
 Eindhoven University of Technology

MASTER

On the speed of VSH

de Hoogh, S.J.A.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4819dc1d-2dc1-4b17-a92a-abfbe10bcb99

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

On the Speed of VSH

By
S.J.A. de Hoogh

Supervisors:

Scott Contini (Macquarie University Sydney)
Benne de Weger (TU/e)

Eindhoven, February 21, 2008

i

Abstract

Some important security schemes, such as Digital Signature Schemes, rely on cryptographic
hash functions that are collision resistant. It is known that the most common hash
functions, such as SHA1 and MD5, do not satisfy this property. Moreover, as cryptanalysts
are advancing the methods for finding collisions for this type of hash functions, one might
consider hash functions that are provable collision resistant. In 2005, Contini, Steinfeld and
Lenstra introduced the Very Smooth Hash (VSH) that is the first provable collision resistant
hash function (based on the hardness to factor large numbers) that is getting close to being
practical. One of the problems of VSH is that it has a relatively long running time with
respect to the common hash functions.

In this thesis, we show how to improve the speed of VSH by about 75% by means of smart
implementations and by means of using a less conservative security assumption. In addition,
we will present an implementation of VSH based on trapdoor information that makes VSH
three times faster. Lastly, we show that advances in integer factorization are less of a
problem for VSH than they are for RSA. Specifically, increasing the size of the modulus
results in only a linear slowdown for VSH, as opposed to a cubic (in practice) slowdown for
RSA.

Acknowledgements

First of all, I would like to thank those who made it possible to make a dream of mine to
come true: doing my final project outside of Europe. In this respect I would like to thank
Dr. Benne de Weger for contacting Stephan Overbeek, who I wish to thank for contacting
Prof. Jozef Pieprzyk. Then, I wish to thank Prof. Jozef Pieprzyk for accepting me and
helping me during my stay. I want to thank the Macquarie University Sydney for helping
me doing this project by providing help and sufficient facilities.

Secondly, I would like to thank Dr. Scott Contini for suggesting this nice and interesting
topic and for his support and helpful supervision during this research. I would also like to
thank Dr. Benne de Weger, Dr. Ron Steinfeld and Prof. Igor Spharlinski for their support
and helpful conversations.

And last but not least, I would like to thank those that gave me extra moral and/or
financial support: The research institute EIDMA, Prof. Henk van Tilborg, my best friends,
my family and of course my fiancee, who spend the whole year with me in Sydney.

ii

Contents

1 Introduction 1

2 The Very Smooth Hash 3
2.1 Background of the Security of VSH . 4

2.1.1 Notation . 4
2.1.2 Integer Factorization . 4
2.1.3 The VSSR assumptions . 6

2.2 Classic VSH . 7
2.2.1 Description and the Proof of Security 7
2.2.2 The Efficiency of Classic VSH . 9

2.3 Improving the Speed of Classic VSH . 11
2.3.1 Increasing the number of small primes 11
2.3.2 Pre-computing products of primes . 11
2.3.3 Fast VSH . 12
2.3.4 The Results of [6] concerning the Speed of VSH 14

2.4 Some Possible Practical Applications of VSH 15
2.4.1 ’Hash-then-sign’ RSA Signatures . 15

2.5 Cramer-Shoup Signature Scheme . 16

3 Multiple Precision Algorithms 17
3.1 Multiple Precision Algorithms used by GMP 17

3.1.1 Classical Algorithms . 18
3.1.2 Fast Multiplication Algorithms used by GMP 21

3.2 Barrett Modular Reduction . 23

4 Some Implementation Ideas 25
4.1 Some Computer Technical Issues . 27

4.1.1 Pipelining and Branch Prediction . 27
4.1.2 Scheduling . 29
4.1.3 Function Calls . 29

4.2 Reducing the Function-Call Overhead . 29
4.3 Tree-Based Multiplication . 33
4.4 Results of these Ideas . 34

iii

iv CONTENTS

5 New Choices for k and the Security Assumption 37
5.1 Adding Small Primes . 38

5.1.1 Classic-VSH . 38
5.1.2 Fast-VSH . 51
5.1.3 Results . 52

5.2 The new Computational VSSR assumption 54
5.3 Combining all Ideas . 58

5.3.1 Classic-VSH . 59
5.3.2 Fast-VSH . 60

6 Reducing Prime Exponents by φ(n) 61
6.1 Pseudo code . 62
6.2 Results . 66
6.3 Discussion . 69

7 On The Linearity of the Speed of VSH 71
7.1 Classic-VSH . 72
7.2 Fast-VSH . 73
7.3 Trapdoor-VSH . 76

8 Conclusion and Further Research 77

A Full Speed Table 83

B Number Theoretic Background 85
B.1 The Prime Number Theorem . 85

C Some Proofs 87
C.1 The Security Proof of Fast VSH . 87
C.2 σn̄,n being Existentially Unforgeable . 88

D Some Considerations With respect to Chapter 5 91
D.1 Considerations Concerning Section 5.1 . 91

D.1.1 Proof of claim 5.1.1 . 91
D.1.2 Problems with ∼ . 92

D.2 The Optimal Running Time to Solve VSSR 93

E Source codes 95
E.1 Mathematica Source Codes . 95

E.1.1 Calculating the number of SP-multiplications w.r.t. Section 4.4 95
E.1.2 Creating the figures of subsection 5.1 99
E.1.3 Solving UU = L(S) . 101

E.2 C-source code . 103
E.2.1 Source Codes of the Ideas of Chapter 4 103
E.2.2 Fast-VSH . 107
E.2.3 C Source Codes for the Altered Pseudo codes of Classic-VSH w.r.t.

Chapter 5 . 110
E.2.4 Trapdoor-VSH (Chapter 6) . 116

CONTENTS v

E.2.5 Some gprof Profiles . 123

Chapter 1

Introduction

As globalization is a fact, computer networks (such as the internet) are becoming more and
more important to establish long distance communication in a reliable way. Since almost
anyone can access such networks, security is an important issue. Cryptographic hash
functions play a vital role in many such security systems.

As [7] describes, throughout the history people used several different and contradictory
definitions for cryptographic hash functions. So it seems to be very difficult to formulate
precisely what ’a’ cryptographic hash function is and what properties ’it’ should satisfy1.
According to [22] a cryptographic hash function H is ideally a function that roughly satisfies
the following properties:

• H maps an input x of arbitrary length to an output H(x) of fixed length.

• It takes relatively little time to compute H(x).

• (pre-image resistance) Upon receiving H(x), it is computationally infeasible to find x.

• (second pre-image resistance) Upon receiving H(x), it is computationally infeasible to
find x′ 6= x such that H(x′) = H(x).

• (strong collision resistance) It is computationally infeasible to find an x and an x′,
where x 6= x′, so that H(x) = H(x′).

For a more detailed introduction to hash functions we refer to [22] or [11]
Scott Contini et al. also describe in [7] that the above definition is very imprecise. For

example: What means “computationally infeasible” precisely? In addition to that they show
that it is hard to formalize these definitions. We will, nevertheless, try to formalize above
definition by giving a precise definition of ”computationally infeasible”. Because of the
discussion of both Contini et al. in [7] and Phillip Rogaway in [24], we have to note here,
that we don’t claim this definition to be a very good one with respect to the general case.
But it will give more insight in the definition of a cryptographic hash function and it will
suffice with respect to VSH.

With computationally infeasible, we mean the following:

Definition 1.0.1. Let X be a problem, and let Y be a hash function. Let α denote the
security parameter and let t(α, X, Y) denote the number of times that Y is called by the

1see http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007 May.html

1

2 CHAPTER 1. INTRODUCTION

fastest algorithm known to solve problem X. t(α, X, Y) is also called the workfactor. We say
that solving X is computationally infeasible for Y if the corresponding workfactor is
super-polynomial in α.

For example: for common hash functions as SHA1, MD5 and HAVAL the security
parameter is usually the bit-length of their output, say α. Initially, it is then assumed that
the fastest algorithm to find either a pre-image or a second pre-image or to find a collision
are brute force methods, i.e. exhaustive search for finding a first or second pre-image and a
birthday attack for finding a collision. So it is assumed that the workfactor for these hash
functions are respectively 2α to find a first or second pre-image and 2α/2 to find a collision.
At Eurocrypt 2005 John Kelsey and Bruce Schneier showed in [17] that second pre-images
can be found with a workfactor much less than 2n, but still super-polynomial in n. With
respect to VSH, the asymptotic complexity to find collisions is more or less equivalent to the
complexity to factor an n-bit number using the Number Field Sieve, i.e. sub-exponential
(but super-polynomial) in n.

Some important applications, such as Digital Signature Schemes (for example [1]), rely on
hash functions which are strong collision resistant. It is known that the most common hash
functions like MD5, HAVAL and SHA1 do not satisfy this property, see [28] and [27]. In [6]
Scott Contini, Ron Steinfeld and Arjen Lenstra introduce VSH (Very Smooth Hash) a
cryptographic hash function that is provably collision resistant. With provably we mean that
it can be proven that finding a collision for VSH is as hard as solving some previously
known and well studied mathematical problem which is assumed to be hard. Like RSA, this
problem is based on the hardness to factor a large modulus n = pq, where p and q are secret
primes of almost equal size.

However, this also results in some disadvantages. To provide proper security, n should be
large (usually about 1024 bits at least). As the next chapter will show, this results in
time-consuming modular arithmetic and a relatively large output length. The output of
SHA1 is, for example, 160-bits, while the output of VSH is equal to the bit-size of n.
Moreover, VSH provides collision resistance only. For certain outputs, it is easy to find a
corresponding input. So in the sense of [22] VSH is not a hash function at all.

Still, VSH provides a provable collision resistant function, which is the most practical in
the group of hash functions with provable properties, see also [26]. According to [6],
previous hash functions that are also based on modular arithmetic and have provable
properties (see for example [10]) require at least one modular multiplication per O(log log n)
message bits, whereas VSH requires only one modular multiplication per Ω(log n)
message-bits, without losing its provable collision resistance property. So indeed VSH is
very efficient for this type of hash functions. Here, O and Ω denote the usual Big-O,
Big-Omega notation, see also section ?? or section 2.4 of [12].

This thesis will describe VSH and how we improve the speed of VSH. We will build VSH
and our solutions in the C programming language. The first chapter will give a detailed
description of VSH. The second chapter will explore several techniques to perform fast
arithmetic. The third chapter will describe some implementation ideas. The fourth chapter
will discuss our main idea. The fifth chapter will discuss an idea with high performance, but
with restricted applicability. The sixth chapter will discuss the influence of the speed of VSH
when 1024-bit RSA moduli are not safe anymore. The final chapter will conclude this thesis.

Chapter 2

The Very Smooth Hash

Common cryptographic hash functions like SHA1, HAVAL and MD5 are usually very fast,
but they have no security proofs behind them. However, there are hash functions (see for
example [10]) that provide provable security. Unfortunately, these functions are usually very
slow compared to the common hash functions. In [6] Scott Contini, Arjen Lenstra and Ron
Steinfeld introduce VSH, which is provable collision resistant and –for this type of hash
functions– very efficient. The following table illustrates this.

Year Hash Function defined in Image (hash) space # Modular multiplications per message bit
2006: [4] Fp2 2 log(p)
2001: [23, 25] Z/nZ 1.5
1987: [10] Z/nZ O(1/ log log n)
2005: VSH [6] Z/nZ O(1/ log n)

Table 2.1: Efficiency of several provable secure hash functions

VSH is based on modulo n arithmetic, where n is an RSA modulus. So n = pq, where p
and q are distinct primes of almost equal size. Like RSA, the security of VSH is based on
the difficulty to factor n. We will show in this chapter that if it is easy to create collisions,
i.e. two distinct messages for which VSH produces the same output, then it is easy to factor
n. Furthermore, we will show in this chapter how [6] relates the security of VSH to the
security of factoring.

Moreover, VSH enjoys the property that in some sense its speed is linear in the bit-size of
the modulus n. We will show this in detail in chapter 7. Due to the recent and quite
successful attempts to factor large RSA moduli (see [21]) it may be desirable to increase the
size of the modulus n to maintain a reasonable level of security. Because the speed of VSH
is more or less linear in the size of n, increasing the size of n does not affect VSH’s speed as
much as it would affect the speed of RSA, which is cubic in the size of n.

Also, Contini et al. show in [6] that VSH can be very useful to speed up provably secure
signature schemes (such as Cramer-Shoup) and to build a signature scheme where VSH is
combined with RSA.

In order to give a complete introduction to the remainder of this thesis, this chapter will
discuss VSH in detail. This discussion is based on [6]. The first section will introduce some
important notation and describe the background of the security of VSH. The second section
will present VSH and give its security proof. The third section will describe how [6]
improves the speed of VSH and the last section will give some possible applications of VSH.

3

4 CHAPTER 2. THE VERY SMOOTH HASH

2.1 Background of the Security of VSH

This section will describe the background of the security of VSH and will conclude with a
computational assumption. Based on this assumption the collision resistance property of
VSH can be proved. But first we will introduce some important notations.

2.1.1 Notation

Let c > 0 be a fixed constant, p and q some primes and let n = pq be a composite of bit-size
S, which is hard to factor. Let φ(n) denote the Euler-phi function, i.e. φ(n) = (p− 1)(q− 1).
Let Zn denote the ring of integers modulo n represented by {0, 1, · · · , n− 1}. Finally let pi

denote the i-th prime, where p1 = 2, p2 = 3, p3 = 5, · · · . Let p0 be equal to −1.
If for certain real functions f, g it holds that there exist constants d > 0 and X ∈ R such

that |f(x)| ≤ |d · g(x)|, for all x ≥ X then we write f(x) = O(g(x)). And if it holds that
|f(x)| ≥ |d · g(x)| for all x ≥ X, then we write f(x) = Ω(g(x)).

Finally if limx→∞ f(x)/g(x) = 1 for certain real functions f and g, then we write
f(x) ∼ g(x). If limx→∞ f(x)/g(x) = 0, then we write f(x) = o(g(x)).

The following definitions define several smoothness properties.

Definition 2.1.1. Let n = pq be an S-bit composite, where p and q are some distinct
primes. Let c be some positive real constant. An integer x is called pk-smooth if the largest
prime factor of x is less than or equal to pk.

The integer x is called very smooth if the largest prime factor dividing x is less than or
equal to (log n)c.

Note that by this definition x = −1 also counts as very smooth.

Definition 2.1.2. An integer b is called a very smooth quadratic residue modulo n if b is
very smooth and if there exists an integer x such that b ≡ x2 mod n. The integer x is called
a modular square root of b.

The integer x is called a trivial modular square root if b = x2. In other words: b is a
square in N and x is the integer square root of b.

2.1.2 Integer Factorization

This subsection will discuss a general approach that is used in most factorization
algorithms. Based on this approach the security of RSA is usually evaluated. We will show
that this approach is, therefore, also relevant to VSH.

The idea to find factors of n is as follows: find x and y ∈ Z such that x2 ≡ y2 mod n and
x 6≡ ±y mod n. As the following claim will show, it follows that one can easily find factors
of n from x and y.

Claim 2.1.3. Let n be a composite in N, and let x, y ∈ Z be integers such that x2 ≡ y2

mod n and x 6≡ ±y mod n. Then, gcd(x± y, n) are proper factors of n.

Proof. Let x, y and n satisfy the properties given in the claim. So for some k ∈ Z it holds
that x2 = y2 + k · n, so that

x2 − y2 = (x− y)(x + y) = k · n. (2.1)

2.1. BACKGROUND OF THE SECURITY OF VSH 5

Now suppose gcd(x + y, n) = 1. Because, by equation 2.1 it follows that (x− y)(x + y)|n, it
follows by elementary number theory that (x− y)|n, i.e. x ≡ y mod n, which is a
contradiction. Therefore, gcd(x + y, n) 6= 1 and similarly we find that also gcd(x− y, n) 6= 1.

Hence gcd(x± y, n) are proper factors of n.

A way of creating x and y that satisfy the properties of claim 2.1.3 is by using relations of
the form:

v2 ≡
u∏

i=0

p
ei(v)
i mod n, (2.2)

where v ∈ Z, ei(v) ∈ N ∪ 0 (for all i, v), and u is some fixed integer. The following claim
shows that given u + 1 + t relations, there exist least t different (x, y)-pairs for which claim
2.1.3 may hold.

Claim 2.1.4. Let m, k be some positive integers, p some prime and A be an m× (m + k)
matrix with entries in Zp. We call a vector x ∈ Zm+k

p a dependency if Ax ≡ 0 mod p.
Then A has at least k linear independent dependencies.

Proof. Let ker(A) denote the kernel of A. From matrix theory it follows that A has rank at
most m and, therefore by the rank-nullity theorem (i.e. m + k=rank(A) + dim(ker(A)))
the dimension of the kernel is at least k. Observing that x ∈ ker(A) implies that x is a
dependency, completes the proof.

So, according [6], given u + 1 + t different relations of the form (2.2), using linear algebra,
one is able to find at least t linear independent dependencies modulo 2 in the matrix
(ei(vj))ij , where i = 0, · · · , u and j = 0, · · ·u + t. Let (dj)u+t

j=0 ∈ Z2 be such dependency.
Then

u+t∑

j=0

ei(vj)dj ≡ 0 mod 2, for all i = 0, · · · , u

implying that

u+k∏

j=0

vjdj

2

≡
u∏

i=0

p
∑u+t

j=0 ei(vj)

i mod n, (2.3)

where all exponents in the right hand side are even by the choice of (dj)u+t
j=0. Obviously, from

Equation (2.3) x and y such that x2 ≡ y2 mod n are easily deduced. If x 6≡ ±y mod n
then it leads to a proper factor of n.

According to [6] finding a relation, where all exponents in the right hand side are even, is
extremely rare, unless n is very small. Moreover, it claims that it can be safely assumed that
for each relation of the form (2.2) found, at least one of the exponents (ei(v)) is odd. Also,
[6] claims that if the relations are random, then with probability at least 1/2 the resulting
(x, y)-pair satisfies the properties of claim 2.1.3 and, therefore, leads to a proper factor of n.

Remark 2.1.5. The previous discussion shows that relations of the form (2.2) lead to the
factorization of n. The opposite, i.e. given a factorization, one can create relations of the
form (2.2), is also true. This can roughly be done as follows:

1. Choose an exponent vector (ej)u
j=0.

6 CHAPTER 2. THE VERY SMOOTH HASH

2. Calculate x =
∏u

j=0 p
ej

j .

3. Check whether x is a square modulo p and q, the prime factors of n.

4. If not then start over, else calculate the square roots of x modulo the prime factors of
n. Let

√
x ≡ a mod p and

√
x ≡ b mod q.

5. Apply the Chinese remainder theorem to find a relation of the form (2.2).

Because checking whether a number is a square modulo a prime, via Euler’s criterion, and
taking its square root can be done very efficient (see corollary 5.7.3 and the beginning of
chapter 7 of [12]), it follows that one can find relations of the form (2.2) efficiently if the
factorization of n is known. We will demonstrate this with the following example.

Example 2.1.6. Suppose n = 143, so that p = 11 and q = 13, and suppose that u = 2. We
choose (2, 1, 2) as exponent vector, so that x = 22 · 3 · 52 = 300. It follows that x ≡ 3 mod 11
and x ≡ 1 mod 13. As 52 ≡ 3 mod 11 it follows that

√
x ≡ 5 mod 11 or

√
x ≡ 6 mod 11, and√

x ≡ 1 mod 13 or
√

x ≡ 12 mod 13. We take a = 5 and b = 1. As 11 and 13 are co-prime it
follows from the Chinese Remainder Theorem that there exists a solution for

√
x to

{ √
x ≡ a mod p√
x ≡ b mod q

,

which is unique modulo n. Using the Extended Euclidean Algorithm, we find that
6 · 11− 5 · 13 = 1. So

√
x ≡ 5 · (−5) · 13 + 1 · 6 · 11 mod n, which is equivalent to 27 mod n.

Hence,
(27)2 ≡ p2

1 · p2 · p2
3 mod n.

2.1.3 The VSSR assumptions

It follows from the previous subsection that finding relations in the form of (2.2) is closely
related to factoring n, i.e. finding such relations is easy if and only if factoring n is easy. As
nowadays methods to factor n are still sub-exponential in the size of n, one can perhaps
assume that finding relations of the form (2.2) is sub-exponential in the size of n and,
therefore, hard. This is roughly the assumption on which VSH is based.

To make this precise we will cite the following definition and assumption from [6].

Definition 2.1.7. (VSSR) Let n be the product of two unknown primes of approximately
the same size and let k ≤ (log n)c. The Very Smooth number nontrivial modular Square Root
(VSSR) problem is as follows: Given n, find x ∈ Z∗n such that x2 ≡ ∏k

i=0 pei
i mod n and at

least one e0, · · · , ek is odd.

VSSR Assumption: The VSSR assumption is that there is no probabilistic polynomial
(in log n) time algorithm which solves VSSR with non-negligible probability.

From this definition and assumption it is not clear how the complexity of factoring n and
solving VSSR are related. Contini et al. use in [6] the available factoring algorithms to
make this clear. One of the most powerful tools to factor n is the Number Field Sieve (see
Chapter 6 of [9] for an introduction to factoring algorithms). Let L(X) denote the expected
time that the NFS (Number Field Sieve) requires to factor an X-bit number. Consider again
the fixed integer u in equation (2.2) and recall that n has bit-length S. According to [6] with

2.2. CLASSIC VSH 7

the current state of the art, asymptotically, a relation of the form (2.2) cannot be found with
the available methods in less than L(S)/u time. Now [6] concludes that with the current
state of the art, the security of a system that is based on VSSR using an S-bit modulus is at
least as difficult as factoring an S′-bit modulus, where S′ is the smallest integer such that

L(S′) ≥ L(S)
u

(2.4)

This is the so called Computational VSSR Assumption.

Remark 2.1.8. As [6] remarks, this computational VSSR assumption is conservative and
leads to relatively large n. In chapter 5 we will show how we can improve the computational
VSSR assumption so that S = S′.

2.2 Classic VSH

This section will describe the basic version of VSH and give its security proof, i.e. a proof
that VSH is collision resistant under the VSSR assumption. We will refer to this version of
VSH as Classic VSH. Finally, we will discuss some advantages and disadvantages of Classic
VSH.

2.2.1 Description and the Proof of Security

Let k denote the block length. Choose k as the largest integer such that
∏k

i=1 pi < n. Let m
be a `-bit message and let mi denote the i-th bit of m. Suppose ` < 2k. Classic VSH is
given by the following algorithm:

Algorithm 2.2.1. Classic VSH

Input: An `-bit message m and an S-bit RSA modulus n.

Output: An S-bit hash of m.

Procedure: Initialization:
(Initial Value): Let x0 = 1.
(Number of iterations): Let L =

⌈
`
k

⌉
.

(padding): Let mj = 0 for ` < j ≤ Lk.
(Appending length block): Let `j be bits so that
` =

∑k
j=1 `j2j−1 and let mLk+j = `j for j = 1, · · · , k.

Iteration:
For j = 0, · · · ,L compute

xj+1 = x2
j ×

∏k
i=1 p

mj·k+i

i mod n.
Finalization:

Return xL+1.

Theorem 2.2.2. Classic VSH is collision resistant under the VSSR assumption. In other
words: Finding a collision for algorithm 2.2.1 leads to a solution to an instance of VSSR.

8 CHAPTER 2. THE VERY SMOOTH HASH

Proof. The proof follows the lines of the proof given in [6]. The proof shows that if one can
find colliding messages m and m′, then one can use them to find a solution for VSSR. Let xj

and x′j denote the j-th iterated values of algorithm 2.2.1 applied to m and m′ respectively.
Let `,L and `′,L′ denote the bit-length and the number of blocks of respectively m and m′.
As m and m′ collide it holds that m 6= m′ and xL+1 = xL′+1.

Firstly, consider the case in which ` = `′. Let m[j] denote the j-th k-bit block of m,
m[j] = (mj·k+i)k

i=1, for j = 0, · · · ,L, and we define m[L+ 1] = ∅. Let t ≤ L be the largest
index such that (xt,m[t]) 6= (x′t, m′[t]), but (xj , m[j]) = (x′j ,m

′[j]) for t < j ≤ L+ 1. From
the choice of t it holds that

(xt)2 ×
k∏

i=1

p
mt·k+i

i ≡ (x′t)
2 ×

k∏

i=1

p
m′

t·k+i

i mod n. (2.5)

Let ∆ =
{
i ∈ {1, · · · , k} : mt·k+i 6= m′

t·k+i

}
and

∆rs =
{
i ∈ {1, · · · , k} : mt·k+i = r and m′

t·k+i = s}. As the primes pi are coprime to n for
all i = 1, · · · , k it holds that all primes pi are invertible modulo n, and by the iteration step
of algorithm 2.2.1 it holds also that (xt)2 and (x′t)2 are invertible modulo n. So equation
(2.5) is equivalent to:

(xt)2 ×
∏

i∈∆10∪∆11

pi ≡ (x′t)
2 ×

∏

i∈∆01∪∆11

pi mod n ⇔

(xt)2 ×
∏

i∈∆10

pi ≡ (x′t)
2 ×

∏

i∈∆01

pi mod n ⇔

(xt)2 ×

 ∏

i∈∆10

pi

2

≡ (x′t)
2 ×

∏

i∈∆01∪∆10

pi mod n ⇔

xt

x′t
×

∏

i∈∆10

pi

2

≡
∏

i∈∆

pi mod n (2.6)

Obviously if ∆ 6= ∅ then equation (2.6) solves VSSR as stated in Definition 2.1.7. If ∆ = ∅
then also ∆10 = ∅ and it follows from equation (2.6) that (xt)2 ≡ (x′t)2 mod n. Recall that
x0 = x′0 = 1. As ∆ = ∅ implies that m[t] = m′[t] it follows from the choice of t and m 6= m′

that t ≥ 1. If xt 6≡ ±x′t mod n then it follows from remark 2.1.5 that VSSR can be solved by
factoring n. If xt ≡ ±x′t mod n, then xt ≡ −x′t mod n, since m[t] = m′[t] implies by the
choice of t that xt 6= x′t. It follows that

xt ≡ −x′t mod n ⇔

(xt−1)2 ×
k∏

i=1

p
m(t−1)·k+i

i ≡ −(x′t−1)
2 ×

k∏

i=1

p
m′

(t−1)·k+i

i mod n ⇔
[
xt

x′t

]2

≡ −1×
k∏

i=1

p
m(t−1)·k+i−m′

(t−1)·k+i

i mod n,

a solution to VSSR as p0 = −1 has an odd degree. Thus for the case l = l′ it holds that the
colliding messages m and m′ can be used to find a solution for VSSR.

2.2. CLASSIC VSH 9

Next, consider colliding messages m and m′, where l 6= l′. Since l 6= l′, it holds for at least
one i ∈ {1, · · · , k} that li 6= l′i. Similar to equation (2.5), we find from xL+1 = x′L′+1 and the
fact mL·k+i = li (see initialization part of algorithm 2.2.1) that

(xL)2 ×
k∏

i=1

pli
i ≡ (x′L′)

2 ×
k∏

i=1

p
l′i
i mod n. (2.7)

Now letting ∆l := {i ∈ {1, · · · , k} : li 6= l′i} and (∆l)rs := {i ∈ {0, · · · , k} : li = r and l′i = s},
we derive similar to equation (2.6) an immediate solution to VSSR, since ∆l 6= ∅:

 xL

xL′
×

∏

i∈(∆l)10

pi

2

≡
∏

i∈∆l

pi mod n, (2.8)

which concludes the proof.

If the factorization of n is known then collisions are easily generated. Using the fact that
p

a+b·φ(n)
i ≡ pa

i mod n we can create collisions as follows. Take a message m of bit-size at least
k · S. Define ei =

∑L
j=0 mj·k+i2L−j . Observe that VSH will output xL+1 ≡

∏k
i=1 pei

i mod n.
Calculate a message m′ such that the corresponding exponents satisfy e′i = ei + tiφ(n),
where ti are some integers, for all i ∈ {1, · · · , k}. Then m and m′ will collide.

The output xL+1 has in general bit-size S, which is more than 1024 bits to provide the
same security level as factoring an 1024 bit modulus, according to the computational VSSR
assumption. With respect to common hash functions this output is very long. SHA1
outputs hashes of length 160-bits for example.

Finally, modular arithmetic using a large modulus is very time consuming compared to
bitwise operations on which the common hash functions are based. To illustrate this, we
note that this version of VSH, using S′ = 1024 in (2.4), is about 75 times slower than SHA1.
Subsection 2.3.3 will give an improved version of VSH, which is still 25 times slower than
SHA1. We will show in this thesis how we can make a version, which is 15 times slower than
SHA1 and, if one has access to the trapdoor information, a version which is only 2.5 times
slower than Sha1.

However, as we noted in the introduction, VSH is -compared to other hash functions with
provable properties- very efficient. The fastest hash function based on modular arithmetic,
with provable properties (see [10]) requires a multiplication per O(log log n) message bits.
The next subsection will show that Classic VSH requires a multiplication per
Ω(log n/ log log n) message bits.

2.2.2 The Efficiency of Classic VSH

This subsection will show that Classic VSH requires a multiplication modulo n per Ω(log n/
log log n) message bits. The next chapter will give a proper introduction to multiplication
algorithms, here we only note that a multiplication of two integers A and B can be
computed in O(log(A) · log(B)) time. Consider implementation 2.2.3 of the iteration
function of Classic VSH, given as C-code. Because a multiplication of two numbers that are
reduced modulo n can be done in O((log n2)) time, we will say that some calculation is
equivalent to a multiplication if it can be done in O((log n)2) time. This straightforward
implementation consists of three parts: PoP, Sq and Mul. Because xi is at most as large as

10 CHAPTER 2. THE VERY SMOOTH HASH

Pseudo-code 2.2.3. Iteration of Classic VSH (straighforward)

Input: The iteration number j and xj and message m.

Output: xj+1.

Procedure: Set t = 1.
Product of Primes (PoP):

for(i = 1; i ≤ k; i++){
if(mj·k+i == 1){

t = t ∗ pi;
}

}
Squaring (Sq):

xj = x2
j mod n;

Multiplication (Mul):
xj+1 = xj ∗ t mod n;

Return xj+1.

n it follows that the calculation of x2
i can be done in O((log n)2) time. And also from the

definition of k in algorithm 2.2.1 it follows that t is at most as large as n. Hence, also the
calculation of xi ∗ t can be done in O((log n)2) time.

We will show that PoP is equivalent to a multiplication as well. In order to do this we
need some basics from number theory. See appendix B for a summary of these basics.
Recall from algorithm 2.2.1 that k is chosen such that

k∏

i=1

pi < n <
k+1∏

i=1

pi. (2.9)

Claim 2.2.4. Given an integer n, let k be an integer such that Equation (2.9) holds. Then,

k ∼ log n

log log n

Proof. Taking logarithms in Equation (2.9) yields

k∑

i=1

log(pi) < log n <

k+1∑

i=1

log(pi).

This is equivalent to
θ(pk) < log n < θ(pk+1).

, where θ is the Chebyshev θ function as defined in Appendix B.1.2. Then, applying Claim
B.1.6 yields

(1 + o(1))k log k < log n < (1 + o(1))(k + 1) log(k + 1),

which is equivalent to

1 <
log n

pk
<

(1 + o(1))(k + 1) log(k + 1)
(1 + o(1))k log k

.

2.3. IMPROVING THE SPEED OF CLASSIC VSH 11

Letting k →∞, then, from the squeeze theorem it follows that pk ∼ log n.
Finally it follows that k = π(pk), where π denotes the prime-counting function as defined

in Appendix B.1.1. Thus, by the Prime Number Theorem (B.1.3) we conclude

k = π(pk) ∼ π(log n) ∼ log n

log log n
.

As we see in the proof it holds that pk ∼ log n. This implies that pk = O(log n). Since
pi ≤ pk for all i ≤ k and t < n, it holds that PoP can be computed in
O(k · log(n) · log(log(n))) time, since the size of each pi is O(log log n). Then, it follows from
claim 2.2.4 that PoP can be computed in O((log n)2) time. Hence also PoP is equivalent to
a multiplication.

Note that not every message bit will be –in general– equal to one. So Classic VSH, based
on implementation 2.2.3 requires at most 3 multiplications modulo n per iteration. And
since each iteration processes exactly k message bits it follows from claim 2.2.4 that Classic
VSH requires 3 multiplications modulo n per Ω(log n/ log log n) message bits, which is
equivalent to a multiplication modulo n per Ω(log n/ log log n) message bits.

2.3 Improving the Speed of Classic VSH

This section will describe how [6] improves the efficiency of Classic VSH. This section will
conclude with Fast-VSH, the variant of VSH, which requires a multiplication per Ω(log n)
message bits as opposed Classic-VSH, which requires a multiplication per Ω(log n/ log log n)
message bits.

2.3.1 Increasing the number of small primes

Because the iteration part of Classic VSH is the time-consuming part, a speed up may be
expected when the iteration numbers are reduced. One way of reducing the iteration
numbers is by increasing the size of k, i.e. a k larger than implied by Equation (2.9), but
still smaller than (log n)c to ensure the applicability of the VSSR assumption 2.1.7. A larger
k results in more message-bits being processed each iteration and thus less iterations being
required. Some drawbacks of increasing k are, for example, that (1) by the computational
VSSR assumption (2.4) a larger modulus is required and (2) that PoP in 2.2.3 will be more
time-consuming, because it has to do more multiplications and possibly some modulo n
reductions as Equation (2.9) doesn’t hold anymore. We will discuss this idea in more detail
in chapter 5.

2.3.2 Pre-computing products of primes

To decrease the number of multiplications that has to be done by PoP in 2.2.3, one can
pre-compute some products of primes and put that in a list so that PoP can look it up from
a table.

12 CHAPTER 2. THE VERY SMOOTH HASH

More precisely, consider again the block-length k. Let b be a divisor of k and let k̄ = k/b.
Let x(j) (j = 1, · · ·) denote the j-th bit of x. Define

vi,t =
b∏

j=1

p
t(j)
(i−1)b+j ,

where i = 1, · · · , k̄ and t = 0, · · · 2b − 1. Finally let m[j] denote the j-th b-bit chunk of
message m being the binary representative of some non-negative number ≤ 2b. Then, the
line

xj+1 = x2
j ×

k∏

i=1

p
mj ·k+i
i

of Algorithm 2.2.1 can be replaced by

xj+1 = x2
j ×

k̄∏

i=1

vi,m[j·k̄+i].

And the new code for PoP in implementation 2.2.3 becomes:

Product of Primes (PoP):
for(i = 1; j ≤ k̄; i++){

t = t ∗ vi,m[j·k̄+i];
}

This idea only affects the implementation of Classic VSH and, therefore, it has no effect
to the size of L or the size of the modulus implied by the computational VSSR assumption.

2.3.3 Fast VSH

The idea of pre-computing primes can be improved by replacing the products of primes vi,t

by just primes p(i−1)2b+t+1, which are much smaller. Moreover, dropping the condition that
b should be a divisor of k and by letting k̄ = bk, it follows that each iteration processes more
message bits. This idea combines the two ideas of the previous subsections and leads to Fast
VSH, see algorithm 2.3.1. For some integer b, let again m[j] denote the j-th b-bit chunk of
m.

The straightforward implementation for Fast VSH is given by 2.2.3 except that now PoP
is given by:

Product of Primes (PoP):
for(j = 1; j ≤ k; j++){

t = t ∗ p(j−1)2b+m[ik+j]+1;
}

Because Fast VSH involves k · 2b small primes instead of k, the size of the modulus n
should again increase by the computational VSSR assumption to maintain the same level of
security. We show in Appendix C.1 that the changes from Classic VSH to Fast VSH do not
affect the security proof. We will show here that Fast VSH requires a single multiplication
mod n per Ω(log n) message-bits.

2.3. IMPROVING THE SPEED OF CLASSIC VSH 13

Algorithm 2.3.1. Fast VSH

Input: An l-bit message m, an integer b and an S-bit RSA modulus n.

Output: An S-bit hash of m.

Procedure: Initialization:
(Initial Value): Let x0 = 1.
(Number of iterations): Let L =

⌈
l

bk

⌉
.

(padding): Let mi = 0 for l < i ≤ Lk.
(Appending length block): Let li be bits so that
l =

∑k
i=1 li2i−1 and let mLk+i = li for i = 1, · · · , k.

Iteration:
For j = 0, · · · ,L compute

xj+1 = x2
j ×

∏k
i=1 p(i−1)2b+m[jk+i]+1 mod n.

Finalization:
Return xL+1.

In order to do this, the choice for the block length k is changed to be the maximal value
such that

(k+1)2b∏

i=1

pi ≤ (2n)2
b
. (2.10)

The following proposition ensures that PoP is still equivalent to a multiplication modulo n.

Proposition 2.3.2. Given an RSA modulus n, if k is chosen such that Equation (2.10)
holds, then,

k∏

i=1

pi2b < n.

Proof. From Equation (2.10) it follows that

(k+1)2b∏

i=1

pi =
2b∏

t=1

k∏

i=0

pi2b+t ≤ (2n)2
b
.

Because pi < pj for all i < j it follows that

(
k∏

i=0

pi2b+1

)2b

<

2b∏

t=1

k∏

i=0

pi2b+t ≤ (2n)2
b
,

so that
∏k

i=0 pi2b+1 < 2n. It also follows that
∏k

i=1 pi2b <
∏k

i=1 pi2b+1 so that

k∏

i=1

pi2b <
k∏

i=1

pi2b+1 =
∏k

i=0 pi2b+1

p1
≤ 2n

2
.

Hence
∏k

i=1 pi2b < n.

14 CHAPTER 2. THE VERY SMOOTH HASH

Lemma 2.3.3. Fast VSH requires a multiplication per Ω(log n) message bits using a
straightforward implementation, if 2b is chosen as a fixed positive power of log n, say y.

Proof. If k is replaced by (k + 1)2b and n by (2n)2
b
, then claim 2.2.4 implies

(k + 1)2b ∼ 2b log(2n)
log(2b log(2n))

,

So that

k ∼ log(2n)
log(2b log(2n))

− 1. (2.11)

Therefore, PoP can be computed in

O (k · (log n)(log log n)) = O

(
log(2n) · (log n)(log log n)

log(2b log(2n))

)
= O

(
(log n)2

)

time. As every iteration from algorithm 2.3.1 processes bk message bits, it follows that Fast
VSH requires a single multiplication per Ω(bk) message bits.

From Equation (2.11) it also follows that

bk ∼ b log(2n)
log(2b log(2n))

− b.

Let y ∈ R+ be the fixed value, for which b is chosen so that 2b = (log 2n)y, it follows that
b = y log log 2n/ log 2, so that

b log(2n)
log(2b log(2n))

− b =
y

y + 1
· (log log 2n)(log(2n))

(log 2)(log log 2n)
− y log log 2n

log 2
∼ y

y + 1
· 1
log 2

(log n).

Hence, PoP of Fast VSH requires a multiplication mod n. As Sq and Mul are unchanged
with respect to Classic-VSH it holds that Fast VSH requires a multiplication per Ω(log n)
message bits.

2.3.4 The Results of [6] concerning the Speed of VSH

This subsection will give the results that [6] achieves by implementing the four variants of
VSH. The implementations are done in C, using the GNU Multiple Precision library
(GMP). This is nothing more than a library, which performs arithmetic on large numbers
very efficiently. We will give more details in the next chapter. The implementations are run
on a 1GHz Pentium III computer. In the following table, S denote the bit-size of the RSA
modulus n. And S′ denotes the corresponding size of an RSA modulus, such that the
particular VSH variant give the same level of security as RSA by the computational VSSR
assumption 2.4.

In Chapter 4, 5 and 6 we will discuss how we improve the speed of VSH even more and in
Chapter 7 we will explain why doubling the security level (S′) will not result in a slowdown
of factor 8 for VSH as it would for RSA, instead, we will show in Chapter 7 that the
slowdown factor for VSH is linear (i.e. ≈ 2).

2.4. SOME POSSIBLE PRACTICAL APPLICATIONS OF VSH 15

S′ Variant # small primes S b # precalculations Megabyte/second

1024 Classic VSH 152 1234 1 0 0.355
Adding Small primes 1024 1318 1 0 0.419

Pre-Calculate products 8 128*256 0.486
Fast VSH 216 1516 8 0 1.135

2048 Classic VSH 272 2398 1 0 0.216
Adding Small primes 1024 2486 1 0 0.270

Pre-Calculate products 8 128*256 0.303
Fast VSH 218 2874 8 0 0.705

Table 2.2: The results of [6]

2.4 Some Possible Practical Applications of VSH

This section discusses some possible practical applications of VSH that [6] introduces. It
follows from this discussion that indeed VSH can be very useful in signature schemes as it
provides provable collision resistance. We will discuss two applications that [6] suggests. To
give an idea about signature schemes we will treat one simple application in full detail,
while we will only briefly remark the second application.

In chapter 6 we present a very fast variant of VSH, which makes use of ’trapdoor’
information. Precisely, it uses n’s factorization. This implies that this variant cannot be
used in general, because obviously n’s factorization needs to remain secret. However, in the
following signature schemes, the signer chooses his own modulus and has, therefore, the
possibility to use this variant.

Basically, a signing scheme is a scheme in which a signer proves to a verifier that he has
read, agreed to, etc. a message m. Therefore, a signature scheme is called secure if no
adversary is able to impersonate the signer on any message m. This leads to the following
requirement of a signature scheme. See also [2].

Definition 2.4.1. A signature scheme is existentially unforgeable under an adaptive chosen
message attack if there exist no polynomial time adversary A making at most q signature
queries to (possibly adaptively chosen) messages m1, · · · ,mq that is able with non-negligible
probability to produce a valid signature (m̃, σ̃), where m̃ 6= mi for all i = 1, · · · , q.

2.4.1 ’Hash-then-sign’ RSA Signatures

Because the size of the output of VSH comparable to the size of the output of RSA, it
makes sense to construct a ’hash-then-sign’ RSA signature scheme using VSH. However, as
[6] shows in section 3.3, this has to be done carefully. It suggests the following construction
scheme:

step 1: Defining the short (S-bit) message signature scheme Let n̄ be an
(S + 1)-bit RSA modulus and n be an S-bit VSH modulus. Choose n̄ and n
independently at random. Specify a one-to-one one-way encoding function
f : {0, 1}S → {0, 1}S . Here one-way means that f is pre-image resistance as defined in
the introduction. Finally, define the signature scheme using signing function
σn̄(m) := (f(m))1/e, where e denotes the public RSA-key. The function f has to be
chosen such that the signature scheme with signing function σn̄ is existentially
unforgeable under adaptively chosen message attacks.

16 CHAPTER 2. THE VERY SMOOTH HASH

step 2: Defining the signature scheme on messages of arbitrary length Let
(n̄, n, e) be the signer’s public key. Define the signature scheme using signing function
σn̄,n(m) := σn̄(V SHn(m)).

The resulting signature scheme is then as follows:

• Key generation: Choose random S/2 bit primes p, q, p̄ and a random (S/2 + 1)-bit
prime q̄. Let n̄ = p̄ · q̄ and n = p · q. Choose d co-prime to φ(n̄), the private RSA-key,
and calculate e = 1/d mod φ(n), the public RSA-key. The public key is (n̄, n, e).

• Signing: If the signer want to sign message m, he computes σ := σn̄,n(m) and sends
the pair (m,σ) to the verifier.

• Verifying Given the signer’s public key and the signature (m,σ), the verifier computes
α := f(V SHn(m)) and β := σe mod n̄ and checks whether α = β. If so, only then he
accepts.

It can be proven as shown in Appendix C.2 that this scheme is existentially unforgeable
under adaptively chosen message attacks under the assumptions that σn̄ is and that VSH is
collision resistant.

2.5 Cramer-Shoup Signature Scheme

Another signature scheme is the Cramer Shoup signature scheme. According to [6] it is the
most efficient factoring-based signature scheme that is provable secure. This signature
scheme uses a so called ’Randomized Trapdoor Hash Function’. In section 4 of [6] it is
shown how to turn VSH into such function and how to alter the Cramer-Shoup scheme
using VSH, without losing its provable properties. We will not give the details here.

It follows that the verification in this altered Cramer-Shoup Scheme can be done about
twice as fast using the VSH based ’Randomized Trapdoor Hash Function’. With the idea
discussed in Chapter 6, we will show that we also may expect an increase of the speed for
the signing procedure, as the time required to derive the hash of the message to be signed
can be reduced to one third of the time that Fast-VSH requires.

Some drawbacks are, however, that because of VSH’s output length the altered
Cramer-Shoup Scheme has a much larger public key and unlike the original scheme, some
pre-calculations are required. We think that these drawbacks are acceptable as the efficiency
of the scheme is improved.

Chapter 3

Multiple Precision Algorithms

From the description of VSH in the previous Chapter, it follows that VSH calculates the
hash of a message by mostly modular multiplications of some large numbers. So the
performance of VSH depends very much on the multiplication algorithms that are used.
These algorithms are often called Multiple Precision algorithms. Basically, the Multiple
Precision multiplication algorithms derive the product of two large numbers (Multiple
Precision product) by splitting the Multiple Precision product into small (Single Precision)
products and additions.

Similar to Contini et al. ([6]), because GNU’s Multiple Precision library is one of the most
efficient libraries to perform multiple precision calculations, we will implement VSH in the
C-computer language using GMP. According to the manual of GMP ([14]), the GMP
multiplication function decides what multiplication algorithm to use. The next Chapter will
show how one can try to force GMP to perform some very efficient algorithm to perform
multiple precision multiplications.

This Chapter presents very briefly the algorithms that are used by GMP. In addition, we
will present Barrett’s Modular Reduction Algorithm that is not used by GMP. We will
implement VSH based on this algorithm and show the results of the speed of VSH.

In this chapter, let a Single Precision multiplication (SP-multiplication) be a
multiplication between two integers of at most β-bits. For a Multiple Precision α-bit integer
A, let A(β) denote the number of β-bit integers required to express A. So A(β) = dα/βe, and

A =
A(β)∑

i=1

ai2β(i−1),

where ai are β-bit integers for all i = 1, · · · , A(β) and aA(β)
6= 0. We will also use the radix β

representation of A, i.e., A = (aA(β)
. . . a2a1)β.

The first section presents some multiple precision algorithms, used by GMP. The second
section presents Barrett’s Modular Reduction and its effect on our implementation of VSH.

3.1 Multiple Precision Algorithms used by GMP

This section presents some Multiple Precision algorithms that are used by GMP according
to Section 16 of [14]. To give a proper introduction for the remainder of this thesis, we will
present the Classical Algorithms in detail and consider advanced multiplication algorithms.

17

18 CHAPTER 3. MULTIPLE PRECISION ALGORITHMS

The advanced algorithms that GMP uses to multiply are based on splitting the inputs. We
will, therefore, describe the most simple example, Katatsuba’s Algorithm, and only remark
the name and efficiency of the other algorithms.

The first subsection presents the Classical Algorithms to perform Multiple Precision
Multiplication, Squaring, Division and Modular Reduction. The second subsection
Describes Karatsuba’s algorithm to perform Multiple Precision Multiplications.

3.1.1 Classical Algorithms

This subsection presents the Classical Multiple Precision Algorithms for Multiplication,
Squaring, Division, and Modular Reduction, which can be found in [19] and in Chapter 14
of [22]. We will give the algorithms and their efficiency, by means of counting the number of
Single Precision (SP) multiplications and SP-divisions as they are, usually, the most time
consuming instructions of the algorithms.

Multiplication

Consider the product A ∗B, where A = (akak−1 . . . a1)β and B = (blbl−1 · · · b1)β. Algorithm
3.1.1 gives the Classic Multiple Precision Multiplication Algorithm, which shows
algorithmically how multiplication by hand is performed.

Algorithm 3.1.1. Multiple Precision Multiplication

Input: The multiple precision integers A = (akak−1 . . . a1)β and B = (blbl−1 . . . b1)β .

Output: The product A ∗B = D = (dk+ldk+l−1 . . . d1)β .

Procedure: Set di = 0 for i = 1, · · · , k + l.
For i = 1, · · · , k do:

Set c = 0.
For j = 1, · · · , l compute:

(uv)β = di+j−1 + ajbi + c. (i)
Set di+j−1 = v.
Set c = u.

Set di+k = u.
Return D = (dk+l . . . d1)β .

The bottle-neck of this algorithm is Equation (i) in the inner-loop. Equation (i) contains
1 SP-multiplication and is computed k · l times. Hence Algorithm 3.1.1 requires k · l
SP-multiplications.

Squaring

Consider the square A2, where A = (akak−1 . . . a1)β. Algorithm 3.1.2 gives the Classic
Multiple Precision Squaring Algorithm. To avoid overflow, we change the description of
Algorithm 3.1.2 slightly with respect to the algorithm given in [22].

3.1. MULTIPLE PRECISION ALGORITHMS USED BY GMP 19

Algorithm 3.1.2. Multiple Precision Squaring

Input: The multiple precision integer A = (akak−1 . . . a1)β .

Output: The square A2 = D = (d2kd2k−1 . . . d1)β .

Procedure: Set di = 0 for i = 1, · · · , 2k.
For i = 1, · · · , k do:

Compute (uv)β = d2i−1 + ai · ai.
Set d2i−1 = v.
Set c1 = u.
For j = i + 1, · · · , k compute:

(wuv)β = di+j−1 + 2ajai + (c2c1)β .
Set di+j−1 = v.
Set (c2c1)β = (wu)β .

Set di+k = u.
Return D = (d2k . . . d1)β .

The outer loop of Algorithm 3.1.2 requires k SP-multiplications and the inner loop
requires

k∑

i=1

k∑

j=i+1

1 =
k∑

i=1

(k − i + 1) = k
k∑

i=1

1−
k∑

i=1

i +
k∑

i=1

1 = k2 − k(k + 1)
2

− k =
k2 − k

2

SP-multiplications, where the multiplication by 2 is not counted, because multiplication by
two can be evaluated in much less time than the time an SP-multiplication requires. Hence
Algorithm 3.1.2 requires 1/2(k2 + k) SP-multiplications, which is, if k is large, about half of
the number of SP-multiplications that 3.1.1 would require for this multiplication.

20 CHAPTER 3. MULTIPLE PRECISION ALGORITHMS

Division

Consider the division A/B, where A = (akak−1 . . . a1)β and B = (blbl−1 · · · b1)β and
k ≥ l ≥ 2. Algorithm 3.1.3 gives the Classic Multiple Precision Division Algorithm.
According to [22] the division algorithm is optimal when bl ≥

⌊
β
2

⌋
and β is even. Because

we will apply these algorithms on a binary computer we will assume that β is even. To
guarantee that bl ≥ β/2 on a binary computer, one just shifts the bits of B so that the
bit-size of B is a multiple of β and so that the most significant bit is equal to one. This is
called normalization. Of course, the bits of A should be shifted similar, to get the result of
A/B.

Algorithm 3.1.3. Multiple Precision Division

Input: The (normalized) multiple precision integers A = (akak−1 . . . a1)β

and B = (blbl−1 . . . b1)β , with k ≥ l ≥ 2.

Output: The quotient Q = (qk−l . . . q1)β and remainder R = (rl . . . r1)β so that A = QB + R.

Procedure: Set qi = 0 for i = 1, · · · , k − l.
If (A ≥ Bβk−l) then do:

Set qk−l = 1.
Set A = A−Bβk−l.

For i = k, k − 1, · · · , l + 1 do:
If ai = bl, then set qi−l−1 = β − 1.
Else set qi−l−1 = b(aiβ + ai−1)/blc.
While(qi−l−1(blβ + bl−1) > aiβ

2 + ai−1β + ai−2) do:
Set qi−l−1 = qi−l−1 − 1.

Set A = A− qi−l−1Bβi−l−1.
If A < 0 then set A = A + Bβi−l−1 and set qi−l−1 = qi−l−1 + 1.

Set R = A.
Return (Q,R).

Suppose that the normalized values of A and B are obtained by multiplication with βj .
Then obviously (Aβj)/(B/βj) = A/B, so that Q remains unchanged after normalization.
But R = βj(QB −A), so that the remainder of the division of A by B can be obtained by
dividing R by βj .

When counting the number of SP-multiplications, we do not count the multiplications of
the form A ∗ βj , as these are just bitshifts:

A · βj = (ak . . . a1)β · βj = βj ·
k∑

i=1

aiβ
i−1 =

k∑

i=1

aiβ
j+i−1 = (ak . . . a10 . . . 0)β.

According to [22] the while loop is evaluated not more than twice. So we observe that each
loop requires (using Algorithm 3.1.1) at most 4 SP-multiplications to evaluate
qi−l−1(blβ + bl−1) and l-SP-multiplications to evaluate qi−l−1B. Assuming that
normalization adds one β digit to A it holds that the for-loop loops k − l times. So
Algorithm 3.1.3 requires about (k− l)(l +4) SP-multiplications. According to [22] Algorithm
3.1.3 can be improved so that it requires about (k − l)(l + 3) SP-Multiplications. The
for-loop consists of one SP-division. So Algorithm 3.1.3 requires about (k− l) SP-Divisions.

3.1. MULTIPLE PRECISION ALGORITHMS USED BY GMP 21

Multiple Precision Modular Reduction

Consider the modular expression A = B mod C, where A is the least nonnegative
representative. The Classic algorithm to derive A from B and C is simply the Multiple
Precision Division Algorithm given by Algorithm 3.1.3. The output R of Algorithm 3.1.3 on
the inputs B, C, gives the least nonnegative representative of B mod C.

3.1.2 Fast Multiplication Algorithms used by GMP

This subsection will very briefly describe how Karatsuba’s Multiplication Algorithm splits
the inputs so that it can perform Multiple Precision Multiplication using less
SP-multiplications than the Classic Multiple Precision Multiplication Algorithm 3.1.1. The
more advanced Multiplication Algorithms that GMP applies are based on similar
observations, which we will not mention here. This section concludes with a table providing
the (asymptotic) running times of the Multiplication Algorithms that GMP uses.

Consider two Multiple Precision numbers A and B of equal size. So A(β) = B(β). Let
b = βdA(β)/2e. If we split the numbers A and B into two equal parts, we can write
A = (A1A2)b and B = (B1B2)b. Observe that

A ·B = A0 ·B0 + A0 ·B1b + A1b ·B0 + A1b ·B1b

= (A1 ·B1)b2 + ((A1 −A0) · (B1 −B0)−A0 ·B0 −A1 ·B1) b + A0B0. (3.1)

The Classic Multiplication Algorithm would compute the four products A0 ·B0, A0 ·B1 · b,
A1 ·B0 · b, and A1 ·B1 · b2, and add them together to obtain the result. Equation (3.1) imply
that the same product can be derived by calculating just the three products A1 ·B1, A0 ·B0,
and (A1 −A0) · (B1 −B0). Karatsuba’s Algorithm is given by recursively splitting the
inputs into two (almost) equal parts and by evaluating the three products A1 ·B1, A0 ·B0,
and (A1 −A0) · (B1 −B0), to evaluate Equation (3.1), see Algorithm 3.1.4. Because A1 −A0

can be negative, we define σX by

σX :=
{

+1 if X ≥ 0
−1 if X < 0

,

so that, for example, A is given by σA(A1A0)b.
Adding the two numbers A and B requires O(A(β)) SP-additions and assuming that an

addition can be done in O(1) time, the addition of A and B takes O(A(β)) time. Also
subtraction and bit-shifting (i.e. multiplying with a power of β) takes O(A(β)) time. If we
define T (n) as the time that Karatsuba’s algorithm takes to compute the product of two
A(β) digit numbers, it follows that the time to evaluate the product A ·B satisfies

T (A(β)) = 3T

(
A(β)

2

)
+ cA(β) + d,

fore some constants c and d. It follows from the Master Theorem of recursive forms (see
Chapter 4 of [8]), that since

cA(β) = O
(
A

log 3/log 2−ε
(β)

)
,

for any ε > 0, T (A(β)) = O(Alog 3/log 2
(β)) = O(A1.585

(β)).

22 CHAPTER 3. MULTIPLE PRECISION ALGORITHMS

Algorithm 3.1.4. Karatsuba’s Algorithm

Input: The Multiple Precision integers A = (akak−1 . . . a1)β

and B = (blbl−1 . . . b1)β , with k = l.

Output: The product A ·B.

Procedure: For X = σX(xn . . . x1)(β) and Y = σY (yn′ . . . y1)β , define f(X, Y) by:
If min{n, n′} < 2: return X ∗ Y .
Else do:

Set b = dmin{n, n′}/2e.
Set X1 = σX(xn . . . xb+1)(β) and X0 = σX(xb . . . x1)(β).
Set Y1 = σY (y′n . . . xb+1)(β) and Y0 = σY (yb . . . y1)(β).
Calculate W = f(X1, Y1).
Calculate U = f(X0, Y0).
Calculate V = f((X1 −X0), (Y1 − Y0)).
Return β2bW − βb(V −W − U) + U .

Return f(A,B).

If a SP-multiplication takes O(1) time, it follows that the Classical Multiple Precision
Multiplication Algorithm would take O(A2

(β)) time to evaluate the product of A and B. So
indeed, Karatsuba’s Algorithm is a lot faster than the classical Algorithm if A(β) is large.

Table 3.1 gives the names of the Multiplication Algorithms that GMP uses according to
Chapter 16 of [14], the threshold for the input length, the number of parts in which the
inputs are split, and gives the running time when applied to perform a multiplication of two
N -bit numbers.

parts the
Algorithm Name Threshold: input is split Running Time
Classic Multiplication none O(N2)
Karatsuba’s Multiplication MUL_KARATSUBA_THRESHOLD 2 O(N log 3/log 2) ≈ O(N1.585)
Toom-3 way Multiplication MUL_TOOM3_THRESHOLD 3 O(N log 5/log 3) ≈ O(N1.465)
FFT Multiplication MUL_FFT_THRESHOLD 2k O(Nk/(k−2))

Table 3.1: Multiplication Algorithms that are used by GMP

A multiplication of an N -bit number A and and M -bit number B, where M ≤ N , using
GMP can be implemented by just calling the mpz_mul function. This function decides,
whether it has to square and what Multiplication Algorithm it is going to apply to evaluate
the multiplication (or square). If N > M , then the mpz_mul-function will split A into two
parts if necessary. For example, if N ≥ M >MUL_KARATSUBA_THRESHOLD, then the mpz_mul
function will split A into an N −M -bit piece A1 and an M -bit piece A0, apply Karatsuba’s
algorithm to calculate A0 ·B, and decides again what Algorithm it is going to apply to
perform the remaining multiplication of A1 ·B, maybe again after splitting either A1 or B.
So this function recursively splits the input into equal parts until the input lengths are
below MUL_KARATSUBA_THRESHOLD.

3.2. BARRETT MODULAR REDUCTION 23

3.2 Barrett Modular Reduction

An efficient algorithm to perform reductions modulo n = (nk . . . n1)β is given by Barrett’s
Algorithm 3.2.1. This Algorithm uses precalculations that are based on the modulus n only,
to avoid SP-divisions in the main Algorithm. This Algorithm is in particular applicable to
VSH as all modular calculations by VSH are based on the same modulus, so the
pre-calculations have to be done only once.

Algorithm 3.2.1. Barrett Modular Reduction

Input: Positive integers A = (a2ka2k−1 . . . a1)β

and n = (nk . . . n1)β , and µ = bβ2k/nc.

Output: R = A mod n.

Procedure: Calculate q1 = bA/βk−1c.
Calculate q2 = q1 · µ.
Calculate q3 = bq2/βk+1c.
Calculate r1 = A mod βk+1.
Calculate r2 = q3 · n mod βk+1.
Calculate R = r1 − r2.
If R < 0 then set R = R + βk+1.
While R ≥ n calculate:

R = R− n.
Return R.

This algorithm works only if A < β2k. The calculation of q2 takes k(k + 1)
SP-multiplications if the Classical Multiplication algorithm is applied to q1 and µ. Similarly,
the calculation of q3 · n requires k(k + 1) SP-multiplications. All other derivations are
additions, subtractions, and bit-wise operations. So, using the Classic Multiplication
Algorithm (Algorithm 3.1.1) to perform the Multiple Precision Multiplication, Algorithm
3.2.1 requires 2k(k + 1) SP-multiplications and no SP-divisions, whereas the Classic
Modular Algorithm requires k(k + 3) SP-multiplications and k SP-divisions. As [22] notes,
the derivation of q2 = q1 · µ can be done more efficiently as the k − 1 least significant digits
of q2 do not need to be computed in order to compute q3. Similarly, for the evaluation of r2,
only the k + 1 least significant digits of (q3 · n) need to be computed. This can be done via
partial multiple precision multiplication. It follows that Algorithm 3.2.1 can be computed
using k(k + 4) SP-multiplications and no SP-divisions using partial multiple precision
multiplication. (See [22] and [3] for more details.)

Unfortunately, GMP does not support partial multiple precision multiplications. So we
don’t expect our GMP based implementation of Barrett’s Modular Reduction to increase
the speed of VSH. Indeed, on our 3.4 GHz Pentium IV system, Classic-VSH using a 1234-bit
modulus n processes 1.055 MegaBytes per second, if the Classical Modular Reduction
algorithm is applied to perform the mod n reductions, and it processes 0.953 MegaBytes per
second, if Barrett’s Modular Reduction Algorithm without partial Multiple Precision
Multiplication is applied.

24 CHAPTER 3. MULTIPLE PRECISION ALGORITHMS

Chapter 4

Some Implementation Ideas

This chapter discusses how the straightforward implementations of PoP in the iteration
functions of Classic-VSH and Fast-VSH can be improved by means of implementation
techniques. The first section will introduce some computer technical issues on which the
implementation ideas are based. This chapter is based on Classic-VSH and Fast-VSH as
defined in Chapter 2, with the same parameters as given in Section 2.3.4. The next chapter
will show how the speed can be improved by altering the parameters and the computational
VSSR assumption.

Firstly, we will present the (straightforward) implementations of Classic-VSH and
Fast-VSH of [6]. For readability reasons, these are not the exact C source codes. The exact
C source codes can be found in Appendix E.2. We prefer the following notation: let
B ∗gmp C denote the multiplication A ∗B using the GMP library. If the reduction of B
modulo C is done via the GMP library, we will write B modgmp C. Lastly, the evaluation
of A > B using the GMP library is denoted as A >gmp B.

With respect to Classic-VSH, let k be as defined in Equation (2.9). The straightforward
implementation of the iteration of Classic-VSH, based on the GMP library, is given by
Pseudo-Code 4.0.2.

In Fast-VSH k is taken to be larger than suggested in Equation (2.10). Therefore, some
extra mod n reductions may be required in PoP. The straightforward implementation of the
iteration of Fast-VSH, based on the GMP library, is given by:

Some ideas discussed in this chapter require the changing of the order of multiplication to
compute the product

∏k
i=1 pi in PoP. The following examples show that this can influence

the speed, when Classic Multiplication algorithms are applied (see 3).
Again, let a Single Precision multiplication (SP-multiplication) be a multiplication

between two integers of at most β-bits. For a Multiple Precision α-bit integer A, let A(β)

denote the number of computer words to represent A in base 2β. So A(β) = dα/βe, and

A =
∑A(β)

i=1 ai2β(i−1), where ai are β-bit integers for all i = 1, · · · , A(β) and aA(β)
6= 0.

Example 4.0.4. Suppose β = 2. Consider the following 2-bit numbers a1 = 01, a2 = 11,
and a3 = 11. Suppose that

∏3
i=1 ai needs to be computed. Firstly, consider the

multiplication in the following order:

1. Calculate t = a1 ∗ a2.

2. Calculate t = t ∗ a3.

25

26 CHAPTER 4. SOME IMPLEMENTATION IDEAS

Pseudo-code 4.0.2. Iteration of Classic VSH (straightforward)

Input: The iteration number, j, xj and message m.

Output: xj+1.

Procedure: Set t = 1.
Product of Primes (PoP):

for(i = 1; i ≤ k; i++) {
if(mj·k+i == 1) {

t = t ∗gmp pi;
}

}
Squaring (Sq):

xj = (xj ∗gmp xj) modgmp n;
Multiplication (Mul):

xj+1 = (xj ∗gmp t) modgmp n;
Return xj+1.

Pseudo-code 4.0.3. Iteration of Fast-VSH (straightforward)

Input: The iteration number j, xj , message m and chunk-length b.

Output: xj+1.

Procedure: Set t = 1.
Squaring (Sq):

xj+1 = (xj ∗gmp xj) modgmp n;
Product of Primes (PoP):

for(i = 1; i ≤ k; i++){
t = t ∗gmp p(i−1)2b+m[jk+i]+1;
if(t >gmp n) {

xj+1 = xj+1 ∗ t modgmp n;
t = 1;

}
}

Multiplication (Mul):
xj+1 = (xj+1 ∗gmp t) modgmp n;

Return xj+1.

The first step requires 1 SP-multiplication and returns t = 11, so that step 2 also requires 1
SP-multiplication. Hence this order of multiplication requires 2 SP-multiplications. On the
other hand if we consider the following order of multiplication:

1. Calculate t = a2 ∗ a3.

2. Calculate t = t ∗ a1.

4.1. SOME COMPUTER TECHNICAL ISSUES 27

Then, the first step requires 1 SP-multiplication and returns t = 1001, so that step 2 requires
2 SP-multiplications. Hence this order of multiplication requires 3 SP-multiplications.

Example 4.0.5. Consider the product of primes
∏k

i=1 pi. Let β = 32 and suppose k = 153.
Using computer algebra software, we find that the computation of this product requires
2678 SP-multiplications if the product is taken as follows: first calculate t = p1 ∗ p2, then
t = t ∗ p3, · · · , t = t ∗ pk. But the computation of the product in opposite direction requires
3324 SP-multiplications.

The first section will discuss some computer architectural issues on which some ideas are
based. The second section will discuss the idea of speeding up VSH by means of less
GMP-function calls. The third section will present and comment on the actual speedups of
the VSH implementations on our system.

4.1 Some Computer Technical Issues

This section will describe very briefly what happens in a computer or compiler, which can
influence the performance of a program. This discussion is based on [13] and [15]. The first
subsection describes how a Computer Processor (Pentium) guesses the outcome of an
if-statement to increase the efficiency. The second subsection discusses how proper
Scheduling can improve the efficiency. Lastly, the third subsection describes what happens if
a function is called and how it can lead to less performance.

4.1.1 Pipelining and Branch Prediction

When a computer processor gets an instruction, it has to translate the instruction so that it
can execute it. Then, it has to execute it and return the result of execution. Let a cycle
denote the time unit that a processor needs to complete an instruction. Consider a
processor that requires 3 cycles per instruction and processes a second instruction after
completing the first instruction. So completing the following ordered list of instructions
A1, · · · , An takes 3n cycles by this processor.

This can be improved by considering several compartments of the processor. Suppose, for
example, that above processor has the following compartments: Load, Execute and Store.
Suppose that each compartment needs exactly the same time to complete it’s task. So, if an
instruction A arrives, it enters the processor in compartment Load and remains there for
one cycle, then it stays for one cycle in compartment Execute and it leaves the processor
after staying another cycle in the compartment Store. Figure 4.1 shows that processing a
second instruction after the first instruction is completed is very inefficient as most
compartments are idle most of the time. Better throughput can be obtained by letting a
second instruction enter, once Load is finished with the first instruction as shown in Figure
4.2. This way, the processor needs n + 2 cycles to complete the ordered list A1, · · · , An.
This technique is called pipelining. The set of consecutive compartments through which an
instruction flows is called a pipeline.

Unfortunately, the processor does not only get ordered lists of instructions. If, for
example, the processor gets an IF instruction, then it depends on the result of this
instruction what instruction the processor should pick next from the list. So this forces the
processor to wait until it has completed the IF instruction. Such instructions are called

28 CHAPTER 4. SOME IMPLEMENTATION IDEAS

Figure 4.1: Inefficient Processor Throughput Figure 4.2: Efficient Processor Throughput

branch instructions. Because current processors are far more advanced than our three
compartment example, they have much longer pipelines and, therefore, the delay it has
when it has to wait for the result of a branch instruction is relatively big.

A solution to this problem is the so called branch prediction. Branch prediction is a
method in which the processor guesses the output of a branch instruction. Instead of
waiting for the result of the branch instruction, it picks the instruction from the branch it
guesses. If the result of the branch instruction pops out, the processor checks whether it has
guessed right and if so it has saved the time it would otherwise has waited, or if not it
empties the pipeline and starts-over by picking the right instruction. So if the processor
guesses poorly, then the problem can get worse.

The result of a branch instruction is usually either 0 (false) or 1 (true). If the result is
false then the processor picks the next instruction stored in the list, but when the result is
true then it jumps to another position in the list of instructions. The early prediction
method that the Pentium Family of processors applied (see [13]) is as follows:

• Let R be a 2-bit integer. Set initially R = 0.

• If a Branch Instruction enters then predict true as result if R ≥ 2 and predict false as
result otherwise.

• If a Branch Instruction leaves then put R = min{R + 1, 3} if the result of the Branch
Instruction is true, put R = max{R− 1, 0} otherwise.

This prediction method was quite poor, so because the length of the pipelines of the
advanced processors increased, a better prediction method became necessary. The new
Pentium Processors use 16 Registers of the form above and one additional shift register to
decide which register to take for prediction. This method is build in such a way that the
processor can recognize repetitive patterns of successive results of branch instructions and
even deviations of regular patterns. It follows that the processor can predict quite accurate
in most cases.

In Chapter 6 we will demonstrate that an implementation of VSH based on predictable
sequence of branch instructions leads to significantly better performance compared to an
implementation of VSH with a sequence of branch instructions that has random results.
Moreover, we will demonstrate that omitting branch instructions where possible, can result
in even better performance.

4.2. REDUCING THE FUNCTION-CALL OVERHEAD 29

4.1.2 Scheduling

The previous subsection illustrates that pipelined processors can execute multiple
instructions in parallel. We have shown that branch instructions may delay the process. But
not only branch instructions delay the process. If the second instruction of two successive
instructions depends on the result of the first instruction, then the processor has to wait
with executing the second instruction until the result of the first instruction is properly
stored. For example, consider the following piece of source code:

x = x * x;
x = x + 2;

Obviously, these instructions cannot be executed in parallel. Firstly, the processor needs
access to the result of x=x*x before it can start executing x=x+2.

These delays can be prevented by proper scheduling. If there are more instructions, which
are independent to the instruction x=x*x, then placing these instructions before the
instruction x=x+2 will not cause the processor to wait as long as it would when the
instruction x=x+2 is placed right after the instruction x=x*x.

We note that gcc, the C-compiler, performs these kinds of scheduling if this option is
enabled. See section 6.4 of [15].

4.1.3 Function Calls

The following function computes the square of x.

sq(int x) {
int y;
y = x * x;
return y;

}

When sq(z) is used in an implementation, where z is some integer, this is called calling
function sq with argument z.

When such function calls are used, the processor needs some extra time to perform the
call. It has to store the arguments of the function in the memory, then, it has to jump to
the beginning of the code of the function, execute the function, and jump back to the
original place in the code, where the function is completed; see Figure 4.3. This extra work
is called the function-call overhead.

If the function contains only a few instructions and the function is called many times then
the extra time can become significant. For example, the line y = sq(x); causes at least one
STORE and two JUMP instructions to be executed by the processor in addition to the
instructions caused by ∗, whereas the equivalent line y = x*x; only require the instructions
caused by ∗ to be executed. Replacing the code sq(x) by x*x is called Function Inlining.

The C-compiler, gcc, performs Function Inlining when a function passes some tests. See
also section 6.1.2 of [15].

4.2 Reducing the Function-Call Overhead

This section will describe how we reduce the function-call overhead caused by ∗gmp in PoP
of implementations 4.0.2 and 4.0.3. Because the function ∗gmp (=mpz_mul) decides whether

30 CHAPTER 4. SOME IMPLEMENTATION IDEAS

Figure 4.3: Function-Call Overhead

it has to square and what algorithm it is going to use for multiplication, see also section 5.5
and 16.1 of [14], every time it is called it has to perform some tests. Because, initially, the
numbers in PoP in Pseudo codes 4.0.2 and 4.0.3 are very small, this extra overhead may be
relatively large. Also, because we expect that our compiler gcc won’t inline the quite large
∗gmp function, we will try to do that in the source code, whenever possible.

Firstly, we will present a method that reduces the amount of times that ∗gmp is called.
Then, we will show that this method significantly reduces the amount of GMP-function calls
for Classic-VSH, but that it hardly reduces the amount of GMP-function calls for Fast-VSH.
Lastly, we show how to improve the iteration function of Fast-VSH otherwise.

Pseudo-code 4.2.1. PoP: Filling Integer Array

Input: The iteration number j, and S = {s1, · · · , sv}.

Output:
∏v

i=1 psi .

Procedure: Set t = 1 and c = 1.
Let A be an integer array.
for(j = 1; j ≤ v; j++) {

if(t ∗ psj ≥ 232) {
Ac = t;
c++;
t = 1;

}
t = t ∗ psj ;

}
for(j = 1; j < c; j++) {

t = t ∗gmp Aj ;
}
Return t.

Roughly the idea is as follows. Assume that the biggest single precision integer of the

4.2. REDUCING THE FUNCTION-CALL OVERHEAD 31

computer is 32 bits. Consider PoP of Pseudo codes 4.0.2 and 4.0.3. Evaluate PoP as it is
given in these Pseudo codes with the following difference: use single precision
multiplications whenever the product t · pj , for some 1 < j ≤ k, fits in one 32-bit word and
use ∗gmp otherwise. Then, save the value of t in an array, set t = pj , and continue. This way
we create an array of integers which we then multiply out using GMP to obtain the result.
Pseudo code 4.2.1 makes this precise. Let S = {s1, · · · , sv} denote the ordered set of the
indices of the primes over which PoP multiplies, for some v. So S = {i|mj·k+i = 1} for
Classic-VSH and S = {(i− 1)2b + m[jk + i] + 1 | 1 ≤ i ≤ k} for Fast-VSH.

Pseudo code 4.2.1 needs to be improved in the line “if(t ∗ psj ≥ 232)”. Because we
assumed that the largest single precision integer is 32-bits, we cannot define 232 on this
computer. Moreover, if t ∗ psj ≥ 232 then the computer is unable to evaluate t ∗ psj properly.
We will give two possible implementation solutions to this problem.

Firstly, we consider the largest prime involved, pk. Assume that pk has bit-size α. Then,
for sure, t ∗ psj < 232 if t has bit-size ≤ 32− α. In other words: let mask denote a 32-bit
integer, which is constructed as follows:

mask =
32∑

i=1

ai2i−1, (4.1)

where ai = 0 for i ≤ 32−α and ai = 1 for i > 32−α, (i.e. setting the α most significant bits
to 1 and the remaining bits to zero). The C-statement (t&mask) returns 1 if there exist at
least one i such that the i-th bit of both t and mask equals one and returns zero otherwise.
So if (t&mask) returns a zero then, for sure, the statement t ∗ psj ≥ 232 is false. Because t
will be less than 232 and mask is a 32-bit integer, this can be implemented on the computer.

The advantage of the idea using mask is that the statement “if(t ∗ psj ≥ 232)” can be
replaced easily by “if(t&mask)”, which is a relatively cheap comparison as it consists of a
bit-wise operation. The disadvantage of this idea is, however, because t&mask is equivalent
to the statement t ∗ pk ≥ 232, that t may be reset (i.e. set to 1) even if t ∗ psj < 232. So this
idea may not reduce the amount of GMP function calls as much as Pseudo code 4.2.1 would
do.

The following idea deals with this disadvantage. Let prime_lentgh[] be a list where
prime_length[i] denotes the bit-size of pi. Let length denote the intermediate bit-size

of t. Then, the statement “if(t ∗ psj ≥ 232)” is equivalent to
“if(length + prime_length[sj] ≥ 32)”. The disadvantage from this idea is that more
memory is required to store prime_lentgh[], and the altered Pseudo code consists of more
instructions than the previous idea. Nevertheless, the extra reduction of the number of
GMP function calls can outweigh these disadvantages. The implementation of these ideas
are given by respectively Pseudo code 4.2.2 and Pseudo code 4.2.3.

Obviously, Pseudo code 4.2.2 will be effective if pk is not too large. Because we assumed
that the biggest size of a single precision computer integer is 32 bits, Pseudo code 4.2.3 will
be effective if the set {pi|i ∈ S} consists of a significant amount of primes of bit-size at most
16-bits. We will say that an Pseudo code reduces the amount of GMP function calls
significantly if it requires at least 25% less GMP function calls than the original Pseudo
code. We will now argue that Pseudo codes 4.2.2 and 4.2.3 reduce the amount of GMP
function calls significantly for Classic-VSH, but not for Fast-VSH.

The biggest prime that is 16-bits long is p6542 (65521). Since k << 6542 for Classic-VSH
when S′ = 1024 or S′ = 2048, every prime pi, i ∈ S, is of size at most 16 bits. So both

32 CHAPTER 4. SOME IMPLEMENTATION IDEAS

Pseudo-code 4.2.2. PoP:
Filling Integer Array (Testvector)

Input: The iteration number j, mask, and
, S = {s1, · · · , sv}.

Output:
∏v

i=1 psi
.

Procedure:
Set t = 1 and c = 1.
Let A be an integer array.
for(i = 1; i ≤ v; i++) {

if(t&mask) {
Ac = t;
c++;
t = 1;

}
t = t ∗ psi

;
}
for(i = 1; i < c; i++) {

t = t ∗gmp Ai;
}
Return t.

Pseudo-code 4.2.3. PoP:
Filling Integer Array (Prime Length)

Input: The iteration number, j, and
the length of the primes, prime length[],
and S = {s1, · · · , sv}.

Output:
∏v

i=1 psi
.

Procedure: Set t = 1, c = 1 and length = 0.
Let A be an integer array.
for(i = 1; i ≤ v; i++) {

if(length + prime lentgh[si] > 32) {
Ac = t;
c++;
t = 1;
length = 0;

}
t = t ∗ psi

;
length+ = prime length[si];

}
for(i = 1; i < c; i++) {

t = t ∗gmp Ai;
}
Return t.

Pseudo codes 4.2.2 and 4.2.3 reduce the amount of GMP function calls significantly for
Classic-VSH. For Fast-VSH, however, where b = 8, only the first b6542/256c = 25 small
primes pj , where j ∈ S, are of size at most 16 bits. As PoP in Fast-VSH computes the
product of 256 (see Table 2.2 in Section 2.3.3) small primes if S′ = 1024 and 1024 small
primes if S′ = 2048, we conclude that Pseudo code 4.2.3 does not reduce the amount of
GMP function calls significantly. Also, as it is less effective, Pseudo code 4.2.2 does not
reduce the amount of GMP function calls significantly. So we decide to leave Fast-VSH
unchanged with respect to these ideas.

Still, the amount of GMP function calls for Fast-VSH can be reduced significantly as
follows. Consider Pseudo code 4.0.3 again and observe that for every multiplication
performed in PoP, a GMP based comparison is involved. Because the size of t for Fast-VSH
is predictable in some sense, we can replace the GMP comparison by a simple comparison as
follows. Let w denote the average length of the primes pj , where
j = 1, 28 + 1, 2 · 28 + 1, · · · , (k − 1)28 + 1. Then, because on average every product adds w
bits to t, perform a modgmp n reduction after every S/w multiplications, see Pseudo code
4.2.4, where S denotes the bit-length of the modulus n.

Because w is an average, a mod n reduction may be applied on a later time than the first
time when t > n. From pi ∼ i log i it follows that the size of the primes increases
logarithmically so that if k is large enough the average will be close to the size of the largest
small prime, pk. So if k is taken large enough then the largest size of t will still be close to S.
For example, let again b = 8, if S′ = 1024 and k = 256, then w = 18, where pk has bit-size 20

4.3. TREE-BASED MULTIPLICATION 33

Pseudo-code 4.2.4. Iteration of Fast-VSH
(Improved Comparison)

Input: The iteration number, j, xj , w and message m.

Output: xj+1.

Procedure: Set t = 1 and lim= 0 and limit= dS/we.
Squaring (Sq):

xj+1 = (xj ∗gmp xj) modgmp n;
Product of Primes (PoP):

for(i = 1; i ≤ k; i++){
t = t ∗gmp p(i−1)2b+m[jk+i]+1;
lim++;
if(lim==limit) {

xj+1 = xj+1 ∗ t modgmp n;
t = 1;
lim= 0;

}
}

Multiplication (Mul):
xj+1 = (xj+1 ∗gmp t) modgmp n;

Return xj+1.

and if S′ = 2048 and k = 1024, then w = 20, where pk has bit-size 22. So if S′ = 1024, then
the size of t is bounded by 20

18 · S and if S′ = 2048 then the size of t is bounded by 22
20 · S.

The advantage of this idea is not only that the GMP comparison function is replaced by a
simple comparison, but also that the result of the branch instruction “if(lim==limit)” can
be predicted easily as it follows a constant pattern. However, as the statement “if(t >gmp n)”
will be equal to zero most of the time for large n, the gain of better prediction will be small.

4.3 Tree-Based Multiplication

The previous Chapter discussed the very efficient Karatsuba algorithm (Algorithm 3.1.4) for
multiple-precision multiplications. From its description it follows that maximal advantage
from Karatsuba’s algorithm is obtained when the input integers are of (almost) equal size.
Most of the time t is much larger than pk so that Karatsuba will hardly be applied to PoP
in Pseudo codes 4.0.2 and 4.0.3.

The following change to the order of multiplication will ensure that more equally sized
numbers are multiplied together by PoP. We will refer to this order of multiplication as
Tree-Based Multiplication. Consider again the ordered set of indices of primes over which
PoP multiplies, S. Roughly, the idea is to pair the largest primes with the smallest primes
in order to attempt keeping the products about the same size. Then continue pairing until
all products are done. More precisely: put the primes into an array B0 = (b0i)v

i=1, where
b0i = psi . Then calculate B1 by letting b1i = b0ib0(v−i+1), for i = 1, 2, · · · , bv/2c and
b1(dv/2e) = b0(dv/2e) if v is odd. Similar to B1, B2 can be computed. Continuing this way, we

34 CHAPTER 4. SOME IMPLEMENTATION IDEAS

end with Bdlog2(v)e which consist of one element, the result of PoP. Figure 4.4 illustrates this
idea for k = v = 8 and shows why we refer to this multiplication technique as tree-based
multiplication. The vertices denote the elements of Bj for some j as shown in the figure and
arc (v, w) exists in the graph only if v divides w. Pseudo code 4.3.1 makes this idea precise.

Figure 4.4: Tree Based multiplication

For Classic-VSH the statement “if(Bi >gmp n)” can be omitted as k is chosen such that all
intermediate products will be less than n. Moreover, as we discussed in previous subsection,
we can improve Pseudo code 4.3.1 for Classic-VSH by replacing the line
“Bi = psi ∗gmp psc−i+1 ;” by “Bi = psi ∗ psc−i+1 ;”.

4.4 Results of these Ideas

This section shows what speedups we gain by implementing these ideas for Classic-VSH and
Fast-VSH using the same parameters as given in subsection 2.3.4. As we noted in the
introduction of this chapter, we have to take into account how the number of single-precision
multiplications behaves with respect to the original implementation due to the different
order of multiplication. Because the message-bits are taken randomly, the precise number of
SP-multiplications cannot be derived in advance. Therefore, we will relate this behavior by
considering the all-one message, i.e., the message in which every message bit is equal to one.

The following table will give the results of the performance of the implementations on our
system. We use a 3.4 GHz Pentium IV Processor. The source codes of the iteration steps
can be found in Appendix E.2. The codes are compiled with gcc using the -O3 tag, which
implies that gcc will try to perform maximal code-optimization as described in section 6 of
[15]. Recall that Pseudo codes 4.0.2 and 4.0.3 correspond to the original versions of
Classic-VSH and Fast-VSH respectively as described in [6]. Finally, to give an idea how the
order of multiplication influences the amount of work to be done by the PC, the column ”#
SP-Mults” gives the number of SP-multiplications that the Pseudo code requires to evaluate
an all one message block, without performing mod n reductions, if only the Classic
Multiplication Algorithm (see Chapter 3) is applied. Because for Fast-VSH the amount of
SP-multiplications is also dependent of the place where the mod n reductions are
performed, we will leave this column blank for Fast-VSH.

As discussed in Chapter 2, the time needed to evaluate PoP is roughly 1/3 of the total
time to evaluate a complete iteration. Therefore, the total speedup cannot be more than

4.4. RESULTS OF THESE IDEAS 35

Pseudo-code 4.3.1. PoP:
Tree-based multiplication

Input: The iteration number, j, S = {s1, · · · , sv} and v .

Output:
∏v

i=1 psi .

Procedure:
Let B be an integer array.
Set c = v. c denotes the size of B.
for(i = 1; i ≤ c/2; i++) {

Bi = psi
∗gmp psc−i+1 ;

}
if (c mod 2 == 1) {

Bc+1 = psc+1 ;
}
bc = (c + 1)/2c;
while(c > 1) {

for(i = 1; i ≤ c/2; i++) {
Bi = Bi ∗gmp Bc−i+1;
if(Bi >gmp n) {

Bi = Bi modgmp n;
}

}
c = (c + 1)/2;

}
Return B1.

Note: If this Pseudo-code is applied with respect to Classic-VSH, then

the line “if(Bi >gmp n)” can be omitted

and the line “Bi = psi ∗gmp psc−i+1 ;”

can be replaced by the more efficient “Bi = psi ∗ psc−i+1 ;”.

S′ Pseudo code # small primes S b # SP-Mults MB/sec. speed-up

1024 4.0.2: Classic Original 153 1234 2678 1.055 0.00 %
4.2.2: Classic Testvector 153 1234 998 1.166 10.52%
4.2.3: Classic prime length 153 1234 988 1.150 9.01%
4.3.1: Classic Tree-based 153 1234 1017 1.093 3.60%

1024 4.0.3: Fast Original 216 1516 8 3.770 0.00 %
4.2.4: Fast Improved 216 1516 8 3.781 0.29 %
4.3.1: Fast Tree-based 216 1516 8 3.661 -2.89%

2048 4.0.2: Classic Original 273 2398 9623 0.681 0.00 %
4.2.2: Classic Testvector 273 2398 3722 0.752 10.43 %
4.2.3: Classic prime length 273 2398 3541 0.753 10.57%
4.3.1: Classic Tree-based 273 2398 3534 0.711 4.40%

2048 4.0.3: Fast Original 218 2874 8 2.457 0.00%
4.2.4: Fast Improved 218 2874 8 2.459 0.08%
4.3.1: Fast Tree-based 218 2874 8 2.361 -3.91%

Table 4.1: The results of our Pseudo codes

36 CHAPTER 4. SOME IMPLEMENTATION IDEAS

about 33%. For Classic-VSH we see that the change to the order of multiplication reduces
the number of SP-multiplications by about 2/3. So we would expect a speedup of
2/9 ≈ 22%, disregarding the speedup gained by the reduction of the function call overhead
and the possible gain from Karatsuba’s Algorithm. We will now try to explain why the
actual speedups are less than expected.

With respect to Classic-VSH, the extra work needed to store the intermediate values of
the product in an integer array in Pseudo codes 4.2.2 and 4.2.3, may outweigh time saved by
reducing the function-call overhead of ∗gmp in Pseudo code 4.0.2. Also, it may explain the
reduced speedup, because we don’t apply the “the usual assembler tricks and obscurities for
speed” (see section 16.1.1 of [14]) as GMP does. With respect to the Tree-based
multiplication, the profile of the implementation of Classic VSH based on Pseudo code 4.3.1
(using gprof) shows that GMP is not applying Karatsuba’s Algorithm significantly more
than it already did originally. Both in the original versions and in the Tree-based version of
Classic- and Fast-VSH Karatsuba’s algorithm required a negligible time, see Appendix
E.2.5. Since the speed is not improving we conclude that Karatsuba’s algorithm is hardly
applied by GMP in both the original versions of VSH as the Tree-based versions.

With respect to Fast-VSH, apparently, time saved by reducing the function call overhead
of >gmp in Pseudo code 4.2.4 is negligible. Also, for Fast-VSH Karatsuba’s algorithm is not
applied more in Pseudo code 4.3.1 than it already was originally. On contrary, the profiler
shows that for some reason the original version of Fast-VSH applies Karatsuba’s Algorithm
more than the Tree-based version.

We will call an Pseudo code effective if it speeds-up the original Pseudo code of PoP by at
least 25%. Because Pseudo codes 4.2.2 and 4.2.3 makes Classic-VSH about 9% faster, which
amount to making PoP about 27% faster, we conclude that these Pseudo codes are effective.

Chapter 5

New Choices for k and the Security
Assumption

The previous Chapter discusses some implementation ideas to the iteration part of VSH to
improve the speed. This chapter will discuss a more theoretical idea to improve the speed.
Mainly, the idea is to reduce the iteration numbers as much as possible by allowing more
small primes in the iteration part. In addition, we will introduce a new Computational
VSSR assumption of VSH, which is with the present knowledge more realistic. The
consequences will be that the security of VSH, using at most π(B) small primes, is
equivalent to factoring an S′-bit number, where S = S′, the size of the VSH modulus n, as
opposed to the original Computational VSSR Assumption, where S should be taken larger
than S′ (see Subsection 2.1.3). Here, π(B) denotes the number of primes less than B (see
Definition B.1.1), where B is a certain smoothness bound.

Under this assumption it follows that if VSH is based on at most π(B) primes then VSH
provides the desired security even if its modulus n has size S = S′, which is much smaller
than suggested by the original Computational VSSR assumption. Therefore, as the modulus
is decreased in size, the modular calculations of VSH become less time-consuming.
Moreover, we will show that we can take B much larger than suggested in [6], such that
π(B) is much larger than k as suggested originally by [6]. It follows that we may reduce the
amount of iterations by processing more message bits each iteration, while preserving the
security of VSH.

Roughly, the observation for Classic-VSH is as follows. Let K denote the number of small
primes that is used each iteration. Let k denote the number of small primes as suggested
originally by Equation (2.9). Let Ro denote the iteration numbers that Classic VSH requires
to derive the hash of an l-bit message m originally, and let Rn denote the iteration numbers
that Classic-VSH requires to derive the hash of m using K small primes per iteration.
Consider Algorithm 2.2.1. It follows that the ratio of the iteration numbers is approximated
by

Rn

Ro
=
dl/Ke+ 1
dl/ke+ 1

≈ k

K
.

Next, consider the iteration of Classic-VSH (see again Pseudo code 4.0.2) and assume that
K is a multiple of k. It follows that only PoP has more calculations to perform. If we
implement PoP by storing the value of t after every k multiplications in an array and
resetting t, and finally multiply this array out mod n, it follows that, roughly, the new PoP

37

38 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

requires K/k old PoP-equivalent and Mul-equivalent operations. So assuming for simplicity
that the old PoP, Sq and Mul require the same time (T) each iteration, it follows that the
new iteration takes roughly (2K

k + 2)T time, as opposed to 3T originally. Hence the new
iteration takes

K
k · 2 + 2

3
=

2
3

K

k
+

2
3

times more time. So the time needed for Classic-VSH using K small primes requires

k

K
·
(

2
3

K

k
+

2
3

)
=

2
3

+
2
3

k

K

(
→ 2

3
, K →∞

)

times the time of the original version of Classic VSH. So we expect to increase the speed of
VSH by at most 33% by increasing K. Because squaring can be done more efficiently than
ordinary multiplying the gain will be less than this rough analysis suggests.

The approximations in this chapter are based on the straightforward Pseudo codes of
Classic-VSH and Fast-VSH. See implementations 4.0.2 and 4.0.3 in Chapter 4 on page 26.
Note that all approximations in this chapter will be based on the average case, i.e. with
probability 1/2 a message bit will be equal to one.

The first section of this chapter will make this idea precise. The second section will
present the new Computational VSSR assumption and argue that VSH remains secure
under this assumption. The third section will present our results we find when combining
these ideas and the ideas of previous Chapter together on our system. Here, we note again
that we use a 3.4 GHz Pentium IV system.

5.1 Adding Small Primes

This section discusses how the addition of small primes in each iteration influences the
speed of Classic- and Fast-VSH by means of counting the number of SP-multiplications and
SP-divisions. Via some number theoretical definitions and theorems given in Appendix B we
will approximate these numbers.

The first subsection will discuss this idea with respect to Classic-VSH and the second
subsection will discuss this idea with respect to Fast-VSH.

5.1.1 Classic-VSH

This subsection discusses the behavior of the number of SP-multiplications and SP-divisions
when altering the number of small primes used by each iteration of Classic-VSH. This
subsection uses many number theoretic definitions and theorem that are given in Appendix
B. Let K denote the number of small primes used and k denote the original choice of the
number of small primes, i.e. k maximal so that

∏k
i=1 pi < n (see Equation (2.9) in Chapter

2 on page 10). Furthermore, let m be an l-bit input message.
The first subsection will show how we can approximate the number of single precision

calculations needed to perform one Classic-VSH iteration. The second subsection will
discuss how the iteration can be improved by means of adding extra mod n reductions.
Lastly, the third subsection will compare our approximation to the real implementation on
our system.

5.1. ADDING SMALL PRIMES 39

Approximating the Number of Single Precision Multiplications

This subsection discusses how we approximate the number of single precision multiplications
that each iteration requires. These approximations are meant to simplify the calculations of
the required number of single precision calculations.

Consider Pseudo code 4.0.2.

Pseudo code 4.0.2. Iteration of Classic VSH (straightforward)

Input: The iteration number, j, xj and message m.

Output: xj+1.

Procedure: Set t = 1.
Product of Primes (PoP):

for(i = 1; i ≤ k; i++){
if(mj·k+i == 1){

t = t ∗gmp pi;
}

}
Squaring (Sq):

xj = (xj ∗gmp xj) modgmp n;
Multiplication (Mul):

xj+1 = (xj ∗gmp t) modgmp n;
Return xj+1.

assumptions In our approximations we assume that GMP uses classical methods to
perform multiple precision multiplications, squaring and modular reductions as
described in chapter 14 of [22]. We also assume that a single precision multiplication is
a multiplication of β-bit integers. As there is no general relation between the time
needed to perform a single precision multiplication and a single precision division we
will treat them separately. Lastly, we assume that the values of the message bits mi

are uniformly distributed.

approximation of Sq From the assumptions above and chapter 14 of [22] it follows that
Sq needs approximately

(
n2

(β) + n(β)

)
/2

︸ ︷︷ ︸
+ n(β)

(
n(β) + 3

)
︸ ︷︷ ︸

x2
i mod n

(5.1)

single precision multiplications and n(β) single precision divisions. There is no reason
to reduce this number as the probability that xi can be expressed in less than n(β) − 1
β-bit words is very small, (see remark 5.1.3 on page 47).

approximation of PoP Again, from chapter 14 of [22] it follows that the multiplication of
two integers a and b requires a(β)b(β) single precision multiplications. So the

40 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

multiplication of Pi :=
∏i

j=1 pj and pi+1 requires

a(β)b(β) = dlog2β Piedlog2β pi+1e

= dlog2β

i∏

j=1

pjedlog2β pi+1e

=

i∑

j=1

log pj

β log 2

⌈
log pi+1

β log 2

⌉

=
⌈

θ(pi)
β log 2

⌉ ⌈
log pi+1

β log 2

⌉
(5.2)

single precision multiplications, where θ(x) denotes Chebyshev theta function, see
Definition B.1.2 and also chapter 2 of [12]. As θ(x) ∼ x, by the prime number
theorem, we may approximate θ(pi) by pi. So Equation (5.2) becomes:

a(β)b(β) ≈
⌈

pi

β log 2

⌉⌈
log pi+1

β log 2

⌉

Thus the straightforward multiplication of all primes p1, p2, · · · , pK would require
approximately

K−1∑

i=1

⌈
pi

β log 2

⌉⌈
log pi+1

β log 2

⌉
(5.3)

single precision multiplications.

Consider again Pseudo-code 4.0.2 and note that PoP calculates the following product

K∏

i=1

p
mjk+i

i .

Moreover, if mjk+i is equal to 0 then it does nothing. Hence the total number of
SP-multiplications that PoP requires is given by

K−1∑

i=1

⌈
log2β

(
i∏

l=1

p
mjk+l

l

)⌉
dlog2β pi+1e ·mjk+i+1,

which can be approximated using the average case assumption that every message bit
is equal to one with probability 1/2 to

1
2
·

K−1∑

i=1

log2β

√√√√
i∏

l=1

pl

dlog2β pi+1e .

Similar to Equation (5.3) we conclude that this can be approximated by

1
2
·

K−1∑

i=1

⌈
1
2

pi

β log 2

⌉⌈
log pi+1

β log 2

⌉
. (5.4)

5.1. ADDING SMALL PRIMES 41

Because typically, β = 32 or a multiple of 32, it follows that each prime pi can be
expressed in one β-bit word –i.e. pi is smaller than 2β– for i ≤ π(2β). Here, π(x)
denotes the prime-counting function, see Definition B.1.1. For example, if β = 32 then
π(232) = 202378196. In classic VSH using a 1024 bit modulus, k is about 132, and,
using a 2048 bit modulus, k is about 233. So from a practical point of view, we may
assume that all pi can be expressed in one β-bit word. Hence equation (5.4) becomes

1
2

K−1∑

i=1

⌈
1
2

pi

β log 2

⌉⌈
log pi+1

β log 2

⌉
=

1
2

K−1∑

i=1

⌈
1
2

pi

β log 2

⌉
≈ 1

4

K−1∑

i=1

pi

β log 2
. (5.5)

This expression can be simplified further by using the following claim, which we will
prove in appendix D.1.1:

Claim 5.1.1. For each integer x ≥ 2 we have the following relation:

∑

p≤x

p ∼ x2

2 log(x)
. (5.6)

Because pi ∼ i log i, we approximate pi by i log i. This is done everywhere in the
remainder of this section. Often, for readability reasons, we will still write pi instead
of i log i. Note that this approximation is accurate for big primes because of ∼, but
not necessarily for small primes. The last subsection shows that this approximation is
still good enough for our purposes.

Applying Claim 5.1.1 to Equation (5.5) yields that PoP requires roughly

PoP1(K) =
1
4
· p2

K−1

2 log(pK−1)
· 1
β log 2

=
p2

K−1

8β log(pK−1) log 2

≈ (K − 1)2 (log(K − 1))2

8β log(2) log ((K − 1)(log(K − 1)))

≈ (K log K)2

8β log(2) (log K + log log K)

≈ K2 log K

8β log 2

single precision multiplications.

approximation of Mul Because we assumed that the message-bits are uniformly
distributed, it follows that every prime pi, for i ≤ K, divides t with probability 1/2.
Therefore, we approximate t by

t ≈

√√√√
K∏

i=1

pi.

42 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

It follows that

t(β) ≈

log

√√√√
K∏

i=1

pi

/
log 2β

≈ 1
2

K∑

i=1

log(pi)

/
β log 2

=
θ(PK)
2β log 2

≈ K log K

2β log 2
. (5.7)

So that, approximately, Mul requires

t(β)n(β) + t(β)(n(β) + 3) ≈ K log K

2β log 2
(
2n(β) + 3

)
(5.8)

SP-multiplications and K log K
2β log 2 · n(β) SP-divisions (see also [22]).

In conclusion, Table 5.1 shows the number of single precision multiplications that are
performed by each part of the iteration.

Part # SP-multiplications # SP-divisions

Sq
(
n2

(β) + n(β)

)
/2 + n(β)

(
n(β) + 3

)
n(β)

PoP
(
K2 log K

)/
(8β log 2) 0

Mul (K log K)
(
2n(β) + 3

)
/ (2β log 2) (K log K) · n(β)/ (2β log 2)

Table 5.1: The cost of each part of the iteration of VSH.

Adding Primes Without Extra mod n Reductions

This subsection shows by how much the number of single precision multiplications that are
needed in a VSH run on the `-bit message m can be reduced by multiplying t in PoP with
more primes than suggested in [6]. Since K will be larger, the advantage is that the
iteration number rounds will be reduced and, therefore, less multiple precision modular
multiplications and squarings are required. The disadvantage is that t may become very
large, even that large that the extra amount of single precision multiplications required by
PoP outweighs the reduced amount of SP-multiplications due to the reduction of the
iteration numbers. We will show this mathematically.

The number of rounds needed to derive the VSH hash of m equals:

R =
⌈

`

K

⌉
+ 1 (5.9)

The total cost to derive the VSH hash for m is then approximated by:

Cost(K) =
R

(
3
2
n2

(β) +
(

K log K

β log 2
+

7
2

)
n(β) +

3K log K

2β log 2
+

K2 log K

4β log 2

)

︸ ︷︷ ︸
+ R

(
K log K

2β log 2
+ 1

)
n(β)

︸ ︷︷ ︸
SP multiplications SP divisions

5.1. ADDING SMALL PRIMES 43

If K is very small, then R ≈ `. In this case the Cost will be O(l · n2
(β)) SP multiplications

plus O(l · n(β)) SP divisions, which we may assume very large. On the other hand if we let
K →∞ then Cost will behave like

Cost(K)
`

>
R ·K2 log K

` · 4β log 2
>

`/K ·K2 log K

` · 4β log 2
=

K log K

4β log 2
→∞

single precision multiplications.
So we expect a minimum. Figure 1 shows the behavior of the required number of single

precision multiplications and divisions, where β = 32 and K runs from 1 to 1000, on a 1
megabyte random message m. We take the modulus n of equal size as in [6], which is 1234
bits. In our case k = 153.

Figure 5.1: Approximate number of Single precision calculations versus K, without adding extra mod
n reductions

VSH needs to evaluate approximately 2.42 · 108 single precision multiplications, when
K = k. According to our assumptions and approximations, figure 1 implies that we can
reduce this amount to 2.28 · 108, which is 5.99% less. On the other hand we can reduce the
number of single precision divisions by 46.85%.

The next subsection discusses whether this can be improved by applying some additional
modular reductions to avoid extremely long sizes of t.

Adding Extra mod n Reductions

This section will describe how the number of single precision multiplications behave if we
avoid an extremely large size of t by adding some extra mod n reductions. So Pseudo code
4.0.2 needs to be updated. Pseudo code 5.1.2 presents the updated version of the iteration
function of Classic-VSH, where extra mod n reductions are performed.

Obviously the approximation of Section 5.1.1 for Sq is valid here. The remainder of this
section discusses the new approximations for PoP and Mul and give the results of this
model when applied to different choices for condition.

Approximation of the altered PoP and Mul
To approximate the altered PoP and Mul we assume for simplicity that Condition is true
after every fixed r message bits in each iteration.

To approximate the altered PoP, let Pi =
√∏i

j=1 pj and let p′i ≡ Pir mod n, where
P0 = 1, and let s = bK/rc the number times that PoP performs a mod n reduction. In the

44 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

Pseudo-code 5.1.2. Iteration of Classic VSH (extra mod n)

Input: The iteration number j, xj and message m.

Output: xj+1.

Procedure: Set t = 1.
Product of Primes (PoP):

for(i = 1; i ≤ k; i++) {
if(mj·k+i == 1) {

t = t ∗gmp pi;
if(condition) t = t modgmp n;

}
}

Squaring (Sq):
xj = (xj ∗gmp xj) modgmp n;

Multiplication (Mul):
xj+1 = (xj ∗gmp t) modgmp n;

Return xj+1.

remainder of this section only, p0 is equal to 1 instead of −1. Consider t after the lr + w-th
multiplication in Pseudo-code 5.1.2. It holds that

t ≡
lr+w∏

i=1

p
mjk+i

i mod n,

which is on average equivalent to
√√√√

lr+w∏

i=1

pi ≡

√√√√
lr∏

i=1

pi

√√√√
lr+w∏

i=lr+1

pi ≡ p′l
Plr+w

Plr
mod n.

Next, consider t in Pseudo-code 5.1.2 when the l-th mod n reduction will be performed. So
we are considering the lr-th multiplication and the value of t is then on average equal to
p′l

Plr
P(l−1)r

. Hence from the description of the Classical Modular Reduction Algorithm (see
Chapter 3) the l-th mod n reduction requires on average

((
p′l

Plr

P(l−1)r

)

(β)

− n(β)

)
(
n(β) + 3

)

single precision multiplications and((
p′l

Plr

P(l−1)r

)

(β)

− n(β)

)

single precision divisions. In conclusion PoP of Pseudo-code 5.1.2 requires

F (K)︸ ︷︷ ︸ +
s−1∑

i=0

((
p′i

P(i+1)r

Pir

)

(β)

− n(β)

)
(n(β) + 3)

︸ ︷︷ ︸
multiplications modular reductions

(5.10)

5.1. ADDING SMALL PRIMES 45

single precision multiplications, and

s−1∑

i=0

((
p′i

P(i+1)r

Pir

)

(β)

− n(β)

)
(5.11)

single precision divisions. Here F : N→ N is on average given by

F (K) =
s−1∑

i=0

(dlog2β p′iedlog2β pir+1e ·mjk+ir+1

+
(i+1)r−1∑

l=ir+1

dlog2β

p′i

√√√√
l∏

w=ir+1

pw

e dlog2β pl+1e

 ·mjk+ir+l

+
1
2
dlog2β p′sedlog2β psr+1e ·mjk+sr+1

+
K−1∑

l=sr+1

dlog2β

p′s

√√√√
l∏

w=sr+1

pw

e dlog2β pl+1e ·mjk+sr+l.

Again, as β will be ≥ 32 and K ¿ 202378196 ≤ π(2β), we may take dlog2β pie = 1. So
F (K) can be approximated by

1
2

s−1∑

i=0

(p′i)(β) +
s−1∑

i=0

(i+1)r−1∑

j=ir+1

dlog2β

(
p′i

Pj

Pir

)
e+

K−1∑

j=sr

dlog2β

(
p′i

Pj

Psr

)
e

 ≈

1
2

s−1∑

i=0

r(p′i)(β) +
s−1∑

i=0

(i+1)r−1∑

j=ir+1

(log2β Pj − log2β Pir)+

(p′s)(β) +
K−1∑

j=sr

(p′s)(β) + log2β Pj − log2β Psr

 =

1
2

s−1∑

i=0

r(p′i)(β) +
s−1∑

i=0

(i+1)r−1∑

j=ir+1

log2β

√√√√
j∏

k=1

pk − log2β

√√√√
ir∏

k=1

pk

 +

(p′s)(β) +
K−1∑

j=sr

(p′s)(β) + log2β

√√√√
j∏

k=1

pk − log2β

√√√√
sr∏

k=1

pk

 =

1
2

s−1∑

i=0

r(p′i)(β) +
1
2

s−1∑

i=0

(i+1)r−1∑

j=ir+1

(
j∑

k=1

log2β pk −
ir∑

k=1

log2β pk

)
+

(p′s)(β) +
K−1∑

j=sr

(p′s)(β) +
1
2

(
j∑

k=1

log2β pk −
sr∑

k=1

log2β pk

)
 =

1
2

s−1∑

i=0

r(p′i)(β) +
1
2

s−1∑

i=0

(i+1)r−1∑

j=ir+1

(
θ(pj)
β log 2

− θ(pir)
β log 2

)
+

46 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

(p′s)(β) +
K−1∑

j=sr

(p′s)(β) +
1
2

(
θ(pj)
β log 2

− θ(psr)
β log 2

)
 ≈ (5.12)

1
2

s−1∑

i=0

r(p′i)(β) +
1
2

s−1∑

i=0

(i+1)r−1∑

j=ir+1

(
pj

β log 2
− pir

β log 2

)
+

(p′s)(β) +
K−1∑

j=sr

(
(p′s)(β) +

1
2

(
pj

β log 2
− psr

β log 2

))
 =

1
2

s−1∑

i=0

r

(
(p′i)(β) −

1
2

pir

β log 2

)
+

1
2
(K − sr)

(
(p′s)(β) −

1
2

psr

β log 2

)
+

1
4

K−1∑

i=1

pi

β log 2
. (5.13)

Unfortunately we cannot simplify F (K) further using claim 5.1.1. We will show this in
Appendix D.1.2.

Similarly, we can simplify the second term of (5.10) to

s−1∑

i=0

(
(p′i)(β) +

1
2

p(i+1)r − pir

β log 2
− n(β)

)
(n(β) + 3).

Hence the altered PoP requires

F (K) +
∑s−1

i=0

(p′i)(β) +

1
2

p(i+1)r − pir

β log 2︸ ︷︷ ︸
−n(β)

 (n(β) + 3)

t(β)

(5.14)

single precision multiplications and

1
2

s−1∑

i=0

(
(p′i)(β) +

1
2

p(i+1)r − pir

β log 2
− n(β)

)

single precision divisions.
To approximate Mul, note that as the length of the output of PoP is changed, the number

of single precision multiplications that Mul requires is changed. As we cannot say anything
yet about the length of t we are unable to make a good approximation for the number of
single precision multiplications that are required by Mul. Recall that it equals

t(β)n(β) + t(β)(n(β) + 3) (5.15)

single precision multiplications and t(β) single precision divisions.

Reduction when t > n

We will now discuss how the number of single precision multiplications and divisions
behave when condition is simply replaced by t >gmp n in Pseudo code 5.1.2. The following
remark shows that once t > n in this implementation, with high probability, a mod n
reduction will be performed after every multiplication of t by a small prime.

5.1. ADDING SMALL PRIMES 47

Remark 5.1.3. Note that it is reasonable to assume that the result of a reduction mod n
returns a value (say X) which is uniformly in Zn. So the probability that X(1) < n(1) − 1 is
less than 1/2. Formally, let I denote the set of values less than n of bit-length n(1). The
probability that X = x is then given by P(X = x) = 1/(2n(1)−1 + 2|I|). Thus, as there are
2|I| possible values that x(1) = n(1), the probability that X(1) = n(1) equals
2|I|/(2n(1)−1 + 2|I|). So, similarly, the probability that x(1) < n(1) − 1 equals

2n(1)−2

2(n(1)−1+|I|) <
2n(1)−2

2(n(1)−1)
<

1
2
.

More general for 0 < y < n(1) the probability that X(1) < y is given by

P(X(1) < y) =
2y−1

2(n(1)−1+|I|) <
2y−1

2(n(1)−1)
= 2y−n(1) .

As the proof of Claim 2.2.4 shows, it holds that pk ∼ log n. So k log k ∼ log n. Thus, if
K = 2k then by Equation 5.7 it follows that

t(β) ≈ 1/2 · 2k log 2k

β log 2
≈ k log k

β log 2
≈ n(16).

Therefore, approximately, extra mod n reductions are applied by Pseudo code 5.1.2 if
K ≥ 2k. It follows by Remark 5.1.3 that if K ≥ 2k, then, since mi = 1 with probability 1/2,
with a high probability we need to perform approximately 1/2(K − 2k) mod n reductions.
F (K) is then approximated similarly to Equation (5.5) by

1
4

min{K, 2k}∑

i=1

pi

β log 2
+

1
2

(max{K − 2k, 0}) · n(β),

so that PoP requires approximately

F (K) +
1
2

(max {K − 2k, 0}) (n(β) + 3) (5.16)

single precision multiplications and 1/2max {K − 2k, 0} single precision divisions. Because
when K ≥ 2k, then t(β) ≈ n(β), it holds that Mul requires approximately

(
min{K log K

2β log 2
, 1} · n(β)

)
· n(β) +

(
min{K log K

2β log 2
, 1} · n(β)

)
(n(β) + 3) (5.17)

single precision multiplications and min{K/2k, 1} n(β) single precision divisions.
Figure 5.2 shows how the single precision calculations behave with respect to Pseudo code

5.1.2 under these approximations using again β = 32 and a 1234-bit modulus n, for which
k = 153 on a one Megabyte message m.

According to Figure 5.3, the extra mod n reductions are advantageous –if one considers
SP-multiplications– in the sense that the cost increases not so fast after the optimum as it
does without the extra mod n reductions. On the other hand, the optimum remains exactly
the same. The next subsection tries to improve this Pseudo code.

48 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

Figure 5.2: Approximate number of Single precision multiplications on the left and divisions on the
right versus K; apply a mod n reduction after each time t > n.

Figure 5.3: Gray: Figure 5.1, Black: Figure 5.2

Improved Reduction when t > n
Again, we will replace condition by t >gmp n, but instead of evaluating t = t modgmp n,
we will store the mod n reduced value of t in an array, set t = 1 and continue. Pseudo code
5.1.4 makes this precise.

As the size of the primes increase logarithmically it holds that the numbers of
multiplications between two mod n reductions are more or less equal. So we simply assume
that equation (5.13) may be applied to approximate the number of SP-multiplications, where
r = 2k. Because we set t = 1 after a mod n reduction, it follows that p′i can be neglected for
all i in Equation (5.13). Moreover, since for every prime pi for i < 202378196 it holds that
(pi)(β) = 1 and as soon as t > n then t(β) ≤ n(β) + 1. Therefore, F (K) is approximately

1
4

(
K−1∑

i=1

pi

β log 2
−

s−1∑

i=0

r

(
pir

β log 2

)
− (K − sr)

(
psr

β log 2

))
(5.18)

and Equation (5.14) implies that PoP, without the multiplications required by multiplying
the elements of A, then requires

PoP2(K) = F (K) +
⌊

K

2k

⌋
(n(β) + 3)

single precision multiplications and bK
2kc single precision divisions. Because w ≈ dK

2ke and

5.1. ADDING SMALL PRIMES 49

Pseudo-code 5.1.4. Iteration of Classic VSH (extra mod n im-
proved)

Input: The iteration number, j, xj and message m.

Output: xj+1.

Procedure: Set t = 1, w = 1.
Let A be an integer array, containing multiple precision integers.
Product of Primes (PoP):

for(i = 1; i ≤ k; i++){
if(mj·k+i == 1){

t = t ∗gmp pi;
if(condition) {

A[w++] = t modgmp n;
t = 1;
}

}
}
for(i = 1; i < w; i++) {

t = t ∗gmp A[i] modgmp n;
}

Squaring (Sq):
xj = (xj ∗gmp xj) modgmp n;

Multiplication (Mul):
xj+1 = (xj ∗gmp t) modgmp n;

Return xj+1.

the elements of A have size n(β), it follows that the full PoP requires approximately

PoP2(K) +
⌊

K

2k

⌋
·
(
n2

(β) + n(β)(n(β) + 3)
)

(5.19)

single precision multiplications and

bK

2k
c (

1 + n(β)

)

single precision divisions.
If K < 2k then Mul is approximated by Equation (5.8), but if K > 2k then t(β) ≈ n(β), so

that Mul requires
n2

(β) + n(β)(n(β) + 3) (5.20)

single precision multiplications and n(β) single precision divisions.
Figure 5.4 shows how the number of SP-multiplications and SP-divisions behave with

respect to Pseudo code 5.1.4. Again, β = 32, the modulus has size 1234 and k = 153. We let
K run from 1 to 1000.

It follows that applying extra mod n reductions in a clever way improves the optimum:
instead of reducing the amount of the SP-multiplications by 5.99% the number can be

50 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

Figure 5.4: Approximate number of Single precision multiplications on the left and divisions on the
right versus K; apply a mod n reduction after each time t > n (improved)

Figure 5.5: Gray: Figure 5.2, Black: Figure 5.4

reduced by 19.9%. However, for these K, the asymptotic behavior is not visible and it seems
to increase instead of decrease. We will show why this is indeed the case.

Observe that the assumption that PoP, Mul and Sq require the same amount of time each
iteration of the introduction is not very precise. In fact, using K = 2k = 306 and a 1234-bit
n, we find that if β = 32, then, according to our model, PoP, Mul and Sq require 50%, 29%
and 21% of the total amount of SP-multiplications per iteration respectively. If we argue
similar as in the introduction, we would conclude that we could reduce the number of
SP-multiplications by 21%. On the other hand, consider Pseudo code 5.1.4. Each time,
when a mod n reduction is performed, the number of SP-multiplications needed to calculate
the next r small primes increases with respect to the previous calculation of r primes
because the values of the primes are increasing. Taking that into account, it may hold that
the extra number of SP-multiplications needed to derive the product of the next r primes
outweighs the number of SP-multiplications gained by reducing the iteration numbers. For
example, if K = 2000k and β = 32, then,

PoP2000k + Sq + Mul
1000(PoP2k + Sq + Mul)

≈ 1.49,

implying that Classic-VSH applied with K = 2000k requires 50% more SP-multiplications
than Classic-VSH applied with K = 2k. Figure 5.6 shows the behavior of the number of
SP-multiplications of the same version of Classic-VSH, when K runs to 10000. In
conclusion, the number of SP-multiplications increases for this Pseudo code, because PoP

5.1. ADDING SMALL PRIMES 51

becomes dominant and requires more extra SP-multiplications than the amount reduced by
reducing the iteration numbers.

Figure 5.6: Approximate number of Single precision calculations versus K, apply a mod n reduction
after each time t > n (improved)

The last subsection shows that although the addition of small primes doesn’t decrease the
number of SP-multiplications a lot, still, we get better results due to the use of GMP.

5.1.2 Fast-VSH

This subsection discusses the behavior of the amount of SP-multiplications and
SP-divisions, when K is taken larger than originally for Fast-VSH.

Consider Pseudo code 4.0.3 and observe that it is almost similar to Pseudo code 5.1.4.
The only difference is that Fast-VSH derives exactly K multiplications in PoP, where for
each consecutive primes pi, pj it holds that i− j ≥ 2b.

Pseudo code 4.0.3. Iteration of Fast-VSH (straightforward)

Input: The iteration number, j, xj and message m.

Output: xj+1.

Procedure: Set t = 1.
Squaring (Sq):

xj+1 = (xj ∗gmp xj) modgmp n;
Product of Primes (PoP):

for(i = 1; i ≤ k; i++){
t = t ∗gmp p(i−1)2b+m[jk+i]+1;
if(t >gmp n) {

xj+1 = xj+1 ∗ t modgmp n;
t = 1;

}
}

Multiplication (Mul):
xj+1 = (xj+1 ∗gmp t) modgmp n;

Return xj+1.

52 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

Because of the gaps between the successive primes, the corresponding model is much more
complex, because we cannot use the approximations of previous subsections. Also, because
of the similarity between the implementation of Fast-VSH and Pseudo code 5.1.4, we will
omit such approximation here and assume that the corresponding model is also similar.

It follows that the figure of the behavior of the number of SP-calculations for Fast-VSH is
very similar to Figure 5.4. Because of the gaps between the small primes it follows that the
product of small primes (PoP) becomes dominant faster than it comes dominant with
respect to Classic-VSH. So, asymptotically, the number of SP-multiplications required by
Fast-VSH based on K ∗ 2b small primes will increase faster than suggested by Figure 5.4.

The next subsection will show the actual speed on our system when K is increased.

5.1.3 Results

This section presents the results we get by allowing more small primes in our
implementations on our system. First of all, the results are presented in figures, where the
speed of VSH is plotted against the amount of small primes.

Figure 5.7: The speed of the original Classic VSH, where on the left figure S = 1234 and S = 2398
on the right figure.

Figure 5.8: The speed of the original Classic VSH with extra mod n reductions, where on the left
figure S = 1234 and S = 2398 on the right figure.

Because GMP is designed to use the computer processor as efficient as possible, we
assume that it is able to perform SP-calculations, where β = 32, because our Pentium IV
processor is 32-bit. As our model suggests, the speed does not increase asymptotically. On

5.1. ADDING SMALL PRIMES 53

Figure 5.9: The speed of the original Fast VSH, where b = 8 and on the left figure S = 1516. S = 2874
on the right figure.

the other hand our approximations show that the increment of the speed for Classic-VSH,
using S = 1234 and applying extra mod n reductions, for example, should be at most about
100/(1− 0.045)− 100 = 4.7%, while we observe that the speed increases by about 26%,
which is much more. Also, the maximum speed is measured with a larger K than Figure 5.4
suggests. Because our approximations are mostly based on ∼ we expect that for large K our
approximations are accurate. For small K, the difference between the results and
approximations may be due to relatively big errors in the approximations. But there is
more. Our approximations do not take “all the usual assembler tricks and obscurities for
speed” (see [14]) into account. The following Example shows that this can lead to a big
difference between a correct model and the real performance.

Example 5.1.5. Consider the 32-bit based multiple precision reduction mod X of the
integers Y and Z, using the classical reduction algorithm, where X(32) = α. If Y(32) = α + 1,
then the reduction Y mod X requires α + 3 SP-multiplications. And if Z(32) = α + γ then
the reduction Z mod X requires γ(α + 3) SP-multiplications. So evaluating γ times the
reduction Y mod X costs an equal amount of SP-multiplications as evaluating Z mod X
once. Therefore, we would conclude that evaluating γ times the reduction Y mod X takes
the same amount of time as evaluating Z mod X once. In other words, the time that it
takes to evaluate Z mod X divided by γ should be equal to the time that it takes to
evaluate Y mod X.
The following table shows the time that GMP requires to evaluate Y mod X 232 times. We
take X(32) = n(32) = 39.
Note that the time GMP takes to evaluate Y mod X, where Y(32) −X(32) = 30, divided by

Y(32) − α Time (seconds) Time divided by (Y(32) − α)
1 2.71 2.71
5 7.1 1.42
10 11.53 1.15
20 21.2 1.06
30 29.59 0.99

30 is about one third of the time GMP takes to evaluate Y mod X, where Y(32) −X(32) = 1.

It follows that GMP cannot be modeled by means of calculating the number of

54 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

SP-calculations only. So Example 5.1.5 illustrates the remark on top of page 12 of [6], which
says that the best value for K is ”best determined experimentally”. Thus, the best value for
K is given by Figure 5.8 for Classic VSH and by Figure 5.9 for Fast VSH if b = 8. Table 5.2
summarizes the results.

S′ S VSH-variant Optimal K speed (MB/sec) speed-up
1024 1234 Classic-VSH 600 1.279 26%

1516 Fast-VSH 500 4.290 14%
2048 2398 Classic-VSH 1100 0.880 33%

2874 Fast-VSH 1024 2.457 0%

Table 5.2: The best values for K for Classic-VSH and Fast-VSH and their speed-ups with respect to
the original choice of K.

We conclude that with our model, we are able to show that if β = 32 that the
performance of VSH will be less than optimal if K is very large due to the increment of the
SP-multiplications by PoP. We note that because the number of SP-multiplications is much
bigger than the number of SP-divisions, the gain of the decrement of SP-divisions is
outweighed by the increment of SP-multiplications. Also, because GMP uses the maximal
performance of the CPU at some stage, we conclude that our model, at some stage, can be
applied to VSH if K is large. Figure 5.10 supports this.

Figure 5.10: The speed of the original Classic VSH with extra mod n reductions, where on the left
figure S = 1234 and S = 2398 on the right figure.

The next section will discuss the new Computational VSSR assumption and show how
this improves the speed of VSH.

5.2 The new Computational VSSR assumption

This section shows that with the current state of the art of integer factorization, the original
Computational VSSR Assumption is very pessimistic. Recall from Subsection 2.1.3 that
originally it is assumed that solving VSSR based on u small primes and a modulus of
bit-size S is at least as hard as factoring an S′-bit integer for which holds that

L(S′) ≥ L(S)
u

.

5.2. THE NEW COMPUTATIONAL VSSR ASSUMPTION 55

Here, L(S) denotes the time that the most efficient factoring algorithm, the Number Field
Sieve, takes to factor an S-bit composite. So, formally, under this assumption the idea of
adding primes without increasing the size of the modulus from previous subsection would
affect the security of VSH. However, the original VSH paper remarks that this assumption
is “certainly overly conservative”. In this section we will demonstrate why it is overly
conservative while introducing a new Computational VSSR assumption that is based upon
the present state of knowledge on the best algorithm for solving VSSR. We will then show
that the new assumption allows us to use S′ = S as well as more small primes in the hash
function. Consequently, the idea of adding primes from the previous can be done without
any degradation of security.

There are two approaches to trying to solve VSSR: (i) first factor the modulus and then
VSSR can be solved trivially, or (ii) try to solve VSSR directly without factoring. Observe
that the second approach depends upon the number of small primes that are used while the
first approach does not. If the best known algorithm for the second approach takes at least
as much time as the best known algorithm for the first approach, then the second approach
is of no concern to us. This observation is the idea behind the new Computational VSSR
Assumption.

There has been many years of research on integer factorization for finding smooth
modular square roost (i.e. solutions to VSSR) since such algorithms are heuristically
converted into factorization algorithms. The best algorithm known to date to solve VSSR
–without factoring– is roughly given by Algorithm 5.2.1. This algorithm is the basis for well
studied factorization algorithms such as Quadratic Sieve and Continued Fraction Integer
Factorization algorithms. The idea is to try to generate residues with known square-root
that are “small”, and hope that the result is smooth. The latter part is left to chance: one
simply tries to factor the result into small primes, keeping it if they succeed and discarding
it when they do not. It follows from analytic number theory that if we assume that the
residues are randomly distributed then it follows that the smaller we can generate the
residues with known modular square root, the more likely they are smooth. The Quadratic
Sieve and the Continued Fraction Integer Factorization algorithms generate such residues of
size

√
n in polynomial time, which is nowadays the best researchers are able to. Observe

that if one can find such residues of size less than
√

n in polynomial time, then one improves
the efficiency of Algorithm 5.2.1. It can be shown that if one can do better than finding a
residue of order

√
n (with known square root), then one can improve the running time of

Quadratic Sieve. The argument is from [5], which we will sketch in Appendix D.2. Observe
that in general –because Algorithm 5.2.1 is the basis for Quadratic Sieve– if there exists a
more efficient algorithm than Algorithm 5.2.1 to solve VSSR, then one improves on the
speed of the Quadratic Sieve.

So if it is easy to find x such that y ≡ x2 mod n has least positive representative of order√
n and is pu-smooth (see Definition 2.1.1), then solving VSSR may be easy. Therefore, we

want that
P(B) = Pr

[
y is B − smooth| y is about

√
n
]

is small for B = pu. In fact, we want that finding an x such that y ≡ x2 mod n has least
positive representative of order

√
n and is pu-smooth takes at least as much time as it takes

to factor n via the Number Field Sieve. So, conservatively assuming that finding an x such
that y ≡ x2 mod n has least positive representative of order

√
n takes O(1) time, we want to

find u such that L(S) ≥ 1/P(pu).

56 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

Algorithm 5.2.1. Solve VSSR

Input: A hard to factor modulus n and a fixed constant u.

Output: x2 ≡ ∏u
i=0 pei

i mod n, where at least one ei is odd.

Procedure: Define condition C as y ≡ ∏u
i=0 pei

i mod n, where at least one ei is odd.
Initially, set C :=false.
Loop:

While C is false do:
Find x such that y ≡ x2 mod n has least positive

representative modulo n of order
√

n.
Try to factor the residue of y modulo n into small primes.
If it factors, then set C =true.

Return (x, (ei)u
i=0).

Consider VSSR (Definition 2.1.7) with u small primes and an S-bit modulus. Our new
Computational VSSR Assumption is given by
New Computational VSSR Assumption: Solving VSSR based on u small primes and
an S-bit modulus is as hard factoring an S′-bit number, where S′ the smallest value such that

L(S′) ≥ 1/P(pu).

The following lemma shows how the running time of Algorithm 5.2.1 can be
(conservatively) approximated.

Lemma 5.2.2. Let n be an integer and U = log
√

n
log Bn

, where Bn denotes the smoothness
bound. Asymptotically, Algorithm 5.2.1 has running time T , which is well estimated by

UU(1+o(1)). (5.21)

Proof. Consider VSSR, where pu is the largest prime smaller than Bn. The expected
amount of loops in Algorithm 5.2.1 is given by 1/P(Bn). If we conservatively assume that
each loop runs in O(1) time, then 1/P(Bn) is the expected running time of Algorithm 5.2.1.

Next, we will show that 1/P(Bn) is well estimated by UU(1+o(1)).
Firstly, we will derive a lower bound for the maximal value of Bn such that

UU(1+o(1)) = L(S). Then, we will show that this lower bound satisfies the conditions for the
validness of the estimate in Equation (5.21). According to Subsection 1.4.5 of [9] the
probability P(Bn) is well estimated by U−U(1+o(1)), if

• (i)
√

n is large, and

• (ii) (log
√

n)1+ε < Bn <
√

n.

It follows from Section 6.2 of [9] that the running time for the Number Field Sieve to
factor n is given by exp

(
(c + o(1))(log n)1/3(log log n)2/3

)
, where c = (64/9)1/3. So,

L(S) = 1/P(Bn), where the o(1)’s are dropped, is equivalent to

UU ≈ ec(log n)
1
3 (log log n)

2
3 .

5.2. THE NEW COMPUTATIONAL VSSR ASSUMPTION 57

We find that if log U > 1 the maximal value for Bn is at least:

U log U = c(log n)
1
3 (log log n)

2
3 ⇔

U =
c(log n)

1
3 (log log n)

2
3

log U
(log U > 1) ⇒

U < c(log n)
1
3 (log log n)

2
3 ⇔

log
√

n

log Bn
< c(log n)

1
3 (log log n)

2
3 ⇔

log Bn >
1
2
· log n

c(log log n)
1
3 (log n)

2
3

⇔

log Bn >
1
2c

(
log n

log log n

) 2
3

⇔

Bn > exp
1
2c

(
log n

log log n

) 2
3

.

Define

H(n) := exp
1
2c

(
log n

log log n

) 2
3

.

From the condition log U > 1, it follows that

log U > 1 ⇔ log
√

n

log Bn
> e ⇔ Bn < exp

log n

2e
.

Using Bn = H(n) yields

exp
1
2c

(
log n

log log n

) 2
3

< exp
log n

2e
⇔

(log n)
1
3 (log log n)

2
3 >

e

c
,

which is true for n ≥ 16.
We will now show that the conditions (i) and (ii) are satisfied. Firstly, note that (i) is true

by assumption. Next, consider (log
√

n)1+ε < Bn <
√

n. The upper-bound is obvious since

√
n = e

1
2

log n > e
1
2c

(
log n

log log n

)2/3

.

The lower bound is also obvious for n large enough since H(n) is sub-exponential –i.e.
hyper polynomial– in log n, whereas the term (log

√
n)1+ε is polynomial in log n.

It follows that, if n is large enough, (log
√

n)1+ε < Bn <
√

n, so that Equation 5.21 is a
good estimate for the expected running time of Algorithm 5.2.1.

Obviously, as VSH can be broken either by solving VSSR or by factoring its modulus n, it
holds that S ≥ S′ if VSH has to be as secure as factoring an S′-bit modulus. Our New
Computational VSSR Assumption implies that S = S′ if u is taken such that

L(S) ≥ 1
Pu

.

58 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

Lemma 5.2.2 then implies –assuming n is large enough– that u has to be taken such that pu

is not larger than the value implied by

UU(1+o(1)) = L(S),

where U = log
√

n
log pu

and L(S) denotes the running time of the Number Field Sieve to factor n.
So this equation is equivalent to

UU(1+o(1)) = e(c+o(1))(log n)1/3(log log n)2/3
, (5.22)

where c = (64/9)1/3.
Because for both S′ = 1024 and S′ = 2048 it holds that H(2S′) > (log

√
n)1+ε, where we

take ε = 0.001, where H(n) is defined in the proof of Lemma 5.2.2, we assume that
Equation (5.22) is valid. Solving Equation (5.22) by dropping the o(1)’s and using Newton’s
method for finding roots (see Appendix E.1.3), yields S = S′ = 1024 for u at most ≈ 221.
And for S′ = 2048 it holds that S = S′ for u at most ≈ 235. It follows for the Original
versions of Classic-VSH and Fast-VSH, that for the the original choices of K, we may take
S = S′. This leads to the speed-ups for VSH as presented in Table 5.3.

S S′ VSH-Variant K # primes Speed (MB/sec) Speed-up
1024 1234 Classic-VSH 153 153 1.055 0 %

1024 131 131 1.232 17 %
1516 Fast-VSH 256 216 3.770 0 %
1024 256 216 5.100 35 %

2048 2398 Classic-VSH 272 272 0.681 0 %
2048 233 233 0.770 13 %
2874 Fast-VSH 1024 218 2.457 0 %
1024 1024 218 3.356 37 %

Table 5.3: The speed-up for Classic and Fast VSH under the new VSSR assumption

5.3 Combining all Ideas

This section will present the results if we combine the ideas discussed in this chapter and
previous Chapter. We note that the Computation VSSR Assumption from previous section
imply that Classic-VSH is secure if S = S′ = 1024 for K ≤ 221 and if S = S′ = 2048 for
K ≤ 235. Fast-VSH is secure if S = S′ = 1024 for K ≤ 221−b and if S = S′ = 2048 for
K ≤ 235−b. Practically, it means for Classic-VSH and Fast-VSH, where b = 8, that we may
take S = S′, for all K, without affecting the security of VSH.

This section provides figures in which the speed of a certain variant of VSH is put against
K. Then, with respect to Classic-VSH and Fast-VSH, it is concluded which implementation
using what K has the best performance and give the total speed-up. Chapter 8 provides a
table with the best value for K for all Pseudo codes and their speed-ups. We will split the
presentation in two subsections. The first subsection shows how much we can improve the
speed of Classic-VSH. The second subsection shows how much we can improve the speed for
Fast-VSH.

5.3. COMBINING ALL IDEAS 59

5.3.1 Classic-VSH

The following figures show the speed of the effective Pseudo codes of Chapter 4 against K,
the number of bits processed each iteration. Due to the analysis in the first subsection of
this chapter we alter the Pseudo codes so that extra mod n reductions are performed
similarly to Pseudo code 5.1.4. See Appendix E.2 for the C-source codes of these altered
Pseudo codes.

Figure 5.11: The speed of Original Classic VSH, where on the left figure S = 1024 and S = 2048 on
the right figure.

Figure 5.12: The speed of Classic VSH, based on Pseudo code 4.2.2, where on the left figure S = 1024
and S = 2048 on the right figure.

Figure 5.13: The speed of Classic VSH, based on Pseudo code 4.2.3, where on the left figure S = 1024
and S = 2048 on the right figure.

60 CHAPTER 5. NEW CHOICES FOR K AND THE SECURITY ASSUMPTION

It follows that the best Pseudo code for Classic-VSH is Pseudo code 4.2.3, where extra
mod n reduction are introduced similar to Pseudo code 5.1.4. If S′ = 1024, then, the optimal
value for K = 700. The speed is of Classic-VSH is then 1.780 MB/sec, which is 68.72% more
than 1.055 MB/sec originally. If S′ = 2048, then, the optimal value for K = 1300 and the
speed of Classic-VSH is 1.186 MB/sec, which is 74.23% more than 0.6807 MB/sec originally.

5.3.2 Fast-VSH

The following Figure shows the speed of Fast-VSH against K, the number of small prime
multiplications each iteration. Here again b = 8.

Figure 5.14: The speed of Original Fast-VSH, where on the left figure S = 1024 and S = 2048 on the
right figure.

It follows that the best value for K in Fast-VSH is 500 if S′ = 1024. The speed of
Fast-VSH is then 5.800 MB/sec, which is 53.84% more than 3.770 MB/sec originally. If
S′ = 2048, then, the best value for K is 1000 and the speed of Fast-VSH is 3.365 MB/sec,
which is 36.96% more than 2.457 MB/sec originally.

Chapter 6

Reducing Prime Exponents by φ(n)

This chapter discusses an idea to replace the time-consuming iteration by a relatively cheap
iteration. This version of VSH assume that each user generates their own hash function.
This chapter will show that they can compute their hash efficiently using their Trapdoor
information, but the other user has to use the relatively slow Classic-VSH to compute that
hash. Therefore, this version of VSH is called Trapdoor-VSH. We will show that
Trapdoor-VSH, using Euler’s Phi function (φ(n)), is about 3 times faster than Fast-VSH.

Obviously, from the discussion in Subsection 2.2.1 of Chapter 2, if φ(n) is known,
collisions can be created easily. Thus, it immediately follows that Trapdoor-VSH may not
be used by the ones for which the factorization of n should remain unknown. In fact, only
the parties that generate n can apply Trapdoor-VSH.

Trapdoor-VSH can still be very advantageous, for example, if exactly one party has to use
a collision resistant hash function many times and if he has access to the factorization of n.
This party can benefit a lot by applying Trapdoor-VSH, while the other parties, who don’t
have to calculate hashes that many times, still use Classic-VSH.

For example, [6] shows how to apply VSH in the Cramer-Shoup Signature scheme. In this
scheme VSH is turned into a Randomized Trapdoor Hash Function by replacing the initial
value for x0 by a random value and return x2

L+1 instead of xL+1. So this Randomized
Trapdoor Hash Function has the same running time as VSH. In this application, the signer
generates the modulus for VSH, so the signer can always apply the implementation of
Trapdoor-VSH. So if a company has to sign many large messages, then, it can benefit from
the security and efficiency that the Cramer-Shoup Signature Scheme offers, and can save
more time than suggested in [6] by applying Trapdoor-VSH for the evaluation of the hashes
of the messages.

According to [5] there are companies that require to sign many 1 MB or larger messages.
This implies that Trapdoor-VSH is applicable in real world applications.

Consider again the algorithm of Classic-VSH (Algorithm 2.2.1 in Chapter 2), which we
will repeat here.

Let φ(n) denote Euler’s phi-function. By construction, the output hash of VSH is
equivalent to

K∏

i=1

pei
i mod n, (6.1)

where ei =
∑L

j=0 2L−jmjK+i. As [6] remarks in section 5, the speed of VSH will increase if

61

62 CHAPTER 6. REDUCING PRIME EXPONENTS BY φ(N)

Algorithm 2.2.1. Classic VSH

Input: An l-bit message m and an S-bit RSA modulus n.

Output: An S-bit hash of m.

Procedure: Initialization:
(Initial Value): Let x0 = 1.
(Number of iterations): Let L =

⌈
l
K

⌉
.

(padding): Let mi = 0 for l < i ≤ LK.
(Appending length block): Let li be bits so that
l =

∑K
i=1 li2i−1 and let mLK+i = li for i = 1, · · · ,K.

Iteration:
For j = 0, · · · ,L compute

xj+1 = x2
j ×

∏K
i=1 p

mj·K+i

i mod n.
Finalization:

Return xL+1.

one calculates e′i ≡ ei mod φ(n) in each iteration, where e′i denotes the least positive
representant of ei mod φ(n), and, in the end, evaluates the product

K∏

i=1

p
e′i
i mod n.

As we discussed in Chapter 2, each iteration of Classic-VSH takes O((log n)2) time.
Because, originally, there are K = k = O((log n)/ log log n) message bits processed each
iteration, the iteration of Classic-VSH requires O((log n)(log log n)) time per message bit.
The first section will give an implementation of the new iteration function that runs in
O(log n) time per message-bit. So we expect a speedup of factor log log n.

This chapter will discuss this idea in detail. Section 6.1 discusses how to implement this
idea. The second section gives the result of our implementations on our 3.4 GHz Pentium
IV system. The last section will discuss the security of this idea and give some practical
solutions.

6.1 Pseudo code

This section shows how to implement the following idea of implementing VSH: instead of
calculating the output hash by computing the products of primes in each iteration, compute
iteratively the exponent vector (ei)K

i=1 of the resulting hash, reduce these numbers modulo
φ(n), and then calculate the result by multiplying the products of primes.

Let ei,j denote the power of prime pi, for which holds that

xj ≡
K∏

i=1

p
ei,j

i mod n,

for i = 1, · · · ,K and j = 0, · · · ,L+ 1. By the iteration step of Classic-VSH, for

6.1. PSEUDO CODE 63

i = 1, · · · ,K and j = 0, 1, · · · ,L+ 1 it holds that ei,j satisfies

ei,0 = 0

ei,j+1 =
{

2ei,j + 1 if mj·K+i = 1
2ei,j if mj·K+i = 0

.

Multiplying by (a power of) two can be done on a computer very efficient by just shifting
the bits to left. So we can implement the iteration that derives the exponent vector of the
resulting hash (ei)K

i=1 = (ei,L+1) very efficient. Let X << i denote the left-shift of X over
i-bits, i.e., X ∗ 2i. Pseudo code 6.1.1 shows how to find, iteratively, the exponent vector
(e′i)

K
i=1 ≡ (ei mod φ(n))K

i=1.

Pseudo-code 6.1.1. Iteration of Trapdoor-VSH
(Find Exponents)

Input: Iteration index j and the exponent vector (ei,j)K
i=1.

Output: The exponent vector (ei,j+1)K
i=1.

Procedure: for (i = 1; i ≤ K; i++) {
ei,j+1 = ei,j+1 <<gmp 1;
if (mj·K+i == 1) {

ei,j+1++gmp ;
}
if (ei,j+1 >gmp φ(n)) {

ei,j+1 = ei,j+1 −gmp φ(n);
}

}
Return (ei,j+1)K

i=1

Pseudo code 6.1.1 has a lot of overhead: for each bit the GMP-shift, GMP-addition and
GMP-comparison functions are called. From the discussion in Section 4.1 in Chapter 4, it
follows that this Pseudo code can be improved by inlining the shifting and addition
functions as much as possible. In addition, from Example 5.1.5 it follows that GMP is more
efficient when applied to perform a reduction modulo φ(n) to a number which is much
larger than φ(n), than when it has to perform a reduction modulo φ(n) to a number of
almost equal size. This leads to Pseudo code 6.1.2, where (Ai,j)K

i=1 and Cj are temporary
values, for which, initially, Ai,0 = C0 = 0, for all i, · · · , K.

64 CHAPTER 6. REDUCING PRIME EXPONENTS BY φ(N)

Pseudo-code 6.1.2. Iteration of Trapdoor-VSH
(Find Exponents (continued))

Input: Iteration index j, the exponent vector (ei,j)K
i=1, and the temporary values (Ai,j)K

i=1, Cj .
Let (Ai,j+1)K

i=1 be a 32-bit integer array.
Let Cj+1 be a counter and C = φ(n)(32).

Output: The exponent vector (ei,j+1)K
i=1, and the temporary values (Ai,j+1)K

i=1, Cj+1.

Procedure: /*Filling the 32 bit-array on the spot*/
for (i = 1; i ≤ K; i++) {

Ai,j+1 = Ai,j << 1;
if (mj·K+i == 1) {

Ai,j+1++;
}

}
/*If A is filled or if j = L; update C and (ei,j+1).*/
if (j + 1 mod 32 == 0 || j == L) {

for (i = 1; i ≤ K; i++) {
if(j + 1 mod 32 == 0) {

ei,j+1 = ei,j <<gmp 32;
Cj+1 = Cj + 1;

} else {
ei,j+1 = ei,j <<gmp (j + 1 mod 32);

}
ei,j+1 = ei,j +gmp Ai,j ;
/*Reduce when ei,j+1 are about twice the size as φ(n)*/
if(Cj+1 == 2C || j == L) {

Cj+1 = C;
ei,j+1 = ei,j+1 modgmp φ(n);

}
}

}

Return (Ai,j+1)K
i=1, Cj+1, (ei,j+1)K

i=1

Lastly, since the message-bits are uniformly random, on average, the CPU-will wrongly
predict the outcome of the statement if(mj·K+i==1) half of the time. So by the discussion
in Section 4.1 of Chapter 4, Pseudo code 6.1.2 can be improved further by replacing

for (i = 1; i ≤ K; i++) {
Ai,j+1 = Ai,j << 1;
if (mj·K+i == 1) {

Ai,j+1++;
}

}

by

for (i = 1; i ≤ K; i++) {

6.1. PSEUDO CODE 65

Ai,j+1 = (Ai,j << 1) | mj·K+i;
}

where | denote the bit-wise OR-function. Thus, we have eliminated pipeline delays by
replacing a conditional statement with a binary operation. The next section shows that this
small change to the source code doubles the performance of VSH! This final implementation
of the new iteration function is referred to as Find Exponents Final.

It remains to show how to implement the product

K∏

i=1

p
e′i
i mod n.

This can be done very efficient by using VSH’s original iteration function, see Pseudo code
6.1.3. Straightforward multiplication would require

∑K
i=1 e′i = O(K · n) multiplications and

O(n) reductions modulo n, whereas this Pseudo code requires
O((K + 1) · log n) = O(K log n) multiplications, O(log n) squarings, and O(log n) reductions
modulo n.

Pseudo-code 6.1.3. Finalizing

Input: The exponent vector (e′i)
K
i=1.

Output: The Classic-VSH hash of message m.

Procedure: Let b(x, i) denote the value of bit i of x, where b(x, 0) denotes the least significant bit of x.
Set t = 1 and H = 1.
for (j = 1; j ≤ S; j++) {

for (i = 1; i ≤ K; i++) {
if (b(e′i, S − j) == 1) {

t = t ∗gmp pi;
}

}
H = H ∗gmp H modgmp n;
H = H ∗gmp t modgmp n;

}
Return H.

66 CHAPTER 6. REDUCING PRIME EXPONENTS BY φ(N)

Algorithm 6.1.4 shows how the new iteration and finalization are used to calculate the
Classic-VSH hash of message m.

Algorithm 6.1.4. Trapdoor-VSH

Input: An l-bit message m and an S-bit RSA modulus n.

Output: An S-bit hash of m.

Procedure: Initialization:
(Initial Values): Let (ei,0)K

i=1 = (Ai,j)K
i=1 = (0)K

i=1, and C0 = 0.
(Number of iterations): Let L =

⌈
l
K

⌉
.

(padding): Let mi = 0 for l < i ≤ LK.
(Appending length block): Let li be bits so that
l =

∑K
i=1 li2i−1 and let mLK+i = li for i = 1, · · · ,K.

Iteration:
For j = 0, · · · ,L compute(

(ei,j+1)K
i=1, (Ai,j+1)K

i=1, Cj+1

)
=Find Exponents Final(j, (ei,j)K

i=1, (Ai,j)K
i=1, Cj).

Finalization:
Return Finalize((ei,L+1)K

i=1).

6.2 Results

This section presents the results of the speed of Trapdoor-VSH based on an S-bit modulus
n on our 3.4 GHz Pentium IV system. By the new Computational VSSR Assumption of the
previous Chapter, we take S = S′, i.e., we assume that Trapdoor-VSH is as secure as it is to
factor an S′ = S bit number. Because the finalizing part of Algorithm 6.1.4 is equivalent to
the iteration part of the Original Classic-VSH based on an S ·K-bit message, this idea
benefits only for messages which are significantly larger than S ·K-bits i.e., suppose that the
length of the input message is α · S ·K, for some α. The time that Algorithm 6.1.3 needs to
calculate the finalizing part is about the time the full Original Classic VSH takes divided by
α. It follows that if α >> 1 then the time that Algorithm 6.1.3 requires to evaluate the
finalizing part is negligible.

Because the iteration part of Algorithm 6.1.4 performs a reduction modulo φ(n) for
messages which are larger than K · S-bits, we expect a speed-up, with respect to
Classic-VSH, for messages larger than 27+10 bits= 16kilo Byte, if S = 1024 and
K = 131 ≈ 27. For the same K, we expect a speed-up, with respect to Classic-VSH if the
input message is larger than 32kilo Byte, if S = 2048. Figure 6.1 shows the speed of
Trapdoor-VSH against the size of the input message. With respect to Classic-VSH, we
observe that Trapdoor-VSH is faster when the message is larger than 25kilo Bytes, if
S = 1024, and for messages larger than 80 kilo Byte if S = 2048. Trapdoor-VSH is faster
than Fast-VSH if the input message is larger than 200 kilo Byte, when S = 1024 and if the
message is larger than 420 kilo Byte, when S = 2048. In the remainder of this section we
consider 1 Mega-Byte messages.

6.2. RESULTS 67

Figure 6.1: The speed of Trapdoor-VSH against the message-length, where on the left figure S = 1024
and S = 2048 on the right figure. Here, K = 131 on both Figures.

Ignoring the finalizing part, Pseudo code 6.1.1 implies that every iteration consists of K
bit-shifts and at most K additions of 1 to ei,j . Because ei,j is by construction less than
φ(n) = O(n), it holds that these shifts and additions can be done in O(K · log n) time.
Because the value of ei,j is multiplied by 2 every iteration, for i = 1, · · · ,K, there are K
reductions modulo n performed after every O(log2(φ(n))) = O(log n) iterations. If Classic
Modular Algorithms are used, then every reduction modulo φ(n) requires O((log n)2) time,
so that we conclude that Trapdoor-VSH requires

O

K log n + K (log n)2

log n

K

 = O(log n)

time per message-bit, which is a factor log log n less than Classic-VSH requires per
message-bit originally.

Remark 6.2.1. From Figure 6.1 one may be tempted to conclude that the speed of
Trapdoor-VSH increases linear in the size of the message. This is not true as (1) the
iteration part Trapdoor-VSH takes O(log n) time per message bit, which is independent of
the message length `, and (2) the finalizing part takes a fixed amount of time for large
enough messages. So we expect the speed to grow to some constant level. However, for small
messages it holds that the Finalizing part is the bottle-neck of Trapdoor-VSH. Now suppose
that for messages of size less than some `′ the time taken by the iteration part is negligible
with respect to the finalizing part. If there exist messages m1 and m2 of size less than `′,
where m2 has twice the size as m1. If they are both large enough such that the Finalizing
part takes the same amount of time, then the speed of Trapdoor-VSH on input m2 is twice
the speed of Trapdoor-VSH on input m1. This could explain the linearity of Figure 6.1.

Table 6.1 shows the speed of Algorithm 6.1.4, for the different implementations for the
iteration-function as described in previous subsection.

Remark 6.2.2. It follows from Table 6.1 that Pseudo code 6.1.1 has indeed a lot of
overhead, so that the reduction of the overhead in Pseudo code 6.1.1 is very effective. Also,
the removal of the if statement in Pseudo code 6.1.2 doubles the speed. The following
results strengthen the argument that the latter improvement is due to better
branch-prediction and/or scheduling (see again Section 4.1). The following table gives the
speed of Trapdoor-VSH based on Pseudo code 6.1.2, where M8 denotes the hexadecimal

68 CHAPTER 6. REDUCING PRIME EXPONENTS BY φ(N)

S′ Pseudo code K S MB/sec speed-up
1024 Original Classic-VSH 153 1234 1.055 0.00%

6.1.1: Trapdoor VSH (Find Exponents) 131 1024 1.034 -1.99%
6.1.2: Trapdoor VSH (Find Exponents continued) 131 1024 5.025 476.30 %
6.1.4: Trapdoor VSH (Find Exponents Final) 131 1024 10.870 1030.33 %

Table 6.1: The speed of the Trapdoor Classic-VSH based on the various implementations

representation of the 8-bit repetitive pattern of message m. So, for example, if M8 = 0xaa,
then m is equal to 10101010 . . . 10101010, and if M8 =random then m is uniformly random.
Because the removed if statement is one of the main instructions and because
branch-predicting and scheduling can be done better for a fixed message m, we expect
better results. Here, S′ = S = 1024 and K = 131.

M8 Speed (MB/sec)
random 5.034

0xff 6.452
0xaa 10.753

Note that the time needed to evaluate m = 01010101 · · · is about the same as the time that
Trapdoor-VSH based on Algorithm 6.1.4 requires to evaluate the hash of a random message.
This is what we expected, since the message bits of the random message are uniformly
distributed.

The following Figure shows the speed of Algorithm 6.1.4 against K, when it evaluates the
hash of a 1 MB message. For S = 1024 it follows that Trapdoor-VSH has the best

Figure 6.2: The speed of Trapdoor-VSH, where on the left figure S = 1024 and S = 2048 on the
right figure.

performance if K = k = 131. The speed is then 10.870 MB per second, which is 10.3 times
faster than 1.055 MB per second, the speed of Classic-VSH originally. Moreover, it is 2.88
times faster than 3.77 MB per second, the speed of Fast-VSH, originally. For S = 2048 it
follows that Trapdoor-VSH has the best performance if K = 125. The speed is then 6.4 MB
per second, which is 9.70 times faster than 0.66 MB per second, the speed of Classic-VSH
originally. Moreover, it is 2.60 times faster than 2.457 MB per second, the speed of
Fast-VSH originally.

6.3. DISCUSSION 69

6.3 Discussion

One might think to use Trapdoor-VSH based on Fast-VSH so that the other parties can use
Fast-VSH, instead of Classic-VSH, which is about three times faster than than Classic-VSH.
Consider Algorithm 6.1.4 based on K primes and an S-bit modulus n. Obviously, if no
reductions modulo φ(n) are performed, then the finalization part is equivalent to
Classic-VSH evaluating the input message. So with respect to Classic-VSH, the message
should be at least KS-bits long to take advantage of the iteration of Algorithm 6.1.4. If the
iteration function is changed to evaluate the exponents of the primes of the output of
Fast-VSH, then the input message should be at least 2bKS-bits long. Moreover, the
finalizing part for these message is equivalent to Classic-VSH evaluating an 2bKS-bit
message. So for S = 1024, b = 8 and K = 256 = 28, Trapdoor-VSH based on Fast-VSH is
effective for messages which are larger than 210+8+8 bits = 226 bits = 8 Mega Byte.
Moreover, the finalizing part will take as much time as Classic-VSH takes to evaluate an
8MB message. Hence, practically, it makes no sense to apply Trapdoor-VSH with respect to
Fast-VSH.

Lastly, as originally the fastest version of VSH (the original version of Fast-VSH) requires
25 times more time than SHA1 to evaluate the hash of a message m, it follows that the
Trapdoor-VSH requires ’only’ 10 times more time to evaluate the hash of a message m than
SHA1.

70 CHAPTER 6. REDUCING PRIME EXPONENTS BY φ(N)

Chapter 7

On The Linearity of the Speed of
VSH

As Lenstra notes in [18] with respect to factoring 1024 bit RSA-numbers: “It is about time
to change”. Based on the new developments in factoring large numbers, we should consider
the consequences of using larger moduli to the applicability of VSH. Because this thesis deals
with the speed of VSH, we will focus on how larger VSH-moduli affect the speed of VSH.

Consider VSH with modulus n. Let n′ be the new VHS modulus, which is x times larger
than n, i.e.

log n′

log n
= x.

Roughly, we will show that since each iteration takes O((log n′)2) time, each iteration takes
x2 times the amount of time as it does with n. But as –under the new modulus– we process
x times more bits each iteration, the total time used by VSH with modulus n′ is O(x) times
the total running time of VSH with modulus n.

So we expect that the running time of VSH is linear in the size of the modulus. Our
results support this when n is 1024 bits long and x = 2, see Table 7.1. Let S denote the
bit-size of the modulus.

VSH-variant S speed (MB/sec)
Original Classic-VSH 1024 1.232

2048 0.770
Optimized Classic-VSH 1024 1.780

2048 1.186
Fast-VSH 1024 5.800

2048 3.365
Trapdoor-VSH 1024 10.870

2048 6.400

Table 7.1: The reduction of the speed of VSH, when the modulus size is doubled.

The first section shows that the running time of Classic-VSH is linear in the size of its
modulus. The second section shows that the running time of Fast-VSH is linear in the size
of its modulus and the last section shows that the running time of Trapdoor-VSH is linear
in the size of its modulus, for large messages.

71

72 CHAPTER 7. ON THE LINEARITY OF THE SPEED OF VSH

7.1 Classic-VSH

This section shows that the running time of Classic-VSH is in some sense linear in the
modulus size it uses. We will prove this for the Original Classic-VSH and show that it also
holds in some sense for the optimized version of Classic-VSH, where the number of
message-bits processed each iteration is bounded.

Theorem 7.1.1. The running time of the Original Classic-VSH is almost linear in the size
of the modulus it uses. Precisely, let n be an S-bit modulus and n′ an (x · S)-bit modulus, for
which holds that 1 < x < log n. If Original Classic-VSH, based on modulus n, takes Tn(m)
time to evaluate the hash of message m, it holds that

Tn′(m)
Tn(m)

= O(x).

Proof. Consider the original version of Classic VSH based on an S-bit modulus n. It follows
from the analysis of the efficiency of Classic-VSH in subsection 2.2.2 of Chapter 2 that each
iteration of Classic-VSH can be done in O((log n)2) time. So if we take a new modulus n′ of
bit-size x · S, each iteration will require O((log n′)2) = O(x2(log n)2) time.

Let Rn(m) denote the iteration numbers that Classic-VSH, based on modulus n requires
to evaluate the hash of the l-bit message m. Recall that Rn(m) = l/Kn + 1. Let Kn be the
value such that

Kn∏

i=1

pi < n <

Kn+1∏

i=1

pi.

From Claim 2.2.4 in subsection 2.2.2 it follows that Kn ∼ (log n)/(log log n). So, assuming
x < (log n)d, for some constant d, we find that the iteration numbers is reduced by a factor

Rn′(m)
Rn(m)

=
l

Kn′ (m) + 1
l

Kn
+ 1

= O

(
Kn

Kn′

)

= O

(
log n

log log n

log n′
log log n′

)

= O

(
log n

log log n

x log n
log x+log log n

)

= O

(
1
x

(
log x

log log n
+ 1

))

= O

(
1
x

)
.

Hence,
Tn′(m)
Tn(m)

= O

(
Rn′(m)(log n′)2

Rn(m)(log n)2

)
= O

(
1
x
· x2(log n)2

(log n)2

)
= O(x).

7.2. FAST-VSH 73

Consider the optimal version of Classic-VSH, based on modulus n, where the iteration
function is implemented by Pseudo code 5.1.4, see page 49. Let n and n′ satisfy the
properties of Theorem 7.1.1. The model and the results presented in Chapter 5 suggest to
take Kn not too large to get optimal performance. So it is reasonable to suppose that Kn is
given by cn · kn, where cn is some small constant and kn is the value such that

kn∏

i=1

pi < n <

kn+1∏

i=1

pi.

Then, the fact that the values of the small primes increase logarithmic, i.e.,

log pKn ≈ log(Kn log Kn)
= log(cnkn log cnkn)
= log(kn(log kn + log cn)) + log(cn log cnkn)
≈ log(kn log kn)
≈ log pkn ,

implies that an extra multiplication modulo n in Pseudo code 5.1.4 is required after
approximately every kn message-bits. Thus, the number of extra multiplications modulo n
of the optimal implementation of Classic-VSH will be bounded from above by c′Kn

kn
, for

some small constant c′ > 1. Hence, the iteration function of this implementation of
Classic-VSH requires

O

(
Kn

kn
(log n)2

)
= O

(
cnkn

kn
(log n)2

)
= O((log n)2)

time.
Let m be an l-bit message. From the proof of Theorem 7.1.1 it follows that

Tn(m)
Tn′(m)

=
Rn(m)
Rn′(m)

·O(x2)

= O

(
x2 Kn

Kn′

)

= O

(
x2 · cn

cn′
· kn

kn′

)

= O

(
x2 · 1

x

)

= O(x).

We conclude that the speed of Classic-VSH based on an S-bit modulus n behaves linearly
in S, if S increases less than a factor log n.

7.2 Fast-VSH

This section shows, similarly to the previous section, that the running time of Fast-VSH is
also linear in some sense in the size of the modulus it uses. We will prove this for some
instance of Fast-VSH. Then we will show that it also holds for Fast-VSH, where the number
of b-bit blocks K of message m that are processed each iteration, is bounded.

74 CHAPTER 7. ON THE LINEARITY OF THE SPEED OF VSH

Theorem 7.2.1. The running time of Fast-VSH, where the number of b-bit blocks K of
message m that are processed each iteration, is chosen so that

K∏

i=1

pi2b < n <
K+1∏

i=1

pi2b ,

is almost linear in the size of the modulus it uses. Precisely, consider Fast-VSH, where the
number of b-bit blocks K of message m that are processed each iteration, is chosen so that
above equation holds. Let n be an S-bit modulus and n′ an (x · S)-bit modulus, for which
holds that 1 < x < log n. If Fast-VSH, based on modulus n, takes Tn(m) time to evaluate the
hash of message m, it holds that

Tn′(m)
Tn(m)

= O(x).

Proof. Consider Fast VSH based on an S-bit modulus n. It follows from the analysis of
Fast-VSH in subsection 2.3.3 of Chapter 2 that each iteration of Fast-VSH can be done in
O((log n)2) time. So if we take a new modulus n′ of bit-size x · S, each iteration will require
O((log n′)2) = O(x2(log n)2) time.

Let Rn(m) denote the iteration numbers that Fast-VSH, based on modulus n requires to
evaluate the hash of the l-bit message m. Recall that Rn(m) = l/(bKn) + 1. Fix the
chunk-size b and let Kn be the value such that

Kn∏

i=1

pi2b < n <

Kn+1∏

i=1

pi2b .

From the proof of Lemma 2.3.3 in Subsection 2.3.3 it follows that

bKn ∼ b log(2n)
log(2b log(2n))

− b ∼ b log(n)
log(2b log(2n))

.

So, assuming 1 < x < (log n)d < (log(2n))d, for some constant d, we find that the iteration
numbers is reduced by a factor

Rn′

Rn
=

l
Knb + 1

l
Kn′b

+ 1

= O

(
Kn′b

Knb

)

= O

(
log(n)

log (2b log 2n)

/
x log(n)

log (x2b log 2n)

)

= O

(
1
x
· log

(
x2b log 2n

)

log (2b log 2n)

)

= O

(
1
x
· 2 log

(
2b log 2n

)

log (2b log 2n)

)

= O

(
1
x

)

7.2. FAST-VSH 75

Hence,
Tn′(m)
Tn(m)

= O

(
Rn′(m)(log n′)2

Rn(m)(log n)2

)
= O

(
1
x
· x2(log n)2

(log n)2

)
= O(x).

Consider the optimal version of Fast-VSH based on modulus n and chunk-size b, where
the implementation of the iteration function is given by Pseudo code 4.0.3 on page 26. Let n
and n′ satisfy the properties of Theorem 7.2.1. Again, the model and the results presented
in Chapter 5 suggest to take Kn not too large to get optimal performance. So, again, it is
reasonable to suppose that Kn is given by cn · kn, where cn is some small constant and kn is
the value such that

kn∏

i=1

pi2b < n <

kn+1∏

i=1

pi2b ,

Then, the fact that the values of the small primes increase logarithmic, i.e.,

log p2bKn
≈ log(2bKn log 2bKn)

= log(cn2bkn log cn2bkn)

= log(2bkn log(2bkn + log cn) + log(cn log cn2bkn))

≈ log(2bkn log 2bkn)
≈ log p2bkn

,

implies that an extra multiplication modulo n in Pseudo code 4.0.3 is required after
approximately every bkn message-bits. Thus, the number of extra multiplications modulo n
of the optimal implementation of Fast-VSH will be bounded from above by c′ bKn

bkn
, for some

small constant c′ > 1. Hence, the iteration function of this implementation of Fast-VSH
requires

O

(
Kn

kn
(log n)2

)
= O

(
cnkn

kn
(log n)2

)
= O((log n)2)

time.
Let m be an l-bit message. From the proof of Theorem 7.2.1 it follows that

Tn(m)
Tn′(m)

=
Rn(m)
Rn′(m)

·O(x2)

= O

(
x2 bKn

bKn′

)

= O

(
x2 · cn

cn′
· kn

kn′

)

= O

(
x2 · 1

x

)

= O(x).

We conclude that the speed of Fast-VSH based on an S-bit modulus n behaves linearly in
S, if S increases less than a factor log n.

76 CHAPTER 7. ON THE LINEARITY OF THE SPEED OF VSH

7.3 Trapdoor-VSH

This section shows that the running time of Trapdoor-VSH is linear in the size of the
modulus it us based on, if the evaluation time of the finalization part is negligible. Let n be
the modulus used by Trapdoor-VSH, and n′ be the new modulus. Let x be value so that
log n′ = x log n.

As we discussed in the results of Chapter 6, Trapdoor-VSH requires O(log n) time per
message-bit. So if Trapdoor-VSH is applied with modulus n′, then Trapdoor-VSH requires
O(x) times more time per message-bit. Hence, the evaluation time of the iteration of
Trapdoor-VSH is linear in the size of n. Moreover, if the evaluation time of the finalization
part is negligible, the running time of Trapdoor-VSH is linear in the size of n.

The running time of the finalization part of Trapdoor-VSH using Kn primes is by
construction equivalent to the running time of Classic-VSH, using Kn primes, evaluating a
(ln)-bit message m, where ln = Kndlog2 ne. So, the fraction of the iteration numbers within
the finalizing part of Trapdoor-VSH based on moduli n and n′ respectively is given by

ln′
Kn′

+ 1
ln
Kn

+ 1
= rO

Kn′ log n′
Kn′

Kn log n
Kn

= O

(
log n′

log n

)

= O(x).

It also follows from the proof of theorem 7.1.1 that each iteration within the finalizing part
requires O(x2) times more time. Hence, the finalizing part of Trapdoor-VSH, based on
modulus n′, requires O(x3) times more time than Trapdoor-VSH, besed on modulus n.

So we conclude that if the input message is “large enough”, then the running time of
Trapdoor-VSH is linear with respect the modulus length. For small messages, it holds that
the running time of Trapdoor-VSH is almost cubic in the size of the modulus.

Chapter 8

Conclusion and Further Research

In this thesis, we have described The Very Smooth Hash Function (VSH) and how we
improved its speed. This thesis doesn’t consider memory usage and the length of the source
code. We note here that especially with respect to Fast-VSH, memory usage can be an
important issue to consider, because huge lists of primes are used. Chapter 2 discussed the
original paper of VSH ([6]), in which two variants of VSH are discussed: Fast-VSH and
Classic-VSH. Originally, Fast-VSH took about 25 times more time than SHA1 to compute a
hash and Classic-VSH took about 80 times more time than SHA1.

In Chapter 4 we showed how improving the (C) source code improves the speed of
Classic-VSH by about 10%. In Chapter 5 we gave a model of how the workload in terms of
single precision multiplications behaves with respect to the number of message bits
processed each iteration. Furthermore, we introduced a new computational security
assumption, which is less pessimistic than the original computational security assumption as
defined in [6]. Finally, we showed how the new computational security assumption leads to a
speedup of about 70% with respect to Classic-VSH and a speedup of about 50% with
respect to Fast-VSH. In Chapter 6 we introduced Trapdoor-VSH, that uses secret
information to calculate the hash very efficiently. This version of VSH is about 10 times
faster than Classic-VSH originally and 2.5 times faster than Fast-VSH originally.

Table 8.1 shows the speedups with respect to the original versions of VSH. The run times
are obtained using GMP-based implementations and a 3.4 GHz Pentium IV computer.
Here, S′ denotes the size of the VSH modulus n such that finding a collision for VSH is as
hard as factoring an S-bit (RSA) composite. Here we summarize the best versions of VSH;
in Appendix A we give the speedups of all variants of VSH.

It follows that our best version for Classic-VSH is about 47 times slower than SHA1 (as
opposed to 80 times originally), and our best version of Fast-VSH is about 17 times slower
than SHA1 (as opposed to 25 times originally). Trapdoor-VSH is about 10 times slower (on
1 Mega Byte messages) than SHA1.

Although Trapdoor-VSH requires knowledge of the factorization of n, we showed in
Chapter 6 that this version is still very applicable in some situations. For example, [6]
showed that VSH can be used efficiently in Cramer-Shoup Signature schemes. So if some
company has to sign many documents, whereas the verifiers has to verify only a few of such
signatures, then the company can benefit of the speed of Trapdoor-VSH while the verifier
does not suffer so much from using Classic-VSH instead of Fast-VSH.

A. Lenstra gives in [20] a relation between breaking RSA by means of factoring its

77

78 CHAPTER 8. CONCLUSION AND FURTHER RESEARCH

S VSH-variant S′ (optimal) K speed (MB/sec) Scaled to 1 GHz speed-up

1024 Original Classic-VSH 1234 153 1.055 0.310 0.00%

Classic-VSH: Pseudo Code 4.2.3 1024 700 1.780 0.524 68.72%
Trapdoor-VSH 1024 131 10.870 3.197 1030%

1024 Original Fast-VSH 1516 256 3.770 1.109 0.00%

Original Fast-VSH 1024 500 5.800 1.706 53.84%
Trapdoor-VSH 1024 131 10.870 3.197 288%

2048 Original Classic-VSH 2398 272 0.681 0.200 0.00%

Classic-VSH: Pseudo Code 4.2.3 2048 1300 1.186 0.349 74.16%
Trapdoor-VSH 2048 125 6.400 1.882 970%

2048 Original Fast-VSH 2874 1024 2.457 0.723 0.00%

Original Fast-VSH 2048 1000 3.365 0.990 36.96%
Trapdoor-VSH 2048 125 6.400 1.882 260%

Table 8.1: Speedups of the best versions of VSH

modulus and performing an exhaustive search on λ-bit keys in a symmetric encryption
system (such as DES). λ is called the security level. Because our new Computational VSSR
Assumption implies that finding a collision for VSH with an S-bit (RSA) modulus n is as
hard as factoring n, this analysis also applies to VSH. So Table 4 of [20] shows that VSH
does not provide adequate protection anymore if S = 1024. If S = 2048, then VSH offers
adequate protection until the year 2030 if we are pessimistic and 2040 if we are optimistic.
We showed in Chapter 7 that the speed of VSH is linear in the size of its modulus. As Table
8.1 also shows, the speed of VSH with S = 2048 is much higher than one-eight of the speed
of VSH with S = 1024. It follows that the efficiency of VSH is not affected as much as RSA,
when the size of the modulus has to increase in order to provide adequate security.

In conclusion, we improved the speed of VSH significantly. However, VSH is still quite
slow compared to common Hash Functions like SHA1. But, VSH is important as it is a step
towards closing the gap between hash functions with provable security properties and
practical hash functions. Because we increased the speed of VSH significantly, our work is
another important step towards closing the gap.

We think that the gap can be closed a bit more by considering the following ideas:

• With respect to the implementation of VSH:

– Our implementations are based on GNU’s Multiple Precision Library, which
seems to be the most efficient library to perform multiple precision calculations.
As we showed in Chapter 3 GMP uses the very efficient Karatsuba’s Algorithm.
As we conclude in Section 4.4, based on the profiles as shown in Appendix E.2.5,
GMP hardly applies Karatsuba’s Algorithm for some reason. Why is this? And
how can we force GMP to use Karatsuba’s Algorithm more?

– Moreover, it follows from [14] that GMP also supports (asymptotically) more
efficient algorithms than Karatsuba’s Algorithm, like Fast Fourier Transforms.
For some reason GMP does not apply these in our implementations. How can
these algorithms improve the speed even more and how can we force GMP to use
these?

– Besides the algorithms that GMP uses, there is room for gaining speed by using a
more optimized version of GMP. For example J.W. Martin writes on his page

79

(”http://www.math.jmu.edu/∼martin”) how GMP can be optimized for Intel
Core 2 Machines. In addition, on the GMP benchmark page
(”http://gmplib.org/gmpbench.html”) it is shown how to compile GMP on a
computer, depending on what processor the computer has, to make GMP as
efficient as possible on that computer. We note that it has been reported
(according to [5]) that GMP is about one-third faster on a 64-bit processor than
it is on a 32-bit processor. We used a 32-bit processor.

– Nowadays computers often have more than one processor. So suppose one has
access to x processors. The speed of VSH could be improved by about x times by
using them all. For example, let one processor do the initialization step. Let K
be number of message bits that are processed each iteration of VSH. By
construction, the initialization part of VSH pads the message such that its length
becomes a multiple of K. Now, let the first processor perform an iteration on the
first K message bits, and let the second processor perform an iteration on the
second K message bits, etcetera.
Maybe, there are more efficient ways to use more processors.

• VSH is not provable one-way. Is it possible to make VSH provable one-way without
losing the provable collision resistant property?

• With respect to Trapdoor-VSH: Currently, only parties that generate the hash
function have access to the trapdoor information and can use the Trapdoor
information. Is it possible to use existing network security protocols to somehow let
the verifier use the trapdoor information without getting to know anything about it?

80 CHAPTER 8. CONCLUSION AND FURTHER RESEARCH

Bibliography

[1] Digital signature standard. FIBS-PUB 186-2, 2000.

[2] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based on
computational diffie-hellman. In Public Key Cryptography, pages 229–240, 2006.

[3] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of three modular
reduction functions. Advances in Cryptoloy-CRYPTO 1993, 1993.

[4] D. Charles, E. Goren, and K. Lauter. Cryptographic hash functions from expander
graphs. Cryptology eprint archive, Report 2006/021, 2006.

[5] Scott Contini. Private chat with Dr. Scott Contini.

[6] Scott Contini, Ron Steinfeld, and Arjen K. Lenstra. VSH, an efficient and provable
collision-resistant hash function. Cryptology ePrint Archive: Report 2005/193, 2005.

[7] Scott Contini, Ron Steinfeld, Jozef Pieprzyk, and Krystian Matusiewicz. A critical look
at cryptographic hash function literature. ECRYPT Hash Workshop, 2007.

[8] Thomas H. Cormen, Charles E, Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill, second edition, 2001.

[9] R. Crandall and C. Pomerance. Prime Numbers. A Computational Perspective.
Springer-Science + Business Media, second edition, 2005.

[10] I. D̊amgard. Collision-free hash functions and public key signature schemes. In
EUROCRYPT 87, volume 304 of LCNS, pages 203–216, Berlin, 1987. Springer-Verlag.

[11] S.J.A. de Hoogh. Cryptographic hash functions, and what happened on the crypto
2004 conference in santa barbara? Bachelor thesis, Eindhoven University of
Technology, 2005.

[12] E.Bach and J.Shallit. Algorithmic Number Theory, volume 1: Efficient Algorithms,
volume 1 of Foundation of Computing. The MIT Press, 1996.

[13] Agner Fog. Branch prediction in the pentium family; how the branch prediction
mechanism in the pentium has been uncovered with all its quirks, and the incredibly
more effective branch prediction in the later versions.
http://www.x86.org/articles/branch/branchprediction.htm.

[14] GNU-team. GNU MP. http://gmplib.org/manual/index.html.

81

82 BIBLIOGRAPHY

[15] Brian J. Gough. An Introduction to GCC - for the GNU compilers gcc and g++.
Network Theory Ltd, 2004.

[16] G.J.O. Jameson. The Prime Number Theorem. Camebridge University Press, 2003.

[17] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much
less than 2n work. Advances in Cryptology EUROCRYPT 2005, 3494/2005:474–490,
2005.

[18] Jeremy Kirk. Researcher: RSA 1024-bit encryption not enough As computers and
math techniques become more powerful and sophisticated, current encryption
standards could be made obsolete in as little as five years.
http://www.infoworld.com/article/07/05/23/RSA-1024-bit-encryption-not-
enough 1.html.

[19] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical
Algorithms (3rd Edition). Addison-Wesley Professional, November 1997.

[20] A. Lenstra. Handbook of Information Security, chapter Key Lengths.

[21] Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James
Hughes, and Paul Leyland. Factoring estimates for a 1024-bit rsa modulus. In proc.
Asiacrypt 2003, volume 2894 of LCNS, pages 331–346. Springer, 2003.

[22] Alfred J. Menezes, Paul C. van Oosrschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[23] D. Pointcheval. The composite discrete logarithm and secure authentication. PKC
2000, 1751 of LNCS:page 113–128, 2000.

[24] Phillip Rogaway. Formalizing human ignorance. Vietcrypt 2007, 2007.

[25] A. Shamir and Y. Tauman. Improved online/offline signature schemes. CRYPTO 2001,
2139 of LNCS:page 355–367, 2001.

[26] I.E. Shparlinski and I.F. Blake. Statistical distribution and collisions of the vsh. J.
Math. Cryptology, (to appear), 2006.

[27] X. Wang, Y.L. Yin, and H. Yu. Finding collisions in the full sha-1. Advances in
Cryptology Crypto05, Springer-Verlag, 2005.

[28] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash
functions md4, md5, haval-128 and ripemd. Eprint Archive, 2004.

Appendix A

Full Speed Table

S VSH-variant S′ (optimal) K speed (MB/sec) Scaled to 1 GHz speed-up

1024 Original Classic-VSH 1234 153 1.055 0.310 0.00%

1024 Original Classic-VSH (No reduction) 1024 300 1.393 0.410 32.04%
Original Classic-VSH (Extra reduction) 1024 500 1.490 0.438 41.23%
Classic-VSH: Pseudo Code 4.3.1 1024 500 1.597 0.470 51.37%
Classic-VSH: Pseudo Code 4.2.2 1024 700 1.779 0.523 68.63%
Classic-VSH: Pseudo Code 4.2.3 1024 700 1.780 0.524 68.72%
Trapdoor-VSH 1024 131 10.870 3.197 1030%

1024 Original Fast-VSH 1516 256 3.770 1.109 0.00%

Original Fast-VSH 1024 500 5.800 1.706 53.84%
Fast-VSH: Treebased 1024 500 4.650 1.368 23.34%
Trapdoor-VSH 1024 131 10.870 3.197 288%

2048 Original Classic-VSH 2398 272 0.681 0.200 0.00%

2048 Original Classic-VSH (No reduction) 2048 500 0.865 0.254 27.02%
Original Classic-VSH (Extra reduction) 2048 700 0.998 0.294 46.55%
Classic-VSH: Pseudo Code 4.3.1 2048 1100 1.076 0.316 58.00%
Classic-VSH: Pseudo Code 4.2.2 2048 1500 1.145 0.337 68.14%
Classic-VSH: Pseudo Code 4.2.3 2048 1300 1.186 0.349 74.16%
Trapdoor-VSH 2048 125 6.400 1.882 970%

2048 Original Fast-VSH 2874 1024 2.457 0.723 0.00%

Original Fast-VSH 2048 1000 3.365 0.990 36.96%
Fast-VSH: Treebased 2048 750 3.048 0.897 24.05%
Trapdoor-VSH 2048 125 6.400 1.882 260%

Table A.1: Speedups of all versions of VSH (as described in Chapter 4)

83

84 APPENDIX A. FULL SPEED TABLE

Appendix B

Number Theoretic Background

In this chapter we will give some important and fundamental definitions, theorems and
lemmas that are used throughout this thesis. We refer to [12] and [16] for more details.

B.1 The Prime Number Theorem

Definition B.1.1. Let x be integer. Then Π(x) := {0 < i ≤ x| i is prime} denotes the set of
all primes of value at most x. π(x) denotes the number of primes of value at most equal to
x. In other words:

π(x) := #Π(x) (B.1)

Definition B.1.2. Chebyshev θ: Let x be an integer. Then θ(x) denotes the sum over the
logarithm of all primes of value at most equal to x. In other words:

θ(x) :=
∑

i∈Π(x)

log(i) (B.2)

One of the most fundamental theorems in number theory is the prime number theorem.

Theorem B.1.3. Prime Number Theorem: Let x be an integer. Then

π(x) ∼ x

log x
.

For an accessible introduction to the proof of this theorem see [16].
The following corollaries follow from the prime number theorem. See also [16] and chapter

8 of [12].

Corollary B.1.4. Let x be an integer. Then,

θ(x) ∼ x.

Corollary B.1.5. Let n be a positive integer. Then,

pn ∼ n log n

From these two Corollaries we claim the following:

85

86 APPENDIX B. NUMBER THEORETIC BACKGROUND

Claim B.1.6. Let n be a positive integer. Then,

θ(pk) ∼ k log k.

Proof. This proof is based on the transitivity property of ∼. To demonstrate this one easily
derives:

lim
k→∞

θ(pk)
k log k

= lim
k→∞

θ(pk)
pk

· pk

k log k
= 1.

using Corollaries B.1.4 and B.1.5.

One of the building blocks of the proof of the Prime Number Theorem is the following
lemma (Proposition 1.3.6 of [16], or lemma 2.5.1 of [12]):

Lemma B.1.7. Abel’s Identity Let a(k)k∈N be some real valued series and let
A(n) =

∑n
i=1 a(i) denote its partial sum. If some real valued function f has a continuous

derivative on [1, x], then

x∑

i=1

a(i)f(i) = A(x)f(x)−
∫ x

1
A(t)f ′(t)dt.

Finally we state the following theorem (Theorem 2.6.1 from [12]).

Theorem B.1.8. Let f be a positive real-valued function defined in [a,∞). Assume that f
is continuously differentiable, and that f ′(x)/f(x) ∼ µ/x for some real number µ > −1.
Then if µ 6= 0, we have ∫ x

a
f(t)dt ∼ xf(x)

µ + 1
.

If µ = 0, then ∫ x

a
f(t)dt ∼ xf(x).

Appendix C

Some Proofs

C.1 The Security Proof of Fast VSH

Theorem C.1.1. Fast VSH is collision resistant under the VSSR assumption. In other
words: Finding a collision for algorithm 2.3.1 is as hard as solving VSSR.

Proof. This proof is essentially exactly the same as the proof for Classic VSH (2.2.2).
Again, let xj and x′j denote the j-th iterated values of algorithm 2.3.1 applied to m and m′

respectively. Let l,L and l′,L′ denote the bit-length and the number of blocks respectively
of m and m′. As m and m′ collide it holds that m 6= m′ and xL+1 = xL′+1.

Firstly, consider the case in which l = l′. Let m[j] denote the j-th b-bit block of m, and
m(j) the j-th kb-bit block of m, and we define m(L+ 1) = ∅. Let t be the largest index such
that (xt,m(t)) 6= (x′t,m′(t)), but (xj ,m(j)) = (x′j ,m

′(j)) for t < j ≤ L+ 1. Because l = l′ it
holds again that t ≤ L. From the choice of t it holds that

(xt)2 ×
k∏

i=1

p(i−1)2b+m[tkb+i]+1 ≡ (x′t)
2 ×

k∏

i=1

p(i−1)2b+m′[tkb+i]+1 mod n. (C.1)

Define Sm(t) := {(i− 1)2b + m[tkb + i] + 1 : 1 ≤ i ≤ k}. Now let ∆ =
{
i ∈ {1, · · · , k2b} :

i ∈ Sm(t)4Sm′(t)} and ∆10 =
{
i ∈ {1, · · · , k2b} : i ∈ Sm(t)\Sm′(t)

}
. Here, 4 denotes the

symmetric difference, i.e., i ∈ A4B ⇔ i ∈ A\B ∪B\A. As the primes pi are coprime to n
for all i = 1, · · · , k2b it holds that all primes pi are invertible modulo n, and by the iteration
step of algorithm 2.3.1 it holds also that (xt)2 and (x′t)2 are invertible modulo n. So
equation (C.1) is equivalent to:

xt

x′t
×

∏

i∈∆10

pi

2

≡
∏

i∈∆

pi mod n (C.2)

Obviously if ∆ 6= ∅ then equation (C.2) solves VSSR as stated in Definition 2.1.7. If ∆ = ∅
then also ∆10 = ∅ and it follows from equation (C.2) that (xt)2 ≡ (x′t)2 mod n. Recall that
x0 = x′0 = 1. As ∆ = ∅ implies that m(t) = m′(t) it follows from the choice of t and m 6= m′

that t ≥ 1. If xt 6≡ ±x′t mod n then it follows from remark 2.1.5 that VSSR can be solved by
factoring n. If xt ≡ ±x′t mod n, then xt ≡ −x′t mod n, because m(t) = m′(t) implies by the

87

88 APPENDIX C. SOME PROOFS

choice of t that xt 6= x′t. It follows that

xt ≡ −x′t mod n ⇔

(xt−1)2 ×
k∏

i=1

p(i−1)2b+m[(t−1)bk+i]+1 ≡ −(x′t−1)
2 ×

k∏

i=1

p(i−1)2b+m′[(t−1)bk+i]+1 mod n ⇔
[
xt

x′t

]2

≡ −1×
k∏

i=1

p(i−1)2b+m[(t−1)bk+i]+1

k∏

j=1

(
p−1
(j−1)2b+m′[(t−1)bk+j]+1

)
mod n,

A solution to VSSR as p0 = −1 has an odd degree. Thus for the case l = l′ it holds that the
colliding messages m and m′ can be used to find a solution for VSSR.

Next, consider colliding messages m and m′, where l 6= l′. Since l 6= l′, it holds for at least
one i ∈ {1, · · · , k} that li 6= l′i. Similar to equation (C.1), we find from xL+1 = x′L′+1 and the
fact mL·k+i = li (see initialization part of algorithm 2.3.1) that

(xL)2 ×
k∏

i=1

pli
i ≡ (x′L′)

2 ×
k∏

i=1

p
l′i
i mod n. (C.3)

Letting ∆l :=
{
i ∈ {1, · · · , k2b} : i ∈ Sm(L)4Sm′(L′)} and (∆l)10 :=

{
i ∈ {0, · · · , k2b} :

i ∈ Sm(L)\Sm′(L′)}, we derive similar to equation (C.2) an immediate solution to VSSR,
since ∆l 6= ∅:

 xL
xL′

×
∏

i∈(∆l)10

pi

2

≡
∏

i∈∆l

pi mod n, (C.4)

which concludes the proof.

C.2 σn̄,n being Existentially Unforgeable

Theorem C.2.1. Suppose that VSHn is collision resistant and suppose that the signature
scheme using signing function σn̄ is existentially unforgeable under chosen message attacks.
Then, the signature scheme as given in subsection 2.4.1 is existentially unforgeable under
adaptive chosen message attacks.

Proof. Assume that there exists an polynomial time adversary A, which is able with
non-negligible probability to forge a valid message-signature pair (m̃, σ̃ after, say, q
signature queries on the messages m1, · · · ,mq, where m̃ 6= mi for all i = 1, · · · , q.

Suppose that A gets signature (mi, σi) after query mi. We distinguish two types of
forgeries:

• Forgery I: For ((̃m), σ̃) it holds that there exists an i ∈ {1, · · · , q} such that σ̃ = σi.

• Forgery II: For ((̃m), σ̃) it holds that σ̃ 6= σi, for all i = 1, · · · , q.

We will show that there exists an adversary B that either can create a collision for VSHn

if the forgery is of type I or a forgery to the scheme based on σn̄ if the forgery is of type II,
using A.

Firstly, assume that the forgery is of type I: Let B1 be a polynomial time adversary that is
given public key n. B1 runs A as follows to obtain a collision for VSHn.

C.2. σN̄,N BEING EXISTENTIALLY UNFORGEABLE 89

setup B1 generates a random S/2-bit prime p̄ and a random (S/2 + 1)-bit prime q̄. He then
computes n̄ = p̄q̄ and φ(n̄) = (p̄− 1)(q̄ − 1). He chooses a private key d co-prime to
φ(n̄). Lastly, B1 send the public key (n̄, n, e) to A, where e = 1/d mod n̄.

queries When A asks a signature on message mi, B1 responds with (mi, σi), where
σi = σn̄(ti) and ti = VSHn(mi).

output When A outputs (m̃, σ̃), B1 looks up the value j so that σj = σ̃. Then, he outputs
the colliding messages for VSHn: m̃ and mj , both with VSHn output tj .

This always works, because σn̄ is by construction injective.
Secondly, assume that the forgery is of type II: Let B2 be a polynomial time adversary

that is given public key (n̄, e). B2 runs A as follows to obtain a forgery for σn̄.

setup B2 chooses random S/2-bit primes p and q, to obtain n = pq. He provides A with
the public key (n̄, n, e).

queries Upon receive of query mi, B2 responds as follows: firstly he queries ti =VSHn(mi)
to his challenger. After receiving the signature (ti, σi), B2 sends (mi, σi) to A.

output When A outputs forgery (m̃, σ̃), then B2 outputs the forgery (t̃, σ̃), where
t̃ =VSHn(m̃).

90 APPENDIX C. SOME PROOFS

Appendix D

Some Considerations With respect
to Chapter 5

D.1 Considerations Concerning Section 5.1

D.1.1 Proof of claim 5.1.1

This proof is an alternative to the proof of this claim that can be found in section 2 of [12].
We will use Theorem 2.6.1 of [12], see Theorem B.1.8.

We will repeat the claim:
Claim 5.1.1. For each integer x ≥ 2 we have the following relation:

∑

p≤x

p ∼ x2

2 log(x)
. (D.1)

proof of claim 5.1.1: Define the function up : N→ {0, 1} as follows:

up(x) =
{

1 if x is prime
0 otherwise

.

Using Abel’s identity (see Lemma B.1.7) we find

∑

p≤x

p =
x∑

n=1

up(n)n = xπ(x)−
∫ x

2
π(t) dt

We will first consider the integral. Let f : R→ R be defined by f(x) = x/ log(x). Then

lim
x→∞

xf ′(x)
f(x)

= lim
x→∞

x log x− x

log2 x

/
x

log x
= lim

x→∞
log2 x− log x

log2 x
= lim

x→∞

(
1− 1

log x

)
= 1.

Hence f ′(x)/f(x) ∼ 1/x.

By the prime number theorem and theorem B.1.8 it follows that
∫ x

2
π(t) dt ∼

∫ x

2

t

log t
dt ∼ x2

2 log x
.

91

92 APPENDIX D. SOME CONSIDERATIONS WITH RESPECT TO CHAPTER ??

Hence, we find

lim
x→∞

xπ(x)− ∫ x
2 π(t)dt

x2

2 log x

= lim
x→∞

(
2
xπ(x)

x2

log x

−
∫ x
2 π(t) dt

x2

2 log x

)

= 2 lim
x→∞

π(x)
x

log x

− lim
x→∞

∫ x
2 π(t) dt

x2

2 log x

= 2− 1 = 1.

¤

D.1.2 Problems with ∼
Note that for arbitrary functions a(x), b(x), c(x) and d(x) it generally holds that

a(x) ∼ b(x)
c(x) ∼ d(x)

}
6⇒ a(x) + c(x) ∼ b(x) + d(x)

Example D.1.1. Define f : R→ R by f(x) = (−1)bxc(x + 1) and g : R→ R by g(x) = x.
Then

lim
x→∞

(−1)bxc(x + 1)
(−1)bxcx

= lim
x→∞

x + 1
x

= 1

Hence f(x) ∼ (−1)bxcx and g(x) ∼ x. However,

lim
x→∞

(−1)bxc(x + 1) + x

(−1)bxcx + x

is unpredictable. Therefore, f(x) + g(x) 6∼ (−1)bxcx + x.

So we need to be careful when we want to approximate F (x). Simplifying (5.13) further
using claim 5.1.1 yields

F (K) =
l−1∑

i=0

r

(
(p′i)(β) −

pir

β log 2

)
+ (K − lr)

(
(p′l)(β) −

plr

β log 2

)
+

K−1∑

i=1

pi

β log 2

≈
l−1∑

i=0

r

(
(p′i)(β) −

pir

β log 2

)
+ (K − lr)

(
(p′l)(β) −

plr

β log 2

)
+

p2
K−1

32 log(2) log(pK−1)
.

(D.2)

If we let K →∞ then the number of single precision calculations calculated by (5.10) will
behave as F (K)/K. Using equation (D.2) we find

F (K)
K

<

(
K(n)(β) − r

l−1∑

i=0

pir

β log 2
+

p2
K−1

32 log(2) log(pK−1)

)/
K → −∞.

We found this using mathematical software. Similarly we find that using (5.13) that
F (K) →∞.

D.2. THE OPTIMAL RUNNING TIME TO SOLVE VSSR 93

D.2 The Optimal Running Time to Solve VSSR

This section summarizes how we can show according to [5] that if we can solve VSSR
without factoring, with a more efficient algorithm than Algorithm 5.2.1, then we can
improve the speed of Quadratic Sieve. Let B be the smoothness bound and x a residue mod
n. If x is such that y = x2 mod n has least positive representative modulo n of order nd,
then we call x a target residue. If, moreover, y has largest prime factor ≤ B, then we call x
a smooth residue. The idea is roughly as follows:

• Suppose we can efficiently generate target residues.

• Write down the time that is needed to find one smooth residue.

• Conclude that the optimal time is attained when d ≈ 1/2.

According to Subsection 1.4.5. of [9], one expects to consider uu target residues in order to
find one smooth residue, where

u =
log nd

log B
.

Similarly to the analysis on page 4 of [6], one expect to need about B relations in order to
factor n. Thus the expected time needed to factor n is given by

T (B) = uuB(1 + o(1)) = e(1+o(1))[u log u+log B].

The optimal solution is implied by [log(T (B))]′ = 0. Now [5] shows that the optimal
solution for the running time is given by

Topt(B) = e(1+o(1))
√

2d log n log log n.

Substituting d = 1/2 gives the Quadratic Sieve running time. From the fact that there is no
published algorithm that finds B smooth residues faster than the Quadric Sieve, it follows
that, with the current state of the art of finding smooth residues, we cannot do better than
setting d = 1/2, implying that the best algorithm to solve VSSR is given by Algorithm 5.2.1.

94 APPENDIX D. SOME CONSIDERATIONS WITH RESPECT TO CHAPTER ??

Appendix E

Source codes

E.1 Mathematica Source Codes

E.1.1 Calculating the number of SP-multiplications w.r.t. Section 4.4

Here, we present the source code of Mathematica that calculates the number of
SP-multiplications is required by implementations 4.0.2, 4.2.2, 4.2.3, and 4.3.1.

95

96 APPENDIX E. SOURCE CODES

E.1. MATHEMATICA SOURCE CODES 97

98 APPENDIX E. SOURCE CODES

E.1. MATHEMATICA SOURCE CODES 99

E.1.2 Creating the figures of subsection 5.1

100 APPENDIX E. SOURCE CODES

E.1. MATHEMATICA SOURCE CODES 101

E.1.3 Solving UU = L(S)

102 APPENDIX E. SOURCE CODES

E.2. C-SOURCE CODE 103

E.2 C-source code

This Appendix presents the source codes of the different variants of VSH. Let A and B be
multiple precision integers. So A and B are declared as mpz_t variables. In our discussion
we used the following notation:

• A = B ∗gmp C ⇔mpz_mul(A,B,C) if C is a multiple precision (mpz_t) integer and
A = B ∗gmp C ⇔mpz_mul_ui if C is declared as a single precision integer (int,short
or long).

• A = B modgmp C ⇔mpz_mod(A,B,C).

• B >gmp C ⇔mpz_cmp(B,C)>0.

• The bit-size of a mpz_t value A is returned by mpz_sizeinbase(A,2).

See section 5 of [14] for a complete list of all integer functions of GMP.

E.2.1 Source Codes of the Ideas of Chapter 4

This section provides the source codes of the iteration functions of VSH based on the ideas
discussed in Chapter 4. Here, counter denotes the iteration number, say j. Then, input
denotes xj and output denotes xj+1. The primes p1, · · · , pk are stored in primes[], k is
denoted by k and n, the modulus, by n. Finally, temp denotes the temporary value t and
starting_word and starting_bit denote the position of the message bit, where this
iteration round should start reading the message.

Classic-VSH

Code of Pseudo code 4.0.2

void iterate(mpz_t output, mpz_t input, unsigned char *message, int
counter, mpz_t n, unsigned short k, int *primes, mpz_t temp){

int i, j;
int starting_word = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;
mpz_set_ui(temp,1);

/*Calculate the product of small primes*/
j = starting_bit;
i = starting_word;

while((8*i+j) < ((counter+1)*k)) {
if(((message[i] >> (7-j)) & 1)==1)

mpz_mul_ui(temp,temp,primes[8*(i-starting_word)+(j-starting_bit)]);
j++;
if(j==8){

j=0;
i++;

}
}

104 APPENDIX E. SOURCE CODES

/*perform the remaining calculation steps of an iteration*/
mpz_mul(output,input,input);
mpz_mod(output, output, n);
mpz_mul(output,output, temp);
mpz_mod(output, output, n);

}

code of Pseudo code 4.2.2

void calculate_primes_product(mpz_t temp, unsigned char *message,
int counter, unsigned short k, int *primes, unsigned int mask)
{

static unsigned int products[10000];
int i, j, w;
unsigned int t;
int starting_byte = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;
int end;

/*Calculate the product of small primes*/
j = starting_bit;
i = starting_byte;
/* number of words: */
w = 0;
/* temporary 32-bit product: */
t = 1;
end = (counter+1)*k;

while((8*i+j) < end) {

/* fit as many small prime products as we can into a single word */
do {

if ((message[i] >> (0x7^j)) & 1) {
t = t * primes[8*(i-starting_byte)+(j-starting_bit)];
j++;
if(j==8) {

j=0;
i++;

}
if (t & mask)

/* danger of overflow: break out of loop */
break;

}
else {

j++;
if(j==8) {

j=0;
i++;

}
}

} while ((8*i+j) < end);

E.2. C-SOURCE CODE 105

/* store the product word: */
products[w] = t;
/* reset small product word: */
t = 1;
w++;

}

/* now multiply through all the small product words: */
for(i=0;i<w;i++){

mpz_mul_ui(temp, temp, products[i]);
}

}

code of Pseudo code 4.2.3

void calculate_primes_product(mpz_t temp, unsigned char *message,
int counter, unsigned short k, int *primes, int *primes_length) {

static unsigned int products[10000];
int i, j, w, v;
unsigned int t;
int starting_byte = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;
int end;

/*Calculate the product of small primes*/
j = starting_bit;
i = starting_byte;
/* number of words: */
w = 0;
/* intermediate bit-length */
v = 0;
/* temporary 32-bit product: */
t = 1;
end = (counter+1)*k;

while((8*i+j) < end) {

/* fit as many small prime products as we can into a single word */
do {

if ((message[i] >> (0x7^j)) & 1) {
if ((v+primes_length[8*(i-starting_byte)+(j-starting_bit)])>32)

/* danger of overflow: break out of loop */
break;

t = t * primes[8*(i-starting_byte)+(j-starting_bit)];
v+= primes_length[8*(i-starting_byte)+(j-starting_bit)];

j++;
if(j==8) {

j=0;
i++;

}
}

106 APPENDIX E. SOURCE CODES

else {
j++;
if(j==8) {

j=0;
i++;

}
}

} while ((8*i+j) < end);

/* store the product word: */
products[w] = t;
/* reset small product word: */
v = 0;
t = 1;
w++;

}

/* now multiply through all the small product words: */
for(i=0;i<w;i++){

mpz_mul_ui(temp, temp, products[i]);
}

}

Code of Pseudo code 4.3.1

#define MAX_PRIMES 1000

void calculate_primes_product(mpz_t temp, unsigned char *message,
int counter, unsigned short k, int *primes) {

static unsigned int array[MAX_PRIMES];
int i, j, num;
unsigned int t;
int starting_byte = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;
int end;
static int firstcall = 1;
static mpz_t prods[MAX_PRIMES/2];

if (firstcall) {
/* initialize products */
firstcall = 0;
for (i = 0; i < MAX_PRIMES/2; ++i)

mpz_init(prods[i]);
}

/*Calculate the product of small primes*/
j = starting_bit;
i = starting_byte;
/* number of array elements: */
num = 0;
end = (counter+1)*k;

E.2. C-SOURCE CODE 107

while((8*i+j) < end) {
/* store the primes we need in array */
if ((message[i] >> (0x7^j)) & 1) {

array[num++] = primes[8*(i-starting_byte)+(j-starting_bit)];
j++;
if(j==8) {

j=0;
i++;

}
} else{

j++;
if(j==8) {

j=0;
i++;

}
}
}

if (num == 0)
return;

/* process the first round of multiplies by pairing the big primes
with smaller ones, and saving the result within prods . Assume
that there is no overflow.

*/

for (i=0; i < num/2; ++i){
mpz_set_ui(prods[i], array[i]*array[num-1-i]);

}
if (num&1)

mpz_set_ui(prods[i], array[i]);
/* number of elements in prods is: */
num = (num+1)/2;

/* now perform remaining products: */
while (num > 1) {

for (i=0; i < num/2; ++i) {
mpz_mul(prods[i], prods[i], prods[num-1-i]);

}
num = (num+1)/2;

}

mpz_set(temp, prods[0]);
}

E.2.2 Fast-VSH

Code of Pseudo code 4.0.3

108 APPENDIX E. SOURCE CODES

void iterate(mpz_t output, unsigned char *m, mpz_t n, unsigned short
size, int *primes, int message_length, int i){

static int firstcall=1;
static mpz_t temp;
if (firstcall) {

mpz_init(temp);
firstcall = 0;

}
long j;

mpz_mul(output, output, output);
mpz_mod(output, output, n);

mpz_set_si(temp,1);
for (j=0;j<size;j++) {

if (((i+j)<(message_length))) {
mpz_mul_ui(temp,temp,primes[((j<<8) + m[i+j])]);
if (mpz_cmp(temp,n)>=0) {

mpz_mul(output, output, temp);
mpz_mod(output, output, n);

mpz_set_si(temp,1);
}

}
}

if (mpz_cmp_si(temp,1) > 0)
mpz_mul(output, output, temp);
mpz_mod(output, output, n);

}

Code of Pseudo code 4.2.4

void iterate(mpz_t output, mpz_t input, unsigned char *message, int
counter, mpz_t n, unsigned short k, unsigned short cs, int *primes){

int i, j, w, current_byte;
static int firstcall = 1;
static mpz_t temp;
static mpz_t temp_array[ARRAYLENGTH];

if(firstcall) {
firstcall = 0;
mpz_init(temp);
for(i = 0; i < ARRAYLENGTH; i++){
mpz_init_set_ui(temp_array[i],1);

}
limit = (mpz_sizeinbase(n,2)/18) + 1;

}

w = 0;
j = 0;

mpz_set_ui(temp,1);

E.2. C-SOURCE CODE 109

current_byte = k*counter;

/*Calculate the product of small primes*/

for(i=0; i < k; i++) {
mpz_mul_ui(temp, temp, primes[(i << cs)+message[current_byte+i]]);

if(j++ == limit) {
j = 0;
mpz_mod(temp_array[w++], temp, n);
mpz_set_ui(temp,1);

}

}

for(i = 0; i < w; i++) {
mpz_mul(temp, temp, temp_array[i]);
mpz_mod(temp, temp, n);

}

/*perform the remaining calculation steps of an iteration*/
mpz_mul(output,input,input);
mpz_mod(output,output,n);
mpz_mul(output,output, temp);
mpz_mod(output,output,n);

}

Code of Pseudo code 4.3.1

#define MAX_PRIMES 1000 #define ARRAYLENGTH 1000

void calculate_primes_product(mpz_t temp, unsigned char *message,
int counter, unsigned short k, unsigned short cs, int *primes, mpz_t
n) {

int i, w, num, current_byte;
unsigned int t;
static int firstcall = 1;
static mpz_t prods[MAX_PRIMES];
static mpz_t temp_array[ARRAYLENGTH];

if (firstcall) {
/* initialize products */
firstcall = 0;
for (i = 0; i < MAX_PRIMES; ++i)

mpz_init(prods[i]);
for (i = 0; i < ARRAYLENGTH; ++i)

mpz_init(temp_array[i]);
}

/*Calculate the product of small primes*/
current_byte = counter*k;

110 APPENDIX E. SOURCE CODES

i = 0;
w = 0;
/* number of array elements: */
num = k;

for(i = 0; i<k; ++i) {
/* store the primes we need in array */
mpz_set_ui(prods[i], primes[(i << cs) + message[current_byte + i]]);

}

/* now perform products: */
while (num > 1) {

for (i=0; i < num/2; ++i){
mpz_mul(prods[i], prods[i], prods[num-1-i]);
if(mpz_cmp(prods[i],n) > 0){

mpz_mod(temp_array[w++],prods[i],n);
mpz_set_ui(prods[i],1);

}
}
num = (num+1)/2;

}
mpz_set(temp, prods[0]);

for(i = 0; i < w; i++){
mpz_mul(temp,temp,temp_array[i]);
mpz_mod(temp,temp, n);

}
}

E.2.3 C Source Codes for the Altered Pseudo codes of Classic-VSH w.r.t.
Chapter 5

Code of Pseudo code 5.1.4

void iterate(mpz_t output, mpz_t input, unsigned char *message, int
counter, mpz_t n, unsigned short k, int *primes, mpz_t temp, mpz_t
temp_array[]){

int i, j,w;
int starting_byte = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;
mpz_set_ui(temp,1);

/*Calculate the product of small primes*/
j = starting_bit;
i = starting_byte;
w = 0;

while((8*i+j) < ((counter+1)*k)){
if(((message[i] >> (7-j)) & 1)==1) {

mpz_mul_ui(temp,temp,primes[8*(i-starting_byte)+(j-starting_bit)]);
if(mpz_cmp(temp, n) > 0) {

mpz_mod(temp_array[w++],temp,n);

E.2. C-SOURCE CODE 111

mpz_set_ui(temp,1);
}

}
j++;
if(j==8){

j=0;
i++;

}
}

for(i=0;i<w; i++){
mpz_mul(temp,temp_array[i], temp);
mpz_mod(temp,temp, n);

}

/*perform the remaining calculation steps of an iteration*/
mpz_mul(output,input,input);
mpz_mod(output, output, n);
mpz_mul(output,output, temp);
mpz_mod(output, output, n);

}

code of Pseudo code 4.2.2

void calculate_primes_product(mpz_t temp, unsigned char *message,
int counter, mpz_t n, unsigned short k, int *primes, unsigned int
mask, mpz_t temp_array[]) {

static unsigned int products[50000];
int i, j, w, v, gmpw;
unsigned int t;
int starting_byte = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;
int end;

/*Calculate the product of small primes*/
j = starting_bit;
i = starting_byte;
/* number of words: */
w = 0;
gmpw = 0;
/* intermediate bit-length */
v = 0;
/* temporary 32-bit product: */
t = 1;
end = (counter+1)*k;

while((8*i+j) < end) {

/* fit as many small prime products as we can into a single word */
do {

if ((message[i] >> (0x7^j)) & 1) {

112 APPENDIX E. SOURCE CODES

t = t * primes[8*(i-starting_byte)+(j-starting_bit)];
j++;
if(j==8) {

j=0;
i++;

}
if (t & mask)

/* danger of overflow: break out of loop */
break;

}
else {

j++;
if(j==8) {

j=0;
i++;

}
}

} while ((8*i+j) < end);

/* store the product word: */
products[w] = t;
/* reset small product word: */
t = 1;
w++;

}
/*fill gmp array of words of same length as n*/
for(i=0;i<w;i++){

mpz_mul_ui(temp, temp, products[i]);
if(mpz_cmp(temp, n) > 0) {

mpz_mod(temp_array[gmpw++],temp,n);
mpz_set_ui(temp,1);

}
}

/*now multiply through all the small product words:*/
for(i=0;i<gmpw; i++){

mpz_mul(temp,temp_array[i], temp);
mpz_mod(temp,temp, n);

}

}

void iterate(mpz_t output, mpz_t input, unsigned char *message, int
counter, mpz_t n, unsigned short k, int *primes, unsigned int
mask, mpz_t temp, mpz_t temp_array[]){

mpz_set_ui(temp,1);

calculate_primes_product(temp, message, counter, n, k, primes,
mask, temp_array);

/*perform the remaining calculation steps of an iteration*/
mpz_mul(output,input,input);
mpz_mod(output, output, n);

E.2. C-SOURCE CODE 113

mpz_mul(output,output, temp);
mpz_mod(output, output, n);

}

code of Pseudo code 4.2.3

void calculate_primes_product(mpz_t temp, unsigned char *message,
int counter, mpz_t n, unsigned short k, int *primes, int
*primes_length, mpz_t temp_array[]) {

static unsigned int products[50000];
int i, j, w, v, gmpw;
unsigned int t;
int starting_byte = ((counter*k) >> 3);
int end;

/*Calculate the product of small primes*/
j = 0;
i = starting_byte;
/* number of words: */
w = 0;
gmpw = 0;
/* intermediate bit-length */
v = 0;
/* temporary 32-bit product: */
t = 1;
end = (counter+1)*k;

while((8*i+j) < end) {

/* fit as many small prime products as we can into a single word */
do {

if ((message[i] >> (0x7^j)) & 1) {
if ((v+primes_length[8*(i-starting_byte)+j])>32)

/* danger of overflow: break out of loop */
break;

t = t * primes[8*(i-starting_byte)+j];
v += primes_length[8*(i-starting_byte)+j];

j++;
if(j==8) {

j=0;
i++;

}
}
else {

j++;
if(j==8) {

j=0;
i++;

}
}

} while ((8*i+j) < end);

114 APPENDIX E. SOURCE CODES

/* store the product word: */
products[w] = t;
/* reset small product word: */
v = 0;
t = 1;
w++;

}

/*fill gmp array of words of same length as n*/
for(i=0;i<w;i++){

mpz_mul_ui(temp, temp, products[i]);
if(mpz_cmp(temp, n) > 0) {

mpz_mod(temp_array[gmpw++],temp,n);
mpz_set_ui(temp,1);

}
}

/*now multiply through all the small product words:*/
for(i=0;i<gmpw; i++){

mpz_mul(temp,temp_array[i], temp);
mpz_mod(temp,temp, n);

}

}

void iterate(mpz_t output, mpz_t input, unsigned char *message, int
counter, mpz_t n, unsigned short k, int *primes, int *primes_length,
mpz_t temp, mpz_t temp_array[]) {

mpz_set_ui(temp,1);

calculate_primes_product(temp, message, counter, n, k, primes,
primes_length, temp_array);

/*perform the remaining calculation steps of an iteration*/
mpz_mul(output,input,input);
mpz_mod(output, output, n);
mpz_mul(output,output, temp);
mpz_mod(output, output, n);

}

Code of Pseudo code 4.3.1

void calculate_primes_product(mpz_t temp, unsigned char *message,
int counter, unsigned int k, int *primes, mpz_t n) {

static unsigned int array[MAX_PRIMES];
int i, j, num;
unsigned int t;
int starting_byte = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;
int end;
static int firstcall = 1;

E.2. C-SOURCE CODE 115

static mpz_t prods[MAX_PRIMES/2];

if (firstcall) {
/* initialize products */
firstcall = 0;
for (i = 0; i < MAX_PRIMES/2; ++i)

mpz_init(prods[i]);
}

/*Calculate the product of small primes*/
j = 0;
i = starting_byte;
/* number of array elements: */
num = 0;
end = (counter+1)*k;

while((8*i+j) < end) {
/* store the primes we need in array */
if ((message[i] >> (0x7^j)) & 1) {

array[num++] = primes[8*(i-starting_byte)+(j-starting_bit)];
j++;
if(j==8) {

j=0;
i++;

}
} else{

j++;
if(j==8) {

j=0;
i++;

}
}
}

if (num == 0)
return;

/* process the first round of multiplies by pairing the big
primes with smaller ones, and saving the result within
prods. Assume that there is no overflow.

*/

for (i=0; i < num/2; ++i) {
mpz_set_ui(prods[i], array[i]*array[num-1-i]);

}
if (num&1)

mpz_set_ui(prods[i], array[i]);
/* number of elements in prods is: */
num = (num+1)/2;

/* now perform remaining products: */

116 APPENDIX E. SOURCE CODES

while (num > 1) {
for (i=0; i < num/2; ++i){

mpz_mul(prods[i], prods[i], prods[num-1-i]);
mpz_mod(prods[i], prods[i], n);

}
num = (num+1)/2;

}

mpz_set(temp, prods[0]);
}

void iterate(mpz_t output, mpz_t input, unsigned char *message, int
counter, mpz_t n, unsigned int k, int *primes, mpz_t temp) {

mpz_set_ui(temp,1);

calculate_primes_product(temp, message, counter, k, primes, n);

/*perform the remaining calculation steps of an iteration*/
mpz_mul(output,input,input);
mpz_mod(output, output, n);
mpz_mul(output,output, temp);
mpz_mod(output, output, n);

}

E.2.4 Trapdoor-VSH (Chapter 6)

Code of Trapdoor VSH based on Pseudo code 6.1.1

void find_powers(mpz_t output[], mpz_t input[], unsigned char
*message, mpz_t phin, int counter, unsigned short k){

int i, j;
int starting_word = ((counter*k) >> 3);
char starting_bit = (counter*k) & 7;

j = starting_bit;
i = starting_word;

while((8*i+j) < ((counter+1)*k)){
/*shift the exponents 1 bit to left*/
mpz_mul_2exp(output[8*(i-starting_word)+(j-starting_bit)],

output[8*(i-starting_word)+(j-starting_bit)],1);
/*add one if the corresponding message-bit is equal to one*/
if(((message[i] >> (7-j)) & 1)==1)

mpz_add_ui(output[8*(i-starting_word)+(j-starting_bit)],
input[8*(i-starting_word)+(j-starting_bit)],1);

/*If prime power is larger than phi(n), subtract phi(n)*/
if(mpz_cmp(output[8*(i-starting_word)+(j-starting_bit)],phin)>0)

mpz_sub(output[8*(i-starting_word)+(j-starting_bit)],
output[8*(i-starting_word)+(j-starting_bit)],phin);

j++;

E.2. C-SOURCE CODE 117

if(j==8){
j=0;
i++;

}
}

}

void finalize(mpz_t output, mpz_t prime_power[], mpz_t n, unsigned
short k, int *primes){

int i, j, power_bit_size;
mpz_t temp;
mpz_init_set_ui(temp,1);

power_bit_size = mpz_sizeinbase(n,2);

/*Calculate the product of small primes*/
for(i = 1; i <= power_bit_size; i++){

for(j = 0; j < k; j++){
if(mpz_tstbit(prime_power[j], (power_bit_size - i)))

mpz_mul_ui(temp,temp,primes[j]);
}
mpz_mul(output, output, output);
mpz_mod(output, output, n);
mpz_mul(output, output, temp);
mpz_mod(output, output, n);
mpz_set_ui(temp, 1);

}
}

Code of Trapdoor VSH based on Pseudo code 6.1.2

/*
* This procedure uses the trapdoor information (phi(n)) to speed
* up computation of VSH hash. The VSH computation can be written
* as a product of p_i ^ e_i for exponents e_i which come from
* the message bits. This procedure computes the e_i modulo phi(n),
* and then finalize() procedure computes the product of the p_i
* modulo the reduced exponents. Computing the exponents here is done
* by calling find_exps() x times, where x = (message len in bits) / k .
* The counter should be incremented every time.
* WARNING: THIS PROCEDURE ASSUMES THE MESSAGE LENGTH (IN BITS) IS A
* MULTIPLE OF k . That should be the case assuming that
* padding has been applied as defined in the VSH paper.
*
* Description of function inputs and outputs:
*
* prime_exps[] array holding the current exponents (as much as has
* been read in) for the primes p_i . This array
* should be initialized to 0 before the first
* time this procedure is called. Ths array is
* updated after processing k message bits.
* message[] An array holding the entire message.

118 APPENDIX E. SOURCE CODES

* phin phi(n) where n is the modulus.
* counter number of blocks processed so far (so that we can
* index into the right position of message[]).
* A block is k bits of message.
* k number of primes p_i .
* finalcall boolean telling whether or not we are processing the
* final message block.
*/

void find_exps(mpz_t prime_exps[], unsigned char *message, mpz_t
phin,

int counter, unsigned short k, short finalcall)
{ /* The exponents in this procedure are stored in the array
prime_exps[] .
* In order to speed up computation, we use tmp_exp[] to hold up to
* 32-bits of the current exponents being read in. Once we have those
* 32-bits (for all primes), we insert those into the prime_exps[]
* array with the proper shifting. In this way, we only have to perform
* mpz shift operations once in every 32 iterations (as opposed to every
* iteration). We also have to insert the tmp_exp exponents in the
* final call to this procedure.
*
* Reduction of the exponents modulo phi(n) is done when either those
* exponents reach approx twice the size of phi(n) , or else during the
* final call to this procedure.
*/

static unsigned int tmp_exps[10000]; /*The intermediate ints*/
/* number of bits currently stored in (each word of) tmp_exps : */
static int te_bits = 0;
/* firstmpz is a boolean: does prime_exps need to be initialized? */
static int firstmpz = 1;
/* When prime_exps has limit words, then perform mod reduction */
static int limit;
/* prime_exps_words is number of 32-bit words currently stored in
* each position of prime_exps[]: */

static int prime_exps_words = 0;
int i, j, l;
int starting_word = ((counter*k) >> 3);
int starting_bit = (counter*k) & 7;

j = starting_bit;
i = starting_word;

if (te_bits == 0) {
/* initialize tmp_exps : we are processing a new 32-bits of
* exponents (for each prime). */

for(l = 0; l < k; l++)
tmp_exps[l] = 0;

}

/* Calculate tmp_exps for prime 1 to l: */
for(l = 0; l < k; l++){

if(((message[i] >> (7-j)) & 1)==1) tmp_exps[l]++;
j++;

E.2. C-SOURCE CODE 119

if(j==8) {
j=0;
i++;

}
}
/* Increase the size of the tmp_exps by 1-bit */
te_bits++;

/* If we reached 32-bits in the tmp_exps array, or if it is the
* final call, then place this array into prime_exps array.
*/

if (te_bits==32 || finalcall) {
prime_exps_words++;
if (firstmpz) {

firstmpz = 0;
/* limit is twice the number of 32-bit words as phin : */
limit = (mpz_sizeinbase(phin,2)>>4);
for(l = 0; l < k; l++)

mpz_set_ui(prime_exps[l], tmp_exps[l]);
}
else
{

for(l = 0; l < k; l++) {
/* note -- te_bits is 32 except when finalcall is 1 : */
mpz_mul_2exp(prime_exps[l], prime_exps[l], te_bits);
mpz_add_ui(prime_exps[l], prime_exps[l], tmp_exps[l]);
if((prime_exps_words > limit) || finalcall)

mpz_mod(prime_exps[l], prime_exps[l], phin);
}
if (prime_exps_words > limit)

/* after mod reduction, elements of prime_exps[] are
* the same length as phin : */

prime_exps_words = (mpz_sizeinbase(phin,2)>>5);
}
/* next iteration: reset the number of bits in tmp_exps */
te_bits = 0;

}

if(finalcall) {
te_bits = 0;
firstmpz = 1;
prime_exps_words = 0;

}
}

/*
* After we have determine the exponents for our VSH computation
* (from repeatedly calling find_exps()), we now compute the final hash.
*
* Description of function inputs and outputs:
*
* hash The final hash value. Should be initialized to 1 by

120 APPENDIX E. SOURCE CODES

* calling procedure.
* prime_exps The exponents for the small primes, which were computed
* from repeatedly calling find_exps() .
* n The modulus.
* k The number of small primes used in VSH.
* primes The small primes used in VSH.
*/

void finalize(mpz_t hash, mpz_t prime_exps[], mpz_t n, unsigned
short k,

int *primes)
{

int i, j, exp_bits;
mpz_t temp;

exp_bits = mpz_sizeinbase(n,2);

for(i = 1; i <= exp_bits; i++) {
mpz_init_set_ui(temp,1);
/* product of primes for the i’th bit from the ‘left’: */
for(j = 0; j < k; j++) {

if (mpz_tstbit(prime_exps[j], (exp_bits - i)))
mpz_mul_ui(temp,temp,primes[j]);

}
mpz_mul(hash, hash, hash);
mpz_mod(hash, hash, n);
mpz_mul(hash, hash, temp);
mpz_mod(hash, hash, n);

}

}

Code of Trapdoor VSH based on Pseudo code 6.1.4

/*
* This procedure uses the trapdoor information (phi(n)) to speed
* up computation of VSH hash. The VSH computation can be written
* as a product of p_i ^ e_i for exponents e_i which come from
* the message bits. This procedure computes the e_i modulo phi(n),
* and then finalize() procedure computes the product of the p_i
* modulo the reduced exponents. Computing the exponents here is done
* by calling find_exps() x times, where x = (message len in bits) / k .
* The counter should be incremented every time.
* WARNING: THIS PROCEDURE ASSUMES THE MESSAGE LENGTH (IN BITS) IS A
* MULTIPLE OF k . That should be the case assuming that
* padding has been applied as defined in the VSH paper.
*
* Description of function inputs and outputs:
*
* prime_exps[] array holding the current exponents (as much as has
* been read in) for the primes p_i . This array
* should be initialized to 0 before the first
* time this procedure is called. Ths array is

E.2. C-SOURCE CODE 121

* updated after processing k message bits.
* message[] An array holding the entire message.
* phin phi(n) where n is the modulus.
* counter number of blocks processed so far (so that we can
* index into the right position of message[]).
* A block is k bits of message.
* k number of primes p_i .
* finalcall boolean telling whether or not we are processing the
* final message block.
*/

void find_exps(mpz_t prime_exps[], unsigned char *message, mpz_t
phin,

int counter, unsigned short k, short finalcall)
{ /* The exponents in this procedure are stored in the array
prime_exps[] .
* In order to speed up computation, we use tmp_exp[] to hold up to
* 32-bits of the current exponents being read in. Once we have those
* 32-bits (for all primes), we insert those into the prime_exps[]
* array with the proper shifting. In this way, we only have to perform
* mpz shift operations once in every 32 iterations (as opposed to every
* iteration). We also have to insert the tmp_exp exponents in the
* final call to this procedure.
*
* Reduction of the exponents modulo phi(n) is done when either those
* exponents reach approx twice the size of phi(n) , or else during the
* final call to this procedure.
*/

static unsigned int tmp_exps[10000]; /*The intermediate ints*/
/* number of bits currently stored in (each word of) tmp_exps : */
static int te_bits = 0;
/* firstmpz is a boolean: does prime_exps need to be initialized? */
static int firstmpz = 1;
/* When prime_exps has limit words, then perform mod reduction */
static int limit;
/* prime_exps_words is number of 32-bit words currently stored in
* each position of prime_exps[]: */

static int prime_exps_words = 0;
int i, j, l;
int starting_word = ((counter*k) >> 3);
int starting_bit = (counter*k) & 7;

j = starting_bit;
i = starting_word;

if (te_bits == 0) {
/* initialize tmp_exps : we are processing a new 32-bits of
* exponents (for each prime). */

for(l = 0; l < k; l++)
tmp_exps[l] = 0;

}

/* Calculate tmp_exps for prime 1 to l: */
for(l = 0; l < k; l++){

122 APPENDIX E. SOURCE CODES

tmp_exps[l] = (tmp_exps[l] << 1) | ((message[i] >> (7-j)) & 1);
j++;
if(j==8) {

j=0;
i++;

}
}
/* Increase the size of the tmp_exps by 1-bit */
te_bits++;

/* If we reached 32-bits in the tmp_exps array, or if it is the
* final call, then place this array into prime_exps array.
*/

if (te_bits==32 || finalcall) {
prime_exps_words++;
if (firstmpz) {

firstmpz = 0;
/* limit is twice the number of 32-bit words as phin : */
limit = (mpz_sizeinbase(phin,2)>>4);
for(l = 0; l < k; l++)

mpz_set_ui(prime_exps[l], tmp_exps[l]);
}
else
{

for(l = 0; l < k; l++) {
/* note -- te_bits is 32 except when finalcall is 1 : */
mpz_mul_2exp(prime_exps[l], prime_exps[l], te_bits);
mpz_add_ui(prime_exps[l], prime_exps[l], tmp_exps[l]);
if((prime_exps_words > limit) || finalcall)

mpz_mod(prime_exps[l], prime_exps[l], phin);
}
if (prime_exps_words > limit)

/* after mod reduction, elements of prime_exps[] are
* the same length as phin : */

prime_exps_words = (mpz_sizeinbase(phin,2)>>5);
}
/* next iteration: reset the number of bits in tmp_exps */
te_bits = 0;

}

if(finalcall) {
te_bits = 0;
firstmpz = 1;
prime_exps_words = 0;

}
}

/*
* After we have determine the exponents for our VSH computation
* (from repeatedly calling find_exps()), we now compute the final hash.
*
* Description of function inputs and outputs:

E.2. C-SOURCE CODE 123

*
* hash The final hash value. Should be initialized to 1 by
* calling procedure.
* prime_exps The exponents for the small primes, which were computed
* from repeatedly calling find_exps() .
* n The modulus.
* k The number of small primes used in VSH.
* primes The small primes used in VSH.
*/

void finalize(mpz_t hash, mpz_t prime_exps[], mpz_t n, unsigned
short k,

int *primes)
{

int i, j, exp_bits;
mpz_t temp;

exp_bits = mpz_sizeinbase(n,2);

for(i = 1; i <= exp_bits; i++) {
mpz_init_set_ui(temp,1);
/* product of primes for the i’th bit from the ‘left’: */
for(j = 0; j < k; j++) {

if (mpz_tstbit(prime_exps[j], (exp_bits - i)))
mpz_mul_ui(temp,temp,primes[j]);

}
mpz_mul(hash, hash, hash);
mpz_mod(hash, hash, n);
mpz_mul(hash, hash, temp);
mpz_mod(hash, hash, n);

}

}

E.2.5 Some gprof Profiles

This Appendix shows some profiles generated by gprof. These profiles reveil only the gmp
sub modules that require a significant amount of time.

Profile of a run of the original version of Classic-VSH, where S = 1234.

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
29.09 2.71 2.71 __gmpn_submul_1
13.66 3.98 1.27 __gmpn_sb_divrem_mn
12.90 5.17 1.20 __gmpn_mul_basecase
11.72 6.26 1.09 __gmpn_sqr_basecase
11.29 7.32 1.05 __gmpn_mul_1
6.99 7.96 0.65 1 650.00 650.00 VSHtime

124 APPENDIX E. SOURCE CODES

5.48 8.47 0.51 __gmpz_mul_ui
2.04 8.66 0.19 __gmpn_copyi
2.04 8.86 0.19 __gmpn_lshift
1.08 8.96 0.10 __gmpz_tdiv_r
0.75 9.03 0.07 __gmpn_tdiv_qr
0.65 9.09 0.06 __gmpn_mul
0.54 9.13 0.05 __gmpn_sub_n
0.54 9.19 0.05 __gmpz_mul
0.32 9.21 0.03 __gmpn_mul_1c
0.32 9.24 0.03 _alloca
0.22 9.27 0.02 __gmpn_rshift
0.22 9.29 0.02 __gmpz_mod
0.16 9.30 0.01 __gmpn_submul_1c
0.00 9.30 0.00 1 0.00 0.00 get_data

Profile of a run of the Tree-based version of Classic-VSH, where S = 1234.

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
26.66 2.04 2.04 __gmpn_submul_1
16.56 3.31 1.27 __gmpn_mul_basecase
14.99 4.46 1.15 __gmpn_sb_divrem_mn
13.17 5.47 1.01 __gmpn_sqr_basecase
10.56 6.29 0.81 640351 0.00 0.00 calculate_primes_product
5.48 6.71 0.42 __gmpz_mul
5.08 7.09 0.39 __gmpn_copyi
1.24 7.19 0.10 __gmpn_mul_1
1.04 7.27 0.08 __gmpn_tdiv_qr
1.04 7.35 0.08 __gmpz_set_ui
0.91 7.42 0.07 __gmpn_mul
0.78 7.48 0.06 1 60.00 870.00 VSHtime
0.65 7.53 0.05 __gmpz_tdiv_r
0.52 7.57 0.04 __gmpn_sub_n
0.39 7.60 0.03 __gmpz_mod
0.26 7.62 0.02 _alloca
0.20 7.63 0.01 __gmpn_mul_1c
0.20 7.65 0.01 __gmpn_submul_1c
0.13 7.66 0.01 __gmpz_set
0.13 7.67 0.01 clock
0.00 7.67 0.00 1 0.00 0.00 get_data

Profile of a run of the original version of Fast-VSH, where S = 1516.

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name

E.2. C-SOURCE CODE 125

26.36 0.68 0.68 __gmpn_mul_basecase
20.16 1.20 0.52 __gmpn_submul_1
17.83 1.66 0.46 __gmpn_mul_1
11.24 1.95 0.29 __gmpn_sb_divrem_mn
5.43 2.09 0.14 __gmpz_mul_ui
4.26 2.20 0.11 __gmpn_add_n
3.49 2.29 0.09 40960 0.00 0.00 iterate
2.71 2.36 0.07 __gmpn_sqr_basecase
1.94 2.41 0.05 __gmpn_kara_mul_n
1.94 2.46 0.05 __gmpn_sub_n
1.16 2.49 0.03 __gmpn_rshift
1.16 2.52 0.03 __gmpn_tdiv_qr
0.78 2.54 0.02 __gmpn_copyi
0.78 2.56 0.02 __gmpn_lshift
0.39 2.57 0.01 __gmpn_dc_divrem_n
0.39 2.58 0.01 mpn_dc_div_3_by_2
0.00 2.58 0.00 1 0.00 90.00 VSHtime
0.00 2.58 0.00 1 0.00 0.00 get_data

Profile of a run of the Tree-based version of Fast-VSH, where S = 1516.

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
23.33 0.63 0.63 __gmpn_mul_basecase
17.04 1.09 0.46 __gmpn_mul_1
15.56 1.51 0.42 __gmpn_submul_1
9.63 1.77 0.26 __gmpn_sb_divrem_mn
6.30 1.94 0.17 __gmpn_sub_n
6.30 2.11 0.17 __gmpz_mul_ui
4.81 2.24 0.13 __gmpn_add_n
4.07 2.35 0.11 40960 0.00 0.00 iterate
2.96 2.43 0.08 __gmpn_sqr_basecase
2.96 2.51 0.08 __gmpn_tdiv_qr
2.22 2.57 0.06 __gmpz_cmp
1.85 2.62 0.05 __gmpn_kara_mul_n
1.11 2.65 0.03 __gmpn_lshift
0.37 2.66 0.01 1 10.00 120.00 VSHtime
0.37 2.67 0.01 __gmpn_copyi
0.37 2.68 0.01 __gmpn_divrem_2
0.37 2.69 0.01 __gmpn_rshift
0.37 2.70 0.01 _alloca
0.00 2.70 0.00 1 0.00 0.00 get_data

	Abstract
	Contents
	Introduction
	The Very Smooth Hash
	Multiple Precision Algorithms
	Some Implementation Ideas
	New Choices for k and the SecurityAssumption
	Reducing Prime Exponents by Á(n)
	On The Linearity of the Speed ofVSH
	Conclusion and Further Research
	Bibliography
	Appendix AFull Speed Table
	Appendix BNumber Theoretic Background
	Appendix CSome Proofs
	Appendix DSome Considerations With respectto Chapter 5
	Appendix ESource codes

