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Abstract

Modeling ones design is generally considered good practice in the process of
software development. Numerous payoffs are attributed to this practice, in-
cluding increased software quality and easier software maintenance. However,
empirical studies validating these payoffs are scarce. This validation should
nevertheless be considered very important, since models do not represent any
value by themselves. Therefore, only when payoffs have been shown to exist,
should a company be willing to invest time and resources into creating these
models.

The de facto standard for communicating a system’s design is the Unified
Modeling Language (UML). In this study we explore the relation between the
level of detail of a system’s UML diagrams – specifically class, sequence and
state diagrams – and the defect density and average defect repair time of the
resulting implementation. We did this by performing two case studies, both
in an industrial setting, applying different approaches for each of them.

For both approaches definitions were formulated on how to record UML
level of detail measures of the mentioned diagram types. While the first ap-
proach used qualitative rankings, the second applied design metrics to quantify
this detail level.

Defect samples were manually inspected to try to relate each defect to
parts of the UML models. During this process the defects were also typed,
so that analyses could be performed using both the entire set of defects and
specific defect types when required. To facilitate this defect typing task, defect
taxonomies were compiled from the ones found in scientific literature and
further tailored to the needs of this study.

The results from our case studies show evidence supporting the suggested
payoffs: the availability of UML models lowers defect density and average re-
pair time. However, some questions regarding validity of this evidence remain.
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• Christian Lange and René Ladan for their great company and for ful-
filling the role of sparring partner during the time I spent within the
EmpAnADa group.

• All developers who allowed me to take a look at their work, and providing
help and feedback whenever needed.

• All co-graduate-students at the“Working Tomorrow”department of Log-
ica Eindhoven for the wonderful time I had during my time there and
the useful input they provided.

Last but not least I cannot think of a more appropriate place than in my
master’s thesis to express my deepest and sincerest gratitude to my parents,
Cilly and Jos Flaton, for supporting me in every possible way, during my
entire time at the university.

Bas Flaton

Eindhoven, June 9, 2008



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The approach in a nutshell . . . . . . . . . . . . . . . . . . . . 2
1.4 Empirical research . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Empirical approach . . . . . . . . . . . . . . . . . . . . 3
1.4.2 EmpAnADa . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Nomenclature 7
2.1 Defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related research 9

4 Case 1: Blu-ray Middleware 11
4.1 BDMW description . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 RE/ROM HDMV component . . . . . . . . . . . . . . . 11
4.1.2 BD-J application lifecycle management component . . . 12

4.2 BDMW definitions . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Defect taxonomy . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 Design detail . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 BDMW data gathering . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.1 Step one - gather code metrics . . . . . . . . . . . . . . 16
4.3.2 Step two - gather project characteristics . . . . . . . . . 18
4.3.3 Step three - collecting defect data . . . . . . . . . . . . 21
4.3.4 Step four - typing defects . . . . . . . . . . . . . . . . . 21
4.3.5 Step five - determining UML detail . . . . . . . . . . . . 22
4.3.6 Data accuracy . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.7 Storing the data: the database . . . . . . . . . . . . . . 23

4.4 BDMW results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Additional analysis note . . . . . . . . . . . . . . . . . . 23
4.4.2 UML and defect prevention . . . . . . . . . . . . . . . . 24

v



vi Contents

4.4.3 UML and maintenance . . . . . . . . . . . . . . . . . . . 27
4.5 Conclusions first case . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Case-specific threats to validity . . . . . . . . . . . . . . . . . . 32

5 Changing the process 35
5.1 Problems with the BDMW approach . . . . . . . . . . . . . . . 35
5.2 The new approach . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Eliminating the coverage measure . . . . . . . . . . . . 36

5.3 Drawbacks to the new approach . . . . . . . . . . . . . . . . . . 37

6 Case 2: PARTS 39
6.1 PARTS description . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 PARTS definitions . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 Defect taxonomy . . . . . . . . . . . . . . . . . . . . . . 40
6.2.2 Design detail . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 PARTS data gathering . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.1 Step one - gather code metrics . . . . . . . . . . . . . . 43
6.3.2 Step two - gather project characteristics . . . . . . . . . 43
6.3.3 Step three - collecting defect data . . . . . . . . . . . . 45
6.3.4 Step four - typing defects . . . . . . . . . . . . . . . . . 46
6.3.5 Step five - determining UML detail . . . . . . . . . . . . 47
6.3.6 Storing the information: the database . . . . . . . . . . 49

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4.1 Additional analysis notes . . . . . . . . . . . . . . . . . 49
6.4.2 Comparing defect density . . . . . . . . . . . . . . . . . 50
6.4.3 Comparing average defect density per defect type . . . . 54
6.4.4 Correlating level of modeling detail to defect density . . 55

6.5 Conclusions second case . . . . . . . . . . . . . . . . . . . . . . 62
6.6 Case-specific threats to validity . . . . . . . . . . . . . . . . . . 64

7 Conclusions and evaluation 65
7.1 Answers to the research questions . . . . . . . . . . . . . . . . . 65

7.1.1 Research Question 1 . . . . . . . . . . . . . . . . . . . . 65
7.1.2 Research Question 2 . . . . . . . . . . . . . . . . . . . . 66
7.1.3 Research Question 3 . . . . . . . . . . . . . . . . . . . . 66
7.1.4 Research Question 4 . . . . . . . . . . . . . . . . . . . . 68
7.1.5 Research Question 5 . . . . . . . . . . . . . . . . . . . . 68

7.2 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5 Guidelines for applying UML . . . . . . . . . . . . . . . . . . . 71

A Existing defect taxonomies 73



Contents vii

A.1 Taxonomy suggested in [CKC91] . . . . . . . . . . . . . . . . . 73
A.2 Taxonomy suggested in [CBC+92] . . . . . . . . . . . . . . . . 73
A.3 Taxonomy suggested in [LTW+06] . . . . . . . . . . . . . . . . 73
A.4 Taxonomy suggested in [Bur03] . . . . . . . . . . . . . . . . . . 74
A.5 Taxonomy suggested in [IEE93] . . . . . . . . . . . . . . . . . . 75

B Database design 77
B.1 The BDMW analysis database . . . . . . . . . . . . . . . . . . 77
B.2 The PARTS analysis database . . . . . . . . . . . . . . . . . . . 78

C Performed queries 81
C.1 PARTS: comparison of defect density modeled vs unmodeled

system parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.2 PARTS: comparison of average defect density per defect type . 83
C.3 PARTS: correlation test LoD and defect density . . . . . . . . . 83

C.3.1 All defect types, all sequence diagrams . . . . . . . . . . 83
C.3.2 All defect types, IOR sequence diagrams . . . . . . . . . 89
C.3.3 Individual defect types . . . . . . . . . . . . . . . . . . . 91

D Statistical tests 93
D.1 Kendall’s τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
D.2 Mann-Whitney U-test . . . . . . . . . . . . . . . . . . . . . . . 93
D.3 Kruskall-Wallis test . . . . . . . . . . . . . . . . . . . . . . . . . 94
D.4 Shapiro-Wilk test . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 95





List of Figures

4.1 Defect density (defects/KSLoC) distribution. . . . . . . . . . . . . 26

4.2 Repair effort per defect type. . . . . . . . . . . . . . . . . . . . . . 29

4.3 Per project modeling and repair effort ratios. . . . . . . . . . . . . 31

4.4 Per project modeling and repair effort (hrs per KSLoC). . . . . . . 31

5.1 Coverage approximation - graphical explanation. . . . . . . . . . . 37

6.1 PARTS: defect type distribution . . . . . . . . . . . . . . . . . . . 46

6.2 PARTS: Defect density (per SLoC) of modeled and unmodeled sys-
tem parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 PARTS: Defect density (per SLoC) of (split up) modeled and un-
modeled system parts . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 PARTS: Average defect density distributions for modeled and un-
modeled system parts. . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 PARTS: Sample defect density (per SLoC) (all SDs) . . . . . . . . 56

6.6 PARTS: scatterplot of correlation between LoD and defect density
(per SLoC) (all LoD parts, all SDs) . . . . . . . . . . . . . . . . . 57

6.7 PARTS: Sample defect density (per SLoC) (only IOR SDs) . . . . 59

6.8 PARTS: scatterplot of correlation between LoD (all parts) and de-
fect density (per SLoC)(only IOR SDs) . . . . . . . . . . . . . . . 60

6.9 PARTS: scatterplots of correlation between LoD (interesting parts)
and defect density (per SLoC)(only IOR SDs) . . . . . . . . . . . . 60

7.1 Defect density (defects/KSLoC) distribution. . . . . . . . . . . . . 67

7.2 PARTS: Average defect density distributions for modeled and un-
modeled system parts. . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.1 BDMW database schema. . . . . . . . . . . . . . . . . . . . . . . . 77

B.2 PARTS database schema. . . . . . . . . . . . . . . . . . . . . . . . 79

ix



x List of Tables

List of Tables

4.1 Class diagram detail attributes . . . . . . . . . . . . . . . . . . . . 15
4.2 Sequence diagram detail attributes . . . . . . . . . . . . . . . . . . 15
4.3 State diagram detail attributes . . . . . . . . . . . . . . . . . . . . 16
4.4 HDMV code metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 ALM code metrics - Java . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 ALM code metrics - native . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Project average model detail, completeness and defect density . . . 25
4.8 HDMV coverage of implementation by diagram types. . . . . . . . 25
4.9 ALM coverage of implementation by diagram types. . . . . . . . . 26
4.10 Average defect repair effort per project . . . . . . . . . . . . . . . 28
4.11 Repair effort per defect type versus created UML diagrams . . . . 30

6.1 PARTS code metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Modeled and unmodeled defect density: test for normality . . . . . 51
6.3 Modeled and unmodeled defect density: Mann-Whitney test . . . . 52
6.4 Splitting up modeled defect density: Kruskal-Wallis test . . . . . . 52
6.5 Sequence diagram modeled and unmodeled defect density: Mann-

Whitney test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.6 LoD and defect density correlation: test for normality . . . . . . . 56
6.7 LoD and defect density correlation: Kendall’s τ . . . . . . . . . . . 57
6.8 LoD and defect density correlation: test for normality . . . . . . . 59
6.9 LoD (IOR based) and defect density correlation: Kendall’s τ . . . 61
6.10 LoD and defect density correlation (individual defect types): test

for normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.11 LoD (logic, all SDs) and defect density correlation: Kendall’s τ . . 62
6.12 LoD (logic, IOR) and defect density correlation: Kendall’s τ . . . . 63
6.13 LoD (user data i/o, all SDs) and defect density correlation: Kendall’s

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.14 LoD (user data i/o, IOR) and defect density correlation: Kendall’s τ 63

C.1 Result set of query from Listing C.1 . . . . . . . . . . . . . . . . . 82
C.2 Result set of query from Listing C.2 . . . . . . . . . . . . . . . . . 83
C.3 Result set of query from Listing C.3 . . . . . . . . . . . . . . . . . 88
C.4 Result set of query from Listing C.4 . . . . . . . . . . . . . . . . . 90



Chapter 1

Introduction

In this introductory chapter the motivation for performing this study is given.
After this the research questions central to this study are postulated and
explained. We then give a brief introduction to the empirical nature of this
study. Finally an outline of the rest of this thesis is given. After reading this
chapter the reader should have the basic understanding of the content of this
thesis and the reasons for which it was written.

1.1 Motivation

Design modeling is generally considered good practice in almost any software
development process. When studying modeling in scientific literature (see for
instance [BCK03], Section 2.4), numerous pay-offs are attributed to it. These
pay-offs include, among others, the following:

• Increased productivity (e.g. through easier component reuse and less
rework due to misinterpretation of specifications)

• Better communication (e.g. through better domain understanding)

• Increased quality (e.g. less bugs introduced, non-functional requirements
better met and allowing for better testing)

• Easier maintenance (e.g. through a better overview of the system)

• Better planning (e.g. better estimates, more effective personnel deploy-
ment)

While some of these pay-offs seem to be based on very credible reasoning,
empirical investigation on the validity of these relations has up till now been
scarce. Nevertheless this validation should be considered crucial by practi-
tioners, since only then it would be justifiable to make any investments in
software modeling techniques. This is because the models by themselves do

1



2 CHAPTER 1. INTRODUCTION

not represent value and in that way do not have a positive influence on a
company’s ROI1.

Although it is very well possible that this usefulness of UML varies (be-
tween projects, people etc.), we believe that it does not do so arbitrarily.
Instead of debating the overall applicability of a rigorous, upfront modeling
approach versus the more agile approaches, we see an ideal solution in a de-
cision tree that, given some project characteristics (like inherent complexity,
team composition, time-to-market requirements, safety requirements etc.) can
accurately predict the level of modeling that should be applied.

1.2 Research questions

For this study we focus on the influence of design modeling on software quality.
Software quality is still a very broad subject. Specifically we are interested
in creating bug-free software. In order to minimize the amount of defects in
software, three activities can be used: defect prevention, defect detection and
maintenance.

Using design documentation to improve defect detection tasks is already
topic of various studies. Research ranges from the creation of highly general-
ized test cases, to automatic test generation using the available models and
making predictions about which parts of a software product are most likely to
contain defects. This study will focus on the other two activities – prevention
of defects and maintenance activities – and whether they can be improved
using models. Specifically, we will focus on the following research questions:

• RQ1: How does the level of detail in UML models influence a project’s
defect density?

• RQ2: How does the level of detail in UML models influence the defect
density of individual types of defects found in a project?

• RQ3: How does the level of detail in UML models influence a project’s
average defect repair time?

• RQ4: How does the level of detail in UML models influence the average
defect repair time of individual types of defects found in a project?

• RQ5: Does upfront modeling provide enough payoffs to justify its appli-
cation?

1.3 The approach in a nutshell

We present the approach that was used to find answers to the above questions
here, without going into details yet. The chapters that cover the individual

1Return On Investment —the ratio of money gained (or lost) on an investment.
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cases will treat all these details in full. Nevertheless, it is useful to have a
bird’s-eye view of the general approach we had in mind, while performing this
study. We will list the steps for an arbitrary case:

• Select a defect for further analysis from a bug tracking tool.

• Find out what changes were actually applied to fix the defect, by looking
at the “before” and “after” images of the files that were altered during
the repair task.

• Compact this information by assigning a type to the defect, according
to a defect taxonomy.

• Having more detailed knowledge of the applied changes, look at the de-
sign documentation to find parts of the design that mention the changed
part.

• Whenever related design parts are found, record their UML detail level.

After having performed the above steps for a decent amount of defects, we
search the recorded information for answers to the questions from the previous
section.

1.4 Empirical research

In this section some relevant information is provided regarding the nature of
empirical research.

1.4.1 Empirical approach

There are many ways to conduct empirical research. One approach would be
to do controlled experiments, which usually boils down to selecting a group
of people for an assignment, which is specifically tuned to the study at hand,
and either monitor the process of completing this assignment, or compare
the results of individuals or groups. Advantage of this approach is that a
lot of environment variables are under the control of the researchers (e.g.
experience level of participants, available tooling, time constraints etc.). This
can, however, pose threats as to how far the results are applicable to “real
world” scenarios.

Another approach is performing case studies. Here the study is conducted
in an actual industrial software development environment. This can add some
confidence to the validity of the results in practical situations. Here, the
hard part lies in the diverse nature of software development projects. Having
practically no control over the variables mentioned in the previous paragraph
makes it hard to interpret results, or, for that matter, to even try to predict
which measurements are attainable and which are not.
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For this study we chose the latter option of case study. This was par-
tially done because the small amount of research on the topic was already
mostly of the controlled experiment kind. Another motivation was that, since
the study would be executed during an internship, this should ease the task
of finding suitable cases – an opportunity that should not be cast aside lightly.

On a sidenote: the fact that both kinds of research should be considered
invaluable is backed by other scientific fields. Looking at the fields of biologi-
cal and medical science the same distinction in studies can be seen. In some
areas both types of studies are even made mandatory, for example when devel-
oping new medication or new pesticides. Here the distinction is worded using
the terms in vitro (“in a glass (test tube)” referring to analyses performed in
laboratories) and in vivo (“in the natural environment”).

1.4.2 EmpAnADa

Within the SAN expertise group a program was started to promote and exe-
cute Empirical Analysis of Architecture and Design Quality (EmpAnADa).
Its goal is to develop techniques to improve the quality of UML models. For the
validation of proposed, quality improving techniques, both controlled experi-
ments and case studies have frequently been conducted. EmpAnADa members
therefore proved invaluable sparring partners in setting up this study.

1.5 Outline

After having devised a first approach to test the effect of UML level of detail on
defect density and maintenance tasks, we tested it on an industrial case. With
the experience and problems of this first case study in mind, we altered the
approach before performing a second case study. The document is structured
to reflect this division into two approaches and their respective case studies,
thereby allowing for each case study to be read as a self contained part. The
resulting outline is given below:

• In Chapter 2 some general terms are defined, so that there will be no
confusion regarding their meaning, while reading the remainder of the
document.

• Chapter 3 continues by describing some research topics related to this
study.

• The first case will be handled in Chapter 4. Before listing and discussing
the results acquired from the first analysis, it states all definitions used
for this analysis and describes the applied approach.
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• After analysis of the first case, some problems emerged that forced us to
change our analysis process. Both the problems and the solutions found
to deal with them are covered in Chapter 5.

• Having changed the approach according to the outcome of Chapter 5,
we analyzed a second case. The results of this second case study are
given in Chapter 6, which follows the same structure as Chapter 4.

• Chapter 7 answers the research questions based on findings from the
two case studies. It also provides critique on the performed studies and
discusses some questions regarding the validity of the entire study and
its results. Finally some recommendations are given and directions for
future research are suggested.





Chapter 2

Nomenclature

In this chapter the meanings of terms are given, that will frequently appear
in the remainder of this thesis. Since these terms have numerous meanings
in computer science literature it is important to explain our interpretation of
them here.

2.1 Defect

In scientific literature the use of terms like defect, bug, fault and failure is
rather erratic. In this thesis we use the definition as it is given in [Boa06], as
we consider testers to have most experience in dealing with this terminology.

A defect is a flaw in a component or system that can cause the
component or system to fail to perform its required function, e.g.
an incorrect statement or data definition. A defect, if encountered
during execution, may cause a failure of the component or system.

Where failure is then defined as:

Failure is the deviation of a component or system from its ex-
pected delivery, service or result.

According to [Boa06] the term defect is synonymous to the terms bug and
fault. Although we try to use the first term as much as possible, we occa-
sionally use the others to comply with common practice (e.g. a bug tracking
tool).

2.2 Design

In scientific literature one can find a lot of definitions of the word design.
These differ mostly in levels of abstraction. Whereas some like to use design
as the term for architectural layout of the software (high abstraction), others

7
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use the word when describing “what the code does” (low abstraction). For this
study we use the term for everything that is captured in the UML diagrams
of a project. While this level may vary, at least some abstraction from the
code level is assumed.



Chapter 3

Related research

This chapter will position the topic of this study in the surrounding landscape
of software design research in general and related to software quality in par-
ticular.

The relation between presence of UML models and the speed and accuracy at
which maintenance tasks can be performed were already empirically investi-
gated using controlled experiments in [Hov06]. In these experiments students
were divided into into small groups, after which half of those received detailed
UML models of a system, whereas the other half did not. The groups were
then asked to perform various maintenance tasks on the system, during which
their times to complete these tasks were recorded. Intermediate measurements
allowed for an analysis of the time it took to complete individual tasks, both
with and without having to update the UML models to reflect the new im-
plementation. The researchers concluded that UML had a generally positive
impact on the quality of the solutions to maintenance tasks. However, the
effort required to complete these tasks remained the same for both groups,
when also taking into account the time to update the UML models.

Experiences with precise state modeling using UML state diagrams are
reported in [HAA+06]. This paper is particularly interesting because of the
similarities that the case in this paper shares with one of the projects studied in
this thesis (i.e. the HDMV component, described in Section 4.1.1). Although
we think the mentioned paper applies a somewhat less detailed approach, the
researchers do report benefits from the precise state modeling, e.g. a more
complete system specification and easier transition from specification to code.
This last benefit could mainly be attributed to the decision of implementing
a state pattern —a decision which presumably could have been made because
of the insight provided by the state diagrams.

In [CBC+92] Orthogonal Defect Classification (ODC) is introduced as a
technique to bridge the gap between statistical defect models and causal anal-

9
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ysis. This paper already stressed the importance of identifying and validating
cause-effect relationships between defects, the development process and the
availability of in-process measurements to influence this relationship. ODC
suggests leveraging the defect introduction curve and results from the classi-
fication of defects to suggest improvements to the development process.

Within the EmpAnADa program several related studies were performed. In
[vOLC05] techniques for automatic code-to-UML correspondence were ana-
lyzed and implemented in a tool. It argues that models can only hope to
influence software quality in general, when they capture relevant information
of the system that is to be implemented. Correspondence measures can help
quantify this relevance (viz. high correspondence means the models captured
a large, thus relevant part of the system).

Metrics have been defined on models in a variety of research topics be-
fore. One of these defined metrics across multiple UML diagram types (so
called multi-view metrics) to analyze their performance as quality indicators
[MCL04]. A paper analyzing the importance of modeling conventions (as op-
posed to coding conventions) defines several metrics aimed at measuring the
level of adherence of various diagram types to these conventions [LDCD06].

In [LC06] the ramifications of defects regarding syntactical consistency be-
tween UML diagram types on the understandability of a system’s design are
explored. Different defect types were defined and through a controlled ex-
periment amongst 111 students and 48 practitioners their influence on design
comprehension were tested. The study has two main conclusions: defect de-
tection rate depends highly on the defect’s type, as does the level of agreement
on how to interpret erroneous design parts.



Chapter 4

Case 1: Blu-ray Middleware

In this chapter the entire Blu-ray Middleware case (BDMW) will be covered.
First the purpose of the system and the analyzed components will be described.
Next, the definitions used during the analysis of the BDMW case are given.
Then the analysis process is treated in-depth, after which we finally give the
results and conclusions.

4.1 BDMW description

In this project Philips Applied Technologies has implemented a Blu-ray mid-
dleware stack. The stack facilitates playback of the different Blu-ray disc
formats, as specified in the Blu-ray standard. From this middleware stack
two components were selected for analysis. These components were selected
because they exhibited large differences in both design detail and developer
working style. At the same time they were both quite comparable in terms of
responsibilities. More specific descriptions of component characteristics can
be found in Section 4.3.2. Since both components were developed by nearly
autonomous teams – the only thing these teams shared was the fact that they
were part of the same project – we believe they can, for all ends and purposes,
be considered two individual projects. Some brief explanations of the purpose
of the two components are given below.

4.1.1 RE/ROM HDMV component

The Blu-ray standard defines two different authoring modes that can be used
to author Blu-ray titles. One of these modes is called the HDMV mode. The
options this mode provides are most comparable to the options available for
DVD titles. The first component, conveniently also called HDMV, plays a
crucial part in the playback of Blu-ray titles authored using this mode. The
HDMV component is responsible for keeping track of the playback states a
player can be in (i.e. started, stopped, suspended, changing a title, stopping

11
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and starting playback, etcetera), as well as handling external input events from
the user in all these states (like pressing the start or stop buttons). From now
on, if we mention the name HDMV, we will be referring to the component
rather than the authoring mode, unless explicitly stated otherwise.

4.1.2 BD-J application lifecycle management component

The application lifecycle management (ALM) component offers comparable
functionality to the HDMV component described above, but in this case for
Blu-ray titles compatible with the BD-J authoring mode. The main difference
is that these titles use java Xlets 1 to control playback, although the BD-
J mode offers some other, more advanced features. Despite the differences
between the authoring modes, the ALM component receives about the same
internal and external stimuli to process as the HDMV component. This is
because the ALM component, like the HDMV component, is only charged
with tracking playback states and handling user input events.

4.2 BDMW definitions

In this secion we give the definitions that were used during the analysis of the
BDMW case. They were mostly developed upfront, but were adjusted and
tuned during the analysis process as well.

4.2.1 Defect taxonomy

In literature various taxonomies are suggested to classify defects [CKC91]
[CBC+92] [LTW+06] [Bur03] [IEE93]. For quick reference they are listed in
Appendix A. From these taxonomies defect types were selected, taking into
account their usefulness for this specific study. In other words, they had to be
related somehow to information that can be captured in UML diagrams.

As a result we chose to fully discard the defect types related to software
requirements documentation. We by no means wish to imply that require-
ments documentation quality has no effect on the number of defects occurring
in software. We do, however, make the assumption that every project benefits
from good requirements documentation in the same way.

Instead of hard evidence we only have common sense backing this assump-
tion, however we would like to note that the Blu-ray Middleware project was
implementing parts of the same standard. Although this standard was still in
development during the course of the project, it was pretty much finished for
the system’s lifecycle part, which was implemented in the components we ana-
lyzed. We therefore believe the requirements documentation was comparable,
both in terms of quality and stability.

1Xlets are basically Java applets, but without a required user interface representation.
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Moreover, changes to a system due to changing system requirements can
hardly be considered true defects in the sense that they could have been
avoided by implementing the requirements correctly. This is because it were
the requirements that were wrong in the first place. In terminology used in
practice, these changes are actually submitted as change requests instead of
problem reports for this very reason.

For a similar reason of being equally beneficial to all projects we also
disregard problems related to configuration management. Defects found in
the test harness are also not considered. Although creating test harnesses and
test cases is subject to the same types of defects as other software products,
testing environments differed greatly amongst the analyzed components.

The remaining defect types were judged on having enough distinctive
power. Compromises were made between high enough detail level (in order
to make a good distinction in the nature of defects), taxonomy coverage (it
should be possible to type enough defects without using the “other” category)
and a workable category size for the manual analysis, that would follow in a
later stage of the study. The resulting taxonomy is given below:

1. missing or incorrect conditional branching – Conditional branch-
ing missing or condition not formulated correctly.

2. missing or incorrect control flow – Incorrect order of operations, or
wrong or non-existent operation executed (but not as a result of missing
or incorrect conditional branching problems mentioned above).

3. race condition – Unforseen output as a result of unforseen sequence or
timing of events.

4. undefined state behavior – Undefined transitions between states or
undefined behavior in a certain state.

5. inconsistent operation arguments – Wrong number or types of ar-
guments when calling an operation.

6. wrong variable used – Wrong variable used in checking for, or assign-
ing a value.

7. initialization problem – Forgotten or wrong initialization.

8. typing problem – Incorrect type chosen or returned.

9. memory cleanup problems – Memory leak, or double freeing of mem-
ory.

10. algorithmic problems – Erroneous calculation of values.

11. other defects – Defects that cannot be classified using any of the classes
mentioned above.
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4.2.2 Design detail

For each individual UML diagram type a matrix is given that defines the
different level of detail attributes we take into account and the possible values
they can assume. Filling in these matrices will give an idea of how much of
the UML-provided syntax is used. This elaborate way of documenting the
design detail level is due to the large amount of possible combinations of
syntactical detail the UML allows. Moreover, possible non-standard additions
to this syntax (e.g. plain text, tables, etcetera) have to be taken into account
as well. An approach using a less detailed ordinal scale (e.g. low, medium
or high detail) to describe the detail level for each attribute is insufficient,
because we are really interested in the specifics of the diagram detail level,
when relating this to defects. Only class, sequence and state diagrams will be
considered during this study, since they represent the subset of most widely
used diagram types in design documentation [DP05][LCM06].

Below follow per-diagram tables, listing the detail attributes for each type,
along with their respective levels. Note that when defining each of these mea-
sures, the possible connection to prevention of certain defect types was taken
into account. This was done in order to keep analysis doable: recording a
much larger set of detail attributes (recall: by hand) would require an infea-
sible amount of effort.

Of course it makes no sense to try to record attributes that measure parts of
the UML provided syntax that are hardly ever used. In our quest to determine
which attributes to include, we did not use the documentation of the official
UML standard as guidance, but primarily used [Fow03] instead (along with
our own experiences in using UML). Many practitioners consider this book
an authority on explaining how UML is used in practice. Since we would
be analyzing industrial cases, it made sense to choose our detail attributes
accordingly.

To give a motivation for the selection of attributes made, the last column
of each of the tables holds references to the defect types we thought could
be prevented by the respective attributes2. The numbers correspond to the
defect types described in Section 4.2.1.
The class diagram (Table 4.1) is the only structural diagram type considered
in this study. The attributes selected to define its level of detail were selected,
taking into account their possible relation to structural defect types. We
describe them here one by one.

The attributes attribute ranks how many variables are included in the
diagram. When variables are included, the attribute types attribute tells if
these variables were additionally given a type in the diagram. The operations
attribute ranks how many methods and functions are included in the diagram,
whereas the operation arguments and operation return types attributes tell

2These defect preventive properties were based on outcome of discussions only. They
were in no way influenced by the outcome of earlier experiments.
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Table 4.1: Class diagram detail attributes

Class diagram
attributes levels defect types
attributes none, key, all 6
attribute types not used, used 8
operations none, key, all 2(missing)
operation arguments not used, used 5
operation return types not used, used 8
associations no types, different types 9, 7
labels not used, used 6
cardinality not used, used 8

whether these methods and functions had their arguments and return types
defined in the diagram as well.

Associations tells whether or not distinction is made between aggregation,
composition, navigability and dependency relations. This information can be
used to decide which objects instantiate and cleanup other objects. The labels
attribute states if associations are labeled or not in order to describe variable
names or the reason for the relation to exist. Cardinality tells if association
relations are assigned cardinalities. These can help in determining the type of
variables implementing the association.

Table 4.2: Sequence diagram detail attributes

Sequence diagram
attributes levels defect types
instance types corresponding, not corresponding 2
control flow just arrows, descriptive labels, corresponding 2, 5

methods, methods with attributes
object creation not used, used 9, 7
guards not used, used 1

The sequence and state diagrams capture the behavioral aspect of a software
system. Their detail attributes (tables 4.2 and 4.3 respectively) are there-
fore chosen with a possible link to behavioral defects in mind (although some
structural defects may be prevented as well).

The sequence diagram attribute instance types shows whether or not ob-
ject types correspond to classes in the class diagram. Corresponding names
could allow a developer to check if a certain class implements all required
functionality. The main reason for creating sequence diagrams – as the name
suggests – is to make the sequence of actions performed by various collaborat-
ing objects explicit. In a sequence diagram this is visualized by arrows going
from one lifeline to another. The control flow attribute tells how detailed
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this flow of control is documented. Explicit instantiation of additional classes
required in a scenario is registered in the object creation attribute.

The guards attribute tells whether or not syntactical options for modeling
conditional branching have been used in the sequence diagrams. This may
help reduce missing or incorrect conditional branching defects. An alternative
to using these guards is to model alternative flows of execution in separate
sequence diagrams.

Table 4.3: State diagram detail attributes

State diagram
attributes levels defect types
transitions just arrows, descriptive label, corresponding methods 4, 2
guards not used, used 1

For state diagrams the transitions attribute tells what information is added
to the arrow depicting a transition from one state to another. If transitions can
only happen when certain conditions apply, this information can be captured
in transition guards. Apart from the defects mentioned in the table, state
diagrams may also help in eliminating race conditions. We expect that the
overview of the state behavior of a system, resulting from sufficient state
modeling, eases reasoning about the origin of this type of problem.

4.3 BDMW data gathering

In this section we describe the steps we took during the data acquisition phase
of the BDMW analysis.

4.3.1 Step one - gather code metrics

In order to make a comparison between the two components possible, stan-
dard code metrics for their implementations were recorded. The metrics were
collected using the SourceMonitor tool.

4.3.1.1 HDMV code metrics

The metrics in Table 4.4 were taken from the C++ source files, excluding the
header files. These were not taken into account, because later on comparison
with metrics from Java will be made and Java does not separate method
definition and implementation. We assume that the header files by themselves
have no effect on both the number of defects and their prevention, and can
therefore safely be disregarded.
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Table 4.4: HDMV code metrics

metric value
SLoC 14000
#statements 7200
#Classes 188
#Methods/Class 3.95
Programming Language C++
avg mcCabe Cyclomatic Complexity 2.33

4.3.1.2 ALM code metrics

ALM applied two programming languages in its implementation (more on that
later) so we present two tables containing code metrics for each of them. The
metrics in Table 4.5 are from the Java part. Table 4.6 shows metrics taken
from the native part of the component. Since this was programmed in C,
which is not object oriented, some metrics are slightly different.

Table 4.5: ALM code metrics - Java

metric value
SLoC 4400
#statements 2700
#Classes 34
#Methods/Class 7.14
Programming Language Java
avg mcCabe Cyclomatic Complexity 3.88

Table 4.6: ALM code metrics - native

metric value
SLoC 2040
#statements 1200
#functions 61
Programming Language C
avg mcCabe Cyclomatic Complexity 5.3
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4.3.2 Step two - gather project characteristics

Only recording code metrics is not enough when attempting to compare projects
and their UML detail level. Some other characteristics should be taken into
account as well. Therefore we collected answers to the following questions as
well:

project environment What languages were used to implement the system
and what tools were used for development and modeling?

developer experience How much experience did the developers have in the
technologies used in the project and UML in particular? How did they
acquire this knowledge?

adopted process Was the development process organized in an iterative
way, or in a more classical waterfall approach?

working style What did the working style of the developers look like and
how were the UML models fitted into this?

Below these topics will be dealt with one by one. Where appropriate the topic
is divided into an HDMV and ALM part and conclusions are drawn from their
comparison.

4.3.2.1 Project environment

HDMV C++ was chosen as programming language for the HDMV com-
ponent. The programming environments used were both Eclipse and
Microsoft Visual C++. Microsoft Visio was used to create the UML
models. The main reason for this was the freedom provided by Visio to
vary the level of modeling detail as one sees fit. Other tools, especially
those that allow for automatic code generation, often prescribe a specific
level of detail, which is often considered to be too restrictive. Also, this
freedom Visio provides can be used to add non-standard notations to
the UML diagrams.

ALM This component is divided into two parts: a Java part and a native
part, written in C. The native part implements the message passing
functionality to parts of the system that lay outside of the Java scope
(viz. closer to the hardware), but complements the classes defined in the
Java part. They communicate through the Java Native Interface3. The
programming environment used for the Java part was Eclipse. Just as
with the HDMV component, the models were created using Visio.

3JNI – an interface that allows for Java code to call and be called by other applications
written in other, platform dependent languages.
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Furthermore, since both components were part of the same overall project,
they shared the same infrastructure for defect reporting and code version-
ing. Both tools used for this belong to the Telelogic CM product family:
CM/Change for bug tracking and CM/Synergy for version control. These
tools were integrated with each other, thereby allowing for fast tracking of the
files changed during repair.

It can be concluded that HDMV and ALM developers had similar tools
to their disposal while creating their components. We therefore assumed that
tooling would not have an important influence on any of the findings.

4.3.2.2 Developer education

HDMV Only one developer carried the responsibility for the HDMV com-
ponent, although a second developer was available for direct feedback.
This developer had the following background:

• Completed a Bachelor program in “Technische Computerkunde”
(the part of electrical engineering closest to computer science).

• Acquired his knowledge of UML by himself, studying various books
on this topic. No new UML concepts needed to be learned for this
project.

• He had ten years of experience as software engineer, working with
C++, Java, UML, Rational tools and more.

ALM The main developer – some other developers implemented parts of
the component under his supervision – of the ALM component has the
following background:

• Has a Master degree in Electrical Engineering.

• Acquired his knowledge of UML only from practice. Knows basic
use of different UML diagram types.

• Has a thirteen year history of professional programming. Languages
include C (but knowledge needed refreshing) and Java (some un-
known concepts were encountered during the project).

What we conclude from this information is that both components were devel-
oped by experienced software engineers, who already had considerable knowl-
edge of, and programming skill in the languages they worked with during the
course of the project. Furthermore they had sufficient knowledge of UML to
create different diagrams at considerable detail level, although the HDMV de-
veloper seemed to have some more UML skill, since he used it more frequently
and more intensively.
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4.3.2.3 Adopted process

Since both components were part of the same overall project (BDMW) they
adopted the same overall process defined for this project. This process was
incremental in nature, using nine increments from start to completion, span-
ning in total around two calendar years of development. Both components
mostly committed to the increment deadlines, although HDMV skipped one
increment delivery date at the start of the project, since the developer did
not agree with the time that was given for thinking up and creating the first
design of the component, which in his opinion was too short.

4.3.2.4 Working style

HDMV At every start of an implementation iteration the developer created
or changed UML models to reflect the functionality that was to be added.
These models were created in Microsoft Visio. The level of detail of the
models was determined by the relevance of the information that needed
to be communicated. Important features were intensively documented,
while less important ones received lower modeling detail or were omitted
completely. When the models achieved a sufficiently high level of detail
(subjective judgement by the developer), they were almost mechanically
translated to code. This translation was entirely done by hand. In short
one could say that for each major project increment (see Section 4.3.2.3)
a small waterfall process was applied.

When maintenance tasks were completed the models were checked for
validity against the new code. In case deviations were spotted, the
models would be adjusted accordingly. Ergo, round-trip engineering
was applied for HDMV.

ALM The attitude of the developer towards more formal way of modeling
was not very positive. He considered it to usually be the cause of too
much overhead when compared to the benefits it delivers. Models should
therefore primarily be used as a means of communication and should
only be detailed enough to be able to reach consensus on major design
decisions. As far as documentation goes, good comments in the code
were considered superior to corresponding UML diagrams.

Within each major project increment the ALM component was extended
and changed applying many small iterations. At the end of each iteration
the component was first extensively unit tested before being committed
to the main build branch of the versioning tree. A complete build of
the system was performed multiple times per day to allow for contin-
uous regression testing. An attempt was made at delivering working
code as quickly as possible, keeping drag from documenting components
to a minimum. Instead, in places where the code was not considered
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self-explanatory, time was spent on documenting the code inline, using
comments.

The design documents were hardly ever update after the first version,
suggesting that no round-trip engineering was applied for ALM.

One can see that apart from the overall project iteration deadlines, the two
components were developed using very different working styles. This should
be mentioned as a threat to validity towards any of the conclusions we may
draw later on.

4.3.3 Step three - collecting defect data

In order to select a number of defects for further analysis, first the complete set
of defects related to each of the components had to be identified. Herein both
components posed the same problem: the CM/Change tool did not contain
detailed and reliable enough information to query for these related defects
using only this tool. Therefore the set of defects for both components could
not be narrowed down as far as needed.

This problem was overcome by creating a shell script that first narrowed
down the set of defects as far as possible using the CM/Change tool. For all
defects that passed the search criteria a list of changed files was generated.
Each of the files in a list was then compared – by filename – to the files of
the component we are creating the set for. If at least one of the changed files
matched the defect was added to the set. During the manual analysis of the
defects, false positives that were still in the set were removed.

From the generated set a selection of defects was made. Since the HDMV
component only had twenty-five defects reported for it, we analyzed all of
them. The ALM component had about fifty defects reported on it (revised,
see above) and we chose the twenty most recent ones – this would hopefully
result in better recollection of the developer when verifying our analysis –
along with five randomly chosen older ones to see if the nature of these defects
was fundamentally different from the more recent ones. No major differences
in defect nature were found, leading us to conclude our sample reflects the
total population well enough4.

4.3.4 Step four - typing defects

Each defect selected for analysis had to be given a type according to the
taxonomy mentioned in Section 4.2.1. In order to do this, changes made in
the code to solve a defect were looked up and examined by the researcher.
This was done by taking diffs from the files that were changed and comparing

4Also, we point out that our sample in fact covers half of the total set of defects, which
we thought to be a very reasonable portion
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the “before” and “after” snapshots. The changed files were found by using the
links to old and new versions available through the bug tracking tool.

Instead of determining the defect types manually, one could suggest taking
the defect types that are sometimes stated in the used bug tracking tools, but
often filling in these types (and filling them in accurately at that) is considered
by developers to be a waste of time and therefore these types are almost always
left blank. Even if they are filled in, one could still question their accuracy,
since, apart from the waste-of-time attitude, most developers also lack proper
education on what the differences between defect types are.

4.3.5 Step five - determining UML detail

After a defect is properly typed, the analysis continues with judging the detail
level of the design “near” it. Guidelines to choose what parts of the design
need to be examined are needed here. These guidelines have to do with both
the type of the defect that is analyzed and the options UML provides to
capture different kinds of information: for clearly behavioral defect types we
primarily looked at the (behavioral) sequence and state diagrams, with the
goal of finding diagram that modeled the faulty functionality. In collecting
this local design detail for each of the analyzed defects we hoped to be able
to say something about the relation between level of UML detail and defect
density.

Additionally, average detail levels for all diagram types used in a compo-
nent’s design documentation were recorded. This was necessary because we
could not assume that the parts of the design of which we already measured
the level of detail – due to their relation to defects as described above – would
accurately reflect the level of detail of the entire design. Large portions with
a completely different detail levels could have been left out.

Having these average detail levels allows us to say something about the
defect density of a component, compared to its entire design. Obviously this
statement would be meaningless if was based on just some parts of the com-
ponent’s design.

4.3.6 Data accuracy

Several actions have been undertaken to strengthen confidence in the accuracy
of the data acquired in each of the analysis steps. They are listed here:

• For each of the components the set of defects was checked for accuracy
with the developer. Both developers agreed that the resulting sets accu-
rately reflected the total number of defects reported for the components.

• Intermediate results of the manual analysis of defects were discussed
with both developers. During these discussions the developers had the
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opportunity to make objections to the results and at the same time they
answered questions regarding hard-to-analyze defects.

• Results of the entire BDMW case were presented to various project mem-
bers and quality assurance employees, again giving them the opportunity
to make objections.

4.3.7 Storing the data: the database

All information that was gathered during the BDMW case study was stored
in a Microsoft Access database. It was considered to be the best match to our
requirements: a simple-to-use database with the ability to create some data
entry forms in a few button clicks. Using a database enabled us to reshape
the way in which the analysis data was represented as we saw fit. For a quick
overview of the database schema and a short explanation regarding the use of
each of the tables, we refer to Appendix B.1.

4.4 BDMW results

This section will reveal the results from all analyses performed on the data
collected in the BDMW study. The results from the respective measurements
will be presented one after another, each accompanied by its own explanation
and interpretation.

4.4.1 Additional analysis note

We have one additional analysis note to make before we present the results:

While typing the defects (as described in Section 4.3.4) we often had diffi-
culties in either typing a defect as an undefined state behavior problem, or
instead type it a missing or incorrect conditional branching or control flow
problem. This was caused by the fact that undefined state behavior could
usually be attributed to one of the following causes:

• Problems with handling different events arriving in a certain state, which
usually are handled in different (conditional) branches.

• Problems with the wrong action (control flow) being selected after arrival
of an event in a certain state.

This problem was even more prominent in the ALM component than in the
HDMV component, since the ALM component did not implement a state
pattern as HDMV did. This made identifying a problem as being state related
much harder for ALM.
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Due to the above observations we decided to divide the found undefined
state behavior defects over the missing or incorrect conditional branching and
control flow types. We kept our undefined state behavior defects in the anal-
ysis, however, but they will no longer add to total defect density, since we
would then be counting certain defects twice. This is also the reason why the
undefined state behavior defect type is put apart from the rest in the upcoming
figures.

4.4.2 UML and defect prevention

In order to explore the defect preventive capabilities of UML we first measured
the defect density for each of the projects and compared these projects based
on their average UML detail level and coverage. Here we would expect the
defect density to decrease, if indeed models have a defect preventive property,
as either the detail level or coverage of the models increases. Getting into a
bit more detail we then compared the defect density for each individual defect
type found in the projects, to see if some defect types benefit more from the
models than others, in terms of defect prevention.

4.4.2.1 Comparing component defect density

Table 4.7 shows the average levels of detail for the models created for each
of the inspected components, as well as the components’ defect density. We
conclude from this table the following:

• The class diagram level of detail only differs in the use of different types
of associations for the HDMV component and the use of labels to de-
scribe these associations.

• Sequence diagram level of detail seems the same. However, we note
that the sequence diagrams found in HDMV contained non-standard
references to states in which certain method calls were performed (i.e.
states were added on the lifelines in the sequence diagrams). Regardless
of the fact that it is a non-standard use of UML syntax, we believe it to
add detail to the HDMV sequence diagrams that was worth mentioning.

• HDMV clearly has a higher level of detail when it comes to state dia-
grams.

Of course the level of modeling detail alone is not enough to make an accurate
assessment of the amount of information that is captured by the models. This
is because, although highly detailed, diagrams still hold little to no information
if they only cover a very small part of the entire system. We therefore provide
an indication on the coverage of each diagram type in tables 4.8 and 4.9
for HDMV and ALM respectively. From these indications we can see that,
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Table 4.7: Project average model detail, completeness and defect density

DETAIL LEVEL ALM HDMV

class diagram – attributes none none
class diagram – attribute types n/a n/a
class diagram – operations not used not used
class diagram – operation arguments n/a n/a
class diagram – operation return types n/a n/a
class diagram – associations no types different types
class diagram – assoc labels no yes
class diagram – cardinality used used
sequence diagram – instance names corresponding corresponding
sequence diagram – control flow corresponding corresponding
sequence diagram – object creation unknown used
sequence diagram – guards unknown not useda

state diagram – transitions just arrows corresponding methods
state diagram – guards not used used

DEFECT DENSITY

defects per KSLoC 7.4 1.7

aAlthough some sequence diagrams described alternative flows of the same case.

although the sequence diagram level of detail in ALM seemed comparable to
HDMV’s, this conclusion is actually nullified by the fact that there is only one
implementation class covered (in only one diagram at that).

Table 4.8: HDMV coverage of implementation by diagram types.

diagram type coverage indication
Class diagrams One diagram covering 8 out of 12 classes not

related to state implementations. Other class
diagrams (3) covering all state-implementing
classes.

Sequence diagrams 10 diagrams covering behavior of 7 distinct
implementation classes. These were by far the
most relevant classes of the component.

State diagrams 17 diagrams covering all states (82) implemented
by the component and all state changes possible
between states.

Finally looking at the defect density numbers in the first table we conclude
that the component with both higher level of detail and higher coverage levels
in its UML models shows drastically lower defect density.
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Table 4.9: ALM coverage of implementation by diagram types.

diagram type coverage indication
Class diagrams One diagram covering 8 out of 16 classes.
Sequence diagrams 1 diagram covering behavior of 1 implementation

class.
State diagrams 3 diagrams covering 18 states. Number of implemented

states was far greater (guess: about 50) but exact
amount is hard to know, since no state pattern was
implemented.

4.4.2.2 Comparing average defect density per defect type

Figure 4.1 shows the defect density distributions for each of the analyzed
cases. They are based on the distribution of the defects studied in the manual
analysis phase. For ALM the resulting defect densities of the individual types
were simply multiplied by two, to reflect the total number of defects found in
the component, which was twice as many as the number of defects analyzed.
Although the validity of this step may be questioned, no better guess could be
made. The only countermeasure used to ensure validity was a quick analysis
of the output of the defect selection script, to see if a different pattern could
be observed in the part that was not analyzed. This was not the case.

Figure 4.1: Defect density (defects/KSLoC) distribution.

When we again look at the tables in the previous section, we can see that the
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component adopting a higher degree of modeling detail and coverage shows
lower defect density numbers across the board. It is interesting to see however,
that certain defect types seem to benefit more from increased modeling effort
than others in terms of lower defect density:

• The missing or incorrect control flow type seems to receive almost no
benefits from the availability of sequence and state diagrams in the
HDMV design documentation at all. Recall that we stated in Section
4.2.2 to expect sequence and state diagrams to prevent certain defect
types, including missing or incorrect control flow. Taking a better look
at our database, we discovered that actually one third of the HDMV
missing or incorrect control flow defects was not related to models. An-
other third of the defects was related to models that were defective
themselves. This high defect rate for related models (regarding this de-
fect type) may be a reason for the poor defect preventive capability we
have measured.

• The missing or incorrect conditional branching, race condition and un-
defined state behavior defect types do seem to benefit from the large
amount of detailed state diagrams created for HDMV.

• Another prominent difference, the one for memory cleanup problems, was
found to be caused by one part of the code that needed to be corrected
numerous times. The developer admitted that this was a particularly
hard problem to solve and that this also had to do with some lacking
knowledge of the programming language.

• We could come up with no explanation for the existence of typing prob-
lem, inconsistent operation arguments and initialization problem defect
types in ALM but not in HDMV. These defect types were considered by
us to be related to the level of detail of the class diagram, but this level
of detail is quite comparable for both cases and at any rate the relevant
syntax for preventing these defects was applied in neither of the two.

• The big difference for the algorithmic defect type could not be explained.
We simply cannot see how UML can help prevent such computational
errors.

4.4.3 UML and maintenance

In this section we used the available repair effort numbers from the BDMW
project to further analyze the possible relation between these and the use of
UML. Here we were interested in four aspects, each of which will be addressed
in the subsequent sections:

• Compare average defect repair effort from the two components.
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• Compare repair effort distribution.

• Compare defect repair effort against UML usage.

• Compare modeling effort to repair effort.

4.4.3.1 Per project average defect repair effort

First, we show the average defect repair effort calculated for the HDMV and
ALM components (Table 4.10). Revisit Table 4.7 to check the detail level and
completeness of the UML models for each of these components. Analogous to
the defect density, we see that the average defect repair effort is lower for the
component with higher modeling detail and coverage.

At this point we wish to note that this result was also found by the study
described in [Hov06].

Table 4.10: Average defect repair effort per project

project avg effort (hours)
HDMV 2,8
ALM 7,7

4.4.3.2 Average repair effort per defect type

Next, it would be interesting to see if any correlations can be found when
looking at individual defect types. To this end we again split up the numbers
according to their respective defect types. Figure 4.2 shows the resulting
average effort distribution. We notice that HDMV scores lower than ALM
for all defect types. However, the difference between them varies greatly from
type to type.

Most interesting observation is the fact that the missing or incorrect control
flow defect type seems to be hardly influenced by the availability of UML
models. One reason for this may be that it already took only two hours to fix
this type of defect and it may simply not be possible to perform this task any
faster.

4.4.3.3 Repair effort versus UML detail level

Given the results from the above sections regarding repair effort for the two
components, it would be nice to know if this difference can actually be at-
tributed to differences in level of UML detail. To find out if this is the case,
the entire set of defects (so we are using both HDMV and ALM defects for
this analysis) is split up. As discriminators we use the different diagram types
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Figure 4.2: Repair effort per defect type.

to which a defect was related (because the functionality that was faulty was
modeled in those diagrams). If the difference in repair effort between defects
is in fact related to UML usage, we would expect a lower defect repair time
for defects related to UML, compared to those not related to UML. Because
we have further shown that the defect repair time is also related to a defect’s
type, we use this type as an additional discriminator.

Table 4.11 shows the results for some of the defect types. The other defect
types were omitted because they were only represented in one category of UML
usage. If we look at the table, we can see that the results are inconclusive.
The m/i conditional branching and race condition defect types seem to show
quite some difference in favor of defects related to UML models, while at the
same time undefined state behavior defects show hardly any difference and the
m/i control flow type even favors defects unrelated to UML models.

4.4.3.4 Modeling versus maintenance

In this section we compare the total effort spent on modeling with the total
effort spent on maintenance tasks. Here we are looking for the answer to
possibly the most relevant question of the entire study: does the upfront
modeling approach pay off (enough)? To this end we compared the modeling
and maintenance effort totals.
We acquired the effort numbers for modeling in two different ways. The total
modeling effort for HDMV was extracted from the bug tracking tool. Each
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Table 4.11: Repair effort per defect type versus created UML diagrams

type state sequence avg effort
m/i conditional branching yes no 2,3
m/i conditional branching no yes 3
m/i conditional branching no no 7
m/i control flow yes yes 3
m/i control flow yes no 2,4
m/i control flow no no 1,9
race condition yes no 2
race condition no no 13,6
undefined state behavior yes no 3
undefined state behavior no no 4

time the design had to be changed, the HDMV developer added this task
to the tool and recorded the hours spent on these tasks here as well. The
same approach did not hold for ALM, since no hours spent on modeling were
recorded in the bug tracking tool at all. Instead, we asked the ALM developer
to make an informed guess about these numbers, confronting him with the
document change record from the newest version of the design document.
Both developers agreed with the used numbers below.

Figure 4.3 suggests the existence of an inverse relation between modeling
and maintenance effort. Here we plotted the amount of modeling and main-
tenance effort as percentages of the total amount of time spent on these two
tasks.

When we go one step further and actually normalize the hours spent to-
wards the size of the projects (by dividing effort number by component size
in KSLoC), we get the chart shown in Figure 4.4. For ALM and HDMV we
see that, although the time spent on modeling HDMV (per KSLoC) is almost
twice as much, this is easily compensated for by the lower repair effort.

We note that the results we find here are much stronger than the results
found in [Hov06], which tries to find similar relations using controlled exper-
iments. One reason for this may be the bigger size of the components we
have analyzed, compared to the smaller sized component that was used for
the controlled experiment. This could have increased the usefulness of models
in understanding and keeping an overview of the component to be changed,
resulting in bigger differences in repair time between the component with and
without these models.
Although it would have given a more complete picture when we had also added
numbers covering the initial implementation effort for each of the components,
there was no way for us to get our hands on them. Both developers did not
dare to give an estimate either. They did, however, agree that having ones
design documented in models should speed up the implementation process,
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Figure 4.3: Per project modeling and repair effort ratios.

Figure 4.4: Per project modeling and repair effort (hrs per KSLoC).
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although the ALM developer obviously did not think this would outweigh the
amount of time put into creating the models in the first place.

4.5 Conclusions first case

The results from the different analyses performed within the BDMW case
provides us some confidence towards the relevance of our research questions.
Although the size of the data set was too small to perform any statistical tests,
the defect density and repair time numbers seem to favor HDMV over ALM
too much to simply be a coincidence. With the biggest difference between
these components being the amount of UML modeling performed upfront, we
have strong suspicion that this is (at least for an important part) the cause of
the differences in these numbers.

4.6 Case-specific threats to validity

Some case-specific threats to validity are mentioned here:

• The programming languages used for implementing the components were
different. This can pose problems, since different programming lan-
guages may be more or less susceptible to making programming mis-
takes than others, thereby giving another explanation for differences
found in defect density. Although we could not find any statistics on
defect density for programming languages in scientific literature, a field
expert in testing made the informed guess that projects implemented in
C++ normally displayed a slightly higher defect density than projects
implemented in Java.

• A related problem to the one mentioned above has to do with possible
differences in verboseness (amount of SLoC needed to describe certain
behavior) between programming languages. This questions the validity
of conclusions based on comparing defect density between HDMV and
ALM, since the SLoC metric is used in calculating this density. The
only mention we could find in literature regarding verboseness of Java
and C++ was [Pre00], which concludes that the mean SLoC size of a
Java, C and C++ programs is comparable.

• The state pattern implemented in HDMV may explain a large part of
the difference in both defect density and repair times compared to that
of ALM. This could be due to the more understandable and flexible
structure this pattern brings. Of course one of the hardest things in
applying design patterns is discovering when to apply them. Maybe
having more elaborate models at ones disposal helps in this task, but
this is just speculative and we will not go into further detail here.



4.6. CASE-SPECIFIC THREATS TO VALIDITY 33

• Putting the focus on the fast delivery of working code (which was the
applied working style for ALM) may result in choosing the simplest
solution to a problem at the time. Such “greedy” choices may in the
end result in code becoming unclear, unstructured and inflexible and in
this sense a different choice of working style may be responsible for the
differences we have reported.

• The components were developed (mainly) by only one developer each.
Although we believe that both developers qualify as being equally expe-
rienced (see 4.3.2.2), this assumption still poses a threat to the validity
of our conclusions.





Chapter 5

Changing the process

Having gained experience from the first case study, we found some problems
in the approach used. Before embarking on a second case study we thought it
wise to revise our approach in order to see if we could make improvements on
it, thereby increasing the effectiveness of the second case study in answering
our research questions. This chapter lists the problems encountered and the
proposed solutions to them. The second case study will then go on and apply
these solutions, by providing new definitions and analysis steps.

5.1 Problems with the BDMW approach

We start by describing the main problems we perceived during analysis of the
BDMW case.

1. The first and most prominent problem was found to be the time it took to
perform the analysis for a sufficiently large number of defects. This was
primarily due to the amount of manual labor that had to be performed
in parts of the analysis.

2. The qualitative nature of the measurement of level of detail attributes
proved rather inconvenient. When trying to compare the influence of
different attributes on defect prevention and maintenance tasks, it may
be more useful to use a ratio scale of measurement. An option for which
a ratio scale would be required is in combining individual attributes into
one level of detail measure. Although it is at this point unknown if
different attributes need different scalars while performing these kinds
of calculations, at least an attempt at finding such scalars can be made.

Moreover we also use this qualitative scale in capturing the average level
of detail. However, something like an average cannot be calculated from
an ordinal scale like the one we applied. The average we mention is
based on subjective judgement. This makes it hard to compare findings
from different cases analyzed using this approach.

35
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3. Proven measures for design coverage of UML diagram types were not
found in scientific literature. Had we had these measures, we would
have been able to use them to calculate the sizes of modeled and un-
modeled system parts for both ALM and HDMV. Since we record for
each defect if it is related to one of the models, we could then have used
this defect count together with the size information to find out if there
were differences in defect density between modeled and unmodeled sys-
tem parts. This would have further strengthened our case that models
are the cause of the lower defect density of HDMV compared to ALM.

The rather textual indications we gave for diagram coverage in tables
4.8 and 4.9 are not suited for this and defining accurate ratios measur-
ing coverage from scratch requires a complete study of its own. Other
options to deal with this problem should be investigated instead.

5.2 The new approach

Changes to the BDMW approach will be discussed in this section. Some of
these changes were introduced to solve specific problems we pointed out in the
previous section. They will be referred to whenever appropriate (using their
numbers). The major changes will be treated in the subsections below.

5.2.1 Metrics

Instead of using ranking qualifications for the attributes describing the level
of detail of each of the diagram types, we decided to change these into design
metrics. This will help us in the following ways:

• Use of metrics will help prevent the objectivity problem mentioned in
(2), in the sense that, when the calculations for each of these metrics are
defined, their values will always be produced in the same way.

• Also, if level of detail attributes are assigned numerical values, this will
allow for further experimentation in combining them, which, as described
in (2), was hindered to certain extent by the qualitative ranks used
before.

• Last but not least calculation of metrics can be automated, thereby
lowering the amount of time required to produce different level of detail
attributes by hand, solving part of (1).

5.2.2 Eliminating the coverage measure

As mentioned in (3) we could not find proven metrics for diagram coverage.
With this coverage we would have liked to compare the number of defects
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found in modeled system parts to the number found in unmodeled system
parts, to see if the defect density differs significantly amongst the two.

In Figure 5.1a we capture this notion of coverage graphically. The parts of
the implementation classes within the inner circle represent modeled system
parts (modeled in a sequence diagram for instance). The coverage value would
be defined as the ratio between the modeled and total system size.

Figure 5.1: Coverage approximation - graphical explanation.

The new approach will circumvent the use of a coverage measure by including
all classes, that are covered at least partially by diagrams, in full in the mod-
eled system part (Figure 5.1b). The size of this part is then easily computed
as the total number of SLoC of all shaded classes in the figure. Comparing
defect density between modeled and unmodeled system parts will now be very
straightforward: we can simply compare the average defect density of modeled
and unmodeled classes.

Of course the unmodeled class parts that are added to the modeled part
in this way, will influence the defect density of the modeled part. However we
argue that this unmodeled part can not threaten any results that suggest a
defect preventive quality of models. This is because we believe it is safe to as-
sume that availability of models does not increase defect density. Unmodeled
parts of the classes added to the modeled system part will then have a defect
density value equal to the modeled parts at best, but definitely not lower.

The defect density that is computed for each of these added classes will
therefore give an upper bound of the defect density for the part of the class
that was modeled. From this it follows that, if we find a significantly lower
defect density for modeled system classes, choosing the modeled system part
as described above, this result will also hold for the real modeled system part.

5.3 Drawbacks to the new approach

The main drawback we identified with the new approach is that we loose
specific information regarding the local level of detail of a diagram at the place
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of the defects. Because diagrams sometimes have some degree of disproportion
in their level of detail – meaning that some parts of the diagram are more
detailed than others – there will always be some uncertainty when using a
diagram’s level of detail measure for each of the defects described in it. In
other words: some accuracy is lost. However, a quick scan of the diagrams
created for the second case showed little disproportion. Detail level only varied
from diagram to diagram, but not within each individual one.



Chapter 6

Case 2: PARTS

This chapter describes the second case study, that was performed within the
PARTS project. This chapter has the same basic structure as Chapter 4, the
BDMW case. Again, we will start by describing the purpose of the analyzed
system, immediately followed by the definitions that were used during this
second case. Then an in-depth description of the analysis process is given.
The results and conclusions will be treated last.

We note that part of the contents of this chapter have been described in a
paper ([NFC08]) that was submitted as a research paper to the MODELS2008
conference. At the time of writing this paper is in the process of review.

6.1 PARTS description

PARTS was built to be an integrated healthcare system for psychiatrists in the
Netherlands. It is an information system with which psychiatrists can manage
patient information, treatments history, appointment planning, medication
prescriptions and more.

It was chosen as subject for a second case because it matched the require-
ments we had put up for a candidate very nicely (something which we knew by
this time to be hard enough to find indeed), namely: UML was used to model
the system and the used version control system and bug tracking system were
integrated with each other, allowing for fast tracing of source files that were
modified to solve defects.

6.2 PARTS definitions

For this second case study we changed a lot of the definitions used during the
analysis of the BDMW case. This was done because of, and according to, the
reasons and suggestions treated in Chapter 5.

39
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6.2.1 Defect taxonomy

Some adjustments were made to the defect taxonomy described in 4.2.1.
Mainly this had to do with the different nature of the two systems: whereas
BDMW was very technical in nature, a piece of middleware, PARTS had a
far more direct link to the end user, having to deal with, amongst others,
screen design, user interface navigation and direct user data input and out-
put. A large part of the adjustments originated from discussions with Ariadi
Nugroho1, who had already created his own taxonomy for use on a number
of case studies, including the PARTS case. Both the previous experiences
from Nugroho on analyzing information systems and our own experience in
analyzing the more technical and embedded BDMW system were taken into
account. We ended up with the taxonomy given below, which has become a
merger of Nugroho’s and our own taxonomy.

1. (static) user interface – Any defect that only has something to do
with the way the user interface looks (window sizing, form sizing, font
choices, positioning of UI elements, etc.).

2. user interface - navigation – Defects regarding screen transitions
(wrong destination, missing intermediate screen, etc.).

3. logic – Defects caused by missing or wrong implementation of business
or processing rules.

4. process flow – Defect caused by missing or wrong process flows (e.g.,
incorrect order of operation execution)

5. race condition – Unforseen output as a result of unforseen sequence or
timing of events.

6. data handling – Defects caused by missing or poor data handling.

a) data validation – Input not, or incorrectly validated.

b) data access – Defects related to retrieving/storing data from/to
a data store (like a database).

c) session issues – Defects related to session specific data.

d) wrong variable used – Wrong variable used in checking for, or
assigning a value.

e) initialization – Uninitialized or wrongly initialized variables (or
other data sources).

1Ariadi Nugroho MSc is a PhD student at the Leiden Institute of Advanced Computer
Science. His research is in the field of software quality estimation using UML. He is co-
author of the paper that was submitted to the MoDELS2008 conference covering some of
the findings of the PARTS case study.
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f) memory cleanup – Missing or incorrect cleanup of data sources.

g) variable typing – Incorrect type chosen or assumed for a variable.

h) inconsistent operation arguments – Wrong number or types of
arguments when calling an operation.

7. user data i/o – Defects related to missing or wrong data input and
output from/to the user interface.

8. computational – Erroneous calculation of values.

9. undetermined – Defects that cannot be classified in any of the classes
mentioned above.

Compared to the previously used defect taxonomy from Section 4.2.1 the fol-
lowing concrete changes have been made: First, the undefined state behavior
type has been removed. From the BDMW analysis we experienced it as a
defect type that often brought up discussion. This is because this type is
very hard to determine, unless a state pattern is implemented. If this is not
the case it is very hard to make a distinction between this type and, for in-
stance, missing or incorrect control flow or missing or incorrect conditional
branching2.

Second, a general defect type data handling was added from the defect
taxonomy used by Nugroho. We found that a number of defect types used
in the BDMW case could actually be seen as subtypes of this general defect
type. Because we expected a large number of defects to be assigned the data
handling type (based on previous experience), we decided to include these
subtypes into the taxonomy. Furthermore, the user interface related defect
types were added. These were not accounted for in the BDMW taxonomy,
but since we expected their numbers to be quite high we thought it unwise to
leave them in the other defects category.

6.2.2 Design detail

As described earlier, we measure UML level of detail (from now on abbreviated
as LoD) in this second case by using metrics. We started by defining metrics for
class and sequence diagrams only. For the moment this was sufficient, because
both the PARTS case as well as other cases we had selected for research in
the near future, use only these two diagram types to document their design.
The used collections of class and sequence diagram metrics are described in
the two subsections that follow.

2For the moment using their names from the old taxonomy, since that is where the
undefined state behavior type was still defined.
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6.2.2.1 Class diagram based level of detail metrics

For each class x in class diagram:

• AttrSigRatio(x):
The ratio of attributes with signature to the total number of attributes
of a class x in the diagram.

• OpsWithParamRatio(x):
The ratio of operations with parameters to the total number of opera-
tions of class x in the diagram.

• OpsWithReturnRatio(x):
The ratio of operations with return (give return values) to the total
number of operations of class x in the diagram.

• AssocLabelRatio(x):
The ratio of associations with label (e.g., association name) to the total
number of associations attached to class x in the diagram.

• AssocRoleRatio(x):
The ratio of associations with role name (in the opposite end) to the
total number of associations attached to a class in a model.

6.2.2.2 Sequence diagram based level of detail metrics

For each sequence diagram y:

• NonAnonymObjRatio(y):
The ratio of objects with name to the total number of objects in sequence
diagram y.

• NonDummyObjRatio(y):
The ratio of non-dummy objects (objects that do not correspond to any
class) to the total number of objects in sequence diagram y.

• MsgWithLabelRatio(y):
The ratio of messages with label (any text attached to the messages) to
the total number of messages in sequence diagram y.

• NonDummyMsgRatio(y):
The ratio of non-dummy messages (messages that correspond to class
methods) to the total number of messages in sequence diagram y.

• ReturnMsgWithLabelRatio(y):
The ratio of return messages with label (any text attached to the return
messages) to the total number of return messages in sequence diagram
y.
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• MsgWithGuardRatio(y):
The ratio of guarded messages (messages with conditional checks) to the
total number of messages in sequence diagram y.

• MsgWithParamRatio(y):
The ratio of messages with parameters to the total number of messages
in a sequence diagram y.

Note that, contrary to the LoD based on class diagrams described in the
previous subsection, the sequence diagram based LoD has an entire diagram
as its unit of measure. The ramifications of this decision will be discussed
later in this chapter (viz. Section 6.3.5).

As can be seen, both class and sequence diagram based metrics are ex-
pressed in ratios. We believed this to be favorable as opposed to using abso-
lute numbers, because absolute numbers are also dependent on the size of a
class, or of a sequence diagram. And having a larger diagram by no means
implies that its level of detail is higher as well.

6.3 PARTS data gathering

Specifics on the gathering of data for the analyses that will follow are described
in this chapter.

6.3.1 Step one - gather code metrics

Some code metrics for PARTS are given in Table 6.1

Table 6.1: PARTS code metrics

metric value
SLoC 150k
#statements 55k
#Classes 1000
#Methods/Class 12
Programming Language Java
avg mcCabe Cyclomatic Complexity 2.5

6.3.2 Step two - gather project characteristics

The same characteristics were recorded as the ones recorded for BDMW.
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6.3.2.1 Project environment

The project was built as a web service using Java technology. The Apache
Struts framework was applied to encourage developers to adopt a model-view-
controller architecture. IBM Rational XDE was used to create the UML mod-
els. Other IBM Rational tools were adopted for code versioning and bug
tracking as well. These were IBM Rational ClearCase and ClearQuest respec-
tively. As stated earlier, these tools were integrated with each other, allowing
fast tracking of the files changed during maintenance tasks.

No information regarding the used IDE was available to us, although it
would seem logical to assume that this IDE came from the Rational product
family as well, like Rational Application Developer.

6.3.2.2 Developer experience

Not much information could be obtained on this topic. We expect, however,
that the system’s architects had sufficient knowledge of UML and experience
in creating design documentation with it. We believe we can assume this,
because the way in which the development was organized (see working style
below) was standardized in the developing company. It would make sense that
having such a standardized development process suggests also having capable
people at each step of way. This would then also lead us to assume that
programmers at least had the required knowledge of UML to accurately read
the designs.

As far as the programming experience goes we have even less information.
From the analysis we had to do on the source files we did not get the feeling
that we were dealing with extremely talented (or at least educated) people,
although of course to understand the combination of all technologies used in
this project, one would need considerable training all the same.

6.3.2.3 Adopted process

The project was developed in four major increments, each lasting several
months. We concluded this from the defect descriptions in the bug track-
ing tool, which mentioned target releases and document change dates.

6.3.2.4 Working style

The requirements and upfront design of the system were created in the Nether-
lands. It was then off-shored to India where actual implementation was done.
When big problems popped up regarding incorrect design, a part of the sys-
tem would be sent back to the architects in the Netherlands to be corrected.
When these parts were updated, they again followed the original implementa-
tion path in India.
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Testing was performed in the Netherlands. Judging from the defect de-
scriptions some of the defect repair work was performed in the Netherlands as
well, but a large part was sent back to India.

6.3.3 Step three - collecting defect data

The defect data was based on the latest version of the PARTS project data.
This version was chosen because most of development activities had taken
place in this version. It is important to note that only defects found during
testing were taken into account. To give an idea of the number of defects
reported in each of the stages we give some numbers based of the latest version
of PARTS recorded in ClearQuest:

• Test: 1546

• Review: 771

• Acceptance test: 212

• Integration test: 70

The preprocessing of the defect data further consisted of the following steps:
First, the source files that were corrected/modifed to solve each defect

were extracted from the ClearCase repository. Here we have only taken into
account the .java files (thereby excluding mostly configuration files (usually
.xml) and .jsp files). The idea behind this was that these files could never be
related to UML classes (and therefore would not be useful to our study) and
defects changing only files of these types would probably fall into defect types
that would not relate to UML anyway (.jsp files are strongly related to the
UI, especially if no .java file is altered as well). A Perl script was employed to
perform this activity automatically.

566 out of 1546 defects reported during testing had modified source files
attached to them. We found the following reason why defects can exist that
are not related to modified source files. For starters, a lot of defects were
solved by making changes to the database or application server only. Also,
it is possible that a defect was solved indirectly, i.e. by solving another one.
Finally, defects were often rejected for a variety of reasons, for instance because
they could not be reproduced, or because they were found to be duplicates.

Since traceability of defects to modified source files is a prerequisite for
our analyses, we had to exclude defects without it. The size of the target
population for further analysis therefore shrank to 566 defects. This number
was still considered too big (since still a large part of the analysis had to be
done by hand) and we decided to take a random sample from this remaining
collection. The sample size was initially targeted at 100, but later increased to
125 to compensate for some non-defects found. The sampling was performed
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by assigning a random number to each defect and then perform a sorting
based on these random numbers. The first 125 defects from the sorted list
were added to the sample.

When we were confronted with a somewhat low hit ratio while relating
the defects from the sample to the models, we decided to once again enlarge
the sample size by another 39 defects. These defects were selected semi-
randomly: it was still from a list sorted by the random numbers, but the
defects considered were only ones that we thought had a reasonable chance of
relating to the models. We were forced to take this measure, because having
a low number of defects that related to models would have jeopardized the
possibility for statistical analysis.

6.3.4 Step four - typing defects

In order to assign defects types according to our taxonomy we again checked
the changes made in the source files to fix the defects, as was also the case
with BDMW (see 4.3.4). Of course we typed defects according to our new tax-
onomy. For later reference we present the defect type distribution of PARTS,
using the first 125 random defects as source data, in Figure 6.1.

Figure 6.1: PARTS: defect type distribution
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6.3.5 Step five - determining UML detail

Determining UML detail “near” a defect was done quite differently from our
approach in the BDMW case. This had everything to do with the way in
which we represented LoD attributes for this second case, viz. by using metrics
calculated on class and sequence diagrams. When analyzing a defect, it would
have to be related both to the class and sequence diagrams. The relation to
the class diagram could automatically be filled in. For this we used the names
of the source files that were changed and based on those names matched them
to classes in the design. This was sufficient, because by using metrics to
calculate the LoD measure, no subjective eye is needed to judge a diagram’s
LoD indepth, whereas in case of a qualitative measure it would.

Filling in the relation to sequence diagrams still required some human
interaction. Using the information from the defect description and judging
from the changed source files, the functionality that was altered was looked
up manually within the entire set of sequence diagrams. If there were sequence
diagrams that actually mentioned (parts of) the functionality, they were linked
to the defect. As with the class diagram based LoD, we let the metrics do the
rest.

Remember that linking defects to places in the UML design is just a part
of the work. The other part is made up of calculating the metrics themselves.
For class diagrams this task could be automated using the SDMetrics tool
[tUdqmt], which could calculate the metrics using the .xmi files exported from
Rational XDE. The original idea included automatic calculation of sequence
diagram metrics from the .xmi files as well (an operation that is supported by
the SDMetrics tool as well). Unfortunately, the exported .xmi files from XDE
did not include sequence diagram information. In order to still be able to
perform the analyses we decided to collect the metrics manually by inspecting
all sequence diagrams in XDE itself. In order to be able to link implementation
classes to sequence diagrams (we need to be able to do this when calculating
LoD values, see below) we additionally recorded all implementation classes
used in each sequence diagram, along with the number of messages connected
to it.

Since in the end we want to have LoD measures for each implementation
class, it remains to be explained how we calculate these from the individ-
ual LoD attributes we have acquired so far. We split this up into class and
sequence diagram based LoD aggregates and will start by explaining the first.

A class diagram shows an obvious candidate to take metrics from when
calculating a class’s LoD aggregate: the designed class that corresponds to
the implemented class. Although it was conceivable, this correspondence was
never found to be a one-to-many relationship (i.e. an implementation class
only corresponded to exactly one design class at most). If we had encountered
a one to many relationship, we would have been forced to apply an approach
similar to the LoD calculation based on sequence diagrams (see below). Hav-
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ing pinpointed which metrics to use, we can do the actual calculation. As a
first step we will simply add up all metrics and define the value of the LoD
measure (LoDcd−based) as the total. The equation for this LoD calculation is
given in below.

Let c be an implementation class and c′ be its class diagram counterpart.

The complete calculation of c’s LoD aggregate will then look like this:

LoDcd−based (c) =
∑

ClassLoDMetrics(c′) (6.1)

It becomes slightly more complicated when computing a class’s LoD aggre-
gate using sequence diagram metrics. We observed that one implementation
class may be instantiated in several sequence diagrams (one-to-many relation).
This meant that we had to in some way take into account the level of detail
of instances in all of these sequence diagrams. For each individual sequence
diagram the assumption was made that within it there was not much dispro-
portion (within-diagram differences in level of detail). That would justify using
the level of detail metrics from entire sequence diagram as an approximation
of the level of detail ’surrounding’ the class’s instance within it3. To calculate
the LoD measure for a sequence diagram we again added up all metrics to get
its LoD value. Returning to our problem concerning the one-to-many relation,
we decided to remedy this by taking weighted averages of their calculated LoD
values. The weights were assigned according to the number methods of the
class that were modeled in the diagram. This is more accurately explained
below.

Let LoD(s) :: sequence diagram → float be a function, taking for s a sequence
diagram, and returning the LoD aggregate for s, calculated as follows:

LoD(s) =
∑

SequenceDiagramLoDMetrics(s) (6.2)

Let MethIn(x, y) :: class → sequence diagram → int be a function, taking for
x an implementation class and for y a sequence diagram in which x is instan-
tiated, and returning the number the number of methods of x that is modeled
in y.

Let c be an implementation class that is instantiated in both sequence di-
agrams SeqA and SeqB .

The weight of SeqA and SeqB ’s LoD values then equals MethIn(c,SeqA) and
MethIn(c,SeqB) respectively.

3We were forced to use the detail level of an entire sequence diagram, because our data
set did not contain metrics at the class instance level.
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The complete calculation of c’s LoD aggregate (LoDsd−based ) will then look
like this:

LoDsd−based(c) =
MethIn(c,SeqA)× LoD(SeqA) + MethIn(c,SeqB)× LoD(SeqB)

MethIn(c,SeqA) + MethIn(c,SeqB)
(6.3)

6.3.6 Storing the information: the database

A new database was set up to store al information required by the new ap-
proach. Because we required multiple people to be able to enter and use data
at the same time and from different locations we switched to the MySQL
DBMS and made data entry available through the internet, using some PHP
web pages. We refer to Appendix B.2 for an overview of the database schema
and an explanation on what information is stored in each of the tables.

6.4 Results

Unlike the BDMW case described earlier, the bug tracking tool of the PARTS
project did not include any effort data regarding the time that was spent
on fixing each individual defect. Therefore analyses of the influence of UML
modeling on maintenance tasks, comparable to the ones performed on the
BDMW case (Section 4.4.3), could not be repeated. Hence we will only cover
the possible defect preventive properties of UML for this case. Again, the
results from the respective measurements will be presented one after another,
each accompanied by its own explanation and interpretation.

6.4.1 Additional analysis notes

We have two additional analysis notes to make before we present the results.

6.4.1.1 Filtering the defect sample further

For some parts of the analyses we refer to what we call (defects of) a filtered
sample. With this filtering we mean that we have left out all defects of the
following types:

• (static) user interface

• user interface - navigation

• undetermined, and

• defects we could not type
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We left the first two out because we could not see how UML would ever be
able to help avoid such types of defects4. The third and fourth were left out
for obvious reasons. What we were left with was a total number of 83 defects
that were considered to have “useful” types.

6.4.1.2 Faulty classes and defect density calculation

We calculated the number of defects in each class using the information in the
bug tracking and versioning tools. For each defect a list of changed files is
given. Looking at all these lists we could calculate the total number of times a
file was changed to repair individual defects. We say “individual” here because
a file may be changed multiple times while fixing the same defect (for instance
when a fix was implemented in two stages). We left out these duplicates and
only counted changes when they happened under distinct bug reports.

From this defect count we then calculated the defect density by dividing it
with the class’s source lines of code (SLoC) metric. Since all mentioned data
required for defect density calculation was collected automatically, we could
have calculated the defect count based on the entire defect data set (so using
all 566 defects related to modified source files). However, the defect typing
analysis step already showed us that about half of the defects in our target
population of 566 defects was not useful for further analysis (as described in
the previous section). Of course we assume here that the defect type distri-
bution of our sample is representative for the entire population, but we have
found no reasons to make us think otherwise. We decided to base our defect
density calculation on the filtered sample defects only, thereby favoring the
more accurate defect set over the higher number of data points.

6.4.2 Comparing defect density

This analysis compares the defect density for parts of the system that received
different modeling attention. We split up the system into parts that were
modeled using both class and sequence diagrams, using only class or sequence
diagrams and using none of them. This allowed us to perform tests both for
modeled and unmodeled system parts, as well as make distinction in the types
of diagrams used. We acquired the data for this analysis from the database
by executing the query in Listing C.1 in Appendix C. Since the entire result
set is not that large (only 41 faulty classes came through all filters set in the
query) we added it in Table C.1 in the same appendix.

4A non-standard use of UML activity diagrams as site navigation maps was later dis-
covered within PARTS. It would be interesting to see if these maps can help avoid the user
interface - navigation defect type; a task for which they seem to be particularly well suited.
Mention of this use of activity diagrams was actually found in an internet publication (see
[Lie04]), although it is probably no coincidence that the publisher is IBM (owner of the
Rational tools used in PARTS).
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Starting with the division of the system in a modeled and an unmodeled
part, we first performed a test of normality5 on the samples to see if we could
apply Student’s t test. Judging from Table 6.2 the hypotheses that the samples
are normally distributed have to be rejected. The boxplots in Figure 6.2 show
some outliers in the data. These were not caused by incorrect data entry and
are therefore taken into account during further analysis.

We continue by performing a non-parametric Mann-Whitney test with
the null hypothesis that the population distributions are the same6. Judging
from the output of the test (Table 6.3) we reject the null hypothesis (at the
0,05 significance level) and conclude that the population medians are actually
different: defect density is lower for modeled system parts.

Table 6.2: Modeled and unmodeled defect density: test for normality

Shapiro-Wilk
statistic degrees of freedom significance

modeled 0,653 27 0,000
unmodeled 0,658 14 0,000

Figure 6.2: PARTS: Defect density (per SLoC) of modeled and unmodeled
system parts

Next we split up the modeled faulty classes according to the diagram types
they were modeled in. This is done disjunctively, so a class is put either in the

5Section D.4 explains the use of this test in further detail.
6Section D.2 explains the choice for this test in further detail.



52 CHAPTER 6. CASE 2: PARTS

Table 6.3: Modeled and unmodeled defect density: Mann-Whitney test

Ranks
N mean rank sum of ranks

modeled 27 17,52 473,00
unmodeled 14 27,71 388,00

Test statistics
Mann-Whitney U 95,00
Asymp. Sig. (2-tailed) 0,010

class, sequence or both collection, depending on whether it is only modeled in
a class diagram or sequence diagram, or in both. Knowing that the unmodeled
system part already did not pass the normality test, we immediately performed
a Kruskal-Wallis test to check if any differences in sample means were worth
analyzing7. The results of this test are listed in Table 6.4. Looking at the
ranks in this table and the boxplots from Figure 6.3 one should not be too
surprised that, although we did all analyses, we could only find significant
difference between defect density means of the sequence diagram sample and
the unmodeled sample. We again performed a Mann-Whitney test for this
(results in Table 6.5).

Table 6.4: Splitting up modeled defect density: Kruskal-Wallis test

Ranks
N mean rank

modeled (class and sequence) 8 25,31
modeled (class only) 4 32,75
modeled (sequence only) 15 9,31
unmodeled 14 27,71

Test statistics
Chi-Square 23,611
degrees of freedom 3
Asymp. Sig. (2-tailed) 0,000

From the boxplots we can see that partitioning according to used diagram
types deals with a lot of the outliers from the previous analysis. Apparently
it causes outliers to cluster together into groups (thereby not being outliers
anymore). We can also see this in the boxplots: the new samples cover different
parts of the original sample. It surprised us that classes modeled in both class

7Section D.3 explains the choice for this test in further detail.
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Figure 6.3: PARTS: Defect density (per SLoC) of (split up) modeled and
unmodeled system parts

Table 6.5: Sequence diagram modeled and unmodeled defect density: Mann-
Whitney test

Ranks
N mean rank sum of ranks

modeled (sequence diagram only) 15 8,97 134,50
unmodeled 14 21,46 300,50

Test statistics
Mann-Whitney U 14,500
Asymp. Sig. (2-tailed) 0,000

and sequence diagrams showed a higher defect density than classes modeled
in sequence diagrams only.

More detailed inspection of the result set (C.1) showed a pattern in the
classnames within samples. For instance, the part only modeled in sequence
diagrams contained solely EntityBeans and BusinessBeans, while the part
modeled in both sequence and class diagrams seems to favor Delegates. We
conclude that this gives a second explanation for the difference in defect den-
sity between classes in different system parts: inherent magnitude of defect
density caused by a class’s role in the system. Actually this role is directly
connected to the diagram types used to model a class, because the standard-
ized approach, as was available for the PARTS developers, prescribed certain
diagram types to be created for different types of classes.

Have these tests then all been in vain? We believe not. First, doing these
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analyses has given us a better understanding of what our data is telling us:
there is a difference in defect density between parts of the system, and we
have two possible explanations for it. Second, there are several other projects
lined up for future analysis that are set up as web services. If similar tests are
performed on them we can compare results, based on both diagrams used and
roles played, to find out which explanation will prevail.

6.4.3 Comparing average defect density per defect type

In the previous section we have analyzed the defect density of modeled and
unmodeled system parts, making no distinction between the types of defects
that contribute to it. That distinction will be made in this section. With this
analysis we want to explore the effectiveness of UML in preventing different
kinds of defects.

The data for this analysis is retrieved from the database, using the query
in Appendix C.2 Listing C.2. For reference, the result set for the modeled
system part is given in Table C.2. From this data we computed the defect
density (number of defects per KSLoC) for each of the defect types.

Figure 6.4: PARTS: Average defect density distributions for modeled and
unmodeled system parts.

Figure 6.4 visualizes the outcomes of the calculations for modeled and unmod-
eled system parts. There are some interesting observations to be made from
the picture. We list them here:

• The user data i/o and data validation defect types seem to benefit most
from the presence of UML models. We do not mention the variable
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typing type here, because of its low defect counts in the result sets.

• The logic defect type seems receive no benefits at all from the presence
of UML models. To find the cause of this we took a harder look at our
data and found that with two thirds of the modeled logical defects, the
models themselves were also defective. Of course this could very well
explain why these defects popped up in the code as well.

Unfortunately no further statistical tests could be applied on the data on
which the graph is based, since a lot of defect types have a too low defect
count to hope for any significant results.

6.4.4 Correlating level of modeling detail to defect density

In the previous section we have only partitioned the system into modeled and
unmodeled parts. Next we will analyze if the level of modeling detail has any
correlation with defect density. We now only take into account those classes
of the systems that are modeled, assign each an LoD and do correlation tests.

We treat correlation based on sequence diagram LoD only. Judging from
the defect type distribution of the random sample (Figure 6.1) the majority of
the defects is behavioral in nature. Common sense suggests that a structural
diagram, like the class diagram, cannot capture the information required to
avoid these kinds of defects.

Furthermore, due to this skewness of the defect type distribution towards
behavioral defects, we have a very small amount of faulty classes pointed out
by our filtered defect sample that are modeled in a class diagram only (eight
to be exact). We consider this too small a number to try any correlation tests.
Moreover, if we, in an attempt to overcome this problem, tried to add faulty
classes to this sample that are modeled in both class and sequence diagrams,
we expect that any correlation that would be found then would in fact be
caused by sequence diagrams instead.

Note that we do not state that the approach is not suitable to execute this
analysis. The only thing we would need is a far greater sample size (so that
enough faulty classes only related to class diagrams present themselves).

6.4.4.1 Additional confounding factor

We want to explicitly state here that the countermeasure suggested in Section
5.2.2, to avoid using a coverage metric, does not help us during the next
analyses. This is because we will now descend to the level of individual classes
when defining LoD and comparing system parts. It is clear that assuming a
class to be fully modeled, while in fact only a part is modeled, will not help
us at this level.

Since we have no alternate countermeasure or proven coverage metric for
models available, we will assume that the coverage of all partially modeled
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classes is comparable. This, however, is a direct threat to the validity of our
results, because we believe that if model coverage varies between classes, this
can also be a cause of variability in defect density.

6.4.4.2 First analysis: based on all sequence diagrams

The query we performed to get the data for the analysis is listed and described
in Appendix C.3, Listing C.3. The result set is also given there (Table C.3).

From the result set we could select different LoD attributes to include into
a faulty class’s (sequence diagram based) LoD aggregate. We started out by
just selecting all available LoD parts and adding them together. Having a
defect density and LoD aggregate, we continued with a test for normality.
From the results in Table 6.6 we can conclude that we cannot assume the
defect density distribution to be normal. Boxplot 6.5 shows that there are
outliers in the defect density data, however, after inspection it was concluded
that these were not the result of incorrect data entry and therefore needed to
be taken into account.

Table 6.6: LoD and defect density correlation: test for normality

Shapiro-Wilk
statistic deg. of freedom sign.

defect density 0,574 30 0,000
LoD (all LoD parts) 0,945 30 0,126
LoD (interesting LoD parts) 0,972 30 0,591

Figure 6.5: PARTS: Sample defect density (per SLoC) (all SDs)
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For the above reasons we calculated Kendall’s tau statistic in order to analyze
the correlation8. The results of this test can be found in Table 6.7 and are
visualized in the scatterplot in Figure 6.6. From these we can see that there
exists a significant and negative correlation between the LoD aggregate and
defect density values. Or, in other words, higher level of detail in sequence
diagrams correlates to lower defect density in the faulty classes.

Table 6.7: LoD and defect density correlation: Kendall’s τ

defect density
LoD (all LoD parts) Correlation Coefficient -0,3331

significance (2-tailed) 0,010
sample size 30

LoD (interesting LoD parts) Correlation Coefficient -0,3331

significance (2-tailed) 0,010
sample size 30

aCorrelation is significant at the 0,05 level (2-tailed)

Figure 6.6: PARTS: scatterplot of correlation between LoD and defect density
(per SLoC) (all LoD parts, all SDs)

Of course results will depend on the way in which we combine LoD parts in cal-
culating the LoD aggregate. Taking a closer look at the result set (Table C.3),
one can see that the variability profile differs greatly from one LoD part to
another, viz. the NonAnonymObjRatio, NonDummyObjRatio and MsgWith-
LabelRatio parts are almost constant. We decided to do a second analysis,
this time targeted at what we will call the “interesting LoD parts”.

8Section D.1 explains the choice for this statistic in further detail.
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To this end we left out the three parts we just mentioned and we also
decided to drop the NonDummyMsgRatio. This last part was dropped since
then we were left with what in our sense are the LoD parts that can hold
the most detailed information on a system’s behavioral design (viz. MsgWith-
ParamRatio, ReturnMsgWithLabelRatio and MsgWithGuardRatio). We added
them together to get a new LoD aggregate and performed the same tests we
did with the LoD aggregate based on all LoD parts.

From Table 6.7 we can see that this new LoD aggregate scores exactly
the same tau-value as the first one. The left-out LoD parts were not of much
influence on the outcome of the correlation test, which, for all but the Non-
DumM part, is not very surprising, seeing that they are almost constant. No
scatterplot is given, since it hardly differs from the previous one.

6.4.4.3 Second analysis: filter sequence diagrams

Still having the findings from Section 6.4.2 in the back of our heads – stating
that differences in defect density may be explained by faulty classes originating
from different system parts – we decided to again take a closer look at the result
set of our query.

We noticed a few classes had very low values for their SLoC metric. Be-
cause only faulty classes are taken into account for this analysis (otherwise
computing defect density would not be very useful) these classes contained
at least one defect. However, most classes only had a very low defect count,
which made the SLoC value the primary source of defect density variability.
This resulted in these classes having a very high value for their defect density
metric.

At the same time these classes had a below-average value for their LoD
aggregate. Further investigation explained the origin of this commonality:
they were all only modeled in sequence diagrams created to describe use-case
realizations (from now on called UCRs). Sequence diagrams of this “sort”were
found to be invariably lower in detail than their counterparts that described
interface operation realizations (IORs). This is primarily due to the layer
of the system for which they describe behavior: UCRs describe behavior at
the user interface or presentation level, whereas IORs describe behavior one
layer deeper in the system (where no user interaction is present anymore).
Modeling user interaction is typically handled a bit more relaxed in terms of
level of detail.

We believe the above observations ask that we split up our data set to
exclude the faulty classes related only to UCRs, so that we can perform the
test again and see if the results differ greatly from our previous ones. In total
eight out of 30 faulty classes were only described by UCRs. We decided to
redo the analyses of the previous section on the remaining 22 faulty classes
only, since the eight UCR-related faulty classes were considered to be a too
small group for statistical analysis.
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The query was only slightly altered (see Listing C.4 and accompanying
explanation) to get a new result set (Table C.4) to base our analyses on.
Without further ado we list the performed statistical tests and there outcomes.

Starting with a normality test, Table 6.8 shows that once again the defect
density distribution is not normal. The accompanying boxplot (Figure 6.7)
shows some outliers, but these cannot be discarded.

Table 6.8: LoD and defect density correlation: test for normality

Shapiro-Wilk
statistic deg. of freedom sign.

defect density 0,649 22 0,000
LoD (all LoD parts) 0,937 22 0,171
LoD (interesting LoD parts) 0,956 22 0,419

Figure 6.7: PARTS: Sample defect density (per SLoC) (only IOR SDs)

So we again move on to computing Kendall’s τ in order to test for correlations.
This test was performed on the same two LoD aggregates that were used in
the previous section and we cover their results simultaneously. Table 6.9 gives
the values for the τ statistic and the data sets are visualized in the scatterplots
in figures 6.8 and 6.9.

Looking at the results we can see that all previously found, statistically
significant correlations have vanished. It seems once again that other factors
besides sequence diagram LoD play an important part in determining defect
density values.
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Figure 6.8: PARTS: scatterplot of correlation between LoD (all parts) and
defect density (per SLoC)(only IOR SDs)

Figure 6.9: PARTS: scatterplots of correlation between LoD (interesting parts)
and defect density (per SLoC)(only IOR SDs)
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Table 6.9: LoD (IOR based) and defect density correlation: Kendall’s τ

defect density
LoD (all LoD parts) Correlation Coefficient -0,022

significance (2-tailed) 0,888
sample size 22

LoD (interesting LoD parts) Correlation Coefficient 0,083
significance (2-tailed) 0,592
sample size 22

6.4.4.4 Digging even deeper: individual defect types

Since we have put a lot of time in typing a large sample of defects, we might
as well try to leverage some of this information a bit more. Some defect types
were found in quite large amounts. A quick scan showed that some types had
enough faulty classes that were modeled in sequence diagrams related to them,
so that correlation tests could be attempted using these specific types.

We selected two defect types for in-depth examination: logic and user
data i/o. The same analyses were performed as described in the previous two
sections, so we just give the relevant results here as compact as possible. Table
6.10 gives the outcomes of the normality tests performed. Here we see that
in every data set but the last one the defect density sample does not seem to
be normally distributed. Without giving the boxplots we simply state that no
outliers (which were present in some of the samples) were discarded.

Table 6.10: LoD and defect density correlation (individual defect types): test
for normality

Shapiro-Wilk
statistic deg. of freedom sign.

defect density (logic, all SDs) 0,834 13 0,018
LoD (logic, all SDs, all LoD parts) 0,960 13 0,761
LoD (logic, all SDs, interesting LoD parts) 0,987 13 0,998
LoD (logic, all SDs, guarded message part) 0,925 13 0,290
LoD (logic, all SDs, parametered message part) 0,933 13 0,376
defect density (logic, IOR) 0,835 11 0,028
LoD (logic, IOR, all LoD parts) 0,918 11 0,301
LoD (logic, IOR, interesting LoD parts) 0,968 11 0,871
LoD (logic, IOR, guarded message part) 0,945 11 0,575
LoD (logic, IOR, parametered message part) 0,903 9 0,199
defect density (ud i/o, all SDs) 0,804 9 0,022
LoD (ud i/o, all SDs, all LoD parts) 0,978 9 0,955
LoD (ud i/o, all SDs, interesting LoD parts) 0,945 9 0,636
defect density (ud i/o, IOR) 0,873 6 0,238
LoD (ud i/o, IOR, parametered message part) 0,962 6 0,838
LoD (ud i/o, IOR, interesting LoD parts) 0,950 6 0,744
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Although we could have done a Pearson test on the last data set, we chose to
apply the same test to all sets. We will again calculate Kendall’s τ coefficient.
We present the results in table form only, leaving out the scatterplots. Tables
6.11 through 6.14 cover the outcomes of all tests.

Starting with the logic defect type, we see comparable results to the pre-
vious sections: taking into account all sequence diagrams we find some statis-
tically significant correlations (and the ones that are not significant are close
to the 0,05 significance level), but excluding the UCR related ones removes
the correlations as well. We would especially like to point out the correlations
between the guarded message LoD part and logic defect density, and param-
etered message LoD part and logic defect density. We wanted to give these
parts special attention, since we thought these to be especially well suited to
prevent defects of the logic type.

The user data i/o defect type did not show any significant correlation with
the two LoD aggregates from the previous sections. We did not find any reason
to correlate it to individual LoD parts, so we did not perform additional tests.
We believe that without the existence of some sort of reasoning to back up a
correlation test, this testing would just be “fishing for results”.

Table 6.11: LoD (logic, all SDs) and defect density correlation: Kendall’s τ

defect density
LoD (all LoD parts) Correlation Coefficient -0,359

significance (2-tailed) 0,088
sample size 13

LoD (interesting LoD parts) Correlation Coefficient -0,410
significance (2-tailed) 0,051
sample size 13

LoD (guarded message part) Correlation Coefficient -0,487a

significance (2-tailed) 0,020
sample size 13

LoD (parametered message part) Correlation Coefficient -0,615b

significance (2-tailed) 0,003
sample size 13

aSignificant at the 0,05 level (2-tailed).
bSignificant at the 0,01 level (2-tailed).

6.5 Conclusions second case

In applying statistical analyses on our data, we uncovered some statistically
significant correlations between the level of detail at which a class is modeled
in sequence diagrams and the defect density of that particular class. The
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Table 6.12: LoD (logic, IOR) and defect density correlation: Kendall’s τ

defect density
LoD (all LoD parts) Correlation Coefficient 0,127

significance (2-tailed) 0,586
sample size 11

LoD (interesting LoD parts) Correlation Coefficient 0,091
significance (2-tailed) 0,697
sample size 11

LoD (guarded message part) Correlation Coefficient -0,200
significance (2-tailed) 0,392
sample size 11

LoD (parametered message part) Correlation Coefficient -0,200
significance (2-tailed) 0,392
sample size 11

Table 6.13: LoD (user data i/o, all SDs) and defect density correlation:
Kendall’s τ

defect density
LoD (all LoD parts) Correlation Coefficient -0,222

significance (2-tailed) 0,404
sample size 9

LoD (interesting LoD parts) Correlation Coefficient -0,222
significance (2-tailed) 0,404
sample size 9

Table 6.14: LoD (user data i/o, IOR) and defect density correlation: Kendall’s
τ

defect density
LoD (all LoD parts) Correlation Coefficient -0,200

significance (2-tailed) 0,573
sample size 6

LoD (interesting LoD parts) Correlation Coefficient -0,333
significance (2-tailed) 0,348
sample size 6
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negative sign of this correlation suggests that the higher the level of detail is,
the lower the defect density will be.

Most of the results, however, do not hold when certain parts of the sys-
tem are kept out of scope. We refer to the start of Section 6.4.4.3 for more
information. The question is whether this exclusion improves the quality of
the sample or not.

6.6 Case-specific threats to validity

Some case-specific threats to validity are mentioned here:

• The threat mentioned and explained in Section 6.4.4.1.

• The choices for our LoD metrics were based on analysis of the UML
provided syntax and discussions about which syntactic options had rea-
sonable chance of preventing defects. However, these choices remain
subjective and at the same time influence directly our LoD value calcu-
lation (and thereby our results).

• The assumption that not much disproportion exists within sequence di-
agrams (as stated in Section 6.3.5) may not always be true. When this
assumption does not hold, the accuracy of a class’s LoD aggregates that
are calculated from sequence diagram metrics diminishes. This jeop-
ardizes the validity of results found in the correlation test performed
in Sections 6.4.4.2, 6.4.4.3 and 6.4.4.4. A suggestion to overcome this
threat is given in Section 7.3.



Chapter 7

Conclusions and evaluation

In this final chapter we summarize our findings by answering the research
questions defined in the introduction of this thesis. After doing this we cover
some general threats to the validity of the conclusions, give some recommenda-
tions on future application of our used approach and suggest some directions
for future work. We finally present some guidelines for the use of UML in
software development.

7.1 Answers to the research questions

In this section we will answer the research questions using the results from the
case studies. Each research question is answered in its own subsection. For
answering the first two questions we could use the results of both case studies,
whereas for the remaining three we could unfortunately only use the BDMW
case. Reason for this was that the effort numbers were unavailable to us for
the PARTS case (or any of the other cases available to us at the time).

7.1.1 RQ1: How does the level of detail in UML models
influence a project’s defect density?

Results from BDMW suggest that a higher level of UML detail lowers a
project’s defect density. When looking at PARTS we see hints of this re-
lation in the outcome of Section 6.4.2, comparing modeled and unmodeled
system parts. Section 6.4.4.2 furthermore shows statistically significant, neg-
ative correlation between UML LoD and defect density within the modeled
part by itself.

However, concerns for the validity of the outcomes of the PARTS case
have been expressed in Sections 6.4.2 and 6.4.4.3, suggesting some alternative
explanations for our observations. Adding a third case, which is similar to
PARTS in nature but differs in UML detail level, should provide the answers
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needed to assess if these concerns are indeed valid (see also the future work
section below).

7.1.2 RQ2: How does the level of detail in UML models
influence the defect density of individual types of
defects found in a project?

The first observation we make (judging from figures 7.1 and 7.2) is that the
nature of a project has a large effect on the defect density distribution across
defect types. This is exemplified best by looking at the race condition (both
cases) and control flow (BDMW) and process flow (PARTS) defect types. This
forces us to mostly base our conclusions on the results from individual cases.

Looking at the individual figures, we see that for both cases frequently
occurring defect types all display lower defect density scores when UML models
are available. However, as we have extensively described in the respective tests
in Sections 4.4.2.2 and 6.4.3, we have to conclude that not all defect types
benefit equally from applying UML modeling techniques.

The conditional branching (BDMW) or logic (PARTS) defect type deserves
some special attention here, since it was the only defect type that was found
frequently in both cases and at the same time showed differences in the ef-
fectiveness of UML on its prevention. When looking closer at our data sets,
the PARTS case showed that out of the 15 logic defects related to sequence
diagrams, 10 of these diagrams were faulty to begin with.

In the HDMV part of the BDMW case, guards were modeled in state
diagrams instead of sequence diagrams. These state diagrams were also ac-
companied by large tables summarizing what events were allowed in what
states (i.e. rules that should be translated into conditions in the implemen-
tation). Out of the five conditional branching problems in HDMV that were
related to either state diagrams or the mentioned tables, the design was flawed
three times.

These numbers suggest that the inability of UML to prevent logic defects,
as perceived in PARTS, stems from the high defect rate (concerning this defect
type) of the diagrams themselves. Moreover, this is not the first defect type
for which we have noticed this. In Section 4.4.2.2 we already drew the same
conclusion for the missing or incorrect control flow defect type.

7.1.3 RQ3: How does the level of detail in UML models
influence a project’s average defect repair time?

Looking at the results of Sections 4.4.3.1 and 4.4.3.2 we conclude that the
component applying UML in a more rigorous fashion scores lower average
defect repair times, both for the entire component as a whole and across all
defect types within it. As was already noted, this result corresponds to the
result found in [Hov06].
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Figure 7.1: Defect density (defects/KSLoC) distribution.

Figure 7.2: PARTS: Average defect density distributions for modeled and
unmodeled system parts.
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7.1.4 How does the level of detail in UML models influence
the average defect repair time of individual types of
defects found in a project?

Again looking at the results of Section 4.4.3.2, we see that Figure 4.2 suggests
that, although all defect types seem to benefit from the availability of UML
models, there is a difference in the improvement of repair time between defect
types. The analysis in Section 4.4.3.3, aimed at identifying if UML modeling
is the real source of the lower defect repair effort, confirms that only some
defect types receive their lower defect repair time from UML modeling detail:
the conditional branching and race condition defect types benefit considerably,
while control flow and undefined state behavior defect repair times stay almost
the same.

7.1.5 RQ5: Does upfront modeling provide enough payoffs to
justify its application?

Providing enough payoffs means that the benefits attributed to modeling in
some way weigh up to the costs made by applying it. In Section 4.4.3.4 we
showed that although HDMV applied considerably more time on modeling,
this investment was more than made up for by the total defect repair effort,
which was much lower for HDMV than for ALM. Initial implementation effort
has not been taken into account, but as argued earlier, we expect that if it
influences this relation, it will only strengthen it. Our results contradict the
findings in [Hov06], that suggest that payoffs in terms of lower repair time
are canceled out by the extra effort that was put into modeling. However, an
explanation for this was already suggested in the above-mentioned section.

We note that the term enough payoffs may also be interpreted differently,
depending on your goals: in some situations – for instance when human life
depends on correct functioning of a software system – payoffs may be consid-
ered high enough when the application of models leads to significantly lower
defect density alone. In this case the anticipated cost of system failure is rated
so high, that a certain amount of investment in acquiring lower defect density
is considered to be justifiable. In this case the costs of modeling are subtracted
by the potential cost of not modeling.

7.2 Threats to validity

Apart from the case specific threats to validity that were mentioned at the
end of the respective cases, we additionally identified the following threats:

• Typing defects remained a subjective task. We believe, however, that
this was a better option than just using whatever types were available
from the bug tracking tools, since these are hardly ever filled in accu-
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rately. In order to reduce different typing decisions being made by dif-
ferent people we regularly discussed problematic defects and randomly
checked some defect types assigned by each other to see if the results
were comparable.

• Results may depend strongly on the chosen defect types. The way in
which these have been chosen remains subjective, although the taxonomy
was based on earlier taxonomies found in literature.

• Only one case study could be used for answering research questions 3 to
5. This threatens the generalizability of these answers to other projects.
Especially since we see some large differences between certain numbers
(for instance defect type distribution) from both cases, we conclude that
these results will probably not generalize to project of very different
nature than BDMW.

• Not so much a threat, but rather an opportunity for validity would be the
observation that complex system parts tend to receive more modeling
attention. For them to have lower defect density would suggest a more
powerful defect preventive quality in UML than the results of our tests
can show here, since we would expect complex parts to contain inherently
more defects. Using the SLoC code metric reduces the influence of code
complexity a little, but some concepts, while not very verbose, are still
harder than others.

7.3 Recommendations

Collect data on-the-fly It would be far less time consuming to get decent
project data if we could convince developers to collect this data on-
the-fly, meaning: during the task of solving defects. We found that it
requires an enormous amount of effort to manually check each defect.
When solving a defect, the developer knows exactly what changes he
made to the system and therefore has all the knowledge needed to de-
cently type the defect. The only investment it requires is that the defect
taxonomy must be explained to the developers. Since we have gone
through great lengths to keep the taxonomies from becoming too large,
this should be a fairly small task. We further believe the data set to
become more accurate, because a researcher could never hope to have
the same understanding of a system under test as the system’s develop-
ers themselves. This better understanding enables them to make better
decisions when choosing amongst defect types.

Collect more fine-grained sequence diagram LoD metrics We would rec-
ommend to extend the approach used in the PARTS case to record LoD
metrics of sequence diagrams on the class-instance level. This means
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recording LoD measures in the database for each of the class instances
inside a sequence diagram, instead of metrics for the diagram as a whole.
We would then calculate the sequence diagram based LoD metrics for
each class using these per-class metrics. This eliminates the need to make
the assumption that sequence diagrams show no internal disproportion
when it comes to their level of detail, because, if this disproportion does
exist, our units of measurement (class instances) will be small enough
to register this. In the approach used in the PARTS case, disproportion
threatens the validity of conclusions

This should be done in order to deal with the assumptions we had to
make regarding the absence of disproportion in LoD within sequence
diagrams found in PARTS. While we believe that this assumption holds
for PARTS, this may be different in future projects selected for analysis.

7.4 Future work

We see needs and opportunities for research on the following directions:

• As is always the case with empirical research, more is better! In selecting
future cases for analysis we would advise to first select a case which
differs from PARTS only in terms of modeling detail, keeping the rest
as similar as possible. Comparing the outcomes will then help address
the questions regarding validity of the conclusions drawn from PARTS.
Specifically the doubts regarding system layers having a big influence on
defect density can thereby be addressed further.

• We defined metrics for measuring LoD in class and sequence diagrams.
Two improvements can be made in this respect. First, research can be
done to determine what would be the best way to combine individual
LoD values to one aggregate value (in other words: determine possible
scalars for each LoD part). Second, an attempt can be made at defining
LoD metrics for other diagram types.

• We noticed considerable advantages in terms of code clarity originating
from the use of a state pattern in the HDMV component. It would be
interesting to see if the application of design patterns in itself causes
measurable benefits in terms of software quality. A quick search in lit-
erature shows not much empirical evidence exists as of yet.

• In this study we only compare LoD measures to defect density. It would
also be interesting to see this study combined with the study described
in [LC06] to account for both UML LoD and correctness when relating
this to software quality improvements like lower defect density and repair
time.
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• Finally we arrive at coverage metrics. We believe future research in
the same area as this study would be greatly helped by the availability
of proven metrics that measure the amount of structure or behavior
that is covered by created models. These measures should preferably be
defined on individual diagram types. Any research outcomes on how to
(automatically) calculate their values would be very relevant.

7.5 Guidelines for applying UML

When looking at the results from our research, we present the following guide-
lines in applying UML in upfront software design documentation:

• Concentrate on creating behavioral diagram types. In both case
studies we see that most defects that are revealed during testing are
of the behavioral type. In answering the second research question (see
Section 7.1.2) we have shown that various behavioral defect types show
lower defect density when diagrams are available that capture this be-
havior.

From the answers to the first research question (Section 7.1.1) we also
conclude that higher level of detail in behavioral diagrams leads to lower
defect density. Of course it introduces extra costs to put this detail level
into the diagrams, but the answer to research question 5 suggests that
in the end these costs will be repayed.

Meanwhile the structural defect types are lower in numbers, although
the level of detail put into the class diagrams is not very high (see results
from Section 4.4.2.2). We expect class diagrams will always be created
(much as they have been in the past), but only using them to show
overall system structure seems to suffice.

A possible reason for this lower structural defect density may be found
in the assistance that any serious IDE nowadays provides in uncovering
structural defects. Variable type checking, code completion, method pa-
rameter suggestions; with the availability of all these features the neces-
sity applying a high level of detail to ones class diagrams is considerably
lowered.

• Spend considerable time to check the correctness of the cre-
ated models. From the information in Section 7.1.2 we conclude that
defects in models often translate to defects in implementation. In or-
der to prevent too many defects from remaining undetected, sufficient
effort should be spent to check if the models are consistent with the
requirements.

• Choose the set of used diagram types based on a project’s
nature. The HDMV component, which displayed a lot of state behav-
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ior, seemed to benefit considerably from the presence of state diagrams
(again compare difference between ALM and HDMV in undefined state
behavior and race condition defect density, Figure 7.1). The PARTS
case did not apply state diagrams. However this would have probably
been a waste of time anyway, since the race condition defect density was
already negligible.



Appendix A

Existing defect taxonomies

This appendix contains synopses of defect taxonomies found in literature that
were used to create the taxonomy used during the analysis of the BDMW case
(as described in Section 4.2.1).

A.1 Taxonomy suggested in [CKC91]

• function

• checking

• assignment

• initialization

• documentation

All of the above categories are divided further into either missing or in-
correct.

A.2 Taxonomy suggested in [CBC+92]

This taxonomy includes all categories from the previous one, but extends this
by adding the following:

• timing

• build/package/merge

A.3 Taxonomy suggested in [LTW+06]

• Memory, including:
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– leak

– uninitialized

– dangling pointer

– null pointer

– overflow

– double free

• Concurrency

• Semantic, including:

– missing feature

– missing case

– corner case

– wrong control flow

– exception handling

– processing

– typo

A.4 Taxonomy suggested in [Bur03]

• Requirements and specification defects, including:

– functional description defects

– feature defects

– feature interaction defects

– interface description defects

• Design defects, including:

– algorithmic and processing defects

– control, logic and sequence defects

– data defects

– module interface description defects

– functional description defects

– external interface description defects

• Coding Defects, including:

– algorithmic and processing defects
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– control, logic and sequence defects

– typographical defects

– initialization defects

– data-flow defects

– data defects

– module interface defects

– code documentation defects

– external hardware, software interfaces defects

• Testing defects, including:

– test harness defects

– test case design and test procedure defects

A.5 Taxonomy suggested in [IEE93]

• Logic problem (8 subtypes)

• Computation problem (3 subtypes and 6 sub-subtypes)

• Interface/timing problem (3 subtypes and 5 sub-subtypes)

• Data handling problem (5 subtypes and 6 sub-subtypes)

• Data problem (6 subtypes)

• Documentation problem (10 subtypes)

• Document quality problem (5 subtypes)

• Enhancement (7 subtypes and 3 sub-subtypes)

• Failure caused by previous fix

• Performance problem

• Interoperability problem

• Standards conformance problem

• Other problem





Appendix B

Database design

The designs of the two databases are given in this chapter. This is primar-
ily done to complement the performed queries, listed in the next appendix.
Additionally some information regarding design decisions is given as well.

B.1 The BDMW analysis database

The graphical representation of the database schema can be seen in Figure
B.1. The DBMS used is Microsoft Access. This DBMS was chosen because
it offers easy form creation wizards and not much time was to be spent on
setting up the database.

Figure B.1: BDMW database schema.
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The central part of the schema is the ’project’ table, which contains the
project’s name and some general project information. The ’nr of faults’ field
is needed in this table, because not all defects will be analyzed, yet we do want
to know the total amount of defects at some point. This is stored here.

The one-to-many relation between ’project’ and ’implementation’ tables
allows for multiple implementation parts (presumably based on difference in
programming language) to be defined for a project. This table further contains
some useful code metrics.

The fault table contains all information available for an analyzed defect.
The ’analysis info’ field is used to store notes regarding the analysis rationale,
so that it can be looked up when needed. The ’inClasses’ field was not used
initially, but was later added in anticipation of the approach used for the
PARTS case. It would have stored a list of all source files that were changed
to fix a defect. In the end this database layout was abandoned before the field
was put into use.

The three tables on the left and right side in the figure represent diagram
detail tables for the three diagram types taken into account. The left ones
are connected to the ’fault’ table and thereby store diagram level of detail
information whenever diagrams are found to be related to a defect. The
right ones store average detail levels for each of the diagram types. They
are needed because we only store local diagram detail levels when analyzing
defects. Doing this could cause us to miss out on large parts of the design, that
should be taken into account when judging a project’s average level of UML
detail. Also the tables on the right have one extra field, ’completeness’, which
is used to store project wide information regarding the amount of functionality
or structure covered by the diagram types.

B.2 The PARTS analysis database

Figure B.2 shows the schema of the database used during analysis of the
second PARTS. The DBMS used is MySQL. This DBMS was chosen because
of our familiarity with setting up databases with it and making them available
online, through a web interface.

We describe the purpose of each table shortly. A lot of the fields in the
database are added for possible future use or because it was simple to “cheap”
to acquire this data to pass up the chance. We will not discuss fields that are
not used for this study, but rather focus on the ones that matter.
A ’projects’ table contains all general project information. This is the table
that has to be filled first before one can start adding additional project data
into the other tables. The purpose of each of these other tables is briefly
described below:

• The ’c metrics’ table stores all information regarding implementation
classes. The only fields used in this study were ’classname’, ’MCC’
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Figure B.2: PARTS database schema.
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and ’SLoC’. ’classname’ is of special importance, because it is used to
automatically put entries in the ’classcorrespondence’ table.

• The ’defects’ tables stores all of the defects reported in a project. Most of
the content of this table is filled automatically by copying data from the
bug tracking tool’s database, however, the ’type’, ’treated’ and ’anal-
ysis rationale’ fields are filled during the manual defect analysis step,
described in Section 4.3.3. The ’rnd’ field was used for random defect
sampling, described in the same section.

• The ’d classes’ and ’d sequences’ tables record all information we need to
calculate our design metrics. ’d classes’ stores numbers for classes in the
class diagram and ’d sequences’ stores numbers for sequence diagrams as
a whole. These are the numbers on which the ratios used in the analysis
of the PARTS case are based, rather than the ratios themselves. This
is because, when possible, data should be stored in the rawest form, so
that it can later be combined in any way that seems appropriate.

• In order to relate defects to parts of the design the ’funcmodin’ and
’strucmodin’ tables were defined. Since the relation between defects and
design parts is a many-to-many one, these tables were needed to store
information efficiently. These tables, apart from the obvious foreign
keys, store a correctness value (’correct’), which is used to record if the
functionality or structure related to the defect was correctly designed or
not.

• The ’classcorrespondence’ and ’classinsequence’ tables are used to link
both diagram types to the implementation classes. The first is automat-
ically filled in by performing automatic matching based on class names
stored in the ’c metrics’ and ’d classes’ tables. In the future filling in the
’classinsequence’ table may also be automated (by parsing the .xmi files
and performing name matching on class instances), but for the PARTS
case study this information was collected manually. The extra fields in
the ’classinsequence’ table are used to measure the amount of behavior
of a class that is modeled in a specific sequence diagram.

• The last table to discuss is the ’faultyclasses’ table. Here the files that
are changed in order to fix a defect are listed. The table also includes
a ’c cid’ field, which is used to match faulty classes to implementation
classes (in ’c metrics’), so that we can find the appropriate code metrics
for a faulty class easily.



Appendix C

Performed queries

This appendix lists some of the queries performed on our data sets and gives
samples of the result sets.

C.1 PARTS: comparison of defect density modeled
vs unmodeled system parts

The query in Listing C.1 selects all faulty classes that are related to our filtered
defect sample. Using additional filters (found in the where clauses) we discard
the following faulty classes:

• Classes that do not correspond to implementation classes, since we want
to know a class’s SLoC metric to calculate defect density.

• Classes that reside in the presentation or struts layer

• Test classes

The resulting collection now holds on copy of a faulty class for each time
this class is changed by one of the defects in our filtered sample. Finally
we group by its classname and count this number of duplicates, the result of
which will become a class’s defect count.
We performed this query four times, while changing the last two where clauses
to select faulty classes modeled in different diagram types. The results of the
four queries are listed in table C.1. This table shows per part totals as well.
These were calculated from the result sets in Microsoft Excel (so no reference
to these fields will be found in the query mentioned above).

Querying for disjunct parts, regarding the diagrams in which faulty classes
were modeled, allowed us to do both the modeled versus unmodeled defect
density comparison as well as the defect density comparison of the individual
parts using the same data set.
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Table C.1: Result set of query from Listing C.1

BOTH modeled in CDs and SDs
classname sloc NrOfDefects DefectDensity
DiaryBusinessDelegate.java 202 1 0,005
GroupBusinessDelegate.java 152 2 0,0132
MedicalBusinessDelegate.java 1335 4 0,003
Patient.java 140 1 0,0071
Registration.java 92 2 0,0217
SearchPartyCriteria.java 144 3 0,0208
SeriesEntityData.java 193 1 0,0052
UserBusinessDelegate.java 245 1 0,0041

total sloc 2503
total NrOfDefects 15
total defect density 0,005992809

ONLY modeled in CDs
classname sloc NrOfDefects DefectDensity
DecursusGeneralReportEntityData.java 85 4 0,0471
GetAccessSearchCriteria.java 83 1 0,012
PartyValueObject.java 52 1 0,0192
Recurrence.java 102 1 0,0098

total sloc 322
total NrOfDefects 7
total defect density 0,02173913

ONLY modeled in SDs
classname sloc NrOfDefects DefectDensity
AssessmentProJustitiaEntityBean.java 786 1 0,0013
AssessmentWaoEntityBean.java 540 1 0,0019
ConsultationEntityBean.java 405 1 0,0025
DiaryBusinessBean.java 923 1 0,0011
GroupBusinessBean.java 647 4 0,0062
InvoiceEntityBean.java 377 1 0,0027
InvoicingBusinessBean.java 1777 1 0,0006
MedicalBusinessBean.java 5258 5 0,001
MedicationBusinessBean.java 604 2 0,0033
PartyEntityBean.java 786 1 0,0013
PatientBusinessBean.java 741 2 0,0027
RegistrationBusinessBean.java 1229 3 0,0024
SeriesEntityBean.java 397 1 0,0025
SessionEntityBean.java 386 1 0,0026
UserBusinessBean.java 1046 3 0,0029

total sloc 15902
total NrOfDefects 28
total defect density 0,001760785

NOT modeled in any SDs or CDs
classname sloc NrOfDefects DefectDensity
AWBZBudgetVO.java 239 1 0,0042
DecursusGeneralReportEntityBean.java 230 2 0,0087
DecursusGeneralReportEntityKey.java 43 1 0,0233
DiaryHelper.java 372 1 0,0027
EntrustLoginFilter.java 66 1 0,0152
GroupConstants.java 21 2 0,0952
MedicalConstants.java 31 1 0,0323
MedicationDataSource.java 202 1 0,005
PartyHelper.java 145 1 0,0069
ReferenceBusinessBean.java 128 1 0,0078
ReferenceBusinessDelegate.java 64 1 0,0156
RegistrationConstants.java 31 1 0,0323
SelectInvoiceAction.java 67 1 0,0149
TopicsDTO.java 423 1 0,0024

total sloc 2062
total NrOfDefects 16
total defect density 0,007759457
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C.2 PARTS: comparison of average defect density
per defect type

The query in Listing C.2 selects all faulty classes that are related to our filtered
defect sample. Using additional filters (found in the where clauses) we discard
the following faulty classes:

• Classes that do not correspond to implementation classes

• Classes that reside in the presentation or struts layer

• Test classes

The resulting collection now holds on copy of a faulty class for each time
this class is changed by one of the defects in our filtered sample, along with the
type of that defect. We now group by this defect type and count the number
of rows (= defects) to get the defect count for each type.

The additional query in the select part of the query sums all SLoC metrics
for each distinct faulty class that is accumulated by the grouping on defect
type. We say distinct here, because we do not want to add a faulty class’s
SLoC metric more than once for each defect type.
We performed this query two times, while changing the last two where clauses
of the main query and the mentioned sub-query to select either the modeled
or unmodeled system part.

Table C.2: Result set of query from Listing C.2

type NrOfDefects TotalKSLoC

computational 3 18,791
data handling - data access 7 18,791
data handling - data validation 9 18,791
data handling - session issues 1 18,791
data handling - variable typing 1 18,791
data handling - wrong variable used 1 18,791
logic 19 18,791
process flow 1 18,791
race condition 1 18,791
user data i/o 8 18,791

C.3 PARTS: correlation test LoD and defect
density

C.3.1 All defect types, all sequence diagrams

The query in Listing C.3 selects all faulty classes related to our filtered sample
of defects that are also related to sequence diagrams. For each of these faulty
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classes LoD parts are calculated, using all sequence diagrams in which a faulty
class appears. The defect density calculated by counting all defects from our
filtered sample that changed the faulty class and dividing by the faulty class’s
sloc (implementation) metric.

The result set of this query is given in Table C.3. In order to fit this
table nicely on one page, the names of the LoD parts have been abbreviated
further. The reader should have no trouble, however, linking them to their
original names from the query.

Calculating the different LoD parts independently allowed for testing dif-
ferent combinations of them when calculating the LoD aggregate for each
faulty class. This action is more quickly performed in excel (by just adding
extra columns to hold different summations) than can be done by altering the
query to do different calculations.
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Listing C.1: Query for comparing defect density of differently modeled system
parts
select

f c . classname ,
c . s l o c ,
count ( f c . c lassname ) as NrOfDefects ,
coalesce (count ( f c . c lassname )/ c . s l o c , 0 ) as DefectDens i ty

from
c m e t r i c s c ,
f a u l t y c l a s s e s fc ,
d e f e c t s df

where
c . id = f c . c c i d and
f c . d e f e c t s i d = df . id and
df . t r ea t ed = 1 and
df . type not in

(
’ ( s t a t i c ) user i n t e r f a c e ’ ,
’ ’ ,
’ u se r i n t e r f a c e − nav igat i on ’ ,
’ undetermined ’

) and
c . c lassname not l ike ’%/pr e s en t a t i on/% ’ and
c . c lassname not l ike ’%/s t r u t s/% ’ and
c . c lassname not l ike ’%Test%’ and
f c . c c i d not in

( select distinct c i s . c i d from c l a s s i n s e q u e n c e c i s ) and
f c . c c i d not in

( select distinct cor . c c i d from c l a s s co r r e spondence cor )
group by f c . c lassname
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Listing C.2: Query for comparing defect density distribution between modeled
and unmodeled system parts
select

df . type ,
count ( df . type ) as NrOfDefects ,
(

select
sum( s l o c )

from
c m e t r i c s c1

where
c1 . id in

(
select distinct

c2 . id
from

c m e t r i c s c2 ,
d e f e c t s df1 ,
f a u l t y c l a s s e s f c 1

where
c2 . id = f c1 . c c i d and
f c 1 . d e f e c t s i d = df1 . id and
df1 . t r ea t ed = 1 and
df1 . type not in

( ’ ( s t a t i c ) user i n t e r f a c e ’ , ’ ’ ,
’ u se r i n t e r f a c e − nav igat i on ’ , ’ undetermined ’ ) and

c2 . c lassname not l ike ’%/pr e s en t a t i on/% ’ and
c2 . c lassname not l ike ’%/s t r u t s/% ’ and
c2 . c lassname not l ike ’%Test%’ and
( f c 1 . c c i d in ( select distinct c i s . c i d from c l a s s i n s e q u e n c e c i s ) or
f c 1 . c c i d in ( select distinct cor . c c i d from c l a s s co r r e spondence cor ) )

)
)/1000 as TotalKSLoC

from
c m e t r i c s c ,
f a u l t y c l a s s e s fc ,
d e f e c t s df

where
c . id = f c . c c i d and
f c . d e f e c t s i d = df . id and
df . t r ea t ed = 1 and
df . type not in

( ’ ( s t a t i c ) user i n t e r f a c e ’ , ’ ’ ,
’ u se r i n t e r f a c e − nav igat i on ’ , ’ undetermined ’ ) and

c . c lassname not l ike ’%/pr e s en t a t i on/% ’ and
c . c lassname not l ike ’%/s t r u t s/% ’ and
c . c lassname not l ike ’%Test%’ and
( f c . c c i d in ( select distinct c i s . c i d from c l a s s i n s e q u e n c e c i s ) or
f c . c c i d in ( select distinct cor . c c i d from c l a s s co r r e spondence cor ) )

group by
df . type



C.3. PARTS: CORRELATION TEST LOD AND DEFECT DENSITY 87

Listing C.3: Query for testing LoD to defect density correlation (all sequence
diagrams)
select

c . c id , cm . s l o c ,
coalesce ( (

select
count ( f c 1 . c lassname )

from
f a u l t y c l a s s e s fc1 , d e f e c t s df1

where
f c 1 . c c i d = c . c i d and f c 1 . d e f e c t s i d = df1 . id and
df1 . t r ea t ed = 1 and
df1 . type not in

( ’ ( s t a t i c ) user i n t e r f a c e ’ , ’ ’ ,
’ u se r i n t e r f a c e − nav igat i on ’ , ’ undetermined ’ )

group by
f c 1 . c lassname

) , 0 ) as NrDefects ,
coalesce ( (

select
count ( f c 2 . c lassname )

from
f a u l t y c l a s s e s fc2 , d e f e c t s df2

where
f c 2 . c c i d = c . c i d and f c 2 . d e f e c t s i d = df2 . id and
df2 . t r ea t ed = 1 and
df2 . type not in

( ’ ( s t a t i c ) user i n t e r f a c e ’ , ’ ’ ,
’ u se r i n t e r f a c e − nav igat i on ’ , ’ undetermined ’ )

group by
f c 2 . c lassname

)/cm. s l o c , 0 ) as DefectDensity ,
sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as SumNrMsg ,
(sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 )
∗coalesce (d . NumNonAnonymousObj/d .NumObj , 0 ) ) )
/sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as NonAnonymousObjPart ,

(sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 )
∗coalesce ( ( d .NumObj−d .NumDummyObj)/d .NumObj , 0 ) ) )
/sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as NonDummyObjPart ,

(sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 )
∗coalesce (d . NumMsgLabel/d .NumMsg, 0 ) ) )
/sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as LabeledMsgPart ,

(sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 )
∗coalesce (d . NumMsgParam/d .NumMsg, 0 ) ) )
/sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as ParamedMsgPart ,

(sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 )
∗coalesce (d . NumMsgReturnWithLabel/d . NumMsgReturn , 0 ) ) )
/sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as LabeledReturnMsgPart ,

(sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 )
∗coalesce ( ( d .NumMsg−d .NumDummyMsg)/d .NumMsg, 0 ) ) )
/sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as NonDummyMsgPart ,

(sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 )
∗coalesce (d . NumMsgWithGuard/d .NumMsg, 0 ) ) )
/sum( coalesce ( c . NumMsgIn+c . NumMsgInner , 0 ) ) as GuardedMsgPart

from
c l a s s i n s e q u e n c e c , d sequences d , c m e t r i c s cm

where
c . c i d=cm. id and c . s i d=d . id and c . c i d in

(
select

f c 3 . c c i d
from

f a u l t y c l a s s e s fc3 , d e f e c t s df3
where

f c 3 . d e f e c t s i d = df3 . id and df3 . t r ea t ed = 1 and
df3 . type not in

( ’ ( s t a t i c ) user i n t e r f a c e ’ , ’ ’ ,
’ u se r i n t e r f a c e − nav igat i on ’ , ’ undetermined ’ )

)
group by

c . c i d
order by

DefectDens i ty desc ;
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C.3.2 All defect types, IOR sequence diagrams

The query described here is almost identical to the one in the previous section.
As can be seen in Listing C.4, the only difference is one extra line in the where
clause that filters out the UCR sequence diagrams. The result set of this query
is given in Table C.4. Of course LoD parts are now only calculated based on
IOR sequence diagrams as well.

Listing C.4: Query to test LoD to defect density correlation (IORs)
.
.
.
where

c . c i d=cm. id and c . s i d=d . id and c . c i d in
(

select
f c 3 . c c i d

from
f a u l t y c l a s s e s fc3 , d e f e c t s df3

where
f c 3 . d e f e c t s i d = df3 . id and df3 . t r ea t ed = 1 and
df3 . type not in

( ’ ( s t a t i c ) user i n t e r f a c e ’ , ’ ’ ,
’ u se r i n t e r f a c e − nav igat i on ’ , ’ undetermined ’ )

) and
d . usecase = ’ ’ and d . i n t e r f a c e != ’ ’

group by
c . c i d

order by
DefectDens i ty desc ;
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C.3.3 Individual defect types

The query for analyses of correlation between sequence diagram based LoD
aggregates and defect density for individual defect types is simply another
variation on the queries described in the two previous sections. This time
the query can be altered by changing all defect type selection lines in all
where clauses to only include a specific defect type (e.g. logic). By doing this
only faulty classes (related to our filtered defect sample) are selected that are
modeled in at least one sequence diagram. LoD aggregate parts are calculated,
based on the sequence diagrams that are selected (all or just IOR related).
Defect density is calculated counting defect from the chosen type only.





Appendix D

Statistical tests

In this appendix we list the statistical tests that were chosen during the anal-
ysis of the PARTS case and the reasons for which they were chosen (Chapter
6). Each test is described in its own section. [SS01] was used to familiarize
ourselves with these tests. We performed all tests using version 16 of the SPSS
tool [Ana].

D.1 Kendall’s τ

Kendall’s τ (or Kendall tau rank correlation coefficient) is a non-parametric
statistic that can be used as an alternative to Pearson’s product-moment
correlation coefficient. The latter assumes, amongst others, that frequency
distributions for sample populations are approximately normal. When this
assumptions cannot be met, Kendall’s τ coefficient can still be calculated. We
used Kendall’s τ instead of the more common Spearman’s ρ, because it allows
a more intuitive interpretation of the coefficient. We will not go into more
detail here, but rather refer to [Noe86] for a nice and short explanation.

D.2 Mann-Whitney U-test

The Mann-Whitney U-test (MWU) is a non-parametric test that checks if two
samples come from the same distribution. It is often applied when prerequi-
sites for applying Student’s t test are not met (e.g. no normal distribution,
no equal variances). Although it is actually not specifically designed for it,
the MWU test is used frequently to show statistically significant differences
in population medians1. Rejecting a null hypotheses that two samples are
taken from populations with the same distribution actually means that their
distributions lay shifted to the left or the right from each other. Using the

1The test works with ordinal measurements, so no statements can be made about sample
means. Medians are used instead. However these are both central points of measurement in
samples, so conclusions are usually interpreted the same.
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MWU test to test for difference in medians implicitly assumes that medians
shift along with the distribution. This assumption, however, is common in
practice.

D.3 Kruskall-Wallis test

The Kruskall-Wallis test (KW) can be seen as the non-parametric version of
the one-way ANOVA test and is used to test equality of population medians
across more than two samples. Since it is non-parametric it can be applied in
situations where the normality assumption that the parametric ANOVA test
does can not be guaranteed.

D.4 Shapiro-Wilk test

This test is one of the available test used to check if normality assumptions
can hold for sample data. We chose to apply this normality test in a number
of situations, since it is the standard normality test performed by SPSS. In
general, testing for normality of samples is done when one wants to apply
parametric statistical analyses that assume this normality to apply.
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