The cancel case pattern is an extension of the cancel task pattern. This pattern allows

cancellation of the entire (sub-)process at a certain point in the process. All instances

in the process are aborted and the process continues processing an alternative path (see

Figure C.40)2.

Figure C.40: CPN solution for WP20.

Solution of WP20 in EKF

In the EKF process language the cancel case pattern is modeled as a task containing an

outgoing conditional flow to an intermediate cancel event (see Figure C.41). The cancel

event causes the process engine to abort all active instances in the sub-process E and

continue processing from the event forward (in our example this is processing task C).

2Modeling this pattern in CPN results in a substantial increases of the model complexity, because
for all possible combination of tokens which are allowed for cancellation result in an introduction of a
transition.

Appendix C. Technical Spaces transformation 146

Figure C.41: EKF solution for WP20.

Solution of WP20 in BPEL

In BPEL the cancel case pattern can be implemented as a fault handler, which causes

all instances in the process to be terminated and create a new instance which specifies

a specific point in the (sub-)process from which the process is continued (see Listing

C.25). The fault handler must be defined at the process level, such that its reachable

for all scopes in the process. The BPEL solution of WP20 is considered to be a partial

solution as their still remain limitations when translating the sub-process of the EKF

process language int the BPEL scope activity.

1 <process name="E">

2 <faultHandler >

3 <!-- eventHandler to process cancellation -->

4 <catch faultName ="E4">

5 <invoke operation =" Start(CANCELED)"/>

6 </catch >

7 </faultHandler >

8 <eventHandler >

9 <!-- eventHandler to continue after cancellation -->

10 <onMessage operation =" Start(CANCELED)">

11 <sequence >

12 <invoke operation ="C"/>

13 <invoke operation ="End(E2E3)"/>

14 </sequence >

15 </onMessage >

16 </eventHandler >

17 <!-- scope contained in the process -->

18 <scope >

19 <eventHandler >

20 <!-- eventHandler to process task A -->

21 <onMessage operation =" start(A)">

22 <sequence >

23 <invoke operation ="A"/>

24 <switch >

25 <case condition ="C2">

26 <sequence >

27 <invoke operation ="B">

28 <switch >

Appendix C. Technical Spaces transformation 147

29 <case condition ="C3">

30 <invoke operation ="End(E2E3)"/>

31 </case >

32 <otherwise >

33 <throw faultName =" Start(E4)"/>

34 </otherwise >

35 </switch >

36 </sequence >

37 </case >

38 <otherwise >

39 <throw fautName ="Start(E4)"/>

40 </otherwise >

41 </switch >

42 </sequence >

43 </onMessage >

44 <!-- eventHandler to process task D -->

45 <onMessage operation =" Start(D)">

46 <sequence >

47 <invoke operation ="D"/>

48 <switch >

49 <case condition ="C4">

50 <invoke operation ="E1"/>

51 </case >

52 <otherwise >

53 <throw fautName ="Start(E4)"/>

54 </otherwise >

55 </switch >

56 </sequence >

57 </onMessage >

58 </eventHandler >

59 <!-- start point of the scope -->

60 <sequence >

61 <flow supressJoinFailure ="yes">

62 <invoke operation =" Start(A)"/>

63 <invoke operation =" Start(D)" joinCondition ="C1"/>

64 </flow >

65 <receive operation ="End(E2E3)">

66 </sequence >

67 </scope >

68 </process >

Listing C.25: BPEL code for WP20

Cancel region (WP25)

The cancel region pattern allows the disabling of a grouping of tasks in the process.

Any of the tasks which are enabled at the moment of cancellation are withdrawn. The

cancel region is the option of being able to cancel a series of (potentially unrelated) tasks

is a useful capability, particularly for handling unexpected errors or for implementing

forms of exception handling. Two distinct cancel region approaches are supported by

the EKF process language: cancellation through trigger event (a) (see Figure C.42(a))

Appendix C. Technical Spaces transformation 148

and cancellation through exception (b) (see Figure C.42(b))3. The cancellation through

the event trigger causes all tokes in the region to be removed and continues processing

a single token through a bypass in the process. The cancellation through the exception

event does not remove any tokens at the occurrence of the exception, instead it creates

a new instance to handle the exception.

(a) Cancel Region through trigger event

(b) Cancel Region through exception

Figure C.42: CPN solutions for WP25.

3Notice the complexity of the CPN model increases as the cancellation of each token, which must be
withdrawn requires the introduction of a transition.

Appendix C. Technical Spaces transformation 149

Solution of WP25 in EKF

Both cancellation strategies are supported by the EKF, where the grouping of tasks is

represented by a sub-process. The first alternative (a) (see Figure C.43(b)) specifies

an interrupt trigger event, which causes all instances in the sub-process to be aborted

and continues processing from the event forward. The EKF process language allows

constraints on the trigger event, such that the trigger event is only accepted in case the

condition is satisfied. In the second alternative (b) (see Figure C.43(b)) one or more

exceptions can be defined for a sub-process. The exception does not affect the processing

of the sub-process, but creates a new instance to process task C (therefore running in

parallel with internal processing of sub-process D). The completion of task C can either

result in implicit termination (through the NOP event E4) or explicit cancellation of the

sub-process (through cancel event E5).

(a) Cancel Region through trigger event

(b) Cancel Region through exception

Figure C.43: EKF solutions for WP25.

Appendix C. Technical Spaces transformation 150

Solution of WP25 in BPEL

The BPEL solution for alternative (a) can be implemented as an (message) event handler,

which throws a fault (see Listing C.26). The fault handler is required, because the on

the occurrence of the event all instances of the scope activity must be withdrawn. The

BPEL solution of WP25(a) is considered to be a partial solution as their still remain

limitations when translating the sub-process of the EKF process language int the BPEL

scope activity.

1 <scope name="E">

2 <!-- faulthandler required to terminate sub -process D-->

3 <faultHandlers >

4 <catch faultName =" Fault(E1)">

5 <!-- preceding after the occurrence of trigger event E1 -->

6 <invoke operation =" Start(C)"/>

7 </catch >

8 </faultHandlers >

9 <scope name="D">

10 <eventHandler >

11 <onMessage operation ="E1">

12 <!-- Only process trigger event E1 if C2 is satisfied -->

13 <switch >

14 <case condition ="C2">

15 <throw faultName =" Cancel(E1)"/>

16 </case >

17 <otherwise >

18 <empty/>

19 </otherwise >

20 </switch >

21 </onMessage >

22 <onMessage operation ="Start(B)">

23 <sequence >

24 <invoke operation ="B"/>

25 <!-- preceding tasks after completion of B -->

26 <invoke operation ="End(D)"/>

27 </sequence >

28 </onMessage >

29 <onMessage operation ="Start(C)">

30 <sequence >

31 <invoke operation ="C"/>

32 <switch >

33 <case condition ="C3">

34 <invoke operation =" Start(B)"/>

35 </case >

36 <otherwise >

37 <throw faultName =" Cancel(E2)"/>

38 </otherwise >

39 </switch >

40 </onMessage >

41 </eventHandler >

42 <!-- start point of the the scope E -->

43 <sequence >

44 <invoke operation ="A">

45 <switch >

Appendix C. Technical Spaces transformation 151

46 <case condition ="C1">

47 <invoke operation =" Start(B)">

48 </case >

49 <otherwise >

50 <invoke operation =" Start(C)">

51 </otherwise >

52 </switch >

53 <receive operation ="End(D)"/>

54 </sequence >

55 </scope >

56 </scope >

Listing C.26: BPEL code for WP25(a)

Appendix C. Technical Spaces transformation 152

The BPEL the cancellation exception is implemented as an onMessage or onAlarm

event handler, creating a new instance in the process (see Listing C.27). The active

instance in the sub-process remains active unless the process is explicitly canceled. The

BPEL solution of WP25(b) is considered to be a partial solution as their still remain

limitations when translating the sub-process of the EKF process language int the BPEL

scope activity.

1 <scope name="E">

2 <!-- eventHandler for scope E-->

3 <eventHandler >

4 <onMessage operation =" Start(C)">

5 <sequence >

6 <invoke operation ="C"/>

7 <switch >

8 <case condition ="C1">

9 </empty >

10 </case >

11 <otherwise >

12 <throw faultName =" Cancel(E5)"/>

13 </otherwise >

14 </switch >

15 </onMessage >

16 </eventHandler >

17 <scope name="D">

18 <!-- eventHandler for scope D -->

19 <eventHandler >

20 <onAlarm name="E1">

21 <invoke operation =" Start(C)"/>

22 </onAlarm >

23 <onMessage operation ="E2">

24 <invoke operation =" Start(C)"/>

25 </onMessage >

26 <onMessage operation ="E3">

27 <invoke operation =" Start(C)"/>

28 </onMessage >

29 </eventHandler >

30 <!-- processing of scope D -->

31 <sequence >

32 <invoke operation ="A"/>

33 <invoke operation ="B"/>

34 </sequence >

35 </scope >

36 </scope >

Listing C.27: BPEL code for WP25(b)

C.8 Termination Patterns

The termination patterns deal within the circumstance under which a process is con-

sidered to be completed. The following termination patterns are considered: Implicit

Appendix C. Technical Spaces transformation 153

Termination (WP11) and Explicit Termination (WP43).

Implicit termination (WP11)

The implicit termination pattern allows that a specific path of a process is completed

without other parallel path to be required to end as well. A given process instance

should be terminated when there are no remaining work items that are able to be done

now or at any time in the future without being in deadlock. There is an objective

means of determine that the process instance has successfully completed. The implicit

termination is more or less a relaxation of the design rules: the process complete when

the tasks on each of the branches complete. The implicit termination is not modeled

explicitly in modeled CPN, as by definition ‘all tokens must end in a single end place’.

Solution of WP11 in EKF

In the EKF process language the implicit termination can be modeled as multiple no-

tification event(s) or NOP event(s) at the end point (see Figure C.44). Notice that the

(sub-)process is only considered to be completed if all active branches (e.g. notification

message events are send or NOP event is reached) have reached their completion.

Figure C.44: EKF solution for WP11.

Solution of WP11 in BPEL

The implicit termination is supported by the BPEL flow construct and links (see Listing

C.28). This allows that a scope can have multiple sink activities (i.e. activities not being

a source of any link) without requiring one unique termination activity. The attribute

suppressJoinFailuire is assigned to no, otherwise the implicit termination could be result

in termination when a deadlock has occurred.

1 <scope name="E">

2 <flow suppressJoinFailure ="no">

3 <links >

4 <link name="AC"/>

5 <link name="BD"/>

6 <link name="DE2"/>

7 <links >

8 <invoke operation ="A" joinCondition ="C1">

9 <source linkName ="AC"/>

10 </invoke >

11 <invoke operation ="B" joinCondition ="C2">

Appendix C. Technical Spaces transformation 154

12 <source linkName ="CD"/>

13 </invoke >

14 <invoke operation ="C">

15 <target linkName ="AC"/>

16 </invoke >

17 <invoke operation ="D">

18 <source linkName ="DE2"/>

19 <target linkName ="BD"/>

20 </invoke >

21 <invoke operation ="E2">

22 <target linkName ="DE2"/>

23 </invoke >

24 </flow >

25 </scope >

Listing C.28: BPEL code for WP11

Explicit termination pattern (WP43)

A given (sub-)process instance should terminate when it reaches a nominated state.

Typically this is denoted by a specific end node. When this end node is reached, any

remaining work in the process is canceled and the overall process instances is recorded

as having completed successfully, regardless of whether there are any task in progress

or remaining to be executed. In CPN the end state is explicitly modeled by means on a

single end place.

Solution of WP43 in EKF

The EKF process language allows two ways to model this pattern: first, the termination

event causes the direct termination of all instances in the processes; or an end event

specifies the completion of the process under normal conditions (see Figure C.45).

Figure C.45: EKF solution for WP43.

Solution of WP43 in BPEL

In BPEL the explicit termination is modeled as a process for which no more activity

instances remain to complete or and explicitly through the terminate activity. In our

example the flow can activate multiple branches of activities, such that the completion

of the first branch directly results in the completion of the process. The termination

event directly triggers the completion of the process (see Listing C.29).

Appendix C. Technical Spaces transformation 155

1 <process name="E">

2 <eventHandler >

3 <onMessage operation ="End(E1)">

4 <sequence >

5 <invoke operation ="E1"/>

6 <terminate name="E1"/>

7 </sequence >

8 </onMessage >

9 <onMessage operation ="End(E2)">

10 <sequence >

11 <invoke operation ="E2"/>

12 <terminate name="E2"/>

13 </sequence >

14 </onMessage >

15 </eventHandler >

16 ...

17 <flow suppressJoinFailure ="yes">

18 <links >

19 <link name="AC"/>

20 <link name="BD"/>

21 <link name="CE1"/>

22 <link name="DE2"/>

23 </links >

24 <invoke operation ="A" joinCondition ="C1">

25 <source linkName ="AC"/>

26 </invoke >

27 <invoke operation ="B" joinCondition ="C2">

28 <source linkName ="BD"/>

29 </invoke >

30 <invoke operation ="C">

31 <source linkName ="CE1"/>

32 <target linkName ="AC"/>

33 </invoke >

34 <invoke operation ="D">

35 <source linkName ="DE2"/>

36 <target linkName ="BD"/>

37 </invoke >

38 <invoke operation ="End(E1)">

39 <target linkName ="CE1"/>

40 </invoke >

41 <invoke operation ="End(E2)">

42 <target linkName ="DE2"/>

43 </invoke >

44 </flow >

45 </process >

Listing C.29: BPEL code for WP43

Appendix D

Case Study: The Everest

Mortgage Process

In this case study we aim at presenting a complete EKF process model from the Everest

practice and aim at providing a complete and correct transformation of this process

model into BPEL code. This case study is therefore composed of a description of the

case study (see Section D.1) and a detailed description of how the actual transformation

was performed (see Section D.2).

D.1 Case study explained

The case study we present comes directly from the Everest practice and describes a

generic mortgage process from sale to delivery. First, we provide the domain model of

the mortgage process (see Section D.1.1), followed by an example of a rule model (see

Section D.1.2). Second, we describe the mortgage process and sub-processes from sale

to delivery (see Section D.1.3).

D.1.1 Mortgage domain model example

Figure D.1 gives an example of a mortgage domain (domain model of the mortgage case

study) describing the entities and attributes and structural relations of the mortgage

process.

This process specifies three type of actors:

• A customer, which requests for a mortgage loan.

156

Appendix D. Case Study: The Everest Mortgage Process 157

• A mortgage broker is the channel through which the loans are sold.

• A lender provides mortgage products, which can be sold by the brokers.

Different type of mortgage products could be provided by the lenders. The following

mortgage products are considered in this example:

• Linear Mortgage (ProductA) both the interest and payments to the property are

made. The interest rate decreases (graduated calculation of interest) in time,

because the payment amount decreases.

• Level Payment Mortgage (ProductB) is similar to the linear mortgage, but defines

a constant monthly payment.

• Savings Mortgage1 (ProductC) only requires the payment of the interest, such that

no mortgage payments have to be made for the property. Certain insurances must

cover the increased risk factors.

A customer applies a mortgage product. The broker gathers the required information

about the customer and the mortgage product in a MortgageRequest. A request is

formalized into an Offer, specifying the details of the Mortgage Request. The offer

in combination with the mortgage product is the outline from which the actual loan

is derived. From one mortgage product, different loans can be derived, based on the

properties from the mortgage request. Before the loan can be provided, a risk analysis is

performed, and the required documents are gathered (e.g. bank statements, pay stubs,

employment registration, lending information and insurance papers, etc). Based on this

information a final decision about the loan can be made. Notice that various integrity

rules are include to guard the consistency of the domain data.

Following the domain transformation, we can translate the instances of the domain

model (input and output of the task) into XSDs, such that it can be used in the BPEL

process.

1Typical Dutch mortgage product

A
p
p
en

d
ix

D
.
C

a
se

S
tu

d
y:

T
h
e

E
verest

M
o
rtga

ge
P
rocess

158

Figure D.1: Example of domain data model of the EKF mortgage process.

Appendix D. Case Study: The Everest Mortgage Process 159

D.1.2 Mortgage rule model example

The examples of the rule representations are presented in figure D.2 and is based on

the entities and attributes from the domain model example as presented in the previous

section. This rule model specifies the rules which must be considered to determine

under which conditions a mortgage request is accepted or rejected as the main objective

of the task qualify request. To accomplish this objective this task is decomposed into

the following requirements, from which the rules can be modeled:

• The loan request may not exceed the maximal loan amount as specified for a

certain loan product.

• The Loan to Value ratio (LTV) calculated by dividing the requested loan amount

by the value of the property may not exceed the maximal LTV for a certain

mortgage product.

• The Debt to Income ratio (DTI) calculated by dividing the monthly debt of the

customer by the monthly income of the customer may not exceed the maximal

DTI for a certain mortgage product.

• The maximal product amount and maximal LTV are variable for a mortgage re-

quest and is based on the type of mortgage property.

• The maximal DTI is variable for a mortgage request and is based on the type of

product and term (lead time) for which the product is requested.

Figure D.2: Example of rule representations in EKF: rule statement (A), decision
table (B), decision tree (C).

Appendix D. Case Study: The Everest Mortgage Process 160

D.1.3 Mortgage process example

The mortgage process is composed of generally three sub-processes: application, pro-

cessing, underwriting and bankguarantee (see Figure D.3). The mortgage process starts

on the reception of either a requestA or requestB. For a requestA the information is im-

ported from an external system and for requestB the information is registered through

the EKF portal application. In the sub-process application the information about the

customer and mortgage products is gathered and validated. Mortgage products specify

the outline (composed of business rules) which is used to derive the actual loan. A re-

quest is formalized into an offer, specifying the details of the actual mortgage loan. From

one mortgage product, different loans can be derived, based on the properties from the

mortgage request. In the sub-process process a risk analysis and credit analysis is per-

formed and the documents are gathered (e.g. bank statements, pay stubs, employment

registration, lending information and insurance papers etc). Based on the information

from the processing a final decision and administration of the loan is performed in the

sub-process underwriting.

The cancellation process specifies the proceeding of the process in case the mortgage

request is canceled. After cancellation the process can either be reactivated (manually)

through a message event. Reactivation either results in processing of an existing offer (if

it was not expired and an offer was already proposed) or the creation of a new application

request. Reactivation is only possible within the reactivation period, such that when

this period expires the entire process is closed and terminated.

Figure D.3: Mortgage process example.

Appendix D. Case Study: The Everest Mortgage Process 161

D.1.3.1 sub-process application

In the sub-process application (see Figure D.4) the information of the customer and

product selection is either manually or automatically registered. The information is

validated based on its correctness and completeness and derivation rules are applied to

enrich the process data (take for example the pricing of the loan product is calculated

based on the information of the request). In case the information was in correct or

incomplete it can be manually be updated and changed in the task complement request.

If all information is complete the request is qualified, for which it is determined if the

customer is eligible to acquire the requested loan product (see rule example). Rejected

loan qualifications require manual judgment and accepted request directly results in the

proposal of an offer.

The application can be canceled after the completion of the tasks: register requests,

complement request or judge request. Alternatively the application can be canceled

through the cancel triggered, but only if the pre-condition is satisfied.

Figure D.4: Application sub-process example.

Appendix D. Case Study: The Everest Mortgage Process 162

D.1.3.2 sub-process processing

In the sub-process processing (see Figure D.5) is started if the proposed offer was ac-

cepted by the customer, by returning a signed copy of the offer. Accepting the offer

results in the lock of the loan product, which is more or less an agreement of a fixed

product interest rate. Notice that the customer must return the offer within a predefined

signing period and offer may not violate the general government law. After the customer

acceptance the lender personnel also known as processors gather the required informa-

tion and legal documents, which are used to make a decision about the acceptance of

the loan. Notice that documents can be included to the file until the file is considered

to be complete. In the task update file additional information is gathered (e.g. risk

information, credit information) in preparation for the underwriter, to make a final de-

cision about the provision of the loan. This type of data is mostly requested through

different channels (e.g. central bureau of credit, local authority, etc.). The completed

file is validated for completeness, correctness and possible fraud situations. For every

expected fraud manual judgment of the processor is required. Finally the entire loan

is judged by the processor resulting in the requirement of additional documents or the

acceptance of the credit. Notice that independent of the acceptance of the credit a bank

guarantee could be required.

During the sub-process offer processing two exceptions are considered: in case the offer

expires or almost expires the process can extend the sign period through the task extend

sign period or cancel the process. Cancellation is provided through the cancel trigger,

but only if the pre-ondition is satisfied.

D.1.3.3 sub-process underwriting and bankguarantee

the sub-process underwriting (see Figure D.6) is composed of three sub-processes: bankac-

ceptance, supplyloan and bankguarantee. The sub-process bankguarantee is activated

independent from the sub-process underwriting, but needs to synchronize at a certain

point in the process.

In the sub-process bankacceptance the actor underwriter makes a final decision on the

approval of the loan, based on the information gathered during the processing. In the

sub-process underwriting it is important to identify under which conditions a loan was

granted or rejected. Automated rejected loans require manual judgment, from which

the loans are finally rejected, resulting in cancellation; or accepted, resulting in the

activation of the task complete bank acceptance. The active instances of a bankguarantee

will be canceled in case they are still active after the completion of the sub-process

bankacceptance.

Appendix D. Case Study: The Everest Mortgage Process 163

Figure D.5: Processing sub-process example.

Appendix D. Case Study: The Everest Mortgage Process 164

The sub-process supplyloan the loan is accepted by the underwriters and is prepared

to be supplied to the customer. In case the supply date is known the supply date

can directly be registered, otherwise the notary instructions must be send through an

external channel and the process waits until it receives a signed notary contract. The

notary contract includes the supply date such that it can be registered. After registration

of the supply date the loan is transferred to the administrative system and the mortgage

process is completed (marked as loan passed).

The sub-process bankguarantee allows the creation and judgment of a bankguarantee. A

bank guarantee is only required in certain circumstances, as specified in the sub-process

processing and can operate in parallel with the bank acceptance sub-process. Notice

that a bank guarantee must be either provided or canceled if the bank acceptance was

completed.

Cancellation of the sub-process underwriting is only allowed for the sub-processes bankac-

ceptance and bankguarantee, because during the sub-process supplyloan the customer

there exist a certain commitment to the loan. Cancellation is provided through the

cancel trigger, but only if the pre-condition is satisfied (due to the commitment of the

loan).

D.2 Transformation of the EKF process into BPEL

In this section we follow the approach as presented in chapter 6, to provide a complete

transformation of the EKF mortgage process into BPEL code. We do not consider the

first and second step of our transformation approach as these step are considered to be

straightforward.

D.2.1 Transform the the sub-process application into BPEL

STEP3: Decompose the sub-process application into components

Following the thrid step of our transformation approach we can identify the following

component for the sub-process application (see Figure D.7):

• C1, is translated into an maximal component composed of an exclusive choice and

the start point of the sub-process application and either results in the activation

of component C2 or cancellation of the process (from line 26 to 50 in Listing D.1).

• C2, is translated into a maximal component composed of exclusive choice compo-

nents, resulting either in the cancellation or activation of C3 (from line 51 to 95

in Listing D.1).

Appendix D. Case Study: The Everest Mortgage Process 165

Figure D.6: Underwriting sub-process example.

• C3, is translated into a maximal component composed of a sequence component

and the end point event of the sub-process application. Notice that C3 is identified

as an independent component, considering a maximal component composed of C2

and C3 would introduce an arbitrary cycle (from line 96 to 104 in Listing D.1).

• C4, is translated into a cancel region, where the sub-process application is canceled

thorough a trigger event if the specified condition is satisfied (from line 11 to 25

in Listing D.1).

Appendix D. Case Study: The Everest Mortgage Process 166

STEP4: Translate the sub-process application into BPEL code

Following the fourth step of our transformation approach we can produce the BPEL

code for the sub-process application (see Listing D.1). Notice that C1 (at line 107 in

Listing D.1) is the start point of the sub-process and in C3 (at line 108 in Listing D.1)

triggers the end of the sub-process. Additional the cancel trigger introduces a fault

handler for the corresponding scope activity for the sub-process application. The fault

handler should perform the task cancel before the the scope is exited. The fault handler

fCANCELTRIGGER is introduced (from line 2 to 9 in Listing D.1)to remove all process

instances before the task cancel is performed.

Figure D.7: Components in the sub-process application.

1 <scope name=" APPLICATION">

2 <faultHandler >

3 <catch faultName =" fCANCELTRIGGER">

4 <sequence >

5 <invoke operation =" Cancel"/>

6 <invoke operation ="Start(Canceled)"/>

7 </sequence >

8 <catch >

9 </faultHandler >

10 <eventHandler >

11 <!--------------- Event Action translation of C4 --------------------->

12 <onMessage operation =" Start(CANCELTRIGGER)">

13 <scope name="C4">

14 <switch >

Appendix D. Case Study: The Everest Mortgage Process 167

15 <case condition =" MortageRequest.state=’Incomplete ’ OR

16 MortgageRequest .state=’Complete ’ OR MortgageRequest .state=’Rejected ’

17 OR MortgageRequest .state=’Accepted ’">

18 <throw faultName =" fCANCELTRIGGER "/>

19 </case >

20 <otherwise >

21 </empty >

22 </otherwise >

23 </switch >

24 </scope >

25 </onMessage >

26 <!--------------- Event Action translation of C1 --------------------->

27 <onMessage operation =" Start(C1)">

28 <scope name="C1">

29 <switch >

30 <case condition =" MortgageRequest .state =" importRequest ">

31 <sequence >

32 <invoke operation =" Import_request "/>

33 <invoke operation =" Start(C2)"/>

34 </sequence >

35 </case >

36 <otherwise >

37 <sequence >

38 <invoke operation =" Register_request "/>

39 <switch >

40 <case condition=’MortgageRequest .state ="registered ’">

41 <invoke operation =" Start(C2)"/>

42 </case >

43 <otherwise >

44 <invoke operation =" Start(Canceled)"/>

45 </otherwise >

46 </switch >

47 </sequence >

48 </switch >

49 </scope >

50 </onMessage >

51 <!--------------- Event Action translation of C2 --------------------->

52 <onMessage operation =" Start(C2)">

53 <scope name="C2">

54 <sequence >

55 <invoke operation =" Validate_and_enrich "/>

56 <switch >

57 <case condition =" MortgaageRequest.state=’Complete ’">

58 <sequence >

59 <invoke operation =" Qualify_request "/>

60 <switch >

61 <case condition =" Accepted">

62 <invoke operation =" Start(C3)"/>

63 </case >

64 <otherwise >

65 <sequence >

66 <invoke operation =" Judge_request "/>

67 <switch >

68 <case condition =" Accepted">

69 <invoke operation =" Start(C3)"/>

Appendix D. Case Study: The Everest Mortgage Process 168

70 </case >

71 <otherwise >

72 <invoke operation =" Start(Canceled)"/>

73 </otherwise >

74 </switch >

75 </sequence >

76 </otherwise >

77 </switch >

78 </case >

79 <otherwise >

80 <sequence >

81 <invoke operation =" Complement_request "/>

82 <switch >

83 <case condition =" Complemented">

84 <invoke operation =" Start(C2)"/>

85 </case >

86 <otherwise >

87 <invoke operation =" Start(Canceled)"/>

88 </otherwise >

89 </switch >

90 </otherwise >

91 </sequence >

92 </switch >

93 </sequence >

94 </scope >

95 </onMessage >

96 <!--------------- Event Action translation of C3 --------------------->

97 <onMessage operation =" Start(C3)">

98 <scope name="C3">

99 <sequence >

100 <invoke operation =" Propose_offer "/>

101 <invoke operation ="End(C3)">

102 </sequence >

103 </scope >

104 </onMessage >

105 <!--------------- Start point of the scope application ----------------->

106 <sequence >

107 <invoke operation =" Start(C1)"/>

108 <receive operation ="End(C3)"/>

109 <invoke operation =" Start(OfferProposed)"/>

110 </sequence >

111 </scope >

Listing D.1: Translation of the the sub-process application

D.2.2 Transform the the sub-process processing into BPEL

STEP3: Decomposed the sub-process offerprocessing into components

Following the second step of our transformation approach we can identify the following

components for the sub-process offerprocessing (see Figure D.8):

Appendix D. Case Study: The Everest Mortgage Process 169

• C1, is translated into a maximal component composed of a deferred choice and

exclusive choice activating either C2, C3, C5 or C10 (from line 52 to 77 in Listing

D.2).

• C2, cannot be translated into a BPEL because is consist a typical WP9. This

is caused as when the first document is inserted it should be possible that both

the task update task is activated and in parallel it is still allowed to insert new

documents until after the last document the file is considered to be complete.

(from line 78 to 91 in Listing D.2).

• C3, is translated into an maximal component composed of exclusive choice resulting

either in cancellation or the activation of C4 (from line 92 to 107 in Listing D.2).

Notice that C3 is identified as an independent component, considering a maximal

component composed of C3 and C4 would introduce an arbitrary cycle.

• C4, is translated into a sub-set of multiple exclusive choices in sequence with a

multi choice. The completion of C4 results either in completion of the sub-process

offerprocessing, cancellation of the process or activation of C4 (from line 108 to

149 in Listing D.2).

• C5, is translated into maximal component composed of a sequence of a task and

results in the cancellation of the process (from line 150 to 159 in Listing D.2).

• C6, is translated into a cancel region component, where the event trigger activates

the cancellation of the process in C5 (from line 26 to 39 in Listing D.2).

• C7, is translated into a cancel region component, where a timer exception Offer-

Expired creates an instance of C7 (from line 40 to 45 in Listing D.2).

• C8, is translated into a cancel region component, where a timer exception OfferAl-

mostExpired creates an instance of C7 (from line 46 to 51 in Listing D.2).

STEP4: Translate the sub-process offerprocessing into BPEL

Following the third step of our transformation approach we can produce the BPEL code

for the sub-process offerprocessing as presented in listing D.2). Notice that component

C1 (at line 162 in Listing D.2) is the start point and the component C4 (at line 163

Listing D.2) the end of the sub-process application. Aditionally, the cancel trigger should

remove all instances of the sub-process offerprocessing and performs the component

C5 before before the sub-process application is canceled. Therefore an faulthandler

fCANCELTRIGGER is introduced to remove all process instances before the component

C5 is performed. Notice that due to the pattern WP9 it is not possible to translate the

sub-process process completely into BPEL code.

Appendix D. Case Study: The Everest Mortgage Process 170

STEP3: Decompose the sub-process processing into components

Following the thrid step of our transformation approach we can identify the following

component for the sub-process processing:

• C9, the sub-process offer processing is contained by the sub-process processing,

such that the translated BPEL code for this sub-process is nested into the scope

activity of the sub-process processing (at line 163 in Listing D.2).

• C10, is translated into a sequence of an task and a multi-choice resulting in either

cancellation or continuation of the sub-process processing (from 3 to 14 in Listing

D.2).

STEP4: Translate the sub-process processing into BPEL

Following the fourth step of our transformation approach we can produce the BPEL

code for the sub-process processing as presented in listing D.2). Notice that the re-

sulting process after the third step does not contain an arbitrary cycle or unstructured

components or additional fault handlers, such that in this case the fourth step is not

required.

1 <scope name=" PROCESSING">

2 <eventHandlers >

3 <!--------------- Event Action translation of C10 -------------------->

4 <onMessage operation =" Start(C10)">

5 <scope name="C10">

6 <sequence >

7 <invoke operation =" Extend_sign_period "/>

8 <flow suppressJoinFailure ="yes">

9 <invoke operation =" Recall_notifcation "/>

10 <invoke operation ="Start(Canceled)"

11 transitionCondition =" Offer.state=Canceled"/>

12 </flow >

13 </sequence >

14 </scope >

15 </onMessagge >

16 </eventHandlers >

17 <!--------------- Start point of the scope processing ----------------->

18 <scope name="C9">

19 <scope name=" OFFERPROCESSING ">

20 <faultHandler >

21 <catch faultName =" fCANCELTRIGGER">

22 <invoke operation =" Start(C5)"/>

23 </catch >

24 </faultHandler >

25 <eventHandler >

26 <!--------------- Event Action translation of C6 -------------------->

27 <onMessage operation =" Start(CANCELTRIGGER)">

28 <scope name="C6">

29 <switch >

30 <case condition ="Offer.state=’DocumentsInComplete ’ OR

Appendix D. Case Study: The Everest Mortgage Process 171

Figure D.8: Components in the sub-process processing.

Appendix D. Case Study: The Everest Mortgage Process 172

31 Offer.state=’DocumentsComplete ’">

32 <throw faultName =" fCANCELTRIGGER "/>

33 </case >

34 <otherwise >

35 </empty >

36 </otherwise >

37 </switch >

38 </scope >

39 </onMessage >

40 <!--------------- Event Action translation of C7 -------------------->

41 <onAlarm name=" OfferExpired">

42 <scope name="C7">

43 <invoke operation ="Start(C10)"/>

44 </scope >

45 </onAlarm >

46 <!--------------- Event Action translation of C8 -------------------->

47 <onAlarm name=" AlmostOfferExpired ">

48 <scope name="C8">

49 <invoke operation ="Start(C10)"/>

50 </scope >

51 </onAlarm >

52 <!--------------- Event Action translation of C1 ------------------->

53 <onMessage operation =" Start(C1)">

54 <scope name="C1">

55 <pick >

56 <onMessage operation =" SignedOffer">

57 <sequence >

58 <invoke operation =" Customer_acceptance ">

59 <switch >

60 <case condition =" Offer.state=’DocumentsInComplete ’">

61 <invoke operation =" Start(C2)"/>

62 </case >

63 <otherwise >

64 <invoke operation =" Start(C3)"/>

65 </otherwise >

66 </switch >

67 </sequence >

68 </onMessage >

69 <onAlarm name=" SignedPeriodExpired ">

70 <invoke operation =" Start(C5)"/>

71 </onAlarm >

72 <onMessage operation =" OfferViolated ">

73 <invoke operation =" Start(Canceled)"/>

74 </onMessage >

75 </pick >

76 </scope >

77 </onMessage >

78 <!--------------- Event Action translation of C2 ------------------->

79 <onMessage operation =" Start(C2)">

80 <scope name="C2">

81 <-- START NEED TO BE RESOLVED BECAUSE OF WP9 -->

82 ?---

83 <sequence >

84 <receive operation =" Document "/>

85 <invoke operation =" Insert_document "/>

Appendix D. Case Study: The Everest Mortgage Process 173

86 <invoke operation =" Start(C4)"/>

87 <sequence >

88 ?---

89 <-- END NEED TO BE RESOLVED BECAUSE OF WP9 -->

90 </scope >

91 </onMessage >

92 <!--------------- Event Action translation of C3 -------------------->

93 <onMessage operation =" Start(C3)">

94 <scope name="C3">

95 <sequence >

96 <invoke operation =" Update_File "/>

97 <switch >

98 <case condition ="Offer.state=’FileUpdated ’">

99 <invoke operation =" Start(C4)"/>

100 </case >

101 <otherwise >

102 <invoke operation =" Start(Canceled)"/>

103 </otherwise >

104 </switch >

105 </sequence >

106 </scope >

107 </onMessage >

108 <!--------------- Event Action translation of C4 --------------------->

109 <onMessage operation =" Start(C4)">

110 <scope name="C4">

111 <sequence >

112 <invoke operation =" Validate_enrich ">

113 <switch >

114 <case condtion ="Offer.state =" FileComplete">

115 <invoke operation =" Judge_file "/>

116 <switch >

117 <case condition =" State=’Canceled ’">

118 <invoke operation =" Start(Canceled)"/>

119 </case >

120 <otherwise >

121 <flow suppressJoinFailure >

122 <invoke operation =" Start(BANKGUARANTEE)"

123 joinCondition =" Offer.BankGuaranteeActive =False AND

124 Offer.BankGuaranteeRequered =True"/>

125 <invoke operation =" Start(C2)"

126 joinCondition =" Offer.state=’DocumentsIsComplete ’"/>

127 <invoke operation ="End(C4)"

128 joinCondition =" state=’CreditAccepted ’"/>

129 </flow >

130 </otherwise >

131 </switch >

132 </case >

133 <otherwise >

134 <sequence >

135 <invoke operation =" Judge_expected_fraud "/>

136 <switch >

137 <case condition =" Offer.state=’NoFraud ’">

138 <invoke operation =" Start(C4)"/>

139 </case >

140 <otherwise >

Appendix D. Case Study: The Everest Mortgage Process 174

141 <invoke operation =" Start(Canceled)"/>

142 </otherwise >

143 </switch >

144 </sequence >

145 </otherwise >

146 </switch >

147 </sequence >

148 </scope >

149 </onMessage >

150 <!--------------- Event Action translation of C5 --------------------->

151 <onMessage operation ="Start(C5)">

152 <scope name ="C5">

153 <sequence >

154 <invoke operation =" Cancel">

155 <invoke operation ="Start(Canceled)"/>

156 </sequence >

157 </scope >

158 </onMessage >

159 </eventHandler >

160 <!--------------- Start point of the scope processing ---------------->

161 <sequence >

162 <invoke operation =" Start(C1)">

163 <receive operation ="End(C4)"/>

164 <invoke operation =" Credit_accepted "/>

165 </sequence >

166 </scope >

167 </scope >

168 </scope >

Listing D.2: Translation of the sub-process processing

D.2.3 Transform the the sub-process underwriting and bankguarantee

into BPEL

STEP3: Decompose the sub-process bankacceptance into components

Following the third step of our transformation approach we can identify the following

components for the sub-process bankaccepatance (see Figure D.9):

• C1, is translated into a maximal component composed of exclusive choices, which

result either in cancellation or the activation of C2 (from line 30 to 56 in Listing

D.3).

• C2, is translated into a maximal component composed of sequence of a task and

an multi choices, resulting in the activation of the sub-process supply loan and

(only if the governing condition is satisfied) the cancellation of the sub-process

bankguarantee (from line 57 to 78 in Listing D.3).

Appendix D. Case Study: The Everest Mortgage Process 175

STEP4: Translate the sub-process bankaccepance into BPEL

Following the fourth step of our transformation approach we can produce the BPEL

code for the sub-process application as presented in listing D.2). The component C1 is

the start point (at line 81 in Listing D.3) and (at line 82 in Listing D.3) waits for the

end of the component C2 in sub-process bankacceptance. Notice that no additional fault

handlers are required for the sub-process bankacceptance.

STEP3: Decompose the sub-process supplyloan into components

Following the third step of our transformation approach we can identify the following

components for the sub-process supplyloan:

• C3, is translated into a maximal component composed of a one way, sequence and

exclusive choice (from line 86 to 106 in Listing D.3).

STEP4: Translate the sub-process supplyloan into BPEL

Following the third step of our transformation approach we can produce the BPEL code

for the sub-process supplyloan as presented in listing D.2). Notice that the resulting

process after the second step does not contain an arbitrary cycle or unstructured com-

ponents, such that third step is not required. Notice that no additional fault handlers

are required for the sub-process supplyloan.

STEP3: Decompose the sub-process underwriting components

Following the third step of our transformation approach we can identify the following

components for the sub-process underwriting:

• C4, is translated into a maximal component composed of a sequence of the sub-

process bankacceptance and supplyloan (from line 25 to 106 in Listing D.3).

• C5, is translated into a cancel region component, where the sub-process application

is canceled through a trigger event if the specified condition is satisfied. Cancella-

tion is performed explicitly in after the cancel task, such that no additional fault

handler is required in the scope of the application (from line 11 to 23 in Listing

D.3).

STEP4: Translate the sub-process underwriting into BPEL

The sub-process underwriting does not contain an arbitrary cycle or unstructured com-

ponents after the second step, such that the the third sept is not required. The cancel

trigger should remove all instances of the sub-process unerwriging and performs the can-

cel task before before the sub-process application is canceled. Therefore an faulthandler

fCANCELTRIGGER is introduced to remove all process instances before the cancel task

is performed.

Appendix D. Case Study: The Everest Mortgage Process 176

Figure D.9: Components in the sub-process underwriting and bankguarantee.

1 <scope name=" UNDERWRITING">

2 <faultHandler >

3 <catch faultName =" fCANCELTRIGGER">

4 <sequence >

5 <invoke operation =" Cancel"/>

6 <invoke operation ="Start(Canceled)"/>

7 </sequence >

8 </catch >

9 </faultHandler >

10 <eventHandler >

11 <!--------------- Event Action translation of C5 ------------------------>

12 <onMessage operation =" Start(CANCELTRIGGER)">

13 <scope name="C5">

Appendix D. Case Study: The Everest Mortgage Process 177

14 <switch >

15 <case condition ="Loan.state=’Rejected ’ OR Loan.state=’Accepted ’">

16 <throw faultName =" fCANCELTRIGGER "/>

17 </case >

18 <otherwise >

19 </empty >

20 </otherwise >

21 </switch >

22 </scope >

23 </onMessage >

24 </eventHandler >

25 <!--------------- Translation of C4 -------------------------------------->

26 <scope name="C4">

27 <sequence >

28 <scope name=" BANKACCEPTANCE">

29 <eventHandler >

30 <!--------------- Event Action translation of C1 --------------------->

31 <onMessage operation =" Start(C1)">

32 <sequence >

33 <invoke operation =" Automated_underwriting "/>

34 <switch >

35 <case condition ="Loan.state=’Accepted ’">

36 <invoke operation =" Start(C3)"/>

37 </case >

38 <case condition ="Loan.state= ’Rejected ’">

39 <sequence >

40 <invoke operation =" Manual_Judgement "/>

41 <switch >

42 <case condition ="Loan.state=’Accepted ’">

43 <invoke operation =" Start(C3)"/>

44 </case >

45 <otherwise >

46 <invoke operation =" Start(Canceled)"/>

47 </otherwise >

48 </switch >

49 </sequence >

50 </case >

51 <otherwise >

52 <invoke operation =" Start(Canceled)"/>

53 </otherwise >

54 </switch >

55 </sequence >

56 </onMessage >

57 <!--------------- Event Action translation of C2 --------------------->

58 <onMessage operation =" Start(C2)">

59 <scope name="C2">

60 <sequence >

61 <invoke operation =" Complete_Bankacceptance "/>

62 <sequence >

63 <invoke operation =" Complete_BankAcceptance "/>

64 <flow suppressJoinFailure ="yes">

65 <invoke operation =" BankAccepatance_notificaiton "/>

66 <invoke operation =" Start(CANCELBANKGUARANTEE)"

67 joinCondition ="Offer.BankGuarnteeActive =true AND

68 Offer.BankGuarnteeProvided=false"/>

Appendix D. Case Study: The Everest Mortgage Process 178

69 <invoke operation =" BankGuarantee_notification"

70 joinCondition ="Offer.BankGuarnteeActive =true AND

71 Offer.BankGuarnteeProvided=false"/>

72 </flow >

73 </sequence >

74 <invoke operation ="End(C2)"/>

75 </sequence >

76 </scope >

77 </onMessage >

78 </eventHandler >

79 <!--------------- Start point of the scope bankacceptance ----------->

80 <sequence >

81 <invoke operation =" Start(C1)"/>

82 <receive operation ="End(C2)">

83 </sequence >

84 </scope >

85 <scope name=" SUPPLYLOAN">

86 <!--------------- Event Action translation of C3 --------------------->

87 <scope name="C3">

88 <sequence >

89 <switch >

90 <case condition ="Loan.state=’SupplyDatePlanned ’">

91 <empty/>

92 </case >

93 <otherwise >

94 <sequence >

95 <invoke operation =" NotaryInstructions_Notification "/>

96 <receive operation =" Signed_Notarty_Contract "/>

97 </sequence >

98 </otherwise >

99 </switch >

100 <sequence >

101 <invoke operation =" Register_Supply_Date "/>

102 <invoke operation =" Transfer_Loan "/>

103 </sequence >

104 </scope >

105 </sequence >

106 </scope >

107 <invoke operation =" Loan_passed "/>

108 </scope >

Listing D.3: Translation of the sub-process underwriting

STEP3: Decompose the sub-process bankguarnatee components into BPEL

Following the third step of our transformation approach we can identify the following

components for the sub-process bankgurantee (see Figure D.9):

• C6, is translated into a maximal component composed of a sequence and exclu-

sive choice, resulting in either the completion of the sub-process bankguarntee or

cancellation of the process (from line 18 to 32 in Listing D.4).

Appendix D. Case Study: The Everest Mortgage Process 179

• C7, is translated into a cancel task component, for which the occurrence of a

cancelbankguarntee event results in the termination of the all active instances in

the sub-process bankguarantee (from line 11 to 16 in Listing D.4).

STEP4: Translate the sub-process bankgurantee into BPEL

The sub-process bankguarntee does not contain an arbitrary cycle or unstructured com-

ponents after the third step, but the sub-process bankguarantee contains a cancel sub-

process event. This requires an aditional faulthandler in the scope activity resembeling

the sub-process bankguarantee (from line 2 to 7 in Listing D.4).

1 <scope name=" BANKGUARANTEE ">

2 <!---------------Fault handler required for the cancel task of C7 ----------->

3 <faultHandler >

4 <catch faultName =" fCANCELBANKGUARANTEE">

5 </empty >

6 </catch >

7 </faultHandler >

8 <eventHandler >

9 <!--------------- Event hander required for the cancel task ---------------->

10 <onMessage operation =" Start(CANCELBANKGUARANTEE)">

11 <scope name="C7">

12 <sequence >

13 <throw faultName =" fCANCELBANKGUARANTEE "/>

14 </sequence >

15 </scope >

16 <onMessage >

17 </eventHandler >

18 <!--------------- Event Action translation of C6 --------------------------->

19 <scope name="C6">

20 <sequence >

21 <invoke operation =" Create_BankGuarantee "/>

22 <invoke operation =" JudgeBankGuarantee "/>

23 <switch >

24 <case condition =" BankGuaranteeProvide">

25 <invoke operation =" BankGuarntee_notification "/>

26 </case >

27 <otherwise >

28 <invoke operation =" Start(Canceled)"/>

29 </otherwise >

30 </switch >

31 </sequence >

32 </scope >

33 </scope >

Listing D.4: Translation of the sub-process bankguarantee

D.2.4 Transform the the mortgage process into BPEL

STEP3: Decompose the mortgage process into components

Following the third step of our transformation approach we can identify the following

Appendix D. Case Study: The Everest Mortgage Process 180

components for the mortgage process (see Figure D.10):

• C1, is translated into a multiple start point event element, resulting in the activa-

tion of C2 (from line 15 to 27 in Listing D.5).

• C2, is translated into a single sub-process application, resulting in the activation

of C3 (from line 28 to 34 in Listing D.5).

• C3, is translated into a maximal component composed of sequence of the sub-

processes processing and underwriting resulting in the completion of the process

(from line 35 to 42 in Listing D.5).

• C4, is translated into a single sub-process bankgurantee, for which the completion

depends on the cancel task pattern as implemented in the underwriting (from line

43 to 46 in Listing D.5).

• C5, is translated into a maximal sequence composed of a deferred choice and

exclusive choice resulting in the termination of the process or the activation of

either C2 or C3 (from line 47 to 67 in Listing D.5).

STEP4: Translate the mortgage process into BPEL

Following the fourth step of our transformation approach we can produce the BPEL

code for the sub-process application (see Listing D.5). Notice that C1 is the start point

(at line 70 in Listing D.5) and waits for the completion of C3 (at line 71 in Listing D.5)

triggers the end of the mortgage process. The mortgage process is responsible to handle

the cancellation, such that an event handler Start(Canceled) is introduced to handle

all cancel events from the underlying sub-proceses. This cancel event handler throws

an fault, such that all running instances in the process are removed, such that a single

instance continues processing C5.

1 <process name=" MORTGAGEPROCESS ">

2 <faultHandler >

3 <!-- Remove all instances of the process and process continuation -->

4 <catch faultName =" fCanceled">

5 <invoke operation ="Start(C5)">

6 </catch >

7 </faultHandler >

8

9 <eventHandler >

10 <!--------------- Translation of the Cancelation --------------------->

11 <onMessage operaton ="Start(Canceled)">

12 <throw faultName =" fCanceled "/>

13 </onMessage >

14

15 <!--------------- Event Action translation of C1 --------------------->

16 <onMessage operation ="Start(C1)">

17 <scope name="C1">

Appendix D. Case Study: The Everest Mortgage Process 181

Figure D.10: Components in the mortgage process.

18 <pick >

19 <onMessage operation =" RequestA" createInstance ="yes">

20 <invoke operation =" Start(C2)"/>

21 </onMessage >

22 <onMessage operation =" RequestB" createInstance ="yes">

23 <invoke operation =" Start(C2)"/>

24 </onMessage >

25 </pick >

26 </scope >

27 </onMessage >

28 <!--------------- Event Action translation of C2 --------------------->

29 <onMessage operation =" Start(C2)">

30 <sequence >

31 <!-- code for sub -process APPLICATION -->

32 <invoke operaton =" Start(C3)"/>

33 </sequence >

34 </onMessage >

35 <!--------------- Event Action translation of C3 --------------------->

36 <onMessage operation =" Start(C3)">

37 <sequence >

38 <!-- code for sub -process PROCESSING -->

39 <!-- code for sub -process UNDERWRITING -->

40 <invoke operation ="End(C3)">

41 </sequence >

42 </onMessage >

43 <!--------------- Event Action translation of C4 --------------------->

44 <onMessage operation ="Start(C4)">

45 <!-- code for sub -process BANKGUARANTEE -->

46 </onMessage >

47 <!--------------- Event Action translation of C5 --------------------->

48 <onMessage operation ="Start(C5)">

49 <pick >

50 <onMessage operation =" Reactivate">

51 <switch >

Appendix D. Case Study: The Everest Mortgage Process 182

52 <case condition =" Offer.isProposed AND NOT Offer.isExpired">

53 <invoke operation ="Start(C2)"/>

54 </case >

55 <otherwise >

56 <invoke operation ="Start(C2)">

57 </otherwise >

58 </switch >

59 </onMessage >

60 <onAlarm name=" ReactivationPeriodExpired ">

61 <sequence >

62 <invoke operation =" Close Mortgage Process "/>

63 <terminate name=" terminated "/>

64 </sequence >

65 </onAlarm >

66 </pick >

67 </onMessage >

68 <!--------------- Start point of the scope mortgageprocess -- ------->

69 <sequence >

70 <invoke operation =" Start(C1)"/>

71 <receive operation ="End(C3)"/>

72 <invoke operation =" LoanPassed "/>

73 </sequence >

74 </scope >

75 </process >

Listing D.5: Translation of the the mortgage process

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Context
	1.2 Problem Definition
	1.3 Research Questions
	1.4 Thesis outline

	2 Enterprise Modeling
	2.1 What is Enterprise Modeling?
	2.2 The Enterprise Architecture
	2.2.1 Service Oriented Architecture
	2.2.2 Event Driven Architecture
	2.2.3 Process Driven Architecture
	2.2.4 Rule Driven Architecture

	2.3 Model Driven Architecture
	2.4 Enterprise architecture and MDA in the life cycle
	2.4.1 Design Stage
	2.4.2 Implementation Stage
	2.4.3 Enactment Stage
	2.4.4 Analysis Stage

	3 Everest Knowledge Framework
	3.1 EKF and Enterprise Modeling
	3.1.1 Enterprise architecture of the EKF
	3.1.2 Model Driven Architecture in the EKF
	3.1.2.1 Domain Modeling
	3.1.2.2 Rule Modeling
	3.1.2.3 Process Modeling
	3.1.2.4 Connectivity Layer

	3.2 How are the process models deployed on the EKF?
	3.2.1 How is the process model implemented in the EKF?
	3.2.2 How is the processes enacted on the EKF business engines?

	4 Business Process Execution Languages for Web Services
	4.1 Introduction to BPEL
	4.2 An overview of Web services technology
	4.3 Process and partner links
	4.4 Activities
	4.5 Data Handling

	5 Transform the EKF process language into BPEL
	5.1 Approach to transform the EKF process language into BPEL
	5.2 Results of transforming the EKF process language into BPEL
	5.2.1 Results of the domain transformation
	5.2.2 Results of the technical spaces transformation

	5.3 Issues & challenges as a result of the language transformations

	6 Transform EKF process models into BPEL code
	6.1 Approach to transform EKF process models into BPEL code
	6.1.1 STEP 1: Translate the domain
	6.1.2 STEP 2: Translate the technical spaces
	6.1.3 STEP 3: Decompose the (sub-)process into components
	6.1.4 STEP 4: Translate the (sub-)process into BPEL code

	6.2 Correctness and completness properties
	6.2.1 Can we translate all EKF process models into BPEL?
	6.2.2 What can we say about the correctness of the transformation?

	7 Discussion
	7.1 What best practices must be considered when integrating a BPEL engine in the EKF?
	7.1.1 Interface 1
	7.1.2 Interface 2
	7.1.3 Interface 3
	7.1.4 Interface 4
	7.1.5 Interface 5

	7.2 EKF process language versus formalized process modeling languages
	7.3 Related work
	7.4 Further research

	8 Conclusions
	A One Step Refinement Approach Explained
	A.1 Introduction
	A.2 Description

	B Domain transformation
	B.1 Process, Sub-process and Task
	B.2 Events
	B.3 Flow and Decision-points
	B.4 Channel and Roles
	B.5 Data

	C Technical Spaces transformation
	C.1 Interaction Patterns
	C.2 Basic control flow patterns
	C.3 Advanced branching and synchronization patterns
	C.4 Iteration patterns
	C.5 Multiple Instance Patterns
	C.6 State based patterns
	C.7 Cancellation Patterns
	C.8 Termination Patterns

	D Case Study: The Everest Mortgage Process
	D.1 Case study explained
	D.1.1 Mortgage domain model example
	D.1.2 Mortgage rule model example
	D.1.3 Mortgage process example
	D.1.3.1 sub-process application
	D.1.3.2 sub-process processing
	D.1.3.3 sub-process underwriting and bankguarantee

	D.2 Transformation of the EKF process into BPEL
	D.2.1 Transform the the sub-process application into BPEL
	D.2.2 Transform the the sub-process processing into BPEL
	D.2.3 Transform the the sub-process underwriting and bankguarantee into BPEL
	D.2.4 Transform the the mortgage process into BPEL

