EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

On the adoption of the business process execution language in the Everst Knowledge
Framework

Niks, R.W.C.

Award date:
2008

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0f8107f3-262d-4e35-a9a9-4e98a91fbcf4

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computer Science

On the adoption of the
Business Process Execution Language

in the Everest Knowledge Framework

by
R.W.C. Niks

Supervisors:

prof. dr. ir. G.J.P.M. Houben (TU/e)
ir. ing. M. Mastop (Everest)
drs. L. Hermans (Everest)

Eindhoven, June 2008

University Web Site URL Here (include http://www.tue.nl)
Department or School Web Site URL Here (include http://)
file:r.w.c.niks@student.tue.nl

“Faith consists in believing when it is beyond the power of reason to believe.”

Voltaire (November 21, 1694 - May 30, 1778)

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Abstract

Business Information Systems

Department of Mathematics and Computer Science

Master of Science

by R.W.C. Niks

The subject covered by this research project involves increasing the interoperability of
the Everest Knowledge Framework by the adoption of the Business Process Execution
Language. Everest aims at increasing the compliance and interoperability of their pro-
cess implementation in the Everest Knowledge Framework and allow business engineers
to construct models from which a more generic process implementation can be derived.
The enterprise modeling paradigm will be used to make an assessment of the model-
ing and deployment strategy of Everest. Typical approaches adopted in the application
development life cycle of Everest are: enterprise architecture and model driven architec-

ture.

The first accomplishment of this thesis is to formalize the syntax of the languages used
by Everest to model and implement their processes. Closing the gap between the Everest
modeling language and the Business Process Execution Language requires and assess-
ment of the domain and technical spaces of both languages. This assessment should
reveal the issues and challenges which must be considered when transforming one lan-
guage into another. Finally, we propose an approach to transform the Everest specific
process models into code based on the Business Process Execution Language. Apply-
ing the transformation approach to a process example from the Everest practice, allows
us to derive conclusions about the correctness and completeness of the transformation

results.

For Everest the adoption of Business Process Execution Language implies the integration
of a corresponding engine in the Everest Knowledge Framework. Therefore best practices
will be proposed to discus the design decisions Everest should concider when adopting

BPEL in the Everest Knowledge Framework.

University Web Site URL Here (include http://www.tue.nl)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
file:r.w.c.niks@student.tue.nl

Acknowledgements

This Master Thesis is the result of a research project carried out from January 2007
to June 2008 at the research group Information Systems at the Department of Math-
ematics and Computer Science at Eindhoven University of Technology. The research
has been conducted in cooperation with Everest B.V. a company specialized in Business
Knowledge Modeling & Engineering. For me, this thesis is the final step to obtain the

Master of Science degree in Business Information Systems.

I would like to thank Geert-Jan Houben for his ideas and support during the project.
As my supervisors at Everest, I would like to thank Leo Hermans and Mark Mastop
for their patience and giving me the opportunity to conduct my research in a business
setting. Also, I would like to thank Eric Verbeek, Edwin Popkin and Elco Rombouts

for their willingness to provide me with valuable feedback.

Also Bram Hoefnagel, Bart van der Heijden, Koen Schuurmans and Jasper Verhoeven,

for reviewing my work, your comments made this thesis certainly better reading material.

Finally, I would like to thank my relatives and girlfriend for the moral support, especially
during the difficult periods of the project. And of course my friends and roommates,

allowing me, when needed, to escape the reality of graduation.

It would never have been finished without you!

Eindhoven, June 2008

iii

Contents

Abstract ii
Acknowledgements iii
List of Figures vii
List of Tables viii
1 Introduction 1
1.1 Research Context 3
1.2 Problem Definition 4
1.3 Research Questions 5
1.4 Thesisoutline 5

2 Enterprise Modeling 8
2.1 What is Enterprise Modeling? 8
2.2 The Enterprise Architecture 9
2.2.1 Service Oriented Architecture 11

2.2.2 Event Driven Architecture 12

2.2.3 Process Driven Architecture 12

2.2.4 Rule Driven Architecture 14

2.3 Model Driven Architecture 15
2.4 Enterprise architecture and MDA in the life cycle 17
2.4.1 Design Stage 17

2.4.2 Implementation Stage L. 18

2.4.3 Enactment Stage 19

2.4.4 Analysis Stage 19

3 Everest Knowledge Framework 20
3.1 EKF and Enterprise Modeling 20
3.1.1 Enterprise architecture of the EKF 21

3.1.2 Model Driven Architecture in the EKF 23

3.1.2.1 Domain Modeling, 25

3.1.2.2 Rule Modeling 26

3.1.2.3 Process Modeling, 30

3.1.2.4 Connectivity Layer 36

3.2 How are the process models deployed on the EKF? 37

iv

Contents v

3.2.1 How is the process model implemented in the EKF? 37

3.2.2 How is the processes enacted on the EKF business engines? 38

4 Business Process Execution Languages for Web Services 43

4.1 Introduction to BPEL 43

4.2 An overview of Web services technology, 44

4.3 Process and partner links oL 45

4.4 Activities e 46

4.5 Data Handling 48

5 Transform the EKF process language into BPEL 51

5.1 Approach to transform the EKF process language into BPEL 51

5.2 Results of transforming the EKF process language into BPEL 55

5.2.1 Results of the domain transformation 55

5.2.2 Results of the technical spaces transformation 57

5.3 Issues & challenges as a result of the language transformations 60

6 Transform EKF process models into BPEL code 63

6.1 Approach to transform EKF process models into BPEL code 63

6.1.1 STEP 1: Translate the domain 65

6.1.2 STEP 2: Translate the technical spaces 66

6.1.3 STEP 3: Decompose the (sub-)process into components 67

6.1.4 STEP 4: Translate the (sub-)process into BPEL code 69

6.2 Correctness and completness properties 72

6.2.1 Can we translate all EKF process models into BPEL? 72

6.2.2 What can we say about the correctness of the transformation? 73

7 Discussion 74
7.1 What best practices must be considered when integrating a BPEL engine

inthe EKFE? 75

7.1.1 Imterface 1. 75

7.1.2 Interface 2. 76

7.1.3 Interface 3. 76

7.1.4 Interface 4. e 80

7.1.5 Interface 5. 80

7.2 EKF process language versus formalized process modeling languages . . . 81

7.3 Related work 81

7.4 Further research L 84

8 Conclusions 86

A One Step Refinement Approach Explained 96

Al Introduction 96

A2 Description 97

B Domain transformation 99

B.1 Process, Sub-process and Task, 99

Contents vi
B.2 Events 100
B.3 Flow and Decision-points o 104
B.4 Channel and Roles 104
B.5 Data 108

C Technical Spaces transformation 114
C.1 Imteraction Patterns o 114
C.2 Basic control flow patterns oL 118
C.3 Advanced branching and synchronization patterns 124
C.4 Tteration patterns 129
C.5 Multiple Instance Patterns 134
C.6 State based patterns 138
C.7 Cancellation Patterns 143
C.8 Termination Patterns. oo 152

D Case Study: The Everest Mortgage Process 156
D.1 Case study explained 156

D.1.1 Mortgage domain model example 156
D.1.2 Mortgage rule model exampleo 159
D.1.3 Mortgage process example L0000 160
D.1.3.1 sub-process application 161
D.1.3.2 sub-process processing 162
D.1.3.3 sub-process underwriting and bankguarantee 162
D.2 Transformation of the EKF process into BPEL 164
D.2.1 Transform the the sub-process application into BPEL 164
D.2.2 Transform the the sub-process processing into BPEL 168
D.2.3 Transform the the sub-process underwriting and bankguarantee
into BPEL 174
D.2.4 Transform the the mortgage process into BPEL 179

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4

Levels of Business Knowledge 2
Outline of this thesis o 6
Layers in Enterprise Architecture 10
Modeling layers in MDA Lo 16
Stages in the development life cycle 17
Enterprise architecture in the EKF 21
Modeling dimensions in the EK 24
Meta-model of the EKF domain language 26
Meta-model of the EKF rule language 29
Sub-process in the EKF process 31
Task & flow in the EKF process. 32
Events in the EKF process 32
Decision-points in the EKF process 34
Meta-model of the EKF process language 35
UML class diagram of connectivity layer 36
Deployment of EKF process models in the EKF 39
State Transition Diagram EKF process 40
Logical components in the rule engine 41
The Web service stack o 45
Meta-model of the BPEL process 46
Meta-model of the BPEL activity hierarchy 49
Meta-models of data handling in BPEL 50
Deployment of EKF process models onto BPEL engine 52
Transformation of EKF process language into BPEL 53
Steps in the transformation approach 63
Running example: complaint handling process 64
Transformation of complaint handling process (Cont. STEP1) 65
Transformation of complaint handling process (Cont. STEP2) 67
Transformation of complaint handling process (Cont. STEP3) 69
WIMC Reference Modelo 75
Continuum of EKF and BPEL engine integration 7
Point-to-point versus broker integration 0000 7
Integration of EKF and BPEL engine 78

vii

List of Tables

3.1

5.1

5.2
5.3

7.1

The syntax of the EKF process decision table 38
Classification of interaction [Barros et al., 2005b] & workflow [Aalst van

der et al., 2003] patterns 54
Results of the domain transformation 56
Results of the technical spaces transformation 58

Evaluation of the expressiveness of EKF process language compared to
AD, BPMN and YAWL 82

viii

Chapter 1

Introduction

The rapid and constant changes that are very common in today’s business environments
affect not only business itself, but also its supporting Business Information Systems
(BIS). Due to the dynamic market, the business needs to adapt to changes from its
environment to remain competitive in that market. As a result, the business processes,
business rules and business domain require continuous changes, renovation and adap-
tation to meet actual business needs. This and the increasing need for business agility
will drive the rise for a new generation of BIS, which has implemented the business
knowledge and process flow as business content. In this way the business content is in-
terpreted by generic business engines responsible to derive the desired behavior directly

from business content.

Three levels of business knowledge can be identified (see Figure 1.1): strategic, tactic
and operational. Strategic business knowledge is represented by the business vision,
the mission, goals and strategy. The goal-oriented business knowledge can be redefined
to a point where it can be translated into tactical business knowledge expressed by:
policies, rules, objectives, tactics, products and procedures that together will achieve
the stated business goals [Rosca et al., 1995]. The tactic business knowledge is more
or less represented by intentional rules and procedures that need to be expressed more
specific such that they can be applied on the operational business level. The rules and
procedures that end up in the implementation of an application are called ‘executable
rules’ and ‘executable processes’, which refers to the rules and procedures that can be
expressed formally, such that they can be interpreted and executed by computers. The
goal is to automate the rules and procedures from the operative level to the system
level, so that the transformation of rules and procedures from the operational business
to its implementation is more transparent, by making the business rules and business

processes explicit and independent of the ‘programming logic’ (software code). This

Chapter 1. Introduction 2

Business Knowledge

Strategic Business Knowledge

Vision & mission
Goals & Strategy

Tactical Business Knowledge

Objectives & Tactics
Products & Services
Organization Unitis & Business Procedures
Business Policy & Rules
Law & Legislation

Operational Business Knowledge

Operative Business
Knowledge (bRules & bProcess)

Process & Service Rules
Organization Rules
Interaction Rules
Collaboration Rules

Executable Processes

Procedural
flow

State
transition
Executable Rules
Reaction Derivation Intergrity Transformation
Rules Rules Rules Rules

Derives Ci Tr

' {

Domain Model

Structural
Rules

FIGURE 1.1: Levels of Business Knowledge.

implies that the rules constrains, derive data and transforms data in domain model and

enables behavioral aspects (state transition) in the process.

Over the years, the business has sought ways to optimize the performance of business
applications and increase the flexibility, when adapting to changes in the business en-
vironment. Automating the business implies that more and more operative rules and
procedures must be translated into executable rules and executable processes, so that
they can be deployed and enacted by ‘business engines’. Following this approach the
operative procedures are managed by the ‘the world of business’ and the executable
processes by the ‘the world of technology’ [Morgan, 2002]. Enterprise modeling has
been adopted by the industry as a widespread strategy for developing flexible enterprise
applications in an evolutionary development life cycle. Both the enterprise architec-

ture and Model Driven Architecture (MDA) have emerged from the enterprise modeling

Chapter 1. Introduction 3

paradigm. The enterprise architecture focuses on the functional decomposition and in-
tegration of the business applications and MDA aims at providing high-level modeling
language (supported by tools), such that models composed with these languages can
be transformed into executable models, which can be enacted by business engines or

implemented as programming logic.

1.1 Research Context

Everest is a company that is specialized in knowledge engineering, which is the process of
acquisition, analyzing, validating and automating operational business knowledge from
several domains (e.g.: mortgage, insurance and banking). To serve their customers,
Everest has developed a knowledge based application development environment called
the Everest Knowledge Framework (EKF). The EKF is used for the development of
business applications, where business knowledge plays a central role when automating
the decision making. By increasing the interoperability of the EKF with other systems
and tools Everest aims at increasing their market share and maintaining their innovative

position.

The ultimate goal of the EKF is to provide an application development environment,
that is configurable and manageable by ‘business-oriented people’. This requires that
the supported tools and adopted modeling techniques must be understandable by the
‘business-oriented people’ [Hermans, 2007]. Although the development languages of the
EKF are much less technical compared to traditional programming languages, it still
requires people with engineering skills, qualified as ‘business engineers’, for modeling.
Business-oriented people do usually not express operative business knowledge by means
of models, but use natural language instead. For Everest the business engineers play
an important role when survey the business demands and creating models toward a
business solution. Because the business engineers have a more clear understanding of
the business needs, they are better able to make decisions with respect to the business
solution. Issues arise when the business engineers and ‘software engineers’ must syn-
chronize the design and the implementation. Technical considerations could result in
flaws or limitations of the application, such that frequent changes require increasing ef-
fort of communication between the business engineers and software engineers [Kontonya
and Sommerville, 2002]. Therefore Everest has adopted an approach where higher-level
models are developed by business engineers which are directly deployed onto the busi-
ness engines. Following this approach Everest aims at an increase in agility and decrease

of time-to-market, when developing business applications.

Chapter 1. Introduction 4

The customers of Everest have a demand for compliance in the business processes. This
has resulted in the increasing interest of Everest to adopt a more generic approach to
implement and deploy the processes in the EKF. Standardization in the business process
domain is maturing and various languages and vocabularies have emerged from both the
scientific and industry communities. Everest is mainly interested in the adoption of the
Business Process Execution Language (BPEL) in the EKF, as it is at the time of writing

the defacto standard for process enactment and interchange.

1.2 Problem Definition

The EKF supports modeling of certain aspects of applications in terms of executable
models, which are enacted by business engines. Each model corresponds to a certain
aspect of the system (e.g. domain, rule, process, task, etc.). Both the domain and
rules play an increasingly important role in the EKF, as a consequence of the increasing
degree to which primary customer-oriented processes from sale to delivery must be au-
tomated for different products via different channels. Everest uses a high-level modeling
language, called the ‘EKF process language’, for modeling their business processes at
the conceptual level. These conceptual models are implemented in terms of the EKF
domain and rule models for which business engines are responsible to produce the de-
sired process behavior. More specific, the domain and rule model are used as a basis for
the implementation of the processes. The drawback of this approach is that the deploy-
ment of the EKF processes is Everest specific and lacks for interoperability with other

applications and systems and therefore requires increasingly efforts of programming.

The EKF is used in various enterprise solutions where process interchanges becomes
an increasingly important factor. Everest is interested in the adoption of BPEL as a
language for process interchange or even integrate a BPEL engine within the EKF. In
this thesis we therefore directly address the need of Everest to be able to translate their
EKF process models into BPEL code. The transformation of one model into another,
requires an assessment of the way Everest models and deploys its processes. For Everest
this assessment is considered to be an important result, as no description of the syntax
and semantics of the EKF process language was available at the start of this project.
The insights into the syntax and semantics of the EKF process language should allow an
evaluation of the contextual and conceptual differences between EKF process language
and BPEL. The contextual and conceptual differences must be considered when bridging
the gap between the EKF process language and BPEL, toward an approach to translate
EKF process models into BPEL code. The assessment of the EKF process language

is an important result for Everest, which raises questions about expressiveness of the

Chapter 1. Introduction 5

EKF process language compared to BPEL. For Everest the adoption of BPEL implies
the integration of a BPEL engine in the EKF. Assessment of the consequences of the
EKF process language and integration of a BPEL engine in the EKF, should result in
a better understanding of the best practices which must be considered by Everest when
adopting a BPEL engine in the EKF.

1.3 Research Questions

Several research questions arise from the objective as defined in the previous section.
First, we specialize the objectives for modeling and deployment into the question: ‘How
the modeling and deployment is done from the enterprise modeling perspective?’. Sec-
ond, we determine: ‘How the modeling and deployment of models is specifically done in
the EKF’. This requires an assessment of the syntax and semantics of the EKF pro-
cess language, as no such specification was available at the start of this project. Third,
we perform a similar assessment for BPEL: ‘What are the key features and syntazx of
BPEL?’. Fourth, we aim at answer the question: ‘How to make the EKF more inter-
operable by adopting BPEL?’ . Conceivable, this question is divided into the following
two partial questions: ‘What are the issues and challenges when closing the gap between
the EKF process language and BPEL?’ and ‘How EKF process models can be trans-
formed into BPEL code?’. Finally, we reflect our solutions and discuss the limitations
of our proposed solution, for which we aim at answering the question: What are the best
practices which must be considered when adopting our proposed solution?. The following

research questions should cover these objectives:
1. What are the principles used for enterprise modeling?
2. How does Everest apply enterprise modeling in the EKF?
3. What are the key features and syntax of BPEL?

4. How to make the EKF more interoperable by adopting BPEL?

5. What are the best practices which must be considered when adopting our proposed

solution?

1.4 Thesis outline

For the outline of this thesis we distinguish the structure of: problem definition, analysis,

design and evaluation (see Figure 1.2). As the problem definition and research objectives

Chapter 1. Introduction 6

have already been discussed in the previous sections, we will now focus on the analysis,

design and evaluation.

Problem Definition Analysis Design Evaluation
Transformation of EKF i .
Context Enterprise Modeling process language into Discussion
(Section 1.1) (Chapter 2) BPEL {Chapter 7)
(Chapter 5)
Everest Knowledge Transformation of EKF
Problem Definition Framework 9 process models into Conclusions
(Section 1.2) (c:a etefa) BPEL code (Chapter 8)
P (Chapter 6)
i The Business Process
Research Questions Execution Language for
(Section 1.3) Web Services
{Chapter 4)
Thesis outline
(Section 1.4)

FIGURE 1.2: Outline of this thesis.

In our analysis we start by describing the notion of enterprise modeling (see Chapter
2), because the first research questions involves identifying the principles of enterprise
modeling as a strategy for development of business solution. We are mainly interested
in enterprise modeling approaches applicable in the software development life cycle. We
put enterprise modeling in the perspective of the EKF (see Chapter 3) to get more
insight in the way enterprise modeling is performed in the EKF. Followed by a more
detailed study of the way Everest models and deploys its processes in order to get more
insight into the syntax and semantics of the EKF process language. We perform a similar
study for BPEL to provide a more clear understanding of the key features, syntax and

semantics of BPEL(see Chapter 4).

In the research design we focus on the approach followed to increase the interoperability
of the EKF process design and implementation and aim at answering the fourth question:
‘How to make the EKF more interoperable by the adoption of BPEL?’. To provide a
proper answer to this question, we respond to two partial questions, namely: ‘What are
the issues and challenges to close the gap between the EKF process language and BPEL?’
and ‘How EKF process models can be transformed into BPEL code?’. Answering these
questions requires an assessment of the transformation of the EKF process language into
BPEL. In our approach we translate EKF process language into BPEL by performing
an analysis of the language contexts and language concepts, based on respectively the
domain and technical spaces transformation (see Chapter 5). The issues and challenges
which come from the domain and technical spaces transformation are important results,

as they must be considered when proposing an approach to translate the EKF process

Chapter 1. Introduction 7

models into BPEL code (see Chapter 6). By applying the proposed transformation
approach to a case study (see Appendix D), we draw conclusions with respect to the

correctness and completeness of our proposed transformation solution.

In the evaluation we reflect our solutions, for which we aim answering the last question:
‘What are the best practices which must be considered when adopting a BPEL engine in
the EKF?’ (see Chapter 7). To answer this question we first: compare the EKF process
language with alternative modeling languages, second: we start a discussion of the best
practices which must be considered when integrating a BPEL engine in the EKF, third:
we give an overview of the related work, and finally: we discuss the limitations of
our proposed solution. The conclusions are summarized in chapter 8, followed by the

bibliography.

Chapter 2

Enterprise Modeling

In this chapter we aim at answering the question: ‘What are the principles used for
enterprise modeling?’. Therefore we start with an introduction to enterprise modeling
(see Section 2.1), followed by a more detailed description of enterprise architecture (see
Section 2.2) and MDA (see Section 2.3). Both enterprise architecture and MDA are
considered to be important approaches in the context of the application development

life cycle of Everest (see Section 2.4).

2.1 What is Enterprise Modeling?

When new business applications are being developed, different kind of stakeholders are
involved. Each stakeholder has its own perception of the business applications and eval-
uates the problem from different angles, also referred to as ‘viewpoints’. The viewpoints
can be represented by a vocabulary that specifies a model, which can be used for com-
munication and synchronization purposes among the different stakeholder. Different
models are used to fulfill the need of the different stakeholders (e.g. scope, business
model, system model, technology model and detail representation). Each viewpoint has
several aspects, particular facets that need to be considered to completely describe each
viewpoint. The aspects are based around six basic questions as defined by [Zachman,
1987]: what (data), how (function), where (network), who (people), when (time) and

why (motivation).

Enterprise modeling is ‘the activity that is used to create abstractions of models that
captures different aspects of the business with a purpose to understand and share the
knowledge of how the enterprise is structured and how it operates’ [Bajec and Krisper,

2005]. A model is ‘the abstraction of its subject that includes information pertinent to

Chapter 2. Enterprise Modeling 9

its viewpoint and omits information to other viewpoints’. A model can be decomposed
into individual models that together describe all aspects of all viewpoints. Different
viewpoints can have common elements, but relations to other viewpoint can exist which
make the models interdependent. Different enterprise models are proposed to express
the different aspects of the business: business motivation model, business process model,

domain concepts model and organizational model.

The motivation model reflects the strategy, goals, policies, laws and regulations from
the business perspective and need to be made explicit in terms of the business rule
model. This is referred to as the ‘why’ of the business operation. The organizational
model reflects the organizational structure and the resources that are important for the
organization, which reflects the ‘who’ of the business operation. The business domain
concepts model captures the concepts (e.g. products, services and documents, etc.) that
a business maintains, and represents the ‘what’ of the business operation. The process
model reflects procedures an organization maintains, describing in which order the work
need to be performed to reach a certain business goal. The process model ensures certain
efficiency of the business and is focused on the ‘how’ of the business. The enterprise
models do not operate independent of each other, such that alignment between the
models is required through the business model, before they can be put to actual use
[Bajec et al., 2000, Atkinson and Kuhne, 2003].

Both the enterprise architecture (see Section 2.2) and MDA (see Section 2.3) are inter-
esting in the context of Everest, as they are the basis of the way Everest models and

deploys business applications as part of the Everest development life cycle.

2.2 The Enterprise Architecture

The enterprise architecture is the practice of optimizing and aligning the organizations,
decisions, processes and services a business maintains. It consists of describing the
current and future structure and semantics of the: processes, information systems, per-
sonnel and units, and how they are aligned with the organizations strategic direction. In
this thesis we are mainly interested in the technology aspect of the enterprise architec-
ture, which is focused on alignment of the functional components of an actual business
application. The technical aspects consider logical components to be a decomposition

into systems, which are responsible for controlling these aspects.

Figure 2.1 shows a conceptual overview of a generic enterprise architecture composed of

the following five layers':

!Notice that the layered stack is extended with event and rule layer as an independent system de-
composition.

Chapter 2. Enterprise Modeling

10

Event
Layer

Process
Layer

ON Event DO action
ON EventIF condition DO

action ELSE alternative

action
ON Event IF condition DO

action

/TR

o Vi 7 ”
Service / Service 7 Setvice
Service
Servi losing Fund Sefvics

IF condition THENaction
Risk Rating
f , /
Layer Authorization
Rules

Application
Layer

3 cRM

Data

EKF ~=- Finance
Risk
Ratings

FIGURE 2.1: Layers in the enterprise architecture [Wilkes and Veryard, 2004].

e The event layer exposes a predefined set of event patterns as services, used for

specifying communication protocols or the processing of (internal and external)

business events.

e The process layer combines the services in long running processes, where each

process itself is provided as a service.

e The service layer conceals the system functions and components and provides

them as services.

e The rule layer can be used to describe the structural and semantical constraints

of the actual service.

e The application layer is responsible for the integration of services across application

systems (e.g. Enterprise Resource Planning, Customer Relationship Management,

etc.).

Chapter 2. Enterprise Modeling 11

Instead of implementing each enterprise applications as a single purpose application, one
can use architectural styles as a blueprint for the design and implementation. Architec-
tural styles promotes reuse as they promote the modularity of components across the
enterprise architecture. Take for example a jigsaw puzzle is modular, but it can only be
composed in one way (close-ended). A tangram is a tiling puzzle that is also modular,
but can be composed to make an infinite variety of shapes (open-ended). Following the
tangram approach each layer in the enterprise architecture, promotes a style reflecting
one functional component in the enterprise architecture. The following architectural
styles can be identified: Service Oriented Architecture (SOA), Event Driven Architec-
ture (EDA), Process Driven Architecture (PDA) and Rule Driven Architecture (RDA)
[Kuster and Konig-Ries, 2007, Michelson, 2006, Martin, 2006]. In the following sections

we give a brief introduction to each of the architectural styles.

2.2.1 Service Oriented Architecture

The SOA is ‘a computer systems architectural style for creating and deploying packaged
services and defining an infrastructure to allow the interaction of these services’. The
services are reusable pieces of functionality that communicate with each other in some
meaningful way. The interface of the services are described by an universal language,
such that they can be invoked from applications or services independent of the platform

on which they operate and language in which they are implemented.

The SOA prescribes a mechanism to provide and consume services in a network. This
allows that the provided services can be reused by multiple consumers. Reuse of the
services reduces complexity when multiple parties need to interact with a single service.
A system which has adopted SOA consists of subsystems on the application layer that
interact in a loosely coupled manner. Loose coupling describes: ‘an approach where inte-
gration interfaces are developed with minimal assumptions between the sending/receiving
parties, thus reducing the risk that a change in one application will force a change in
other application?’. The subsystems are autonomous, such that they can be consumed by
different partners without knowing the processing details of the actual service. Services
are subject of reuse as they are decomposable (service can contain services). Another
important characteristic of services is that each service can be treated as a black box,
such that the consumers of services do not require a detailed definition of how the service
was implemented, but only the (semantic) specification of the service. Finally, services
increase scalability as each service should be dynamically discovered and bound to the
end-point, independent of the location or platform on which they operate. Different
communication protocols (e.g. CORBA, RMI, SOAP, COM, etc.) have been proposed,

%see: http://en.wikipedia.org/wiki/Loose_coupling

Chapter 2. Enterprise Modeling 12

promoting implementations of SOA across different type platforms (e.g. Sun Microsys-
tems (J2EE) and Microsoft’s (.NET)).

2.2.2 Event Driven Architecture

The EDA can be defined as: ‘an architectural style for designing and implement applica-
tions and systems in which events transmit between loosely coupled software components
and services’ [Michelson, 2006]. An event driven system is typically comprised of event
consumers and producers. Event consumers subscribe to an event provided by an event
manager, the event producers publish the occurrence of the events to this manager.
When an event is received by the event manager it is forwarded to all subscribed con-
sumers. In case the consumer is not available, the manager can store the event and try

forward it at a later stage (store and forward).

EDA is typically useful for business-to-business and peer-to-peer interactions which
are highly dynamic across business applications. Therefore a more sophisticated a-
synchronous processing technique is quickly becoming apparent to support this task.
Building a communication model to exploit this power and allowing a certain flexibility
is a high priority for competitive software development. An event-driven communica-
tion model is superior when responding to run-time occurrences, compared conventional
synchronous request /reply mechanism. As the publisher has no knowledge of the events
subsequent processing or the interested parties, it is clear that the events are by nature

loosely coupled and highly distributed.

EDA is push-oriented and fills the gap of PDA which is generally pull-oriented. Take
for example a mortgage company detecting an increasing number of fraud situations for

which different controllers need to be notified.

2.2.3 Process Driven Architecture

The PDA can be defined as: ‘an architectural style for designing and implementing
applications and systems in which processes are exposed and interact between loosely
coupled software components and services. The origin of PDA? comes from the workflow
management paradigm, which is focused on ‘the division of work, such that it can be
distributed among the different actors in the process’. In the typical workflow paradigm,
a business process is recursively decomposed into sub-processes and tasks, where the

task is an atomic entity. Here also lies the main difference between workflow and PDA,

3There is no agreement on the meaning of PDA, but there are topics with respect to business processes
that are commonly gathered under this terms, notably the design, analysis, modeling, implementation
and control of the business processes.

Chapter 2. Enterprise Modeling 13

as PDA exposes the atomicity of processes, sub-processes and tasks as services. This

principle is also referred to as the orchestration of services.

Workflow is related to three dimensions as identified by [Aalst van der and van Hee,
2004]: control flow, case data and resources. The control flow defines the order in
which the task must be performed; the case data defines the goal in form of information
that need to available after the completion of each task; and the resources refer to
the organizational structure such as: actors and their capabilities and responsibility to
perform tasks. The dynamic behavior of the process is conceptualized in terms of a
case following through the tasks and sub-processes according to a predefined process
model. A case can follow alternative choices or parallel-split routes through the process
model, where the split implies that the case can reside at several positions in the flow
simulations. A more elaborate description of the variations in control flow routing are
is described in the Workflow patterns [Aalst van der et al., 2003, Aalst van der and
Hofstede ter, 2002, Puhlmann and Weske, 2005].

Workflow has introduced various advantages with respect to modeling the procedures in
the operational business. The separation of control of work, can be distributed among
human and system actors and even third participating parties in the business environ-
ment. In this way workflow decreases the operational cost by automating the manual
tasks (e.g validate, retrieve and interchange of data on a timely basis.). Workflow enables
optimization of the business performance (e.g. decrease throughput time and waiting
times in the process), by performing measurements, analysis and redesign [Reijers and
Limam Mansar, 2005]. By modeling the process instead of programming it is possible
4 or simulate the process before the they are put in actual use
[Aalst van der and Hofstede ter, 2002, Aalst van der, 1998, 2000, Jensen, 1997, Dijkman

et al., 2007]. Workflow also contributes to the compliance in the organization, such that

to validate its correctness

a process can be used as an agreement between multiple parties [Zaha et al., 2006].
Workflow solutions are better adaptable to changes from the business, because the pro-
cess is defined in a graphical language, understandable by business engineer. Changing
a graphical language instead of the programming logic increases the agility to adapt to

changes and decreases the time-to-market.

Drawbacks associated with the workflow paradigm are lack of flexibility, the atomicity
of tasks, context tunneling and the mix-up of distribution and authorization [Aalst van
der et al., 2005b]. The lack of flexibility refers to the push-oriented routing focusing on
what should be done instead of what can be done, resulting in rigid inflexible workflows.
The atomicity of tasks refers to the requirement that work should be straight-jacketed

into atomic tasks, while user performs them at a much more fine-grained level. Context

4Only possible when the semantics can formally described.

Chapter 2. Enterprise Modeling 14

tunneling refers to the lack of context during the processing of a task by an individual,
especially the processing history of a case. The miz-up between distribution and autho-
rization refers to the problem that workers can see all the work they are authorized to

do, but are not authorized to do anything outside of their worklist.

2.2.4 Rule Driven Architecture

The RDA can be defined as: ‘an architectural style for designing and implementing appli-
cations and systems in which the semantics of a set of rules are exposed as loosely coupled
software components and services’. The rules are declarative statements expressed in a
basic syntactical structure. The RDA encompasses improving the correctness, consis-
tency, changeability and agility of the decision taking an organization maintains. More
specific: RDA exposes the decision taking as services for which the semantics are defined

in terms of declarative rule statements.

The concept of business rules originates from the knowledge engineering® and knowledge
representation®, which both have arisen from the cognitive science and artificial intel-
ligence. In these paradigms the knowledge is used to achieve intelligent behavior as to
facilitate inference (i.e. taking decisions or derive knowledge from explicit knowledge).
Rules are stored in a rulebase and are enacted by rule engines, which evaluate the con-
ditions of the rules and determine (at any point in time) which rules are eligible to fire.
Newell [1982] is one of the first that introduced the idea of knowledge modeling on the
conceptual level, his work states that: ‘knowledge is to be modeled at a conceptual level,
in a way independent of specific computational construct and software implementation’.
Other considerable research comes from the Database Research Community, which has
resulted in the development of active databases supporting data integrity, through pro-
cedures and triggers [Dayal et al., 1998, Tanaka, 1992, Widom and Ceri, 1996]. Further
research on rules has resulted in the development of deductive databases, which make
deductions based on rules and facts stored in a rulebase [Loucopoulos, 2000, Loucopou-
los et al., 1991]. These approaches have evolved into the rich knowledge based systems
we use today, where rules are separated from the data and processed by independent
engines [Ross, 2000, Schreiber et al., 2000]. The Business Rule Approach is the result of
the increasing interest of identifying and articulating the operational business rules in
a development life cycle [Ross, 2003]. The research community further investigates the
elicitation, analysis, classification, formalization and implementation of business rules
[Herbst, 1994, Rosca et al., 1995, Bajec et al., 2000]. The more common use of rules

has resulted in the development of vocabularies and standards for the interchange of

®see: http://en.wikipedia.org/wiki/Knowledge_engineering
Ssee: http://en.wikipedia.org/wiki/Knowledge_representation

Chapter 2. Enterprise Modeling 15

rules by means of services. Nevertheless, at the time of writing the development of these
standards is work in progress [OMG, 2006, W3C, 2005].

The Business Rule Manifest [Ross, 2003] specifies a number of guideline, which need to be
followed in order to take advantage of business rules. Traditional software engineering
is a slow and time consuming process, where the software (which will end up in the
programming logic) implicitly describe the executable rules. The business rules aim
at separation of the executable rules from the programming logic, by implementing the
rules as content [Herbst, 1994, EnixConsluting, 2005]. Like the process the business rules
increase the compliance in the organization as the rules explicitly define the policies &
regulations an organization maintains. The business rules are an important asset of
the business (reflecting the requirements of the business), but with traditional system

development these rules are buried deep into the programming logic.

The main difference between the rules and the process is that rules are modular and
have a declarative syntax compared to the imperative syntax of procedural processes.
The rules are most useful at a more fine-grained level of the process, where it becomes
increasingly difficult to express the business knowledge in terms of imperative languages.
The rules are modeled as independent rule statements, such that each rule can be seen
as the smallest unit of change [Goedertier and Vanthienen, 2006]. The changes of busi-
ness rules can be simulated without changing code, but by changing the rules instead
[Bajec et al., 2000, Bajec and Krisper, 2005]. Analysis can be performed at forehand
to evaluate if the newly implemented business rules meet the actual business objectives.
The declarative nature of rules allow a better understanding of the individual rules, such
that they can be modeled by the business engineers and allows validation of indepen-
dent rules more easily. By making business rules explicit and express them in syntax
understandable for business engineers, brings the rules one step closer to the business to
regain control of its rules. The software engineers do not have to translate the rules into

programming logic, but develop a rule engines that are responsible to enact the rules.

2.3 Model Driven Architecture

Another approach of enterprise modeling can be found in the MDA, which can be defined
as: ‘a model based representation of a part of the function, structure and semantics of
an application or system’ [Mellor, 2004]. MDA is not focused specifically on the func-
tional architecture, but more on the modeling perspective. MDA classifies three model
types: Platform Specific Model (PSM), Platform Independent Model (PIM) and Com-
putational Independent Model (CIM). MDA proposes high-level modeling languages,

which introduces a more abstracted modeling syntax reducing technical complexities.

Chapter 2. Enterprise Modeling 16

These models are referred to as CIM, which allows modeling independent of the actual
implementation, where the solutions will be limited by technical considerations (e.g.
BPMN, AD and YAWL, etc.). In MDA the models for which the platform independent
computation are considered are referred to as PIM (e.g. BPEL, XPDL, RuleML, etc.)
and the models which include platform specific specifications are referred to as PSM
(e.g. C# and Java, etc.).

At all levels of MDA models are governed with a syntax and semantics’. This allows

that models, for which the syntax and semantics are comparable, can be synchronized
through transformations from CIM into PIM and from PIM into PSM. To accomplish
this goal OMG [2003] has defined four modeling layers in MDA (see Figure 2.2). At the
MO level, MDA specifies the executable code of a program. At M1 level, MDA considers
models from which the executable code can be constructed. At the M2 level, MDA
specifies the meta-models that define the syntax of the language used for modeling. The
M3 level, MDA specifies the meta-meta-model that defines a generic language, which

can be used to construct meta-modeling languages at the M2 level of MDAS.

r =

M3 model
MOF
model
V4 \
M2 model CIM
BPMN Meta- UML Meta-
model model
M1 model PIM
UML UML
model A model B
/ \
MO0 model PSM
C# Java
code Code

.

FIGURE 2.2: Modeling layers in MDA from [Kleppe, 2003].

The goal of MDA is to transform models from one modeling layer into another?. An
alternative approach to pure MDA, is to define engines, which interpret the models at

M1 and produce the desired behavior based on a set of predefined semantics. In this

7 A model is formal if its syntax and semantics can be described formally.

®In figure 2.2 Meta Object Facility (MOF) is provided by OMG to fulfill this task.

9In this thesis we mainly focuses on the forward engineering principle, the backward engineering is
not considered.

Chapter 2. Enterprise Modeling 17

case it is not required to generate programming logic, but generic engines implement the
semantics of language concepts at the MO level of MDA. This allows that the models
can be simulated at an early stage in the development life cycle, unlike the traditional
approach where programming logic drives the solution. MDA also ensures a certain
predictability of the end result and encourages efficiency of system models in the software
development life cycle. MDA also supports reuse of best practices when creating families
of systems, allowing the use of automated tools for the design and validation of models

and facilitate the transformation of models at different levels of abstraction.

2.4 Enterprise architecture and MDA in the life cycle

The life cycle plays and important role in enterprise modeling to enable different stake-
holders to manage their own viewpoints of a business solution. In this section we discuss
the role of the enterprise architecture and MDA in the application development life cy-
cle. A general development life cycle is composed of generally four repeating stages (see

Figure 2.3): design, implementation, enactment and analysis.

Goals,
Policies &
Regulations
| ALLIGN Implementation

FIGURE 2.3: Stages in the development life cycle (from Muehlen zur [2004]).

2.4.1 Design Stage

At the design stage the business goals, policies and regulations (also known as busi-
ness requirements) are made explicit in terms of business requirements. These business

requirements must be translated into designs, which is the first step toward a more

Chapter 2. Enterprise Modeling 18

formalized representation of the business solution. The business requirements are dy-
namic and should be flexible toward changes in the business. Changes in the business
environment are driven by internal decisions or external forces, such as government laws
and regulation. The regulation imposes external legislations, such as business protocols,
legislation, long-term contracts, quality norms etc. Regulations often bring change re-
garding the process interaction with the business partners. The policies are internally
defined and come from intended strategies of management or procedures for the per-
sonnel. Take for example: an order acceptance policy, discount policy or risk rating
policy. The changes to the policies are motivated by strategic, tactic and operational
decisions. The strategic and tactic policies are not formal and need to be formalized
into operational policies, which can be expressed in the form of a design governing by a

syntax of the form: principles, procedures, facts, figures, formulas, etc.

The design stage is driven by business-oriented people, which are mostly not familiar
with formal modeling languages. At this stage modeling is performed at the conceptual
level, classified as CIM in MDA. No technical aspects of the enterprise architecture
are considered yet at this stage. Nevertheless, the organizational models describing
the geographic decomposition of the organization, already constraints aspects of the

enterprise architecture.

2.4.2 Implementation Stage

Business-oriented people have little understanding of programming languages, such that
involvement of business engineers and software engineers is required at this stage to
translate the design into an actual implementation. Unfortunately, this approach leaves
the business user with very little empowerment to manage and control the actual im-
plementation, because after the implementation the programming logic or executable

models hide the business requirements.

The implementation requires that the design is formalized at a more fine-grained level.
We can classify these models as PIM or PSM in MDA. These models are either im-
plemented as programming logic or executable models. Using formal models instead
of programming enables validation at an early stage of development. The technical
architecture specifies that actual targeted platform on which the executable models or
programming logic operates. The technical consideration at this stage directly affect
the selection of the platform or the way the business engines are implemented. Tech-
nical limitations arise as a result of these technical considerations which need to be

resolved for the design (e.g. resolve language concepts in design not supported by the

Chapter 2. Enterprise Modeling 19

implementation). This implies that the decomposition of components of the enterprise

architecture need to be accomplished before or during the actual implementation.

2.4.3 Enactment Stage

During the enactment stage the models (result of the implementation stage) are de-
ployed on the run-time environment. The run-time environment is the platform on
which the programming logic operates or the implementation of the business engine
(responsible to enact the executable models). The programming logic and executable
models are referred to as PSM in MDA, as they are translated from an implementation
into an operational business application. The deployed applications and the run-time

environments are part of the enterprise architecture.

2.4.4 Analysis Stage

During the analysis stage the goals, policies and regulations are evaluated and monitored
to determine if they have been met (e.g. performance, efficiency, etc.) by the operational
application. Either the violation or change of goals, policies and regulations could result
in change of the design, implementation and enactment. This included the validation of
the correctness and completeness of the actual implementation. Validation at this stage
is required, because programmers often disperse programming logic into pre-existing
implementations. Analysis could require that the design and implementation are re-

examined and modified according to the new objectives and goals of the business.

At the analysis stage models define how the actual evaluation must be performed and
who is responsible to take actions in case certain goals have been violated. The enterprise
architecture specifies the locations, where the information, required for the analysis can

be retrieved.

In this chapter we have presented that enterprise modeling is an approach for creating
models for different viewpoints of the business applications. Both enterprise architecture
and MDA have emerged as principles of enterprise modeling. The enterprise architecture
focuses on the functional decomposition of a system into components. MDA specifies
how modeling is performed, and allows transformation of these models at different levels
of abstraction. The enterprise architecture and MDA are important in the context of
the way Everest models and deploys business applications in the EKF. In the following
chapter we therefore continue to discuss how enterprise modeling is specifically applied

in the EKF.

Chapter 3

Everest Knowledge Framework

In this chapter we aim at answering the question: ‘How does Everest apply enterprise
modeling in the EKF?’. Answering this question is important as Everest has imple-
mented a framework for developing business applications, but limited documentation
exist that provides a more detailed overview how enterprise modeling is applied in the
EKF. In this chapter we therefore give a more clear understanding into the way enter-
prise modeling is supported by the EKF (see Section 3.1), which is considered to be
an important result for Everest. The EKF is a modeling and enactment environment
based on the enterprise architecture and MDA approaches, as presented in the previous
chapter. We discuss how the enterprise architecture and the MDA are covered by the
EKF to accomplish the development of business applications from design into the actual
implementation (see Section 3.1.1 and 3.1.2). This includes a more detailed study of the
EKF process modeling language as plays a central role in the preceding of this thesis (see
Section 3.1.2.3). Finally we discuss how the EKF process models are actually deployed
on the enterprise architecture of the EKF (see Section 3.2).

3.1 EKF and Enterprise Modeling

The EKF is a framework used for the development of knowledge intensive (front- and
mid-office) applications. Everest has adopted enterprise modeling as a strategy for de-
veloping business applications. MDA plays an important role in the development of a set
of models which together describe business application. For modeling, Everest considers
conceptual models at design-time, which are translated into executable models. The
executable models are deployed on business engines, which are considered to be part

of the functional components of the enterprise architecture. In the following sections

20

Chapter 3. Fverest Knowledge Framework 21

we give more insight into of the enterprise architecture of the EKF, followed by a more

detailed study of how MDA is specifically performed in the Everest modeling approach.

3.1.1 Enterprise architecture of the EKF

The enterprise architecture of the EKF is composed of a number of logical components
including business engines and additional systems performing specific aspects in the
EKF. At design-time the models are implemented using the Everest Knowledge Studio
(EKS), from which they are deployed on the targeted business engines. Each logical
component specifies the semantics of the executable models at run-time. The following
logical components are supported by the EKF (see Figure 3.1): domain storage, trans-
formation engine, portal engine, event manager, rule engine, process engine, worklist

manger, and Enterprise Service Bus (ESB).

y

Model Repository

Everest Knowledge Studio

Design &
implementation
Enactment
Deployment Deployment Deployment Deployment Deployment Deployment
Worklist Domain Portal Rule Process Event Transformation
Manager Storage Engine Engine Engine Manager Engine
Integration ~ Channel Channel Channel Channel Channel Channel Channel

Enterprise Service Bus

LDAP

CRM
Finance

FIGURE 3.1: Enterprise Architecture in the EKF.

Everest Knowledge Studio
The EKS provides an environment, where the models can be implemented and deployed
on the engines. The models are stored in an extensible model repository from which the

different versions of the models are maintained.

Domain Storage
The domain storage maintains persistence, consistency and integrity of the domain data.

The domain models are deployed on the domain storage, from which instances of the

Chapter 3. Fverest Knowledge Framework 22

models are instantiated and maintained. The domain storage is an abstraction of the
actual data storage (database) and exposes the data in terms of business objects instead
of relational database structures. The domain storage allows queries on the domain
data, such that application data is maintained and retrieved through the domain storage

component.

Transformation Engine
The transformation engine is responsible to transform one data format into another data
format. Transformation of data is specifically useful in case system-to-system integration

requires various data formats to be published and consumed.

Portal Engine

The portal engine uses a presentation model to drive the semantics of the user interac-
tion through a dialog interaction with the user. The behavior of the user interactions
are dynamically generated, from the presentation model. The presentation model de-
fines the semantics, affecting the user experience independent of the way its presented.
The presentation model allows the modeling of the dialogs and services in terms of
an application flow. This allows the realization of dialogs and navigation, such that
business-oriented people can develop these dialogs based on attributes from the domain
model. The dynamic behavior of the dialogs is controlled by the rule engine and the

presentation is generated through the transformation engine.

Event Manager

The event manager is responsible for managing event-driven aspects in the EKF. The
event manager is primarily an event processing concept that deals with processing mul-
tiple events. The event manager provides a platform for interaction between the other
components (e.g. portal engine, rule engine, process engine, etc.), such that each com-
ponent can publish and subscribe to events. All components subscribed for a certain

event are notified after the occurrence of that event.

Rule Engine

The rule engine interprets the rules and derives knowledge from the domain data. In
traditional computer programming, a program is composed of an algorithm and a data
structure. A rule based system uses a rule engine to derive knowledge by inference rules
included in the rule repository. The EKF supports backward chaining as a strategy for
the rule inferencing. Backward chaining starts with a list of goals or hypothesis and
works backwards to see if there are data attributes available that will support any of
these goals. A rule engine using backwards chaining, searches typically for rules for
which the then clause matches the desired goal and adds it to a list of goals if the if
clause is known to be true. In order to realize the goal the data that confirms these

goals must be provided.

Chapter 3. Fverest Knowledge Framework 23

Process Engine

The process engine is responsible for the execution of the process specific aspects and
maintains the information of the control flow in the process. The process engine relies
on both the event manager and rule engine to determine when a certain action must be
performed. The process engine itself specifies, the order and through which channel the
actions must be performed. More specific the process engine is the central controller

and coordinator across the logical components involved in the business process.

Worklist Manager

The worklist manager is responsible for the distribution of work between the (system
and human) actors in the process. The worklist manger considers some kind of strategy
to determine who (actor) is responsible to perform the task. Roles are associated with
worklists (also called work queues or in-boxes), in which a workitem appears as soon
as a case is ready for processing. Users can pick-up a workitems from the worklist
associated with their roles, which result in the start of an application to complete the
task corresponding to the workitem. Tasks can be automated if they are governed
with a system roles, such that they are performed through a self contained application.
Another responsibility of the worklist manager is to prioritize workitems in the worklist
and specify the strategy in which the tasks are provided to the actor (push or pull

mechanism)®.

Enterprise Service Bus

The Enterprise Service Bus (ESB) enables the integration and communication with
external systems and components through different channels. The service logic conceals
the external applications, by providing services from which they can be invoked. The
service logic interacts with application layer by means of channels?. The EKF does not
support a model for specifying the service interaction, but programming is still required
to accomplish this property. The interaction is therefore implemented as modules in
the EKF supporting the interaction with different system-to-system protocols, which
promotes the interaction across different applications operating on different platforms
(e.g. JMS, EJB, IBM-MQ, HTTP, SOAP etc.).

3.1.2 Model Driven Architecture in the EKF

In the development approach of Everest, graphical models are used at the design stage,
mainly for the communication with the different stakeholders. The graphical models
are implemented in terms of the EKF executable models. These executable models are

interpreted by the business engines, which specify the semantics at run-time.

In the EKF this strategy can be configured by means of rules.
2The EKF channel is the service of the EKF enterprise architecture

Chapter 3. Fverest Knowledge Framework 24

The EKS is used for construction of respectively five types of executable models (see
Figure 3.2): domain model, rule model, task model, process model and interaction
model. These models can be used for defining models to describe the system behavior,
independent of how they are enacted by the underlying logical components. Each model
is interpreted by the logical component from which the desired behavior is generated at

run-time.

The domain model underlies all models, specifying the structural aspects of the appli-
cations. The rule model describes the dynamic aspects in terms of rules. The process,
task and interaction model are implemented in terms of a combination of the domain
and rule model. The process model specifies how control flow of tasks in the process
and how they are distributed among the different actors in the process. The task model
specifies how the goal in the process is accomplished in terms of a human-to-system or
system-to-system interaction at a more fine-grained level. The interaction model spec-
ifies how the human-to-system interaction takes place through a navigation of dialogs.
The task model and interaction model are outside the scope of this thesis. Therefore we
deal with tasks as synchronous channels provided by the EKF connectivity layer, which

require information on its input and provides information on its output when completed.

Domain model (What)

Behavior=—ji Interaction model (how) -

I
Interacts interacts Interacts

P Process model (when)
/ Events
Rule

Model I I l
L

Performs Performs Performs

(why) i

1 /
: i Task model (who)

Invoke Invoke

t

e e Connectivity layer (where)

\

F1GURE 3.2: Modeling dimensions in the EKF.

The basic principle of the EKF is to separate the storage of domain and rules (content)
from the engines (programming logic). Everest uses a graphical languages for modeling
at design-time. These graphical models are used as a guideline to implement certain

aspects in the EKF in terms of the domain and rule models.

Chapter 3. Fverest Knowledge Framework 25

The domain and rule languages are therefore considered to be modular as they are not
specifically designed to model a specific aspect of the system, but allow modeling an
extensive number of shapes (concepts). The domain model can be used for modeling
the business domain or to construct meta-models for modeling languages. The rule
model is used for data validation, derivation of knowledge from existing knowledge and
to accomplish the dynamic aspects in the EKF by making certain semantics explicit in
terms of rules. The process model inherits properties of the domain and rule model, as
the process language actually implemented in terms of domain and rule models. More
specific, the structural aspects of the process are implemented in terms of a domain model
and the behavioral aspects (e.g. state transition, decision taking) are implemented in

terms of a rule model.

Both the domain model and rule model are part of the process implementation in the
EKF and are required to completely understand the syntax of the EKF process. The
domain model and rule model are interpreted by respectively the domain storage and
rule engine, which specify some of the semantics in the process. In extension of the
domain and rule engine, a process engine is introduced to accomplish some of the process
specific semantics of the process. In the following sections we continue to provide a more
detailed description of the syntax of the domain model, rule model, process model and

connectivity layer.

3.1.2.1 Domain Modeling

The domain language captures the structural aspects in terms of entities, attributes
and relations, which is similar to Unified Modeling Language (UML) [OMG, 2005].
The domain language can used at the M2 level of MDA to construct meta-models of a
modeling language (e.g. process model, rule model, etc.) and on the M1 level of MDA
to model business concepts (e.g. organizational model and product model, etc.). An

example of the domain model is included in the case study (see Appendix D).

In figure 3.3 we present the UML meta-model expressing the syntax of the EKF domain
model. The EKF domain language supports two types of relations: association and
generalization. The association relation is comprised with cardinality relations between
two entities and generalization allow inheritance and specialization of entities. Entities
maintain a number of attributes and optional operations. Attributes in the domain
model support the following basic data types: integer, double, float, boolean, datetime,
string and enumerations. Each domain model maintains instances of domain data, for
which attributes refer to the values assigned to attributes. Notice that multiple instances

of the domain data for a single domain model can be maintained. The integrity rules

Chapter 3. Fverest Knowledge Framework 26

<EKF» «EKFz
Domain Model instans=0f Domain Instance

impiamants

«EKFa L]
Relafon g -

“EKFa SEKFx
Association Generalization
Relation Relation

<EKFs <EKFa <EKFa
Operstion sonsiemisd by | Attribute nes Attribute Value

| 1 1
0 e
GEKFa |

Integrity Rule T somposzd0f

“EKFa e «EKF3

Imeger Aliblie Double Attribute

«EKFx
Condifion Boclean Attribute,

EKFx =EHTE
<ERKF» Float Attribute Datatime Attribute
String Aftribute

FI1GURE 3.3: Meta-model of the EKF domain language.

underlie the domain model and guards the integrity, persistence and consistency of the
domain data. The integrity rules do not prescribe a dynamic aspect of the system, but

constraint the domain model throughout its existence.

3.1.2.2 Rule Modeling

The rule language allows defining the rules instead of programming. The rules are
strongly related to the domain model, as the conditions are composed of domain at-
tributes and the actions are governed by the assignment of values to domain attributes
or invocation of operations. The goal of the rules is to derive knowledge (in terms of do-
main attributes from the domain model) from existing knowledge or perform predefined

actions through operations.

The rules are implemented as executable rules, which are part of the Event Condition
Action Alternative Action (ECAA) paradigm. This paradigm originates from the ac-
tive database field, where ECA rules are implemented as database triggers. The event
specifies some temporal behavior in terms of events; the condition is an expression com-
posed of terms and fact from the domain model; the action is a procedure or operation
that needs to be performed; and the alternative action must be performed for the set of
alternative conditions. The EKF rule language allows: Event Condition Action (ECA),
Event Action (EA) and Condition Action (CA) rules to be expressed in terms of either

Chapter 3. Fverest Knowledge Framework 27

decision tables, decision trees or independent rule statements. Wagner [2002] has iden-
tified the following classification for executable rules, which is based on the syntactical

structure of the rules:

e The ‘“integrity rules’ are described as constraints on facts or associations of two
or more terms. Notice that the integrity rules are supported by the EKF domain
model and are not part of the rule model. Example: the customer must be at least

18 years old.

e The ‘production rules’ are rules which specify that in case a certain condition
holds a corresponding action needs to be performed. Production rules are mainly
supported by forward chaining rule engines. Production rules are not supported,
as the EKF rule engine only supports backward chaining inferencing. Example: if

the customer credit is greater than 10.000 do calculate the discount.

e The ‘derivation rules’ are the statements of knowledge that are derived by explicit
knowledge through: inference of rules, logical expression or mathematical calcula-
tion. Derivation rules are processed by either a forward or backward chaining rule
engine. The EKF only supports backward chaining mechanism to process deriva-
tion rules. Example: if the monthly debt divided by yearly income is greater than 30
percent then the customer qualification is accepted else the customer qualification

is rejected.

e The ‘reaction rules’ are described as actions performed in response of some event.
Reaction rules are supported in the EKF through the event manger. Example: on
the occurrence of a risk exception and if the loan was accepted do send notification

message.

e The ‘transformation rules’ are the rules used for the transformation of one data
format into another data format, which is directly supported through EKF trans-

formation engine.

Three rule representations have been adopted in the EKF rule language: rule statements,
decision trees and decision tables. A rule statement is an expression of a single rule
independent of the other correlated rules. A rule expression is expressed in terms of:
derivation rule (if condition then action) or reaction rule (on event if condition then
action). A decision table is a tabular representation to describe and analyze decision
situations, where a number of conditions determine the assignment of a set of attributes.
Not just any representation, however, but one in which all distinct situations are shown
as columns in a table, such that every possible case is included in one column. A decision

tree is a graphical representation of a ruleset represented as tree of rule conditions, for

Chapter 3. Fverest Knowledge Framework 28

which each leaf of the tree specifies a specific action. The decision table and decision
tree guard the properties of completeness and exclusivity as described in [Vanthienen,
1991, Kriz et al., 1998]. Additional symbols are adopted in the EKF rule language to

accomplish the following semantics:

Hypen (), acts as a don’t care, which can be read as true.

Unknown (7), evaluates to true if a certain data values is unknown at a certain

point in time.

Else ([]), indicates all other possible condition alternatives.

Empty (—), indicates that no additional events or conditions are considered or

actions are performed.

An example of the rule model (rule statement, decision table and decision trees) is

included in the case study (see Appendix D).

Figure 3.4 gives an overview of the syntax of the EKF rule repository expressed in
terms of an UML meta-model. The root element of the rule language is the ruleset,
which is a grouping of rules. A ruleset is composed of decision tables, decision trees
and rule statements. A ruleset is a sub-set of rules which are correlated by means of
their common conditions and actions. A ruleset therefore defines the total set of rules
that specifies the action taken considering all possible conditions and optional events.
A ruleset contains all correlated rules, which need to be executed at a common point in
time. The rules refer to other rules at the time of their execution, due to fact that rules
can use actions of preceding rules as a condition. Optional event triggers can be defined,
such that a certain ruleset is only evaluated after the occurrence of this event. For each
rule which is subscribed to the event the condition is evaluated and only the action for
which the condition evaluates to true is performed. Modeling the rules therefore does
not require a predefined ordering of the rules. The rule model specializes attributes
from the domain model into terms, where terms are combined into a simple-expression
of the syntax: < leftterm,comparisonoperator,rightterm >. Simple-expressions sup-
port the comparison-operators: =, >, <, >, < and can be combined into a complez-
expression of the syntax: < simpleexpr, logicaloperator, simpleexpr >. The complex
expression support the logical operators: conjunction (AND), disjunction (OR) and
negation (NOT).

Chapter 3. Everest Knowledge Framework

29

«EKFy
RuleSet

«EKFx
Ruls Statement

DerivationRule

derstonRuie

o ode
<EKFa «EKFa
Decision Table Decision Tree |
<ENFs
[Reaction Rule
«EKFs
«EKFa Decision Table
Decision Table Action
Eo [
~rsctonRus ~rectonRus
<EKFs
Decision Table +action |t
Condition
«EKFa “scton
“sction Action ey
~sction
YEKFa
Operation
«EKFo
Event
<EKF»
Condition
o -| Expression

Avetion Ruie

FIGURE 3.4: Meta-model of the EKF rule language.

= ey SEKFa C"‘EK‘F”
<EKF» simple = DERpLE ~gomoiexExans
Term 1 1| Expression [-
asson | 1 «EKFs
Operator
<EKF» «EKFs
it ot Vo campsnsianDparstor
<EKFa
«EKFy Logical Operator|
Comparisan
Operator
<EKFs «EKFs <EKFa
SEKFa #EKFa #EKEy Conjuction Disjuction Megation
UnEqual Operato Equal Operator Less Equal
Operator
EKFu «EKFa EKFa
GreaterEqual Less Operator GrestherThan
Operator Operator

Chapter 3. Fverest Knowledge Framework 30

3.1.2.3 Process Modeling

The process model specifies the flow of tasks to constrain the order in which tasks need
to be performed. The goal of the process is to define a number of tasks that separates
the control of work, such that each task is performed by a certain actor assigned to a
certain role in the process. Choices in the process can be constrained by rules, such that
the decisions influence the continuation of the control flow. A process model describes
what the business does and why this is done, but should not say how it is done in a
specific organization. In this way the process reflects the goal from sale to delivery an
organization maintains, which is part of the supply-chain throughout and across the
organizational boundaries. Examples of an EKF process models (mortgage process) is

included in the case study (see Appendix D).

The EKF process languages defines a Business Process Diagram (BPD), which is based
on a flowcharting technique tailored for creating graphical models of business process
operations. Everest adopted the graphical objects of the Business Process Modeling No-
tation (BPMN), but have defined Everest specific semantics when constructing models.
As the EKF process language does not complement the semantics of BPMN, we refer
to the BPD as EKF process language rather than BPMN. The EKF process models are
used for the communication of the process design among the stakeholders and forms the
basis for the actual implementation of the process in terms of domain and rule models.
The EKF process language bridges the gap of the business process design and process

implementation in the Everest modeling approach.

A BPD is a network of graphical objects, which are composed in such a way that they
constraining the order in which the task must be performed. A BPD is made up of a set of
graphical elements, which promote the development of simple diagrams. These elements
where chosen to be distinguishable from each other and to utilize shapes familiar to the
Everest business engineers. A BPD has a small set of core elements, so that modelers
do not have to learn and recognize a large number of different shapes. The elements
and relations between these elements are referred to as the syntax of the EKF process
language. The following elements are supported by the EKF process language: process,

sub-process, task, event, flow and decision-point.

The process and sub-process are semantical similar elements, the main difference between
them is that a process does not allow exception handling. The sub-process groups one or
more tasks into a hierarchical structure, which together aim to accomplish a certain goal
in the process. For the sub-process two representations can be identified: ezpanded sub-

process (see Figure 3.5(a)) for which the internal tasks of the sub-process are exposed

Chapter 3. Fverest Knowledge Framework 31

or collapsed sub-process (see Figure 3.5(b)) for which the internal processing of the sub-
process is contained by the sub-process. The sub-process allows exception handling,
such that the exceptions affect all task contained by the sub-process. Three types of
exceptions are supported: timer exceptions, rule exceptions and message exceptions. The
timer exceptions are caused by the expiration of a timer constant; the rule exceptions are
caused by the violation of a rule; and the message exceptions are triggered by external

systems.

Sub-Process

Timer
Exception

Rule
Exception

Message
Exception

(a) Expanded Sub-process (b) Collapsed Sub-process

FIGURE 3.5: Sub-process in the EKF process.

The internal processing of the task is performed at a more fined-grained level in the
EKF modeling dimensions, such that the processing of the task itself is not part of the
process model. In the EKF the actual processing of the tasks is performed through
channels of the connectivity layer either as automated or manual tasks®. In this thesis
we consider the task as an atomic unit of work. A more specific definition: ‘the set of
actions a human or machine must undertake to accomplish a goal in the process’. In the
EKF process language a task is presented as a rounded rectangle, which allows multiple
incoming flows triggering the activation of the task and multiple exclusive outgoing flows
enabling the proceeding of the task after its completion (see Figure 3.6(a)). Actors are
assigned to roles to indicate which individual groups are authorized and responsible to

perform a certain task.

The flow specifies the order in which the tasks or sub-process must be performed or
events must be processed. A flow is represented by a solid line with a solid arrowhead,
constraining the order in which the tasks can be performed in the process or specify at
what point in the process events must be processed (see Figure 3.6(b)). Two types of

flows are supported in the EKF process language:

3The connectivity layer specialized various channel types allowing automated task by means of a rule
model and manual task by means of a combination of the interaction and presentation model.

Chapter 3. Fverest Knowledge Framework

32

— L
Conditional flow

_—
Unconditional flow
Task
(a) Task (b) Flow

F1cUre 3.6: Task & flow in the EKF process.

e The conditional-flow requires to satisfy a certain condition expression, before the

flow can be preceded.

e The unconditional-flow directly results in continuation of the process.

The event controls the temporal semantics of the process, by causing a state change

on the occurrence of events. An event is represented by a circle and is something that

happens during the course of a business process. These events affect the flow of the

process and have a cause (trigger) and/or impact (result). In the EKF process language

the following classification of events are defined: start point events, specify only the

cause; intermediate event, specifies both the cause and impact; and end point events,

specifies only the impact.

Start Message
Event

Start Point Events

Start Timer Start Rule Trigger Event
Event Event

Intermediate Events

Intermediate
Message Event

Internal Event
Intermediate Cancel Event

Timer Event

End Event

0 @ O

End Point Events

Terminate Event NOP Event Notification Event

Cancel Sub-Process Event

FIGURE 3.7: Events in the EKF process.

The following event types are supported by the EKF process language (see Figure 3.7):

e The start events activates the process and results in the creating a new instance in

the process. The following start event types are supported: message event, timer

event or rule event. The timer events waits for the expiration of a timer constant;

the message event waits until a certain message has been received; and rule event

acts on the violation of a rule.

Chapter 3. Fverest Knowledge Framework 33

e The trigger events is an external event which causes all task instances in the a
sub-process to be terminated and starts processing from the event forward, but

only if the condition-expression is satisfied.

e The intermediate events are the events, which need to be received before the
process can proceed. Various types of intermediate events are supported: timer

events, message events and rule events.

e The cancel events result in the termination of all task instances in the (sub-)
process and creates a new instance to proceed processing from the event forward.
Cancellation events are triggered as an impact, generally after the completion of

a task.

e The internal events are used to notify the process engine that a certain task has
been completed. Unlike intermediate events the internal events do not interact

with external systems, but are used for EKF internal purposes only.
e The end events is the final event resulting in the completion of the process.

e The terminate events is a final event resulting in the termination of the entire

process.
e The NOP events is a final event for which no additional actions are undertaken.

e The notification events are the events, which notify external actors or processes of
the occurrence of a certain event. The notification event result in actions, which

are accomplished through either system-to-system or system-to-human interaction.

e The cancel sub-process events allow the cancellation of a sub-process and termi-
nates the processing of all instances of tasks contained by the sub-process. Occur-

rence of this event directly results end of the sub-process.

The EKF process language specifies a decision-point for controlling the complex de-
cisions in the process. The decision-points in the EKF are implemented in terms of
process decision tables, for which conditions are evaluated to derive conclusions about

the continuation of the process.

The following types of decision-points are supported by the EKF language (see Figure
3.8):

e The OR-split-decision-point is a point in the process where the process can proceed
processing one or more branches based on the evaluation of a set of non-exclusive

conditions. Each branch for which the condition evaluates to true is considered as

Chapter 3. Fverest Knowledge Framework 34

+ 42 ¥

OR-split Conditional XOR-split Unconditional XOR-split XOR-merge
decision paint decision point decision point decision paint

F1GURE 3.8: Decision-points in the EKF process.

the preceding of the process. Notice that the OR-split-decision-point also allows

unconditional branches, which are taken under all circumstances.

e The Conditional XOR-split-decision-point is a point in the process for which the
process can choose one branch of several branches through exclusive conditions.
Only the branch for which the condition evaluates to true is taken. Important is
to notice that the XOR-split can also be performed directly on a task, as multiple

exclusive outgoing flows.

e The Unconditional XOR-split-decision-point is a point in the process where the
branch is not selected based on a data based decision, but based on the reception
of events. Only the branch for which the first event occurs is preceded, such that

the other branches are discarded when the first event has been received.

e The XOR-merge-decision-point, is a point in the process for which multiple ex-
clusive branches are merged into a single branch. Important is to notice that a
XOR-merge-decision-point can also be performed directly (as multiple incoming

flows) on a task.

In this section we provided a more detailed description of the syntax of the EKF process
language, which is an important result as no such description is available to us at the
start of this project. Still we need to asses the semantics of the EKF process language
as the EKF process language does not directly satisfy a certain computational property.
Therefore we can classify the process model as a CIM model at the M2 level of MDA.
From the observation of the elements and their relations we derived the syntax of the

EKF process language and presented it as an UML meta-model (see Figure 3.9).

-znaPont

CEKFx
NOF Event

<EKFs
Notification Eve

«EKFa

4EKFa
Flow

Decision point

«EKF» <EKFs
Unconditional Conditional Flow|

FI1GURE 3.9: Meta-model of the EKF process language.

EKF
Event
EKFa EKFa
Start Point Event| +sie o <EKFx «EKFa End Point Event
Cancel Event Exception Event Infermediate
| | | <EKFs
“Ei] EKFa EKFa EKFa EKFa
Start Mesaage iy Terminate Event
Start Timer Event Cancel Cancel Process et Timer Exception Message EKFa EKF:
Eve Sub-process Event Exception Intermediage Intermediate Internal Event
Message Event Timer Event
wsseg= | 0 <sterTimer | 0.
<ERF e EKFa “eencasusProcass p——
Start Rule Event Trigger Event .= okl
“provess Rule Exception |ntermediate Ruie Intermediate
Event Cancel Event
EKE
“stenRui Process
EKF
Multi Start Event
EKE
mutiStar] EKF process
subProcsss i - decision table
~munStan
“suoProcess,
EKFa subProcess
suprocess [77} ﬁ\
“supProsess «EKF
susProcass Process decision table
<EKFs
Domain Instance “izst]
EKFa
Task
“arovessOeoisanTebie
~provessDecisarTebie
instanceOf EKFa L o
: P ke +insk 1ss scisionTsbie
' '
' '
| «EKFs |
! main !
1| pomin oder H
instance
EKFa
Channel
~provessDecisarTebie

§L0maWnL abpamouyy 1saa7 ¢ 103deyD)

qe

Chapter 3. Fverest Knowledge Framework 36

3.1.2.4 Connectivity Layer

The connectivity layer provides the channels that can be used for the interaction and
the synchronization with external systems and tools. A more specific definition: ‘an in-
teroperable building bock for which the semantics are specified by the underlying models
or programming logic’. The connectivity layer operates independent of the channel im-
plementation (implemented as a generalization of extensible channel types) (see Figure
3.10). The channels are therefore strongly related to the services of the enterprise archi-
tecture. The EKF channel is specialized into different channel operations with each input
and output variables. The channel types are divided by its semantical properties: trans-
formation channel (transformation from one data format into another), decision channel
(derive data from the domain model by applying a set of rules), data channel (update
and retrieve data from the domain model), integration channel (programming logic).
Notice that the connectivity layer is based on a predefined set of services, implemented
as programming logic. The construction of the channels require technical insights and
considerations, such that software engineers are still needed for the construction of these

channels.

<EKFa
Input Parameter [= = = nstence of= == =

CEKF. inputVerisbies. 1
Channel l o \f[

«EKFs
Operation

[

«EKFa A

Output Parameter] : '

uuuuuu verishies — == nstence of = = =

T)
“EKFx «EHray «EKF3 «EKFx <EXFE
Interaction Data Decision Channel| Data Channel Intergration
Channel Channel
Channel
«Con <MQr wJAVAS clAVAS Other Service

com MQService Corbal/RMI NS Protocal

F1GURE 3.10: UML class diagram of the connectivity layer.

In the previous sections we have provided more insight into the EKF core modeling
languages and defined the syntax in terms of UML meta-models and UML class diagram.
This is considered as an important result for Everest, as at the start of this project no
such information was present. The insights of the EKF process language syntax are of

interest in the preceding of this thesis, as we aim at transforming EKF process models

4The connectivity layer is referred to as a layer rather than a model, because channels are deployed
as programming logic, not as executable models.

Chapter 3. Fverest Knowledge Framework 37

(models constructed with the EKF process language) into BPEL code. In the remainder
of this chapter we focus on the way EKF process models are deployed on the EKF, to
get more insight into how the EKF process models are implemented and enacted in the
EKF. Enactment is important in the sense, that they control the run-time semantic of

the EKF process models.

3.2 How are the process models deployed on the EKF?

In the previous section we have focused on mainly the syntactical perspective of the
process modeling approach of Everest. In this section we give a more detailed study of

how the EKF process models are implemented and enacted in the EKF.

3.2.1 How is the process model implemented in the EKF?

In this section we give an overview of how the process models are actually implemented
in terms of the EKF domain and rule models. The structural aspects of the process,
described by the meta-model, is implemented in terms of entities, attributes and their
structural relations of the domain language. The state transition in the process (decision-
points and flows) are defined as a specialized decision tables (process decision table),
which directly inherit the properties of the decision table of the rule model. This process
decision table specifies the performing of actions through operations, triggering of an
events or activation of a tasks or sub-processes, based on the occurrence of certain

events and in case certain condition-expressions are satisfied.

The flows and decision-points are modeled explicitly, but are at deployment concealed
by the way the process decision table are implemented. Table 3.1 specifies the grammar

of the EKF process decision table for which the following rows are considered:
e The sub-process is optional and defines to which sub-process the decision point or
flow belongs.

e The event guards the preceding of the flow by waiting for the occurrence of a

certain event.

e The alternative events are optional and specify the second event guarding the

preceding of the flow.

e The condition, guards the preceding of the flow through the evaluation of a

condition-expression.

Chapter 3. Fverest Knowledge Framework 38

e The action specifies the activation of: sub-processes, tasks, events or operations
(composed of input () and («) output variables). Notice that multiple alternative

actions are optional.

EKF Decision Table
Sub-process (optional) SubProcess| * |?|]]
Event Event| * |?]]]
Alternative Event (optional) Event| = |?|]]
Condition (optional) ConditionExpression| |?|]]
Alternative Condition (optional) ConditionExpression| |?|(]
Action SubProcess|Task|Event|Assign(a, [3)
Alternative Action (multiple optional) | SubProcess|Task|Event|Operation(c, [3)

TABLE 3.1: The syntax of the EKF process decision table

3.2.2 How is the processes enacted on the EKF business engines?

The EKF process is controlled by interaction between the: portal engine, event manager,
process engine, rule engine and ESB. The portal engine enables the interaction with the
human actor and allows the request and retrieval of the workitems through the worklist
manger. The process engine is the central controller of the process and is responsible for
maintaining the process instances and acts on the events from the event manager. The
domain storage implements the structural aspects of the EKF process language (meta-
meta-model) and maintains the data in the process in terms of a domain model (meta-
model). The rule engine is responsible for the decision taking in the process, by deriving
conclusions from the domain model (see Figure 3.11). A more detailed description of
the process and rule engine is provided, as they control the most considerable part of

the actual process semantics.

The process engine maintains instances for a certain process model also referred to as a
case. A case is an independent instance that maintains the results of the (sub-)processes,
when routed through the process. The semantics of the routing of the cases through the
processes is presented in the UML state transition diagram of figure 3.12(a), for which

the following states are identified:

e [nitialized, the domain storage has initialized the process syntax model and created
an instance to the domain data of this model for a specific case. Also the domain
model which is responsible to maintain the process data is initialized, for which

the instance is maintained by the process engine.

e Running, there still exist one or more active (sub-)processes mainainting active

tasks.

Chapter 3. Fverest Knowledge Framework 39

Design-time I Run-time

EKF | EKF Run-time
Process

- syntax 9eployeq
on ——
EKF model | —
Domain Model .
Domain storage
| _—1

|
|
] M, - | dep\gxea/
£ Process
data |
model | c
5
EKF | - Process l— § —»]
Process / Rule P decision, Enesl k3
Model | s oS _— < taking g £
), ot
} EKF
Process |
Rule
Model ployeq_ | E
on —] vent

manager

event workitems

Portal) Worklist
engine manager

Enterprise Servce Bus

i |

Ficure 3.11: Deployment of EKF process models in the EKF run-

time(impl.=implements).

Completed, the process instance is completed, in case no more active sub-processes

exist in the process.

FEzxception, the case has received an exception, such that the rule engine is requested
to update the state of the process. The active instances which belong to the process
are not affected by the exception state. After the state is updated the process

determines if new instances must be created in order to handle the exception.

Terminated, the case has been terminated such that all active instances for the

case are stopped.

Interrupted, the case has received a satisfied trigger event, causing the all active
instances for the case to be stopped. The rule engine is requested to determine

the continuation of the process after the occurrence of the trigger event.

Canceled, the case is canceled through the occurrence of a cancel (sub-process)
event, causing all active instances for the case to be stopped. The rule engine is

requested to determine the continuation of the process to handle the cancellation.

The goal of each task is mostly related to the input of information, also referred to as

knowledge that becomes available when a task has been completed. As the case is routed

through the process, the information that has become available in one task is passed

though the next task. The cases in the process are controlled through variables derived

from the domain model, which abstract the goals that are accomplished throughout the

Chapter 3. Fverest Knowledge Framework 40

(Interrupted j (Cancelledj

Running
Runnin ™
S %© Completed
Compléted Initialized
Initialized Jﬁ© Stopped
Terminated
(Exception)
(a) State Transition Diagram sub-process (b) State Transition Diagram task

FIGURE 3.12: State Transition Diagram EKF process.

process (the conditions that have been met in the process). The derivation and assign-
ment of this variable is the responsibility of the rule engine. The EKF process engine
has a considerable limitation, as only a single variable is supported in a (sub-)process.
Therefore it is not allowed to use multiple instances of a same task in the process®.
The semantics of the task are controlled on a lower-level of abstraction compared to
the (sub-)process. The semantics of the task is therefore represented as an independent
UML state transition diagram (see Figure 3.12(b)), for which the following states are

identified:

e [nitialized, the domain model is initialized by the domain storage and an instance

to the domain data is received by the process engine.

e Running, a task is being performed and the process engine waits until the task is

either completed stopped or accepted.

o Completed, the task has satisfied its post-condition, resulting in the rule engine
to update its domain data. Based on the result of the rule engine: a new task is
activated in the (sub-)process and its state is either set to running or stopped (no

preceding actions for that task are required to be performed).

e Stopped, a (sub-)process has explicitly been aborted, such that all tasks contained
by this (sub-)process are aborted.

The domain storage is responsible to initialize the models and maintain the integrity
and consistency of the factual knowledge in terms of domain data. The rule engine plays

an important role in the state transition when the cases are routed through the process.

SMultiple instances are supported by the application flow at a more fine-grained level of the EKF,
which is not part of the process dimension in the EKF.

Chapter 3. Fverest Knowledge Framework 41

After the completion of each task the data variables governing the state of the process
are updated, by deriving which goals in the process have been satisfied. The rule engine
uses backwards chaining inference mechanism to derive if these goals goals (described
by rules) have been met. Each decision in the process requires the rule engine to update

the state of the process variables.

-

Rule Repository Rule Engine Domain storage
: “Ruleset! _: Working Memory Pattern Matcher r———
_— fact1
| rulel I t—aassert- — 4 —p (fact1 fact2)rulel (fact1 fact?) rule! = —|— — —|— — 4 — - |
I | fact2 |
Il___Mez__| I fact3
_______ | ﬂ factd
IRuleset2 I ’
M ules ™| | / facts
u | - — —
| ot { +—=aassert » (fact3)rule3 Execution i . facté
| rule: | P
| [| /
|
| /7
’
¥ /
rule1(fact1,fact2) -> fact3

FIGURE 3.13: Logical components in the rule engine.

To accomplish the inference of the domain data the rule engine is composed of mainly

three general components as presented in figure 3.13:

e The rule repository contains the heuristic knowledge. The heuristic knowledge
is the knowledge, which can be derived by judgment of the facts in the data
repository. The EKF mainly supports decision tables, decision trees and rule

statements to model rulebases in the rule repository.

e The rule engine controls the execution of the rules. The primary purpose of the
rule engine is to apply rules when the set of facts (domain data) is complete. The
working memory holds both the premises and conclusion of the rules, such that
the derivation of a conclusion can trigger the next rule to be fired. At run-time
the working memory allows the following actions on rules: assert, adds rules to the
working memory; retract, discards active rule from the working memory; modify,

updates and active rule in the working memory.

e The pattern matcher is responsible matches the facts with the rules and determine
if they are eligible to fire. The executable rules are eligible to fire if the facts fulfill

the required rules to derive its conclusions.

The ESB provides the actual channels through which the task is completed. The se-
mantics of the task is defined by the way the channel is implemented in the connectivity

layer. Each channel is governed with input and output variables, which represent the

Chapter 3. Fverest Knowledge Framework 42

information flow through the task. In the preceding of this thesis we assume that chan-
nels are performed synchronous, which implies that the task is performed as an atomic

channel invocation.

In this chapter we have presented the enterprise architecture of the EKF and how Everest
adopted MDA as a strategy for modeling. We presented the syntax of the EKF process,
which is considered to be an important result for Everest as no such description was
available to us a the start of this project. We also presented a more detailed description
of how the EKF process is deployed in the EKF, to give more insight into the way Everest
implements the process models. The deployment is important as the semantics of the
EKF process are subsistent to the way the EKF process are enacted. In the following
chapter we continue with a more detailed study of BPEL, as Everest aims at adopting

this language to improve their deployment strategy in the EKF process available.

Chapter 4

Business Process Execution

Languages for Web Services

In this chapter we aim at answering the question: ‘What are the key features and syntax
of BPEL?’. To answer this question we start with a general introduction of BPEL (see
Section 4.1) and overview of Web service technology (see Section 4.2), this is followed
by a more detailed overview of the syntax! and semantics of BPEL (see Sections 4.3,
4.4 and 4.5).

4.1 Introduction to BPEL

The Business Process Execution Language for Web Service (BPEL4WS or BPEL) was
introduced by (IBM, BEA and SAP, 2002) as a defacto standard for describing the
behavior of Web services in terms of process models at different levels of abstraction.
BPEL has emerged as a compromise between the Web Service Flow Language (WSFL)
[Leymann, 2001] and XLANG [Thatte, 2001]. BPEL therefore supports both block-
oriented language features from XLANG and graph-oriented features from WSFL. The
first version of BPEL (1.0) was published in August 2002 [IBM et al., 2002], the second
version (1.1) [BEA et al., 2003] in May 2003 and the latest version (2.0) [OASIS, 2006]
is at the time of writing in working draft. BPEL has been adopted by the industry as

the leading process interchange and enactment standard.

BPEL allows the business to keep the internal business protocols separate from the cross-
enterprise protocols. Separation of the private from the public protocols is important

for two reasons: first, the business does not want to reveal its internal processing (e.g.

'"We used the ideas of [Akehurst, 2004] for formalizing the syntax of BPEL in terms of meta-models

43

Chapter 4. Business Process Execution Languages for Web Services 44

data management and decision taking) to their business partners; second, the private
protocols need to be changed without affecting the public protocols. BPEL defines the
coordination of multiple service interaction with the partners from a single-point and

can therefore be classified as orchestration language.

The BPEL process definitions can either be a fully executable model (executable BPEL)
or abstracted model (abstract BPEL). Abstract BPEL aims at defining the role of the
protocol, without considering the details of the process implementation (typical PIM).
Executable BPEL specifies the behavior of the process at a more fine-grained level, in
terms of the composition of Web services. The executable BPEL definition can directly
be executed by a BPEL engine (typical PSM). In this thesis we are mainly interested in
BPEL, as Everest main objective is to adopt a BPEL engine allowing the enactment of
executable BPEL in the EKF. BPEL provides a grammar based on eXtensible Markup
Language (XML), similar to a programming language, but is less complex and specifically
suited for defining business processes. BPEL is an extension of Web services and build
upon Web Service Description Language (WSDL) of the Web service stack to define the
interactions between the partners. The interaction with each partner occurs through
Web service interfaces, where the structure of the relationship at the interface level is
called a partner link. As Web services are an important aspect of BPEL we first give an

overview of Web service technology.

4.2 An overview of Web services technology

In this section we give an overview of the Web service stack, such that readers which are
already familiar with Web services can proceed reading the next section. The core Web
service stack (see Figure 4.1) consists of standards to accomplish interoperable platform
independent and loosely coupled services by means of Web services. BPEL is build on

top of the Web service stack, such that Web service are the backbone of BPEL.

XML? is used as an generic data interchange format, through XML documents. XML
Path (XPath)? and XQuery are languages for addressing portions of an XML document

(query) or computing values based on the content of an XML document.

The WSDL? is a specification used for defining how to describe Web services. WSDL
enables clients to locate a Web service and invoke any of its publicly available functions.

The Simple Access Protocol (SOAP)® is an XML based communication protocol for

%see: http://www.w3.org/XML
3see: http://www.w3.org/TR/xpath
“see:http://www.w3.org/ TR /wsdl
®see: http://www.w3.org/TR/soap

Chapter 4. Business Process Execution Languages for Web Services 45

BPEL Web service stack
Orchestration
BPEL
Description Advertisement
WSDL AND XSD upDl
Messaging
SOAP, WSSecutiry, ..
Format Query
XML Xquery, XPATH
Transport

HTTP, TCP, IP, SMTP

FIGURE 4.1: The Web service stack.

applications to access Web services on any platform. The XML Schema Definition
Language (XSD)S is used to specify the layout of an XML documents, which are provided
as input or output of Web services. The eXtensible Stylesheet Language Transformation
(XSLT) is a language enabling the transformation of one XML document format into

another XML document format.

The Universal Description Discovery and Integration (UDDI)” prescribes a set of stan-
dard interfaces for accessing information about Web Service location. UDDI is an in-

dustry effort to enable dynamic discovery for Web services.

BPEL is ans extension of the Web service technologies, specifically designed for defining
business processes characteristics by means of: partner links, base and structured activ-
ities, data, transaction, compensation, exception and event handling. In the following
sections we present the syntax and semantics, by providing a more detailed overview of

the key features.

4.3 Process and partner links

The top level element in BPEL is the process (see Figure 4.2), which contains one
or more subsequent elements. The process is a specialization of the structured scope
activity, which allows the process to be decomposed onto activities and maintaining

variables, transaction, compensation and exception handling. The specialization from

Sseer.http://www.w3.org/XML/Schema
"see: http://www.oasis-open.org/committees/uddi-spec/

Chapter 4. Business Process Execution Languages for Web Services 46

the scope activity allows the nesting of activities, such that a hierarchy of activities can
be created as activities can contain activities. Every process is triggered by a receive
activity and ends with an invoke or reply activity. BPEL uses the concept of invocation

of Web services for the interaction by means of partner activities.

The partner links allow BPEL to interact with Web services in the process. The partner
link is assigned to a (WSDL) port type, which is uniquely identified through its name.
Each partner link is characterized by a partner link type defined in a WSDL definition.
For a partner link two type or roles can be set: a producer and consumer role. A
partner link with only a consumer role does not need to know about its callers (typical
a-synchronous). A partner link assigning both producer and consumer roles specifies a
typical synchronous interaction. In BPEL these interactions are accomplished through
the partner activities: receive, reply and invoke. These activities enable the use of

different type of partner interactions.

*BPELs
Scope

«BPELx
Business Process pusinessProce:

=s=":c>e550 «BPELs

Partner

«BPELs
Partner Activity <EFELs =pernarink <Rl
+parinerhctivity PartnerLink

«BPEL»
: 01 Role

+perinerLink

«BPEL»

PartnerLinkType -
~perinedlinkType

FIGURE 4.2: Meta-model of BPEL process.

4.4 Activities

The activities (see Figure 4.3) correspond to the tasks that have to be performed in
order to complete the process. The values, variables and expressions are considered to
determine the routing of the cases through the process. BPEL recognizes two types

of activities: base and structured activities. The base activities correspond to atomic

Chapter 4. Business Process Execution Languages for Web Services 47

actions, which cannot contain other activities: interact with a service, manipulate ex-
changed data or handle exceptions. The base activities have attributes and elements
that can be used to specify certain properties. The base activities allow modeling the
control flow, data and fault handling in the process. The structured activities allow
nesting of the activities, used to compose the order in which the base activities need to

be performed.

BPEL contains the following eight partner activities: receive, wait for message from
external partner; invoke, represents the synchronous operation of an external partner;
reply, an a-synchronous result to an external partner; wait, pauses for a certain period
of time; assign, copies data from one place to another; throw, indicate errors during
the process execution; compensate, rolls back transactions when errors occur; empty,
do nothing. Three partner activities are responsible for the invocation of Web services
in BPEL: invoke, receive and reply. For an invoke activity the partner link, service
operation and port type need to be specified to invoke services of the business partners.
The invocation can either be synchronous (request/reply) or a-synchronous (one-way).
BPEL provides services to its partners through the receive and reply activities. The
receive activity blocks the activity until the corresponding message arrives, while the
reply activity is used to send a request from a previously accepted receive activity. The
receive activity can also be used to initiate the process instance by setting the value of

the property createlnstance to yes.

BPEL identifies the following six structured activities: sequence, switch, pick, while,
flow and scope. The sequence activity contains one or more activities that have to be
performed sequentially in a lexical order. The switch activity supports the conditional
routing of activities. It contains the ordered list of one or more conditional branches
defined by case elements, only the first branch for which the condition evaluates to true
is considered. The otherwise branch can be defined as the default branch to make sure
that there is an alternative path that can be taken, in case none of the case conditions
are satisfied. The switch activity is completed when the activity of the chosen branch
has been completed. The pick activity captures the race conditions based on timing or
external triggers. Like the switch the pick has a set of branches, but instead of conditions
it defines a number of events that need to be occurred before the corresponding activity
can be initiated. Two types of events are provided: message events (onMessage), waits
for occurrence of external event and alarm events; timer events (onAlarm), waits for the
expiration of a timer constant. The pick activity acts only on the occurrence of the first
event, such that the occurrence of the first events discards the occurrence of the events
of the other branches. The while activity supports repeated behavior of activities. The
while activity is performed until the (pre- or -post) condition no longer evaluates to

true. The flow activity provides the parallel execution and synchronization of activities.

Chapter 4. Business Process Execution Languages for Web Services 48

BPEL support control links to extend the control of the dependencies between activities
nested within the flow activity. The scope activity is used to group activities into blocks,
where each block is treated as a unit for which the same events, compensation and fault
handling is applicable. This means that the handlers are only visible from within the
boundaries of the scope activity. Because business processes are long running, it is
infeasible to keep open its transaction, therefore BPEL provides compensation handlers
rather than a mechanism to rollback transactions. The compensation handler is executed
using a compensation activity, which is explicitly triggered by fault handlers. The BPEL
engine is responsible to throw faults during the execution of the activities within a scope.
The generated faults can be handled in the BPEL code using a catch construct. The
event handler enables the scope to react to events or expiration of timers at any point

during the processing of the scope.

The structured activities: sequence, flow, switch, pick and while offer a mechanism to
model features where one activity cannot start until one or more activities on which
they depend are completed. In BPEL this concept is called control links, which can be
referred as a conditional transition between two activities. Two types of control links
are provided by BPEL: join-condition and transition-condition. A join-condition is as-
sociated to an activity, which expresses a condition that defines the dependency between
two activities. The conditional dependency defines the required synchronization between
activities during parallel execution. The transition-condition defines a condition, that

specifies when activities are enabled or disabled for execution.

4.5 Data Handling

Most processes need to maintain application data during the course of their execution.
The data is initialized when the process starts and is subsequently read and modified
during processing. BPEL supports defining a set of variables, which can be passed
through Web services as input and output variables in terms of XML documents. Vari-
ables in BPEL can be set in various ways: bound variable to an inbound activity such
as pick, receive or event handler; bound to the output of an invoke activity; explicitly

assigned through an assign activity (see Figure 4.4(a)).

The variables are used to hold information of the message exchange between the process
and its partners as well as internal data, which is private to the process. A process
variable has a name that is unique to its scope and the type defined in terms of a WSDL
message, composed of types from the XSD type definitions (see Figure 4.4(b)). BPEL
adopted XSD to define the layout of the XML data documents, which are defined as
input and output variables of the invoked WSDL operations (see Figure 4.4(c)).

Chapter 4. Business Process Execution Languages for Web Services

49

link

- transtionCondition: string

sctivity 0.

«BPELa
Receive

FIGURE 4.3: Meta-model of BPEL activity hierarchy.

<BPELs
Source A «BPELs sctvit
b aurce0! Activity
- jeinCondition: string AR
- suppressFailure: boo
«BPELs -
““““ o Target e o
*sotivit
«BPELs «BFELs «BPELa =BFELs
ParterActivity wait Assign Compensate
«BFELs o
Terminate o
«BPELs «BPELs
Invoke Reply e cetohAl
StructuredActivity
+parnt
=0l o1
«BPEL»
aw Correlationset
«BPEL» «BPEL LEPELs
Flow While Switch conziztonset
Condian: string
=BFELs
Scope =002
ik «BPELa «BPELs L
Pick Sequance e
witch
oux oie ?
. b
L «BFELs
Otherwise | Z217=W=2 S0F steunendier| Favitaniger
biz 0.~
«BPEL» casy 0
Variable [eg2— - Condiion: sting “euiine
verisia csze
oston
WEPELY e
Catch y
reutnengier | 91 4|H
- «BFELs
0 \BPEL» EventHandler
onserm| OnAlarm | tenmesssge smientnender]
0. 0.7
anmes:
«BFELs vannangiar
0 +| OnMessage |® e
o -

In this chapter we provided an overview into the key features of BPEL providing more

insight into the syntax and semantics of BPEL. This is required in the following chapters,

where we determine the language translations between EKF process language and BPEL,

toward an approach to transform EKF process models into BPEL code.

Chapter 4. Business Process Execution Languages for Web Services

o0

.
i
e, s
From o ooy| eoPELs o5 @ ph
Copy
BPELs «BPELs .) BPELs . <BPEL» «BPELs «BPELs
FromLiteral FromPartmertink | 72T NEE | by i “oP ek | ToPartnerLink ToVarisble Tolitecl
Frmgpession
“framExerzsson «BPELs
(]
e e
Exprsaion we| Ve |oane
P
(b) Meta-model of the BPEL WSDL extensions
oo
e
i oo
cermion | csroor | soema
T oo |
demen e oo
eXSLTa o 0.[- base: type
Definition o ;
. - I
g o
g o oo e ProseraTwes RestratnTipe
namespace amespace, e double
P N
oo s prees A
s _ xaon - oo
Extension boot i string Pattern
oo e
e mineng

CamplexContent

xSDa

(¢) Meta-model of the BPEL XSD extensions

FIGURE 4.4: Meta-models for data handling in BPEL.

Chapter 5

Transform the EKF process
language into BPEL

In this chapter we aim at answering the question: ‘What are the issues and challenges to
close the gap between the EKF process language and BPEL?’, which is considered as a
partial question required to answer the research question: ‘How to make the EKF more
interoperable by adopting BPEL?’. In section 5.1 we give an overview of the approach
followed to close the gap between the EKF process language and BPEL, for which the
results are presented in section 5.2. The results of our observations is summarized
in section 5.3. In this sections we only aim at identifying the issues and challenges
which must be considered when translating the EKF process models into BPEL code.
In chapter 6 we use these observations to address the issues and challenges toward an

approach to translate the EKF process models into BPEL code.

5.1 Approach to transform the EKF process language into
BPEL

The aim of Everest is to adopt a more generic approach to deploy their processes,
increasing the interoperability of the process in the EKF. Everest is mainly interested in
the adoption of BPEL to fulfill this goal. Supporting BPEL in the EKF should result in
an increase of the process interoperability across the enterprise architecture, as BPEL
is supported by different tools and can be enacted by generic engines. For Everest the
adoption of BPEL implies that the properties and capabilities of EKF process language
must be translated (language) and deployed (code) in terms of BPEL. To accomplish

this we need to consider both the semantics and syntax of the EKF process models

o1

Chapter 5. Transform the EKF process language into BPEL 52

and BPEL code. For the transformation of the EKF process models into BPEL code
we are only interested in one direction of the transformation. This implies that we
need to evaluate if BPEL is able to express concepts recognized in the EKF process
models. Nevertheless, Everest is also interested in the limitation of the EKF process
language. In extend of the forward transformation we also evaluate limitations of the
EKF process language by identifying concepts which are supported by BPEL, but can
not be modeled in terms of the EKF process language. These limitations directly affect

the expressiveness of the EKF process language.

In the Everest approach the EKF process models are translated into the EKF domain
and rule models, for which the actual semantics are defined by the a combination of
the EKF process engine and rule engine (as presented in Section 3.2). The adoption
of BPEL requires a different approach, where EKF process models are translated into
BPEL code which are deployed onto generic BPEL run-time engine(s) (e.g. IBM, Oracle
and Active BPEL, etc.) (see Figure 5.1).

Design Time | Run Time
I
: BPEL Run-time (Oracle)
- deployed on—p- BPEL Run-time (IBM) |
Process impl. BPEL code deployed on >
Model
deployed on —> BPEL Run-time
| (Active BPEL)
I
|

Ficure 5.1: Deployment of EKF process models onto BPEL engine
(impl.=implements).

To reduce the complexity of the model based transformation, we first consider the trans-
formation of the EKF process language into the BPEL. According to the approach of
[Bordbar and Staikopoulos, 2005] the transformation of one language into another lan-
guage requires bridging the gap between both the domains and the technical spaces. The
domains are defined as: ‘the context via specific application aspects or behavior, given by
programming language syntax’ and the technical spaces as: ‘a specific working context
with specific tmplementation technologies, tools and approaches, where applications are
specified, instantiated and utilized form wvarious tools and engines’. To close the gap
between the technical spaces and domains of the EKF process language and BPEL we
need to cover both aspects by means of a domain transformation (see Section 5.2.1) and
technical spaces transformations (see Section 5.2.2). In this thesis we follow the One
step refinement approach of [Bordbar and Staikopoulos, 2005] for which a more detailed

description is presented in appendix A.

Chapter 5. Transform the EKF process language into BPEL 53

< EKF native EKF process BPEL BPEL native
g process | Described Language Domain language Descrioad_| |
el Language 5 1 Meta-model transformations Meta-model [b a”g,‘:’)age
= (M) (M) ()
Instance of Instance of
3 EKF Process m
= Model Technical spaces BPEL code
g (M) E transformations d i (N)
EKF Process CPN - hBPEL
Allign Sementics of concept >

FIGURE 5.2: Transformation of EKF process language into BPEL.

The domain transformation focuses on closing the gap of the elements at the meta-
model level of the EKF process language and BPEL. To realize such an idea, we need to
establish a bridge between the EKF process language and BPEL. This is accomplished by
considering each element in the meta-model of the EKF process language and determine
if a corresponding (set of) element(s) exist in BPEL supporting similar semantics (see
Figure 5.2). This is not an easy task, because meta-models define a complex structure
for which the semantics are defined by its conceptual interpretation. Such a bridge
between two meta-models is referred to as a direct mapping, as a solution of an element
of the source language can directly be translated into one or more elements in the target
language. The direct mappings should give more insight into the contextual differences
between the EKF process and BPEL language at the M2 level of MDA (see Figure 5.2).

Sometimes, however it is not possible at the first attempt to close the gap of two meta-
models directly through only the context. This is mainly caused by the fact that the
technical spaces of languages could be rather different. Such problems often occur when
one space may define or posses characteristics that the other language does not account
for. A domain transformation is therefore not sufficient to close the gap between two
languages entirely, in such cases the languages are considered to be different from the
context. This implies that for some elements no direct mappings can be identified. This
implies that one should not consider a translation directly through the context, but
using concepts as a bridge between two languages. The technical spaces transformation
should therefore address these contextual differences, by using more generic concepts
supported by both the source and target languages. The aim of the technical spaces

transformation is to find a solution for a predefined set of patterns for both the EKF

Chapter 5. Transform the EKF process language into BPEL 54

process model and BPEL code. In this way the pattern is used an intermediate language
concept, to bridge the gap between the EKF process language and BPEL. The difference
between the supported patterns should give more insight into the conceptual differences
at the M2 level of MDA (see Figure 5.2). We also consider the patterns not supported
by the EKF process language, but which are supported by BPEL. For these patterns we
can draw conclusions with respect to the limitations of the EKF process language when

translating the EKF process models into BPEL code.

Patterns where traditionally the province of software design (e.g. widely referenced as
object-oriented design patterns), suitable to provide more insight into the expressiveness
of a language. Patterns have emerged from the PDA field as workflow patterns! and
SOA field as interaction? patterns. The value of patterns lies in their independence of
specific languages and implementation. A pattern, as conventionally specified, ‘captures
the essence of a problem, collects references by way of synonyms, provides real examples
of a problem and even possible solution for implementation in terms of concrete tech-
nologies’. In this thesis we follow a subset of the interaction and workflow patterns, for
which the selection is based on the relevancy of the pattern with respect to the EKF
process language. We adopted the classification of the interaction patterns and workflow
patterns as presented in table 5.1 for our technical spaces transformation as included in

Appendix C.

Classification of the pattern

Interaction Patterns

Basic Control flow patterns

Advanced branching and synchronization patterns

Interaction Patterns
Multiple Instance Patterns
State Based Patterns
Cancellation Patterns
Termination Patterns

TABLE 5.1: Classification of interaction [Barros et al., 2005b] & workflow [Aalst van
der et al., 2003] patterns

The semantics of the EKF process are not defined explicitly by Everest, but are embed-
ded in their process implementation. Therefore we need a way to define the semantics
of the concepts in the EKF process models more formally. By making the semantics
explicit, increases the understanding of the EKF process and promotes comparison of
the language concepts. Efforts of [Ouyang et al., 2005, 2006, Aalst van der and Lassen,
2005, Mulyar, 2005] already provide some interesting insights in the semantics of BPEL.

Nevertheless, we need to find a solution in BPEL, which complement the semantics of

!see also: http://www.workflowpatterns.com/

2see also: http://math.ut.ee/dumas/ServicelnteractionPatterns,

Chapter 5. Transform the EKF process language into BPEL 55

the patterns identified for the EKF process. More specific, we aim at finding a solution
for which the semantics of the EKF process model match the solution expressed in terms
of BPEL code. Implementing and simulating the BPEL solution of each patterns, should
give a more clear understanding of the behavior and confidence of the correctness of the
BPEL solution. Comparing concepts between languages is difficult, mainly when the
formal semantics are not defined explicitly. Therefore we use Colored Petri Nets (CPN)
[Aalst van der and Hofstede ter, 2002, Jensen, 1997] as a bases to formalize the semantics
of the EKF process language, such that should give us a more clear understanding of the
semantics of the concepts supported in the EKF process language. Especially, Petri-Nets
provide a more formal bases to analyze the semantics of process concepts. Important
is to notice that no previous attempts where undertaken by Everest to formalize their
process syntax and semantics explicit. The results of the domain and technical spaces
are therefore an important result for Everest, enabling a better basis to draw conclusions

with respect to the expressiveness of the EKF process language.

5.2 Results of transforming the EKF process language into
BPEL

Following the transformation approach of previous section we continue to present the
results of the domain transformation (see Sections 5.2.1) and technical spaces transfor-

mation (see Section 5.2.2).

5.2.1 Results of the domain transformation

The aim of the domain transformation is to determine, which meta-model elements
supported by the EKF process language, are directly supported through the syntax of
BPEL. Our goal is to find the direct mappings between EKF process language and BPEL
for all elements (e.g. sub-process, task and events, data, channel and role). Important
is to find a BPEL solution for which the underlying implementation is threated similar
compared to the EKF process implementation. The domain transformation should give
us more insight into the syntactical differences between the EKF process language and
BPEL, resulting in issues and challenges, when translating EKF process models into
BPEL code.

Table 5.2 shows the results of the domain transformations, for which the following mark-
ings are considered: (+) a direct mapping of the meta-model element exist in BPEL;
(+/—) a direct mapping of the meta-model element exist in BPEL, but this solution

has limitation compared to the formal semantics of the EKF; (—) no direct mapping for

Chapter 5. Transform the EKF process language into BPEL 56

EKF Element BPEL

Process

Sub-process

Task

Start Timer Event
Start Message Event
Start Rule Event
Trigger Event

Intermediate Message Event

Intermediate Timer Event
Intermediate Rule Event
Cancel Event

Internal Event

End Event

Terminate Event

NOP Event

Cancel Sub-process
Notification Event

Role

Channel

Domain Instance

Flow

Decision-Point

[S (R [) U Y [R K S S R

TABLE 5.2: Results of the domain transformation

the meta-model element exist in BPEL. Notice that this table gives an overview of the
detailed study of the domain transformation as included in Appendix B. In preceding
of this section we only discuss the issues and challenges, as a result of the domain trans-
formation, which we need to overcome when translating the EKF process models into
BPEL code (see Chapter 6).

For the task and event elements a direct mapping can be identified. Notice that for
the (start and intermediate) rule events only a partial BPEL solution can be identified.
BPEL only supports timer and message events and does not allow events driven by rules.
Adopting the use of an external rule engine in the EKF, should provide a sufficient

alternative to overcome this problem (see Section 7.1).

Transformation of the role, channel and data elements is more complex, as these ca-
pabilities are supported by the underlying WSDL and XSD definitions in BPEL. As a
solution to we presented a domain transformation of the EKF domain model into XSD
and EKF connectivity layer and WSDL (see Appendix B). This transformation is based
on the ideas of [Carlson, 2001a,b,c] who has proposed an approach to bridge the gap

between UML and XSD. In section 7.1 we use these observations to further address the

Chapter 5. Transform the EKF process language into BPEL 57

results of the domain mapping, providing more insights into the best practices, when

integrating an BPEL engine in the EKF.

Issues and challenges are identified when translating the process, sub-process, flow and
decision-point elements into BPEL, as no direct mappings between these elements can
be identified. For these elements the EKF process language and BPEL are considered
to be two different classes of languages. BPEL is based on a block-oriented structure,
while the EKF process language is based on a graph-oriented structure. The block-
oriented property® of BPEL requires that the structured activities must have exactly
one entry point and one exit point. This requirement results in issues, when translating
the EKF (sub-)process, flow and decision-points into BPEL. The first problem occurs
when translating the EKF (sub-)process with multiple entry and/or multiple exit point
into the BPEL scope activity. The second problem is caused by the fact that the BPEL
sequence, switch, pick, flow and while activities have a nesting structure. This nesting
structure specifies that structured activities have a certain hierarchy, where activities
are contained by other activities. This requirement is clearly violated by the EKF
decision-points and flows, as the EKF process language allows modeling unstructured
process concepts. The transformation of the technical spaces should further reduce the
complexity of these issues, which is especially useful when translating the EKF process
models into BPEL code.

For the issues and challenges described in this section we desribed above need to be
resolved when translatating the EKF process models into BPEL code. These issues and
challenges will therefore resolved in chapter 6 where we present an approach to transform
the EKF process models into PBEL code.

5.2.2 Results of the technical spaces transformation

In the transformation of the technical spaces we aim at identifying patterns, which can be
used to bridge concepts of the EKF process model and BPEL code. Our main objective is
to provide an approach to transform EKF process models into BPEL code and therefore
we need to evaluate if for all concepts supported by the EKF process language a BPEL
solution exist. This implies that all patterns supported by the EKF process language
must be covered. In extension of these patterns, we also evaluate patterns not directly
supported by the EKF process language, but which are supported by BPEL. Including
these patterns in this study fulfills our secondary objective, to draw conclusions with

respect the limitations of the expressiveness of the EKF process language.

3The block-oriented property is the direct result of the XML based language concept of BPEL.

Chapter 5. Transform the EKF process language into BPEL 58

Pattern EKF | BPEL
Request/Reply (CP1)

One Way (CP2)

Synchronous Polling (CP3)

Message Passing (CP4)

Sequence (WP1)

Parallel Split (WP2)

Synchronization Merge (WP3)

Exclusive choice (WP4)

Simple Merge (WP5)

Multi-choice (WP6)

Synchronizing Merge (WP7)

Multi-merge (WP8)

Structured Discriminator (WP9)

Arbitrary cycles (WP10)

Implicit Termination (WP11)

MI without Synchronization (WP12)

MI with Priori Design-Time Knowledge (WP13)
MI with a Priori Run-Time Knowledge (WP14)
Structured loops (WP21)

Deferred Choice (WP16)

Interleaved Parallel Routing (WP17)

Milestone (WP18)

Cancel Task (WP19)

Cancel Case (WP20)

Cancel Region (WP25 (a & b))

Explicit Termination (WP43)

o e N B R N O e e e O e e R R e B
R (NS g [N N N S (U) S S) R

+
o

+
o

T S i el
I
-

TABLE 5.3: Results of the technical spaces transformation

Table 5.3 shows the results of the technical spaces transformations, for which the fol-
lowing markings are considered: (+) a solution can be identified for the pattern in
corresponding language, which match the formal semantics of the pattern; (+/—) a so-
lution can be identified for the pattern in the corresponding language, but this solutions
has limitations with respect to the formal semantics of this pattern?; (—) no solution
can be identified for the pattern in the corresponding language. Notice that this table
gives an overview of the results of the technical spaces transfromation as included in

appencix C.

A conspicuous limitation of the EKF process language is the lack of support for synchro-
nization of parallel branches, caused by a limitation of the EKF process engine. This
limitation directly affect the lack of support for the patterns: CP3, WP3 and WPT.

Nevertheless, the EKF process language support alternative approaches to synchronize

4As patterns are formalized in a language, we need to follow a predefined set of semantics of this
language. This implies that minor differences between the formal CPN semantics and actual semantics
of EKF process pattern are inevitable.

Chapter 5. Transform the EKF process language into BPEL 59

parallel branches (e.g. WP9, WP11, WP19 and WP43). However, this limitation does
not result in considerable issues or challenges, when translating EKF process models
into BPEL code. At this point BPEL is noticeable more expressive than the EKF pro-
cess language. Still this observation results in limitations, as these concepts can not
be modeled in the EKF process language. They will therefore never be available as a
result after the transformation into BPEL. Therefore the EKF process language limits

the result of the transformation, as BPEL does not support these patterns.

The pattern WP9 allows multiple parallel branches without specifying a single point of
synchronization, this pattern is partially supported by the EKF process language. The
completion of one parallel task could result in the continuation of the process, while
the other task are synchronized at a point before its activation or after its completion.
The EKF process language is considered to be a partial solutions as this pattern is only
allowed at the level of the task in sub-process, not at the level of the (sub-)processes®.
BPEL does not have any construct to support the semantics of this pattern, which is
mainly caused by the fact that the link construct in combination with a join-condition
are evaluated first, and not as required at the occurrence of the first positive link. This

concept therefore results in considerable issues when translating EKF process models
into BPEL code.

Although BPEL directly supports WP21, it has considerable limitation with respect
to the support of WP10. This problem is mainly caused by the fact that BPEL does
not allow unstructured loops as it is not possible to jump back to arbitrary parts in
the process (i.e. only loops with one entry point and one exit points are allowed). As
the lack of support of WP10 would cause considerable issues when translating the EKF
process models into BPEL code. Therefore we follow an alternative implementation of
WP10 as proposed by [Ouyang et al., 2006], they propose to take advantage of the event
handler to accomplish the semantics of WP10. However, this solution is considered
to be a partial solution to the problem, as it introduces some complexity issues when
implementing this concept in terms of BPEL. These complexity issues directly arise from
the technical limitations of the BPEL event handler. The event handler is exposed as a
Web service as part of the process. BPEL does not allow that Web services that belong
to a process are invoked from the process itself, therefore an external process is required

to overcome this problem.

The EKF process language has considerable limitations with respect to the support of
the multiple instance patterns. Although a solutions can be identified for WP12, the
EKF process language does not support the patterns WP13 and WP14. This is mainly

caused by the fact that the EKF process engine does not allow multiple instances of

5This is caused by a limitations of the EKF process language rather than is was intended this way.

Chapter 5. Transform the EKF process language into BPEL 60

tasks in the (sub-)process. BPEL directly supports WP12 and even a partial solution
can be identified for WP13 and WP14. At this point BPEL is more expressive compared
to the EKF process language. This limitation does not result in issues when translat-
ing the EKF process models into BPEL code. Nevertheless, Everest should diagnose
this limitation as according to the workflow patterns multiple instances are important

concepts for process modeling®.

The transformation of the patterns WP17 and WP18 is more difficult as they allow
more complex routings in the process. In the EKF process the rules control the state
change in the process, such that conditions could be used to guard the activation of a
task or sub-process. The order in which the task are performed are driven by the rule
engine, where rules are used to drive the flow of the process. For both patterns we found
alternative EKF process solutions, but they have limitations compared to the formal
semantics. This is mainly caused by the fact that there are restriction when using these
patterns in parallel threads. A similar solution for WP18 can be identified in BPEL,
matching the semantics of the EKF process language. A BPEL solution matching the
semantics of the EKF process can also be identified for WP17, but this solution requires
the use of an external rule engine. As the solutions of BPEL complement the semantics
of the EKF process language, we can conclude that these patterns will not cause issues

for the transformation of EKF process models into BPEL code.

Limitation of WP19, WP20 and WP25 arise directly from the compatibility issues when
translating the (sub-)process of the EKF process language into the BPEL scope activity,

as already discussed in the domain transformation.

5.3 Issues & challenges as a result of the language trans-

formations

In this section we summarize the issues and challenges which are a direct result of the

domain and technical spaces transformation.

First, we consider the concepts which are supported by BPEL, but for which no EKF
process solution exist. These limitations does not result in issues and challenges for
the actual transformation, but directly affect the expressiveness of the transformation
result. It is out of the scope of this thesis to resolve these limitation, but we provide

Everest with insights into these limitations, such that its the responsibility of Everest

SEverest supports multiple instances only at a more fine-grained level, not part of EKF process
modeling dimension.

Chapter 5. Transform the EKF process language into BPEL 61

to be aware of, and possible resolve’, these limitations to take fully advantage of the
expressiveness power of BPEL. Notice that the following limitations come directly from

the domain and technical spaces transformation of previous section:

1. The EKF process language lacks for supporting synchronization of parallel branches,

resulting in the lack of support of the patterns: CP3, WP3 and WPT.

2. The EKF process engine does not allow multiple instances of tasks in the (sub-)

process, resulting the lack of support for the patterns: WP13 and WP14.

Second, we consider the concepts supported by the EKF process language, but for which
no solution exist in BPEL. These concepts are interested as they result in considerable
issues and challenges, which must be resolved in the preceding chapters where we: first,
aim at translating the EKF process models into BPEL and second, integrating an BPEL
engine in the EKF. The following issues have been identified when translating the EKF
process language into BPEL:

1. BPEL requires the adoption of a rule engine to accomplish semantics of the rule

based event types supported by the EKF process language.

2. The BPEL scope activity does not complement the semantics of the sub-process
in the EKF process language, because it does not allow multiple entry and/or

multiple exit points.

3. The structured activities in BPEL require a nesting structure, which is violated
by the decision-point(s) in the EKF process language allowing unstructured pro-
cess concepts. BPEL therefore requires an alternative implementation of WP10,

introducing some complexity issues.

4. BPEL does not support WP9. This pattern can be no means be translated into

BPEL as no solution or partial solution exist in BPEL.

5. The EKF process allows multiple entry and exit points for an (sub-)process, which
result in problems when translating the (sub-)process supported by the EKF pro-
cess language into the BPEL scope activity. This result in considerable issues when
translating the patterns: WP19, WP20 and WP25 into BPEL.

6. Closing the gap between the role, channel and data in EKF and BPEL requires
the adoption of WSDL and XSD in the EKF.

"Resolving theses issues requires language extensions in the EKF process language and engine imple-
mentation.

Chapter 5. Transform the EKF process language into BPEL 62

In this chapter we provided an overview of the results of the domain and technical
spaces analysis when closing the gap between the EKF process language and BPEL. We
only focus on aspect of the differences between the language context and concepts from
which we derived the issues and challenges that must be considered when transforming
the EKF process language into BPEL. In the following chapter we need to resolve these
issues and challenges to provide an approach to transform the EKF process language into
BPEL code. Which is different from this chapters as we present a plan to transform EKF
process models (composed with the EKF process language) into BPEL code (composed
of BPEL).

Chapter 6

Transform EKF process models
into BPEL code

In this chapter we continue answering the research question: ‘How to make the Fverest
Knowledge Framework more interoperable by adoption of BPEL?’, but in preceding of the
previous chapter we focus on answering the partial question: ‘How EKF process models
can be transformed into BPEL code?’. First, we present an approach to transform the
EKF process models into BPEL code (see Section 6.1). Second, we discuss the issues and
challenges with respect to the completeness and correctness properties of our proposed

solution (see Section 6.2).

6.1 Approach to transform EKF process models into BPEL

code

In this section we describe the approach, composed of four steps (see Figure 6.1), used

to transform the EKF process models into BPEL code.

STEP 1: STEP 2: Decompose Translate

Translate Translate
Domain Technical spaces

(sub-)process into (sub-)process into
components BPEL code

FIGURE 6.1: Steps of the transformation approach.

In the first step translate domain we use the results from the domain transformation
(see Appendix B) to decompose the EKF (sub-)processes into components (C'), for which

each component can directly be translated into the corresponding BPEL code.

63

Chapter 6. Transform EKF process models into BPEL code 64

The decision-points and flows are not directly supported through the domain transfor-
mation. Therefore we apply the transformations of the technical spaces to reduce the
complexities introduced by the BPEL limitations. In the second step translate tech-
nical spaces we decompose the (sub-)process into components (C'), by identifying and
translating each concept from the EKF process model into the corresponding BPEL

code.

In the third step translate unstructured (sub-)process we need to resolve the issues and
challenges which are not covered by the previous step. We address the limitation of
BPEL in case patterns are not directly supported by BPEL and the patterns for which
no solution exist in BPEL!. Notice that for the limitations for the cancellation patterns
(WP19, WP20 and WP25) are resolved in the following step, as the origin of the problem
is caused by the limitations of the BPEL scope activity.

In the fourth step translate (sub-)process into BPEL we need to resolve the issues and
challenges when translating the EKF (sub-)process into the BPEL scope activity. We
also need to address to transformation of additional events which belong to the EKF

(sub-)process, namely: trigger events, exception events and cancel events.

CancelTrigger

CCOMPLAINT HANDLING PROCESS

(QUESTIONAIRE

Completed

FIGURE 6.2: Running example: a complaint handling process.

To give more insight in how each translation step is performed, we present a running
example? as shown in figure 6.2. This example describes a complaint handling process,
where first a complaint is registered (task registered), then in parallel a questionnaire
is sent to the complaint (sub-process questionnaire) and the complaint is processed
(sub-process complaint). If the complainant returns the questionnaire within two weeks

(event returned questionnaire), the task process questionnaire is performed. Otherwise,

!These are the patterns WP9 and WP10
2This example is the example from [Ouyang et al., 2006], but modeled in terms of the EKF process
language

Chapter 6. Transform EKF process models into BPEL code 65

the result of the questionnaire is discarded (event time-out). In parallel the complaint
is evaluated (task evaluate). Based on the evaluation result, the processing is either
completed or continues the task check processing. If the check result is NOK, the
complaint requires re-processing, otherwise the sub-process questionnaire is canceled
(only if it was still active) and the task archive is performed. Finally, the entire process
can be canceled through a cancel trigger, but only if the condition CANCELOK has

been satisfied.

6.1.1 STEP 1: Translate the domain

In the first step we identify the elements in the EKF process, in a way that each element
can directly be translated, following the domain transformation as included in Appendix
B. For the transformation of the elements we introduce a the function ¥,;(C,,, C,,), for
which a certain component (C,,) from the EKF process model can be translated into
the BPEL code (C,,), iff the component is an element of type (i). For each element
for which this function can be applied the BPEL code is folded into a component C,.
Notice that we consider only the elements which are directly supported by BPEL: the
(sub-)processes, flows and decision-points are not considered at this stage. Folding a
component in this step implies that the element references to the translated BPEL code
by means of the component C,. This step is repeated until no more elements in the

EKF process model can be identified for which a direct mapping exist.

€13 CancelTrigger
(&}

CCOMPLAINT HANDLING PROCESS (QUESTIONAIRE

et ;;;V T

COMPLAINT

[I fe1s | c19
co |

¢ |

[Q | |

Fiogess evaluate o Cheet Archive |

L complaint processing I |
ap3 dpd

| Completed |

FIGURE 6.3: Transformation of complaint handling process (Cont. STEP1).

By applying the first step to the complaint handling example, we can identify the compo-
nents C1, C, ..., Cig (see Figure 6.3). Notice that each component references to a BPEL

code fragment, which are translated using the domain transformation of Appendix B.

Chapter 6. Transform EKF process models into BPEL code 66

Take for example component C5 is and element of the type task, which can (according

to appendix B) be translated into a BPEL invoke activity as presented in listing 6.1.

<invoke operation="Send Questionaire"/>

LisTiNG 6.1: BPEL code of C3 in complaint handling example

6.1.2 STEP 2: Translate the technical spaces

In the second step we identify the components in the (sub-)process, in such a way that
each component is translated into a concept directly supported by means of the technical
spaces transformation as included in appendix C. For the transformation of the patterns
we introduce the function 6;(Chy,,Cy), for which a certain component (Cp,) from the
EKF process model can be translated into the BPEL code (C,,), iff the component is a
pattern type (7). This step is repeated for each (sub-)process until no more patterns can
be identified. Notice that we only consider the patterns, which are directly supported
by BPEL. The patterns WP9, WP10, WP19, WP20, WP25 are therefore not considered
at this stage.

<scope="Cmax">

<!-- Translation of the maximal component Cmax -->

3| </scope>

LI1STING 6.2: Event Action Rules in BPEL

To reduce the complexity of the transformation problems we aim at finding a maximal
component (Cy,qz), which groups several components into a new component supporting
a certain concept. A maximal component is only allowed, when the grouping of compo-
nents does not introduce an arbitrary cycle or crosses the boundaries of a (sub-)process.
By translating a maximal component into BPEL, we increase the readability of the re-
sulting BPEL code. More importantly we reduce the complexity of the problem, before
we try to resolve the issues. Finally, the BPEL code for the maximal component is
folded into a BPEL scope activity (see Listing 6.2). Folding a component in this step
implies that a BPEL scope activity substitutes the translated BPEL code for the maxi-
mal component, such that we can reduce the complexity of the problem by replacing the
maximal component C, by a collapsed sub-process Cy. This step is recursively repeated

until no more maximal components can be identified within the (sub-)process.

Applying the second step to the complain handling example, we can identify the com-
ponents Cog, Cig, ..., C3g, which directly correspond to the patterns from the technical
spaces transformation (see Figure 6.4). Several maximal components can be introduced

C31,Cs9..., Csy. Take for example Co; and C5 are grouped into a new component Csy (see

© W N g ke W N =

10
11

12

Chapter 6. Transform EKF process models into BPEL code 67

CCOMPLAINT HANDLING PROCESS

(QUESTIONAIRE

FIGURE 6.4: Transformation of complaint handling process (Cont. STEP2).

Listing 6.3) as they are both part of a sequence pattern and do not cross the boundaries

of the sub-process questionnaire or introduces an arbitrary cycle.

<scope name="(C32">

<sequence >
<invoke operation="Send Questionaire"/>
<pick>
<onMessage operation="Returmned...">

<invoke operation="Start(C22)"/>
</onMessage >
<onAlarm name="time-out">
<invoke operation="Start(C23)"/>
</onAlarm>

<sequence>

</scope>

LisTiNG 6.3: BPEL code of C21 in the complaint handling example

6.1.3 STEP 3: Decompose the (sub-)process into components

This step is only required when the resulting (sub-)process after the second step still
contains issues which must be resolved (e.g. contains arbitrary cycles or unstructured
process components). To resolve these issues we follow the approach of [Ouyang et al.,
2006]. In this approach each maximal component as identified in the previous step must
be translated into an event action (E{A}) rule. These F{A} rules can be translated into
the onMessage event handler in BPEL, where the event (E) corresponds to the start
point of the maximal component and the action (A) specifies the folded BPEL code as
derived in the previous step. Listing 6.4 gives an overview of the BPEL code used for
the translation of the event action rule (E{A}). The (E{A}) rule is constructed for each

maximal component contained by the (sub-)process.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 6. Transform EKF process models into BPEL code 68
<onMessage="Start (x)">
<!-- Translation of the code from step 2 -->

</onMessage >

LISTING 6.4: Event Actio

n Rules in BPEL

Following the third step we can translate the sub-process complaint into BPEL code

(see Listing 6.5). This sub-process is composed of the maximal components Cas, Cag

and Cyg, which can not be further decomposed

translated into event action rules.

. Each of the resulting components are

Event Action tramnslation of
<onMessage operation="Start(C33)">
<scope name="C33">
<sequence>
<invoke operation="Process Complaint"/>
<invoke operation="Evaluate"/>
<switch>
<case condition="NOK">
<invoke operation="Start(C33)"/>
</case>
<otherwise>
<invoke operation="Start(C25)"/>
</otherwise>
</switch>
</sequence>
</scope>
</onMessage >
--------------- Event Action tramslation of
<onMessage operation="Start(C25)">
<scope name="C25">
<sequence >
<invoke operation="Check Processing"/>
<switch>
<case condition="NOK">
<invoke operation="Start(C33)"/>
</case>
<otherwise>
<invoke operation="Start(C34)"/>
</otherwise>
</switch>
</sequence>
</scope
</onMessage >
——————————————— Event Action tramnslation of
<onMessage operation="Start(C34)">
"Cc34">

<flow supressJoinFailure="yes">

<scope name

<invoke operation="Start(C7) joinCondition
<invoke operation="End(C34)"/>

</flow>

</scope>

</onMessage>

€33 —----mmmmmmmm oo >
€25 —====mmmmmmmmm— oo >
€34 —--—--mmmmmmmm oo >

="NCOMPLETED"/>

Chapter 6. Transform EKF process models into BPEL code 69

LisTING 6.5: Translate the sub-process complaint into BPEL

CCOMPLAINT HANDLING PROCESS

0

FIGURE 6.5: Transformation of complaint handling process (Cont. STEP3).

6.1.4 STEP 4: Translate the (sub-)process into BPEL code

In this step we need to resolve the limitations when translating a (sub-)process into a
BPEL scope activity. To accomplish this we introduce a scope activity resembling the
(sub-)process containing the result (event action rules) of the previous step as presented
in listing 6.6. The initial component C, in the sub-process is triggered by the Start(z)
(see Line 8 in Listing 6.6) and the scope waits until it receives and End(y) (see Line 9 in
Listing 6.6) marking the completion of the scope activity. This step must be performed
for all (sub-)processes, which contain an arbitrary cycle or unstructured components.
By following this approach we can overcome the issues of multiple entry and exist points

for the (sub-)process and containment of unstructured process concepts.

There still remains a considerable problem when the EKF process model contains the
pattern WP9. There is no BPEL translation available to support this pattern, such
that we can by no means resolve this problem through BPEL. Resolving this problem
therefore requires either re-modeling (remove all WP9 pattern before the transformation)
or transform the entire pattern into a scope activity contained by a question mark (7).
The last solution requires intervention of a BPEL specialist, to resolve the question
marks before the BPEL code can be deployed. In the case study (see Appendix C)
provides an example of the transformation of a EKF process model including a WP9

pattern.

The (sub-)processes containing trigger, exception or cancel events (e.g. WP19, WP20,
WP25), require additional event and/or fault handlers in the BPEL scope activity.

© W N U R W N =

o
[=}

Chapter 6. Transform EKF process models into BPEL code 70

Therefore we need to translate the event types, which specifically belong to EKF (sub-
)process, into the corresponding part of the event and fault handler of the BPEL scope
activity. The fault handers are required when the instance of a (sub-)process are explic-
itly terminated (e.g. WP19, WP20 and WP25a) and continue processing from a single
point forward. The fault handlers are required for trigger events, cancel events and

cancel sub-process event, while exception event only result in additional event handlers.

<scope name="(sub-)process">
<faultHandler >
<!-- transformation of the fault handlers -->
</faultHandler >
<eventHandler >
<!-- translation of the event handlers -->
</eventHandler >
<invoke operaton="Start(x)"/>
<receive operation="End(y)"/>

</scope>

LISTING 6.6: Arbitrary Cycle in BPEL

The component C3; is the initial component in the process complaint handling, such
that this is the first component that must be activated in the sub-process complaint
(see Line 69 in Listing 6.7). The component Cyg is the final component in the process
complaint handling, such that this component is responsible to enable the completion

of the scope complaint (see Line 69 in Listing 70).

For the components Ci5 and Cy; we introduce respectively two fault handlers: fCAN-
CEL, which terminates all process instances in case the process was explicitly canceled;
and f{CANCELTRIGGER, which is required to terminate all process instances in case the
Cancel Trigger event has occurred and the condition CANCELOK was satisfied. Notice
that the process complaint also includes a typical WP19 pattern, allowing the termina-
tion of the sub-questionnaire can be terminated from within the sub-process complaint.
To accomplish this, one must include an additional fault handler in the scope activity

resembling the sub-process questionnaire.

<scope name="COMPLAING HANDLING PROCESS">
<faultHandler >
Klo-mmmmmmm - Fault Handler for the cancel event ----------------- >
<catch faultName="fCANCEL">
<invoke operation="Start (C29)"/>
</catch>
<l---mmmmm Fault Handler for the cancel event ----------------- >

<catch faultName="fCANCELTRIGGER">
<sequence>
<invoke operation="Cancel Process"/>
<throw faultName="fCANCEL"/>
</sequence >

</catch>

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

63
64
65
66
67
68

Chapter 6. Transform EKF process models into BPEL code

71

</faultHandler >
<eventHandler >
<Kl--mmmmm oo - Event Action tramslation of C30 -----
<onMessage operation="CANCELTRIGGER">
<scope name="C30">
<switch>
<case condition="CANCELOK">
<throw faultName="fCANCELTRIGGER"/>
</case>
<otherwise>
<empty/>
</otherwise>
</switch>
</scope>
</onMessage >
<Kl--mmmm oo Event Action tramslation of C31 -----
<onMessage operation="Start(C31)">
<scope name="C31">
<sequence >
<receive operation="Request" createlnstance="yes"/>
<invoke operation="Register"/>
<flow>
<invoke operation="Start (QUESTIONAIRE)"/>
<invoke operation="Start (COMPLAINT)"/>
</flow>
</sequence>
</scope>
</onMessage >
<l=mmmmm oo - Event Action tramslation of C28 -----
<onMessage operation="Start (C28)">
<scope name="C28">
<sequence>
<invoke operation="Terminate Process"/>
<terminate name="Terminated"/>
</sequence>
</scope>
</onMessage>
<Kl---mmmmmmmm - Event Action tramslation of C29 -----
<onMessage operation="Start(C29)">
<scope name="C29">
<sequence>
<invoke operation="Archive"/>
<invoke operation="End (COMPLETED)"/>
</sequence>
</scope>

</onMessage >

<l--mmmmmmm - Event Action tramnslation of QUESTIONAIRE-------------

<onMessage operation="Start (QUESTIONAIRE)">

<!-- code for Questionaire of previous step-->
</onMessage >
e i Event Action translation of COMPLAINT
<onMessage operation="Start (COMPLAINT)">

<!-- code for Complaint of previous step -->
</onMessage >

</eventHandler>

69
70
71

Chapter 6. Transform EKF process models into BPEL code 72

<invoke operaton="Start(C31)"/>
<receive operation="End (COMPLETED)"/>

</scope>

LisTING 6.7: Translation of the running example into BPEL

6.2 Correctness and completness properties

In this section we primary discuss the correctness and the completeness properties of
the transformation result, when following our transformation approach. Based on a
mortgage process from the Everest practice, we present a case study for which we derive
the BPEL code following our transformation approach (see Appendix D). Because the
first and second step of our transformation approach is straightforward and is already
explained through the running example, we only describe the results of the third and
fourth step for this case study. We have identified that we can transform the complete
mortgage process into BPEL, following the proposed transformation approach. Still we
must consider some limitations with respect to our proposed transformation approach,
as this approach depends on the results from the domain and technical spaces transfor-

mation of the previous chapter.

6.2.1 Can we translate all EKF process models into BPEL?

The evaluation of the completeness should answer the question: ‘Can we translate all
EKF process models into BPEL?’. Answering this question is particular interesting when
using the transformation approach as a general approach to transform EKF process
models into BPEL code.

Validation of the completeness of the technical spaces is impossible as no absolute notion
or insight is available to us to draw conclusions about the completeness. This is mainly
caused by the fact that our transformation approach is based on the assumption that the
technical spaces are concidered to be complete. As this assumption is clearly violated in
case concepts are ‘overlooked’, which require extensions in the domain and/or technical
spaces transformation of appendix B and C. Still we can say with considerable certainty
that we have reached a certain completeness in our approach, as the case study is con-
sidered to be a representative EKF process model from the Everest practice. Therefore
we assume that this process models covers all elements and concepts supported by the

EKF process language.

3Models consist of concpets which are not covered by our technical spaces

Chapter 6. Transform EKF process models into BPEL code 73

6.2.2 What can we say about the correctness of the transformation?

For the evaluation of the correctness we aim at answering the following two questions:
‘Is the’result of the transformation correct BPEL code?’ and ‘Is the resulting BPEL code
semantical equivalent to semantics EKF process model from which the transformation
was made?’. Notice that we are not interested in the correctness of the BPEL language
itself, but only the limitations of the target BPEL code as a result of our transformation

approach.

The validation of the correctness of our transformation approach requires the evaluation
of the correctness of the initial EKF process models and resulting BPEL code. The
EKF process language and BPEL are not based on formal languages like: Petri-Nets, -
calculus or process algebra. Validation of the correctness based on a formal approach is
difficult and out of the scope of this thesis. Therefore we need another approach to draw
conclusions about the correctness of the transformation result. efore we need another

approach to draw conclusions about the correctness of the transformation result.

The EKF process model from our case study is an operational solution, which has
passed various testing stages before its delivery. This should give use some confidence
with respect to the correctness of this EKF process model. The EKF process models
from which the transformation is derived, must be correct otherwise the resulting BPEL

code will certainly be incorrect.

For the validation we used Oracle BPEL designer and Process Manager to check if
each concepts (from the technical spaces) can actually be implemented in BPEL and
determine based on simulation if the result produces the desired behavior. Following
this approach we can say that we have reached certain confidence with respect to the
semantical correctness of the individual patterns as included in appendix C. As the
EKF process is composed of these patterns, we assume that the transformation result is
considered to be correct under the condition that all individual patterns are considered
to be correct. Providing an actual implementation of case study in BPEL should increase
the certainty of the correctness. However, this is left to further research (see Section 7.4)
as it was not possible to accomplish the implementation of BPEL and gather the required
data, within the project time constraint. Especially the requirement of integrating the
BPEL engine and EKF rule engine makes it difficult to accomplish this in the limited

amount of time.

At this point, we provided an approach to close the gap between the EKF process models
and BPEL code, toward a solution to the problem as identified earlier in this report (see
Chapter 1). In the following chapter we start a discussion as a reflection and positioning

of our work.

Chapter 7

Discussion

Everest is interested in the issues and challenges which can deteriorate the competitive
strength of the development environment like the EKF. Specifically for Everest it is
important to keep-up with the latest developments, toward and extensible and interop-
erable EKF'. In the previous chapters we provided a solution to the problem as identified
in chapter 1. As for every solution we need to consider limitations and trade-off that have
to be made when adopting a specific solution. In this chapter we therefore reflect and
position our work by starting a discussion of the best practices which must be considered
when adopting our proposed solution. This discussion should reveal insights, which are
not addressed by answering the research questions as done in the previous chapters, but
which are important in the context of Everest. In this chapter we therefore focus on the
reflection and positioning of our work, by answering the question: ‘What are the best

practices which must be considered when adopting our proposed solution?’.

To answer this question we first discuss the best practices which must be considered
when integrating a BPEL engine into the EKF (see Section 7.1). Integration of a BPEL
engine in the EKF is important as our solutions has identified that some aspect of the
EKF are are not covered by BPEL, such that integration of a BPEL engine and the
EKF is required to resolve these issues. Second, we evaluate the EKF process language
compared to alternative process modeling languages (see Section 7.2). This should allow
us to derive conclusions with respect to the competitive strength of the EKF process
language. Third, we position our work providing an overview of the related work (see
Section 7.3). Finally, we provide the objectives for further research that directly arise

from our work (see Section 7.4).

74

Chapter 7. Discussion 75

7.1 What best practices must be considered when inte-
grating a BPEL engine in the EKF?

In order to take fully advantage of BPEL, Everest should consider the integration of a
BPEL engine in the EKF. This implies that a BPEL engine should be integrated in the
enterprise architecture of the EKF. The integration of a process engine in the enterprise
architecture can best be illustrated through the WfMC Reference Model (see Figure 7.1).
This reference model specifies five interfaces, which must be considered when integrating

a process engine in the enterprise architecture.

Process

Definition Tools

Interface 1

. Workflow APT and Interchange formats Interface 4
Interface 5
i : Workflow Enactment Service Other Workflow
Administration Enactment Service(s)

& Monitoring
Tools

Workflow

Engine(s)

Interface 2 ¢ # Interface 3
Workflow Invoked
Applications

Client
FIGURE 7.1: WIMC Reference Model [Hollingworth, 1995].

Workflow
Engine(s)

Applications

7.1.1 Interface 1

Integration of a BPEL engine in the EKF requires that the EKF process engine ca-
pabilities are replaced by the BPEL engine capabilities. This implies that the process
definition tools for BPEL can be used by the business engineer or software engineer
to compose BPEL process definitions. Interface 1 therefore conciders an interchange
format and Application Programming Interface (API), which can support the exchange
of the process definition across a variety of tools and engines. This interface is directly
supported when adopting BPEL as the BPEL process definition can be used as a lan-
guage to interchange the process definition. An increasingly number of tools and engines

are available supporting BPEL, which is a direct result of the popularity of BPEL. For

Chapter 7. Discussion 76

Everest the implementation tools could also be of interest as our proposed solution still

requires manual implementation of BPEL.

7.1.2 Interface 2

The external activities in BPEL are exposed as Web service, so that the obvious busi-
ness activity of a human interaction (interface 2) is not covered by BPEL standard.
The implementation of BPEL is primarily designed to support automated business pro-
cesses based on Web services. However, the spectrum of activities that make up general
purpose business processes is broader than this, because people often participate in
the execution of business processes. The worklist manger is therefore not supported
by the BPEL standard, but this is mostly covered by its implementation. Standards
like BPEL4People propose extensions to BPEL in terms of scenarios involving people
within the BPEL process [IBM and SAP, 2005]. BPEL does not specify guidelines for
the engine and worklist implementation. The Workflow Management Application Pro-
gramming Interface (WAPI) [WFMC, 1998] could fill this gap, as it provides a standard
for specifying the required interfaces when implementing a workflow engine or worklist

manager.

7.1.3 Interface 3

The challenge of integrating a BPEL engine in the EKF lies in respectively the inter-
faces 3 of the WIMC reference model, which specifies the interaction with the logical
components in order to complete a task in the process. In chapter 3 we have identified
that both interfaces are provided by the EKF by means of ESB channels by means of
the connectivity layer. The integration of a BPEL engine in the EKF for the interfaces

3 can therefore be seen as a continuum from very tight, to very loose (see Figure 7.2).

Tight integration specifies that the BPEL engine and EKF are integrated such that
they are exposed as a single point of processing. The main drawback of this approach
is that applications must interact with a combined BPEL engine and EKF, also if it
only needs to interact with one of them. This approach lacks for scalability, as this
approach does not allow that the EKF and process engine are independently scalable. In
a loosely coupled integration approach the BPEL engine and the EKF operate completely
independent and are integrated on the level of the client. This integration approach lacks
for flexibility toward change, as changes require re-deployment of the client application.
A loosely coupled integration approach lies in-between a tight and loose integration,
taking advantage of the enterprise architecture as enabling a service based integration

approach. Adoption of a more loosely coupled approach should increase the scalability

Chapter 7. Discussion 7

BPEL engine BPEL engine
BPEL engine
3
v Y
EKF
EKF EKF
< Integration Continuum >
Tight Loose

L

FIGURE 7.2: Continuum of EKF and BPEL engine integration from [WfMC et al.,
2003].

and separation of concerns between the BPEL engine and EKF engine components,
promoting standardized interfaces between the logical components. This is an advantage,
as Web service technologies are the leading standard for specifying these interfaces in the
enterprise architecture. A drawback of this approach could be performance issues, due
to the fact that Web service protocols are known to have performance issues compared
to tight integration. Nevertheless, we think that a loosely coupling approach is most

suitable for the engine-to-engine integration of BPEL and the EKF.

' N I

N AN /

(a) Point-to-point integration (6 (b) Broker integration (4 connections)
connections)

FIGURE 7.3: Point-to-point versus broker integration from [Harvey, 2005].

A loosely coupled integration of a BPEL engine and the EKF requires adoption of Web
service technology in EKF. Web service technology is the backbone of BPEL and provides
interoperability across various applications and platforms by facilitate the publishing of
applications as Web services. Following the loosely coupled integration strategy we can
continue to discuss the best practices which must be considered when closing the gap

between a BPEL engine and enterprise architecture of the EKF.

Chapter 7. Discussion 78

First we address the complexity issue of the integration, maintaining the connections on
a point-to-point basis (see Figure 7.3(a)). The drawback of point-to-point connections
between the BPEL engine and the EKF results in complexity issues, because of the
increasing number of interfaces required for the point-to-point solutions. Take for exam-
ple: N components, the number of point-to-point connections required is N * (N —1)/2.
Therefore we propose the use of a message broker (see Figure 7.3(b)). The message
broker reduces the number of conncetions and decreasing the complexity of number of

interfaces which need to be considered when integrating N components.

Event Manager WSDL- BPEL Service WSOL- Portal Engine

‘WSDL

Interceptor Service

Inchahon O.f Transform Channel Transform Inchatlon °f
Decision Service Befare Invocation After Decision Service
Before After
3 A
A A

WSDL

Service Gateway

DL WSDL WSDL

WsDL
Transformation

Service

Decision Service |

Y

FIGURE 7.4: Integration of EKF and BPEL engine based on idea from [Rosenberg and
Dustdar, 2005a].

To achieve the message broker following a loosely coupled integration approach, it re-
quires the adoption of Web services in the EKF connectivity layer. In this way the
generalized channel in the EKF should be exposed as Web services as proposed by [De-
bevoise, 2005]. This allows that all the specialized channel types are also exposed as
Web services: BPEL service, interceptor service, decision service and transformation

service (see Figure 7.4).

The interceptor service acts as a broker for the integration of the invoked applications on
interface 3. Directly invoke the rules from BPEL results in complexity issues (increasing
the number of activities to 2 x N) as described by [WfMC et al., 2003]. A solution to
this problem is presented by Rosenberg and Dustdar [2005a], where they assign this
task to the interceptor service. The role of the interceptor service is to intercept each
incoming and outgoing BPEL service call to automatically apply the rules. The inter-
ceptor service applies through a decision service, before and after the invocation of the

channel task through the service gateway. Linking the BPEL activities to the rules can

Chapter 7. Discussion 79

be accomplished through a mapping file!.

Redeployment of the process is required, when BPEL is responsible for the binding
to the end points and the underlying service change. Maintenance issues arise when
the number of participating services in the process increase, which requires maintaining
the binding of an increasingly number of services. To overcome this problem, Kuster
and Konig-Ries [2007] proposes to dynamically bind the service end point at run-time
through the service gateway rather than explicitly define these end points in the BPEL
process. The service gateway should expose a generic function of the EKF by means
of Web services (e.g. interaction, transformation, decision and data, etc.). The service
gateway implies that channels in the EKF connectivity layer must be exposed as WSDL
operations. Each operation in the WSDL, need XSD’s to describe the layout of the XML
document for its input and output variables (transformation of the EKF domain model

into XSD and channels into WSDL is described into more detail in appendix B).

As each task is exposed as a Web service and BPEL specifies the orchestration of these
Web services. Therefore it is required that the output variables of one Web service
must be translated into the input variables of the preceded invoked Web service. As
these transformations must be performed before and after the actual invocation of the
task they are considered to be part of the interceptor service. The transformation ser-
vice is introduced to transform one XML data format into another XML data format,
by providing an XSLT transformation definition. However, this solution has a draw-
back as it is time consuming to create and complex to maintain the increasing number
of transformation definitions. Solution to this problem can possibly be found in the
Java Meta-modeling Protocol (JUMP)?, which offers a framework and structured meta-
language to consolidate multiple models into a single view [Jumper, 2006]. This view
captures the required integration details for correctly cleansing and mapping the domain

attributes and expose them as Web services.

The introduction of the decision service exposes the distinctive features of the rule engine
as a Web service. The concept of such a service is to derive knowledge from a set of
rules and data on its input [Martin, 2006]. Following the approach of Rosenberg and
Dustdar [2005b], we can define a decision service as a triple < R, I,O >, where R is the
ruleset composed of rules and I and O are respectively the input and output variables
of the ruleset. Considering a ruleset as an input parameter of a decision service requires
the use of a rule language defining the behavior of the actual Web service (referred

to as semantic Web service) [Gasevic et al., 2006]. The development of rule language

!This mapping file simply links the invoked activity to the rules which need to be applied, promoting
reuse of rules
%see: http://en.wikipedia.org/wiki/JUMP _-_Java_metamodel_protocol

Chapter 7. Discussion 80

is work in progress (e.g. Rule Meta Language (RuleML)?, Rule Interchange Format
(RIF)* and Production Rule Representation (PRR) [OMG, 2006]), but no defacto rule
language has been adopted by the industry at the time of writing. Therefore we consider
the approach of Rosenberg and Dustdar [2005a], which proposes to expose each ruleset
as an independent Web services. In this way the Web service does not require the
ruleset as an input variable of the Web service, but exposes the entire ruleset as an
independent WSDL operation. Maintaining the increasing number (versions) of Web
service, when changes to the rules occur is the main concern of this approach. To
overcome this problem one could follow the approach of Orriens et al. [2003], Schmidt

[2002], proposing to generate WSDL operations directly from the ruleset definitions.

As each BPEL process is itself exposed as a Web service, it is possible for the portal
engine and event manger in the EKF to directly interact with the process through the

invocation of the process Web services.

7.1.4 Interface 4

This interface defines the way how multiple enactment services can be integrated. This
interface is directly supported by BPEL, by exposing each (sub-)process and events as
a Web service. Various implementations of BPEL can interact by means of invocation

of services across the deployed BPEL processes.

7.1.5 Interface 5

This interface includes standards for administration and monitoring function which al-
low one vendor management application to work with other engine(s). This promotes a
common interface which enables several workflow services to share a range of common
administration and monitoring functions. Take for example an interface for the inter-
change of overall status and metric information. Notice that it is outside the scope of
BPEL standard to define such an interface, but various BPEL implementations already
cover some implementation in terms of an API. This implies that the way this informa-
tion is stored in terms of the domain model could be expressed in terms of standardized
metric vocubularies (e.g. Business Motivation Model (BMM) or Business Process Defi-
nition Model (BPDM)). The interface must be exposed as a specific service and protocol

which is used to retrieve the status and statistica