
 Eindhoven University of Technology

MASTER

Service composition of open-box web services

Chen, X.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1b6a3c71-85d0-47f7-a0f1-94b3060d493f

Service Composition of Open-Box

Web Services

by

Chen, XingTong

Eindhoven, April 2008

 BSc: Material Management 1992

Student identity number 0602525

in partial fulfilment of the requirements for the degree of

Master of Science

in Operations Management and Logistics

Supervisors:

dr.ir. H. Eshuis, TU/e, IS

dr. A.J.M.M. Weijters, TU/e, IS

TU/e Department Technology Management.

ARW 2008 OM & L

Subject headings: Process and service composition, Web services, inter-organizational business process

management, formal models in business process management, business process outsourcing.

 - 3 -

ABSTRACT

Nowadays, organizations organize their production activities around supply chains to attain competitive

competencies. In fast changing markets, collaboration partnerships are established on-the-fly in an adaptive,

fine-grained way. In the ICT domain, the establishments of this kind of partnerships mean that services

offered by providers are connected to services of consumers; in this way, services are composed. Recent

research studies of web service composition have begun to examine approaches to compose open-box web

services. This paper discusses a Business Process Web Service (BP-WS, in short) based approach to

compose open-box web services. A BP-WS is a web service which has an (internal) business process

specification that can be accessed externally. We suggest two procedures: a semi-automatic procedure for

composing a set of open-box services, with data flow dependencies, into a structured composite service; and

an automatic procedure for synchronizing a composite service with local services using message exchanges.

In both these procedures, the open-box services are represented as structured business processes. We also

propose dedicated BP-WS architectures for the global process side respectively the local process side to

support our synchronization procedure in the bilateral scenario. Finally, we use two case studies: one from

the healthcare domain, and one from the car insurance domain to validate our approach.

 - 4 -

MANAGEMENT SUMMARY

To attain competitive competencies, organizations now organize their production activities around

supply chains. In fast changing markets, collaboration partnerships are established on-the-fly in an adaptive,

fine-grained way. In the ICT domain, the establishment of this kind of partnerships means that services

offered by service providers are connected and integrated to service consumers, thus services are composed.

For the reason of wide industry supports and their model of loose coupling, web services have been seen as

a promising solution towards integrating services offered by diverse, heterogeneous and autonomous

organizations.

Recent research studies of web service composition have begun to examine approaches to

compose open-box web services. The aim of this paper is to solve the problem how to compose services

in the open-box model. In this paper, a service is referred to as a set of functionalities to fulfill some

business goals, and is represented as a structured business process. To enact services, three basic roles are

needed: (i) service provider. (ii) service consumer. (iii) service directory. The open-box model is a service

model, in which “there can be arbitrary control flow relations between consumers and providers. The

execution progresses of both parties depend on one another.” (Grefen et al., 2006a). We propose a Business

Process Web Service (BP-WS, in short) based approach to compose open-box services. A BP-WS is a web

service that “has an internal business process specification that can be accessed externally through a number

of dedicated web service interfaces (ports).” (Grefen et al., 2006a).

In this paper, the composition procedure has as inputs the services presented as structured business

processes; and these services have already been selected for composition in accordance with some

sophisticated rules. A structured business process is a business process where each “or–split” has a

corresponding “or–join” and each “and–split” has a corresponding “and–join” (Kiepuszewski et al., 2000.)

We show that services expressed as structured business processes can be composed together, generating a

new structured composite service.

We propose a semi-automatic procedure for service composition, applicable in both the bilateral and

the multilateral scenario. In the bilateral situation, one service provider provides services to one service

consumer; in the multilateral situation, several service providers provide services to one service consumer

(Norta, 2007). We also propose an automatic synchronization procedure between the global process of the

composite service and the local processes in the bilateral scenario. The local process refers to either the

service provider side or the service consumer side. Both the procedures exclusively focus on control flow

aspects. We also describe what architecture can support our synchronization procedure in the bilateral

scenario.

In Chapter 1, we first survey the problem area — service composition — on which this paper focuses.

In this paper, we follow the business process outsourcing paradigm in the bilateral context. In the context of

business process outsourcing, service composition implies that the business process from the service

provider is embedded into that from the service consumer. In the multilateral situation, we assume the inter-

operability among services is loosely coupled. Loosely coupled inter-operability implies that the participants

of the collaborations are organized in a peer-to-peer topology. Next, we substantiate the relevance of service

composition.

 - 5 -

In Chapter 2, we lay the foundation of this paper by explaining and discussing the main concepts and

models used in this paper. We start with Business Process Web Service (abbreviated to BP-WS) and the

open-box model which are the underlying foundations for our approach. Next, we introduce workflow

management technology. The combination of service-oriented computing (SOC, in short) and workflow

management (WFM) technology has been proposed as a promising approach to compose open-box services.

Our focus is on structured workflow models. We also briefly review work (Eshuis et al., 2006) in this

chapter, as our work is an extension of work (Eshuis et al., 2006).

In Chapter 3, we formally introduce a semi-automatic procedure to compose the open-box services.

We reuse the approach proposed by Eshuis et al. (2006). Our semi-automatic procedure is also based on

dependency graphs; and the algorithm proposed by Eshuis et al. (2006) is reused to construct the structured

composite services. In the composition procedure, the most abstract composite blocks which are involved in

the inter-organizational dependencies are treated as groups; because the inter-organizational dependencies

put direct/indirect influences on all the sequential blocks within the most abstract composite block.

The semi-automatic procedure consists of four steps. Firstly, the most abstract composite blocks

which are involved in the inter-organizational dependencies, both from the service consumer and the service

providers, are replaced by dummy activities —aggregates; and a dependency graph which contains

aggregates is constructed. Secondly, we use the algorithm introduced by Eshuis et al. (2006) to construct a

structured global process which contains aggregates. The third step is un-aggregate, i.e. the original

composite blocks are restored in the global process. The last step is manually typing the branching types

with AND or XOR control flow constructs in the global process.

To successfully use the algorithm proposed by Eshuis et al. (2006), dependency graphs must satisfy

two constraints. In the above composition procedure, the dependency graph which contains aggregates must

also satisfy two constraints:

Constraint 1: The dependency graph is acyclic.

Constraint 2: If there is an edge from activity1 (aggregate 1) to activity2 (aggregate 2), then there is

no path with length greater than 1 from activity1 (aggregate 1) to activity2 (aggregate 2).

The relaxation of the first constraint is planned as future work; the violation of the second constraint

can be easily repaired.

The above presented composition procedure is applicable in both the bilateral scenario and the multi-

lateral scenario.

In Chapter 4, we propose an automatic synchronization procedure between the global process and the

local processes in the bilateral scenario. The key part of this automatic procedure is constructing the list of

control activities (LCA). A control activity is an activity at the local process side the start of which the

global process needs to control. The LCAs are constructed by a component “Construct LCA” at the global

side. The component “Monitor & Control” controls when the activities on the LCA can start by means of

message exchanges from global process to the local processes. Note, there are two LCAs in the bilateral

scenario at the global side. LCA(P) is for the provider side; LCA(C) is for the consumer side. When

constructing the LCA, we still have to treat some composite blocks as groups, just as in the composition

procedure. The execution of the local side is automatic; the execution of the activities not on the LCAs is

controlled by the local side. The global process needs to know the start and the completion of every activity

at the local sides.

 - 6 -

Our synchronization approach relies on the dedicated architectures. We developed new dedicated

architectures for the global process respectively for the local processes to fully support our approach. This

part of work is inspired by Grefen et al. (2006a and 2007). For the global side, component “Monitor &

Control” and component “Construct LCA” were introduced. The LCA is stored in the document LCA(P) or

LCA(C). The interface “CTRL(G)” is used to facilitate the synchronization from the local side to the global

side. A user uses interface “MON UI” to monitor and control global process during the enactment time. For

the local side, the architecture is basically the same with that proposed by Grefen et al. (2006a).

Figure 1: BP-WS/O architecture dedicated to the global process

In Chapter 5, the complete approach for composing services in the open-box model is put to the test

by means of case studies. In the bilateral scenario, a case from the healthcare domain is used; in the

multilateral scenario, a case from the car insurance domain is used.

In Chapter 6, a conclusion is drawn. We first summarize our work in this paper. Next, we present our

reflections on the three research questions. We did not fully meet our aims. In terms of the composition

procedure, our work is only applicable to structured process models; and the process models should contain

no loops. With respect to the synchronization procedure, our work is only applicable if the processes do not

contain any loops; and only applicable in the bilateral scenario. At last, we suggest some future works; for

instance, how to extend some of our results for the multi-lateral scenario.

 - 7 -

CONTENT

Abstract ...3

Management summary ..4

Chapter 1 ...11

1.1 Service Composition..11

1.1.1 Services and Service Composition ..12

1.1.2 Business Process Outsourcing Paradigm...12

1.2 Relevance of Service Composition..12

1.3 Goal and Structure of This Paper...13

Chapter 2 ...14

2.1 BP-WS and Open-box Model ..14

2.1.1 BP-WS ...14

2.1.2 Black-box Model and Open-box Model ..14

2.1.2.1 Black-box Model ..14

2.1.2.2 Open-box Model...15

2.1.3 The Characteristics of the Composite Services in the Open-box Model15

2.2 Definition of Structured Process..16

2.3 Overview of Black-box Service Composition ...16

2.3.1 General Overview of Work (Eshuis et al., 2006)...16

2.3.2 Blocks and Dependency Graphs ..17

2.3.3 Definition of a LSPM (Language of Structured Process Models) ...18

2.3.4 Algorithm to construct structured composite service ..19

Chapter 3 ...21

3.1 Motivation for a New Approach..21

3.2 Construct Dependency Graphs Which Fulfill the Requirements of the Algorithm in

Work (Eshuis et al., 2006) ...24

3.2.1 The Most Abstract COMP Block...24

3.2.2 Construct a New Dependency Graph Containing aggregates..25

 - 8 -

3.2.3 Constraints and Resolutions...27

3.2.3.1 Violation of Constraint 1 ..28

3.2.3.2 Violation of Constraint 2 ..30

3.3 Compose Services in the Open-box Model into a Structured Composite Service.....................33

3.3.1 Example Scenario ..33

3.3.2 Composition Procedure..35

3.4 Generalization to Multiple Participants ...37

3.4.1 Negative Answer to a Stepwise Approach...37

3.4.2 Generalization of the Composition procedure to Multilateral Scenario39

Chapter 4 ...40

4.1 Architecture Supporting Our Approach...40

4.2 Construct the List of Control Activities (LCA) ...42

4.3 Implementation of Control Flow Dependency ..43

4.3.1 Control Flow from the Global process to the Local process..43

4.3.2 Control Flow from Local Service to Composite Service...45

4.4 Architecture Supporting Synchronization in the Multilateral Scenario.....................................46

Chapter 5 ...47

Chapter 6 ...53

Bibliography ...55

Appendix A: Three-level process framework ...57

Appendix B: DGA ..59

 - 9 -

LIST OF FIGURE

Figure 2.1: Open-box model.. 15
Figure 2.2: Example concrete dependency graph (taken from (Eshuis et al., 2006)) 17
Figure 2.3: Tree model for service A .. 19
Figure 2.4: Example process for service A ... 19
Figure 2.5: Algorithm for constructing structured compositions (taken from (Eshuis et al., 2006)) 20
Figure 2.6: Structured composite service for Figure 2.2 (taken from (Eshuis et al., 2006)) 20
Figure 3.1: Example CDG for service A... 21
Figure 3.2: Example Process for service A... 22
Figure 3.3: Example CDG for service B ... 22
Figure 3.4: Example Process for service B ... 22
Figure 3.5: The CDG between service A and service B... 22
Figure 3.6: Example composite service of service A and B — simply putting two

structured services in parallel .. 23
Figure 3.7: Composite service for A and B — treating each individual activity as a black-box 23
Figure 3.8: One possible desired composite service for A and B... 24
Figure 3.9: A segment of a structured process .. 25
Figure 3.10: Example for constructing the DGA.. 27
Figure 3.11: Acyclic CDG—case 1... 28
Figure 3.12: Cyclic DGA—case 1... 28
Figure 3.13: Solution of violation of constraint 1— COMP block of type AND (case 1) 29
Figure 3.14: Solution of violation of constraint 1— COMP block of type XOR (case 1) 29
Figure 3.15: Internal structure of aggregate OA5 .. 29
Figure 3.16: Acyclic CDG—case 2... 30
Figure 3.17: Cyclic DGA—case 2... 30
Figure 3.18: Example CDG: violation of constraint 2 — case 1.. 31
Figure 3.19: Example DGA: violation of constraint 2 — case 1.. 31
Figure 3.20: Solution of violation of constraint 2— COMP of type AND (case 1) 31
Figure 3.21: Solution of violation of constraint 2 — COMP of type XOR (case1) 32
Figure 3.22: Example DGA: violation of constraint 2— case 1... 32
Figure 3.23: Example CDG: violation of constraint 2— case 2... 32
Figure 3.24: Example DGA: violation of constraint 2— case 2... 32
Figure 3.25: Solution of violation of constraint 2 — COMP of type XOR (case 2) 33
Figure 3.26: The CDG for the business process at the library.. 33
Figure 3.27: Business process at the library.. 33
Figure 3.28: The CDG for the business process at the book trader.. 34
Figure 3.29: Business process at Book Trader.. 34
Figure 3.30: The CDG between library and book trader ... 35
Figure 3.31: The DGA complying with inputs from running example... 35
Figure 3.32: Structured composite service with aggregates .. 36
Figure 3.33: The un-aggregated structured composite service complying with inputs

from the running example... 36
Figure 3.34: Structured composition complying with inputs from the running example 37
Figure 3.35: Business process for service A, B and C... 38
Figure 3.36: The CDG for service A, B and C... 38
Figure 3.37: The desired composite service for service A, B and C .. 38
Figure 3.38: Composite service for service A and B ... 38

 - 10 -

Figure 3.39: Composite service for service A, B and C (Stepwise approach).................................. 39
Figure 4.1: BP-WS/O architecture dedicated to the local process.. 41
Figure 4.2: BP-WS/O architecture dedicated to the global process ... 41
Figure 4.3: Sequence diagram from the global process to the local process...................................... 44
Figure 4.4: A process segment with a loop .. 45
Figure 4.5: Sequence diagram from the local process to the global process...................................... 46
Figure 5.1: Business process at the hospital side .. 48
Figure 5.2: Business process at the consulting company.. 48
Figure 5.3: The DGA between hospital and consulting company.. 49
Figure 5.4: The composite service complying with Figure 5.3 .. 49
Figure A.1: Three-level process schema ... 57
Figure B.1: Example DGA .. 59

 - 11 -

C h a p t e r 1

INTRODUCTION

ICT technologies, especially the Internet, have changed the way how business organizations operate

in the modern world. IT and software applications play an important role in attaining (or retaining) the

organizations’ competencies. One challenge facing the ICT community is how to support the formation and

the enactment of intensive inter-organizational collaborations among autonomous, heterogeneous business

organizations in a time and cost efficient way.

Services Oriented Computing (SOC) is proposed as the most promising technology to support this

kind of inter-organizational collaborations (Grefen, 2006). Web services provide a uniform framework for

distributed application developments and resources sharing and are now seen as the primary solution

towards composing inter-organizational business functionalities across the web (Manes, 2003). The concept

of Business Process Web Service (BP-WS, in short) is an extension to the basic web service paradigm. A

BP-WS has an (internal) business process specification that can be accessed externally by means of a

number of dedicated web service ports (Grefen et al., 2006a).

The current state of the art of research works in service composition mainly focus on composing

business functions and not so much on integrating business processes in the open-box model as explained

later on. Business functions are treated as black-box services, so atomic functionalities towards their

invokers; business processes, however, have multiple functions (activities) (Grefen, 2006). To facilitate

close collaboration, organizations are not satisfied with composition requirements which only address

business functions. They want or need to monitor and control the progress of the instances of the services

(Grefen, 2006; Grefen et al., 2006a). The main issues that this paper addresses are: “How can services

expressed as explicitly visible business processes be composed together? ”. “How can the composite service

be synchronized with the local services?” and “What run-time architectures can support our approach?”

In this introduction, we first survey the problem area — service composition — on which this paper

focuses. Then, we substantiate the relevance of service composition. At the end of this chapter, we explain

the goal and structure of this paper.

1.1 Service Composition

Service composition is vital to support fruitful inter-organizational collaborations in the dynamic,

specifically e-business contexts (Grefen, 2006). Constructing composite web services from simple and/or

composite services is an interesting and challenging research problem.

 - 12 -

1.1.1 Services and Service Composition

In the ICT domain, several works published in the literature are related to service composition.

However, an agreed upon definition of service is still lacking (Berardi et al., 2005). In this paper, a service is

referred to as a set of functionalities to fulfill some business goals, and is represented as a structured

business process. To enact services, three basic roles are needed: (i) service provider, who provides services.

(ii) service consumer, who is the client looking for services to fulfill its goals. (iii) service directory, which

plays the role of providing a repository/registry of service descriptions. The combination of the service

providers and the service consumers can be seen by a third party (for instance, a customer) as a single entity.

Note that a service provider itself can also use other service providers in the implementation of its services.

Services are usually classified into two categories: elementary service and composite service. An

elementary service is a service which provides access to applications that do not rely on other services to

fulfill external requests (Grefen, 2006). A composite service defines inter-relationships among participating

services. A composite service can be seen as an umbrella structure, which brings together other elementary

and/or composite services that collaborate to implement a set of functions to achieve some business goals

(Grefen, 2006). Service composition refers to a procedure that reaches from the selection of potential

services to the definition of the final composite service.

1.1.2 Business Process Outsourcing Paradigm

Service composition implies inter-operability across organizational boundaries. In the BP-WS

context, it implies inter-operability across workflows (business processes) from diverse organizations.

In this paper, we follow the business process outsourcing paradigm in the bilateral scenario; the inter-

operability is loosely coupled in the multi-lateral scenario. In the bilateral situation, one service provider

provides services to one service consumer (Norta, 2007). In the business process outsourcing paradigm, one

part of the service consumer’s process is outsourced (Grefen et al., 2006a; Khalaf and Leymann, 2006).

However, the outsourced part of the business process is not seen as an atomic task in the consumer’s

process. In the contexts of business process outsourcing, service composition implies that the business

process from the service provider is embedded into that from the service consumer (Grefen et al., 2006a). In

the multilateral situation, several service providers provide services to one service consumer (Norta, 2007);

the inter-operability is loosely coupled. Loosely coupled inter-operability implies that the participants of the

collaborations are organized in a peer-to-peer topology; the business organizations collaborate at the same

level, but are not organized hierarchically (Grefen et al., 2007). The loosely coupled inter-operability also

implies that the definitions of the internal processes of the service providers are local. This form of

collaboration means that each part of the collaboration operates independently, and synchronizes with the

other parts at certain points (Aalst and Weske, 2001).

1.2 Relevance of Service Composition

Nowadays, product life cycles are shorter than ever before. This trend means that time used on the

developments of new physical products (products, in short) and/or non-physical services (services, in short)

are shorter than ever before. We can also observe that the complexities of products and services are

increasing, e.g., more and more functionalities are integrated into new products and/or services (Grefen et

al., 2007).

 - 13 -

Organizations must now be competitive, efficient and flexible to utilize their resources. Business

organizations are now focusing on their core business processes—on which they are best (have competitive

competencies). They are now relying on other organizations to deliver “non-core” products and/or services

to retain (or build) competitive advantages (Grefen et al., 2007). Thus, production activities are organized

around supply chains.

The benefits for the participating organizations of supply chains are obvious. The main benefits can

be observed from improved performances in delivering on time, and from a better responsiveness to

customers’ urgent and un-expected requests (Business link, 2007). However, organizing production

activities around supply chains relies heavily on inter-organizational collaborations.

The agile business environments make the problem of the collaborations in supply chains very

complex. The collaboration relationships must now be able to change in accordance with a specific service

requested by the customers. And the formation of collaboration relationships is desired to be done on the fly.

In ICT domain, inter-organizational collaboration means that service functionalities offered by diverse,

autonomous and heterogeneous organizations are connected and integrated over the Internet, thus services

are composed. To enable time and cost efficient service composition, automatic or semi-automatic

electronic means are required for selecting, executing and monitoring services.

1.3 Goal and Structure of This Paper

In this paper, we focus on how to compose open-box services. We analyze the problem of service

composition in the context of the BP-WS enabling technologies/specifications. We suggest two

procedures. Firstly, we propose a semi-automatic procedure for composing a set of services with data

flow dependencies into a structured composite service. This approach is an extension of work (Eshuis et

al., 2006). Secondly, we propose an automatic procedure for synchronizing the composite service with the

local services using message exchanges. We exclusively focus on asynchronous communication in this

paper. This decision is based on an intention to build loosely coupled services; synchronous

communication implies a tight coupling (Muth et al., 1998). In these two procedures, the services are

modeled as structured business processes, and both the procedures exclusively focus on control flow

aspects. We also discuss how our approach can be architecturally supported.

The structure of this paper is as follows. In Chapter 2, we discuss the concepts and models which are

used in the sequel of this paper. In Chapter 3, we extend the approach proposed by Eshuis et al. (2006) to

support the open-box model in service composition. In Chapter 4, the approach for synchronizing the

composite service with the local services is introduced. We also discuss the architecture supporting our

approach in this chapter. In Chapter 5, we put the developed procedures to the test by applying it to a case

study from the healthcare domain for the bilateral context, and a case study from the car insurance domain

for the multilateral context. We conclude the paper in Chapter 6, which presents the main observations from

the work described. We also suggest future research directions in this last chapter.

 - 14 -

C h a p t e r 2

PRELIMINARIES

In this chapter, we lay the foundation of this paper by explaining the main concepts and models used

in the sequel. In section 2.1, we discuss BP-WS and the Open-box model thoroughly. Next, we introduce

workflow technology. Since our approach is an extension of work (Eshuis et al., 2006), we also briefly

review work (Eshuis et al., 2006) in this chapter.

2.1 BP-WS and Open-box Model

In this section, we first discuss BP-WS. Next, we introduce the open-box model. In the last sub-

section, we discuss the characteristics of the composite service in the open-box model.

2.1.1 BP-WS

BP-WS is an extension of the basic web service. A BP-WS is a web service that “has an internal

business process specification that can be accessed externally through a number of dedicated web service

interfaces (ports)” (Grefen et al., 2006a). A web service now has an internal process structure which is a

reflection of the business process offered by the service provider. The state of the execution of the internal

process can also be observed; and external parties can also control the execution of the internal process

(Grefen et al., 2006a).

2.1.2 Black-box Model and Open-box Model

In addition to the process specifications, another factor that influences the interactions among the

collaborating organizations is control flow interface. Four control flow interface classes are proposed by

Grefen et al. (2006a). They are black-box, glass-box, half-open-box and open-box. This paper exclusively

focuses on the open-box class. However, we next start with a brief introduction to the black-box class model

to facilitate understanding.

2.1.2.1 Black-box Model

 - 15 -

Following a black-box class model (black-box, in short), the behaviors of one organization are treated

as a set of inputs and outputs. All details of the internal operations within the organizations are encapsulated

(Grefen et al., 2006a).

2.1.2.2 Open-box Model

The open-box class model (open-box, in short) is defined as a service model, in which “there can be

arbitrary control flow relations between consumers and providers. The execution progresses of both parties

depend on one another.” (Grefen et al., 2006a).The open-box model specifies the detailed behaviors within

one organization as a process. And more importantly, this process specification is externally visible. All

these visible activities form up the external level process of the organization. (For more information

concerning the external level and the internal level process views, we refer to Appendix A.)

A diagram illustrating the open-box model is presented in Figure 2.1. As shown in Figure 2.1, the

service provider exposes activities “A”, “B”, “C” and “D”. These activities are collectively offered as a

service. The service consumer exposes activities “X”, “Y”, “Z”. The arcs represent the control

dependencies. For example, the arc that goes from activity “X” to activity “A” represents that activity “A”

depends on activity “X”. As shown in Figure 2.1, there is an explicit control flow between intermediate

steps of the local process both from service provider to consumer and vice versa.

Figure 2.1: Open-box model

2.1.3 The Characteristics of the Composite Services in the Open-box Model

A composite service in the open-box model has following characteristics (Preuner and Schrefl, 2005):

• The overview of a composite service is a complex process, which restricts the potential

sequences of activity invocations.

• The exposed functionalities (activities) of a service can be observable or invocable; or they

do not need to be exposed.

• Interrelationships between services can be identified at the level of individual activity.

An observable activity is an activity “which is executed by the service provider and whose execution

can be observed by the requester” (Preuner and Schrefl, 2005). An invocable activity is an activity “whose

 - 16 -

invocation is at the requester’s responsibility, whereas the service provider executes this activity but does

not invoke them himself” (Preuner and Schrefl, 2005). An activity from a service is considered invocable if

and only if its execution is constrained by the inter-relationships with the other services (Preuner and

Schrefl, 2005).

2.2 Definition of Structured Process

The combination of SOC and workflow management (WFM) technology has been proposed as a

promising approach to compose open-box services. “In this combination, SOC provides for dynamic inter-

organizational interoperability and WFM technology provides for core business process management.”

(Grefen, 2006).

The inputs for our approach to compose open-box services are services represented as structured

business processes (structured processes, in short). A structured process is “a process where each or-split has

a corresponding or-join and each and-split has a corresponding and-join (Kiepuszewski et al, 2000)”.

Structured processes are the most restrictive type of processes (Kiepuszewski et al., 2000). The reason

why we chose structured processes as our inputs is three-fold. Firstly, most of the process enactment tools

support structured process models, even though the un-structured process models are more expressive

(Kiepuszewski et al., 2000; Aalst et al., 2003). Secondly, the verification and the implementation of

structured processes are easier. Thirdly, two big flaws possible in unstructured processes — deadlock and

multiple instances of the same activity active at the same time — can not appear (Eshuis et al., 2006).

2.3 Overview of Black-box Service Composition

Eshuis et al. (2006) proposed an approach to compose black-box services. Our work builds upon

work (Eshuis et al., 2006), of which we now provide an overview.

2.3.1 General Overview of Work (Eshuis et al., 2006)

Eshuis et al. (2006) have developed a semi-automatic approach to compose black-box services. The

inputs are a set of black-box services with dataflow dependency. The output is the composite service

expressed as a structured business process. The approach consists of three steps. First step is the deriving of

the dependency graphs. Two kinds of dependency graphs are derived: abstract dependency graph and

concrete dependency graph. Concrete one specifies types for branching points. The second step is

constructing the structured composite service which takes the abstract dependency graph as input. In the last

step, the concrete dependency graph is used to type the structured process model.

The advantage of the approach proposed by Eshuis et al. (2006) is three-fold. Firstly, the semi-

automatic approach proposed by Eshuis et al. (2006) itself requires manual inputs, however, a large part of it

is fully automated. Secondly, the user inputs required on annotating the dependency graphs are much less

than annotating services with formal pre- and post-conditions, which is required by most other comparable

service composition approaches. Thirdly, the structured composite service, which makes use of only basic

process patterns, can be encoded straightforwardly into any process languages (Eshuis et al., 2006). These

advantages are also the reasons why this paper is based on work (Eshuis et al., 2006).

 - 17 -

2.3.2 Blocks and Dependency Graphs

Eshuis et al. (2006) choose a hierarchical view of the formalization of the structured process models.

In a hierarchical view, leaf nodes are individual activities and non-leaf nodes are blocks. Two kinds of

blocks are considered: composite blocks of type COMP and sequential blocks of type SEQ. A COMP block

can be of type AND or XOR. A COMP block has a set of children, whereas a SEQ block has a list of

children. For example, COMP {SEQ [X, Y], SEQ [Z]} is a block in which activity X is done before activity

Y, and both are executed in parallel with or exclusive to activity Z. In the graphical syntax, there is a split

and a join node at the beginning and the end of each block (Eshuis et al., 2006).

Eshuis et al. (2006) derive graph-based compositions by analyzing input/output dependencies

between black-box services. In graph-based compositions, services are coordinated by means of control

flow constructs, such as AND-splits, AND-joins, XOR-splits and XOR joins (Eshuis et al., 2006). If treating

each atomic activity as a black-box service, we can define Concrete Dependency Graphs among activities

(CDG). The CDGs are used as inputs in our approach as explained later on. If activity a outputs a data item

with a certain type and activity b needs as input a data item with the same type, then b depends on a. The

dependencies between a set of individual activities are captured in a graph. To keep consistency with work

(Eshuis et al., 2006), we reuse the notation from work (Eshuis et al., 2006) in this paper.

The CDG is a tuple (A, E, join, fork) with

— A = {a1, a2, … , an} a set of activities.

— E A A⊆ × a set of dependencies.

and functions join and fork label respectively the incoming and outgoing dependencies of an activity

with the branching type:

 join, fork: A { , }AND XOR→

One example concrete dependency graph is shown in Figure 2.2.

Figure 2.2: Example concrete dependency graph (taken from (Eshuis et al., 2006))

In Figure 2.2, the activities are modeled as rectangles. The arrows represent the dependency

relationships. For example, activity “Make Production Plan” depends on activity “Receive Order”, then the

arrow goes from “Receive Order” to “Make Production Plan”. The incoming and outgoing dependencies of

 - 18 -

a service are typed with AND or XOR. Only one type, either AND or XOR, can be assigned to incoming

resp. outgoing dependencies.

2.3.3 Definition of a LSPM (Language of Structured Process Models)

We next give a formal definition of a LSPM (Language of Structured Process Models)

below, where A ≠ ∅ is a set of activities:

1. if x∈ A, then x ∈ LSPM.

2. if x1, …, xn (n≥1) and xi ∈ LSPM (if i > 0 and i ≤ n), then SEQ [x1, …, xn] ∈LSPM.

3. if x1, …, xm (m≥2) and xi ∈ LSPM (if i > 0 and i ≤ m), then COMP [x1, …, xm] ∈LSPM.

4. nothing more.

Note, in the above definition a COMP block can be of type AND or XOR. We have one

function type: COMP → {AND,XOR} which is used to assign the exact type to each COMP block (Eshuis

et al., 2006).

To facilitate understanding, we can transfer structured process models expressed in LSPM into

graphical process models, and the other way round. To illustrate this, consider one artificial service, service

A. This service is represented as a structured business process. Service A can be expressed as SEQ[SEQ[

A1, A2, A3], COMP {SEQ[A4], SEQ[A5]}, SEQ[A6]]. We next transfer this structured process model into

a graphical model. First, all elements in a SEQ block form up a sequential chain. This means that the

SEQ[A1, A2, A3] is executed first, next COMP{SEQ[A4], SEQ[A5]}, the last SEQ[A6]. Within one

COMP block the SEQ blocks are executed in parallel with or exclusive to the other. In our case, SEQ[A4]

and SEQ[A5] are done in parallel. In other words, this COMP block is typed with AND. We show a tree

model for service A in Figure 2.3. The equivalent graphical process model for this service is specified in

Figure 2.4. In Figure 2.4, the activities are modeled as rectangles. Circles indicate splits (more than one

outgoing edge) or joins (more than one incoming edge). A in a circle indicates a split or a join of type AND.

In the graphical process model, a SEQ block is represented as an activity chain; and a COMP block is

represented as a set of activities connected by the same split and join pair. For instance, SEQ[A1, A2, A3] is

represented as a chain consisting of three activitiesA1, A2, and A3; COMP {SEQ[A4], SEQ[A5]} is

represented as two activitiesA4 and A5 connected by the same split and join pair. Note, to properly

represent a COMP block, the split must be before join. By means of arrows, we show that some activities

are executed after other activities in a SEQ block. For example, the arrow going from activity “A1” to

activity “A2” indicates “A2” is executed after “A1” is executed.

Transferring a graphically expressed structured process to a structured process model expressed in

LPSM is more straightforward, so we do not present it here.

 - 19 -

Figure 2.3: Tree model for service A

Figure 2.4: Example process for service A

2.3.4 Algorithm to construct structured composite service

Eshuis et al. (2006) proposed one algorithm which takes as input a dependency graph and returns a

structured composition satisfying the input dependencies. This construction algorithm is listed below in

Figure 2.5. In the main phase of the algorithm, the structured composition is iteratively constructed by

processing black-box services in S. The set of Initial(S, E) contains services which do not depend on any

other service. Function ConstructBlock(X) composes a given set X of services into either a single service (if

X is singleton), or otherwise into a composite block consisting of a set of sequential blocks, each containing

one service from X. Function next returns the services to be processed next whose input data can be

delivered by previously processed services. Services in the set toprocess cannot be processed one by one.

One service s1 can directly influence the other service s2, if the pre-conditions of the services are overlap;

one service s1 can also in-directly influence the other service s2, if there is another service s that directly

influences both two services, s1 and s2 . The set Input I of services in processed is defined as services on

which services in I depend. Finally, concrete dependency graphs are used to type composite COMP nodes in

the structured composition returned by the algorithm. Definition 2 introduced in the last sub-section

specifies how to type the composite COMP nodes.

The structured composite service shown in Figure 2.6 is derived using the algorithm from Figure 2.2.

In this composite service, O in a circle indicates a split or a join of type XOR. To construct this composite

service, firstly, the initial set contains activity “Receive Order”. This activity is put in SEQ[Receive Order].

Next, “Make Production Plan”, “Get Shipment Order” and “Check credit” are put in the toprocess. All these

three activities directly influence each other, they are tried as a group and put in a COMP block {SEQ[Make

Production Plan], SEQ[Get Shipment Order], SEQ[Check credit]}. This COMP block is attached to the

SEQ[Receive Order]. Next, activity “Make Fulfillment Schedule” is processed. The other activities can also

be processed following the same vein. The last step is typing the COMP blocks in according with the

concrete dependency graph.

 - 20 -

Figure 2.5: Algorithm for constructing structured compositions (taken from (Eshuis et al., 2006))

Figure 2.6: Structured composite service for Figure 2.2 (taken from (Eshuis et al., 2006))

To employ the algorithm, each dependency graph must satisfy two constraints. The dependency graph

is acyclic; and if there is an edge from activity a1 to a2, then there is no path with length greater than 1 from

a1 to a2 (Eshuis et al., 2006). The relaxation of the first constraint is planned as future work. The second

constraint is needed for the algorithm; however, the violation of the second constraint can be easily repaired.

 - 21 -

C h a p t e r 3

PROCEDURE FOR COMPOSING OPEN-BOX SERVICES

In this chapter, we propose our approach to compose open-box services. We first consider the

bilateral scenario; in the last section, we extend our approach to the multi-lateral scenario.

In this paper, the composition procedure starts from the services presented as structured business

processes; and the services have already been selected for composition in accordance with some

sophisticated rules, such as (Eshuis and Grefen, 2007a). Eshuis and Grefen, (2007a) propose a proposal on a

procedure for finding BPEL services using matching.

3.1 Motivation for a New Approach

To compose open-box services, the most obvious way is probably putting two processes in parallel.

The parallel processes form up the global process of the composite services. However, our desired

composite services should be structured processes. Simply putting two structured processes coming from

two different organizations in parallel does not ensure that the global process is structured. The inter-

organizational dependencies may interrupt the properly nested pairings of splits and joins (characteristic of

structured processes), resulting in an un-structured composite service.

To illustrate this, consider two artificial services from two different organizations. These services are

represented as structured business processes. Service A can be expressed as SEQ[SEQ[A1, A2, A3],

COMP {SEQ[A4], SEQ[A5]}, SEQ[A6]]. The CDG and the structured process model for service A is

specified in Figure 3.1 respectively Figure 3.2. Service B is expressed as SEQ[SEQ[B1, B2, B3], COMP

{SEQ[B4], SEQ[B5]}, SEQ[B6]]. The CDG and the structured process model for service B in Figure 3.3

respectively Figure 3.4. The structured process models can be derived by the algorithm introduced by Eshuis

et al. (2006) from the CDGs.

Figure 3.1: Example CDG for service A

 - 22 -

Figure 3.2: Example Process for service A

Figure 3.3: Example CDG for service B

Figure 3.4: Example Process for service B

By adding inter-organizational dependencies between CDGs for service A and for service B, a new

concrete dependencies graph which contains both the CDGs for service A and for service B is derived.

Figure 3.5 shows a new concrete dependency graph. In Figure 3.5, the inter-organizational dependencies are

modeled as dotted arrow. For instance, activity “A2” in service A depends on activity “B2” in service B;

activity “B4” in service B depends on activity “A5” in service A.

Figure 3.5: The CDG between service A and service B

Figure 3.6 shows an example composite service in which two structured services are simply put in

parallel. In Figure 3.6 the frame can be seen as a general parallel construct. The upper side is service A,

the bottom side service B. The boundary between these two services is modeled as dotted line. “C” inside

a circle, which can be either AND or XOR, is the generic notion of a split or a join. From this figure, we

can see, the nested paring of split and join of the COMP {SEQ[A4], SEQ[A5]} in service A (Fig 3.2) has

been interrupted by an inserted split “C4”; the COMP {SEQ[B4], SEQ[B5]}in service B (Fig 3.4) has

been interrupted by an inserted join “C3”. The global process of the composite service is un-structured.

One possible remedy to this approach is transferring the unstructured process to structured process.

However, transferring the unstructured process to structured process has been proved not to be easy; since,

process models can consist of parallelism while programs are sequential (Eshuis et al., 2006).

 - 23 -

Figure 3.6: Example composite service of service A and B — simply putting two structured

services in parallel

Since this simple method is not suitable in our context, we must find a more sophisticated approach to

compose open-box services.

Even though the approach introduced by Eshuis et al. (2006) does not directly support the open-box

model, it gives us some important inspirations. Firstly, the approach proposed by Eshuis et al. (2006) can

convert dependency graphs into structured processes. Secondly, the algorithm works well in the black-box

contexts. If we can fragment one process into multiple segments, each of which is treated as a black-box,

then we can still use the algorithm proposed by Eshuis et al. (2006) to construct structured composite

services.

Our problem now becomes how to fragment the structured processes. In the spectrum of this

fragmenting, treating the whole service as a single black-box is at one end; treating each individual activity

as a black-box at the other end. In the open-box model, we can not treat the whole service as one single

black-box, because that would result in the black-box model. Next, we argue why treating each individual

activity as one single black-box is also not a good choice.

Treating each individual activity as a black-box, we now use the algorithm proposed by Eshuis et al.

(2006) to compose the above two services, A and B. The output is shown in Figure 3.7. One possible

desired composite service complying with the inputs in Figure 3.1 through Figure 3.5 is shown in Figure 3.8.

We can now compare these two composite services. In the desired composite service, activity “B4” and

“B5” are in an XOR construct; either “B4” or “B5” is executed, but not both. However, in Figure 3.7, both

“B4” and “B5” are executed. For this reason, the composite service which treats each individual activity as

a black-box service is not desired.

Figure 3.7: Composite service for A and B — treating each individual activity as a black-box

 - 24 -

Figure 3.8: One possible desired composite service for A and B

The reason for this kind of undesired composite services is that we did not treat the COMP blocks

which are influenced by the inter-organizational dependencies as groups. More specifically, we did not treat

the COMP{SEQ[B4], SEQ[B5]} as a group in the example. To see why, we need to reexamine the example.

“B4” and “B5” are in a COMP block of type XOR in the original process of service B. This relationship

between “B4” and “B5” must be respected in the desired composite service; if “A5” can trigger “B4”, “B5”

must be impeded. We can also image another case in which “B4” and “B5” are in a COMP block of type

AND. In this new case, when “A5” triggers “B4”, “B5” must be triggered at the same time. This is to say

even though no direct dependencies between “A5” and “B5” are observed in the dependency graph, “A5”

has influence on “B5”. To transfer this kind of direct and indirect influences into control flow, we need to

treat the COMP blocks which are influenced by the inter-organizational dependencies as groups in the

composition procedure.

The basic idea of our approach to compose open-box services is treating the COMP blocks involved

in the inter-organizational dependencies as groups (aggregates) in the composition procedure. Next, treating

each group (aggregate) and activity as a black-box service, we reuse the algorithm proposed by Eshuis et al.

(2006) to construct the structured composite services. The last step is manually typing the branches of the

composite services.

3.2 Construct Dependency Graphs Which Fulfill the Requirements of the Algorithm in
Work (Eshuis et al., 2006)

In this section, we first discuss how to properly treat the COMP blocks which are involved in the

inter-organizational dependencies as groups in the composition procedure. Next we present how to construct

new dependency graphs which fulfill the requirements of the algorithm in work (Eshuis et al., 2006).

3.2.1 The Most Abstract COMP Block

We now introduce one auxiliary function — most abstract COMP block. This function is next used to

aggregate the COMP blocks which are involved in the inter-organizational dependencies in the composition

procedure.

The most abstract COMP block. For a set A of activities, the most abstract COMP block (mac) of A,

denoted mac(A), is the COMP block c such that c is ancestor of each activity in A, and every other COMP

block x that is ancestor of each activity in A, is child of c.

For example, a segment of a structured process is shown in Figure 3.9. There are two COMP blocks,

COMP 1- COMP {SEQ[SEQ[A2],COMP{SEQ[A3], SEQ[A4]}, SEQ[A5]], SEQ[A7]} and COMP 2 –

 - 25 -

COMP{SEQ[A3], SEQ[A4]}. We now assume activity “A4” is involved in the inter-organizational

dependencies. The mac({A4}) is COMP 1. Even though COMP 2 is an ancestor of “A4”, it is a descendant

of COMP 1.

 We now argue why we must treat the most abstract COMP block — COMP 1 as a group in the

composition procedure, but not the COMP block which is the immediate ancestor of an activity — COMP

2, in our example. Still use the example in Figure 3.9, activity “A4” is involved in one inter-organizational

dependency; this implies that the activity (activities) in the other services has a direct influence on “A4”.

However, some indirect influences can be observed on the other activities in COMP 1. For instance, if “A4”

is triggered, “A7” must be triggered as well. If we aggregate COMP 2, then only the indirect influence on

“A3” is included, but not on “A7”. A proper way to include all these direct and indirect influences is that we

treat the most abstract COMP block, COMP 1 in our example, as a group in the composition procedure.

Figure 3.9: A segment of a structured process

3.2.2 Construct a New Dependency Graph Containing aggregates

To fully take advantage of the algorithm proposed by Eshuis et al. (2006), we need to construct a new

concrete dependency graph which treats the activities of some COMP blocks in the structured process

models as groups in the composition procedure. Which COMP blocks are needed to be treated as groups

will be explained next. The inputs for constructing such a dependency graph are the CDGs (provider side

and consumer side) from which the structured process models of services can be derived using the algorithm

in (Eshuis et al., 2006), the structure process models (provider side and consumer side) and the inter-

organizational dependencies between these services. Each inter-organizational dependency is represented as

a pair of activities in different services and the direction of this dependency. The output of this procedure is

a new concrete dependency graph. In this new concrete dependency graph, all the activities within a COMP

block in the structured process models which need to be treated as a group in the composition procedure are

replaced with a dummy activity — aggregate. We call this new dependency graph DGA (Dependency

Graph containing Aggregates). Besides including aggregates, one important difference between DGA and

normal CDG which contains aggregates is that a DGA involves inter-organizational dependencies. A formal

definition and the notion of the DGA, which is similar to the definition and the notion of the CDG, can be

found in Appendix B.

We divide the constructing procedure into two phases. In phase I, the first step is deciding on which

COMP blocks within one structured process model (say, Process A) needs to be treated as groups; the

second step is replacing all the activities within the COMP blocks, which have been decided to treat as

groups in step 1, with dummy activities — aggregates in the CDG from which Process A can be derived; the

third step is constructing a new CDG which now contains aggregates and activities, and all these aggregates

 - 26 -

and activities belong to one single service. Step 1 through step 3 can be repeated until all the services which

we want to compose have been processed. In phase II, inter-organizational dependencies are added between

the CDGs which are the outputs of phase I, resulting in a DGA. Next we illustrate these two phases in detail.

PHASE I:

Step 1: Decide what COMP blocks need to be treated as groups

The inputs of this step are structured process models and the inter-organizational dependencies; the

output is a set of COMP blocks. We use rule 3.1 to decide on what COMP blocks needed to be treated as

groups in the composition procedure.

Rule 3.1

In a structured process model, if one activity y is involved in the inter-organizational dependencies,

and this activity y is a descendant of some COMP blocks in the structured process model, then the mac({y})

needs to be treated as a group in the composition procedure.

Step 2: Replace all the activities within one COMP block which is the output of step 1 with a dummy

activity, which aggregates the activities.

The inputs of this step are the CDG from which either the consumer or the provider process can be

derived and the output of step 1. The output of this step is a set of activities. This set of activities includes

some dummy activities — aggregates.

This step consists of two sub-steps. In sub-step 2.1, the dependencies among activities in the CDG are

removed, resulting in a set of activities; in sub-step 2.2, taking the output of sub-step 1 as inputs, all the

activities within one COMP block which is the output of step 1 are replaced with a dummy aggregate

activity, resulting in a set of activities, including some dummy aggregate activities. Sub-step 2 can be

repeated until all the COMP blocks which are the outputs of step 1 are processed.

Step 3: Construct the dependencies among activities and/or aggregates

Next, we use rule 3.2 through rule 3.5 to construct dependencies within the output of step 2. The

inputs of this step are the original CDGs (for consumer side respectively provider side) which do not contain

any aggregates and the output of step 1 and step 2. The output of this step are two new abstract dependency

graphs (for consumer side respectively provider side) which contain dummy activities — aggregates; all the

activities within one new abstract dependency graph belong to one single service, either service consumer or

service provider.

Rule 3.2: an activity depends on an aggregate, if the activity depends on an activity which is

replaced by the aggregate in the CDG. When one activity depends on more than one activity which are

replaced by the same aggregate, all these dependencies are combined and represented as one arrow. The

direction of this arrow is from the aggregate to the activity.

Rule 3.3: an aggregate depends on an activity, if one activity which is replaced by the aggregate

depends on that activity in the CDG. If more than one activity which is replaced by the same aggregate

depends on that activity, all these dependencies are combined and represented as one arrow. The direction of

this arrow is from the activity to the aggregate.

 - 27 -

The above two rules are used to set up dependencies between aggregates and activities. The direction

of these dependencies must be clearly identified, so we state these similar rules separately.

Rule 3.4: dependencies between activities which involve no activity (activities) replaced by the

aggregates are the same as in the CDG.

This rule is used to set up dependencies between activities which are not influenced by the

aggregates.

Rule 3.5: an aggregate (say aggregate A) depends on an aggregate (say aggregate B), if one

activity replaced by aggregate A depends on one activity replaced by aggregate B in the CDG. If more than

one activity replaced by aggregate A depend on activity (activities) replaced by aggregate B, all these

dependencies are combined and represented as one arrow. The direction of this arrow is from aggregate B to

aggregate A.

This rule is used to set up dependencies between two aggregates. This step can be repeated, until all

the services which we want to compose have been processed.

PHASE II:

The input of this phase is the output of phase I and the inter-organizational dependencies. The output

is a DGA.

 The rules used to properly set up inter-organizational dependencies among the outputs of phase I are

basically the same with the rules used in step 3 phase I. For instance, if one activity (say activity A, in

service A) depends on one activity in the other service (say activity B, in service B), and activity B is

replaced by an aggregate (say aggregate B), then activity A depends on aggregate B, represented as an arrow

from aggregate B to activity A. We do not repeat all these rules again.

As an example, the DGA complying with inputs from Figure 3.1 through Figure 3.5 is shown in

Figure 3.10. In Figure 3.5, two inter-organizational dependencies, “B2” to “A2” and “A5” to “B4”, are

observed. Applying rule 3.1, two COMP blocks mac({B4}) and mac({A5}) need to be treated as groups in

the composition procedure. Next, mac({B4}) and mac({A5}) are replaced with two aggregates, “aggregate

A” and “aggregate B”. Using rule 3.2 through 3.5, the dependencies among activities and aggregates of all

the services are properly set up. For example, in Figure 3.5 “B4” depends on “A5”, since “B4” is replaced

by “aggregate B”, “A5” is replaced by “aggregate A”, “aggregate B” depends on “aggregate A”.

Figure 3.10: Example for constructing the DGA

3.2.3 Constraints and Resolutions

To successfully employ the algorithm in (Eshuis et al., 2006), the DGAs need to satisfy some

constraints. In line with work (Eshuis et al., 2006), we define the constraints below.

 - 28 -

C1: The dependency graph is acyclic (Both in the CDG and in the DGA).

C2: If there is an edge from activity1 (aggregate 1) to activity2 (aggregate 2), then there is no path

with length greater than 1 from activity1 (aggregate 1) to activity2 (aggregate 2).

Next our discussion focuses on violation and resolution for the DGAs. We assume that there is no

violation in the CDGs; some violations are only observed in the DGAs. With respect to discussions of

violations in the CDGs we refer to (Eshuis et al., 2006). This is because each individual activity can be

treated as a black-box service, and the resolutions introduced by Eshuis et al. (2006) are perfectly suitable in

our context.

3.2.3.1 Violation of Constraint 1

We consider this violation in two cases. Case 1: two aggregates are involved in the violation. Case 2:

only one aggregate is involved in the violation. We start with case 1.

In Figure 3.11, the CDG is acyclic. It is cyclic in the DGA, as shown in Figure 3.12.

Figure 3.11: Acyclic CDG—case 1

Figure 3.12: Cyclic DGA—case 1

In case 1, the solutions are classified into three categories. Category I deals with the violation if both

the involved aggregated COMP blocks which cause the cyclic are of type AND; category II, if both the

aggregated COMP blocks are of type XOR; Category III, if one aggregated COMP block is of type AND,

and the other one of type XOR.

• Category I: Transform one of the aggregated COMP blocks which cause the DGA to be

cyclic to multiple SEQ blocks; then reconstruct the DGA.

After transforming, these SEQ blocks are executed in a sequential order. This is a reasonable solution,

as the activities in a parallel block (COMP) can be executed in an arbitrary order (Aalst et al., 2004).

Sequential order is one possible order. In Figure 3.13, we present one solution to the violation shown in

Figure 3.12. Note, we insert a dummy activity, or it will violate constraint 2 as explained next.

 - 29 -

Figure 3.13: Solution of violation of constraint 1— COMP block of type AND (case 1)

• Category II: Transform one of the aggregated COMP blocks which cause the DGA to be

cyclic to multiple new COMP blocks of type XOR; then reconstruct the DGA.

Each new COMP block contains one SEQ block of the original aggregated COMP block. The other

branch of this new COMP block is a dummy activity. These new COMP blocks are executed in a sequential

order. In Figure 3.14, we present one solution of category II to the violation shown in Figure 3.12. The

internal structure of “aggregate A5” is shown in Figure 3.15, as an example.

Figure 3.14: Solution of violation of constraint 1— COMP block of type XOR (case 1)

Figure 3.15: Internal structure of aggregate OA5

In the above presented approach, we get a solution to satisfy the constraint; and at the same time, the

XOR structure of the aggregated COMP block is maintained. There is a potential problem, however, for this

solution. In the original process, there are only two choices; either “A4” or “A5” is executed, but not both.

In our solution, however, there are 4 choices. Two choices are not desired: I, neither “A4” nor “A5” is

executed; II, both “A4” and “A5” are executed. In case neither “A4” nor “A5” is executed, the instance will

be stuck in the original process. This is an exception to the original process. We rule it out of our

consideration. The second case is the real problem. For instance, activity “A5” changes a negative value of a

variable V_O to positive; activity “A4” changes a positive value of V_O to negative. We have now an

instance with a negative value of variable V_O. Firstly, this instance goes through “A5”, the value of V_O

changes to positive; then it goes through “A4”, the value of V_O changes back to negative. Such an effect is

not desired. To avoid this kind of potential problem, the value of the variable used to decide on which

branch to take, in our example the value of V_O, must be unchanged during this part of the process.

• Category III: Transform the aggregated COMP block of type AND which causes the DGA to

be cyclic to multiple SEQ blocks; or transform the aggregated COMP block of type XOR

 - 30 -

which causes the DGA cyclic to multiple new COMP blocks of type XOR; then reconstruct

the DGA.

The solutions in Category III can be derived from that in Category I and Category II.

A composer now faces one question: “which aggregated COMP block should be decomposed?”, in all

the above three categories. Decomposing either the consumer’s side or the provider’s side has the same

effect for the solutions in Category I and Category II. The answer depends on the negotiation between the

consumer and the provider. A composer may decide to decompose the COMP block at the consumer side; it

is under control of the composer, as a composer usually is the consumer. A composer can also decompose

the COMP block at the provider side, if the consumer is powerful. In terms of the solutions in Category III,

decomposing the aggregated COMP blocks of type AND is preferred. If decomposing the aggregated

COMP block of type XOR, we have to re-aggregate the new COMP blocks; and the execution of the new

COMP blocks may cause some un-desired effects as argued previously.

We now consider case 2, in which only one aggregate is involved in the violation. In Figure 3.16, the

CDG is acyclic. It is cyclic in the DGA, as shown in Figure 3.17.

Figure 3.16: Acyclic CDG—case 2

Figure 3.17: Cyclic DGA—case 2

The solution to this kind of violation can be derived from the solutions in Category I and Category II

in case 1. If the aggregated COMP block is of type AND, it is decomposed to multiple SEQ blocks. If the

aggregated COMP block is of type XOR, it is decomposed to multiple new COMP blocks of type XOR.

Then the DGA is reconstructed.

3.2.3.2 Violation of Constraint 2

We consider this violation in two cases. Case 1: two aggregates are involved in the violation; Case 2:

only one aggregate is involved in the violation. We start with case 1.

The CDG in Figure 3.18 does not violate constraint 2. However, a violation in the DGA is observed,

as shown in Figure 3.19. In case 1, the solutions are classified into two categories. Category I deals with this

 - 31 -

violation if the aggregated COMP block involved in both inter-organizational dependencies is of type AND;

Category II, if the aggregated COMP block is of type XOR.

Figure 3.18: Example CDG: violation of constraint 2 — case 1

Figure 3.19: Example DGA: violation of constraint 2 — case 1

• Category I: Transform the aggregated COMP block involved in both the inter-organizational

dependencies to multiple SEQ blocks; then reconstruct the DGA.

After transforming, the sequential order of the SEQ blocks must respect the dependency relationships

at the counter part. In our example, SEQ block “A3” must be executed before “A4”. Because B1 depends on

“A3”, “B2” depends on “A4”, and “B1” is always executed before “B2”. A solution is shown in Figure

3.20.

Figure 3.20: Solution of violation of constraint 2— COMP of type AND (case 1)

• Category II: Transform the aggregated COMP block which is involved in both the inter-

organizational dependencies to multiple COMP blocks of type XOR; then reconstruct the

DGA.

To maintain the XOR structure of the aggregated COMP block, we decompose the COMP block into

multiple new COMP blocks of type XOR. All these new COMP blocks need to respect the dependency

relationships at the counter part. A solution is shown in Figure 3.21.

 - 32 -

Figure 3.21: Solution of violation of constraint 2 — COMP of type XOR (case1)

In case 1, even though there are two aggregated COMP blocks involved in this violation, only one is

involved in both the inter-organizational dependencies. It can be observed if both the aggregated COMP

blocks are involved in both the inter-organizational dependencies, these two COMP blocks are cyclic.

Using Figure 3.18 and Figure 3.19, we now argue why we chose to decompose the aggregated COMP

block involved in both the inter-organizational dependencies; it is the COMP block containing activity “A4”

and “A5”. If we decompose the COMP block involved in only one inter-organizational dependency, in our

example it is the COMP block containing activity “B2” and “B3”, we still get a DGA violating constraint II,

as shown in Figure 3.22. For this reason, to successfully satisfy the constraint 2 in case 1, the aggregated

COMP block involved in both the inter-organizational dependencies needs to be decomposed. In Figure

3.22, we suppose the COMP block containing activity “B3” and “B2” is of type AND. It has the same effect

if the COMP block is of type XOR.

Figure 3.22: Example DGA: violation of constraint 2— case 1

We now consider case 2, in which only one aggregate is involved in the violation. In Figure 3.23, the

CDG does not violate constraint 2. A violation of constraint 2 in the DGA is observed, as shown in 3.24.

The solution to this kind of violation can be derived from the solutions in Category I and Category II. If the

aggregated COMP block is of type AND, it is decomposed to multiple SEQ blocks. If the aggregated

COMP block is of type XOR, it is decomposed to multiple new COMP blocks of type XOR.

Figure 3.23: Example CDG: violation of constraint 2— case 2

Figure 3.24: Example DGA: violation of constraint 2— case 2

 - 33 -

A solution is shown in Figure 3.25 (the aggregated COMP block is of type XOR). Note, the new

COMP block containing activity “A2” and “A3” must be executed after the one containing “A4”, or it will

still violate this constraint.

Figure 3.25: Solution of violation of constraint 2 — COMP of type XOR (case 2)

3.3 Compose Services in the Open-box Model into a Structured Composite Service

3.3.1 Example Scenario

In this sub-section we describe the running example for our approach.

A library frequently orders books from an online book trader. The online book trader ships the books

by a standard carrier or by an express service (Preuner and Schrefl, 2005). The business process at the

library side is described below (see Figure 3.27). Firstly, books are selected from some catalogues. Next,

these selected books are registered in a system. And in parallel, an order is sent to the book trader—activity

“Order processed”. Next, the payment is processed. The book trader will give confirmation to the library

when both the order and the payment are received. When both the books and the invoices have been

received, the library will acknowledge receipt to the book trader. This is the last step of this process. The

CDG from which the structured business process at the library can be derived is shown in Figure 3.26; the

business process is shown in Figure 3.27. This process can be expressed as SEQ[SEQ[Select Books],

COMP{SEQ[Registered], SEQ[Order Processed]}, SEQ[Payment Processed, Order Confirmed],

COMP{SEQ[Book Received], SEQ[Invoice Received]}, SEQ[Acknowledge Receipt]].

Figure 3.26: The CDG for the business process at the library

Figure 3.27: Business process at the library

 - 34 -

The business process at the book trader is described below (see Figure 3.29). When an order is

received, the book trader starts to prepare the shipment and the payment receiving. (So, it implies that the

book trader always has the books ordered in stock). When the preparation has been finished, the book trader

sends confirmation to the library—activity “Prepare Finished”. The physical delivery of the books can be in

two ways: the standard carrier and the express services. Which delivery method is chosen depends on some

non-functional requirements; for example, the due date required by the library. When the delivery has been

processed, an invoice is processed. Finally, an acknowledgement from the library is received. The CDG

from which the structured business process at the book trader can be derived is shown in Figure 3.28; the

business process is shown in Figure 3.29. The process can be expressed as SEQ[SEQ[Order Received],

COMP{SEQ[Payment Received], SEQ[Shipment Prepared]}, SEQ[Prepare Finished],

COMP{SEQ[Shipment Carrier], SEQ[Shipment Express]}, SEQ[Invoice Processed, Received

Acknowledge From library]].

To attain a simple and illustrative process, we assume the standard carrier and the express service are

offered by the book trader itself. It is straightforward, however, to extend the case to that the delivery

services are offered by different companies.

Figure 3.28: The CDG for the business process at the book trader

Figure 3.29: Business process at Book Trader

The inter-organizational dependencies are shown in Figure 3.30, which is a CDG including the above

two services. Note, one dummy activity is insert in the book trader side after activity “Prepare Finished” to

satisfy the requirement that “Only one type, either AND or XOR, can be assigned to incoming resp.

outgoing dependencies” (Eshuis et al., 2006).

 - 35 -

Figure 3.30: The CDG between library and book trader

3.3.2 Composition Procedure

Our composition procedure takes the CDGs (provider side and consumer side) from which the

structured process models of services can be derived using the algorithm in (Eshuis et al., 2006), the

structure process models of services (provider side and consumer side) and the inter-organizational

dependencies between these services as inputs. We follow a semi-automatic approach. The output is a

structured composite service. Our procedure starts from the constructing of the DGAs. In this section, we

focus on the bilateral scenario. In next section we generate our approach to the multilateral scenario.

Our approach consists of four steps:

Step 1: Derive the DGA from the CDGs, structured processes and the inter-organizational

dependencies.

For the detailed procedure of this step we refer to section 3.2. The properly constructed DGA

complying with inputs from Figure 3.26 through Figure 3.30 is shown in Figure 3.31. To resolve the

violation of constraint 2, two dummy tasks are added. This solution comes from (Eshuis et al., 2006).

Because the violations are also observed in the CDG, our solutions introduced in section 3.2 are not

applicable as explained previously.

Figure 3.31: The DGA complying with inputs from running example

Step 2: Use the algorithm in (Eshuis et al., 2006) to construct a structured composite service.

Treating each activity and aggregate as black-box service, we can now directly employ the

algorithm to construct a structured composite service which contains activities and aggregates. The

 - 36 -

properly constructed structured composite service including aggregates is shown in Figure 3.32. C in a

circle indicates a composite construct, either of type AND or type XOR.

Figure 3.32: Structured composite service with aggregates

Step 3: Restore the COMP blocks, getting the most detailed structured composite service.

In this step, the aggregates are replaced, e.g., the original COMP blocks are used to replace the

aggregates in the composite service in the above step. A new composite service, which complies with

inputs from the running example, is shown in Figure 3.33.

Figure 3.33: The un-aggregated structured composite service complying with inputs from the running

example

Step 4: Manually type the branches using the AND or the XOR constructs.

 - 37 -

In this step, the branches of the most detailed composite service are manually typed in accordance

with the CDG. The result is shown in Figure 3.34.

Figure 3.34: Structured composition complying with inputs from the running example

3.4 Generalization to Multiple Participants

In the previous section, we discussed our composition procedure for the bilateral scenario. In this

section, we generalize the procedure to the multilateral scenario.

3.4.1 Negative Answer to a Stepwise Approach

In this sub-section, we argue why we can not iteratively use the bilateral approach in the multilateral

scenario. In other words, we can not compose the providers’ processes one by one to the consumer’s in the

multilateral scenario.

We now consider three artificial services. Their processes at the external level are shown in Figure

3.35. And the CDG is shown in Figure 3.36. The desired composite service is shown in Figure 3.37. In the

desired composite service, activity “A2” is done by service A itself; service A also needs to outsource part

of this process to one of its two service providers. Only one of the two providers is chosen. Following the

bilateral approach, we first compose service A and B. A new composite service is shown in Figure 3.38.

 - 38 -

Figure 3.35: Business process for service A, B and C

Figure 3.36: The CDG for service A, B and C

Figure 3.37: The desired composite service for service A, B and C

Figure 3.38: Composite service for service A and B

After composing services A and B, in this second step, we need to compose service C to the

composite service of A and B. The resulting composite service is shown in Figure 3.39. In Figure 3.39,

however, we can not properly type this composite service. If we type “C01” with XOR, activity “A2” can be

by passed; if we type “C01” with AND, both service B and C are executed. Neither of these two typings can

generate our desired composite service. For this reason, we can not use the bilateral approach iteratively in

the multilateral scenario to guarantee a desired composite service.

 - 39 -

Figure 3.39: Composite service for service A, B and C (Stepwise approach)

3.4.2 Generalization of the Composition procedure to Multilateral Scenario

Our approach is applicable in the multilateral scenario. We can still follow the four-step framework.

In step 1, the DGAs must now include all the services which we want to compose in the multilateral

scenario. The last three steps are exactly the same in the multilateral scenario as in the bilateral scenario.

Still using the example shown in Figure 3.35 and 3.36, we briefly showcase how our approach can be

applicable in the multi-lateral scenario. In step 1, the CDG shown in Figure 3.36 is used as inputs among

others. Note, the CDG shown in Figure 3.36 contains all three services which we want to compose. Step 2

through step 4 is just the same as in the bi-lateral scenario. Finally, we get our desired structured composite

service shown in Figure 3.37.

 - 40 -

C h a p t e r 4

ARCHITECTURE & ITS CONFIGURATION AND SYNCHRONIZATION PROCEDURE

In this chapter, we propose an automatic procedure to synchronize standard BPEL processes in the

bilateral scenario. With respect to the multilateral scenario, we refer to the work proposed in the project

Crosswork (Grefen et al. 2007; Crosswork, 2007).

To fully support our approach, we clearly distinguish the architecture for the global process of the

composite service (global process, in short) from the process at the local service side (local process, in

short); and new dedicated architectures for the global process and for the local process are developed. The

architecture for the local process applies to both the service provider and the service consumer. These new

architectures are inspired by Grefen et al. (2006a and 2007). Two rules are defined. These rules are used to

decide on what activities at the local processes need to be controlled by the global process in the bilateral

scenario.

In the synchronization procedure, a control activity is an activity at the local processes the start of

which the global process needs to control (Grefen et al., 2006a). All the control activities are put on a list of

control activities (LCA) as explained later on. The execution of the local process is automatic; the execution

of the activities not on the “LCA” is controlled by the local process itself. Note, the local process refers to

either the service provider or the service consumer in the bilateral scenario.

4.1 Architecture Supporting Our Approach

To fully support our approach, we developed new dedicated architecture for the local process

respectively for the global process.

The architecture for the local processes is shown in Figure 4.1. The document “BPEL SPEC (L)” is

the specification for the local processes at the external level at either the provider side or the consumer side;

for example, the specification shown in Figure 3.2 and Figure 3.4 in last Chapter. This specification is

created by the local process using some process modeling language (in our case, it is BPEL). A composer

(normally, the consumer) can obtain this specification by the interface “SPEC”. This specification is used to

construct the composite services. Interface “MON” and “CTRL(L)” are used to monitor and control the

execution of the local process from the global process to the local process. Control can be at the process

level and/or the activity level. Two important operations at activity level are “lock activity” and “release

activity”. The “lock activity” informs the BP-WS at the local process not to start an activity until it is

released through function “release activity”. Together, these two functions provide an implementation of

 - 41 -

control flow dependencies from the global process to the local process. Interface “ACT” is used to activate

the local process and/or an instance at the local process (Grefen et al., 2006a).

Figure 4.1: BP-WS/O architecture dedicated to the local process

The architecture for the global process side is shown in Figure 4.2.

Figure 4.2: BP-WS/O architecture dedicated to the global process

Compared to the architecture shown in Figure 4.1, we do not need interface “SPEC” and “MON”,

because the composite service does not need to expose the global process to the local process; and the local

process does not need to monitor the execution of the global process. We also do not need the interface

“ACT”, because the local process should not be able to activate the global process. The document “BPEL

SPEC (G)” is the specification for the global process of the composite service; for instance, the composite

service shown in Figure 3.34 in Chapter 3. This specification is constructed by a component “Process

Composition” (not shown in our architecture). Our work in the previous chapter presents an approach which

can be implemented in the component “Process Composition”.

To support our approach, however, we must provide a BP-WS at the global process with the

information required for control flow dependencies from the global process to the local process. The “LCA”

is constructed by a component “Construct LCA”. To construct the “LCA”, the component “Construct

LCA” needs two inputs: the local process specification (both the provider side and the consumer side), and

 - 42 -

the inter-organizational dependencies. The local process specification, such as that in Figure 3.2 and Figure

3.4 in Chapter 3, can be attained through the interface “SPEC” in the local side; and stored in the documents

“BPEL SPEC (C)/(P). The inter-organizational dependencies are store in the document “Inter-organizational

Dependencies”. This document is input from the other component not shown in our architecture. The

“LCA” is stored in the document “LCA”. In the next section, we use a sequence diagram to illustrate how

the BP-WS at the global process uses the “LCA” to control the activities at the local process. Note, there are

two “LCA”s in the bilateral scenario. “LCA(P)” is for the provider side; “LCA(C) is for the consumer side.

The interface “CTRL(G)” is used to facilitate the synchronization from the local process to the global

process. Two important operations defined in this interface are “start activity” and “complete activity”.

Operation “start activity” informs the BP-WS at the global process that an activity at the local process has

been started. Operation “complete activity” informs the BP-WS at the global process that an activity at the

local process has been completed. Together, these two operations provide an implementation of control flow

dependencies from the local processes to the global process. A user uses interface “MON UI” to monitor

and control the execution of the global process during the enactment time.

The purpose of the component “Monitor & Control” is two-fold. Firstly, this component is

responsible for communicating with all specification and control ports of all local and global services to be

aware of the status of execution of the composite service. Secondly, this module controls the start of the

execution the process, starting the process and/or an instance at the global process.

4.2 Construct the List of Control Activities (LCA)

Component “Construct LCA” uses Rule 4.1 and Rule 4.2 to construct the “LCA(P)/LCA(C)”. The

LCA(P)/LCA(C) are decided by means of static analysis. This static analysis can be done off-line. We use

rule 4.1 and rule 4.2 to construct the LCA(P) respectively the LCA(C).

Rule 4.1: If an activity y at the service provider side depends on an activity (or activities) at the

service consumer side with respect to control flow dependency, this activity y at the provider side needs to

be put on the LCA(P); if this activity y is a descendant of a COMP block, all the descendants of the most

abstract COMP block of y — mac ({y}) — are put on the LCA(P).

For instance, from Figure 3.30 in Chapter 3, we know activity “Payment Received” depends on an

activity at the service consumer side, and it is a descendant of a COMP block. The descendants of mac

({“Payment Received”}) includes two activities, “Payment Received” and “Shipment Prepared”; all these

two activities are put on the LCA(P).

Rule 4.2: If an activity x at the service consumer side depends on an activity (or activities) at the

service provider side with respect to control flow dependency, this activity x at the consumer side needs to

be put on the LCA(C); if this activity x is a descendant of a COMP block, all the descendants of the most

abstract COMP block of x — mac ({x}) are put on the LCA(C).

For instance, from Figure 3.30, we know activity “Invoice Received” depends on an activity at the

service provider side, and it is a descendant of a COMP block. The descendants of mac ({“Invoice

Received”}) includes two activities, “Invoice Received” and “Book Received”; all these two activities are

put on the LCA(P).

Rule 4.2 is similar to rule 4.1; however, to clear distinguish the LCA(C) from the LCA(P), we stated

it separately.

 - 43 -

In the above two rules, even though two activities involved in an inter-organizational dependency,

only the ending activity is controlled, but not the starting activity. For instance, in Figure 3.30, the starting

activity “Order Processed” is not controlled by the global process; only the ending activity “Order

Received” is controlled. This is because that one activity needs to be controlled by the global process, if and

only if the execution of this activity is constrained by the other service(s). One starting activity does not

need inputs from the other service, all its inputs can be satisfied within the local process, so it does not need

to be controlled by the global process.

4.3 Implementation of Control Flow Dependency

4.3.1 Control Flow from the Global process to the Local process

In this sub-section, we intend to solve the problem how an activity at the local process can be

controlled by the global process. We use a sequence diagram to illustrate the interaction between the BP-WS

— global process and the BP-WS — local process. The local process refers to either service consumer or

service provider in the bilateral scenario; however, for clear reference, we take the service provider as an

example in the description below.

In Figure 4.3, the sequence diagram illustrates the synchronization procedure from the global process

to the provider side, described below.

In step 1, a user invokes the component “Monitor & Control” through “MON UI”. In step 2, the

component “Monitor & Control” sends feedback to “MON UI”. In step 3, the user activate a composite

service. In step 4, the component “Monitor & Control” activates the global process for the composite

service at the global process BP-Engine. In step 5, when one global process is activated, the global process

BP-Engine sends a message to the provider side. This message informs the provider to activate the local

process; this is done through the interface “ACT”, operation “activate (local process)” at the provider side.

Step 6 through step 8 gives feedback. In step 9, the user starts an instance. In step 10, the component

“Monitor & Control” activates an instance at the global process BP-Engine. In step 11, the global process

BP-Engine activates an instance at the provider side; this is done through the interface “ACT”, operation

“activate (instance)”. In step 12, the component “Monitor & Control” informs the global process BP-Engine

to lock the activities on the LCA(P). In step 13, the global process BP-Engine sends a message to the

provider side BP-Engine to lock the activities on the LCA(P); this is done through the interface “CTRL(L)”,

operation “lock activity” at the provider side. Step 14 and step 15 gives feedback. In step 16, the component

“Monitor & Control” informs the global process BP-Engine to release one activity on the LCA(P). In step

17, the global process BP-Engine sends a message to the provider side BP-Engine to release the activity on

the “LCA(P). This is done through the interface “CTRL(L)”, operation “release activity” at the provider

side. Step 18 and step 19 are feedbacks of the release success. Step 16 through step 19 can repeat multiple

times, if there are multiple activities on the “LCA(p). After arbitrary execution time, we assume the instance

has been successfully executed. Step 20 through step 21 give feedback of successful instance execution.

 - 44 -

Figure 4.3: Sequence diagram from the global process to the local process

The component “Monitor & Control” uses rule 4.3 to decide on when the activities on the

LCA(P)/LCA(C) to release.

Rule 4.3: If all the inputs of an activity y on the LCA(P)/LCA(C) have been satisfied, this activity y

needs to be released.

Here, we treat the global process as a normal workflow. All the inputs of an activity have been

satisfied means that one activity can be fired. We use Figure 3.8 in Chapter 3 to illustrate our idea. In Figure

3.8, activity “A2” needs to be controlled (known from Figure 3.5). When activity “A1” and activity “B1”

have been completed (noticed respectively from service A and service B to the global process), activity

“A2” is released.

The above presented procedure is only applicable if there are no loops in the local process and the

global process. To see why, consider the segment of a process in Figure 4.4. We assume activity “A4” is on

the LCA(P) or the LCA(C). Every time, the start of this activity should be controlled by the global process.

However, according to our procedure, the release of this activity is permanent. After the first iteration, the

 - 45 -

start of activity “A4” is totally controlled by the local side. How to extend our work to deal with processes

with loops is suggested for future work.

Figure 4.4: A process segment with a loop

There is another potential problem with the above presented procedure. When an instance is activated

at the local process, the first activity of the local process is executed immediately. This implies if the first

activity is on the LCA, it would be out of control from the global process. To solve this problem, one

activity “activities on the LCA locked” can be added before the first activity of the original process at the

provider side and the consumer side. This activity can be completed if and only if the activities on the LCA

have been locked.

4.3.2 Control Flow from Local Service to Composite Service

In this sub-section, we intend to solve the problem how an activity at the local process can be

synchronized to the global process. We use a sequence diagram to illustrate the interaction between the BP-

WS — global process and the BP-WS — local process. The local process refers to either the service

consumer or the service provider in the bilateral scenario; however, for clear reference, we take the service

provider as an example in the description below.

In Figure 4.5, the sequence diagram illustrates the synchronization procedure from the provider side

to the global process, described below.

Step 1 through step 11 are the same in this sequence diagram with that from global process to local

process. Step 12 and step 13 are feedbacks. In step 14, when an activity at the provider side is started, the

provider side sends a message to inform the global process. This is done through the interface CTRL(G),

operation “start activity”. In step 15, when an activity at the provider side is completed, the provider side

sends a message to inform the global process. This is done through the interface CTRL(G), operation

“complete activity”. Step 14 and step 15 can repeat multiple times, since there are multiple activities at the

local process. Step 16 and step 17 are feedbacks. Note, the start and the completion of every activity at the

local process needs to be sent to the global process. In this way, the global process can reflect the latest

status of the local processes.

 - 46 -

Figure 4.5: Sequence diagram from the local process to the global process

4.4 Architecture Supporting Synchronization in the Multilateral Scenario

For the multi-lateral scenario, the architecture proposed by Grefen et al. (2007) is a good starting

point. In (Grefen et al., 2007), two levels of workflow enactment, at the global process and at the local

process, are clearly identified in the enactment architecture. Next to this, a monitoring user interface module

is employed. A “Monitor & Control” engine is used to monitor and to control the global enactment. For the

real-time enactment, at either the global process or the local process, a standard BP-Engine is used. BP-WS

interfaces are used to access to specifications and states of the processes, at local process and/or at global

process.

 - 47 -

C h a p t e r 5

CASE STUDY

In this chapter, the complete approach for composing services in the open-box model is put to the test

by means of case studies. In the bilateral scenario, we use a case from healthcare domain; in the multilateral

scenario, we use a case from the car insurance domain.

5.1 Case Study in the Bilateral Scenario

In this case study, one hospital (consumer) outsources parts of its scan interpretation process to a

consulting company (provider) which has the competency in scan interpretation. The goal of the composer

from the hospital is to compose the service from the consulting company to that from the hospital into a

structured composite service. Note, both the services from the consulting company and the hospital are

expressed as structured business processes.

The business process at the hospital side is shown in Figure 5.1. The process starts with receiving a

scan order. Next, the scan order is scheduled. On the scheduled date, one out of the three scans (CT, MRI

and X-Ray) is operated. The scan manuscripts need to be processed and stored in a database which can be

accessed by the authorized units. Next, the reports are created by some radiologist. When the reports are

ready, they are distributed to the relevant doctors. The doctors must sign off the reports. Next, the reports are

analyzed by doctors; and at the same time, the scan is billed. Finally, the reports are archived. In Figure 5.1,

the inputs from / outputs to the environment (consulting company) are shown as dotted arrow.

 - 48 -

Figure 5.1: Business process at the hospital side

In the above process, two activities — “Prepare Report” and “Distribute” are outsourced to one

consulting company. The business process at the consulting company is shown in Figure 5.2. The process

starts with the receiving of the scan manuscripts from hospital. Next, the interpretation is scheduled. On the

scheduled date, the manuscripts are analyzed, creating the reports. After the creating of the reports, a native

speaker from the hospital verifies the reports in terms of language; a second expert within the consulting

company guarantees that the report is correct. Finally, the checked reports are sent to the relevant doctors in

the hospital. Activity “delivery” needs input from hospital; for instance, to whom the reports are to be sent.

Figure 5.2: Business process at the consulting company

To employ our approach, the DGA is firstly constructed. The DGA is shown in Figure 5.3. From

Figure 5.3, we can see that the execution progress of both parties depends on one another and the execution

autonomy of both parties is reduced. Note, we insert one dummy activity between activity “Distribute” and

activity “Sign off” to solve the violation of the constraint 2; and the COMP block containing activity

“Verify language” in the consulting side is aggregated into “aggregate A”, because the “Verify language” is

involved in an inter-organizational dependency. Using the algorithm in (Eshuis et al., 2006), the above two

services are composed; and in accordance with the concrete CDG, the composite service is properly typed.

The composite service is shown in Figure 5.4. This composite service is now ready to be fed into a process

engine.

 - 49 -

Figure 5.3: The DGA between hospital and consulting company

Figure 5.4: The composite service complying with Figure 5.3

5.2 Case Study in the Multilateral Scenario

In the multilateral scenario, the complete approach is explained by means of a case study from the

project Cross flow (Browne and Kellett, 1999). The goal of CrossFlow is to link the process within the

insurance company (AGFIL, AGF Irish Life Holding Plc—an insurance company operating in the Irish

market; the service consumer.) with the processes from its partners. The partners (service providers) include

Europ Assist, Lee Consulting Services and Garages. The relationship between AGFIL and its partners in

this case is based on the operation of a scheme known as the Emergency Service which is available to

private motor policyholders.

The responsibilities of each actor are described next. AGFIL is responsible for underwriting the motor

policy and covering losses incurred. Europ Assist records the initial advice over the telephone. Lee

Consulting Services co-ordinates and manages the operation of the Emergency Service on a day to day level

on behalf of AGFIL. Garages are responsible for offering the approved repair service and the courtesy cars

(if required).

 - 50 -

A new composite service should be designed to encompass all the processes from all the parties. The

composite service will offer AGFIL a process which will have control over all the activities. A multi-step

structured process will be desired where an outside agent will start the work flow process.

The process from AGFIL is shown in Figure 5.5. After receiving information about claims, the

AGFIL notifies Lee immediately. Next, the claim forms are obtained from the policyholders. The claims

must be checked. Next, the estimations of the damages are amended in accordance with the information

from Lee. Next, the information must be reconciled after Lee gets the invoices. Last step of this process is

the claim finalization.

Figure 5.5: Business process from AGFIL

The process from Europ Assist is shown in Figure 5.6. The process starts with receiving calls from

the policyholders. The information about the policyholder is collected in this step. This information is

validated before any further processes. Next, the damaged car is assigned to a garage; at the same time,

AGFIL is notified. The last step is the “archive” of the file.

Figure 5.6: Business process from Europ Assist

The process from Lee is shown in Figure 5.7. The process starts from obtaining details about the

claim. Next, Lee will contact garage to which a damaged car has been sent by the Europ Assist. If the

estimated cost is more than 500 euro, an adjustor will be assigned to inspect the damaged car; if not the

repair is immediately agreed. The last step is the checking of the invoice.

Figure 5.7: Business process from Lee

The process from Garage is shown in Figure 5.8. The process at the garage side starts with the

receiving of the damaged car. Next, the repair cost is estimated. After getting feedback from Lee, the car is

repaired. The last step of this process is sending invoice to Lee

 - 51 -

Figure 5.8: Business process from Garage

. To employ our approach to compose all these processes together into a structured composite service,

the DGA needs to be constructed, as shown in 5.9.

Figure 5.9: The DGA including all services

In the composition procedure, one COMP block is aggregated. “aggregate A” contains activity

“Notify insurance” and “Assign Garage” in Europ Assist. Using the algorithm in (Eshuis et al., 2006), a

structured composite service is constructed; and in accordance with the concrete CDG, the composite

service is properly typed. The composite service is shown in Figure 5.10. This composite service is now

ready to be fed into a process engine.

Figure 5.10: The composite service complying with Figure 5. 9

 - 52 -

5.3 Conclusion of Case Studies

In this chapter, the full approach has been tested, and has successfully constructed the desired

composited services in two cases. From these case studies we can observe that the composition procedures

are almost the same in the bilateral scenario and in the multilateral scenario. In the multilateral scenario, the

CDGs must include all the services which we want to compose; however, in the bilateral scenario, only two

services are included. These case studies have confirmed our approach is applicable.

 - 53 -

C h a p t e r 6

CONCLUSION

Throughout this graduation project, the emphasis of our research has been on the analysis of service

composition. In chapter 1 of this document, three research questions were defined. During our research we

have tried to answer these questions.

The first research question was defined as: “How can services expressed as explicitly visible business

processes be composed together? ”. In order to answer this question, we have proposed a Business Process

Web Services (BP-WS, in short) based approach. BP-WS is an extension of the basic web service, and has

an internal business process specification that can be accessed externally. We have shown that services

expressed as structured business processes can be composed together, generating a new structured

composite service. We proposed a semi-automatic procedure for service composition, applicable in both the

bilateral and the multilateral scenario.

The semi-automatic procedure reused the approach proposed by Eshuis et al. (2006). Our semi-

automatic procedure is also based on the dependency graphs; and the algorithm in (Eshuis et al., 2006) is

reused to construct the structured composite services. The most interesting part of this paper is the argument

that we must treat some COMP blocks as groups in the composition procedure. The reason why we need to

treat some COMP blocks as groups is that the inter-organizational dependencies put direct/indirect

influences on all SEQ blocks in the COMP blocks. One of the other contributions of this paper is the

introduction of the concept “the most abstract COMP block (mac)”. The most abstract COMP block is used

to aggregate the COMP blocks in the composition procedure; and the most abstract COMP blocks are

treated as groups in the composition procedure. With this most abstract COMP block, the indirect influence

generated by the inter-organizational dependencies on some SEQ blocks within this COMP block are

properly treated in the composition procedure. The composition procedure is applicable in both the bilateral

scenario and the multi-lateral scenario. In the multi-lateral scenario, we have shown that a stepwise

approach is not applicable; and the dependency graph containing aggregates in the multi-lateral scenario

must include all the services to be composed.

To compose services, two approaches exist in the design of a composite service: Top-down design

and bottom-up. Top-down design means the overall process across all participating organizations is defined

first, then the global process is fragmented and the fragments are delegated to different organizations (Aalst

and Weske, 2001). Bottom-up design means several organizations define and advertise services, which are

composed by other organizations (probably the service requester) (Eshuis et al., 2006). We follow the

bottom-up design. The bottom-up approach gives individual organizations and users most flexibility, as they

can choose to use their personal styles of working and describing their ‘local’ process descriptions (Eshuis et

al. 2006; Preuner and Schrefl, 2005).

 - 54 -

The second research question was defined as: “How can the global process be synchronized with the

local processes?”. To solve this problem, we proposed an automatic synchronization procedure between the

global process and the local process in the bilateral scenario. In our synchronization procedure, the control

activity is an activity at the local processes the start of which the global process needs to control (Grefen et

al., 2006a). The local process refers to either the service provider side or the service consumer side. The

execution of the local process is automatic; the execution of the activities not on the “LCA” is controlled by

the local side itself.

The key part of this automatic procedure is constructing the list of control activities (LCA); and the

component “Monitor & Control” controls when the activities on the LCA can start by means of message

exchange from global process to the local process. Our synchronization approach relies on the dedicated

architectures at the global process side respectively the local process side.

The third research question was defined as: “What architecture can support our approach?”. We

developed new dedicated architectures for the global process respectively for the local process to fully

support our approach. This part of work is inspired by Grefen et al. (2006a and 2007). BP-WS interfaces

were reused. Component “Monitor & Control” and Component “Construct LCA” were introduced. The

“LCA” is stored in the document “LCA” as an extension to the global process specification.

We next present our reflections on this project.

In this paper, our research exclusively focuses on control flow aspects. The underlying foundations

for our approach are BP-WS, the open-box model and the architecture supporting the open-box model

(Grefen et al., 2006a). Our composition procedure is not limited to a dedicated process modeling language;

this ensures the general applicability of our approach. However, the inputs for the composition procedure

are limited to structured process models; these structured processes should not contain any loops. Structured

processes facilitate the aggregating step, because the COMP blocks are clearly defined in the structured

process models. Loops will violate constraints of the algorithm in (Eshuis et al., 2006), and will cause some

potential problem in the synchronization procedure as explained previously.

For our composition procedure, we did not provide a formal proof of correctness. However, when we

compose the composite service containing aggregates, we always use a constructed structured composition

to change to another structured composition; the most abstract COMP blocks which are used to replace the

aggregates are still structured. Even though, we did not develop a prototype to validate the complete

approach, we have provided implementable rules for all key parts to facilitate implementation.

The research question on the synchronization procedure and the supporting architecture is more

complex than expected. The synchronization procedure in the multi-lateral may encounter some new

problems, for instance, how to organize the communication channels. We limited our work to the bilateral

scenario, because of the limitation of time and space.

We next suggest some future work. In terms of composition procedure, one possible research problem

is how to extend our work to deal with process models including loops. In terms of synchronization

procedure, one possible research question is how to extend some of our results for the multi-lateral scenario.

A new procedure may be needed in the multi-lateral scenario.

END

 - 55 -

BIBLIOGRAPHY

Aalst et al. 2003. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros. “Process

Patterns”. Distributed and Parallel Databases 2003;14(3); p. 5-51.

Aalst and Weske, 2001. W.M.P van der Aalst and M. Weske. “The P2P Approach to

Interorganizational Processes”. K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): Proc. CAiSE

2001; LNCS 2068; p. 140-156.

Aalst, 1999. W. van der Aalst. “Interorganizational Workflows: an Approach Based on Message

Sequence Charts and Petri Nets”. Systems Analysis – Modeling – Simulation 1999; 34(3); p.

335-367.

Berardi et al. 2005. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella.

“Automatic service composition based on behavioral descriptions”. International Journal of

Cooperative Information Systems 2005; 14(4); P. 333-376

Business link, 2007. Business link web site: http://www.businesslink.gov.uk/bdotg/action/; accessed

2007.

Eshuis and Grefen, 2007. R. Eshuis and P. Grefen. “Constructing Customized Process Views”. BETA

Working Paper Series WP 197, 2007; Eindhoven University of Technology.

Eshuis and Grefen, 2007a. R. Eshuis, P. Grefen. “Structural Matching of BPEL Processes”. BETA

Working Paper, 2007; Eindhoven University of Technology.

Eshuis et al., 2006. R. Eshuis, P. Grefen, S. Till; “Structured Service Composition”. Proc.

International Conference on Business Process Management 2006; Lecture Notes in

Computer Science 4102; p. 97-112.

Grefen et al. 2007. P. Grefen, N. Mehandjiev, G. Kouvas, G. Weichhart, and R. Eshuis. “Dynamic

Business Network Process Management in Instant Virtual Enterprises”. BETA Working

Paper Series WP 198, 2007; Eindhoven University of Technology.

Grefen et al. 2006a. P. Grefen, H. Ludwig, A. Dan, S. Angelov. “An Analysis of Web services Support

for Dynamic Business Process Outsourcing”. Information and Software Technology 2006;

48(11); p. 1115-1134.

Grefen, 2006. P. Grefen. “Service-oriented support for dynamic inter-organizational business process

management.” In D.Georgakopoulos and M. Papazoglou, editors, Service Oriented

Computing, 2006.

Grefen et al. 2003. P. Grefen, H. Ludwig, S. Angelov. “A Three-Level Framework for Process and

Data Management of Complex E-Services” Journal of Cooperative Information Systems

2003;12(4); p. 487-531.

Khalaf and Leymann, 2006. R. Khalaf, F. Leymann. “E Role-based Decomposition of Business

Processes Using BPEL”. IEEE International Conference on Web services (ICWS’ 06).

Kiepuszewski et al. 2000. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. “On structured

process modeling”. In B. Wangler and L. Bergman, editors, Proc. CAiSE’ 2000; p. 431-445.

 - 56 -

Liu and Kumar, 2005. R. Liu and A. Kumar. “An analysis and taxonomy of unstructured processes”.

In W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proc. 3
rd

conference on Business Process Management (BPM 2005), Lecture Notes in Computer

Science 2005; 3649, p. 268-284.

Manes, 2003. A.T. Manes. “Web services – A manager’s Guide” 2003; ISBN 0-321-18577-3

Muth et al. 1998. P.Muth, D. Wodkte, J. Wiessenfels, D,A. Kotz, G. Weikum. “From Centralized

Process Specification to Distributed Process Execution”. Journal of Intelligent Information

Systems 1998; 10(2); p.159-184

Norta, 2007. A. Norta. “Exploring Dynamic Inter-organizational Business Process Collaboration”. Beta

Research School for Operations Management and Logistics 2007. Eindhoven University of

Technology.

Preuner and Schrefl, 2005. G. Preuner, M. Schrefl. “Requester-centered composition of business

processes from internal and external services”. Data & Knowledge Engineering 2005; 52(1);

p. 121-155.

Browne and Kellett, 1999. Sinead Browne & Michael Kellett (AGFIL),

 “cross-organisational, process CrossFlow” (ESPRIT E/28635)

http://www.CrossFlow.org/public/pubdel/D1b.pdf,

Zhao and Cheng, 2005. J.L. Zhao, H.K. Cheng. “Web services and process management: a union of

convenience or a new area of research?” Decision Support System 2005;40; p.1-8.

 - 57 -

APPENDIX A: THREE-LEVEL PROCESS FRAMEWORK

The enactment of the service composition in the agile contexts implies a couple of steps: services

have to be identified and defined, business network partners have to be found, process enactment and data

management infrastructures have to be set up and coupled. Given the fact that the above mentioned steps are

quite diverse in nature, an individual process specification will not be adequate for all these steps (Grefen et

al. 2003). Hence, we need a multi-level process framework to facilitate collaboration among the involved

organizations. Such kind of process specifications must not only focus on the local process implementation,

but also have to facilitate the inter-organizational collaboration.

A three-level process specification is proposed in (Grefen et al. 2003). The three-level process

framework consists of an external level, a conceptual level and an internal level. The internal level specifies

a conceptual process definition such that it is taken to the local technological infrastructure (e.g., the local

enterprise information systems). Internal level aims at the enactment of processes in the specific settings of

an organization. The conceptual level is used for conceptual reasoning about a process, a combination of

abstraction and aggregation of the internal level. The conceptual level defines a logical business view of a

process without constraints by local technological infrastructures or external (market) requirements. The

external level aims at communicating a process specification between different organizations, and makes

partial conceptual processes visible to other business organizations in a market. The external level made

partial conceptual process visible to other business organizations in a market.

Figure A.1: Three-level process schema

The relationship between the three process levels is illustrated in Figure A.1. The above-presented

Figure is slightly different than that in (Grefen et al. 2003). We duplicate the service providers’ side to

signify that the services requested by the service consumer may be collectively satisfied by multiple service

providers.

 - 58 -

 - 59 -

APPENDIX B: DGA

The DGA capture dependencies between “aggregates and aggregates”, “aggregates and activities”

and “activities and activities”.

The DGA is a tuple (A, G, E, join, fork) with

— A = {a1, a2, … , an} a set of activities.

— G = {g1, g2, … , gn} a set of aggregates.

— () () () ()E A A A G G G G A⊆ × × × ×U U U a set of dependencies.

and functions join and fork label respectively the incoming and outgoing dependencies of an activity

and an aggregate with the branching type:

 join, fork: AU G { , }AND XOR→

In the DGA, the activities and the aggregates are modeled as rectangles. The arrows represent the

dependency relationships. For example, in Figure C.1 activity “A2” depends on activity “B2”, then the

arrow goes from “B2” to “A2”. In the DGAs, the incoming and outgoing dependencies of an aggregate and

an activity are typed with AND or XOR. Only one type, either AND or XOR, can be assigned to incoming

resp. outgoing dependencies.

Figure B.1: Example DGA

