
 Eindhoven University of Technology

MASTER

Designing push plans for disk-shaped robots

Gerrits, D.H.P.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5a073ab7-2b86-4a8b-b3ec-f25543e1e77c

Master’s Thesis

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

Supervisor:

Designing Push Plans for

Disk-Shaped Robots

Dirk H.P. Gerrits

28 May 2008

Referees:

Prof. dr. Mark de Berg

Dr. Alexander Wolff

Prof. dr. ir. Jan Friso Groote

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Global approach . 2
1.3 The studied subproblem . 3
1.4 Related work . 4
1.5 New contributions . 5

2 Preliminaries 6
2.1 Friction and compliance . 6
2.2 Object motions for a straight-line push . 7
2.3 Pseudodisks and Minkowski sums . 8
2.4 Nieuwenhuisen's subroutine . 10

3 Pushing while maintaining contact 19
3.1 Well-behaved path sections . 20
3.2 Shape of the con�guration space . 22
3.3 Computing the con�guration space . 26
3.4 Finding a contact-preserving push plan . 28
3.5 Finding a shortest contact-preserving push plan 30
3.6 Low obstacle density . 32

4 Pushing and releasing 34
4.1 Releasing can be bene�cial . 34
4.2 Releasing can be necessary . 36
4.3 Canonical releasing positions . 40
4.4 Finding an unrestricted push plan . 42
4.5 Low obstacle density . 44

5 Conclusion 45
5.1 Improvements over prior work . 45
5.2 Further research . 46

Bibliography 48

Chapter 1

Introduction

A fundamental problem in robotics is path planning [15, Chapter 1], in which a robot has
to �nd ways to navigate through its environment from its initial con�guration to a certain
destination con�guration, without bumping into obstacles. Many variants of this problem
have been studied, involving widely di�ering models for the environment, and for the robot
and its movement.

In one of its most simple forms, the problem involves a point-shaped robot which can translate
freely (not needing to accelerate or turn) in a 2-dimensional environment consisting of static,
polygonal obstacles. From this simple basis, many more elaborate variants can be constructed.
For example, one might want to consider:

• 3-dimensional (or higher dimensional) environments.

• Dynamic environments, in which the obstacles change shape, move, and/or turn.

• Environments which are not (fully) known to the robot beforehand, and still have to be
explored.

The robot and its movement could also be more complex:

• The robot is usually assumed to have volume (as opposed to a point robot which has
zero volume), for example being polygonal in shape. To avoid obstacles its motion might
then have to include rotation as well as translation.

• The robot's movement might be similar to that of a car: only able to go forward or
backward and having a non-zero turning radius (i.e. it cannot move sideways and it
cannot turn on the spot).

• The robot may be just one of many robots in the environment, having to avoid not only
the obstacles but the other robots as well.

In manipulation path planning [12] the robot's goal is to make a passive object, rather than
the robot itself, reach a certain destination. Several di�erent kinds of manipulation have been
studied, including grasping [12], squeezing [6], rolling [2], and even throwing [13].

1

2 CHAPTER 1. INTRODUCTION

This thesis studies one particular manipulation path planning problem involving pushing [12].
The robot, which will be referred to as the pusher, has to push a passive object to a certain
destination. Both the pusher and the object are assumed to be circular disks, and they move
amongst polygonal obstacles in the 2-dimensional Euclidean plane.

Nieuwenhuisen [15, 17, 18] studied this same problem, and developed an algorithm for it.
After stating the problem in more detail we'll discuss his algorithm, which uses a subroutine
to solve a related but simpler pushing problem. This thesis discusses the shortcomings of his
subroutine, and develops a better one.

1.1 Problem statement

In the 2-dimensional Euclidean plane we are given the following:

• Two circular disks: the pusher P , and the object O. Each is de�ned by a radius (rp and
ro, respectively), and an initial position (so ∈ R2 and sp ∈ R2, respectively).

• A set � = {1; : : : ; n} of non-intersecting line segments called the obstacles. That is,
each edge of the \polygonal obstacles" mentioned earlier is seen as a separate obstacle.

• A destination position for the object (go ∈ R2).

With the position of a disk we mean the position of its center. In �gures we'll always draw
the object in a darker shade than the pusher. Obstacles are drawn as thick black lines, and
when the obstacles are in fact edges of polygons such polygons are colored light gray. (See
Figure 1.1, for example.)

We are now interested in �nding a push plan: a path for the pusher that will make it push the
object from its initial position to its destination, with neither disk intersecting any obstacles
along the way. Both disks are allowed to touch or slide along obstacles. In other words, when
we say that a disk intersects an obstacle, we mean that its interior intersects the obstacle.
Without loss of generality, we assume that the given initial and destination positions are such
that the disks don't intersect any obstacles (if they did, no push plans would be possible).

If no such push plan exists we want to report that fact, otherwise we want to construct such
a push plan. When multiple push plans exist we may be interested in �nding the shortest
one, i.e. the one minimizing the distance traveled by the pusher.

We follow Nieuwenhuisen in assuming that the pusher is smaller than the object (i.e. rp < ro).
Without this assumption, the solution space is often vastly reduced, as the pusher will be
more restricted in its movement than the object itself.

1.2 Global approach

In chapters 7 through 9 of his PhD thesis [15], Nieuwenhuisen gives a probabilistic algorithm
for constructing these push plans. His method is based on the Rapidly-exploring Random
Trees path-planning algorithm [10].

3 CHAPTER 1. INTRODUCTION

In a nutshell, this algorithm incrementally builds a tree of reachable placements for the object
and pusher. Once the destination position of the object is connected to the tree (as a leaf),
a push plan can be constructed by concatenating the push plans between the placements in
the tree on a path from the root to this leaf. (See Figure 1.1.)

sp

cs

so

go cg

cs

go

gp

sp so

Figure 1.1: To create a push plan, Nieuwenhuisen's algorithm builds up a tree of placements
for the object and pusher, with smaller push plans between them. The �nal push plan is
then a concatenation of the smaller push plans from the tree's root to the leaf containing the
object's destination.

The tree initially consists only of a root node containing the initial placement cs = (so; sp)
of the object and pusher. The tree is then iteratively extended by generating a random new
object placement ro, �nding the placement cn = (no;np) with the least distance between no
and ro, and trying to construct a straight-line push plan between the two.

If this succeeds, with the pusher at some position rp, then cr = (ro; rp) is added to the tree
as a child of cn. If it fails, that means an obstacle was hit along the way, at some placement
cc. Then cc (instead of cr) is added as a child of cn, and the obstacle boundaries are followed
in both directions to create a subtree of placements reachable from cc (see Figure 1.2).

Picking such random placements ro, and extending the tree with them, is continued until
either a placement cg = (go;gp) is added to the tree, or until some other stopping criterion
is reached (say, the number of iterations exceeds some maximum). By occasionally picking
ro = go it can be guaranteed that if a push plan exists, it will be found with high probability
(given that enough iterations are performed).

1.3 The studied subproblem

As a subroutine, the algorithm just described needs a way to �nd push plans when a path for
the object (through free space and/or along obstacle boundaries) is given, rather than just an

4 CHAPTER 1. INTRODUCTION

cc

ro

np

cn

no

go

cp

co

cc

np

cn

no

go

cp

co

Figure 1.2: The algorithm tries to connect random object placements to the tree by at-
tempting to �nd a push plan for moving the object to this new placement in a straight line.
If this fails, placements along the obstacle boundaries are added to the tree instead.

initial and destination position. In other words we need a subroutine to solve the following
subproblem:

Given:

• A circular pusher P (of radius rp) and object O (of radius ro with rp < ro), and their
initial positions.

• A set � = {1; : : : ; n} of non-intersecting line segments called the obstacles.

• A path � for O from its initial position to some destination, in which O doesn't intersect
any obstacles.

Find:

• A path for P (called a push plan) such that if P follows this path it will push O along
� as far as possible: either until the end of � , or until pushing cannot continue (due to
obstacles).

Solving this subproblem is the main topic of this thesis.

1.4 Related work

In addition to the global approach described above, Nieuwenhuisen also developed a subrou-
tine for the subproblem where the object path is already given [15, 16]. The object path is
assumed to be made up of only line segments and circular arcs, each of which is referred to as
a (path) section. For n obstacles, and an object path consisting of k sections, his subroutine

5 CHAPTER 1. INTRODUCTION

constructs a push plan in O(kn log n) time (or O((k + n) log(k + n)) under an assumption
of low obstacle density [4]). However, it needs a hefty O(n2 log n)-time preprocessing step,
uses O(n2 + k) storage, and makes no attempt to �nd an optimal push plan. Furthermore,
it is assumed that contact between the pusher and object can be maintained at all times,
and the problem of constructing push plans that don't always maintain this contact is left to
future research. We prove in Chapter 4 that there are indeed cases where contact cannot be
maintained, and modify our own subroutine to handle this.

Agarwal et al. [1] studied the resulting motion of a unit disk when a point on its boundary
is pushed along a straight line. By scaling this curve appropriately, it becomes exactly the
motion of our object (which is not necessarily of unit radius) when our pusher (which is a
disk rather than a point) moves in a straight line while maintaining contact with the object.
This will be discussed in more detail in Section 2.2.

In the same paper, Agarwal et al. also described an algorithm to push their unit disk among
polygonal obstacles from a given initial position to a given destination position. The algorithm
discretizes the problem in two ways. Firstly, the angles that the line through the pushing
point and the disk's center can make with the x-axis are discretized into 1=" di�erent values.
Secondly, the combined boundary of the obstacles is sampled at m locations, and only those
locations are considered as potential intermediate positions for the disk. The path-�nding
algorithm then runs in O((1=")m(m+ n) log n) time, where n is the combined total number
of vertices of the obstacles. There is a trade-o� in that 1=" and m have to be given high
values to avoid missing a possible path, but for e�ciency they should be given low values.
The algorithm assumes the pusher can get to any position around the object at all times,
which is true for their point-sized pusher, but not for our disk-shaped pusher: there may be
obstacles in the way.

1.5 New contributions

Chapter 2 �rst describes some concepts needed in later chapters, and discusses the results of
Nieuwenhuisen and Agarwal et al. in some more detail.

Chapter 3 then presents a new method for computing contact-preserving push plans. In such
push plans the pusher never releases contact with the object. Nieuwenhuisen's subroutine also
computes such push plans, but our method is more general and allows for �nding shortest
push plans.

Chapter 4 discusses the limitations of only considering contact-preserving push plans, rather
than unrestricted push plans where the pusher may release the object momentarily whenever
it sees �t. Speci�cally, it gives examples where simple unrestricted push plans exist, but where
contact-preserving push plans are either very complex, or don't exist at all. The approach of
Chapter 3 is then extended to compute unrestricted push plans.

Chapter 5 summarizes our results and gives some concluding remarks and directions for the
future.

Chapter 2

Preliminaries

In this chapter we explore some aspects of the pushing problem a bit deeper, introducing
needed concepts for later chapters. We also study the prior work on this topic by Agarwal
et al. [1] and Nieuwenhuisen [15] in more detail. These works are guided by the physics of
the real-world robotics problem of two disks pushing each other on a at surface. When we
present our new approach in Chapter 3 we'll abstract away from such considerations, leading
to a more general method.

2.1 Friction and compliance

A compliant motion is one where the object slides along an obstacle. Such motions have
several advantages over non-compliant motions. For one, they're more robust in the presence
of sensor inaccuracies, because the obstacle will act as a guide for the object. More impor-
tantly, this allows the pusher to achieve the same motion for the object from a whole range
of pushing positions (called the push range). The pusher can then swerve around the object
to avoid obstacles while still pushing the object in the desired direction. (See Figure 2.1(a).)

With a non-compliant motion, the position to push from is determined entirely by the desired
direction of motion for the object (i.e. the push range consists of a single pushing position).
When the object's center moves on a straight line, for example, the pusher's center needs to
stay on this same line. If any obstacles are in the way, there simply exists no push plan for
that object motion. (See Figure 2.1(b).)

For compliant motions, the exact size of the push range depends on the friction characteristics
of the two disks and the obstacles. (Maximally it is 90◦ wide (or 180◦ when the object is simul-
taneously compliant with two parallel obstacles) and this is what we'll use in our examples.)
Friction also a�ects how pushing works for non-compliant paths. Nieuwenhuisen [15] assumes
friction coe�cients between the disks and between the object and obstacles are known, and
shows how to compute the size of the push range from them. This push range is �xed,
moving along with the object but never changing shape, as was illustrated in Figure 2.1(a).
Furthermore, it is assumed that the disks don't slip during pushing, except during the motion
described in Section 2.2. Lastly, pushing is assumed to be quasi-static [19]. This means that
when pushing stops, the object also stops instantly. (This will never be the case in reality,

6

7 CHAPTER 2. PRELIMINARIES

(a) For compliant motions, there's a range of possible pushing
positions (the push range), giving the pusher more possibilities
for obstacle avoidance.

(b) For non-compliant motions,
there's only 1 pushing position, so
obstacles can't always be avoided.

Figure 2.1: Compliant motions allow for a wider range of pushing positions than non-
compliant motions, which aids in obstacle avoidance.

but it can be closely approximated by pushing slowly, or having very high friction between
the disks and the oor.)

2.2 Object motions for a straight-line push

The problem we want to solve is to �nd the motion of the pusher that will accomplish a given
motion of the object. To do that, we need to understand the reverse: what motion for the
object results for a certain motion of the pusher? This was studied by Agarwal et al. for a
pusher moving in a straight line [1]. They assumed a point-sized pusher, but our situation
can be made equivalent to this by shrinking the pusher to radius 0 while growing the object
to radius ro + rp. They also assumed that their object was of unit radius, but this simply
means that we need to scale their formulas by a factor ro + rp.

Figure 2.2: Some examples of the hockey stick curve motions of the object in response to
a straight-line push for di�erent pushing directions. (From left to right: ' = �=12 = 15◦,
' = �=36 = 5◦, and ' = �=180 = 1◦.)

They found that the object motion curve resembles a hockey stick. Figure 2.2 shows some
examples. In Cartesian coordinates, the curve is most easily parametrized by the angle � that
the line from the pusher's center through the object's center makes with the pushing direction.
Starting from � = ', this angle increases until the pushing direction becomes tangent to the
object disk at � = �=2, and trying to push further would only make the pusher move away
from the object.

Let's put the object's center at the origin, the positive x-axis in the pushing direction, and
the y-axis such that the pusher's center has a negative y-coordinate. The object's motion for

8 CHAPTER 2. PRELIMINARIES

0 < ' ≤ � < �=2 is then described by [1]:

x(�) = (ro + rp)

�
ln

�
tan(�=2)

tan('=2)

�
+ cos(�)− cos(')

�
(2.1)

y(�) = (ro + rp) (sin(�)− sin('))

For the limiting case of ' = 0, the motion of the object is a straight line (as would be
expected).

We can also parametrize by time t. Assuming the pusher moves with unit velocity, the angle
� is related to time t as � = 2 tan−1

�
tan('=2) et

�
, where 0 ≤ t ≤ ln(cot('=2)). The object's

motion is then described by:

x(t) = t+
1− tan2('=2)e2t

1 + tan2('=2)e2t
− cos(')

(2.2)

y(t) =
2 tan('=2)et

1 + tan2('=2)e2t
− sin(')

Another way to arrive at this same object motion is to consider the problem of pushing the
object away from an obstacle it is compliant with. We want to achieve a distance of 2rp
between the object and the obstacle so that this obstacle no longer restricts the pusher, and
in accomplishing this we want to minimize the distance traveled by the object. To do this,
one should maximize the pushing angle �, which happens when the pusher is compliant with
the obstacle. By then pushing towards the object center by a small distance ", the object
and pusher move a bit further away from the obstacle, meaning that an even bigger pushing
angle � can be assumed. (See Figure 2.3.) Repeating this process gives a polygonal motion,
that becomes the smooth hockey stick curve when " goes to 0. The hockey stick curve (with
maximal ') is therefore the way of moving the object away from an obstacle with the least
distance traveled parallel to the obstacle.

θ

ε

ε θ
′
> θ

. . .

Figure 2.3: Moving the object away from an obstacle, in such a way that the distance
traveled is minimized, is done by maximizing the pushing angle �.

2.3 Pseudodisks and Minkowski sums

A pair of planar objects o1 and o2 is called a pair of pseudodisks when the sets @o1 ∩ int(o2)
and int(o1)∩@o2 are each connected. (Here @o is the boundary of o, and int(o) is the interior
of o.) Figure 2.4 shows some examples.

Pseudodisks possess the following useful properties [5, Chapter 13]:

9 CHAPTER 2. PRELIMINARIES

• A pair of pseudodisks has at most two boundary crossings.

A boundary crossing is an intersection point where the boundary of one pseudodisk
crosses from the interior to the exterior of the other. (Figure 2.4 shows the boundary
crossings of the pictured shapes as fat dots.)

• The complexity of the union of any set of pseudodisks is linear in the total complexity
of the pseudodisks.

For example: if the pseudodisks are polygonal, and together have n edges in total, then
their union will have O(n) edges.

pseudodisks pseudodisks not pseudodisks not pseudodisks

Figure 2.4: Some examples showing the concept of pseudodisks.

The particular pseudodisks helpful for our path-�nding problem are the Minkowski sums of
each of the obstacles with a disk. The Minkowski sum of two planar objects o1 and o2 is
de�ned as o1⊕ o2 = {x1+x2 | x1 ∈ o1;x2 ∈ o2}. For an obstacle and a disk D(r) of radius
r the Minkowski sum ⊕D(r) is a rectangle capped by two half-disks, resembling a capsule as
illustrated in Figure 2.5(a). The interior of such a capsule consists of all the positions where
the disk would intersect the obstacle if it were centered there. Likewise, the boundary of such
a capsule contains all the compliant positions for the disk. Thus replacing our obstacles by
such capsules translates the problem of �nding a path for a disk into the simpler problem of
�nding a path for a point.

⊕ =

O

δU(ro)

(a) The Minkowski sum of a disk with an ob-
stacle resembles a capsule.

(b) The boundary @U(ro) of the union of all
capsules of radius ro contains exactly all posi-
tions where the object is compliant.

Figure 2.5: Computing the Minkowski sums of disks with our obstacles allows us to �nd
all compliant positions.

10 CHAPTER 2. PRELIMINARIES

That these capsules form a collection of pseudodisks follows from our obstacles being non-
intersecting [15, 16]. Their union U(r) =

S
∈�(⊕ D(r)) therefore has O(n) complexity.

Speci�cally, @U(r) consists of O(n) line segments and circular arcs of radius r, sharing O(n)
endpoints.

Figure 2.5(b) illustrates how @U(ro) forms all compliant positions for the object, and that this
shape can be partially inside the areas blocked o� from the object and pusher by obstacles.
We will forgo drawing those interior parts of @U(r) from here on, as they are not useful for
path-�nding.

2.4 Nieuwenhuisen's subroutine

As discussed in the introduction, Nieuwenhuisen [15, Chapter 9] presented a probabilistic
algorithm for computing push plans between a given initial and destination position for the
object. His algorithm repeatedly supplies a subroutine with query paths � , asking it to
produce a push plan that pushes the object along � as far as possible (either until the end
of the path, or until the object and/or pusher get stuck). Creating such a subroutine is
the goal of this thesis, but Nieuwenhuisen also developed one of his own [16, 15, Chapter
8]. This section discusses Nieuwenhuisen's approach, and the rest of this thesis describes our
new method and how it improves upon Nieuwenhuisen's. For understanding our method the
reader is free to skip this section, and we'll only refer back to it when comparing our results
with Nieuwenhuisen's.

2.4.1 Four cases

Nieuwenhuisen's method computes a contact-preserving push plan for a given query path �
by splitting the path up into k separate sections. It then creates push plans for each of the
sections and connects those together. Three kinds of path sections can occur, and one way of
connecting them:

• In a straight-line compliant section the object slides along the edge of an obstacle, which
we'll call the compliant obstacle.

• In a circular compliant section the object rotates around a vertex of an obstacle, which
we'll call the compliant vertex.

• In a non-compliant section the object moves through the work space without touching
any obstacles.

Nieuwenhuisen's algorithm for the main problem will only produce two types of non-
compliant sections in its query paths: straight lines, and hockey stick curves. His
subroutine only deals with straight-line non-compliant sections, and the hockey stick
curves are treated completely separately with numerical methods [15, Subsection 9.4.2].
The algorithm then combines these results afterwards.

• In a contact transit the object doesn't move at all, but the pusher rotates around the
object. This is needed between sections whenever the pushing angle at the end of a
section is not in the push range of the next section.

11 CHAPTER 2. PRELIMINARIES

Constructing push plans for each of these four cases is discussed in the following subsections.

In all cases it is assumed that the given path doesn't move the object into any obstacles,
which can be accomplished by cutting the object's path � o� at the �rst intersection. (This is
not a restriction, because we only wanted a push plan that pushed the object as far along � as
possible.) Nieuwenhuisen does this using the same techniques discussed in Subsections 2.4.6
and 2.4.7 for the pusher's path.

2.4.2 Straight-line compliant sections

For a straight-line compliant section, the pusher is said to descend when it moves closer to
the compliant obstacle, and to ascend when it moves farther away. To compute a push plan
for such a section, Nieuwenhuisen's method makes the pusher do the following:

(a) Ascend as far as possible. (b) Push parallel to the compliant obstacle until
the pusher hits an obstacle.

(c) Follow the boundary of that obstacle until
parallel pushing can resume.

(d) Repeat until the end of the section, or until
continuing becomes impossible.

Figure 2.6: An example showing how Nieuwenhuisen's method creates push plans for
straight-line compliant sections.

Step 1: Ascend as far as possible; either until the pusher hits some other obstacle, or
until it is at the end of the push range. (See Figure 2.6(a).)

Step 2: Push parallel to the compliant obstacle until the pusher hits some other ob-
stacle. (See Figure 2.6(b).)

Step 3: Follow the boundary of the obstacle that was hit as long as it is descending so
at the end the pusher can again push parallel to the compliant obstacle. (See
Figure 2.6(c).)

12 CHAPTER 2. PRELIMINARIES

Step 4: Repeat steps 2 and 3 until the end of the section is reached and the push plan
for this section is complete, or it becomes impossible to continue further. (See
Figure 2.6(d).)

Nieuwenhuisen argues that this method will always �nd a contact-preserving push plan if one
exists. Consider the areas swept out by the moving disks. If a push plan exists, that means
the object's sweep area must be free of obstacles, and the pusher won't hit any obstacles if it
moves through this same area (by staying \behind" the object, as in Figure 2.7(a)). Leaving
this area by an ascend is therefore generally not needed.

However, the pusher will not have entered this area yet at the start of the section. Obstacles
encountered there may call for the need to ascend (as in Figure 2.7(b)). Thus by ascending
as far as possible at the start of the section, Nieuwenhuisen argues, it is then never needed to
ascend again, and the procedure only fails if no contact-preserving push plan exists. However,
Figure 2.7(c) shows a counter-example where alternating ascends and descends are needed.
This requires one to modify step 3 to follow the boundary as long as it is descending or
ascending.

(a) If a push plan exists, the area swept out by
the object must be obstacle free.

(b) Therefore the only possible need for an as-
cend is at the start of a section.

+

−
+

U(rp)

U(rp)

(c) It is possible, however, that alternating ascends (+) and descends (−) are needed.
Figure 2.7: The pusher only needs to ascend at the beginning of a straight-line compliant
section, as for the rest of the section it can stay in the obstacle-free sweep area of the object.

2.4.3 Circular compliant sections

Analogous to the ascending/descending terminology of the last subsection, let's call the push-
ing position closest to the compliant vertex lowest, and the one farthest away highest.

Maintaining the lowest pushing position throughout the section, the pusher's center will move
on a circular arc with radius

p
ro

2 + (ro + rp)
2 (which is minimal) around the compliant

vertex, as seen in Figure 2.8(a).

Maintaining the highest pushing position throughout the section, the radius is 2ro+rp (which
is maximal), as seen in Figure 2.8(b). (Actually, then the pusher's center would be on the

13 CHAPTER 2. PRELIMINARIES

line through the compliant vertex and the object's center, so the object can only be pushed
into the vertex and not around it. Thus the highest pushing position is actually not de�ned
(there is a supremum but no maximum), and neither is ascending \as far as possible" of the
previous subsection. For convenience we'll allow ourselves this slight abuse of terminology.)

ro

ro + rp

2ro + rp

(a) The area swept out when the pusher uses a
minimum-radius push (

p
ro

2 + (ro + rp)
2).

(b) The area swept out when the pusher uses a
maximum-radius push (2ro + rp).

Figure 2.8: No push plan for a circular compliant section can keep the pusher in the object's
sweep area. Shown are the sweep areas for the lowest and highest pushing positions.

The minimum-radius push of Figure 2.8(a) also maximizes the overlap between the two sweep
areas, showing that we can't keep the pusher in the object's sweep area to avoid obstacles.
What can be done, however, is trying to minimize the combined area swept out by the two
disks. This is what Nieuwenhuisen's method does, as follows:

Step 1: Push in a straight line towards the compliant vertex until the lowest pushing
position is reached. (See Figure 2.9(a).)
Whenever an obstacle is hit, follow obstacle boundaries until either pushing
to the compliant vertex can resume, or the lowest pushing position is reached.
(See Figure 2.9(b).)

Step 2: Push on the circular arc with radius
p
ro2 + (ro + rp)2 around the compliant

vertex. (See Figure 2.9(c).)
As before, when an obstacle is hit we follow obstacle boundaries until the
lowest pushing position is reached (again).

(a) Push towards the compli-
ant vertex.

(b) Follow obstacle boundaries
when needed.

(c) Finish the push using the
minimal circular arc.

Figure 2.9: An example showing how Nieuwenhuisen's method creates push plans for cir-
cular compliant sections.

14 CHAPTER 2. PRELIMINARIES

This method maximizes the overlap between the areas swept out by the object and the
pusher, thus minimizing the combined sweep area. Furthermore, every other push plan will
have a combined sweep area that is a superset of this one. Thus this method �nds a contact-
preserving push plan if and only if one exists.

2.4.4 Straight-line non-compliant sections

As discussed in Section 2.1, and illustrated in Figure 2.1(b), there is only one possible push
plan for a (straight-line) non-compliant section. If any obstacles are in the way, no push plan
exists, for they cannot be avoided while still pushing the object on the correct path.

Note that for most of the straight-line non-compliant section, the pusher will stay in the sweep
area of the object. Thus any obstacles that the pusher runs into (but the object doesn't) must
be at the start of the section (as in Figure 2.1(b).)

2.4.5 Contact transits

A contact transit is needed whenever the push angle at the end of a section is not in the push
range of the next section. It can be done either by a clockwise or a counterclockwise turn
around the object (see Figure 2.10(a){(b)).

(a) Clockwise contact
transit

(b) Counterclockwise
contact transit

(c) If the current or next section is compliant,
one of the directions will be blocked.

Figure 2.10: Contact transits can be done either clockwise or counterclockwise, but one (or
both) of these may be blocked by obstacles.

When neither of these arcs is blocked, the pusher can just pick one (say, the shortest). When
one is blocked, for example when the current or next section is compliant, there is no choice
(see Figure 2.10(c)). When both are blocked, no contact-preserving push plan exists.

2.4.6 Ray shooting queries

To implement the algorithms for straight-line compliant and non-compliant sections, a way
is needed to check whether and where the pusher hits obstacles when moving on straight-line
paths. The �rst half of the algorithm for circular compliant sections also needs this. Nieuwen-
huisen does this by computing the �rst intersection of rays (i.e. half-lines) with @U(rp), using
a data structure by Koltun [9]. Recall that @U(rp) consists of O(n) line segments and circular
arcs. The data structure can then be built in O(n2 log n) time and uses O(n2) space, after
which each ray can be processed in O(log n) time.

15 CHAPTER 2. PRELIMINARIES

We'll denote the number of sections per type as ks (straight-line compliant), kc (circular
compliant), and kn (straight-line non-compliant), such that k = ks + kc + kn. Then the
following numbers of these \ray shooting queries" need to be performed:

• Straight-line compliant sections

No obstacle can be hit more than once per section, but in the worst case (a constant
fraction of) all the obstacles will be hit by the pusher at every straight-line compliant
section. Thus O(ksn) ray shooting queries may be needed.

• Circular compliant sections

On the straight-line pushes towards the compliant vertex, again (a constant fraction of)
all the obstacles could be hit by the pusher at every circular compliant section. Thus
O(kcn) ray shooting queries need to be performed.

• Non-compliant sections

There is only one possible push plan for a straight-line non-compliant section, and that
is itself a straight line. Thus O(kn) ray shooting queries are needed.

This gives a total of O(ksn + kcn + kn) ray shooting queries. An upper bound for this is
O(kn), which is tight if there are no non-compliant sections. Thus the total time needed for
ray shooting queries is O(kn log n) per path � , after a preprocessing time of O(n2 log n). The
space used is O(n2).

2.4.7 Circular arc queries

For contact transits (including the ascends at the start of straight-line compliant sections) a
way is needed to check whether and where the pusher hits obstacles when moving on circular
arcs. The second half of the algorithm for circular compliant sections also needs this. For
this, Nieuwenhuisen uses an algorithm by Balaban [3]. Instead of doing the queries one arc
at a time, multiple arcs are processed together. If m is the number of arcs to be tested,
then the algorithm uses O((n+m) log(n+m) + q) time and O(n+m) space to output all q
intersections of the m arcs with @U(rp).

The following numbers of arcs need to be intersected:

• Circular compliant sections

Nieuwenhuisen doesn't compute the intersections of these circular arcs whenever a path
� is given and the circular compliant sections become known. Instead, he computes the
intersections of all potential circular arcs that could occur in circular compliant sections
of given paths. This is done by placing a full circle of radius

p
ro

2 + (ro + rp)
2 on each

of the O(n) obstacle vertices, and intersecting these with @U(rp).

In the worst case, when obstacles are tightly clustered, each of these m = O(n) arcs
could intersect O(n) obstacles, leading to q = O(n2) intersections. Thus it takes O(n2)
time and O(n) space to compute these intersections, but storing them takes O(n2)
space. Whenever a new path � is given for the same environment, the O(kn) relevant
intersections can be looked up and processed in O(kn) time.

16 CHAPTER 2. PRELIMINARIES

• Contact transits

There is (potentially) a contact transit at the start of each of the sections, thus there
are m = O(k) contact transits. All of these are circular arcs with radius ro + rp. In the
worst case, (a constant fraction of) all obstacles are encountered at the start of every
section, leading to q = O(kn) intersections. Thus all possible intersections from contact
transits can be found in O((k + n) log(k + n) + kn) time, and O(k + n) space.

Thus the total time needed for these \circular arc queries" is O((k+n) log(k+n)+kn), with
a preprocessing time of O(n2). The space used is O(n2 + k).

Combining the time for the two types of queries, Nieuwenhuisen's subroutine needsO(kn log n)
time, after a preprocessing time of O(n2 log(n)). The total space usage is O(n2 + k). The
computed push plan will consist of O(kn) sections.

2.4.8 Low obstacle density

Worst cases with very densely packed obstacles don't tend to occur much in practice. Thus it
makes sense to study the planning of paths in spaces with low obstacle density [4], as de�ned
next.

Recall from Subsection 2.4.2 (especially Figure 2.7) that the pusher is safe from obstacles
if it stays in the object's sweep area, but that obstacles at the start of the sweep area can
prevent it from getting there right away. Figure 2.11(a) shows the union of all such possible
obstacles. After the object has moved a distance d =

p
(ro + 2rp)

2 − ro
2 =

p
4rp

2 + 4rpro ,
those obstacles can't possibly interfere with the pusher getting in the object's sweep area
anymore, as shown in Figure 2.11(b).

r
o +

2r
p

d

ro

(a) The union of all possible obstacles pre-
venting reaching the lowest pushing position.

(b) The �rst position in which the lowest
pushing position can de�nitely be reached.

Figure 2.11: The minimum distance d that the object has to move on a straight-line
compliant section to guarantee the pusher can reach the lowest pushing position.

So after that distance d we're in the clear, but in this initial distance there could be very
many obstacles. Realistically this won't happen though, as we can often assume that:

• The environment has a low obstacle density [4], de�ned as follows:

The environment is a �-low-density environment when for any disk D of diameter x
the number of obstacles ∈ � with length() ≥ x that intersect D is at most �. The
density of the environment is the smallest � for which it is a �-low-density environment.
We say the environment has low obstacle density if its density is a small constant.

17 CHAPTER 2. PRELIMINARIES

• The radius of the object is at most a constant times the length of the smallest obstacle.
More speci�cally, that 4ro < c� holds for some (small) constant c > 0, with � being the
length of the smallest obstacle.

Together, these assumptions imply that any disk with radius 4ro will intersect only a constant
number of obstacles. We will show that the combined sweep areas of the object and pusher
for a path section will always �t into such a disk, yielding a push plan complexity of O(k)
instead of O(kn).

Recall that we assumed the pusher to be smaller than the object, i.e. rp < ro. Since bigger
disks sweep out more area, we'll consider the limiting case of rp = ro to get an upper bound
for the size of the sweep areas.

In a circular compliant the section the combined sweep area is largest when the highest
pushing position is maintained. That this �ts in a disk with radius 4ro even when rp = ro is
illustrated in Figure 2.12(a).

In a straight-line compliant the section the combined sweep area is also largest when the
highest pushing position is maintained. For the initial push of length d this area also �ts
in a disk with radius 4ro, as seen in Figure 2.12(b). After this distance the pusher can
continue in the object's sweep area and won't need to encounter any more obstacles. (Note,
however, that Nieuwenhuisen's approach described in Subsection 2.4.2 can still encounter
�(n) obstacles after the initial push of length d, as it only descends the pusher as necessary
rather than moving into the object's sweep area as soon as possible. So again his approach
needs a slight modi�cation before these claims hold.)

In a contact transit the largest sweep area occurs when the transit is a (nearly) full circle.
That this area also �ts in a disk with radius 4ro is illustrated in Figure 2.12(c).

4r
o

d

4r
o

4r
o

(a) The combined sweep area
in a circular compliant section
always �ts in a disk of radius
4ro.

(b) The combined sweep area
of the �rst part of any straight-
line compliant section also �ts.

(c) So does the sweep area of
any contact transit.

Figure 2.12: The combined sweep areas of compliant sections and contact transits always
�t in a disk of radius 4ro.

Thus if we assume low obstacle density, and that the radius of the object is at most a constant
times the size of any obstacle, then in every section at most O(1) obstacles are encountered
(assuming the procedure of Subsection 2.4.2 is modi�ed to make the pusher descend into the

18 CHAPTER 2. PRELIMINARIES

object's sweep area when it can). This brings the push plan complexity down to O(k), and
the running time to O((k + n) log(k + n)). (Nieuwenhuisen claims the new running time is
O((k + n) log n), most likely an oversight.) The preprocessing time of O(n2 log n) and space
usage of O(n2 + k) remain the same.

Chapter 3

Pushing while maintaining contact

A general-purpose technique for traditional path-planning is to translate the problem from
the work space into the con�guration space. The work space is the given environment in
which the robot needs to �nd a path, and a con�guration is one speci�c placement of the
robot. Each point in the con�guration space corresponds to such a con�guration in the work
space. For example, a rectangular robot moving around in a 2-dimensional work space has
a 3-dimensional con�guration space, with two coordinates representing the robot's location,
and one its orientation. Some con�gurations will be invalid, for example because the robot
intersects one of the obstacles, and such points form the forbidden (con�guration) space. The
remaining points form the free (con�guration) space, representing all the valid con�gurations.
A path through the free space from the initial con�guration to a destination con�guration
then immediately translates back to a solution of the original problem in the work space.

Our subroutine for �nding contact-preserving push plans given an object path � is based on
this general-purpose technique: we �rst compute the con�guration space and then �nd a path
through the free space from an initial con�guration to a destination con�guration, yielding a
push plan. The shape of the con�guration space for this problem is not as straightforward
as with traditional translational path planning, though. Not only does a con�guration corre-
spond to a placement of both the object and the pusher in the work space, but con�gurations
can be invalid even when there are no intersections with obstacles but the object simply isn't
being pushed along path � . The latter also has implications for the path we eventually need
to �nd through the free space.

To manage this complexity we impose several restrictions on the given object path � . In
particular, we require that all path sections are \well-behaved" in some sense, as described
in Section 3.1. This still yields a more general notion of path sections than Nieuwenhuisen's,
though, and we'll show that the path-section types he distinguishes are all well-behaved.

In Section 3.2 we discuss the shape of the resulting con�guration space and derive its com-
plexity, and Section 3.3 then gives an algorithm to compute it from the given work space.

Sections 3.4 and 3.5 discuss the problem of �nding a path through the free space that will
result in a valid contact-preserving push plan.

Finally, Section 3.6 describes how the low-obstacle-density assumptions described in Sub-
section 2.4.8 yield lower worst-case running times for our subroutine just as they did for
Nieuwenhuisen's.

19

20 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

3.1 Well-behaved path sections

We consider a collection of curves to be simple curves when each curve is C0-continuous, we
can compute its length and O(1) points of intersection with a circle or line in O(1) time,
and we can compute the intersections of any two such curves in O(1) time. We then require
our given object path � to consist of a sequence of k well-behaved path sections �1; �2; : : : ; �k,
which are simple curves connected end-to-end. More precisely, let path � be parametrized
with a parameter s ∈ [0; 1], then each section �i has s in some interval [bi; ei] ⊆ [0; 1] such
that �(s) = �i(s) for all s ∈ [bi; ei] and b1 = 0, ek = 1, ei = bi+1 for 1 ≤ i < k. In addition,
each well-behaved path section satis�es the following properties for pushing the object along
it:

(A1) At any position �i(s) of the object along section �i, the positions for the pusher that
allow it to push the object further along � form a single continuous range (the push
range) that can be computed in O(1) time. The two endpoints of the push range will
be referred to as the lowest and highest pushing positions such that the push range is
a counterclockwise arc from the lowest to the highest pushing position.

(A2) As the object moves along section �i, the push range traces out a connected shape
without holes bounded by four convex simple curves: the push range at the start and
end of �i, and the paths traced out by the lowest and highest pushing positions. (See
Figure 3.1(a).) Furthermore, we can compute these curves from �i in O(1) time.

(A3) For any pusher position there are at most O(1) object positions in a section where
the pusher touches the object. Note that this follows directly from �i being a simple
curve as these O(1) object positions for an arbitrary pusher position xp are given by
�i ∩ @(xp ⊕D(ro + rp)). (See Figure 3.1(b).)

(A4) After the object has moved a certain distance d = O(ro) along the section, the push
range becomes such that the pusher can remain in the sweep area of the object for
the rest of the section. The paths traced out by lowest and highest pushing positions
in this sweep area are convex simple curves that can be computed in O(1) time. (See
Figure 3.1(c).)

τi

∂(xp ⊕D(ro + rp))

xp

τi

d

τi

(a) (A1) & (A2): The
push range traces out a
shape bounded by four
convex simple curves.

(b) (A3): For any pusher
position a section has at
most O(1) object positions
where P and O touch.

(c) (A4): After a distance d the pusher can
remain in a subset of the object's sweep area
bounded by four convex simple curves.

Figure 3.1: The four well-behavedness properties that we require of the given path sections.

21 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

Property (A4) isn't needed for correctness, but as we'll see in Section 3.6 it will allow for better
time bounds for our subroutine when applied to low-obstacle-density environments. These
four properties together capture all of the path-section types supported by Nieuwenhuisen's
subroutine under a single notion:

Theorem 3.1. Nieuwenhuisen's straight-line compliant, circular compliant, and straight-line
non-compliant path sections are all well-behaved.

Proof. Line segments and circular arcs are of course simple curves, and property (A3) then
trivially holds. Property (A1) holds for Nieuwenhuisen's path sections by de�nition, so it
remains to show that properties (A2) and (A4) hold:

(A2) The push range in Nieuwenhuisen's path sections is of �xed size throughout the section
and merely turns along with �i. Thus a connected shape without holes is traced out
that is bounded by the push ranges at the start and end of the section, and the paths
of the lowest and highest pushing position.

For both types of straight-line sections the lowest and highest pushing positions trace out
line segments that are simply displaced versions of the path section itself. For circular
compliant sections the lowest and highest pushing position trace out circular arcs of
radius

p
ro

2 + (ro + rp)
2 and 2ro + rp, respectively, as mentioned in Subsection 2.4.3.

(See also Figure 3.1(a).)

(A4) A circular compliant section always has a length of less than 2�ro so this property
trivially holds. In a straight-line non-compliant section the pusher will be completely
in the sweep area of the object after a distance 2rp, and then the whole push range
will be in that sweep area. In a straight-line compliant section the pusher can remain
in the object's sweep area after a distance

p
4rp

2 + 4rpro (see Subsection 2.4.8), and
the area where it does so is bounded by two circle arcs and two line segments (see
Figure 3.1(c)).

It is even the case that hockey-stick non-compliant sections are \almost" well-behaved. The
exact intersections between a hockey-stick curve and a circle or line can't be computed in
O(1) time, but the curve can be approximated fairly well by a small number of quadratic
B�ezier curves which do allow this. The result is a well-behaved path section:

Theorem 3.2. Nieuwenhuisen's hockey-stick non-compliant sections become well-behaved
path sections when approximated by a constant number of quadratic B�ezier curves.

Proof. Quadratic B�ezier curves are simple curves, and property (A3) then trivially holds.
Property (A1) holds for Nieuwenhuisen's path sections by de�nition, so it remains to show
that properties (A2) and (A4) hold:

(A2) In a non-compliant section the push range consists of a single angle at all times so the
push range traces out a single curve, which is then the path traced out by both the
lowest and highest pushing position. For a hockey-stick non-compliant section �i this
path is a line segment as discussed in Section 2.2.

(A4) The hockey-stick non-compliant sections generated by Nieuwenhuisen's global algorithm
are all of the same shape, just of di�erent orientations. Their length then depends on
rp and ro only, making it an O(ro) constant. (Note that this value grows to in�nity as
rp approaches ro, though.)

22 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

3.2 Shape of the con�guration space

Before trying to compute the con�guration space we'll discuss its shape and complexity.
Recall that a con�guration is a placement of the object and the pusher in the work space.
Thus we can view it as a pair of positions (xo;xp) ∈ R2×R2. However, this gives four degrees
of freedom where there are really only two. We assumed the object path � : [0; 1] → R2 is
given, and (for now) that the pusher has to maintain contact with the object at all times, so
a con�guration can be represented as a pair (s; �) ∈ [0; 1]× S1. Here s is the fraction of the
path already traversed by the object (i.e. xo = �(s)), and � is the pushing angle; the angle
that the line from the pusher's center to the object's center makes with the positive x-axis.

The con�guration space is the parameter space of these con�gurations, and as such is a 2-
dimensional space with the topology of a cylinder. In this space an obstacle is no longer
simply a line segment. Since each point represents a con�guration, i.e. a certain placement of
both the pusher and the object in the work space, a con�guration-space obstacle C consists
of the con�gurations where the pusher intersects that obstacle . (Recall that the object
never intersects any obstacles along path � .) The open boundary of C then consists of the
con�gurations where the pusher is compliant with .

Figure 3.2(a) shows an example of a work space, with the corresponding con�guration space
cylinder in Figure 3.2(b) showing the union of con�guration-space obstacles. For clarity, we'll
not show such cylinders anymore from here on, and will instead visualize con�guration spaces
in a \attened" way, as in Figure 3.2(c), with the s-axis drawn horizontally and the �-axis
drawn vertically.

Apart from the pusher intersecting any of the obstacles, a con�guration can also be forbidden
because it has the pusher outside of the push range for that position of the object along path
� . We'll call these con�gurations the forbidden push ranges (drawn in dark gray), and their
union with the con�guration-space obstacles (drawn in light gray) forms the full forbidden
space. (Figures 3.4(a), 3.7(b), and 4.9(b) further on show examples.)

The shape of the con�guration-space obstacles, the forbidden push ranges, and their union
will be discussed over the next few subsections. For now we're not interested so much in the
form of the boundary curves of these shapes, but more in the number of vertices of those
curves. This number gives us the combinatorial complexity of the con�guration space, which
gives an indication of the (potential) e�ciency of our approach. We state this complexity
now, and prove it through a series of lemmas below:

Theorem 3.3. The con�guration space has complexity O(kn), i.e. the boundary of the for-
bidden space consists of O(kn) vertices and curves between them.

Proof. From Lemmas 3.4 through 3.7, de�ned and proven in the coming subsections, it fol-
lows that the complexity of the con�guration space is O(n) per path section. This yields a
complexity of O(kn) for the con�guration space all k path sections.

3.2.1 Path sections in the con�guration space

As described in Section 3.1, the path sections form a partitioning of path � . This then
also induces a partitioning of the con�guration space along the s-axis. For any path section

23 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

τ (1)

τ (0)

τ (s)

θ

s

θ

(a) An example work space, with a placement
(s; �) of the object and pusher in it.

(b) The corresponding union of con�guration-
space obstacles.

θ

0 s 1

+π

−π

0

(c) The same space drawn \attened". For convenience, we will use this style of
drawing from here on, but the reader should keep in mind that the topology is really
that of a cylinder (indicated by the solid bottom border and dashed top border).

Figure 3.2: An example work space and the corresponding union of con�guration-space
obstacles. The marked point in the con�guration space corresponds to the con�guration of
the object and pusher shown in the work space.

24 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

�i : [bi; ei]→ R2 we'll refer to the vertical lines s = bi and s = ei as its section boundaries. The
area in between these two lines then contains all con�gurations with the object at a position
along that path section. Whenever no confusion arises we'll use the term path section for
both the actual section �i of the path and for the corresponding strip of the con�guration
space. Figure 3.3(b){(c) shows an example with three path sections (and thus four section
boundaries).

In the following subsections we restrict our attention to the part of the con�guration space
within a single path section �i, as it is easier to reason about.

3.2.2 A con�guration-space obstacle

Recall that a con�guration-space obstacle C consists of the con�gurations where the pusher
intersects , and that its open boundary consists of the con�gurations where the pusher is
compliant with . This shape can consist of several components, both within and across
sections. As just mentioned we restrict our attention to one path section �i, and we refer to
the part of C in this section as C;i. Next we show that such a shape has constant complexity:

Lemma 3.4. The part C;i of a con�guration-space obstacle C that falls within a single path
section �i is s-monotone and consists of O(1) components of O(1) complexity.

Proof. Consider the vertical slice of C;i for the object position �i(s). The positions where
the pusher touches the object are given by the circle @(�i(s) ⊕ D(ro + rp)). The positions
where the pusher intersects obstacle are given by the capsule int(⊕D(rp)). The pusher
positions of the vertical slice of C;i are thus given by the intersection of this circle and
capsule. Potentially, such an intersection could consists of two or more continuous ranges,
but as illustrated in Figure 3.3(a) this can only happen when the object intersects obstacle
, contradicting our assumption about path � . Thus a vertical slice of C;i is always a single
continuous range, making C;i an s-monotone shape.

The intersection of circle @(�i(s) ⊕ D(ro + rp)) and capsule int(⊕ D(rp)) is non-empty
exactly when �i(s) lies in the bigger capsule int(⊕ D(ro + 2rp)), which we call 's area of
inuence. Thus the components of C;i correspond to the intervals of �i that intersect 's
area of inuence (see Figure 3.3(b){(c)). Since �i is a simple curve, this means C;i has at
most O(1) components. The shape of a component comes forth from the intersection of a
capsule with a circle moving over a simple curve. All of these have O(1) complexity, so the
component itself does as well.

3.2.3 Union of all con�guration-space obstacles

From Lemma 3.4 it trivially follows that all n con�guration-space obstacle pieces C;i for the
section together have O(n) complexity. However, when we take their union new vertices may
emerge as the intersections of the boundaries of di�erent pieces. If all can intersect all others,
this might yield �(n2) extra vertices. Fortunately, this situation cannot actually occur:

Lemma 3.5. The union of the n con�guration-space obstacle pieces for a single path section
�i has complexity O(n).

25 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

< ro rp

r
o
+

r
p

τi(s)

∂(τi(s)⊕D(ro + rp))

γ ⊕D(rp)

γ

e
3

e
4

e
7

e
8

e
5

e
6

τ (1)

τ (s2)

τ (0)

τ (s1)

e
1

γ

γ ⊕D(ro + 2rp)

γ ⊕D(rp)

e
2 e

2

e
1

e
3

e
4

e
5

e
6 e

7

e
8

s
1

s
2

0

0 1

+π

−π

Cγ,1

Cγ,3

Cγ,2

τ
1

τ
2

τ
3

(a) A vertical slice of
C;i can only be non-
contiguous if O inter-
sects .

(b) An obstacle's capsule
with radius ro+2rp is called
its area of inuence.

(c) For each path section �i the components
of C;i correspond to the intervals where �i
overlaps 's area of inuence.

Figure 3.3: A con�guration space obstacle is s-monotone and consists of O(1) components
per path section, each having O(1) complexity.

Proof. Recall that the boundary of a con�guration-space obstacle C corresponds to con�gu-
rations where the pusher is compliant with the obstacle in the work space. Thus a point of
intersection of two (or more) con�guration-space obstacles corresponds to the pusher being
compliant with two (or more) obstacles 1 and 2. Such a pusher position is the intersection
of the boundaries of the capsules 1 ⊕ D(rp) and 2 ⊕ D(rp). As mentioned in Section 2.3,
such capsules are pseudodisks and the union of n of them therefore has O(n) complexity. This
means there are also only O(n) positions where the pusher would be compliant with two or
more obstacles.

By property (A3) for well-behaved path sections, for each of these O(n) pusher positions
there are at most O(1) object positions in section �i where the pusher and object touch,
hence the union has only O(n) vertices that are intersections of di�erent con�guration-space
obstacles.

3.2.4 A forbidden push range

The union of con�guration-space obstacles captures the con�gurations where the pusher in-
tersects any of the obstacles. However, we also want to disallow con�gurations where the
pusher isn't in a position to push the object further along its path, i.e. where the pusher is
outside of the push range. We'll call the complement of the push range the forbidden push
range. Stretching terminology a bit, we'll not only refer to the forbidden push range for a
single object position, but also to the forbidden push range FPRi for a full path section �i.
By this we mean the set of all con�gurations with the object at some position along the path
section and the pusher in the forbidden push range for that position. Note that FPRi is an
open shape: non-empty only within the interior of the path sections, and empty at the section
boundaries. This is to allow the pusher to perform a contact transit at section boundaries,
which is necessary when the push ranges of those adjacent sections don't overlap.

The asymptotic complexity of this shape is constant:

Lemma 3.6. The forbidden push range FPRi for a path section �i is s-monotone and has
O(1) complexity.

26 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

Proof. From property (A1) of well-behaved path sections it follows that the forbidden push
range for an object position is always a single contiguous range, bounded by a lowest and
highest pushing positions. This implies that FPRi is an s-monotone shape, whose left and
right side are vertical lines along the section's boundaries.

From property (A2) it follows that this lowest and highest pushing position trace out two
non-crossing simple curves as the object moves along the simple curve �i. Thus the lower and
upper boundary of FPRi are also continuous, non-crossing, O(1)-complexity curves

3.2.5 The full forbidden space

With FPRi so de�ned, the full forbidden space for section �i is the union of FPRi andS
∈� C;i. The latter has complexity O(n) and the former O(1), but their union can have

additional vertices from intersections between their respective boundaries. Again, there are
never more than O(n) such intersections:

Lemma 3.7. In a path section �i the boundaries of the forbidden push range FPRi and the
union of con�guration-space obstacle pieces

S
∈� C;i intersect in at most O(n) points.

Proof. The boundary of
S

∈� C;i corresponds to con�gurations where the pusher is complaint
with any of the obstacles. Such pusher positions are given by @U(rp), a shape of O(n) line
segments and circular arcs. The pusher positions for the lower and upper boundaries of FPRi

are given by simple curves by property (A2) of well-behaved path sections. The left and
right boundaries of FPRi are along the section boundaries and their pusher positions are thus
given by circular arcs. These four curves can all intersect @U(rp) at most O(n) times, which
yields the O(n) positions where the pusher is both compliant with some obstacle and on the
edge of the forbidden push range for the section. By property (A3) each of these pusher
positions occurs in at most O(1) con�gurations thus FPRi and

S
∈� C;i have at most O(n)

intersections.

Thus the forbidden space for a single path section has complexity O(n), for a total of O(kn)
over the whole path � as claimed.

3.3 Computing the con�guration space

Having established the parts that make up the shape of the forbidden space, our algorithm
for computing the con�guration space becomes a fairly straightforward four-step process. For
each of the k path sections �i:

1. Compute the n con�guration-space obstacles C;i.
2. Compute the forbidden push range FPRi.

3. Compute the union of these shapes to get the full forbidden space.

4. Compute a vertical decomposition of the free space.

Each of these steps will be described in detail in the following subsections.

27 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

3.3.1 Representing con�guration-space curves

To compute the con�guration space for a path section �i we need a way to work with the curves
bounding its forbidden push range and con�guration-space obstacles. The type of direct
equations of these curves in general don't allow intersection computations to be performed
exactly. Rather than resorting to numerical approximation, we'll represent the speci�c curves
of our problem in a more indirect way that does allow exact computation.

With each con�guration-space curve C in section �i we associate a simple curve Co of object
positions, and a simple curve Cp of pusher positions. We choose these curves to contain (a
superset of) all the con�gurations of C, and to have the property that from a given point
xp ∈ Cp we can compute in O(1) time with which points on Co it forms con�gurations of C.
This is accomplished as follows:

• When C is a vertical line segment we call it a V-curve (V for \vertical").

In this case we take Co to be the single object position �i(s) shared by all con�gurations
of C, and Cp to be the arc on the circle @(�i(s) ⊕ D(ro + rp)) given by the pusher
positions of C. There is then a trivial bijection between Cp and C.

• When C is (part of) a lower boundary (either of FPRi, or of a component of some C;i)
we call it a lower H-curve (H for \horizontal").

In this case we take Co to be the part of �i given by the object positions of C. When
C is part of FPRi we take Cp to be the simple curve traced out by the lowest pushing
position along the section, as per property (A2). When C is part of C;i we take
Cp = @(⊕D(rp)).

A pusher position xp ∈ Cp forms con�gurations where the object and pusher touch with
the set of object positions So = Co∩@(xp⊕D(ro+rp)), but not all of these con�gurations
need to be part of C. An object position xo ∈ So similarly forms con�gurations with
the set of pusher positions Sp = Cp ∩ @(xo⊕D(ro+ rp)). Then xp forms con�gurations
of C exactly with those xo ∈ So for which xp is the lowest pushing position in Sp. (This
calculation can be done in O(1) time because both sets have size O(1) by being the
intersections of a circle and a simple curve.)

• When C is (part of) an upper boundary (either of FPRi, or of a component of some
C;i) we call it an upper H-curve, and de�ne it analogously to a lower H-curve.

With this representation, the intersections between two curves C1 and C2 can be computed
by taking the intersection of C1;p and C2;p and �nding which corresponding points on C1;o

and C2;o it forms con�gurations of C1 and C2 with. Splitting such curves C at an intersection
point can be done by splitting Cp for V-curves or Co for H-curves.

3.3.2 Computing a con�guration-space obstacle

The part C;i of a single con�guration-space obstacle C for a single path section �i consists
of O(1) components by Lemma 3.4. As each component is s-monotone by the same lemma,
its boundary consists of a lower and an upper H-curve. The Cp parts of these are all simply

28 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

@(⊕D(rp)), and as mentioned in the proof of Lemma 3.4 we can �nd the Co parts as the
intervals of �i intersecting 's area of inuence, i.e. the capsule int(⊕D(ro+2rp)). When a
component's lower and upper H-curve touch a section boundary we'll need to add a V-curve
between these endpoints to produce a closed shape.

Thus we can compute the (at most four) curves bounding each of the O(1) components of
C;i in O(1) time, for a total of O(kn) time over all n obstacles and all k path sections �i.

3.3.3 Computing the forbidden push range

Like a component of C;i, the forbidden push range FPRi for a single path section �i is also
an s-monotone shape bounded by (at most) four curves, by Lemma 3.6. The Cp parts of the
lower and upper H-curve can be computed in O(1) time by property (A2), and their Co parts
are simply �i. At both section boundaries we connect the endpoints of the lower and upper
H-curve by a V-curve to close the shape.

Thus we can compute FPRi in O(1) time, for a total of O(k) time over all k path sections �i.

3.3.4 Computing the forbidden space union

The full forbidden space for section �i is the union of the con�guration-space obstacles and the
forbidden push range. We can compute the union of these O(n) shapes with a deterministic
algorithm by Kedem et al. [8] that uses O(n log2 n) time, or a randomized incremental algo-
rithm by Miller and Sharir [14] that uses O(n log n) expected time, both using O(n) space.
The total union for all k sections can thus be computed in O(kn log2(n)) worst-case time, or
O(kn log n) expected time.

3.3.5 Computing the vertical decomposition of the free space

The free space, which is the complement of the forbidden space just computed, can be divided
up into O(kn) cells by extending vertical lines (i.e. V-curves) up and down from the O(kn)
curve endpoints until they hit the boundary of the forbidden space. Given the already com-
puted forbidden space, we can easily construct this vertical decomposition with a sweep-line
algorithm in O(nlogn) time and O(n) space per section, yielding the decomposition of the
complete free space through which we want to �nd a push plan in O(kn log n) time.

3.4 Finding a contact-preserving push plan

Having computed the con�guration space, all that remains is to �nd a path through the free
space. Since moving from right to left in the con�guration space means backing up, in e�ect
pulling the object rather than pushing, we want to �nd a path through the free space that
never does this. In other words, the path has to be s-monotone. To this end, we direct the
connections between cells and their neighbors as pointing from left to right, resulting in a
directed acyclic cell graph of O(kn) vertices (cells) and edges (connecting neighboring cells).

29 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

From this graph we then remove all cells not reachable from the cell containing the initial
con�guration in O(kn) time, for example by depth-�rst search. The remaining cells form
the reachable free space. The rightmost right edge(s) among these cells form the destination
con�gurations, and to �nd a contact-preserving push plan we simply need to �nd an s-
monotone path through the reachable free space from the initial con�guration to any of
them. (Figure 3.4(a){(c) shows an example work space, its con�guration space's vertical
decomposition into cells, and the resulting cell graph.)

We can solve this problem in two steps: �rst �nd a \high-level" path c1; c2; : : : ; cm through
the cell graph, and then �nd \low-level" paths �i from the left edge to the right edge of
each cell ci on the high-level path. If we make sure that all �i are s-monotone, and that
their endpoints are connected, we get a valid contact-preserving push plan. One simple way
to do this is to follow the cell boundaries, as Lemmas 3.4 and 3.6 imply that these are all
s-monotone. (See Figure 3.4(b){(d).)

This procedure yields a valid push plan of O(kn) complexity in O(kn) time and space. Even
when it's impossible for the object to be pushed to the end of � due to obstacles, we'll still
�nd a push plan taking it as far along � as possible. The push plan we �nd will in general
not be very good at minimizing the distance traveled by the pusher, though. Therefore we
explore a di�erent method in the next section.

τ
1

τ
2

τ
3

τ
4

0 1

+π

−π

0
c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
11

c
10

c
12

(a) An example work space with four path sec-
tions (two compliant and two non-compliant).

(b) The con�guration space for the work space
of (a), plus an s-monotone path through it found
from the cell graph of (c).

c
1

c
2

c
3

c
5

c
6

c
7

c
8

c
9

c
11

c
12

c
10

c
4

(c) The cell graph for the con�guration space of
(b). The non-reachable part is grayed out.

(d) The push plan resulting from the path
through the con�guration space shown in (b).

Figure 3.4: An example showing how our subroutine �nds a (not necessarily shortest)
contact-preserving push plan.

30 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

3.5 Finding a shortest contact-preserving push plan

To �nd a shortest contact-preserving push plan (in the sense of minimizing the distance
traveled by the pusher), we might try to take the reachable free space as computed in the
previous section and then apply a standard Euclidean shortest path algorithm. A shortest
path is automatically s-monotone because the cell boundaries are s-monotone which means
that every detour to the left can be cut short. Unfortunately, a Euclidean shortest path in
the con�guration space does not necessarily yield a Euclidean shortest push plan in the work
space, as shown in Figure 3.5(a){(b).

(a) The work space, where the solid push plan is
a straight line and therefore shortest.

(b) The corresponding con�guration space,
where the dashed push plan is a straight line and
therefore shortest.

Figure 3.5: Two di�erent push plans (solid and dashed) between a pair of con�gurations il-
lustrating that a shortest path in the con�guration space doesn't necessarily yield the shortest
path for the pusher in the work space.

Once again, however, we can perform computations in the work space to solve this con�guration-
space problem. The curves C bounding a cell ci of the reachable free space have corresponding
simple curves Cp of pusher positions inducing a cell c′i in the work space. Because of prop-
erty (A2) of well-behaved path sections, such a work-space cell c′i is exactly the area through
which the pusher can move without intersecting any obstacles and without leaving the push
range for the part of � spanned by ci. The circular arcs corresponding to the possible con-
tact transits at section boundaries then connect these cells into the space through which the
pusher can move to push the object along � . Figure 3.6(a) shows this space for the example
of Figure 3.4.

We have to take care when these work-space cells overlap, though. As illustrated in Fig-
ure 3.6(b), making the pusher move through the area formed by the union of all cells and
contact transit arcs does not guarantee that the pusher stays in the push range at all times.
Instead we have to consider each cell as being in a separate layer so that overlapping cells go
over instead of through each other. Letting go of the object will then never allow the pusher
to make a shortcut, so a Euclidean shortest path through this O(kn)-complexity space from
the initial con�guration to a destination con�gurations yields a shortest contact-preserving
push plan.

Note that the destination con�gurations all share the same object position xo, and the cor-
responding pusher positions thus form arcs on the circle @(xo ⊕ D(ro + rp)). Let D be the
set of points that are the intersections of this circle with the half-lines from xo that either
go through an endpoint of, or are tangent to, one of the O(kn) simple curves bounding the

31 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

work-space cells. A shortest contact-preserving push plan must then end either in an endpoint
of one of the destination arcs, or in one of the points in D. Thus any single-source Euclidean
shortest path algorithm capable of dealing with this space bounded by simple curves can be
used to �nd a shortest contact-preserving push plan.

c
1

c
2

c
3

c
4

c
7

c
8

c
9

c
11

c
10

c
12

c
5

c
6

(a) The work-space cells of the con�guration
space of Figure 3.4(b) have overlap.

(b) And moving through their union allows the
pusher to leave the push range and get to its des-
tination without taking the object along.

(c) A (partial) tangent visibility graph for this
example. (Only a portion of the edges is shown
to reduce clutter.)

(d) The shortest contact-preserving push plan
found from the tangent visibility graph.

Figure 3.6: An example showing how our subroutine �nds a shortest contact-preserving
push plan.

Pocchiola and Vegter [20] describe an algorithm to do this in the presence of convex obstacles,
based on tangent visibility graphs. A free bitangent of two obstacles is a line segment tangent
to both obstacles and not intersecting any (other) obstacles. The initial position, destination
positions, and the endpoints of the free bitangents together form the vertices of the tangent
visibility graph. Two vertices are connected by an edge if there is a free line segment between
them, or they lie on the same obstacle boundary curve. (See Figure 3.6(c).) For m convex
obstacles and initial and destination positions there are q = O(m2) free bitangents, resulting
in a graph of O(m + q) vertices and edges that can be computed O(m logm + q) time.
We can then compute a shortest path through the graph by using Dijkstra's algorithm in
O((m + q) log(m + q)) time, which yields a shortest push plan through the original space.
(See Figure 3.6(d).)

To be able to apply this algorithm, there need to exist m convex obstacles partitioning the
plane into our O(kn) work-space cells. Each of our work-space cells is bounded by four convex
simple curves however, and if such a curve is oriented the wrong way it would require a concave
obstacle. We never need to follow such a curve in a shortest path, however, as it is shorter to
go in a straight line between its endpoints. This then does induce a convex obstacle. Hence

32 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

we get m = O(kn) convex obstacles from our O(kn) work-space cell boundary curves, and we
can �nd a shortest contact-preserving push plan in O(k2n2 log(kn)) time and O(k2n2) space.

3.6 Low obstacle density

The asymptotic upper bounds derived for our subroutine in the last few sections assume
nothing about how densely packed the obstacles are. Realistically, the environment has a low
obstacle density, in which case we can sharpen these bounds considerably.

Recall from Subsection 2.4.8 that an environment is a �-low-density environment when for
any disk D of diameter x the number of obstacles ∈ � with length() ≥ x that intersect D
is at most �. Now let � be the density of the given environment, i.e. the smallest � for which
it is a �-low-density environment, and let � be the length of the smallest obstacle. A disk
with diameter � then intersects at most � obstacles.

By de�nition property (A4) of well-behaved path sections there is a constant d = O(ro) such
that after the object has been pushed a distance d along a path section, the pusher can then
remain in the (obstacle-free) sweep area of the object for the rest of the section. The combined
sweep area of the object and pusher for this initial stretch of length d always �ts inside a disk
with diameter d+ 2ro + 4rp = O(ro), and thus can intersect at most O(� · ro2=�2) obstacles
(because it can be covered by O(ro

2=�2) disks of diameter �).

For constant � and � =
(ro) this means the con�guration space for any length-d pre�x of a
path section has complexity O(1). The complexity of the remaining su�x of the path section
can still be �(n) however (as was also hinted at in Subsection 2.4.8), thus if we insist on
computing a shortest push plan we can't lower the complexity of the con�guration space in
the worst case. If we drop that requirement, then for this su�x of the path section we can
replace the O(n)-complexity shape

S
∈� C;i by the O(1)-complexity shape that forces the

pusher to remain in the object's sweep area. (This shape can be computed in O(1) time by
property (A4).) The total complexity of this reduced con�guration space is only O(k). (See
Figure 3.7.)

d

τ (s
1
)τ (0) τ (1)

0 s
1 1

+π

−π

0

(a) A work space with lots of obstacles that
can be avoided by staying in the object's sweep
area after the object has moved a distance d.

(b) The corresponding reduced con�guration
space only has O(k) complexity instead of O(kn).

Figure 3.7: An example of a work space and its reduced con�guration space.

For each path section we then only have O(1) shapes to compute the union and vertical
decomposition of, bringing the total time needed for that down to O(k). Computing these

33 CHAPTER 3. PUSHING WHILE MAINTAINING CONTACT

shapes section-by-section, obstacle-by-obstacle as described in Subsection 3.3.2 still takes
O(kn) time, though. We can do this more e�ciently by computing them for all path sections
and obstacles at once, using Balaban's algorithm [3] for the intersection computations. This
brings the time to compute the con�guration space down to O((k + n) log(k + n)), and the
space to O(k + n).

As the decomposition of the free space now only has O(k) cells, the path-�nding method of
Section 3.4 takes O(k) time and space. The method of Section 3.5 would take O(k2 log k)
time and O(k2) space, but wouldn't necessarily yield an optimal solution anymore. It does,
however, still yield a \quasi-optimal" solution that is shortest among all contact-preserving
push plans that always keep the pusher in the object's sweep area (except possibly in the
length-d pre�xes of sections). Table 3.1 summarizes these results.

High obstacle density Low obstacle density

Computing the con�guration space
- constructing all C;i kn (k + n) log(k + n)
- constructing all FPRi k k

- taking their union kn log n (∗) k
- vertical decomposition kn log n k

Finding any path kn k

Finding a shortest path k2n2 log(kn) k2 log k (∗∗)

(∗) These entries are expected times. For the worst-case times, replace logn by log2 n.
(∗∗) This yields a \quasi-optimal" solution.

Table 3.1: Asymptotic upper bounds for the running time of our subroutine for constructing
a contact-preserving push plan amongst n obstacles given an object path of k well-behaved
path sections.

Chapter 4

Pushing and releasing

Up until now we've only considered contact-preserving push plans, i.e. push plans in which
the pusher always maintains contact with the object. It turns out that this can lead to
unnecessarily long or complex push plans. Furthermore, it may even prevent a push plan to
be found altogether, even when there exists a perfectly good unrestricted push plan where
the pusher does occasionally release the object. In this chapter we �rst substantiate these
claims by considering examples (using Nieuwenhuisen's path sections) where these phenomena
occur. We then adapt our subroutine for contact-preserving push plans to �nd unrestricted
push plans in such cases (for well-behaved path sections in general).

4.1 Releasing can be bene�cial

Nieuwenhuisen describes an example where a simple push plan using compliance is impossible,
and only a complex one without compliance can be used [15, Section 7.7]. Figure 4.1 is a slight
variation of that example, where there is a simple push plan, but no simple contact-preserving
push plan.

Figure 4.1(a) shows the initial situation and the intended direction of motion for the object.
(We don't require that this path is followed exactly, as long as the object gets pushed out
of the room.) The problem here is that P cannot get \below" O without pushing it against
a wall, where it will inevitably get stuck as shown in Figure 4.1(b){(d). When contact
between P and O has to be maintained, the only possibility is to keep switching between two
pushing positions on either side of O and slowly push O up a little bit at a time, as shown in
Figure 4.1(e){(f). When the pusher is allowed to let go of the object, a much simpler push
plan is possible, as shown in Figure 4.2.

34

35 CHAPTER 4. PUSHING AND RELEASING

2rp + ε 2rp + ε

2ro 2ro

2 ro

2rp

2rp

(a) The initial situation,
with the intended direction
of motion for O.

(b) P could try to make use
of the bottom hole.

(c) Or it could not.

(d) But aiming for a compli-
ant push plan either way will
inevitably get O stuck.

(e) If P cannot let go of O,
the only solution is to keep
switching between two push
positions.

(f) And slowly push O up-
wards non-compliantly in a
zigzag manner.

Figure 4.1: An example in which keeping contact between the pusher and the object makes
a very complicated push plan necessary.

Figure 4.2: When the pusher is allowed to release the object, a much simpler push plan is
possible.

36 CHAPTER 4. PUSHING AND RELEASING

4.2 Releasing can be necessary

There are even cases where no push plan exists at all, whether complex or not, unless the
pusher is allowed to let go of the object. Consider the environment in Figure 4.3(a).

We assume, without loss of generality, that ro = 1 and rp = �, with 0 < � < 1. Our goal is
to get the object from the lower left part of the �gure, around the bend, to the upper right
part of the �gure. For this there is a range of potential paths � which O could be made to
follow, as seen in Figure 4.3(b).

2µ

2

2

y

x

vL vR
(0, 1) (2, 1)

(0, 0)

2µ

2− µ

1

vB

b

e

(a) The environment with the coordinate sys-
tem that we'll use. Measurements assume that
ro = 1 and rp = �.

(b) The initial situation and the range of posi-
tions for the object's center that any potential
object path � will have to go through.

Figure 4.3: An example where it's impossible to get the object to its destination position
with a contact-preserving push plan.

Because the horizontal and vertical corridor are exactly as wide as the object, the object
can only move through them in one way (and this is easily accomplished by the pusher).
We'll therefore consider the intermediate section of the object's path, connecting these two
straight-line sections, i.e. the subpath from point b to point e in Figure 4.3(b).

In particular, we'll look at the highest possible such subpath, i.e. the subpath that maximizes
the distance traveled in the positive y direction for the distance traveled in the positive
x direction. In principle, this would be the circular compliant motion around vertex vL,
however that motion is not always possible, as stated in the following lemma.

Lemma 4.1. In the example of Figure 4.3, the pusher can push the object compliantly around
vL from b to e if and only if � ≤ 1=3.

Proof. In this motion, the object's position describes a circular arc around vL with radius
equal to the object's. The area swept out by this is obstacle free. However, the combina-
tion of pusher and object sweep out a larger area. As discussed in Subsection 2.4.3, this
area is minimal exactly when the pusher's trajectory is a circular arc around vL with radius

37 CHAPTER 4. PUSHING AND RELEASING

p
ro

2 + (ro + rp)
2 =

p
�2 + 2�+ 2 . The pusher can accomplish the object's compliant mo-

tion if and only if this minimal sweep area is obstacle free, because all other potential sweep
areas for this motion are supersets.

In the example, that area is obstacle free exactly when
p
�2 + 2�+ 2 ≤ 2 − �, because P

can only go as low as 2 − � below the vertex before hitting the bottom wall. Squaring both
sides of this inequality and simplifying yields � ≤ 1=3.

From now on, assume that � > 1=3. Lemma 4.1 then implies that if the pusher tries to push
the object compliantly around vL, the pusher will hit the bottom wall at some point, and the
object will be at some point m1 between b and e. From b to m1, the object will have turned
a certain angle ' (0 < ' < �=2) around vL, where (see Figure 4.4):

' = a− b

sin(a) =
2− �p

�2 + 2�+ 2
cos(a) =

√
6�− 2p

�2 + 2�+ 2
(4.1)

sin(b) =
1p

�2 + 2�+ 2
cos(b) =

1 + �p
�2 + 2�+ 2

b
a

ϕ

ϕ

b
1

1 + µ

√ µ
2 +

2
µ

+

2

√
6µ− 2

2− µ

√ µ
2
+

2
µ

+

2

a

m1

vL vL

Figure 4.4: If P 's radius is more than one third that of O, it will get stuck trying to push
O around the inner corner vertex vL after an angle ' = a− b.

From m1 onward, the object will have to be pushed away from vL, and move non-compliantly.
The highest possible path that does this, is the path that makes the pusher move compliantly
along the bottom wall, thus maximizing the pushing angle. As discussed in Section 2.2, this
makes the object follow a hockey-stick curve. As usual we denote the push angle, i.e. the angle
that the line from P 's to O's center makes with the positive x-axis, by �. Then the coordinates
of O when following this curve can be expressed as a function of �, for ' ≤ � ≤ �=2:

x(�) = (1 + �) ln

�
tan(�=2)

tan('=2)

�
+ (1 + �) cos(�)− (1 + �) cos(') + sin(')

(4.2)

y(�) = (1 + �) sin(�)− 1 + �

Lemma 4.2. Following the hockey stick curve from m1 on, the object will eventually hit the
outer corner vertex vR, at some point m2.

38 CHAPTER 4. PUSHING AND RELEASING

When m2 is above the line y = 1 − 2−�
2+� , the pusher can push the object to e by a circular

compliant motion around vR.

When m2 is on or below the line y = 1− 2−�
2+� , the only possible continuations of the object's

path lead it into the pocket hole, and e cannot be reached.

Proof. The curvature of the hockey stick curve is smaller than that of the circular arc from
b to e around vL. Thus the object will reach the horizontal line through e at a point to the
right of e itself, but by then point vR would have already passed into the object's interior.
Therefore the object inevitably bumps into vR at some point m2 along the curve.

The y-coordinate of m2 uniquely determines the angle � at which the pusher can continue
pushing from its contact with the bottom wall, as well as the push range which would push
the object upwards compliantly around vR. If m2 is high enough, � will lie in this range, as
seen in Figure 4.5(a).

vR

m2

vB

vR

m2

vB

(

2−
√

8µ
2+µ

, 1− 2−µ

2+µ

)

(2, 1)

(2−√8µ , 1− (2− µ))

m2

vB

(a) If the object hits vR
high enough, the pusher will
have no trouble completing
the path for the object.

(b) But if the object hits vR
too low, the pusher can't do
anything but push the object
into the pocket hole.

(c) The cut-o� point is when
the line from the pusher's cen-
ter throughm2 passes through
vR.

Figure 4.5: Being pushed along the hockey stick curve, the object will eventually hit the
outer corner vertex vR. Where this collision occurs determines whether the object will get
stuck.

If m2 is too low, � will be outside of the needed push range. Having pushed the object
against vR, the pusher will still be to the left of vertex vB, thus it can not get below the
object. Therefore, the only remaining options for pushing leads the object into the pocket
hole, as seen in Figure 4.5(b).

The cut-o� point where � lies just barely outside the needed push range is when P 's center,

O's center, and vertex vR are colinear. O's center then has coordinates
�
2−

√
8�

2+� ; 1− 2−�
2+�

�
,

as illustrated by Figure 4.5(c).

We are now ready to formulate and prove the main theorem of this section.

Theorem 4.3. There is a �c, 1=3 < �c < 1, such that for all � > �c, the example of
Figure 4.3 admits no contact-preserving push plans for any of the possible object paths � ,
while it does admit an unrestricted push plan (for some of these).

39 CHAPTER 4. PUSHING AND RELEASING

Proof. From Equations (4.2) it follows that the hockey stick curve intersects the line y =
1− 2−�

2+� exactly when:

sin(�) =
2− �

2 + �
(4.3)

The point on this line where the object touches vR has x-coordinate 2 −
√
8�

2+� . Thus vR will

be hit when the object is on or below the line y = 1− 2−�
2+� if and only if:

x(�) ≥ 2−
√
8�

2 + �
(4.4)

Combining Equations (4.1) through (4.4) this condition becomes:

ln(f(�)) ≥ g(�); (4.5)

where:

f(�) =

�
(2− �) (1 + �) − √6�− 2

� �
2 + �−√8� �

(2− �)
�
� (3 + �) − (1 + �)

√
6�− 2

�
and

g(�) =

√
6�− 2 + 2−√8�

1 + �
.

 0

 0.5

 1

 1.5

 2

1/3 1/2 µc 2/3 5/6 1

ln(f(µ))
g(µ)

Figure 4.6: The smallest � value for which the example of Figure 4.3 admits no contact-
preserving push plan.

40 CHAPTER 4. PUSHING AND RELEASING

On the domain � ∈ (1=3; 1), both g and the logarithm of f are continuous functions, and
they intersect each other at exactly one � = �c (≈ 0:57173). For � < �c the function g has
a greater value than the logarithm of f , and vice versa for � > �c, as shown in Figure 4.6.
Thus there is a �c such that, for all � > �c, the highest possible path for the object hits vR at
a point too low to escape the pocket hole. Since any other path is below this highest possible
path, no contact-preserving push plans can exist. In contrast, for all � between 0 and 1, even
those greater than �c, there is always a push plan when the pusher is allowed to release the
object, as shown in Figure 4.7.

Figure 4.7: When the pusher is allowed to release the object, a push plan does exist.

Thus in order to always �nd a push plan where one exists we'll have to adapt our subroutine
to allow the pusher to let go of the object occasionally.

4.3 Canonical releasing positions

Whenever the valid positions for the pusher consist of one contiguous range it makes little
sense to release the object. To reach a di�erent pushing angle a simple contact transit will do
just as well, and this will always yield a shorter path for the pusher. Thus the object positions
at which the pusher may want to release the object are those for which there are two or more
unconnected ranges of pushing positions. In the con�guration space this corresponds with a
vertical line intersecting two or more cells of the free space. In the example of Figure 4.8,
such positions are �(s1) up to �(s2) and �(s3) up to �(s4).

At such a candidate position �(r) a release-and-recontact is possible only when a path exists
between these two pusher locations that does not intersect U(rp) ∪ (�(r)⊕D(ro + rp)). Fig-
ure 4.9(a) shows a candidate position from the above example where a release-and-recontact
is possible, and Figure 4.9(b) shows a candidate position from the same example where it is
not possible. In general it's impossible to check all candidate positions for feasibility in this
way as there are already in�nitely many candidates in this simple example. Fortunately, we
can reduce our candidate set to a �nite number of positions, as follows.

41 CHAPTER 4. PUSHING AND RELEASING

τ
2

τ
1

τ
3

0

0 1

+π

−π

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
10

s
1
s
2

s
3

s
4

(a) The work space with an ob-
ject path of three compliant sec-
tions.

(b) The vertical decomposition of the con�guration
space. Candidates for contact transit are from s1 up
to s2 and from s3 up to s4.

Figure 4.8: An example where releasing the object is necessary to �nd a push plan, and
the candidates for positions at which to do so.

(a) At this object position between �(s1)
and �(s2) the pusher can do a release-and-
recontact maneuver.

(b) But at this object position between
�(s3) and �(s4), it cannot.

Figure 4.9: Finding out whether a release-and-recontact maneuver can be performed for a
certain candidate position is a traditional translational path-�nding problem.

We de�ne the canonical releasing positions to be the set of object positions for which the
vertical slice in the con�guration space not only intersects the free space in at least two
intervals, but also goes through the leftmost or rightmost point of a cell or of a component
of some C;i. That this set of O(kn) positions su�ces is expressed by the following theorem:

Theorem 4.4. If an unrestricted push plan exists for a given input, then there is also an
unrestricted push plan where all releases happen at canonical releasing positions as described
above.

Proof. Suppose we have an unrestricted push plan with one or more releases that don't
happen at canonical releasing positions. Let �(r) be the object position at which such a
release happens, and � the path that the pusher follows from the position where it releases

42 CHAPTER 4. PUSHING AND RELEASING

the object to the position where it recontacts. Because r is not a canonical releasing position
there must be a canonical releasing position r′ with 0 ≤ r′ < r and no other canonical releasing
positions lying in between r′ and r.

Suppose the release point for � lies in cell c1 of the free space and the recontact point in cell
c2. Now imagine moving the object backwards along � from �(r) to �(r′). In doing this we
want to adjust our push plan so it remains valid, making it move a little less through cell c1,
a little more through cell c2, and adjusting path � accordingly for its new endpoints.

There are two ways in which this could fail: either the interval of valid pusher positions
in which one of the endpoints of the path resides shrinks to a point and vanishes (see Fig-
ure 4.10(a)), or the path gets cut o� between the obstacles and the object (see Figure 4.10(b)).
For the former, we have to pass the leftmost point of c1 or c2, as such an interval corresponds
to a vertical slice of these cells. For the latter, the distance between the object and some
obstacle has to shrink from being greater than ro + 2rp to being smaller. As mentioned in
the proof of Lemma 3.4, the intervals of the path section where this distance is smaller than
ro+2rp correspond to the components of C;i. Thus for this situation to occur we have to pass
the rightmost point of some component of C;i. That means that in both cases we have to
pass a canonical releasing point between r and r′, in contradiction with our assumption.

(a) The interval in which one of the end-
points of � resides vanishes.

(b) Path � gets cut o� because the object
got too close to an obstacle.

Figure 4.10: The two situations in which moving backwards along � would make us unable
to maintain a release-and-recontact path �.

This theorem leads fairly straightforwardly to a method for �nding unrestricted push plans
by testing such canonical releasing positions for feasibility, as will be described in the next
section. Note, however, that this method may not always yield a shortest unrestricted push
plan. That a release and recontact can be done anywhere in an interval between two canonical
releasing positions doesn't mean that all of these choices lead to an equally good push plan,
and the optimal choice might not be on either of the endpoints.

4.4 Finding an unrestricted push plan

To �nd an unrestricted push plan we proceed in mostly the same way as for the contact-
preserving setting, as described in Section 3.4. Once we have computed the cell graph of
the free space, however, we �rst extend it with additional edges for release-and-recontact
maneuvers before �nding a path through it.

43 CHAPTER 4. PUSHING AND RELEASING

4.4.1 Computing the canonical releasing points

In constructing the vertical decomposition of the free space we already computed the leftmost
and rightmost points of the cells and con�guration-obstacle components. Let r be the s-
coordinate of one of these O(kn) points. We can �nd the set Cr = {c1; : : : ; cm} of cells
intersected by the vertical line s = r in O(log(kn) +m) time using the search structure for
point location associated with the vertical decomposition of the free space. Whenever m > 1
we know that r is a canonical releasing point.

4.4.2 Extending the cell graph

To see between which of the m cells release-and-recontact maneuvers can actually be per-
formed, we compute UO(r) = U(rp) ∪ (�(r) ⊕ D(ro + rp)) and the vertical decomposition

of its complement UO(r). We do this by �rst computing U(rp) =
S

∈�(⊕D(rp)) (with a

deterministic algorithm by Kedem et al. [8] in O(n log2 n) time, or a randomized incremental
algorithm by Miller and Sharir [14] in O(n log n) expected time) and the vertical decomposi-
tion of U(rp) (with a simple sweep-line algorithm). After this one-time preprocessing of the

obstacles we can compute the vertical decomposition of UO(r) for any r in O(n) time.

For each cell ci ∈ Cr we then take a point pi on the intersection of ci with the line s = r and
locate to which component of UO(r) the associated pusher position belongs. This can be done
in O(log n) time using the point location search structure of UO(r)'s vertical decomposition.
Between any two pusher positions found to be in the same component there is a possible
release-and-recontact maneuver. Thus the (at most m − 1) extra edges of the cell graph for
a canonical releasing point r can be computed in O(n+m log n) time.

Because all C;i and FPRi are s-monotone (Lemmas 3.4 and 3.6) we know that m ≤ n always
holds. Thus computing the O(kn) canonical releasing points and extending the cell graph
will produce at most O(kn2) extra edges in O(kn log(kn) + kn2 log n) total time.

4.4.3 Computing the high-level path

In the cell graph extended with these extra edges we then �nd a high-level path using depth-
�rst search as before. The edges traversed in this path can now correspond both to contact
transits and to release-and-recontact maneuvers. Whenever two consecutive edges (c1; c2)
and (c2; c3) of the path are both release-and-recontact maneuvers for the same releasing point
we collapse them into a single edge (c1; c3). Hereby we prevent doing
(kn2) release-and-
recontact maneuvers where O(kn) would have su�ced.

4.4.4 Computing the connecting low-level paths

Finally, we compute the low-level paths through the cells on this high-level path to arrive at the
�nal push plan. Again we follow the cell boundaries whenever the pusher maintains contact
with the object. An O(n)-complexity low-level path for a release-and-recontact maneuver at

44 CHAPTER 4. PUSHING AND RELEASING

releasing point r can be computed in O(n) time by searching the roadmap of UO(r)'s vertical
decomposition.

Thus we can compute a O(kn2)-complexity unrestricted push path from the extended cell
graph in O(kn2) time and space.

4.5 Low obstacle density

Under the low-obstacle-density assumptions of Section 3.6, using the reduced con�guration
space de�ned there, there are only O(k) canonical releasing points which can be computed in
O(k log k) time. Each of these intersects only m = O(1) cells of the free space, so we extend
the cell graph with only O(k) extra edges in O(kn) time. A high-level path through this graph
can be found in O(k) time, for which we can �nd the connecting low-level paths in O(kn)
time. This yields an O(kn)-complexity unrestricted push plan in O((k + n) log(k + n) + kn)
time and O(kn) space in total.

Table 4.1 summarizes these results.

High obstacle density Low obstacle density

Preprocessing the obstacles n log n (∗) n log n (∗)

Computing the con�guration space kn log n (∗) (k + n) log(k + n)

Finding any path
- computing the canonical releasing points kn log(kn) + kn2 k log k
- extending the cell graph kn2 log n kn
- computing the high-level path kn2 k
- computing the connecting low-level paths kn2 kn

(∗) These entries are expected times. For the worst-case times, replace logn by log2 n.

Table 4.1: Asymptotic upper bounds for the running time of our subroutine for constructing
an unrestricted push plan amongst n obstacles given an object path of k well-behaved path
sections.

Chapter 5

Conclusion

In this thesis we have studied the manipulation path-planning problem of a disk (the pusher)
pushing another disk (the object) amongst non-intersecting line-segment obstacles in the
plane. We have introduced the notions of contact-preserving push plans and unrestricted
push plans, the former being solutions to the problem where the pusher maintains contact
with the object at all times, the latter ones where the pusher may occasionally let go of the
object. In addition, we have shown that there are cases where simple unrestricted push plans
exist even though no contact-preserving push plans exist.

We have briey discussed the prior work by Nieuwenhuisen [15] that reduces the problem
of �nding push plans to that of planning a path for the pusher only, with the path of the
object already given. Nieuwenhuisen's subroutine for solving this subproblem was discussed
in-depth, and we point out that it produces only contact-preserving push plans, as well as
having a few other shortcomings. Both issues were resolved in the new subroutine developed
in this thesis. We �rst summarize these improvements, and then list some directions for
further research.

5.1 Improvements over prior work

• Our method abstracts away from the four types of path sections handled by Nieuwen-
huisen's subroutine and captures them in a single, more general notion of well-behaved
path sections. We accomplished this while still matching the running time of Nieuwen-
huisen's subroutine, and using less space and preprocessing time (see Table 5.1).

It may seem that this generalization is a simplifying convenience only, as Nieuwen-
huisen's path sections already capture the physics of applying this method to real-world
robotics. However, consider the problem of pulling the object to a destination instead
of pushing it. Path sections for this problem are also well-behaved (except it's a su�x
instead of a pre�x of any path section where the puller can stay in the object's sweep
area), and our method can thus be used to solve the pulling problem as well.

• Nieuwenhuisen's subroutine �nds only contact-preserving push plans, whereas ours can
also �nd unrestricted push plans. In addition, Nieuwenhuisen's push plans don't op-
timize any particular criterion, whereas we can �nd shortest contact-preserving push

45

46 CHAPTER 5. CONCLUSION

plans that minimize the distance traveled by the pusher. These features do come with
an additional cost, though (see Table 5.1).

• We've assumed throughout that the pusher is smaller than the object, i.e. rp < ro, but
only used this fact as a means to provide lower time bounds for environments with low
obstacle density. Our subroutine for the high-obstacle-density case can be used with
rp ≥ ro without modi�cation. Nieuwenhuisen's subroutine could also be made to handle
this case, but not without work.

• We've assumed that our obstacles are line segments, but some forms of curved obstacles
can be handled as well. All that's really needed is that ⊕D(r) is an O(1)-complexity
shape bounded by simple curves for every obstacle . To �nd shortest contact-preserving
push plans we additionally need that these shapes are convex, and to guarantee the same
time bounds as before we need { ⊕D(r) | ∈ �} to be a collection of pseudodisks so
that U(r) again has O(n) complexity.

High obstacle density Low obstacle density
Nieuwenhuisen Our method Nieuwenhuisen Our method

Preprocessing n2 log n n log n (∗) n2 log n n log n (∗)

Any CPPP kn log n kn log n (∗) (k+n) log(k+n) (k+n) log(k+n)

A shortest CPPP | k2n2 log(kn) |
(k+n) log(k+n)+

k2 log k (∗∗)

Any UPP |
kn log(kn)+

|
(k+n) log(k+n)+

kn2 log n kn
(∗) These entries are expected times. For the worst-case times, replace logn by log2 n.
(∗∗) This yields a \quasi-optimal" solution as discussed in Section 3.6.

Table 5.1: A comparison of the asymptotic upper bounds for the running time between
Nieuwenhuisen's subroutine and ours for constructing contact-preserving push plans (CPPP)
and unrestricted push plans (UPP) for Nieuwenhuisen's path sections.

5.2 Further research

• Although non-line-segment obstacles can be handled fairly easily, having the pusher
and/or object be some shape other than a disk is not as simple. A pushing motion
may rotate the object and/or pusher, so we'll have to keep track of their orientations
as well as their positions. Lynch and Mason [11] discuss conditions under which their
relative orientation remains �xed, making the problem somewhat more tractable, but
our method based on a 2-dimensional con�guration space will still not su�ce.

• We have not attempted to solve the problem of �nding shortest unrestricted push plans.
It may be that a di�erent �nite set of canonical releasing points can be de�ned, for which
it can be proven that a shortest unrestricted push plan always exists that only does
releases at these points. If this is the case, it may be possible to adapt our method for
�nding shortest contact-preserving push plans to �nd shortest unrestricted push plans.

47 CHAPTER 5. CONCLUSION

• We have studied the subproblem where the path followed by the object is already
given, mentioning that a subroutine for this can be used in Nieuwenhuisen's algorithm
based on Rapidly-exploring Random Trees [10] to solve the global problem where only
an initial and destination position are given. This algorithm is only probabilistically
complete, however, and it depends on the fact that the pusher is smaller than the
object. Nieuwenhuisen [18] mentions that it might be possible to adapt it into an exact,
complete algorithm by a kind of visibility graph approach.

An alternative may be to study the 3-dimensional con�guration space induced by allow-
ing one disk to move freely while the other is constrained to maintain contact with it.
De�ning 3-dimensional con�guration-space obstacles for this space is fairly simple, but
there is no straightforward analogue to our forbidden push ranges. It may be possible
to use some form of constrained path �nding instead, but we have not explored this
possibility.

• The worst-case running times we derived assume we can encounter pathological cases
in our input environments. We discussed how more realistic inputs having low obstacle
density lower the complexity of the con�guration space. There may be additional (but
still realistic) assumptions one can make to lower the complexity of the tangent visibility
graph used to �nd shortest contact-preserving push plans, or the complexity of the
paths for release-and-recontact maneuvers. Also, perhaps one can use such additional
assumptions to guarantee a lower complexity for our unreduced con�guration space, so
that we can e�ciently �nd shortest (instead of just \quasi-shortest") contact-preserving
push plans.

• If the work-space cells would be bounded by line segments instead of convex simple
curves, then they would form a simple polygon and hence would allow the computation
of a shortest path tree in linear time [7]. Perhaps such an approach could be adapted
to work with the \simple curved polygon" formed by our work-space cells, yielding a
much faster method of computing shortest contact-preserving push plans.

Bibliography

[1] P.K. Agarwal, J. Latombe, R. Motwani, and P. Raghavan. Nonholonomic path planning
for pushing a disk among obstacles. In Proceedings of the 1997 IEEE International
Conference on Robotics and Automation, volume 4, pages 3124{3129, 1997.

[2] H. Arai and O. Khatib. Experiments with dynamic skills. In Proceedings of the 1994
Japan-USA Symposium on Flexible Automation, pages 81{84, 1994.

[3] I.L. Balaban. An optimal algorithm for �nding segment intersections. In Proceedings of
the 11th Annual ACM Symposium on Computational Geometry, pages 211{219, 1995.

[4] M. de Berg, M.J. Katz, A.F. van der Stappen, and J. Vleugels. Realistic input mod-
els for geometric algorithms. In Proceedings of the 13th Annual ACM Symposium on
Computational Geometry, pages 294{303, 1997.

[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Cheong. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[6] K.Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10(2{4):210{
225, 1993.

[7] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms
for visibility and shortest path problems inside simple polygons. In Proceedings of the
2nd Annual ACM Symposium on Computational Geometry, pages 1{13, 1986.

[8] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete & Computational
Geometry, 1:59{70, 1986.

[9] V. Koltun. Segment intersection searching problems in general settings. In Proceedings
of the 17th Annual ACM Symposium on Computational Geometry, pages 197{206, 2001.

[10] S.M. LaValle and J.J. Ku�ner. Rapidly-exploring random trees. In B.R. Donald, K. M.
Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions,
pages 293{308, 2001.

[11] K.M. Lynch and M.T. Mason. Stable pushing: Mechanics, controllability, and planning.
International Journal of Robotics Research, 15(6):533{556, 1996.

[12] M.T. Mason. Mechanics of Robotic Manipulation. Intelligent Robots and Autonomous
Agents. MIT Press, 2001.

48

49 BIBLIOGRAPHY

[13] M.T. Mason and K. Lynch. Dynamic manipulation. In Proceedings of the 1993 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 152{159, 1993.

[14] N. Miller and M. Sharir. E�cient randomized algorithm for constructing the union of
fat triangles and of pseudodiscs. Unpublished manuscript, 1991.

[15] D. Nieuwenhuisen. Path Planning in Changeable Environments. PhD thesis, Universiteit
Utrecht, The Netherlands, 2007.

[16] D. Nieuwenhuisen, A.F. van der Stappen, and M.H. Overmars. Path planning for pushing
a disk using compliance. In Proceedings of the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4061{4067, 2005.

[17] D. Nieuwenhuisen, A.F. van der Stappen, and M.H. Overmars. Pushing using compliance.
In Proceedings of the IEEE International Conference on Robotics and Automation, pages
2010{2016, 2006.

[18] D. Nieuwenhuisen, A.F. van der Stappen, and M.H. Overmars. Pushing a disk using
compliance. IEEE Transactions on Robotics, 23(3):431{442, 2007.

[19] M.A. Peshkin and A.C. Sanderson. Minimization of energy in quasi-static manipulation.
IEEE Transactions on Robotics and Automation, 5(1):53{60, 1989.

[20] M. Pocchiola and G. Vegter. Computing the visibility graph via pseudo-triangulations.
In Proceedings of the 12th Annual ACM Symposium on Computational Geometry, pages
248{257, 1995.

	Titlepage
	Table of contents
	Introduction
	Problem statement
	Global approach
	The studied subproblem
	Related work
	New contributions

	Preliminaries
	Friction and compliance
	Object motions for a straight-line push
	Pseudodisks and Minkowski sums
	Nieuwenhuisen's subroutine
	Four cases
	Straight-line compliant sections
	Circular compliant sections
	Straight-line non-compliant sections
	Contact transits
	Ray shooting queries
	Circular arc queries
	Low obstacle density

	Pushing while maintaining contact
	Well-behaved path sections
	Shape of the configuration space
	Path sections in the configuration space
	A configuration-space obstacle
	Union of all configuration-space obstacles
	A forbidden push range
	The full forbidden space

	Computing the configuration space
	Representing configuration-space curves
	Computing a configuration-space obstacle
	Computing the forbidden push range
	Computing the forbidden space union
	Computing the vertical decomposition of the free space

	Finding a contact-preserving push plan
	Finding a shortest contact-preserving push plan
	Low obstacle density

	Pushing and releasing
	Releasing can be beneficial
	Releasing can be necessary
	Canonical releasing positions
	Finding an unrestricted push plan
	Computing the canonical releasing points
	Extending the cell graph
	Computing the high-level path
	Computing the connecting low-level paths

	Low obstacle density

	Conclusion
	Improvements over prior work
	Further research

	Bibliography

