EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Model checking the ATerm library

Gabriels, J.M.A.M.

Award date:
2008

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7328328d-8463-4b30-a191-95ddace3c23c

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

Model Checking
the ATerm Library

By
J.M.A.M. Gabriels

SUPERVISORS

Prof. Dr. M.G.J. van den Brand (TU/e)
Prof. Dr. J.C. van de Pol (UT)

Eindhoven, December 2007

Abstract

Important properties of good software are reliability and predictability. There is
no place for strange and unwanted behavior in software such as arbitrary values
or system crashes. In ANSI-C programs using the tree-like data structures of
the ATerm library, improper use of globally defined ATerms can cause such
behavior. This thesis describes a method for transforming ANSI-C source code,
using the ASF+SDF Meta Environment, to a format that can be checked for
these patterns of, sometimes hard to find, unwanted behavior using the CADP
toolkit’s model checker.

Acknowledgments

I would like to take the opportunity to express my thanks to all those who
helped me in any way with my Master’s project.

Special thanks go to Mark van den Brand and Jaco van de Pol, my super-
visors, who helped me when I got stuck and provided helpful insight and tips
that aided me in moving the project forward.

I also want to thank my colleagues and roommates Bas, Chantal, Dennis,
Arjan, Ludo, Remko and Alexander who helped me along and were always pre-
pared to brainstorm with me. Furthermore, my thanks go out to the members
of the Software Engineering & Technology (SET) group at the Eindhoven Uni-
versity of Technology.

Last but not least, I want to thank my parents, friends and Renée for their
support.

Eindhoven, December 2007

Joost Gabriels

Contents

1 Introduction
1.1 Software quality
1.2 Problem description L.
1.3 Thesisoutline
2 Annotated Terms
2.1 ATerms and accidental removal
2.2 The problems illustrated
2.21 Global ATerms
2.2.2 ATerms in structs
2.2.3 Mismatch of protect and unprotect
2.3 Conclusions
2.4 Planned approach oo oo
3 Parsing ANSI-C with ASF+SDF
3.1 ASF+SDF Meta Environment
3.1.1 Syntax Definition Formalism
3.1.2 Algebraic Specification Formalism
3.1.3 Using the Meta Environment
3.2 Structure of ANSI-C programs
3.2.1 Ambiguities o
322 The C-subset
3.3 Normalizing ANSI-Ccode
4 The Control Flow Graph
4.1 Structure and Definition oL
4.2 Building the control flow graph L.
4.3 Basic Statementso
4.3.1 Declarations. o o
4.3.2 Assignments
4.4 Repetitions oL e
4.4.1 While-Do repetition
4.4.2 Do-While repetition
4.5 If-then-else alternative
4.6 Global Definitions Lo
4.7 Flow-altering statements
4.71 Function Calls
4.7.2 The problem of recursion

~N O ot

© 0o @

Ne)

11

13
14

16
16
16
17
18
18
20
22
23

4.7.3 Return statements

4.74 Break statements oL
4.8 The nail warehouse oL
The Dual Graph
5.1 Structure of the dual graph
5.2 Building the dual graph
5.3 The nail warehouse revisited
Abstraction
6.1 The Abstract Graph L.
6.2 Building the abstract graph 0oL
6.2.1 Phase 1: Traversing the external declarations
6.2.2 Phase 2: Abstracting declarations and statements
6.3 Nail warehouse example
Model Checking with CADP
7.1 The CADP toolkit
7.1.1 The Aldebaran Graph
7.1.2 Reducing themodels
7.1.3 Regular alternation-free py-calculus
7.1.4 Evaluator
7.2 Behavioral patternso oo oo
7.2.1 Protect beforeuse L.
7.2.2 Matching protect and unprotect
7.3 Checking themodels
7.3.1 The Nail Warehouse
7.3.2 Test programs
Results and Conclusions
81 Results.
8.2 Conclusions
83 Related Worko
8.3.1 Model Checking program source code
8.3.2 Factextraction
8.4 Recommendations and future work
List of Tools
Using the ATerm library
B.1 Nail Warehouse 1
B.2 Nail Warehouse 2 oo
B3 Testprogram 1l
B.4 Test program 2
B.5 Test program 3
B.6 Test program 4 o
B.7 Test program b
B.8 Test program6
B9 Test program 7
B.10 Test program 8 Lo

Normalizing
C.1 Normalizing (SDF)
C.2 Normalizing (ASF)

Control Flow Graph

D.1 Triple
D.2 Tuple e e
D.3 DeclStat
D.4 Control Flow Graph structure (SDF)
D.5 Control Flow Graph structure equations (ASF)
D.6 Building the control flow graph (SDF)
D.7 Building the control flow graph (ASF)

Dual Graph

E.1 Dual Graph structure (SDF)
E.2 Dual Graph structure equations (ASF)
E.3 Building the dual graph (SDF)
E.4 Building the dual graph (ADF)

Abstract Graph

F.1 Label
F.2 Abstract Graph structure (SDF)
F.3 Abstract Graph structure equations (ASF)
F.4 Building the abstract graph (SDF)
F.5 Building the abstract graph (ASF)

Aldebaran graph

G.1 Quote
G.2 AutEdge
G.3 Aldebaran graph structure (SDF)
G.4 Aldebaran graph structure equations (ASF)
G.5 Building the Aldebaran graph (SDF)
G.6 Building the Aldebaran graph (ASF)

Chapter 1

Introduction

Consider the following toy example:

Example 1.0.1. Consider a warehouse in nails. This particular warehouse
sells just one type of nail and at any given time, it can store up to 500,000
nails. The warehouse policy is to order more nails from the manufacturer when
the number of nails in storage is less than 1,000.

Today, the inventory shows 400,025 nails and an order for 400,000 nails
has come in from a DIY-store. This order should not be a problem since there
are enough nails in inventory. The order is placed, the nails are sold and ...
the system crashes, no order for new nails is created and the inventory number
shows 352,028 nails. What went wrong? Why the strange inventory number?
Why did the system crash?

(End of Example)

1.1 Software quality

Much has been said on the topic of reliability of software and much effort has
been put into the development of techniques to improve the reliability of soft-
ware. One of the characteristics of reliable software is its correctness. In other
words, that the constructed software is correct with regards to its specification
and that it simply does what it was designed to do. Another is the predictability
of software. If a value is assigned to a variable, and we read it again without
any action on it in the mean time, we expect it to still have that same value.
Reliability and predictability leave no room for strange, sometimes hard to ex-
plain, behavior like occurred in the nail warehouse.

As software systems grow bigger and more paths and branches are added to
create new functionality, the complexity increases. Over time it can be difficult
to have a clear overview of the software. This is not difficult just because of
the size, but also because of the complexity of the code and individual styles of
programmers. Debugging software to find out what causes some strange action
that “should not have happend” (such as an inventory value of 352,028 nails)
can take a very long time. Therefore, being able to transform the software and

the safety requirements into a form where they can automatically be checked
is highly desirable and can answer questions like: "Does this model of the soft-
ware violate the requirements?" and "Is there some branch that results in faulty
actions?"

Model checkers that check models against a set of safety requirements exist
and have proven useful in discovering errors in systems. An example of such
a model checker is the CADP evaluator [4] that has been used successfully
in verifying hardware systems and communication protocols. (See [2]). Most
model checkers do not work with actual programs as input, but use models.
Each model checker uses its own kind of model language. The CADP evaluator
can work with a graph structure is while the the SPIN model checker [20, 5]
works on model programmed in the Promela language [5].

1.2 Problem description

When using the ATerm library [32] in computer programs, unwanted behavior
can occur. The ATerm library is a simple and effective means of representing
tree-like structures, that can be used for exchange of complex data structures
between applications. The ATerm library uses maximal subterm sharing and
has an automated garbage collector. When using the ATerms, unwanted behav-
ior can be triggered by improper use of the protect and unprotect functions that
the ATerm library provides. An unexpected garbage collection of unprotected
globally defined ATerms can cause arbitrary values upon referencing. Further-
more, a mismatch between a protect and unprotect action can cause a memory
leak or system crash.

This thesis, describes the research and development of a proof-of-concept
that tries to answer the following question:

“How can ANSI-C source code (using the ATerm library) be checked
for patterns of unwanted behavior using Model Checking techniques.”

The proof-of-concept will consist of a description and implementation of a
method that will check, by using model checking techniques, a given ANSI-
C program using the functions of the ATerm library against a set of safety
requirements that ensure proper use of global ATerms. The ATerm library’s
protect /unprotect scheme provides a clear set of “behavioral patterns” to check
for in the programs. The research can be divided into several sub questions:

1. What are the problems with globally defined ATerms in combination with
automatic garbage collection?

2. What kind of behavior is unwanted and how can it be recognized?

3. How can the program be represented in such a way, that it captures the
flow of the program?

(a) What parser for ANSI-C should be used?

(b) What intermediate structures should be used?

4. What information is necessary and what information can be abstracted
away?

5. How can we check this representation with model checking techniques to
find the cases of unwanted behavior?

(a) What model checker should be used?

(b) How should the patterns of unwanted behavior be represented?

1.3 Thesis outline

Chapter 2 explains what the ATerm library is and illustrates the problems that
can come from carelessness in using globally defined ATerms. Chapter 3 intro-
duces the SDF formalism and tools with which the ANSI-C language can be
transformed and in chapter 4, the process of transformation from programming
language to control flow graph is explained. In chapter 5, the control flow graph
is transformed into a dual graph to match the graph type of the CADP model
checker. This model will then be abstracted in chapter 6. All unnecessary
information (i.e. that is not concerned with ATerms) will be removed so that
with well known state space reduction techniques, the size and complexity of the
model can be minimized. Chapter 7 describes the actual model checking process
and gives examples of the results obtained. Certain requirements of proper use
are checked with the abstracted and minimized models to see if improper use
can be detected. Finally, chapter 8 will hold the results and conclusions of the
project.

Chapter 2

Annotated Terms

ATerms or "Annotated Terms" (as described in [32] and [33]) is a simple and
efficient means of representing tree-like structures that is platform and lan-
guage independent. ATerms are efficient because of the use of maximal subterm
sharing which makes them ideal for sharing complex data structures between
applications.

Instead of recreating the same object over and over again, ATerms are reused.
This way, only new terms will be made which reduces the memory consump-
tion. The ATerm library does this by checking a hash table with pointers to the
ATerms to see if the ATerm has already been created. ATerms are widely used
in a range of applications such as the Toolbus [11], JITty [30], mCRL2 [18§],
Stratego [12], in the ASF+SDF Meta Environment [1, 37, 24] and may more
applications such as development environments and term rewrite engines. See
[33] for a list of more applications that use ATerms.

Another thing that makes the ATerm library so efficient is an automated
garbage collection mechanism that cleans up ATerms that are no longer used in
order to free memory that would otherwise be unavailable. Providing some sort
of control over this process, the ATerm library provides functions to explicitly
protect ATerms from untimely removal by the garbage collector and unprotect
them to free memory.

Unfortunately, even though this mechanism is very effective, forgetting to
protect certain types of ATerms can sometimes cause strange behavior in pro-
grams.

2.1 ATerms and accidental removal

Any time a new ATerm is created, the library checks if it can reuse an old
ATerm from a free-objects-list. This list holds removed ATerms who’s mem-
ory can be reused and new ATerms that are not yet in use. If this is not the
case, the garbage collector will start its “mark-sweep” algorithm to clean up
unused ATerms. It does this by first marking all ATerms as “dead” and then
checking which ATerms are reachable from a known set of root objects on the

execution-stack. These reachable objects are marked as “live” and all remain-
ing “dead” objects are moved into a free-objects-list. ATerms in this list are not
immediately disposed of, but will again be reused upon creation of a new ATerm.

When using ATerms as global variables in a program, the programmer must
always keep in mind that without explicit protection, these ATerms are unpro-
tected and will be marked “dead” in the next garbage collector run. Explicit
protection of the globally declared ATerms will put them in a data structure
that is accessible by the garbage collector. Only this way, will the global ATerms
will be marked as “live” again.

Referencing a garbage-collected ATerm can result in retrieving an arbitrary
meaningless value without any warning concerning its removal. Because the
ATerm is removed, this is like retrieving a value through a null-pointer. ATerms
that are declared within functions of the program do not have to be protected
and unprotected by the programmer. These local ATerms are automatically
protected for the duration of the function (see [15]).

When an ATerm is moved into the free-objects-list, its value can still be
retrieved, until the creation of a new ATerm reuses its memory. This adds to
the confusion when forgetting to protect and unprotect global ATerms causes
strange, seemingly unrelated, errors between functions.

A global ATerm, that is not protected is a candidate for removal in the next
garbage collection. Other candidates are structs and globally declared arrays
that hold ATerms. The ATerms in these self-made data structures and arrays
must also be protected explicitly in order to make sure that they will not be
removed in the next sweep.

Besides arbitrary values, carelessness in protecting and unprotecting global
ATerms poses another problem. To successfully protect an ATerm, the protect
and unprotect actions must match. That is, every protect is eventually followed
by an unprotect and every unprotect is eventualy preceded by a protect. Pro-
grams that have protect actions without matching unprotect actions will keep
unused memory protected and create a memory leak. If a trace through the
program exists where an unprotect action is done without a protect preceding
it, the program will give a segmentation fault and give a core dump.

2.2 The problems illustrated

2.2.1 Global ATerms

Figure 2.1 shows a code fragment that sketches the faulty use of a globally de-
clared ATerm.

The code fragment shows a global ATerm of type integer being declared in
(1), defined with the value 42 in (2) and referenced in (3) without any protection
against garbage collection. Since there is no telling when the garbage collector
will start its sweep, no guarantee can be given whether the global ATerm will

ATermInt global; ¢D)
int main(int argc, char* argv[])
{
éic;bal = ATmakeInt(42); (2)
‘:l.’i'l-)rintf ("%t",global); (3)
}

Figure 2.1: Code fragment of improper use of global ATerms

still exist when it is referenced.

To demonstrate the possibility of strange behavior, several test programs
have been made which intentionally force the garbage collector to remove a
global ATerm. This provides the possibility to see what goes wrong and how
that corresponds with the model checker’s output. These test programs have
been included in appendix B and will return in chapter 7.

The ATerm library has the option to give verbose information on the garbage
collector. Using this verbose option, the code in figure 2.1 was used in a test
program (Appendix B.3) with the following output:

Value of global ATerm = 701476
2 garbage collects,

stack depth: 2147483647/0/0 words

reclamation percentage: 2147483647/0/0

Figure 2.2: Verbose ATerm output illustrates removal

In the actual test program (Appendix B.3), a global ATerm was given the
value 42. After that, 400,000 new ATerms were created. The garbage collector
ran twice and removed the unprotected global ATerm. The final act of printing
the value of the global ATerms gives an arbitrary value.

The code fragment in figure 2.3 shows the proper use of a global ATerm.
After declaring the global ATerm in (1), it has to be protected in (2) before it
is defined in (3). Both defining and referencing the ATerm in (4) will now be
guaranteed to be successful. The protection function puts the global ATerms
in a data structure that is accessable by the garbage collector during its sweep.
This way, it can be labeled as “live” and will not be removed. The programmer
must make sure to unprotect the ATerm in (5) after he is done with it. This will
make sure the ATerm can be collected upon the next sweep. By unprotecting,
no more memory is retained than necessary.

10

ATermInt global; ¢D)
int main(int argc, char* argv[])
{
ATprotect (&global); (2)
global = ATmakeInt(42); (3)
ATprintf ("%t",global); (4)
ATunprotect (&global) ; (5)
}

Figure 2.3: Code fragment of proper use of global ATerms

Explicitly protecting the global ATerm as done in figure 2.3 (Appendix B.4)
now shows:

Value of global ATerm = 42
2 garbage collects,

stack depth: 2147483647/0/0 words

reclamation percentage: 2147483647/0/0

Figure 2.4: Verbose ATerm output shows success

2.2.2 ATerms in structs

A similar situation arises with the use of ATerms in structs and globally defined
arrays. The code fragment in figure 2.5 shows a struct in which an ATerm is
used but not protected. This ATerm again must be explicitly protected by the
programmer to protect it from being collected.

The ATerm is part of a struct (1) and is declared in (2). It will eventually
be defined in (3) and may or may not be present when the ATerm is referenced
in (4). In the code fragment in figure 2.6, the struct is properly used.

Like the example in figure 2.3, the ATerm is (globally) declared inside the
struct in (1) and (2), explicitly protected in (3). Defining it in (4) and using
it in (5) can be done without any problems. After which it must be freed by
unprotecting it in (6).

2.2.3 Mismatch of protect and unprotect

Forgetting to unprotect a protected global ATerm will cause a memory leak and
calling unprotect while no preceding protect was called causes a segmentation

11

struct foo {
ATermInt bar; (1)

} myStruct; (2)

int main(int argc, charx argv[])

{
myStruct.bar = ATmakeInt (42); (3

printf ("%d", A"TgetInt(myStruct.bar)); (4)

3

Figure 2.5: Code fragment of improper use of a global ATerm in a struct

struct foo {
ATermInt bar; (1)
} myStruct; 2

int main(int argc, char* argv[])

{
A%érotect(&myStruct.bar); (3)
myStruct.bar = ATmakeInt (42); C))
é%intf("%d", A"TgetInt (myStruct.bar)); (5)
Afﬁnprotect(&myStruct.bar); (6)
}

Figure 2.6: Code fragment of proper use of a global ATerm in a struct

fault and results in a core dump. To investigate this, four test programs were
written (Appendix B.7 through B.10.). Consider the code fragment in figure
2.7.

After declaration of the ATerm as global in (1), a choice is made by referring
to some random value produced by the ANSI-C pseudo random number gener-
ator. In one branch, the global ATerm is protected prior to defining it in (2)
and (3), in the other it is not. It is directly defined in (4). After both branches
are finished, a final use action on the ATerm is performed in (5) whereafter the

12

ATermInt global; ¢D)
int main(int argc, char* argv[])
{
if (randomValue < 50) {
ATprotect (&global); (2)
global = ATmakeInt(371); (3)
}
else {
global = ATmakeInt(42); (4)
}
ATprintf("Value of global ATerm = %t\n",global); (5)
ATunprotect (&global) ; (6)
}

Figure 2.7: Code fragment with mismatch in the else branch.

ATerm is unprotected in (6). Both the result of the mismatch (no protect in
the else branch) and the definition of an ATerm without protection (also in the
else branch) can now be seen by checking the output in figure 2.8.

Value was at least 50

Value of global ATerm = 352040
random number was: 84
Segmentation fault (core dumped)

Figure 2.8: Output shows mismatch and arbitrary value

Not only did the else branch violate the demand that the global ATerm
must be protected prior to use (hence the strange arbitrary value 352040), but
the mismatch between protect and unprotect in that same branch caused the
segmentation fault.

2.3 Conclusions

As a conclusion: carelessness in the protection of globally defined ATerms can
cause strange behavior or even result in a segmentation fault. Just imagine the
implications when the mentioned arbitrary values are used as guard conditions.
The question how to check whether all globally defined ATerms are protected
prior to define or use actions, and all protected ATerms are eventually unpro-
tected and vice versa is the main topic addressed in this thesis. As a summary,
consider the informal description of proper use of the ATerm library in figure 2.9.

13

Proper use of the ATerm library:

(1) After declaration, All define and use actions must be between
protect and unprotect.

Declaration -> Protect -> (Define or Use)* -> Unprotect
(2) After a global ATerm is unprotected it must first be protected
again before it can be defined again. After defining, the ATerm
can be used again.
Unprotect -> ... -> Protect -> Define -> (Define or Use)* -> Unprotect

(3,4) Every protect is eventually followed by an unprotect and vice versa

Protect -> ... -> Unprotect

Figure 2.9: Summary: Proper use of the ATerm library

Any violation of these patterns should result in an error in the output of the
model checker.

2.4 Planned approach

Given the problems with global ATerms described in this chapter, a planned
approach can be made. Firstly, the programs need to be parsed in order to be
able to transform them into a format that can be used as input for a model
checker. The ASF+SDF Meta Environment will be used for both parsing and
transforming. The Meta Environment is a framework for language development
and source transformations and provides means to use custom intermediate lan-
guages and data structures. Its build-in support for the ANSI-C language and
in-house expertise at the Eindhoven University of Technology make it the first
choice. Alternatively, flex and bison [7] or perhaps the GNU C compiler (GCC)
could be used to construct a parser for the ANSI-C language.

Before anything else is done, the ANSI-C code must first be normalized to
reduce the number of language constructions that need to be checked. After
that, the “flow” of the programs needs to be extracted to be able to say any-
thing about the order in which statements are executed. Two intermediate data
structures will be used to capture that flow. One structure has the action labels
on the nodes, the other on the edges. These two kinds of graphs open up a
broader range of model checkers and analysis tools that may be used in the
future. The ASF+SDF Meta Environment will be used to transform the pro-
grams into control flow graphs (with labels on the nodes) and dual graphs (with
labels on the edges). These two transformations will be done in sequence. First
the ANSI-C code is transformed into a node-labeled control flow graph which is
then transformed into an edge-labeled dual graph.

14

Using this dual graph, all non-global ATerm information can be left out,
leaving only the global ATerm behavior. This abstraction step will label all
edges in the dual graph with a set of labels that denotes how an ATerm is used.
The resulting graph can be used, after a layout transformation, with the CADP
evaluator. This on-the-fly model checker can take an edge-labeled graph as a
model. The CADP toolkit will be used for several reasons. Firstly, the CADP
toolkit is freely available for academic use. Secondly there is again in-house ex-
pertise and thirdly, it accepts graphs as input instead of a model programmed
in a language specific to that model checker. The use of a graph provides a more
generic representation that may be used in future research. A domain-specific
language would perhaps narrow down the possibilities. Alternatively a different
model checker could be used. If so, transformations from ANSI-C code to the
domain-specific language of the model checker should be constructed. As an
alternative, SPIN [20] or mCRL2 [18] could be used.

The problems with ATerms described in this chapter can be turned into
patterns. These patterns or safety properties can be expressed in a temporal
logic usable with the CADP evaluator. By automatically checking the patterns
against the abstracted model, the CADP evaluator can create an error trace vi-
sualizing the violation in protect / unprotect use. Using the output of the model
checker, it should be clear where the unwanted behavior in ANSI-C programs,
using the ATerm library, comes from.

15

Chapter 3

Parsing ANSI-C with
ASF+4SDF

Imperative programming languages such as ANSI-C, have the property that
they are structured in a way such that the declarations and statements are
generally evaluated in a sequential order. Not only simple assignments, but
also repetitions such as while and for are considered statements themselves.
The order in which these declarations and statements are executed allows us to
capture the so-called "flow" of the program in a directed graph. This chapter
describes what formalisms and tools use used to translate ANSI-C programs
into an intermediate structure that captures this flow.

3.1 ASF+SDF Meta Environment

For the transformations in this project, the ASF+SDF Meta Environment [1, 37,
24, 34] is used. The Meta Environment is a framework for language development,
source code transformations and analysis. It uses Syntax Definition Formalism
(SDF) and Algebraic Specification Formalism (ASF) to transform and analyze
languages and various other structures.

3.1.1 Syntax Definition Formalism

The Syntax Definition Formalism (SDF) can be used to describe the syntax of
programming languages, domain specific languages and data structures. SDF
has a modular structure and allowes for both lexical and context-free definitions.
An example of the basic SDF definition of a list is given in figure 3.1.

Presented in figure 3.1 is the syntax definition of a List container. Since SDF
uses modular syntax definitions, other syntax definitions can be inserted with
"imports" at (1). The exports keyword presents the context-free syntax below
to the outside world. At (2), the structure of a list is defined. The X is used
as parameter which acts as a generic variable. It is instantiated with a certain
datatype when a list is created (e.g. imports List[Integer]| for a list of integers).
Such a module is called parameterized. The list starts with a "[" and ends with
a "|". Between the brackets, {X ","}* stands for zero or more elements of type

16

module containers/List[X]

imports ¢D)
basic/Booleans
basic/Integers
exports
context-free syntax
u[u {X n’n}* n]u _> LiSt[[X]] (2)

context-free syntax
length(List[[X]]) -> Integer

head(List[[X1]) -> X
tail(List[[X]]) -> List[[X]]
elem(X, List[[X]]) -> Boolean (3)
empty(List[[X]]) -> Boolean
cons(X, List[[X]]) -> List[[X]]
X ":" List[[X1] -> List[[X]1]
concat (List[[X]], List[[X]]) -> List[[X]] (4)
hiddens
imports
basic/Comments
basic/Whitespace
variables (5)
uxu[o_g\)]* > X
"X*x"[0-9\’]* -> Xx
"X, *"[0-9\?]* => {X ", "}k

Figure 3.1: SDF definition of a list

X separated by comma’s.

Functions on the list structure are also described here. For example (3) de-
fines a function elem that checks whether an element is present in the list. It
does this, by taking an X and a list of X’s and delivers a boolean value. The
function is described by an ASF specification. Another function is described in
(4). This function called concat concatenates two lists. The variables that can
be used in the ASF equations are defined in (5). Note that "X,*" is a just string
that represents a comma separated list.

For an extended overview of SDF’s capabilities and in depth details, see [36].

3.1.2 Algebraic Specification Formalism

The Algebraic Specification Formalism (ASF) defines the semantic properties
of the definitions given in the SDF definition. It does this by providing a set
of equations that describe how structures in the given SDF definition can be

17

manipulated.

[list-elem]
elem (X, [X,*1, X, X,*2]) = true (1a)

[default-list-elem]
elem (X, [X,*]) = false (1b)

[1list-concat] concat([X,*1], [X,*2]) = [X,*1 , X,*2] (2)

Figure 3.2: ASF equations for the elem and concat functions

Figure 3.2 (1a) and (1b) illustrates the ASF equation of a function that
checks if an element occurs in a given list. It does this by means of pattern
matching. It finds out if it can find precisely that X in the list by checking
whether the list can be split up in such a way that zero or more elements are in
front and zero or more elements are behind precisely that X. If this is the case,
the value true is returned, otherwise, false will be the answer. In (2), a function
is describes that concatenates two lists of type X.

For an extended overview of ASF’s capabilities and in depth details, see [35].

3.1.3 Using the Meta Environment

Using the ASF+SDF Meta Environment, that combines the power of SDF and
ASF, provides the possibility to analyze and manipulate traditional languages,
such as ANSI-C, domain-specific languages and data structures. Given the SDF
definition of the list and the ASF equations, a term can be made that holds the
initialized function with values that need to be checked.

Actually using the elem and concat function is illustrated in figure 3.3.

elem(3, [1,2,3,4,5])

concat([1,2],[3,4])

Figure 3.3: Using the elem and concat function

Since the list can be split into the values 1 and 2 in front, 4 and 5 behind and 3
in the middle, the result of the elem function will be true. The result of concat
will be the list [1,2,3,4].

3.2 Structure of ANSI-C programs

The book “The C Programming Language” by Kernighan and Ritchie [23] is
considered to be the leading reference on the ANSI-C standard and covers the
various language constructions. The ASF+SDF Meta Environment includes the

18

SDF definitions of the ANSI-C (c89) standard. These definition files were used
for parsing the C programs in this project.

In transforming source code into an intermediate structure, the ASF+SDF
Meta Environment allows for sequentially processing of one statement after an-
other and build up a control flow graph at the same time. The process of
transforming ANSI-C code to a control flow graph is explained in chapter 4.
The statements and declarations in the source code are matched against the
Meta Environment’s syntax definition of the ANSI-C programming language.

Declarations [—————— Statements

Declarators Expressions
Icdlentifiers Constants

Figure 3.4: Import graph of the C language in the ASF+SDF Meta Environment

Figure 3.4 shows modular structure in the import graph of the C language
as used for this project in the Meta Environment. In the module C, the en-
tire ANSI-C program is defined as a TranslationUnit which is build up out of
Declarations (global variables) and FunctionDefinitions. Illustrating how the
modular structure allows for the syntax of the entire programming language,
consider the following example of a FunctionDefinition:

Example 3.2.1. FunctionDefinitions are build from:

Specifier* Declarator Declaration* "{" Declaration* Statement* "}"
-> FunctionDefinition.

Compare that to the following function definition in C: (with int as Speci-
fier*, main as Declarator and the parameters as Declaration*)

‘int main(int argc, char** argv) { int i = 0; i = i * 2; return 0; }‘

(End of Example)

19

3.2.1 Ambiguities

ANSI-C is an ambiguous language. The SDF definition that comes with the
Meta Environments reads:

“DONT: do not try to fully disambiguate this grammar because that
would ruin its declarative nature. C is ambiguous. However, the
expression grammar should be fully unambiguous (Expression).”

Several ambiguities have arisen during the transformations. Two examples
shall be given. The first ambiguity is found in the parsing of parameters in
function definitions. Consider figure 3.5.

int foo(int counter) { ... }‘

Figure 3.5: Ambiguity in using parameters

Using the visual parse tree in the Meta Environment, the ambiguity can be
visualized. In figure 3.6, the colored triangle denotes an ambiguity. Both the
left or the right branch are possible ways of parsing the parameter. A choice
needs to be taken between parsing int counter as a specifier (left arrow) or as a
parameter (right arrow).

Specifier+ AbstractDeclarator -> Parameter

Specifier+ Declarator -> Farameter

‘Anunymuusldﬂ_miﬂer -> AbstractDeclarator |

Identifier -> Declarator

"int" -> Specifier Identifier - > Specifier | <Anonymousldentifier-LEX > - > Anonymous|dentifier
T T T

Figure 3.6: Visualization of parameter ambiguity

With regard to the ambiguity in figure 3.6, the right branch is preferred be-
cause it describes the most common way of using parameters, namely with both
the type and name of the variable. The following adaptation has been made to
the SDF syntax definition of the parameter.

Specifier+ AbstractDeclarator -> Parameter {avoid}

This removes the ambiguity because it will avoid using this rule and always
use the preferred one. Avoiding this rule, rules out an older way of describing
parameters, namely like illustrated in figure 3.7. This poses a restriction but
because the remaining rule describes the most commonly used way of using

20

parameters, it may be the best way to eliminate the ambiguity. The formal
parameters of a function are not interesting for this project. In a later stage
of the project, the parameters passed to a function will be examined in the
function call statement.

int foo(counter) int counter; { ... }

Figure 3.7: Alternative use of parameters

A second ambiguity is found in parsing something of the form illustrated in
figure 3.8.

while (i > 0) {
foo(counter) ;
i--3

}

Figure 3.8: Foo, declaration or statement?

The problem in figure 3.8 is that the function call to foo with argument
counter can be parsed in two ways, either as declaration or as statement as is
illustrated in figure 3.9. Note that this ambiguity only occurs if a function call
with no return value is used as first statement or when exclusively preceded by
declarations in a repetition or alternative branch.

/_J"{" Declaration* Statement™ "} -= Stalement| |{ Declaration® Statement™ "} -= Statement|

o

|Spﬂ_cifier+ {InitDeclarator ","}+ " - Dﬂc\aratmn

InitDeclarator ","}+

|Expr°ssmn "M —= Statement
|Expr=ssmn " Expr=-55|0n B S - Expr=-55|0n
Declarator - \nltDDcIarator
| " Declarator)" - Dﬂclarator

Figure 3.9: Visualization of ambiguity with parenthesis

To work around this problem, the following line in the SDF definition is
adapted with a reject and a bracket tag which rejects the use of parenthesis

21

around a declarator.

"(" Declarator ")" -> Declarator {reject, bracket}

This adaptation makes sure that foo(counter); is interpreted as a statement
instead of a declaration. The downside of this restriction is that this rejection
of parenthesis rules out type casting. Due to time constraints, no better alter-
native could be investigated.

Note 3.2.1. Adapting the SDF definition of C like this is to be considered a
workaround! This does not actually fix the problem, but postpones it. A real
solution should be found in the use of amb-constructors. The workaround was
chosen because it provided a way to focus on how to check the programs and
move the project forward towards its goal.

(End of Note)

3.2.2 The C-subset

For the proof of concept, the attention will be focused on a subset of ANSI-C,
that is representative for showing that model checking source code against be-
havior specifications is feasible and an interesting field of research.

The subset consists of the following language constructions:

e Declarations (with and without initializations, both global and local).

e Assignments

o Repetitions (For, While-Do and Do-While).

e Alternative statements (If-then-else).

e Function calls (non-recursive).

e Increment and decrement operators (e.g. i+-+, i- -).

e Arrays.

e Structs.

e Break statements.

e Return.

e Basic pre-processor statements (#include and #define for constants).
What does the subset leave out? Language constructions such as:

e Pointers and aliases.

e Type casts (due to ambiguity elimination).

e Block definitions (i.e. { Declaration* Statement* } other than function
definitions).

22

Switch statements.

Continue statements.

Goto statements.

Exit statements.

e Break n statements (braking to the n-th loop).

Function calls (recursive).
e Pre-processor statements (#define for macros).

During the project, an iterative strategy of development was applied. As
a minimum subset, the first four items plus the return statement were imple-
mented. With this set, a set of test programs was developed that were subjected
to the language transformations and checked against the safety properties. After
that, the remaining items on the list were implemented and checked. The items
on the second list with exception of the goto statement, pointers and recursion
were not implemented due to time constraints. The use of this subset means
that real industrial applications cannot be checked at the moment. Chapter 4
and 8 will go into some of the problems that need to be solved in order for this
solution to be able to cope with real applications.

Because the control flow graph is built using an iterative algorithm, “Goto”
statements would require reference points throughout the graph for linking the
focus to any number of possible points, making an unstructured graph. Goto
statements complicate the building process and are therefore not included in
the C subset.

Also the use of aliases and pointers complicates things. By using a pointer
to global ATerm for definitions and referencing, the variable name used in the
declaration and definition or use action are no longer the same. As will be
evident later, this poses a problem with checking what information concerns
ATerms and what does not, since ATerm related information is filtered on the
variable name used in the declaration. The same holds true for aliases. If an
alias is used to reference, define or even protect or unprotect a globally defined
ATerm, the action will not be filtered out because of a mismatch in variable
name. For this reason, pointers and aliases are not included in the subset.

3.3 Normalizing ANSI-C code

The ANSI-C programming language allows the programmer some freedom in
the way a statement or declaration is presented. The If-then-else structure for
example, can be written in six different ways depending on the number of state-
ments in each branch. If only one statement is present in a branch, the brackets
may be omitted and of no else statement is needed, the entire else-branch may
be omitted.

This freedom is also present with the for-statement. If the second argument
(the condition) is omitted, the loop is infinite and will not terminate. However,

23

the first argument of the repetition (i.e. the initialization) will still apply and
needs to be considered. The first and third argument may be left out without a
problem (there are 4 ways of doing this), and will simply be omitted from the
flow.

To handle all the variations of declarations and statements, the ANSI-C code
is normalized into normal form that reduces the number of variations to consider
to a8 minimum.

Consider figure 3.10 for some of the source-to-source transformations for the
if-then-else structure:

[elimif-0]
&Statement*3 := walkStats(&Statementl)
====>
elimif (if (&Expression) &Statementl) =
if (&Expression) { &Statement*3 } else { skip(); }

[elimif-1]
&Statement*3 := walkStats(&Statementx*)
====>
elimif (if (&Expression) { &Statement* }) = if
(&Expression) { &Statement*3 } else { skip(); }

[elimif-2]
&Statement*3 := walkStats(&Statementl),
&Statement*4 := walkStats(&Statement2)
====>

elimif (if (&Expression) &Statementl else &Statement2) =
if (&Expression) { &Statement*3 } else { &Statementx*4 }

[elimif-3]
&Statement*3 := walkStats(&Statementx),
&Statement*4 := walkStats(&Statement)
====>
elimif (if (&Expression) { &Statement* } else &Statement) =
if (&Expression) { &Statement*3 } else { &Statementx*4 }

Figure 3.10: Source-to-source transformations of the if-then-else structure
The result is that only one variation needs to be processed. The complete if-
then-else structure with brackets and else-branch. If no else-branch was present.

the skip() function is inserted.

Some of the source-to-source transformation for the for loop are presented in
figure 3.11. These transformations transform the for loop into a while-do struc-

24

ture possibly preceded by the initializing statement (i.e. the first expression in
the for-loop)

[elimfor-1]
for (; &Expression2 ; &Expression3) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statementx),
&Statement+1 := while (&Expression2) { &Statement*1 &Expression3 ; }
====>

elimfor (&Statement) = &Statement+1

[elimfor-2]
for (&Expressionl ; ; &Expression3) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statementx),

====>

elimfor (&Statement) = &Statement+1

[elimfor-3]
for (&Expressionl ; &Expression2 ;) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statement*),
&Statement+1l := &Expressionl ; while (&Expression2) { &Statement*1 }
====>

elimfor (&Statement) = &Statement+1

&Statement+1l := &Expressionl ; while (1) { &Statement*1 &Expression3 ;

Figure 3.11: Source-to-source transformations of the for structure

Multiple declarations also pose a variety in the source code since any num-
ber of variables of the same type may be declared in one line. Consider the
transformation in figure 3.12.

int i, j, k, 1, ... ;

int i; int j; int k; int 1, ... ;

Figure 3.12: Transformations for multiple declarations

In the scope of this project, structs are only of interest if instances of that
struct are declared globally. If this is the case, then the global struct name
combined with the individual variable names in the struct are themselves con-
sidered global.

When normalizing structs, two things happen. Firstly, the struct is trans-
formed into as many global declarations as it has struct elements. Secondly, if

25

foo is the globally declared struct and bar is the name of the variable, throughout
the entire source code the occurrence of foo.bar is replaced by the new variable
foo__bar. This name must not already be in use. Unfortunately, there is no way
to enforce this at the moment. Consider the source-to-source transformations
for the ATerm variable in figure 3.13.

struct name { ...; ATerm bar; ... ;} foo;
=>
.; ATerm foo_bar;
foo.bar
=>
foo_bar

Figure 3.13: Transformations of a struct to global variables

26

Chapter 4

The Control Flow Graph

To be able to transform the ANSI-C source code into a suitable data structure
to hold the flow of the programs, the Control Flow Graph is introduced. The
control flow graph creates an abstraction of the program that represents its be-
havior that may contain more paths that are possible in the run-time execution.
Not the source code itself, but the behavioral “model” of it is used in model
checking.

4.1 Structure and Definition

To define the control flow graph, described in [8, 40], the definition by Wilhelm
and Maurer [40] is adopted for use in this project:

Definition 4.1.1. A Control Flow Graph of a procedure is a node-labeled di-
rected graph CFG = (N, E, s,t) with N being the list of Nodes, E being the list
of Edges, s being the start node and t being the stop node. For every primitive
statement p of the procedure, there exists a node n, € N which is labeled by
this statement. Start node s only has outgoing edges and stop node t only has
incoming edges.

(End of Definition)

As is suggested by the definition, the Control Flow Graph is implemented
as a tuple of a node list and an edge list and the start symbol will be fixed to 0.
In addition to the fixed start symbol, also a fixed start symbol will be defined.
This node will be labeled 1. This enables the technique of subgraph insertion.

For each of the language constructions in the subset of the ANSI-C pro-
gramming language, a subgraph can be made to represent it. This subgraph
is, as the name suggests, a part of the whole graph and describes the "flow"
of the individual constructions. By incrementally inserting subgraphs into a
skeleton framework, the Control Flow Graph of the entire program is obtained
as is proposed by Wilhelm and Maurer in [40]. The insertion can be defined as
follows:

27

Definition 4.1.2. A subgraph CFG' = (N',E’,s',t') is inserted into a control
flow graph CFG = (N, E, s,t) between nodes n and n’ € N making a

new control flow graph CFG" = (N" E" s,t) with: N = NUN’ and

E" =(E\{(n,n)})UE U{(n,s), (t',n")}.

(End of Definition)

This definition allows subgraphs to be made for individual constructions and
later be placed in a “context” (which is the whole control flow graph) by linking
all incoming edges and outgoing edges to the unique entry point and exit point
respectively.

Note 4.1.1. The return and break statement make the language construction it
is in violate the unique exit point when building a subgraph. The transformation
of these two flow altering statements will be addressed in paragraph 4.7.3 and

474
(End of Note)

As mentioned before, for this proof of concept, we focussed our attention on
a subset of ANSI-C. All language constructs in this subset are described in this
section.

4.2 Building the control flow graph

Prior to constructing subgraphs from declarations and statements, a skeleton
structure to insert these subgraphs in is needed. The skeleton graph consists of
a start node (with node number 0), a stop node (with node number 1) and an
edge between them as illustrated by figure 4.1.

0: START 1: STOP

Figure 4.1: Skeleton Control Flow Graph

Inserting a subgraph into the (skeleton) control flow graph after an arbitrary
number of iterations as illustrated in figure 4.2, is done, as defined by definition
4.1.2, by:

1. Determining where the subgraph must be placed (e.g. between n and n’).
2. Removing the old edge between n and n’.

3. Creating an edge between n and the unique entry node of the subgraph.
4. Creating an edge between the unique exit point of the subgraph and n’'.

Since the building process starts with a control flow graph that has a path
from start to stop, inserting a subgraph in the way described, will make sure
of a new control flow graph with a similar path. This way the end result will

28

Figure 4.2: Inserting a subgraph into a (skeleton) control flow graph

always be a graph in which all nodes are reachable. This holds provided that
there are no infinite repetitions in the source code that do not terminate by
alternative means (i.e. break statement). It is assumed that every repetition
that is declared as infinite will have at least one break statement.

A C program can have multiple function definitions that are placed above the
main function. For convenience sake, prior to building the control flow graph,
all function definitions are put in a list. Another list is constructed holding just
the function names for quick reference when a function call is encountered.

It is assumed that the main function is the first function to be executed
when running the program. By this assumption, the control flow graph shall
also begin with the main function.

4.3 Basic Statements

With basic statements, a reference is made to the language constructions in C
that are both the unique entry and exit node. Such statements are for example
declarations and assignments.

4.3.1 Declarations

Declaration of a variable can take roughly 2 forms: Either with or without ini-
tialization.

Specifier+ Identifier ";"
Specifier+ Identifier "=" Initializer ";"

Figure 4.3: Declarations syntax

29

In figure 4.3, Specifier+ denotes the type of variable (e.g. int, float, static
long, etc.), Identifier denotes the variable name and Initializer can be a value of
the specified type, the name of another variable or a function call. In figure 4.4,
a basic statement is inserted into the control flow graph as illustration. Note
that C,, and C, is the context in which the subgraph is inserted.

N

cfg' | Declaration /
Statement

Ch

Figure 4.4: Inserting a Basic Statement

4.3.2 Assignments

Assignments have the following syntax structure:

‘Identifier "=" Expression

Figure 4.5: Assignment syntax

Where Identifier is the name of the variable and Expression is the value
that is assigned to. Note that this Expression need not be a value or variable
name. It can also be a function call to a function that returns a value of the
variable type.

4.4 Repetitions

Repetitions come in different flavors. In this project, the While-Do and Do-
While repetitions will be used. Because of the normalization process, no for-
repetitions are considered.

4.4.1 While-Do repetition
The syntax definition for a while-do repetition is illustrated in figure 4.6.
FEzxpression denotes the guard condition and Statements* is the repetition-

body consisting of zero or more statements. This is a composite statement and
gives a subgraph illustrated by figure 4.7.

30

while "(" Expression ")" "{" Statementx* "}"

Figure 4.6: While-Do repetition syntax

Cm

Ch

Figure 4.7: The While-Do repetition subgraph

The subgraph needs to have, if we want to insert it into the skeleton graph,
an uniquely defined entry and exit point. In the case of a while-do construction,
the guard condition will serve as the unique entry point and a separate exit
point is created. The repetition body is recursively computed and inserted in
the same way that the while-do block is inserted. This way nested statements
can be handled.

4.4.2 Do-While repetition

The syntax definition for a do-while repetition is illustrated in figure 4.8.

do "{" Statement* "}" while " (" Expression ")";

Figure 4.8: Do-While repetition syntax

Expression again denotes the guard condition and Statements* is the repetition-
body. The do-while repetition differs from the while-do repetition in that the
do-while repetition executes the body at least once where as the while-do can

31

skip the body entirely if the guard is false on the first check. This is also a
composite statement and gives a subgraph illustrated by figure 4.9.

Cm

Ch

Figure 4.9: The Do-While repetition

In this subgraph the uniquely defined entry and exit point are two additional
nodes.
4.5 If-then-else alternative

Due to the normal form transformations, the syntax definition for the If-Then-
Else alternative is illustrated in figure 4.10.

if "(" Expression ")" "{" Statementx "}"
else "{" Statement* "}"

Figure 4.10: If-the-else alternative syntax

In the if-then-else syntax, Expression is the guard condition and in both cases,
Statement describes the statement body of the if-branch or else-branch which
are again recursively computed and inserted. The corresponding subgraphs look

32

like figure 4.11.

cfg

Figure 4.11: The If-Then-Else alternative subgraph

4.6 Global Definitions

As mentioned in the previous chapter, an ANSI-C program is made up out of
global declarations and function definitions. Since both the include and define
for constants pre-processor statements serve no purpose in the context of this
project, they will be discarded. Since structs are reduced to global declarations
when normalizing the source code, only the global declarations need to be trans-
formed into the control flow graph.

ANSI-C dictates that declarations must be declared before statements and
therefore, it can be assumed that putting all globally defined variables in front
of the variables declared in the main function follows that rule. The global and
local declarations will be separated by a separator edge labeled “SEPARATOR*.
This edge can later be used to determine which ATerms are defined locally
and which globally. Since we are only interested in globally defined ATerms,
a separation can be made when handling the global declarations. Only global
ATerm declarations will be put in front of the variable declarations of the main
function.

33

4.7 Flow-altering statements

As mentioned in the beginning of this section, the ANSI-C language provides
the programmer with the means to alter the program flow with statements like
“return”, “break” and a “function call”. The difference with regard to the non-
flow-altering statements described above is, that is not a matter of sequentially
linking together subgraphs. Sometimes an extra edge that spreads across blocks
is needed to alter the flow in the desired way.

4.7.1 Function Calls

Throughout the program, functions will be called for specific computations or
actions, thus breaking up the complex program into smaller, easier to compute,
chunks. Many of these functions will be grouped together in a library which is
then imported into the program (e.g. the function “printf” in the “stdio” library
for in and output functionality).

In this proof-of-concept, only functions that are provided in the same file
as the “main” function are considered. These function definitions are expected
to be above the main function. What essentially happens when such function
is called is that the flow of the current function is temporarily interrupted and
the focus is shifted to another control flow (sub)graph, namely the graph of the
function being called. Upon successful termination of that function, the focus
is restored to the original control flow graph from which the function call origi-
nated.

function main function f function g
L]
Y —_
ol
v v
AR i (R
N ~
Y
[]

Figure 4.12: Flow and focus change in a function call

e

Figure 4.12 illustrates the shift of focus. In order to be able to use such a
function and later check its path with a model checker, its control flow graph
needs to pasted into the current CFG by means of subgraph insertion between
the actual function call statement and an additional exit node. This is illus-
trated in figure 4.13.

34

function main function f

fO

EXIT

:

Figure 4.13: Pasting a function as a subgraph

Because a function call can be reduced to subgraph insertion with an unique
entry and additional exit node, the control flow graph will remain to have a
path from the start node to the stop node.

4.7.2 The problem of recursion

It is possible for functions to call themselves again and again until some exit
condition is reached. This is called recursion and this can be done directly (e.g.
function f calls function f) or indirectly (e.g. function f calls function g that
calls function f). A very simple example in pseudo code is a function that com-
putes x to the power n. Consider figure 4.14.

int power(int x, int n) {
if(n == 0) { return 1; }
else { return x * power(x , n - 1); }

Figure 4.14: Example of direct recursion

The exit condition is reached when n = 0. If this is encountered, the recur-
sive function will terminate and return the value of x to the power n.

If the recursive function were to be inserted in the control flow graph as if
it were a non-recursive function, insertions would have to be repeated infinitely
often since the condition of n is not evaluated. Also indirect recursion proves
to be a problem since this also would mean infinitely many insertions, just on a

35

larger scale. Consider example 4.7.1:

Example 4.7.1. The following code:

f () A g () A
g(); (),
} }
Would result in:
function main
function f
function g
f() 50 function f
¢ 0 function g
90 function f
function g
f0)
g()

Figure 4.15: Indirect recursion causes infinite insertion

(End of Example)

Unfortunately, there is no simple solution to recursion. An overapproxima-
tion is suggested to handle direct recursion. Recursion in general (both direct
and indirect) is not to be considered solved and thus are not supported in the
subset of C.

Overapproximation for direct recursion

Using back edges, an overapproximation can be constructed. This means there
are possibly more paths in the control flow graph then there are in the ex-
ecution of the program. To support this, a queue of function calls is kept

36

during construction of the control flow graph. This queue consists of tuples
t = (func, start) where func is the name of the function and start is the node
number of the function call to func. At any time, the queue holds the call
history from the current function back to main. Upon termination of a func-
tion, the function will be pasted into the control flow graph and the head of
the queue is popped and discarded. The new current function will again be the
head element. For example, the queue can look like figure 4.16.

[(£, n), (main, 0)]

Figure 4.16: Example of a call history

In figure 4.16, another call to f would result in an direct recursive cycle and
would yield infinite behavior. Upon occurrence of the function call, the name of
the function is checked against the call history. If the function that is called is
the same as the current function, a back edge is created instead of pasting the
function between the call and an additional exit node. The back edge is created
from the new function call in function f to the startnode of the previous call
to f which is node n. To make sure that after m function calls, the remaining
statements of f are also executed m times, another back edge is made from the
last node of function f to all previous function calls to f. During the construc-
tion of the control flow graph of function f, a list of recursive calls is kept to
be able to create these edges. Figure 4.7.1 illustrates the use of back edges in
direct recursion.

function main

function f

f()

f()

exit

Figure 4.17: Using back edges to handle direct recursive functions

37

Note 4.7.1. The function call creates a back edge to the actual function call
instead of the first statement or declaration in the new function. In chapter
5, the control flow graph will be dualed (labels on edges instead of nodes). The
transformation will correct the edges so that only one function call will be made
in case of recursion.

(End of Note)

A very important assumption is made for the overapproximation:

Assumption 4.7.1. Recursively defined functions have a way of terminating.
(End of Assumption)

This is illustrated in figure 4.17 by the arrow skipping the recursive call.
The arrow from the recursive function call to the next statement of function f
is needed to be able to execute the remainder of function f a number of times
when the recursion is terminated. This is the case since only the node number
of the call is kept.

The problems with indirect recursion

The back edges that work for direct recursion fail for indirect recursion. Since
indirect recursion will be noticed when at least one function is completely in-
serted, additional edges must be created to ensure that all program executions
are also possible in the control flow graph. Here the importance of the pre-
viously made assumption is evident. Upon inserting a non-recursive function,
no edge is created between the call node and exit node. This is not needed
because upon completion of the called function, the focus will be restored upon
the calling function. However, when indirect recursion is encountered, and the
previous functions all have been inserted, each of the functions in the recursion
must be able to terminate the recursion. Each of the function therefore must
have an edge skipping the function call in order to accomplish this otherwise
the recursion will only be able to stop at the last of all functions in the recur-
sion. This could for example be an else-branch that does not have the recursive
function call. Consider figure 4.18.

The dotted arrow in figure 4.18 illustrate the extra edge that should be con-
structed to include all possible execution paths. Note that the function call to
function fin h has no exit node. Similar to the case of direct recursion, this is
because a back edge is made. An extra edge must be created from the end of
the recursively called function f to all previous function calls to f to ensure that
the remaining statements of h can be executed when the functions come out of
recursion.

Unfortunately, the incremental nature of the control flow graph construction
algorithm does not allow for a posteriori manipulation of edges in the control
flow graph. After function h is inserted, the last node of function fis already
inserted in the main control flow graph and is not easily retrievable. This is
why indirect recursion an recursion in general can not easily be solved using the
current incremental insertion algorithm.

38

function main

function f function g function h
f()
90 h() f0
exit exit exit .:
A 4 3

Figure 4.18: Need for an additional edge to cover possible paths

4.7.3 Return statements

A return statement will end a procedure. If the return statement is located
in the “main” function of the program, the entire program will be terminated
whereas if the return statement is present in any other function, that particular
function ends and the flow continues a the point where the call to that function
was made.

The call history proves valuable here. Since the head element of the queue
represents the current function, we can check whether the return statement
should link to the exit node of the corresponding function call (in case of a non-
main function, the subgraph of the function is inserted between the function
call and an additional corresponding exit node) or a link should be made to the
stop node (i.e. node 1) of the control flow graph, terminating the entire program.

The edge from an return statement in the main function to the stop node of
the control flow graph is not a local edge. As mentioned before, the return and
break statements are the only ones that violate the uniquely defined exit point
rule. The edge can always be made, because the stop node number is fixed to 1.
Figure 4.19 illustrates the use of a return statement in an if-then-else alternative
located in the main function.

4.7.4 Break statements

Break statements will “break” from the current repetition or switch statement
and place the focus on the next statement after the repetition or switch. The
break statement is often used as alternative termination for infinite repetitions.
To be able to handle break statements, a break-destination is kept during the

39

cfg’

return

Cn
Y)
Cfinal)@

Figure 4.19: Return statement in the main function

building of the control flow graph. This destination is the node number of the
unique exit node of the repetition and is updated everytime a new repetition is
encountered. When a break statement is encountered, all remaining statements
that still had to be computed (i.e. the statements following the break, if any, in
the same branch/body) will be discarded and an edge will be created between
the break statement and the exit node of the repetition thus ending it.

Figure 4.20 illustrates what happens when a break statement is encountered
in a branch of the if-then-else alternative while in a While-Do repetition. Note
that the break destination is the exit node of the repetition, since break does
not have a purpose in an if-then-else alternative.

40

cfg

Figure 4.20: Break statement in a branch during a repetition

4.8 The nail warehouse

Consider the toy example of the nail warehouse mentioned in the introduction.
The ANSI-C code for this warehouse is the following:

#tinclude <stdio.h>
#include <aterm2.h>

ATermInt inv;

void sell(int number)

{

ATermInt s;

s = ATmakeInt (number) ;

ATprintf ("Nail number %t sold\n", s);
}

int order(void) { return 400000; }

41

int main(int argc, char* argv[])
{

ATerm bottom0OfStack;

int k = 400000;

int 1;

ATinit (argc, argv, &bottom0fStack);
inv = ATmakeInt(400025-400000) ;

while(k > 0) {
sell(k);
k--;

}

if (ATgetInt (inv) < 1000) {
ATprotect (&inv) ;
1 = order();
inv = ATmakeInt(order() + ATgetInt(inv));
ATprintf ("New nails ordered; New inventory = %t\n", inv);

else {
ATprintf ("Nothing ordered; Inventory = %t\n", inv);
}

ATprintf ("Final Inventory = %t\n", inv);
ATunprotect (&inv) ;

return O;

Using the building algorithm described in this chapter, the control flow graph
can be built. Figure 4.21 shows the result.

42

ATerm bottomOfStack; SEPARATE ATermlnt inv; @
int k = 400000;

ATinit(arge, argy, &bottomO fStack);
inv = A TmakeInt(400025-400000); @

k>0 ATgetInt(inv) < 1000
ATprotect(&inv);

s = ATmakeInt(number);

@ inv = ATmakeInt(order() + ATgetInt(inv)),

ATprintf(Nail number %t sold
»8);

ATprintf(Nothing ordered; Inventory = %t
L inv);

ATprintf(New nails ordered; New inventory = %t
L inv);

ATprintf(Final Inventory = %t
Linv)

ATunprotect(&inv);

Figure 4.21: Control flow graph of the nail warehouse

43

Chapter 5

The Dual Graph

Some Model Checking systems require labels to be on the edges instead of on
the nodes. The evaluator in the “Construction and Analysis of Distributed
Processes” (CADP) toolkit [4], developed by the VASY team at INRIA Rhone-
Alpes, is one of those checkers.

5.1 Structure of the dual graph

After the control flow graph, the “dual graph” is introduced as a second inter-
mediate structure for capturing the control flow of an ANSI-C program. The
dual graph can be defined as follows:

Definition 5.1.1. A dual graph is an edge-labeled directed graph DG = (T, s)
with T being a set of labelled transitions and s being the start node of the graph.
Each transition t € T, is a triple t = (i,1, j) consisting of an origin i, a transition
label | and a target j.

(End of Definition)

Note 5.1.1. As was done in the control flow graph, also in the dual graph, the
start symbol s is fized to 0. A deadlock state denotes the end of the graph.

(End of Note)

Figure 5.1: Example of an arbitrary Dual Graph

44

5.2 Building the dual graph

A given control flow graph CGF = (N, E, s,t) is transformed into a dual graph
DT = (T,s) with T = {(e, label.r,€') | (e,e') € (E\{(z,1)}) A (¢, label./) € N}

Figure 5.2 illustrates the step-by-step construction of a dual graph from a
control flow graph. The same procedure is illustrated in figure 5.3. Note that
the edge that is about to be transformed is made bold.

Control Flow Graph | Dual Graph

< {(O’STAR’T)’(]‘7STOP)7(2’3’)7(3’b)7(4’c)’ { }
(5,d),(6,EXIT),(7,)},

{(0,2), (2,3),(3,4), (3,5),
(4,6), (5.6), (6,7), (7, 1)})
({(0,START),(1STOP),(2,),(3.0),(40), | {0..2)}
(5,),(6,EXIT),(7,)},

{(2,3),(3,4), (3,5),
(4,6), (5,6), (6,7), (7, 1)})
E ()

0,START),(1,STOP),(2,2),3.0),(4,0), | {(0,8,2),(2,0,3)}
5,d),(6,EXIT),(7,f)},

{(3,24),3,5), (4,6), (5,6), (6,7), (7, 1)}
({(0,START),(1,STOP),(2,a),(3,b),(4,c), | {(0,2,2),(2,b,3),(3,c.4)}
(5,d),(6,EXTT),(7,£)},

{(3 5), (4,6), (5,6),(6,7), (7, 1)})

< {(0 START),(1,STOP),(2,a),(3,b),(4,c), '{.('0,3,2),(2,b,3),(3,c,4),(3,d,5),
(5,d),(6,EXIT),(7,f)}, (4,EXIT,6),(5,EXIT,6),(6,f,7)}
{

Figure 5.2: Building the dual graph illustrated

The control flow graph holds transitions going from a return node (or final
statement) to the stop node 1. Since the label for the dual graph edge is stored
in the target node (i.e. 1 with “STOP* as label) it does not serve any purpose
in the dual graph (it is not a declaration or statement) and will be skipped
entirely. This way, exiting a program with a transition to 1 in the control flow
graph will be deadlock state in the dual graph.

45

/@\
@\@/@

Transformation

Figure 5.3: Example of control flow graph to dual graph transformation

Together with the control flow graph, the dual graph forms the intermediate
representation of the program flow. Depending on the kind of input the model
checker takes (i.e. labels on nodes or edges), one of these graphs can be used for
further transformation towards that format. The dual graph contains the same
information as the control flow graph. The entire declaration and statements
are still used as action labels and the flow of declarations and statements is
unaltered.

5.3 The nail warehouse revisited
Consider the control flow graph of the nail warehouse from the previous chapter.

Figure 5.4 shows the result of transformation of the control flow graph into a
dual graph.

46

ATermlInt inv; SEPARATE

ATerm bottomOfStack;

ATgetInt(inv) < 1000

ATprintf(Nothing ordered;

N ATinit(arge, argv, &bottomOfStack);
Inventory = %, inv);

ATprotect(&inv);

inv = ATmake Int(400025-400000),
I = order():

EXIT

inv = ATmakeInt(l + ATgetInt(inv));

s = ATmakelnt(number);

ATprintf(New nails ordered: New inventory = %t
5 inv);

ATprintf(Final Inventory =
%t, inv);

Figure 5.4: Dual Graph of the nail warehouse

47

Chapter 6

Abstraction

The main research question is to see if model checking techniques can be used
to find certain patterns of unwanted behavior by checking temporal properties
against some sort of model of the control flow of an ANSI-C program.

Since only a specific set of patterns needs to be checked against the model,
not all declaration and statement information is needed when looking for global
ATerm specific information. All possible paths in the model will be checked
and hence, it is not so important to know whether an ordinary integer value is
increased or what value is written to the screen, provided that it is not a value
stored in a global ATerm.

A quick summary of the patterns that are interesting to check for:

e Any definition or use of an ATerm should be placed between a protect and
an unprotect action.

e Every protect on a global ATerm is eventually followed by an unprotect
on that ATerm and vice versa.

To that end, a rather aggressive abstraction technique, which looks a lot like
slicing [29], is used to filter out everything that has nothing to do with global
ATerms. This includes guard conditions if no global ATerms are involved. In
order to do this, a new intermediate structure is needed to hold the abstracted
data. The abstract graph is used for this.

6.1 The Abstract Graph

After creating a control flow graph and a dual graph, a third intermediate
representation, the “abstract graph” is introduced. This graph is similar to
the dual graph in structure with the difference that the action labels for all
declarations and statements in the graph will be one of the following labels
(where it name is the name of the global ATerm):

e decl_name for the declaration of a global ATerm

e def name for the definition of a global ATerm

48

e use_name for the use of a global ATerm
e prot_name for the protection of a global ATerm

e unprot_name for the unprotection of a global ATerm

i (internal action) for any action that it not related to a global ATerm.

6.2 Building the abstract graph

The build process consists of two phases. As mentioned shortly, in the first
phase, the variable names of globally declared ATerms are collected in a list
whereafter all declarations and statements in the labels of the dual graph edges
are checked for the occurrence of these variable names and labeled accordingly.

6.2.1 Phase 1: Traversing the external declarations

A traversal over the transitions from the start of the dual graph to the separator
tag constructs a list of variable names which are declared as global ATerms.
All declarations done after the separator tag are local an thus automatically
protected from removal. The traversal function looks into every declaration and
breaks it down to the components listed in figure 6.1.

Specifier+ Identifier; -> Declaration
Specifier+ Identifier [Expression] ; -> Declaration

Figure 6.1: Declaration

All global ATerm names (identifiers) will be collected in a list of identifiers.

6.2.2 Phase 2: Abstracting declarations and statements

With the list of global ATerm names available, all transitions in the dual graph
are “abstracted”. Each declaration and statement (label on the dual graph
transitions) will get one of the labels described in paragraph 6.1 according to
their behavior. Consider the following behaviors and labels:

Declaration

If a global ATerm or array is declared, one of the types defined in the ATerm
library would appear as a specifier followed by an identifier which holds the
ATerm’s name. Consider for example the declarations in figure 6.2.

The global ATerm of type integer called foo and an ATerm array called bar is
declared. This edge in the abstract graph will receive the label: decl foo and
decl_bar

Note 6.2.1. A declaration can be combined with initialization as is illustrated
in figure 6.3.

49

Specifier+ Identifier ; Specifier+ Identifier [Expression] ;

=> =>
ATermInt foo; ATermInt bar[10];

Figure 6.2: Basic declarations

Specifier+ Identifier = Initializer;
=>

ATermInt foo = ATmakeInt(42);

Specifier+ Identifier [Expression] = Initializer;
=>

ATermInt bar[10] = fillArray(...);

Figure 6.3: Declarations with initialization

This combined action will be split up into 2 separate edges in the abstract graph,
namely the declaration first, followed by the definition. The two new edges
will get the labels: decl_foo and def foo respectively in the first example and:
decl_bar and def bar respectively in the second example.

(End of Note)

Definition

A global ATerm or an element of an array of ATerms is defined when it gets a
value assigned to it. For example, in the following declaration in figure 6.4, a
global ATerm of type integer called foo is assigned the value 42 and the element
at index 0 in array bar is assigned value 371.

Identifier = Expression;
=>

foo = ATmakeInt (42);

Identifier [Expression] = Expression;
=>

bar[0] = ATmakeInt(371);

Figure 6.4: Basic definitions with function call

A definition is of interest since it is one of the actions that require the ATerm or
array to be protected. In the definition, an Identifier containing the name of the
ATerm is located at the left-hand side of the assignment operator. Definition
of a global ATerm and an element in a global array of ATerms get the labels:
def foo and def bar.

Note 6.2.2. A definition can have an ATerm in the expression on the right-
hand side. This is for example the case in the example in figure 6.5 (where foo

50

is a global ATerm of type integer and bar is a global array of ATerms of type
integer):

foo = ATmakeInt (ATgetInt(bar[1]));
bar[0] = ATmakeInt(ATgetInt(foo));

Figure 6.5: Definitions and Use

The simultaneous definition and use of multiple ATerms will be split up into
as many use labels as there are ATerms used followed by a definition, since
the value must first be retrieved before it can be assigned. In the examples, the
corresponding labels for the new edges in the abstract graph are: use_bar and
def foo respectively in the first example and use_foo and def bar respectively
in the second example.

(End of Note)

Use

As described in the previous paragraph, an ATerm and array element will be
used in an assignment if it is on the right-hand side of the assignment operator.
However, it can also be used in another way.

Since expressions can again contain expressions, every expression needs to
be checked internally to see if a match with a global ATerm name can be made
at the Identifier level. Consider the case illustrated in figure 6.6 (where foo and
bar are ATerms of type integer and fis an arbitrary function).

Expression;
=>
Expression "=" Expression;
=>
Identifier "=" Identifier (Expression);
=>
Identifier "=" Identifier (Identifier (Identifier));
=>
foo = £(ATgetInt(bar));

Figure 6.6: Examination of Expression provides new ATerm

Illustrated is the occurrence of an expression within an expression. If the ex-
pression on the right-hand side was not examined down to the identifier level,
the use of the ATerm bar would not have been discovered. Every expression that
is encountered must therefore be traversed in order to discover all occurrences
of ATerms. This means that ATerms can also be used as argument in function
calls or in guard conditions. A few more examples are given in figure 6.7.

References to a global ATerm foo get the label: use_ foo.

o1

if (ATgetInt(foo)) { ... }
f(foo);
ATprintf ("value = %t\n", foo);

Figure 6.7: Examples of use

Note 6.2.3. When more than one global ATerm is used in a statement, the
edge will be split up into a number of new edges in the abstract graph. The
number depends on how many ATerms are used. Each of them will get a use
label assigned to it. For example, consider figure 6.8 The same holds for the use
of an element in an array of ATerms.

‘ f(foo, bar, baz[1]);

@ ffoo, bar, baz[1]) /"
(: use_foo |< o) use_bar _m use_baz m

Figure 6.8: Multiple used ATerms

Function f uses 3 ATerms and will be split up into 3 separate edges in the abstract
graph labeled: use_foo, use_bar and use_ baz respectively.

(End of Note)

Protecting

An ATerm is protected when the ATprotect(), ATprotectArray() or ATpro-
tectAFun() function is called with a reference to the address of the ATerm that
is to be protected. Consider for example figure 6.9 (where foo is an ATerm,
bar an array of ATerms, baz a global function symbol and size is the size of the
array).

ATprotect (&foo0) ;
ATprotectArray(bar,size);
ATprotectAFun(baz);

Figure 6.9: Protection of ATerm structures
The protect actions in figure 6.9 get the labels: prot_ foo, prot_bar and prot_ baz.

Note 6.2.4. Even though the actual value of the array index is not examined
and it is not possible to inspect the use of specific elements in the array, this

92

poses no problem. According to the ATerm user manual (see [15]), it is only
possible to protect the entire array with ATprotectArray.

(End of Note)

Unprotecting

Similar to protection, an ATerm or array element is unprotected with the ATun-
protect(), ATunprotectArray() or ATunprotectAFun() function. Consider the
example in figure 6.10 (where foo is an ATerm, bar an array of ATerms and
baz a function application). The unprotect actions get the labels: unprot_foo,
unprot_bar and unprot_ baz.

ATunprotect (&foo) ;
ATunprotectArray(bar) ;
ATunprotectAFun(baz) ;

Figure 6.10: Unprotection of ATerm structures

6.3 Nail warehouse example
Consider the dual graph of the nail warehouse in figure 6.11. Given the set of

labeling rules presented above, all edges in the dual graph can now be labeled
constructing the abstract graph presented in figure 6.12.

93

ATermlInt inv; SEPARATE

ATerm bottomOfStack;

ATgetInt(inv) < 1000

ATprintf(Nothing ordered;

N ATinit(arge, argv, &bottomOfStack);
Inventory = %, inv);

ATprotect(&inv);

inv = ATmake Int(400025-400000),
I = order():

EXIT

inv = ATmakeInt(l + ATgetInt(inv));

s = ATmakelnt(number);

ATprintf(New nails ordered: New inventory = %t
5 inv);

ATprintf(Final Inventory =
%t, inv);

Figure 6.11: Dual Graph of the nail warehouse

o4

use_inv

prot_inv)
use_inv

use_inv

def_inv

use_inv

use_inv

Ca

it

d

Figure 6.12: Abstract Graph of the nail warehouse

35

unprot_inv

def_inv

Chapter 7

Model Checking with CADP

Van de Pol gives a description of model checking in [31]:

“Model Checking is an automatic verification method, to check that
a requirement holds for a model of a system.”

Given this definition, the abstract graph which holds an abstracted version
of the flow of the program will be the model of the system and the requirements
that need to be checked will be the patterns of unwanted behavior.

7.1 The CADP toolkit

The CADP (Construction and Analysis of Distributed Processes) toolkit [4]
includes several tools that can be used for preparing and model checking the
abstracted models of programs.

The CADP toolkit’s on-the-fly model checker called evaluator, that is able
to check safety properties such as patterns of proper use in regular alternation-
free p-calculus against a model of a program, works with binary coded graphs.
This is a format for representing labeled transition systems in a very efficient
way. Unfortunately neither the specification nor implementation of this format
is public information.

To be able to use the evaluator, a transformation can be made from the
Aldebaran graph format (AUT) to the BCG format using the beg io tool in
the CADP toolkit. This tool works with a number of different formats (e.g.
dot, bcg, aut) and can translate any of those formats into any other format
it supports. Furthermore, the patterns of proper use that apply to the using
the ATerm library need to be translated into regular alternation-free p-calculus
which is a calculus that describes the behavior of a system.

7.1.1 The Aldebaran Graph

An Aldebaran graph is very similar to the abstract graph. The Aldebaran graph
needs a list of transitions as tuples of a start node number, action label and a

96

stop node number, each on a new line, and a header that contains a summary
of the graph.

Abstract Graph | Aldebaran Graph

[des (0,35,35)
(0,decl _inv,2) , (0, "decl _inv" ,2)
(23) ; (2, "i" ,3)
(3id) (3, "i")
(6,23) , (6, "i" ,23)
(23,use_inv,24) , (23, "def inv" ,24)
(34,use_inv,35) , (34, "use_inv" ,35)
(17,i,21) (17, "i" ,21)

]

The header of the Aldebaran graph is made up from the word “des” followed
by a 3-tuple consisting of the graph’s start node number, number of transitions
and number of nodes. Like was done in all previous graphs, the start node of
the Aldebaran graph is fixed to 0. The number of transitions is equal to the
number of elements in the edgelist of the abstract graph and the number of
nodes is computed to be the maximum of all node numbers + 1.

There are two more layout-based issues that are different from the abstract
graph. In the Aldebaran graph, the transitions are separated by a newline
instead of a comma and the action labels are placed between double quote
symbols.

7.1.2 Reducing the models

After transforming the Aldebaran graph into a binary coded graph, reduction
can be applied to minimize the size and complexity of the model. Because of the
use of ¢ transitions (also known as tau-transitions) in the model of the program,
the technique of branching bisimulation reduction can be applied to reduce the
state space of the graph. This reduction technique is implemented in the CADP
toolkit’s beg min tool.

Note 7.1.1. For reduction, the beg_min tool is used with options -normal and
-branching

(End of Note)

The result of reducing the state space of the nail warehouse problem is
illustrated in figure 7.1.

o7

use|inv

def [inv

decl| inv

Figure 7.1: Reduced nail warehouse graph

7.1.3 Regular alternation-free p-calculus

The requirements that can be checked on the model are described in regular
alternation-free p-calculus (described in [28] and [3] and figure 7.2). This calcu-
lus is an extension of modal-u-calculus [14]. The CADP evaluator uses on-the-fly
model checking for this which explores the state space on demand during the
verification of the temporal formula.

By using regular alternation-free p-calculus the systems behavior over time
can be described. For example: using the [] and () operators, a property can be
described that needs to holds for all paths or at least one path. p and v denote
fixed point operators and repetitions are denoted by * (zero or more times) and

98

| A1 "equ" A2
Regular R ::= A | "nil" | R1 "." R2 | R1 "|" R2 | R "«x"
State F = "true" | "false" | "not" F | F1 "or" F2

| X | llmull X lI‘li F |llnull X lI‘li F

Actions A ::= string | ’regexp’ | "true" | "false" | "not" A
| A1 "or" A2 | Al "and" A2 | Al "implies" A2

| R |I+|I

| F1 "and" F2 | F1 "implies" F2 | F1 "equ" F2
| ngn R "> F | u[u R u]u F | nag" n(u R u)u

(Where X is a propositional variable and @ is an infinite loop operator)

Figure 7.2: p-calculus

+ (at least one time). An example of a simple property that can be described
by regular alternation-free p-calculus:

Example 7.1.1. Consider the following formula:

‘[true*x . "OPEN !1" . (not "CLOSE !1")* . "OPEN !2"] false‘

This temporal logic formula describes the following property: When process
1 executes the “open” action and process 2 executes “open” before process 1 had
executed “close”, the system is faulty.

(End of Example)

7.1.4 Evaluator

With the abstracted and reduced model and the safety properties in regular
alternation-free p-calculus, the CADP evaluator can be used to see if the prop-
erties hold for the models (i.e. if ATerms are used properly) or some property
is violated (i.e. improper use of ATerms is detected). If a property is violated,
the model checker generates an output trace from the start of the graph up to
the point where the violation occurred. This may prove useful in repairing the
error. All test programs in appendix B will be checked.

The evaluator is called in the following way:

bcg_open model.bcg evaluator -diag eval.bcg prop.mcl

This checks model model.bcg against property prop.mcl and provides trace
eval.bcg in BCG format as well as on the screen. An example of such a trace is
illustrated in figure 7.3.

99

FALSE
diagnostic sequence found at depth 3

<initial state>
"decl_mylist"
llill

"def _mylist"
<goal state>

Figure 7.3: Trace of violation provided by the evaluator

7.2 Behavioral patterns

The patterns of unwanted behavior described in chapter 2 can be translated
into regular alternation-free p-calculus.

7.2.1 Protect before use

One of the patterns of unwanted behavior dictates the need to protect global
ATerms prior to using or defining them. This pattern is split up into two for-
mulas. Given in p-calculus (where it a is the name of the global ATerm):

(la) [true* .7decl _a” . (not "prot_a”)* . use_a” or "def a”] false

Loosely translated: After the declaration of global ATerm a, no use or define
action on a may occur when no protect action on a has preceded.

(1b) [true * . "unprot_a” . (not "protect _a”)* .7def a” or "use_a’| false

Loosely translated: After an unprotect action on a, no use of define action
on a may occur without protecting a again.

When checking these two requirements against the model of the program
that has improper ATerm use, a trace up to the violating statement is given.

7.2.2 Matching protect and unprotect

The other pattern that needs to be checked is the match between a protect and
an unprotect action. If there is a protect but no unprotect, the memory will
not be released creating a memory leak. If there is an unprotect but no protect
action, the program will crash with a segmentation fault. Again translated in
p-calculus (where it a is the name of the global ATerm):

(2a) [truex . ”prot_a” . (not "unprot_a”)*] {(not "unprot_a”)x . unprot_a”) true
Loosely translated: After every protect action, there eventually must be an

unprotect action. This catches the case where a protected ATerm is not unpro-
tected.

60

(2b) [true* . "decl_a”

. (not "prot_a”)* . "unprot_a’| false

Loosely translated: After declaring a global ATerm, it needs to be protected
before it can be unprotected. This catches the case where a global ATerm is
unprotected but no preceding protect is present.

7.3 Checking the models

Consider the following table that gives an overview of the test programs in ap-
pendix B and how the ATerm library is used.

| Program

| Use of ATerms

Nail Warehouse 1

Global ATerm is defined without protection;
Else-branch does not have protect (mismatchOmatch).

Nail Warehouse 2

Warehouse 1 fixed: Proper use of the ATerm library

Test program 1

Global ATerm is defined without protection.

Test program 2

Program 1 fixed: Proper use of ATerm library.

Test program 3

Global ATerm array is defined without protection.

Test program 4

Program 3 fixed: Proper use of ATerm library.

Test program 5

Global ATerm is protected but not unprotected.

Test program 6

Global ATerm array is protected but not unprotected.

Test program 7

Global ATerm is defined without protection;
Unprotect without preceding protect (mismatch).

Test program 8

Global ATerm array is defined without protection;
Unprotect without preceding protect (mismatch).

61

7.3.1 The Nail Warehouse

Nail Warehouse 1: Improper use

Consider again the reduced and abstracted graph of the nail warehouse prob-
lem in figure 7.1 and source code in appendix B.1. Using the safety properties
in paragraph 7.2, the CADP evaluator can check for improper use of global
ATerms.

The actual output of execution of this program is the following:

Nothing ordered; Inventory = 47961
Final Inventory = 47961
Segmentation fault (core dumped)

Checking the abstracted model against the safety properties, shows why the
program crashed and gives a strange inventory number.

| property (1a) | property (1b) | property (2a) | property (2b) |
FALSE TRUE TRUE FALSE
diagnostic sequence diagnostic sequence
found at depth 2 found at depth 6

<initial state> <initial state>
"decl inv" "decl inv"
"def inv" "def inv"
<goal state> "use _inv"
"use _inv"
"use _inv"

"unprot_ inv"

<goal state>

The output of the model checker now tells where improper use has been made.
First of all, the trace given by property (1a) (i.e. declaration and use or define
action must always have a protect action between them) shows the execution of
actions done from <initial state> (start of the graph) to a state <goal state>
which violates property (1a). As can be seen, after a declaration, a define action
is done. In the code this is also visible as is illustrated in figure 7.4. After the
global declaration of ATerm inv in (1), the first action on inv that occurs in
the main function is the definition in (2). This violates property (1a) because
there should have been a protect action between the declaration and assignment.

Secondly, the trace of property (2b) shows that there is a possible path from
start to a state that has an unprotect action, but no preceding protect action.
This is the case when during execution of the program, the else branch is taken.
Please refere to appendix B.1 for the complete source code of the nail warehouse.

Checking the models has provided two traces that explain the two problems

with the nail warehouse addressed in the introduction. Neglecting to protect
a global ATerms (1a) before using it can result in arbitrary meaningless values

62

ATermInt inv; (1)

int main(int argc, charx argv[])
{

ATerm bottom0OfStack;

int k = 400000;

int 1;

ATinit (argc, argv, &bottom0fStack);

=> inv = ATmakeInt (400025-400000) ; 2

Figure 7.4: Violation of safety property (1a)

and unprotecting without protecting first (2b) results in a segmentation fault.
During the execution of the program, the garbage collected ATerm provided an
arbitrary value that made the program follow the else path.

Nail Warehouse 2: Proper use

Checking the corrected version of the nail warehouse problem in appendix B.2.,
the output of the model checker speaks for itself.

| property (1a) [property (1b) | property (2a) | property (2b)]
| TRUE | TRUE | TRUE | TRUE |

7.3.2 Test programs

Appendix B.3 to B.10 hold some of the test programs written to trigger the un-
wanted behavior. Model checking these programs provides the following results.

Program 1

Program 1 declares a global ATerm of type integer, assigns value 42 to is forces
the garbage collector to clean up unused ATerms and outputs the value of the
global variable. Running the program shows:

Value of global ATerm = 352040

Checking the abstracted model of this program against the safety properties,
results in the following traces.

63

| property (1a) | property (1b) | property (2a) | property (2b) |
FALSE TRUE TRUE TRUE

diagnostic sequence
found at depth 2

<initial state>
"decl global"
"def global"
<goal state>

This was to be expected since the globally defined ATerm global is not pro-
tected before it is defined. Further more, no traces are given with regard to
mismatches because no protect or unprotects occur in the code.

Program 2

Program 2 is the corrected version of program 1. Here protect and unprotect
actions are used to prevent the removal of the global ATerm global. Running
the program shows:

‘Value of global ATerm = 42‘

Checking the abstracted model of this program against the safety properties,
results in the following output.

| property (la) | property (1b) | property (2a) | property (2b) |
| TRUE | TRUE | TRUE | TRUE |

In program 2, the ATerms are used properly, therefore the output of the model
checker is as expected.

Program 3

Program 3 is very similar to program with the difference that instead of assign-
ing a value to a global variable, a globally defined array of ATerms is used. The
array is filled with the values of the array index. Running the program shows:

value of global at index 0 = 352038
value of global at index 1 = 352037
value of global at index 2 = 352036
value of global at index 3 = 352035
value of global at index 4 = 352034
value of global at index 5 = 352033
value of global at index 6 = 352032
value of global at index 7 = 352031
value of global at index 8 = 352030
value of global at index 9 = 352029

64

For global array mylist, the output of the model checker is as follows.

| property (la) | property (1b) | property (2a) | property (2b) |

FALSE TRUE TRUE TRUE

diagnostic sequence
found at depth 2

<initial state>
"decl mylist"
"def mylist"
<goal state>

Since the global array of ATerms is filled without protection, property (la)
is violated, hence the arbitrary values.

Program 4

Program 4 is the corrected version of program 3. Here protect and unprotect
actions are used to prevent the removal of the global array of ATerms mylist.
Running the program shows:

value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index

© 00 N U WN - O
© 00 N U WN - O

Model checking the model against the safety properties results in the follow-
ing output.

| property (la) | property (1b) | property (2a) | property (2b) |
| TRUE | TRUE | TRUE | TRUE |

In this program, proper use has been made of the ATerm library. Therefore
all safety properties hold.

Program 5

In program 5, the global ATerm global is protected before it is defined. How-
ever, no matching unprotect action is done, creating a memory leak. No visible
evidence of this can be seen in the output when running the program as can be
seen below.

65

Value of global ATerm = 42

However, when model checking the abstracted model of this program, the
improper use of global ATerms is evident.

| property (1a) | property (1b) | property (2a) | property (2b) |

TRUE TRUE FALSE TRUE

diagnostic sequence
found at depth 4

<initial state>
"decl global"
"prot_global"
"def global"
"use global"
<goal state>

The trace given by the model checker runs from the initial state to the end
of the model. Since no unprotect action was found to match the protect action,
the end of the model is considered to be the goal state. This mismatch in protect
and unprotect actions cause property (2a) to be violated.

Program 6

Program 6 is similar to program 5 except that it uses a globally defined array
of ATerms instead of a global ATerm. The array is protected and each array
element is assigned the value of the corresponding array index. The array is
never unprotected causing a memory leak. Running the program shows the
following output.

value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index
value of global at index

© 00 N U WN = O
© 00 N U WN = O

Model checking the model against the safety properties results in the follow-
ing output.

| property (1a) [property (1b) | property (2a) | property (2b)]
[TRUE | TRUE | FAISE | TRUE |

In this particular example, no output trace is given for the violation of property
(2a). It is not clear why no textual trace is given, but the visual trace in figure

66

7.5 shows why the model violates property (2a).

Figure 7.5: Visual trace of the violation of property (2a).

From the violation of property (2a), supported by the visual trace in figure
7.5, is is clear that no unprotect action matches the protect action in the model.

Program 7

Program 7 explores the other side of the protect and unprotect mismatch,
namely a unprotect action without preceding protect action on the global ATerm
global. This causes the program to crash with a segmentation fault as can be
seen in the program output below.

Value of global ATerm = 352040
Segmentation fault (core dumped)

Besides the segmentation fault, the value of the global ATerm global should
be 42. The output however shows a different value. Model checking the model

67

shows why this is the case.

| property (la) | property (1b)

| property (2a) | property (2b)

FALSE

diagnostic sequence
found at depth 2

<initial state>
"decl _global"
"def global"
<goal state>

TRUE

TRUE FALSE
diagnostic sequence
found at depth 4

<initial state>
"decl global"
"def global"
"use global"
"unprot _global"
<goal state>

Both property (la) and (2b) were violated. This means that a globally
defined ATerm was defined or used without protection and that an unprotect
action was found without a preceding protect action.

Program 8

Program 8 is similar to program 7 with the exception that instead of a global
ATerm, a globally defined array of ATerms is used. Again, both properties (1a)
and (2a) are violated resulting in arbitrary values and a segmentation fault as

can be seen in the

output below.

value of global at
value of global at
value of global at
value of global at
value of global at
value of global at
value of global at
value of global at
value of global at
value of global at
Segmentation fault

index 0 = 352038
index 1 = 352037
index 2 = 352036
index 3 = 352035
index 4 = 352034
index 5 = 352033
index 6 = 352032
index 7 = 352031
index 8 = 352030
index 9 = 352029
(core dumped)

Model checking this model against the safety properties confirms this.

| property (la) | property (1b)

| property (2a) | property (2b)

FALSE

diagnostic sequence
found at depth 2

<initial state>
"decl mylist"
"def mylist"
<goal state>

TRUE

TRUE FALSE
diagnostic sequence
found at depth 4

<initial state>
"decl mylist"
n i n
n i n
"unprot _mylist"

<goal state>

68

Chapter 8

Results and Conclusions

8.1 Results

The master’s project resulted in two products. Firstly, this thesis providing in-
formation on the method. Secondly, an implementation of the method described
and a set of safety properties that can be used to check models of ANSI-C pro-
grams in the subset for improper use of the ATerm library.

The method of transforming ANSI-C programs — using language construc-
tions from a subset of ANSI-C — via the control flow graph, dual graph and
abstract graph to the Aldebaran graph described in this thesis is implemented
in the ASF+SDF Meta Environment.

Not all ANSI-C language constructions are implemented in the solution.
Constructions such as a “switch”, “block definitions”, “type casts”, “pointers”
and “recursion” are left as future work. The remaining subset is representative
for the ANSI-C language in that it supports repetitions, alternatives, declara-
tions, assignments, function calls and means of breaking the control flow with
return and break statements. Given the current implementation and method of
subgraph insertion, adding other language constructions such as “switch” and
“continue” should not prove difficult. However, pointers and recursion will pro-

vide a bigger challenge.

The safety properties of proper use of globally defined ATerms are provided
in regular alternation-free p-calculus and can be used to check the models using
the CADP toolkit. For now, a set of these properties is needed for every global
ATerm, since the matching is done on the ATerms name. In the future this
might be taken care of automatically.

8.2 Conclusions
The research done in this thesis needed to answer the following main question:

“How can ANSI-C source code (using the ATerm library) be checked
for patterns of unwanted behavior using Model Checking techniques.”

69

And the following subquestions:

1. What are the problems with globally defined ATerms in combination with
automatic garbage collection?

2. What kind of behavior is unwanted and how can it be recognized?

3. How can the program be represented in such a way, that it captures the
flow of the program?
(a) What parser for ANSI-C should be used?
(b) What intermediate structures should be used?

4. What information is necessary and what information can be abstracted
away?

5. How can we check this representation with model checking techniques to
find the cases of unwanted behavior?

(a) What model checker should be used?

(b) How should the patterns of unwanted behavior be represented?

(1) Problems with global ATerms

The unwanted behavior of ANSI-C programs using the ATerm library comes
from improper use of globally defined ATerms. These ATerms must be explicitly
protected and unprotected by the programmer, if not, the automatic garbage
collector may remove these ATerms and causes unwanted behavior. The problem
with global ATerms is covered in detail in chapter 2.

(2) Kinds of unwanted behavior

Improper use of global ATerms can cause unwanted behavior. Three different
behaviors are described in detail in chapter 2.2. These are:

e When a global ATerm is not protected before being used or defined, the
automatic garbage collector may remove the ATerm. Referencing the re-
moved ATerm will return an arbitrary value without warning of its re-
moval.

e If a global ATerm is protected but not unprotected, the memory of the
ATerm is protected from removal even when that is no longer necessary.
This causes a memory leak in the programs.

e If a global ATerm is unprotected without a preceding protect, a segmen-
tation fault will occur which causes the system to crash.

70

(3) Capturing the flow of the programs

The method described in this thesis provides a way of extracting the “flow” of the
program from the source code into an intermediate structure called the control
flow graph using language transformations. Building the control flow graph is
done by means of transforming every declaration and statement in the program
into a node and linking these together with directed edges. Chapter 4 describes
this process. The ASF+SDF Meta Environment is used for the parsing the code
and the transformations from ANSI-C code to the intermediate datastructures.

Transforming the control flow graph into a dual graph that has the action la-
bels on the edges instead of on the nodes makes it better usable for model check-
ing. Some model checkers (including the CADP evaluator used in this project)
use edge-labeled graphs as input rather than node-labeled graphs. Chapter 5
describes the transformation from control flow graph into dual graph.

(4) Abstraction

The dual graph structure can be abstracted. The abstraction process (described
in chapter 6) is again a set of language transformations that “abstract” away all
information that is not related to global ATerms. All declarations and state-
ments in the dual graph are checked for occurrence of the names of global
ATerms and are given a label accordingly. Action labels describe when a global
ATerm is declared, defined, used, protected and unprotected. An assignment
with a global ATerm on the left-hand side will receive a def name label. All
other, non global ATerm related, declarations and statements will receive the
label ¢ which stands for internal action. The result of abstraction is a graph
that denotes only the “behavior” of global ATerms.

(5) Checking the models

Many model checkers have their own input language. For example the SPIN
model checker uses the Promela language. The CADP evaluator which is an
on-the-fly model checker, provides the possibility to use a graph as input. A last
set of transformations, transform the abstract graph into the Aldebaran graph
format that serves as input for the CADP evaluator. The transformations are
described in section 7.1.1.

The model of the program (i.e. the Aldebaran graph) is then transformed
into a binary coded graph and reduced by applying branching bisimulation re-
duction, implemented in the CADP toolkit. A set of safety properties in regular
alternation-free p-calculus (section 7.2), together with the reduced model (sec-
tion 7.2.1) can be checked by the model checker. If any violation of the safety
properties is found, an error trace from start node to the violating action is
given. This provides insight in where improper use has been made in using
ATerms.

Checking the test programs that trigger the unwanted behavior result in
error traces. These error traces show the improper behavior. Model Checking

71

the models of the programs actually finds the unwanted behavior as described
in chapter 7.3.

This thesis does not include a case study in which third party source code
is checked. The solution and implementation is not yet ready for full size pro-
grams. An attempt was made on the constelem.c program in the mCRL2 toolkit.
This program uses 3 globally defined ATbool variables and a globally defined
ATermTable that are not protected and unprotected. There we a couple of
problems that made the current solution unable to check this program.

e Not all language constructions that were used in constelem.c were imple-

mented in the solution. Examples are “continue”, “exit” and pointers.

e The ANSI-C syntax definition that comes with the ASF+SDF Meta En-
vironment was unable to parse the constelem.c code.

e Upon removal of the statements that caused parsing to fail, a lot of new
ambiguities were introduced. a variable named “constructor” could also be
parsed with“const” as specifier, making the variable constant. Also entire
functions were considered ambiguous.

Pointer operations and aliasing will prove difficult as well as recursion and
will provide a challenge in future work in this area of research.

Main research question

To answer the main research question more directly: By following the method
described in this thesis, ANSI-C programs in the subset can be transformed into
models. Checking these models against patterns of proper behavior by a model
checker, provides error traces that detects improper use of global ATerms.

8.3 Related Work

8.3.1 Model Checking program source code
Copper

Verdaasdonk investigated in [39] how the Copper model checker can be used
to verify architectural rules for software systems. The Copper model checker
takes an ANSI-C program (normalized to pure ANSI-C if necessary) and a re-
quirement in Linear Time Logic formula as input. The Copper tool has limited
support for arrays and pointers and does not support floats or doubles. Consid-
ering these restrictions and the fact that a different kind of abstraction technique
might be more efficient in checking for use of ATerms, the choice was made to
use language transformations for a ”custom-made* abstraction.”

SPIN

Various attempts at model checking actual source code have been made using
the SPIN model checker. Holzmann and Smith describe an extraction and veri-
fication method for C source code in [22]. Their method is based on verification

72

during code development. This means that at any time during the development
of a program, a model may be extracted from it and checked by the SPIN model
checker. The output is an annotated C trace that can be used for further de-
velopment. The method in this thesis works with a posteriori verification of the
programs.

Another attempt at model checking ANSI-C code was made by Holzmann
in [21]. The automaton extraction tool AX is introduced which can abstract
and verify models in combination with the SPIN model checker. It relies on a
user-defined abstraction and annotations that determine whether certain paths
are included in the model, changed or just printed as comment. The AX tool
uses tabled abstraction that uses a table and preferences to determine how and
what must be abstracted. The SPIN model checker is used to check the pro-
duced models against properties in temporal formulas. The model construction
however is not fully automated. In some cases 25% to 50% of the model must be
handwritten whereas the method described in this thesis produces the models
fully automated and require no further annotations to the programs. Holzmann
describes the same problems with pointers and aliases that were encountered in
this project.

Cattel describes in [13], how a limited subset of sC++, an extension of C++
that adds support for concurrency, can be transformed into Promela. The arti-
cle describes several semantic equations that have been implemented in prolog.
Again the SPIN model checker is used to verify requirements on the Promela
model.

Several attempts use Java as input language. DeMartini et. al. use the
SPIN model checker in combination with the JCAT tool [16] to check for dead-
locks in concurrent systems. The JCAT tool uses a transformation method
that transforms Java code into Promela code that can be used by the SPIN
model checker. Havelund and Pressburger describe a method of transforming
Java code into Promela code using the Java PathFinder system in [19]. The
Promela models are then checked by the SPIN model checker and in both cases,
interesting results have been obtained.

Bandera

Corbett et.al. describe the Bandera toolkit in [17]. This toolkit can extract finite
state models from Java source code. Bandera can transform Java code into a
model in a number of model checker formats such as Promela and nuSMV for
the SMV model checker and is able to translate the error traces back to source
code again.

SLAM and Boolean programs

The SLAM model checker [10], used within Microsoft for checking third-party
device drivers, uses boolean programs as models for C programs. SLAM is a
tool for checking whether a given C program "obeys API usage rules‘. Boolean
programs can be used as an intermediate datastructure to describe the struc-
ture of a program. These structures, described in [9], abstracts all variables and

73

guards to boolean expressions. This way, by a method of refinement and setting
boolean values, a boolean program can be automatically checked for invariant
violations and the feasibility of paths.

However, boolean programs concentrate on the question of reachability. This
would only be a partial answer to the problem of checking the use of ATerms.
Since the order and nature of certain types of actions on globally defined ATerms
matter, reachability using boolean programs would not solve the problem. An-
other remark is that the boolean program abstraction rules out certain paths
by setting the boolean guard to true or false. In this project, all possible paths
are of interest.

Java Modeling Language

The Java Modelling Language (JML) described in [27], uses “annotation com-
ments” to implement a formal behavioral interface specification language for
Java. It uses a method called “design by contract” that creates contracts be-
tween classes and functions. These contracts contain pre and post conditions
and invariants that can need to hold before the function can be executed. Be-
cause the desire was to check ANSI-C source code for the use of ATerms, re-
gardless of whether a loop invariant holds or a precondition holds, a choice was
made to transform the entire C program into a model rather than use similar
annotations.

8.3.2 Fact extraction
CPP2XMI

The CPP2XMI tool described in [26] is able to reverse engineer UML models
from C++ code. CPP2XMI is part of a toolset called SQuADT [6] that is used
for analysis of C++ code.

Fact extraction using Rscript

Rscript provides a different approach to software analysis based on relational
calculus described in [25]. Rscript is intended for the analysis of programming
source code using fact extraction. Fact abstraction can provide usefull infor-
mation and several program slicing and analysis applications have been made.
For example the work of Vankov in [38] on a relational approach to program
slicing. However, since the goal of this project is to use a model checking tool
to check for unwanted behavior which needs to transform source code into a
graph, the ASF+SDF Meta Environment was chosen because of its language
transformation abilities and reputation.

8.4 Recommendations and future work
This project raised some interesting questions that may be investigated in the

future. Also some optimizations and extentions might prove useful. Consider
this non-exhausting list of future research topics and programming tasks:

74

Solve ambiguity problems.
Validate used transformations.
Implement remaining ANSI-C language constructions.

Investigate implementation of recursion (possibly by transformation to a
process algebra language)

Investigate implementation of pointers.
Investigate possible problems that can occur from protecting a local ATerm.
Investigate model checking other languages.

Include guard conditions in flow graph constructions in extended finite
state machines (eFSM). Perhaps the guard conditions can be used a some
sort of heuristic in model checking. Somethings may or may not happen
depending on the evaluation of the guard.

Investigate other behavioral patterns to check for.

Investigate possible optimizations on the model checking side. (This re-
search focuses more on the language transformation side).

Investigate possibility to extend the system to use model checking output
to correct the errors in the source code.

75

Bibliography

[1] ASF+SDF meta environment homepage: http://www.asfsdf.org.

[2] CADP case studies: http://www.inrialpes.fr/vasy/cadp/case-studies/.

[3] CADP evaluator manual page: http://www.inrialpes.fr/vasy/cadp/man/evaluator.html.
[4] CADP website: http://www.inrialpes.fr/vasy/cadp/.

[5] SPIN and promela: http://www.spinroot.com.

[6] SQuUADT homepage: http://www.laquso.com /research/repository.php.

[7] A.A. Aaby. Compiler construction using flex and bison. Technical report,
Walla Walla University, 2003.

[8] F.E. Allen. Control flow analysis. Proceedings of a symposium on Compiler
optimization, pages 1-19, 1970.

[9] T. Ball and S.K. Rajamani. Boolean programs: A model and process for
software analysis. Technical report, Microsoft Research, 2000.

[10] T.Ball and S.K. Rajamani. The SLAM project: debugging system software
via static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1-3,
2002.

[11] J.A. Bergstra and P. Klint. The discrete time toolbus - a software coordi-
nation architecture. Science of Programming, 31 (2-3):205-229, 1998.

[12] M. Braveboer, K.T. Kalleberg, and R. Vermaas ans E. Visser. Stratego/XT
0.16: Components for transformation systems. PEPM06, pages 95-99,
2006.

[13] T. Cattel. Modelling and verification of sc++ applications. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Lecture
Notes in Computer Science, 1384:232-248, 1998.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

[15] H.A. de Jong and P.A. Olivier. ATerm Library User Manual. Centrum
voor Wiskunde en Informatica.

76

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

C. DeMartini, R. Tosif, and R. Sisto. A deadlock detection tool for con-
current java programs. Software Practice and Experience, 29(7):577-603,
1999.

J.C. Corbett et.al. Bandera: extracting finite-state models from java source
code. In International Conference on Software Engineering, pages 439448,
2000.

J.F. Groote, A.H.J. Mathijssen, B. Ploeger, M.A. Reniers, M.J. van Weer-
denburg, and J. van der Wulp. Process algebra and mCRL2 - IPA basic
course on formal methods 2006. Technical report, Technische Universiteit
Eindhoven, 2006.

K. Havelund and T. Pressburger. Model checking java programs using
java pathfinder. International Journal on Software Tools for Technology
Transfer, 2(4), 1998.

G.J. Holzmann. The model checker SPIN IEEE Transactions on Software
Engineering. 23(5):279-295, 1997.

G.J. Holzmann. Logic verification of ANSI-C code with SPIN. Proceed-
ings of the 7th International SPIN Workshop on SPIN Model Checking and
Software Verification, Lecture Notes in Computer Science, 1885:131-147,
2000.

G.J. Holzmann and M.H. Smith. Software model checking: extracting
verification models from source code. Software Testing, Verification and
Reliability, 11(2):65—79, 2001.

B. W. Kernighan and D. M. Ritchie. The C' Programming Language, second
edition. Prentice-Hall, 1978.

P. Klint. A meta-environment for generating programming environments.
ACM Transactions on Software Engineering and Methodology, 2:176-201,
1993.

P. Klint. A tutorial introduction to RScript. Technical report, Centrum
voor Wiskunde en Informatica, 2005.

E. Korshunova, M. Petkovi¢, M.G.J. van den Brand, and M.R. Mousavi.
CPP2XMI: Reverse engineering of UML class, sequence, and activity dia-
grams from C+-+ source code. In IEEE Proceedings of the 13th working
conference on reverse engineering (WCRE’06), pages 297298, 2006.

G. Leavens and Y. Cheon. Design by contract with JML.
http://www.jmlspecs.org, 2003.

R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for
regular alternation-free mu-calculus. Science of Computer Programming,
46:255-281, 2003.

F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121-189, 1995.

7

[30] J.C. van de Pol. JITty: a rewiter with strategy annotations. Rewrit-
ing Techniques nd Applications: 13th international conference, RTA 2002.
Lecture Notes in Computer Science, 2378:367-370, 2002.

[31] J.C. van de Pol. Algorithms for model checking - lecture notes. technische
universiteit eindhoven. 2006.

[32] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient
annotated terms. Software, Practice and Experience, 30(3):259-291, 2000.

[33] M.G.J. van den Brand and P. Klint. ATerms for manipulation and exchange
of structured data: It’s all about sharing. Information and Software Tech-
nology, 49(1):55-64, 2007.

[34] M.G.J van den Brand, P. Klint, and J.J. Vinju. Term rewriting with traver-
sal functions. ACM transactions on Computational Logic, V(N):1-38, 2004.

[35] M.G.J van den Brand, P. Klint, and J.J. Vinju. The language specifica-
tion formalism ASF+SDF. Technical report, Centrum voor Wiskunde en
Informatica, 2006.

[36] M.G.J van den Brand, P. Klint, and J.J. Vinju. The syntax definition
formalism SDF. Technical report, Centrum voor Wiskunde en Informatica,
2006.

[37] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen1, P.A. Olivier, J. Scheerder,
J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF meta-environment: A
component-based language development environment. Compiler Construc-
tion : 10th International Conference, CC 2001. Lecture Notes in Computer
Science, 2027:365-370, 2001.

[38] I. Vankov. Relational approach to program slicing. Master’s thesis, Uni-
versity of Amsterdam, 2005.

[39] R. Verdaasdonk. Automatic checking of dynamic architectural rules. Mas-
ter’s thesis, Eindhoven University of Technology, 2007.

[40] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

78

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Code fragment of improper use of global ATerms
Verbose ATerm output illustrates removal
Code fragment of proper use of global ATerms
Verbose ATerm output shows success
Code fragment of improper use of a global ATerm in a struct

Code fragment of proper use of a global ATerm in a struct
Code fragment with mismatch in the else branch.
Output shows mismatch and arbitrary value
Summary: Proper use of the ATerm library

SDF definition of a list
ASF equations for the elem and concat functions
Using the elem and concat function
Import graph of the C language in the ASF+SDF Meta Environ-
ment L. e
Ambiguity in using parameters
Visualization of parameter ambiguity
Alternative use of parameters
Foo, declaration or statement?
Visualization of ambiguity with parenthesis
Source-to-source transformations of the if-then-else structure
Source-to-source transformations of the for structure
Transformations for multiple declarations
Transformations of a struct to global variables.

Skeleton Control Flow Graph
Inserting a subgraph into a (skeleton) control flow graph
Declarations syntax oo
Inserting a Basic Statement
Assignment syntaxo
While-Do repetition syntax
The While-Do repetition subgraph
Do-While repetition syntax oL
The Do-While repetition
If-the-else alternative syntax
The If-Then-Else alternative subgraph
Flow and focus change in a function call
Pasting a function as a subgraph
Example of direct recursion

4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
74
7.5

Indirect recursion causes infinite insertion 36

Example of a call history, 37
Using back edges to handle direct recursive functions 37
Need for an additional edge to cover possible paths 39
Return statement in the main function 40
Break statement in a branch during a repetition 41
Control flow graph of the nail warehouse 43
Example of an arbitrary Dual Graph 44
Building the dual graph illustrated 45
Example of control flow graph to dual graph transformation . . . 46
Dual Graph of the nail warehouse 47
Declaration 49
Basic declarationso 50
Declarations with initialization 50
Basic definitions with function call 50
Definitions and Use oo 51
Examination of Expression provides new ATerm 51
Examplesofuse. oL 52
Multiple used ATerms 52
Protection of ATerm structures 52
Unprotection of ATerm structures 53
Dual Graph of the nail warehouse 54
Abstract Graph of the nail warehouse 55
Reduced nail warehouse graph o8
p-calculuso 59
Trace of violation provided by the evaluator 60
Violation of safety property (la) 63
Visual trace of the violation of property (2a). 67

80

Appendix A

List of Tools

Operating System:

Xubuntu GNU/Linux 7.04 (Feisty Fawn)

kernel: 2.6.20

Extra Software:

Java 1.6

GraphViz 2.8-2.6
Flex(old) 2.5.4a-7

Flex 2.5.33-10build1
Bison 1:2.3.dfsg-4build1
GCC 4:4.1.2-1ubuntul
Curl 7.15.5-1ubuntu2

ASF+SDF Meta Environment:

asfsdf-meta-2.0pre.20865.28427

ATerm Library:

ATerm 1.4.2

CADP toolset

2006 "Edinburgh" (Stable)

81

Appendix B

Using the ATerm library

This appendix holds the various test programs that have been used to test the
solution presented in this thesis. An overview of the test programs and their
use of the ATerm library is given in the table below.

Program

| Use of ATerms

Nail Warehouse 1

Global ATerm is defined without protection;
Else-branch does not have protect (mismatch).

Nail Warehouse 2

Warehouse 1 fixed: Proper use of the ATerm library

Test program 1

Global ATerm is defined without protection.

Test program 2

Program 1 fiexed: Proper use of ATerm library.

Test program 3

Global ATerm array is defined without protection.

Test program 4

Program 3 fixed: Proper use of ATerm library.

Test program 5

Global ATerm is protected but not unprotected.

Test program 6

Global ATerm array is protected but not unprotected.

Test program 7

Global ATerm is defined without protection;
Unprotect without preceding protect (mismatch).

Test program 8

Global ATerm array is defined without protection;
Unprotect without preceding protect (mismatch).

82

B.1 Nail Warehouse 1

#include <stdio.h>
#include <aterm2.h>

ATermInt inv;

void sell(int number)

{

ATermInt s;

s = ATmakeInt (number) ;

ATprintf ("Nail number %t sold\n", s);
}

int order(void) {
return 400000;

}
int main(int argc, char* argv[])
{
ATerm bottom0OfStack;
int k = 400000;
int 1;
ATinit (argc, argv, &bottom0fStack);
inv = ATmakeInt (400025-400000) ;
while(k > 0) {
sell(k);
k--;
}
if (ATgetInt (inv) < 1000) {
ATprotect (&inv) ;
1 = order();
inv = ATmakeInt(order() + ATgetInt(inv));
ATprintf ("New nails ordered; New inventory = %t\n", inv);
}
else {
ATprintf ("Nothing ordered; Inventory = %t\n", inv);
}
ATprintf ("Final Inventory = %t\n", inv);
ATunprotect (&inv) ;
return 0;
}

83

B.2 Nail Warehouse 2

#include <stdio.h>
#include <aterm2.h>

ATermInt inv;

void sell(int number)

{

ATermInt s;

s = ATmakeInt (number) ;

ATprintf ("Nail number %t sold\n", s);
}

int order(void) {
return 400000;

}
int main(int argc, char* argv[])
{
ATerm bottom0OfStack;
int k = 400000;
int 1;
ATinit (argc, argv, &bottom0fStack);
ATprotect (&inv) ;
inv = ATmakeInt(400025-400000) ;
while(k > 0) {
sell(k);
k--3
}
if (ATgetInt (inv) < 1000) {
1 = order();
inv = ATmakeInt(order() + ATgetInt(inv));
ATprintf ("New nails ordered; New inventory = %t\n", inv);
}
else {
ATprintf ("Nothing ordered; Inventory = %t\n", inv);
}
ATprintf ("Final Inventory = %t\n", inv);
ATunprotect (&inv) ;
return 0O;
}

84

B.3 Test program 1

#include <stdio.h>
#include <aterm2.h>

ATermInt global;

void foo(int counter)

{
ATermInt s;
s = ATmakeInt (counter);
ATprintf("s = %t\n", s);

int main(int argc, char *argv([])
{
ATerm bottom0OfStack;

int counter = 0;
int index = 400000;

ATinit (argc, argv, &bottomOfStack);
global = ATmakeInt (42);
while(index > 0) {
foo(counter) ;
counter++;
index--;
}
ATprintf ("Value of global ATerm = %t\n", global);

return 0O;

85

B.4 Test program 2

#include <stdio.h>
#include <aterm2.h>

ATermInt global;
void foo(int counter)
{

ATermInt s;

s = ATmakeInt (counter);
ATprintf("s = %t\n", s);

int main(int argc, char *argv([])
{
ATerm bottom0OfStack;

int counter = 0;
int index = 400000;

ATinit (argc, argv, &bottomOfStack);
ATprotect (&global) ;
global = ATmakeInt (42);
while(index > 0) {
foo(counter) ;
counter++;
index--;
}
ATprintf ("Value of global ATerm = %t\n", global);

ATunprotect (&global) ;

return 0O;

86

B.5 Test program 3

#include <stdio.h>
#include <aterml.h>

ATerm mylist[10];

ATerm foo(int counter)

{

ATerm s;
s = ATmake ("<int>", counter);
return s;

int main(int argc, char *argv[])

{

ATerm bottom0OfStack;
int counter = 0;

int index = 400000;
int i;

ATinit (argc, argv, &bottomOfStack);

for(i = 0; 1 < 10; i++) {
mylist[i] = foo(i);
}

while (index > 0) {
foo(counter) ;
counter++;
index--;

}
for(i = 0; i < 10; i++) {

ATprintf ("value of global at index %d
}

return O;

87

= %t\n", i, mylist[i]);

B.6 Test program 4

#include <stdio.h>
#include <aterml.h>

ATerm mylist[10];

ATerm foo(int counter)

{
ATerm s;
s = ATmake ("<int>", counter);
return s;

int main(int argc, char *argv[])
{
ATerm bottom0OfStack;
int counter = 0;
int index = 400000;
int i;
ATinit (argc, argv, &bottomOfStack);
ATprotectArray(mylist, 10);
for(i = 0; i < 10; i++) {
mylist[i]l = foo(i);
}
while (index > 0) {
foo(counter) ;
counter++;
index--;
}
for(i = 0; i < 10; i++) {

ATprintf ("value of global at index %d = %t\n", i, mylist[i]);
}

ATunprotectArray (mylist);

return 0;

88

B.7 Test program 5

#include <stdio.h>
#include <aterm2.h>

ATermInt global;
void foo(int counter)
{

ATermInt s;

s = ATmakeInt (counter);
ATprintf("s = %t\n", s);

int main(int argc, char *argv([])
{
ATerm bottom0OfStack;

int counter = 0;
int index = 400000;

ATinit (argc, argv, &bottomOfStack);
ATprotect (&global) ;
global = ATmakeInt (42);
while(index > 0) {

foo(counter) ;

counter++;

index--;
}

ATprintf ("Value of global ATerm = %t\n", global);

return 0;

89

B.8 Test program 6

#include <stdio.h>
#include <aterml.h>

ATerm mylist[10];

ATerm foo(int counter)

{
ATerm s;
s = ATmake ("<int>", counter);
return s;

int main(int argc, char *argv[])
{

ATerm bottom0OfStack;

int counter = 0;

int index = 400000;

int i;

ATinit (argc, argv, &bottomOfStack);
ATprotectArray(mylist, 10);

for(i = 0; i < 10; i++) {
mylist[i]l = foo(i);
}

while (index > 0) {
foo(counter) ;
counter++;
index--;

}
for(i = 0; i < 10; i++) {

ATprintf ("value of global at index %d = %t\n", i, mylist[i]);
}

return O;

90

B.9 Test program 7

#include <stdio.h>
#include <aterm2.h>

ATermInt global;
void foo(int counter)
{

ATermInt s;

s = ATmakeInt (counter);
ATprintf("s = %t\n", s);

int main(int argc, char *argv([])
{
ATerm bottom0OfStack;

int counter = 0;
int index = 400000;

ATinit (argc, argv, &bottomOfStack);
global = ATmakeInt (42);
while(index > 0) {
foo(counter) ;
counter++;
index--;
}
ATprintf ("Value of global ATerm = %t\n", global);

ATunprotect (&global) ;

return O;

91

B.10 Test program 8

#include <stdio.h>
#include <aterml.h>

ATerm mylist[10];

ATerm foo(int counter)

{
ATerm s;
s = ATmake ("<int>", counter);
return s;
}
int main(int argc, char *argv[])
{
ATerm bottom0OfStack;
int counter = 0;
int index = 400000;
int i;
ATinit (argc, argv, &bottomOfStack);
for(i = 0; i < 10; i++) {
mylist[i] = foo(i);
}
while (index > 0) {
foo(counter) ;
counter++;
index--;
}
for(i = 0; i < 10; i++) {
ATprintf ("value of global at index %d = %t\n", i, mylist[i]);
}
ATunprotectArray (mylist);
return O;
}

92

Appendix C

Normalizing

C.1 Normalizing (SDF)

%% Normalization of C source code
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

module NormalForm

imports
imports
imports

exports

c/Default-C-With-CPP
basic/Whitespace
basic/Comments

context-free start-symbols

TranslationUnit
Specifier

Statement

Expression

{ InitDeclarator ","}+

context-free syntax

normalize(TranslationUnit) -> TranslationUnit
elimif (Statement) -> Statement
elimfor (Statement) -> Statement+
normalForm(TranslationUnit) ->

TranslationUnit {traversal(trafo, bottom-up, continue)}
normalForm(Statement*) ->

Statement* {traversal(trafo, bottom-up, continue)}
normalForm(Statement) ->

Statement {traversal(trafo, bottom-up, continue)}
structname (TranslationUnit) ->

TranslationUnit {traversal(trafo, top-down, continue)}
structname (Expression) ->

93

Expression {traversal(trafo, top-down, continue)}

nfexdecls(ExternalDeclaration+) -> ExternalDeclaration+
nffuncs(FunctionDefinition) -> FunctionDefinition
nfstructs(ExternalDeclaration+) -> ExternalDeclarationt+
walkDecls(Declaration*) -> Declaration*
walkStats(Statement*) -> Statementx*

splitUp(Specifier+, { InitDeclarator ","}+) -> ExternalDeclaration+
splitUpLocal(Specifier+, { InitDeclarator ","}+) -> Declaration*

splitUpCase(Expression, Statement) -> Statement
splitUpStruct(Identifier, StructDeclarationt+) -> ExternalDeclaration+
splitUpStructLocal(Specifier+, Identifier, {StructDeclarator ","}+)

-> ExternalDeclaration+

hiddens
variables

"gTranslationUnit" [0-9]*
"gFunctionDefinition" [0-9] *
"gStatement" [0-9] *
"gStatement*" [0-9] *
"gExpression" [0-9] *
"gStatement*" [0-9] *
"gStatement'" [0-9] *
"gStatement+" [0-9] *
"&Declaration'" [0-9]*
"gDeclaration+" [0-9]*
"gDeclaration*" [0-9]*
"&Specifier+"[0-9]*
"&Specifier" [0-9]*
"&Specifierx*"[0-9]*
"gInitDeclarators" [0-9]
"gInitDeclarator" [0-9]
"gDeclarator" [0-9] *
"gInitializer"[0-9]*
"gIdentifier" [0-9]*
"§ExternalDeclaration" [0-9] *
"gExternalDeclaration+" [0-9] *
"gStructDeclarations" [0-9] *
"gStructDeclaration" [0-9] *
"gStructDeclarator" [0-9]*
"gStructDeclarators" [0-9] *

C.2 Normalizing (ASF)

equations
%% Normalization of if-then-else

[elimif-0]

&Statement*3 := walkStats(&Statementl)

94

TranslationUnit
FunctionDefinition
Statement

Statement*
Expression
Statement*

Statement

Statement+
Declaration
Declaration+
Declaration*
Specifier+

Specifier

Specifier*

{ InitDeclarator ","}+
InitDeclarator
Declarator
Initializer
Identifier
ExternalDeclaration
ExternalDeclaration+
StructDeclaration+
StructDeclaration
StructDeclarator
{StructDeclarator ","}+

=——==>
elimif (if (&Expression) &Statementl) =
if (&Expression) { &Statement*3 } else { skip(); }

[elimif-1]
&Statement*3 := walkStats(&Statement*)
=——==>
elimif (if (&Expression) { &Statement* }) =
if (&Expression) { &Statement*3 } else { skip(); }

[elimif-2]
&Statement*3 := walkStats(&Statementl),
&Statement*4 := walkStats(&Statement2)
====>
elimif (if (&Expression) &Statementl else &Statement2) =
if (&Expression) { &Statement*3 } else { &Statement*4 }

[elimif-3]
&Statement*3 := walkStats(&Statementx),
&Statement*4 := walkStats(&Statement)
====>
elimif (if (&Expression) { &Statement* } else &Statement) =
if (&Expression) { &Statement*3 } else { &Statementx4 }

[elimif-4]
&Statement*3 := walkStats(&Statement),
&Statement*4 := walkStats(&Statementx)
=——==>
elimif (if (&Expression) &Statement else { &Statement* }) =
if (&Expression) { &Statement*3 } else { &Statementx4 }

[elimif-5]
&Statement*3 := walkStats(&Statementx1),
&Statement*4 := walkStats(&Statement*2)
=——==>
elimif (if (&Expression) { &Statement*l } else { &Statement*2 }) =
if (&Expression) { &Statement*3 } else { &Statement*4 }

[default-elimif]
elimif (&Statement) = &Statement

%% Top-functions for Normalization of External Declarations

[normalize-0]

&TranslationUnitl := normalForm(&TranslationUnit),
&TranslationUnit2 := structname(&TranslationUnit1l)
====>

normalize (&TranslationUnit) = &TranslationUnit2

[normalForm-extdecl-0]

95

&ExternalDeclaration+l := nfexdecls(&ExternalDeclaration+),
&ExternalDeclaration+2 := nfstructs(&ExternalDeclaration+1),
&ExternalDeclaration+3 := nfexdecls(&ExternalDeclaration+2)

====>

normalForm(&ExternalDeclaration+) = &ExternalDeclaration+3
%% Normalization of structs. Structs -> Globals and structname transformation

[nfstructs-0]
&ExternalDeclaration := &ExternalDeclaration+,
struct &Identifierl { &StructDeclarations } &Identifier2 ;
:= &ExternalDeclaration,
&ExternalDeclaration+2 := splitUpStruct(&Identifier2, &StructDeclarations)
====>

nfstructs(&ExternalDeclaration+) = &ExternalDeclaration+2

[nfstructs-1]
&ExternalDeclaration &ExternalDeclaration+2 := &ExternalDeclaration+,
struct &Identifierl { &StructDeclarations } &Identifier?2 ;
:= &ExternalDeclaration,
&ExternalDeclaration+3 := splitUpStruct(&Identifier2, &StructDeclarations)
====>
nfstructs(&ExternalDeclaration+) = &ExternalDeclaration+3
nfstructs(&ExternalDeclaration+2)

[default-nfstructs]
nfstructs (&ExternalDeclaration+) = &ExternalDeclaration+

[structname-0]
structname (&Identifierl.&Identifier2) = &Identifierl_&Identifier?

%% Normalization of Declarations

[nfexdecls-0]

&ExternalDeclaration := &ExternalDeclarationt,

&Specifier+ &InitDeclarators ; := &ExternalDeclaration,
&ExternalDeclaration+2 := splitUp(&Specifier+, &InitDeclarators)
====>

nfexdecls(&ExternalDeclaration+) = &ExternalDeclaration+2

[nfexdecls-1]

&ExternalDeclaration &ExternalDeclaration+2 := &ExternalDeclaration+,
&Specifier+ &InitDeclarators ; := &ExternalDeclaration,
&ExternalDeclaration+3 := splitUp(&Specifier+, &InitDeclarators)
====>

nfexdecls(&ExternalDeclaration+) = &ExternalDeclaration+3
nfexdecls(&ExternalDeclaration+2)

[nfexdecls-2]
&ExternalDeclaration := &ExternalDeclarationt,

96

&FunctionDefinition := &ExternalDeclaration

====>

nfexdecls(&ExternalDeclaration+) = nffuncs(&FunctionDefinition)

[nfexdecls-3]

&ExternalDeclaration &ExternalDeclaration+2 := &ExternalDeclaration+,
&FunctionDefinition := &ExternalDeclaration
====>

nfexdecls(&ExternalDeclaration+) = nffuncs(&FunctionDefinition)
nfexdecls(&ExternalDeclaration+2)

[default-nfexdecls]
nfexdecls (&ExternalDeclaration+) = &ExternalDeclaration+

%% Normalization of Function Definitions
[nffuncs-0]

&Specifier* &Declarator &Declaration* { &Declaration*2 &Statement* }
:= &FunctionDefinition,

&Declaration*3 := walkDecls(&Declaration*2),
&Statement*3 := walkStats(&Statement*),
&FunctionDefinition2 := &Specifier* &Declarator &Declarationx*

{ &Declaration*3 &Statement*3 }
=——==>
nffuncs (&FunctionDefinition) = &FunctionDefinition2

%% Traverse Declarations and Statements

[walkDecls-1]

&Declaration &Declaration*3 := &Declaration+,

&Specifier+ &InitDeclarators ; := &Declaration,
&Declaration*2 := splitUpLocal(&Specifier+, &InitDeclarators)
====>

walkDecls (&Declaration+) = &Declaration*2 walkDecls(&Declaration*3)

[walkDecls-2]
walkDecls() =

[walkStats-1]
&Statement &Statement* := &Statement+,
&Statementl := elimif (&Statement),
&Statement+1 := elimfor(&Statementl)
====>

walkStats (&Statement+) = &Statement+1 walkStats(&Statementx)

[walkStats-2]
walkStats() =

%% Normalization of for-repetition

97

[elimfor-0]
for (&Expressionl ; &Expression2 ; &Expression3) { &Statementx* }
:= &Statement,
&Statement*1 := walkStats(&Statement*),
&Statement+1l := &Expressionl ; while (&Expression2) { &Statementx*1
&Expression3 ; }
====>

elimfor (&Statement) = &Statement+1

[elimfor-1]
for (; &Expression2 ; &Expression3) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statementx),
&Statement+1 := while (&Expression2) { &Statement*1 &Expression3 ; }
====>

elimfor (&Statement) = &Statement+1

[elimfor-2]
for (&Expressionl ; ; &Expression3) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statementx),
&Statement+1l := &Expressionl ; while (1) { &Statement*1 &Expression3 ; }
====>

elimfor (&Statement) = &Statement+1

[elimfor-3]
for (&Expressionl ; &Expression2 ;) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statement*),
&Statement+1l := &Expressionl ; while (&Expression2) { &Statement*1l }
====>

elimfor (&Statement) = &Statement+1

[elimfor-4]
for (; ; &Expression3) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statementx),
&Statement+1 := while (1) { &Statement*1 &Expression3 ; }
====>

elimfor (&Statement) = &Statement+1

[elimfor-5]
for (&Expressionl ; ;) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statementx),
&Statement+1l := &Expressionl ; while (1) { &Statementx1 }
====>

elimfor (&Statement) = &Statement+1

[elimfor-6]
for (; &Expression2 ;) { &Statement* } := &Statement,
&Statement*1 := walkStats(&Statement*),
&Statement+1l := while (&Expression2) { &Statementx*1 }
====>

elimfor (&Statement) = &Statement+1

98

[elimfor-7]
for (; ;) { &Statement* } := &Statement,

&Statement*1 := walkStats(&Statement*),
&Statement+1 := while (1) { &Statement*1 }
N

elimfor (&Statement) = &Statement+1

[default-elimfor]
elimfor (&Statement) = &Statement

%% Normalization of multiple declarations (e.g. int i,j,k;)

[splitUp-0]
splitUp(&Specifier+, &InitDeclarator) = &Specifier+ &InitDeclarator ;

[splitUp-1]
splitUp(&Specifier+, &InitDeclarator, &InitDeclarators) =
&Specifier+ &InitDeclarator ; splitUp(&Specifier+,
&InitDeclarators)

[splitUpLocal-0]
splitUpLocal (&Specifier+, &InitDeclarator) = &Specifier+
&InitDeclarator ;

[splitUpLocal-1]
splitUpLocal (&Specifier+, &InitDeclarator, &InitDeclarators) =
&Specifier+ &InitDeclarator ; splitUpLocal(&Specifier+,
&InitDeclarators)

[splitUpStruct-0]
&Specifier+ &StructDeclarators ; := &StructDeclaration,
&ExternalDeclaration+ := splitUpStructLocal(&Specifier+,
&Identifier2, &StructDeclarators)
====>

splitUpStruct (&Identifier2, &StructDeclaration) = &ExternalDeclaration+

[splitUpStruct-1]

&Specifier+ &StructDeclaratorsl ; := &StructDeclaration,

&ExternalDeclaration+ := splitUpStructLocal(&Specifier+, &Identifier2,
&StructDeclaratorsl)

====>

splitUpStruct (&Identifier2, &StructDeclaration &StructDeclarations) =
&ExternalDeclaration+ splitUpStruct(&Identifier2,
&StructDeclarations)

[splitUpStructLocal-0]
&Identifierl := &StructDeclarator

====>

splitUpStructLocal (&Specifier+, &Identifier2, &StructDeclarator) =

99

&Specifier+ &Identifier2_&Identifierl ;

[splitUpStructLocal-0]
&Identifierl := &StructDeclarator
====>
splitUpStructLocal (&Specifier+, &Identifier2, &StructDeclarator,
&StructDeclarators) = &Specifier+ &Identifier2_&Identifierl ;
splitUpStructLocal (&Specifier+, &Identifier2, &StructDeclarators)

100

Appendix D

Control Flow Graph

D.1 Triple

%% Generic Parameterized Triple

%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

module Triple[X Y Z]

imports basic/Whitespace
imports basic/Booleans

exports

context-free start-symbols
Triplel[X,Y,Z]1]

sorts Triplel[[X,Y,Z]]

context-free syntax

u(u X ll’ll Y ll’ll 7 u)u -> Trlple[[X,Y,Z]]
makeTriple(X, Y, Z) -> Triple[[X,Y,Z]1]
fst(Triplel[[X,Y,Z]11) -> X
snd (Triple[[X,Y,Z]1]) ->Y
trd(Triple[[X,Y,Z1]) -> Z

eqTriple(Triplel[[X,Y,Z]],Triple[[X,Y,Z]]) -> Boolean

hiddens
sorts X Y Z
variables
"X"[0-9]* -> X
nyn [0_9]* >Y
ngzn [0_9]* > 7

101

"Triple" [0-9]* -> Triple[[X,Y,Z]]
equations

[makeTriple-1]
makeTriple(X,Y,Z) = (X,Y,Z)

[fst-1]

fst((X,Y,Z)) =X
[snd-1]

snd((X,Y,Z2)) =Y
[trd-1]

trd((X,Y,Z2)) = Z

[eqTriple-1]
eqTriple(Triple, Triple) = true

[default-eqTriple]
eqTriple(Triplel, Triple2) = false

D.2 Tuple

%% Generic Parameterized Tuple
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)
module Tuple[X Y]
imports basic/Whitespace

exports

context-free start-symbols
Tuple[[X,Y]]

sorts
Tuple[[X,Y]]

context-free syntax
|l(|l X ||’|| Y ||)||
makeTuple (X, Y)
fst (Tuple[[X,Y]])
snd (Tuple[[X,Y]])

hiddens
sorts X Y

102

-> Tuplel[[X,Y]]

-> Tuple[[X,Y]]
-> X
->Y

variables

'dl [0_9]* > X

"Y"[0-9]* ->Y

"Tuple" [0-9] * -> Tuple[[X,Y]]
equations

[makeTuple-1]
makeTuple(X,Y) = (X,Y)

[fst-1]
fst((X,Y))

1]
>3

[snd-1]
snd ((X,Y))

Il
-

D.3 DeclStat

%% DeclStat - (Declaration/Statement/Expression datatype)
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

module DeclStat

imports basic/Whitespace
imports c/Declarations
imports c/Statements
imports c/Expressions
imports basic/Booleans

exports
sorts DeclStat

context-free syntax

Declaration -> DeclStat
Declarator -> DeclStat
Statement -> DeclStat
Expression -> DeclStat
"STOP" -> DeclStat
"START" -> DeclStat
"EXIT" -> DeclStat
"SKIP" -> DeclStat
"SEPARATE" -> DeclStat
isDecl(DeclStat) -> Boolean
isStat (DeclStat) -> Boolean
isExpr(DeclStat) -> Boolean

103

hiddens
context-free start-symbols
DeclStat Boolean

variables
"gDeclaration" [0-9] * -> Declaration
"gDeclarator" [0-9] * -> Declarator
"gStatement" [0-9] * -> Statement
"gExpression" [0-9] * -> Expression
equations
[isDecl-1]

isDecl(&Declaration) = true

[default-isDecl]
isDecl(&DeclStat) = false

[isStat-1]
isStat (&Statement) = true

[default-isStat]
isStat (&DeclStat) = false

[isExpr-1]
isExpr(&Expression) = true

[default-isExpr]
isExpr(&DeclStat) = false

D.4 Control Flow Graph structure (SDF)

%% Control Flow Graph datastructure
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)
module CFGraph

imports basic/Whitespace

imports basic/Integers

imports basic/Booleans

imports DeclStat

%% import Edgeslist

imports Tuple[Integer Integer]
imports containers/List[Tuple[[Integer,Integer]]]

104

%% import Nodelist

imports Tuple[Integer DeclStat]
imports containers/List[Tuple[[Integer,DeclStat]]]

exports

%% Set aliases for shorter names
%% Lists are used instead of sets for easier handling

aliases
List[[Tuple[[Integer,DeclStat]]]] -> NodeList
List[[Tuple[[Integer,Integer]]]] -> Edgelist

context-free start-symbols
Tuple[[Integer,Integer]]
Tuple[[Integer,DeclStat]]
NodeList
Edgelist
CFGraph
Integer
Boolean

sorts CFGraph
context-free syntax

%% Control Flow Graph structure and constructors

<NodeList,EdgeList> -> CFGraph
emptyCFGraph () -> CFGraph
initialCFGraph() -> CFGraph
makeCFGraph (NodeList ,EdgeList) -> CFGraph

%% Adding a Node or Edge to the CFG

addNodeToCFGraph(Integer, DeclStat, CFGraph) -> CFGraph
addEdgeToCFGraph(Integer, Integer, CFGraph) -> CFGraph

%% Auxiliary functiomns

getNodes (CFGraph) -> NodelList
getEdges (CFGraph) -> Edgelist
isEmptyCFGraph (CFGraph) -> Boolean
mergeCFGraphs (CFGraph, CFGraph) -> CFGraph
getLastNodeId (CFGraph) -> Integer

105

loopNodes (NodeList) ->
loopEdges (EdgeList) ->

findNode (NodeList, Integer) ->
hiddens

context-free syntax

%% Internal functions

addNode (Integer, DeclStat, NodeList) ->
addEdge (Integer, Integer, EdgelList) ->
variables
"gInteger" [0-9]* ->
"&DeclStat" [0-9]* ->
"&Boolean" [0-9]* ->
"&Edge" [0-9] * ->
"&Node" [0-9] * ->
"&NodeList" [0-9]* ->
"g&EdgeList" [0-9] * ->
"&CFGraph" [0-9] * ->

106

Tuple[[Integer,DeclStat]]
Tuple[[Integer,Integer]]

Tuple[[Integer,DeclStat]]

NodeList
EdgelList

Integer
DeclStat
Boolean

Tuple[[Integer,Integer]]
Tuple[[Integer,DeclStat]]

NodeList
EdgelList
CFGraph

D.5 Control Flow Graph structure equations (ASF)

equations
%% Add functions for nodes and edges

[addNode-1]
&Node := makeTuple(&Integer, &DeclStat)
=——==>
addNode (&Integer, &DeclStat, &NodeList) =
concat ([&Node], &NodeList)

[addEdge-1]
&Edgel := makeTuple(&Integerl, &Integer2)

====>
addEdge (&Integerl, &Integer2, &EdgelList) =
concat ([&Edgel], &EdgeList)

%% Get functions for nodes and edges

[getNodes-1]

getNodes (<&NodeList ,&EdgeList>) = &NodeList
[getEdges-1]
getEdges (<&NodeList ,&EdgeList>) = &EdgeList

%% Constructor (empty and initial)

[emptyCFGraph-1]
emptyCFGraph() = <[], []>

[initialCFGraph-1]
initialCFGraph() = <[(1,STOP) , (0,START)],[(0,1)]1>

%% Make actual graph with <>

[makeCFGraph-1]
makeCFGraph (&NodeList ,&EdgeList) = <&NodelList,&EdgeList>

%% Add a node and edge to the graph

[addNodeToCFGraph-1]
&NodeList := getNodes (&CFGraph),
&EdgelList := getEdges (&CFGraph),
&NodeListl := addNode(&Integer, &DeclStat, &NodeList)
====>
addNodeToCFGraph (&Integer, &DeclStat, &CFGraph) =
makeCFGraph (&NodeList1,&EdgeList)

[addEdgeToCFGraph-1]

107

&NodeList := getNodes (&CFGraph),
&Edgelist := getEdges (&CFGraph),

&Edgelistl := addEdge(&Integerl, &Integer2, &EdgeList)

====>
addEdgeToCFGraph(&Integerl, &Integer2, &CFGraph) =
makeCFGraph (&NodeList,&EdgeList1)

h% Merge two CFGraphs

[mergeCFGraphs-1]

&NodeList3 := concat(getNodes(&CFGraphl), getNodes (&CFGraph2)),

&EdgelList3 :

====>

mergeCFGraphs (&CFGraphl, &CFGraph2) =
makeCFGraph (&NodeList3, &EdgeList3)

concat (getEdges (&CFGraphl) , getEdges (&CFGraph2))

%% Get highest node number (e.g. from loopbody) to continue numbering

[getLastNodeId-1]
&NodeList := getNodes (&CFGraph),
&Node := loopNodes (&NodeList)

====>

getLastNodeId (&CFGraph) = fst(&Node)
%% Traverse the nodes and edges

[loopNodes-1]
empty (tail (&NodeList)) == true,
&Node := head(&NodeList)

====>

loopNodes (&NodeList) = &Node

[default-loopNodes]
empty (tail (&NodeList)) == false

====>

loopNodes (&NodeList) = loopNodes(tail (&NodeList))

[loopEdges-1]
empty (tail (4Edgelist)) == true,
&Edge := head(&EdgeList)
====>
loopEdges (&¥EdgeList) = &Edge
[default-loopEdges]
empty (tail (4EdgelList)) == false
====>

loopEdges (&¥EdgeList) = loopEdges(tail (&EdgeList))

%% Find a certain node

108

[findNode-1]
&Node := head(&NodeList),
fst(&Node) == &Integer
====>

findNode (&NodeList, &Integer)

[findNode-2]
&Node := head(&NodeList),
&Integerl := fst(&Node),
&Integerl !'= &Integer,
&Integerl != -1
====>

findNode (&NodeList, &Integer)

109

&Node

findNode(tail (&NodeList), &Integer)

D.6 Building the control flow graph (SDF)

%% Module for transformation form Normalized C to control flow graph

%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

module BuildCFG

imports CFGraph
imports DeclStat
imports NormalForm

imports basic/Integers
imports basic/Whitespace
imports basic/Booleans

%% import for graph-integer tuple. Integer holds node numbering hint

imports Triple[Integer Integer Integer]
imports Tuple[CFGraph Triple[[Integer,Integer,Integer]]]
imports Tuple[Identifier Integer]

%% imports for listificatiomns

imports containers/List[FunctionDefinition]

imports containers/List[DeclStat]

imports containers/List[Identifier]

imports containers/List[Tuple[[Identifier,Integer]]]

exports

aliases
Triple[[Integer,Integer,Integer]]
Tuple[[CFGraph,Triple[[Integer,Integer,Integer]]]]

context-free start-symbols
TranslationUnit
CFGraph
FunctionDefinition
List[[DeclStat]]
List[[FunctionDefinition]]
List[[Identifier]]
List[[Tuple[[Identifier,Integer]]]]
Info
CFGtuple
Boolean
Statement
Declaration
Identifier

context-free syntax

110

-> Info
-> CFGtuple

%% Main function and Constructor

parse(TranslationUnit) -> CFGraph
emptyCFGtuple (Integer) -> CFGtuple
%% Listify the Function Definitions

getFunc(TranslationUnit, List[[FunctionDefinition]]) ->
List[[FunctionDefinition]] {traversal(accu, top-down, break)}

getFunc (FunctionDefinition, List[[FunctionDefinition]]) ->
List[[FunctionDefinition]] {traversal(accu, top-down, break)}

%% Listify the Global Declarations

getGlobals(TranslationUnit, List[[DeclStat]]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

getGlobals (ExternalDeclaration, List[[DeclStat]l]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

%% Listify function names and get function name
getFunctionName (FunctionDefinition) -> Identifier

funcNameListify(List[[FunctionDefinition]], List[[Identifier]]) ->
List[[Identifier]]

%% Get the Main function out of all function declared
getMainFunction(List [[FunctionDefinition]]) -> FunctionDefinition
returnFunc (List[[FunctionDefinition]], Identifier) -> FunctionDefinition
%% Create Lists of Declarations and Statements for easy handling

declListify(FunctionDefinition, List[[DeclStatl]]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

declListify(Declaration*, List[[DeclStat]]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

declListify(Declaration, List[[DeclStat]]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

statListify(FunctionDefinition, List[[DeclStat]]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

111

statListify(Statement*, List[[DeclStat]]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

statListify(Statement, List[[DeclStat]]) ->
List[[DeclStat]] {traversal(accu, top-down, break)}

%% Auxiliary functions for disecting Graph tuple

getCFGraph (CFGtuple) -> CFGraph

getInfo(CFGtuple) -> Info

%% Constructor

emptyCFGtuple () -> CFGtuple

%% Makes a subgraph from a DeclStat with arguments:

%% DeclStat, Hint for node#, FunctionList, List funcnames,

%% current func + hist, current func start, break dest.

makeBlock(DeclStat, Integer, List[[FunctionDefinition]],
List[[Identifier]], List[[Tuple[[Identifier,Integer]]]],
Integer) -> CFGtuple

%% Language construction checks

isBreak (DeclStat) -> Boolean

checkReturn(DeclStat) -> Boolean

checkRecursion(DeclStat, Identifier, List[[Identifier]])-> Boolean

checkCall(Identifier, List[[Tuple[[Identifier,Integer]]]]) -> Integer

%% If cuntion is called, add call to call queue

addCall(Identifier, Integer, List[[Tuple[[Identifier,Integer]]]])
-> List[[Tuple[[Identifier,Integer]]]]

%% Remove old edge when insering a subgraph and subgraph insertion
remove0ldEdge (CFGraph) -> CFGraph
insertBlock (CFGtuple, CFGtuple, Integer, Integer) -> CFGtuple
%% Main function for building the CFGraph

buildCFGraph (List [[DeclStat]], List[[FunctionDefinition]],
List[[Identifier]]) -> CFGtuple

112

%% ConstructCFG builds a CFG using a list of DeclStats

%% (function body) with arguments:

%% Begin, End, Statement* tuple, Functionlist, function names,
Y%dhcurrent function, current function start, breakdest.

constructCFG(Integer, Integer, List[[DeclStat]], CFGtuple,
List[[FunctionDefinition]], List[[Identifier]],
List[[Tuple[[Identifier,Integer]]]], Integer) -> CFGtuple

hiddens
variables

"gTranslationUnit" -> TranslationUnit
"gFunctionDefinition" [0-9] * -> FunctionDefinition
"gFunctionList" -> List[[FunctionDefinition]]
"&CFGraph" [0-9]* -> CFGraph
"&Specifierx*"[0-9]* -> Specifierx
"&Declarator'" [0-9] * -> Declarator
"&Declarationx*" [0-9]* -> Declarationx*
"&Declaration" [0-9]* -> Declaration
"&DeclStat" [0-9]* -> DeclStat
"&DSList" [0-9] * -> List[[DeclStat]]
"gIdList" [0-9]* -> List[[Identifier]]
"gStatement*" [0-9] * -> Statement*
"gStatement" [0-9] * -> Statement
"&Loopbody" [0-9] * -> Statement*
"gInitDeclarators" [0-9]* -> { InitDeclarator ","}+
"&CFGtuple" [0-9]* -> CFGtuple
"&Info" [0-9] * -> Info
"gHint" [0-9] * -> Integer
"&Integer" [0-9]* -> Integer
"gBoolean" [0-9]* -> Boolean
"&NodeList" [0-9]* -> NodeList
"&EdgeList" [0-9]* -> Edgelist
"gExpression'" [0-9]* -> Expression
"gExpression*" [0-9] * -> {Expression ","}x*
"&Specifier+"[0-9]* -> Specifier+
"&Specifier*" [0-9]* -> Specifier*
"gIdentifier" [0-9]* -> Identifier
"&Edge" [0-9] * -> Tuple[[Integer,Integer]]
"&Begin'" [0-9]* -> Integer
"&End" [0-9] * -> Integer
"&Guard" [0-9] * -> Expression
"§ExternalDeclaration" [0-9] * -> ExternalDeclaration
"§Parameters?" [0-9] * -> Parameters?
"§Parameters' [0-9] * -> Parameters
"&Calls" [0-9]* -> List[[Tuple[[Identifier,Integer]]]]
"&Call" [0-9] * -> Tuple[[Identifier,Integer]]

113

D.7 Building the control flow graph (ASF)

equations
%% Main function

[parse-1]
&DSList := concat(getGlobals(&TranslationUnit, []), [SEPARATE]),
&FunctionList := getFunc(&TranslationUnit, []),
&IdList := funcNameListify(&FunctionList, []),
&FunctionDefinition := getMainFunction(&FunctionList),
&DSListl := declListify(&FunctionDefinition, []),
&DSList2 := statListify(&FunctionDefinition, &DSListl),
%% Include global ATerm declarations
&DSList3 := concat(&DSList, &DSList2),
&CFGtuple := buildCFGraph (&DSList3, &FunctionList, &IdList)
====>

parse(&TranslationUnit) = getCFGraph(&CFGtuple)
hh getFunc - Listi a unction Definitions in source code
hhh getF Listify all F i Definiti i d
[getFunc-1]

getFunc(&FunctionDefinition, &FunctionList) =

concat (&FunctionList, [&FunctionDefinition])

%% getGlobals - Listify all ATerms that are globally
%% defined (not in a function definition)

[getGlobals-1]

&Declaration := &ExternalDeclaration,
&Specifier* ATerm &InitDeclarators ; := &Declaration
====>

getGlobals (&ExternalDeclaration, &DSList) =
concat (&DSList, [&Declaration])

[getGlobals-2]

&Declaration := &ExternalDeclaration,
&Specifier* ATermInt &InitDeclarators ; := &Declaration
====>

getGlobals (¥ExternalDeclaration, &DSList) =
concat (&DSList, [&Declaration])

[getGlobals-3]

&Declaration := &ExternalDeclaration,
&Specifier* ATbool &InitDeclarators ; := &Declaration
====>

getGlobals (&ExternalDeclaration, &DSList) =
concat (&DSList, [&Declaration])

[getGlobals-4]

114

&Declaration := &ExternalDeclaration,

&Specifier* ATermReal &InitDeclarators ; := &Declaration

====>

getGlobals (&ExternalDeclaration, &DSList)
concat (&DSList, [&Declaration])

[getGlobals-5]

&Declaration := &ExternalDeclaration,
&Specifier* ATermAppl &InitDeclarators ; := &Declaration
====>

getGlobals (&ExternalDeclaration, &DSList)
concat (&DSList, [&Declaration])

[getGlobals-6]

&Declaration := &ExternalDeclaration,
&Specifier* ATermList &InitDeclarators ; := &Declaration
====>

getGlobals (¥ExternalDeclaration, &DSList)
concat (&DSList, [&Declaration])

[getGlobals-T7]

&Declaration := &ExternalDeclaration,
&Specifier* ATermBlob &InitDeclarators ; := &Declaration
====>

getGlobals (&ExternalDeclaration, &DSList)
concat (&DSList, [&Declaration])

[getGlobals-8]

&Declaration := &ExternalDeclaration,
&Specifier* ATermPlaceholder &InitDeclarators ; := &Declaration
====>

getGlobals (&ExternalDeclaration, &DSList)
concat (&DSList, [&Declaration])

[getGlobals-9]

&Declaration := &ExternalDeclaration,
&Specifier* ATermTable &InitDeclarators ; := &Declaration
====>

getGlobals (¥ExternalDeclaration, &DSList)
concat (&DSList, [&Declaration])

[getGlobals-10]

&Declaration := &ExternalDeclaration,
&Specifier* ATermIndexedSet &InitDeclarators ; := &Declaration
====>

getGlobals (¥ExternalDeclaration, &DSList) =
concat (&DSList, [&Declaration])

[getGlobals-11]
&Declaration := &ExternalDeclaration,

115

&Specifier* AFun &InitDeclarators ; := &Declaration

=——==>
getGlobals (¥ExternalDeclaration, &DSList) =
concat (&DSList, [&Declaration])

[default-getGlobals]
getGlobals(&Declaration, &DSList) = &DSList

%% getMainFunction - get the Main function out of all functions declared

[getMainFunction-1]

&FunctionDefinition := head(&FunctionList),
getFunctionName (&FunctionDefinition) == main
====>

getMainFunction(&FunctionlList) = &FunctionDefinition

[default-getMainFunction]
getMainFunction(&FunctionList) = getMainFunction(tail(&FunctionList))

%% getFunctionName - get name of given function

[getFunctionName-1]
&Specifier* &Declarator &Declarationx1

{ &Declaration*2 &Statement* } := &FunctionDefinition,
&Declarator2 (&Parameters) := &Declarator,
&Identifier := &Declarator2

====>

getFunctionName (&FunctionDefinition) = &Identifier
%% returnFunc - Returns the function definition matching the Identifier

[returnFunc-1]

&FunctionDefinition := head(&FunctionList),
&Identifierl := getFunctionName(&FunctionDefinition),
&Identifierl == &Identifier

====>

returnFunc (&FunctionlList, &Identifier) = &FunctionDefinition

[default-returnFunc]
returnFunc (&FunctionList, &Identifier)
returnFunc (tail (&FunctionList), &Identifier)

%% funcListify - Listify the functionnames in the file for matching

[funcNameListify-1]
empty (¥FunctionlList) == true
====>

funcNameListify(&FunctionList, &IdList) = &IdList

116

[default-funcNameListify]
&Identifier := getFunctionName(head(&FunctionList)),
&IdList2 := cons(&Identifier, &IdList)
====>
funcNameListify(&FunctionList, &IdList) =
funcNameListify(tail (&FunctionList), &IdList2)

%% declListify - Listify all Declarations

[declListify-1]
declListify(&Declaration, &DSList) =
concat (&DSList, [&Declaration])

%% statListify - Listify all Statements

[statListify-1]
statListify(&Statement, &DSList) =
concat (&DSList, [&Statement])

%% Start the build process with initial graph

[buildCFGraph-1]

&CFGraph := initialCFGraph(),

&Info := makeTriple(0, 1, 1),

&CFGtuple := makeTuple(&CFGraph, &Info),

&Calls := addCall(main, 0, [1)

====>

buildCFGraph(&DSList, &FunctionList, &IdList) =
constructCFG(0, 1, &DSList, &CFGtuple, &FunctionList,
&IdList, &Calls, 0)

%% Get functions

[getCFGraph-1]
getCFGraph (&4CFGtuple) = fst(&CFGtuple)

[getInfo-1]
getInfo (&CFGtuple) = snd(&CFGtuple)

%% Constructor for empty graph

[emptyCFGtuple-1]
emptyCFGtuple (&Hint) = makeTuple(emptyCFGraph(), (0,&Hint,0))

%% Construct CFG builder with eye for break and return statements
[constructCFG-empty]
empty (&¥DSList) == true

====>

constructCFG(&Integerl, &Integer2, &DSList, &CFGtuple,

117

&FunctionList, &IdList, &Calls, &Integer10) = &CFGtuple

[constructCFG-nonempty]

empty (&¥DSList) == false,
%% Construct function arguments

&DeclStat := head(&DSList),

checkReturn(&DeclStat) == false,

isBreak (&DeclStat) == false,

&Hint := snd(getInfo(&CFGtuple)),
%% Create a block to insert

&CFGtuplel := makeBlock(&DeclStat, &Hint, &FunctionList,
&IdList, &Calls, &Integer10),
%% Insert 1st into 2nd

&CFGtuple2 := insertBlock (&CFGtuplel, &CFGtuple, &Integerl, &Integer2),

&End := trd(getInfo(&CFGtuple2))

====>

constructCFG(&Integerl, &Integer2, &DSList, &CFGtuple, &FunctionList,
&IdList, &Calls, &Integer10) = constructCFG(&End, &Integer2,
tail(&DSList), &CFGtuple2, &FunctionList, &IdList, &Calls, &Integer10)

[constructCFG-break]

%% Upon break, empty DSlist. Break ends loop

empty (&DSList) == false,
%% Construct function arguments

&DeclStat := head(&DSList),

checkReturn(&DeclStat) == false,

isBreak (&DeclStat) == true,

&Hint := snd(getInfo(&CFGtuple)),
%% Create a block to insert

&CFGtuplel := makeBlock(&DeclStat, &Hint, &FunctionlList, &IdList,
&Calls, &Integer10),
%% Insert 1st into 2nd

&CFGtuple2 := insertBlock (&CFGtuplel, &CFGtuple, &Integerl, &Integer10),

&End := trd(getInfo(&CFGtuple2))

====>

constructCFG(&Integerl, &Integer2, &DSList, &CFGtuple, &FunctionList,
&IdList, &Calls, &Integer10) = constructCFG(&End, &Integer2, [],
&CFGtuple2, &FunctionList, &IdList, &Calls, &Integer10)

[constructCFG-return-main]
empty (&¥DSList) == false,

%% Construct function arguments
&DeclStat := head(&DSList),
checkReturn(&DeclStat) == true,
fst(head(&Calls)) == main,

&Hint := snd(getInfo(&CFGtuple)),

%% Create a block to insert
&CFGtuplel := makeBlock(&DeclStat, &Hint, &FunctionList,

&IdList, &Calls, &Integer10),

%% Insert 1st into 2nd

118

&CFGtuple2 := insertBlock (&CFGtuplel, &CFGtuple, &Integerl, 1)

====>

constructCFG(&Integerl, &Integer2, &DSList, &CFGtuple, &FunctionList,
&IdList, &Calls, &Integer10) = &CFGtuple2

[constructCFG-return-nonmain]

empty (&DSList) == false,
%% Construct function arguments

&DeclStat := head(&DSList),

checkReturn(&DeclStat) == true,

fst(head(&Calls)) !'= main,

&Hint := snd(getInfo(&CFGtuple)),
%% Create a block to insert

&CFGtuplel := makeBlock(&DeclStat, &Hint, &FunctionlList, &IdList,
&Calls, &Integer10),
%% Insert 1st into 2nd

&CFGtuple2 := insertBlock (&CFGtuplel, &CFGtuple, &Integerl, &Integer2)

====>

constructCFG(&Integerl, &Integer2, &DSList, &CFGtuple, &FunctionList,
&IdList, &Calls, &Integer10) = &CFGtuple2

%% Check is DeclStat is return, break or recursive

[checkReturn-1]
return &Expression ; := &DeclStat
====>

checkReturn(&DeclStat) true

[default-checkReturn]
checkReturn(&DeclStat) = false

[isBreak-1]
break ; == &DeclStat
====>
isBreak (&DeclStat) = true

[isBreak-2]
break ; != &DeclStat
====>
isBreak (&DeclStat) = false

[checkRecursion-1]

&Identifier (&Expressionx) ; := &DeclStat,
elem(&Identifier, &IdList) == true
=——==>

checkRecursion(&DeclStat, &Identifier, &IdList) = true
%% Remove old ege for insertion of a subgraph

[removeOldEdge-1]

119

&NodeList := getNodes (&CFGraph),
&Edgelist := getEdges (&CFGraph)

====>

removeOldEdge (&CFGraph) = makeCFGraph(&NodeList,tail (&EdgeList))
%% Insert a subgraph into the while CFG

[insertBlock-1]
&CFGraphl := getCFGraph (&CFGtuplel),
%% Info of graph to be added
&Beginl := fst(getInfo(&CFGtuplel)),
&Hint1l := snd(getInfo(&CFGtuplel)),
&Endl := trd(getInfo(&CFGtuplel)),
%% Get reveiving Graph
&CFGraph := remove0ldEdge (getCFGraph (&CFGtuple)),
&CFGraph3 := mergeCFGraphs (&CFGraphl, &CFGraph),
&CFGraph4 := addEdgeToCFGraph(&Integerl, &Beginl, &CFGraph3),
&CFGraphb5 := addEdgeToCFGraph(&Endl, &Integer2, &CFGraph4),
&Info := makeTriple(&Integerl, &Hintl, &Endl),
&CFGtupleb := makeTuple (&CFGraph5, &Info)
====>

insertBlock (&CFGtuplel, &CFGtuple, &Integerl, &Integer2) = &CFGtupleb

%% Construct subgraph per language construction

[makeBlock-functioncall-not-in-file]
&Identifierl = &Identifier2 (&Expression*) ; := &DeclStat,
elem(&Identifier2, &IdList) == false,
&CFGraph := emptyCFGraph(),
&CFGraphl := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),
&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),
&CFGtuple := makeTuple(&CFGraphl, &Info)
====>
makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
&CFGtuple

[makeBlock-functioncall-not-in-file-1]
&Identifier2 (&Expression*) ; := &DeclStat,
elem(&Identifier2, &IdList) == false,
&CFGraph := emptyCFGraph(),
&CFGraphl := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),
&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),
&CFGtuple := makeTuple(&CFGraphl, &Info)
====>
makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
&CFGtuple

[makeBlock-functioncall-recursion]

&Identifier9 (&Expression*) ; := &DeclStat,
&Integerll := checkCall(&Identifier9, &Calls),

120

&Integerll != -1,

&CFGraph := emptyCFGraph(),

&CFGraphl := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),

&CFGraph2 := addEdgeToCFGraph((&Hint + 1), &Integerll, &CFGraphl),

&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),

&CFGtuple := makeTuple (&CFGraph2, &Info)

====>

makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
&CFGtuple

[makeBlock-functioncall-recursion-1]

&Identifier8 = &Identifier9 (&Expression*) ; := &DeclStat,
&Integerll := checkCall(&Identifier9, &Calls),
&Integerll != -1,

&CFGraph := emptyCFGraph(),

&CFGraphl := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),

&CFGraph2 := addEdgeToCFGraph((&Hint + 1), &Integerll, &CFGraphl),

&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),

&CFGtuple := makeTuple (&CFGraph2, &Info)

====>

makeBlock (&DeclStat, &Hint, &FunctionlList, &IdList, &Calls, &Integerl0) =
&CFGtuple

[makeBlock-functioncall-paste]

&Identifier2 (&Expression*) ; := &DeclStat,

elem(&Identifier2, &IdList) == true,

&Integerll := checkCall(&Identifier2, &Calls),

&Integerll == -1,

&CFGraph := emptyCFGraph(),

&Begin := &Hint + 1,

&End := &Hint + 2,

&Calls2 := addCall(&Identifier2, &Begin, &Calls),

&CFGraphl := addNodeToCFGraph(&Begin, &DeclStat, &CFGraph),

&CFGraph2 := addNodeToCFGraph(&End, EXIT, &CFGraphl),

&CFGraph4 := addEdgeToCFGraph(&Begin, &End, &CFGraph2),

&CFGtuple := makeTuple(&CFGraph4, makeTriple(&Begin, (&Hint + 2), &End)),

&FunctionDefinition := returnFunc(&FunctionList, &Identifier2),

&DSListl := declListify(&FunctionDefinition, []),

&DSList2 := statListify(&FunctionDefinition, &DSListl),

&CFGtuplel := constructCFG(&Begin, &End, &DSList2, &CFGtuple, &FunctionList,
&IdList, &Calls2, &Begin),

&CFGraphb5 := getCFGraph (&CFGtuplel),

&Hintl := snd(getInfo(&CFGtuplel))

====>

makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
makeTuple (4CFGraphb, makeTriple(&Begin, &Hintl, &End))

[makeBlock-functioncall-paste-1]
&Identifierl = &Identifier2 (&Expression*) ; := &DeclStat,
elem(&Identifier2, &IdList) == true,

121

&Integerll := checkCall(&Identifier2, &Calls),

&Integerll == -1,

&CFGraph := emptyCFGraph(),

4Begin := &Hint + 1,

&End := &Hint + 2,

&Calls2 := addCall(&Identifier2, &Begin, &Calls),

&CFGraphl := addNodeToCFGraph(&Begin, &DeclStat, &CFGraph),

&CFGraph2 := addNodeToCFGraph(&End, EXIT, &CFGraphl),

&CFGraph4 := addEdgeToCFGraph(&Begin, &End, &CFGraph2),

&CFGtuple := makeTuple(&CFGraph4, makeTriple(&Begin, (&Hint + 2), &End)),

&FunctionDefinition := returnFunc(&FunctionList, &Identifier2),

&DSListl := declListify(&FunctionDefinition, []),

&DSList2 := statListify(&FunctionDefinition, &DSListl),

&CFGtuplel := constructCFG(&Begin, &End, &DSList2, &CFGtuple, &FunctionList,
&IdList, &Calls2, &Begin),

&CFGraphb5 := getCFGraph (&CFGtuplel),

&Hint1l := snd(getInfo(&CFGtuplel))

====>

makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
makeTuple (&CFGraphb5, makeTriple(&Begin, &Hintl, &End))

[makeBlock-return]
return &Expression ; := &DeclStat,
&CFGraph := emptyCFGraph(),
&CFGraphl := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),
&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),
&CFGtuple := makeTuple(&CFGraphl, &Info)
====>
makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
&CFGtuple

[makeBlock-break]
isBreak (&DeclStat) == true,
&CFGraph := emptyCFGraph(),
&CFGraph2 := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),
&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),
&CFGtuple := makeTuple(&CFGraph2, &Info)
====>
makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
&CFGtuple

[makeBlock-declaration]
&Declaration := &DeclStat,
&CFGraph := emptyCFGraph(),
&CFGraphl := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),
&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),
&CFGtuple := makeTuple(&CFGraphl, &Info)
====>
makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
&CFGtuple

122

[makeBlock-while]

while (&Guard) { &Statement* } := &DeclStat,

&CFGraph := emptyCFGraph(),

&Begin := &Hint + 1,

&End := &Hint + 2,

&CFGraphl := addNodeToCFGraph(&Begin, &Guard, &CFGraph),

&CFGraph2 := addNodeToCFGraph(&End, EXIT, &CFGraphl),

&CFGraph3 := addEdgeToCFGraph(&Begin, &End, &CFGraph2),

&CFGraph4 := addEdgeToCFGraph(&Begin, &Begin, &CFGraph3),

&CFGtuple := makeTuple(&CFGraph4, makeTriple(&Begin, (&Hint + 2), &End)),

&DSListl := statListify(&Statementx*, []1),

&CFGtuplel := constructCFG(&Begin, &Begin, &DSListl, &CFGtuple,
&FunctionList, &IdList, &Calls, &End),

&CFGraphb5 := getCFGraph (&CFGtuplel),

&Hintl := snd(getInfo(&CFGtuplel))

====>

makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
makeTuple (4CFGraphb, makeTriple(&Begin, &Hintl, &End))

[makeBlock-ifthenelse]

if (&Guard) { &Statementx1 } else { &Statement*2 } := &DeclStat,

&CFGraph := emptyCFGraph(),

&Begin := &Hint + 1,

&End := &Hint + 2,

&CFGraphl := addNodeToCFGraph(&Begin, &Guard, &CFGraph),

&CFGraph2 := addNodeToCFGraph(&End, EXIT, &CFGraphl),

&CFGraph3 := addEdgeToCFGraph(&Begin, &End, &CFGraph2),

&CFGtuple := makeTuple(&CFGraph3, makeTriple(&Begin, (&Hint + 2), &End)),

&DSListl := statListify(&Statementx*1, []),

&DSList2 := statListify(&Statement*2, []),

&CFGtuplel := constructCFG(&Begin, &End, &DSListl, &CFGtuple, &FunctionList,
&IdList, &Calls, &Integer10),

&CFGraph4 := getCFGraph (&CFGtuplel),

&Info := getInfo(&CFGtuplel),

&CFGraphb5 := addEdgeToCFGraph(&Begin, &End, &CFGraph4),

&CFGtuple2 := makeTuple (&CFGraph5, &Info),

&CFGtuple3 := constructCFG(&Begin, &End, &DSList2, &CFGtuple2, &Functionlist,
&IdList, &Calls, &Integer10),

&CFGraph6 := getCFGraph (&CFGtuple3),

&Hintl := snd(getInfo(&CFGtuple3))

====>

makeBlock (&DeclStat, &Hint, &FunctionlList, &IdList, &Calls, &Integerl0) =
makeTuple (4CFGraph6, makeTriple(&Begin, &Hintl, &End))

[makeBlock-do]
do { &Statement* } while (&Guard) ; := &DeclStat,
&CFGraph := emptyCFGraph(),
%% Skipnode
&Begin := &Hint + 1,

123

%% Skipnode
&Endl := &Hint + 2,
%% Guard
&Beginl := &Hint + 3,
W% Exit
&End := &Hint + 4,
&CFGraphl := addNodeToCFGraph(&Begin, SKIP , &CFGraph),
&CFGraph2 := addNodeToCFGraph(&Endl, SKIP, &CFGraphl),
&CFGraph3 := addNodeToCFGraph(&Beginl, &Guard, &CFGraph2),
&CFGraph4 := addNodeToCFGraph(&End, EXIT, &CFGraph3),
&CFGraphb5 := addEdgeToCFGraph(&Endl, &Beginl, &CFGraph4),
&CFGraph6 := addEdgeToCFGraph(&Beginl, &Begin, &CFGraph5),
&CFGraph7 := addEdgeToCFGraph(&Beginl, &End, &CFGraph6),
&CFGraph8 := addEdgeToCFGraph(&Begin, &Endl, &CFGraph7),
&DSListl := statListify(&Statementx*, []1),
&CFGtuple := makeTuple(&CFGraph8, makeTriple(&Begin, (&Hint + 4), &End)),
&CFGtuplel := constructCFG(&Begin, &Endl, &DSListl, &CFGtuple,
&FunctionList, &IdList, &Calls, &End),
&CFGraph9 := getCFGraph (&CFGtuplel),
&Hintl := snd(getInfo(&CFGtuplel))
====>
makeBlock (&DeclStat, &Hint, &FunctionList, &IdList, &Calls, &Integer10) =
makeTuple (4CFGraph9, makeTriple(&Begin, &Hintl, &End))

[default-makeBlock]
&CFGraph := emptyCFGraph(),
&CFGraphl := addNodeToCFGraph((&Hint + 1), &DeclStat, &CFGraph),
&Info := makeTriple((&Hint + 1), (&Hint + 1), (&Hint + 1)),
&CFGtuple := makeTuple (&CFGraphl, &Info)
====>
makeBlock (&DeclStat, &Hint, &FunctionlList, &IdList, &Calls, &Integerl0) =
&CFGtuple

%% Add function call to call queue

[addCall-1]
addCall(&Identifier, &Integer, &Calls) =
concat ([makeTuple(&Identifier, &Integer)], &Calls)

%% Lookup function for call queue

[checkCall-1]
fst(head(&Calls)) !'= &Identifier

====>

checkCall (&Identifier, &Calls) = checkCall(&Identifier, tail(&Calls))

[checkCall-2]
fst(head(&Calls)) == &Identifier

====>

checkCall (&Identifier, &Calls) = snd(head(&Calls))

124

[checkCall-3]
checkCall (&Identifier, []) = -1

125

Appendix E

Dual Graph

E.1 Dual Graph structure (SDF)

%% Dual graph structure for program flow
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

module Dualgraph
imports basic/Whitespace
imports basic/Integers

imports DeclStat

imports Triple[Integer DeclStat Integer]
imports containers/List[Triple[[Integer,DeclStat,Integer]]]

exports
aliases
List[[Triple[[Integer,DeclStat,Integer]]]] -> DualGraph
Triple[[Integer,DeclStat,Integer]] -> DualEdge

context-free start-symbols
Triple[[Integer,DeclStat,Integer]]
DualGraph
Integer
DeclStat
Boolean

sorts DualGraph
context-free syntax

getHighestIndex(DualGraph, Integer) -> Integer
addEdge (Integer, DeclStat, Integer, DualGraph) -> DualGraph

126

hiddens

variables
"gInteger" [0-9]* -> Integer
"&DeclStat" [0-9]* -> DeclStat
"&Boolean" [0-9] * -> Boolean
"&DualEdge" [0-9] * -> Triple[[Integer,DeclStat,Integer]]
"&DualGraph" [0-9] * -> DualGraph

127

E.2 Dual Graph structure equations (ASF)

equations

[addEdge-1]
&DualEdge := makeTriple(&Integerl, &DeclStat, &Integer2)
====>
addEdge (&Integerl, &DeclStat, &Integer2, &DualGraph) =
concat (&DualGraph, [&DualEdge])

[getHighestIndex-1]
empty (&¥DualGraph) == true

====>

getHighestIndex(&DualGraph, &Integer) = &Integer
[getHighestIndex-2]

empty (&¥DualGraph) == false,

&DualEdge := head(&DualGraph),

&Integerl := trd(&DualEdge),

&Integer2 := max(&Integer, &Integerl)

====>

getHighestIndex(&DualGraph, &Integer) =

getHighestIndex(tail (&4DualGraph), &Integer2)

128

E.3 Building the dual graph (SDF)

%% Module for transforming a CFG into a dual graph
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)
module Dual
imports Dualgraph
imports BuildCFG
imports DeclStat
exports
context-free start-symbols
context-free syntax

makeDualGraph (CFGraph) -> DualGraph

translate(Tuple[[Integer,DeclStat]])
-> Triple[[Integer,DeclStat,Integer]]

recurseEdges (EdgeList, NodeList, DualGraph) -> DualGraph
reverseEdges (EdgelList, EdgelList) -> EdgeList
reverseNodes (NodeList, NodeList) -> Nodelist

hiddens

variables

"&CFGraph" [0-9] * -> CFGraph
"&Edge" [0-9] * -> Tuple[[Integer,Integer]]
"&Node" [0-9] * -> Tuple[[Integer,DeclStat]]
"gNodeList" [0-9] * -> NodeList
"&EdgeList" [0-9] * -> Edgelist
"&DualGraph" [0-9] * -> DualGraph
"&DualEdge" [0-9] * -> DualEdge
"gInteger" [0-9]* -> Integer
"&DeclStat" [0-9]* -> DeclStat
"&Specifier+"[0-9]* -> Specifier+
"&Identifier" [0-9]* -> Identifier

129

E.4 Building the dual graph (ADF)

equations
%% Reversal function for more intuitive look

[reverseEdges-1]
reverseEdges ([], &EdgeList2) = &EdgeList2

[reverseEdges-2]

reverseEdges (&EdgeListl, &Edgelist2) = reverseEdges(tail (&EdgelListl),
cons (head (&EdgeListl), &EdgeList2))

[reverseNodes-1]
reverseNodes([], &NodeList2) = &NodeList2

[reverseNodes-2]
reverseNodes (&NodeList1l, &NodeList2) = reverseNodes(tail (&NodeList1),
cons (head (&NodeList1), &NodeList2))

%% Construction of Dual Graph

[makeDualGraph-1]
&NodeList := reverseNodes (getNodes (&CFGraph), [1),
&Edgelist := reverseEdges (getEdges (&CFGraph), [1)

====>

makeDualGraph (&CFGraph) = recurseEdges(&EdgelList, &NodeList, [])
%% traverse all edges of CFG and transformation into dual graph

[recurseEdges-1]
empty (¥EdgelList) == true

====>

recurseEdges (§EdgelList, &NodeList, &DualGraph) = &DualGraph

[recurseEdges-2]
empty (¥EdgeList) == false,
&Edgel := head(&Edgelist),
&Integerl := fst(&Edgel),
&Integer2 := snd(&Edgel),
&Integer2 != 1,
&Node := findNode(&NodelList, &Integer2),
&DeclStat := snd(&Node),
&DualGraphl := addEdge(&Integerl, &DeclStat , &Integer2, &DualGraph)
====>
recurseEdges (¥EdgeList, &NodeList, &DualGraph) =
recurseEdges(tail (4Edgelist), &NodeList, &DualGraphl)

[recurseEdges-3]

130

empty (&EdgelList) == false,

&Edgel := head(&Edgelist),

&Integerl := fst(&Edgel),

&Integer2 := snd(&Edgel),

&Integer2 !'= 1,

&Node := findNode(&NodeList, &Integer2),

&DeclStat := snd(&Node),

&DualGraphl := addEdge(&Integerl, &DeclStat, &Integer2, &DualGraph)

====>

recurseEdges (&EdgeList, &NodeList, &DualGraph) =
recurseEdges(tail (4Edgelist), &NodeList, &DualGraphl)

[deafult-recurseEdges]
empty (¥EdgeList) == false,
&Edgel := head(&Edgelist),
&Integerl := fst(&Edgel),
&Integer2 := snd(&Edgel),
&Integer2 ==
====>
recurseEdges (&EdgeList, &NodeList, &DualGraph) =
recurseEdges (tail (4EdgeList), &NodeList, &DualGraph)

131

Appendix F

Abstract Graph

F.1 Label

%% Label type for abstraction labels
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

module Label

imports basic/Strings
imports languages/c/syntax/Identifiers

exports
sorts Label

context-free start-symbols
Label

context-free syntax
"use_" Identifier
"decl_" Identifier
"def_" Identifier
"prot_" Identifier
"unprot_" Identifier

IIiII

hiddens
variables
"gLabel" [0-9]*

Label
Label
Label
Label
Label
Label

Label

F.2 Abstract Graph structure (SDF)

%% Module for Abstract graph datastructure

%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

132

module AbstractGraph

imports basic/Whitespace
imports basic/Integers
imports Label

imports Triple[Integer Label Integer]
imports containers/List[Triple[[Integer,Label,Integer]]]

exports
aliases

List[[Triple[[Integer,Label,Integer]]]] -> AbstGraph
Triple[[Integer,Label,Integer]] -> AbstEdge

context-free start-symbols
Triple[[Integer,Label,Integer]]
AbstGraph
Label
Integer
Boolean

sorts AbstGraph
context-free syntax

addEdge (Integer, Label, Integer, AbstGraph) -> AbstGraph

makeAbstEdge (Integer, Label, Integer) -> AbstEdge
mergeAbstGraphs (AbstGraph, AbstGraph) -> AbstGraph
emptyAbstGraph () -> AbstGraph
getIndex (AbstGraph, Integer) -> Integer

hiddens

variables

"&Integer" [0-9]* -> Integer
"&Label" [0-9]* -> Label
"&AbstEdge" [0-9] * -> Triple[[Integer,Label,Integer]]
"&AbstGraph" [0-9] -> AbstGraph

133

F.3 Abstract Graph structure equations (ASF)

equations

[addEdge-1]

&AbstEdge := makeTriple(&Integerl, &Label, &Integer2)

====>

addEdge (&Integerl, &Label, &Integer2, &AbstGraph) =

[makeAbstEdge-1]

concat (&AbstGraph, [&AbstEdgel])

makeAbstEdge (4Integerl, &Label, &Integer2) =

makeTriple(&Integerl, &Label, &Integer2)

[mergeAbstGraphs-1]
mergeAbstGraphs (&AbstGraphl, &AbstGraph2) =

concat (&AbstGraphl, &AbstGraph2)

[emptyAbstGraph-1]
emptyAbstGraph() = []

[getIndex-1]

empty (&AbstGraph) == true

====>

getIndex (&AbstGraph, &Integer)

[getIndex-2]

&Integer

empty (¥AbstGraph) == false,
&AbstEdge := head(&AbstGraph),
&Integerl := trd(&AbstEdge)

====>

getIndex (&AbstGraph, &Integer) =

getIndex (tail (&AbstGraph) , max(&Integer, &Integerl))

134

F.4 Building the abstract graph (SDF)

module Abstraction

imports Dual
imports AbstractGraph
imports containers/List[Identifier]

exports
context-free start-symbols
List[[Identifier]]
AbstGraph
AbstEdge
Label
Boolean

context-free syntax

%% Collect all defined ATerms

collectATerms (DualGraph, List[[Identifier]]) ->
List[[Identifier]] {traversal(accu, top-down, break)}

collectATerms (DualEdge, List[[Identifier]]) ->
List[[Identifier]] {traversal(accu, top-down, break)}

collectATerms (DeclStat, List[[Identifier]]) ->
List[[Identifier]] {traversal(accu, top-down, break)}

%% Purge list: remove local ATerms

purgeATermList (List[[Identifier]], List[[Identifier]])
-> List[[Identifier]]

%% Main function + Auxilliary functions for transformations
transform(DualGraph) -> AbstGraph

transformGraph(DualGraph, AbstGraph, List[[Identifier]], Integer)
-> AbstGraph

transformEdge (DualEdge, List[[Identifier]], Integer)
-> AbstGraph

%% Check functions for protect/unprotect and assignment

isProtect (Expression) -> Boolean
isAssign(Expression) -> Boolean
isFcall (Expression) -> Boolean

%% Functiopns fow unfolding Expressions to find hidden ATerms uses

135

useATerms (List[[Identifier]], Integer, Integer, Identifier, Integer,
List[[Identifier]], AbstGraph) -> AbstGraph

useATerms2(List[[Identifier]], Integer, Integer, Integer,
List[[Identifier]], AbstGraph) -> AbstGraph

unfoldExpression(Expression, List[[Identifier]], List[[Identifier]])
-> List[[Identifier]] {traversal(accu, top-down, break)}

unfoldExpression(Identifier, List[[Identifier]], List[[Identifier]])
-> List[[Identifier]] {traversal(accu, top-down, break)}

%% Construct appropriate label

constructLabel (List[[Identifier]], List[[Identifier]]) -> Label

labelDefs(List[[Identifier]], Label) -> Label
labelUses(List[[Identifier]], Label) -> Label

hiddens

variables

"&AbstGraph" [0-9] * -> AbstGraph
"gAbstEdge" [0-9]* -> AbstEdge
"gATerms" [0-9] * -> List[[Identifier]]
"&IdList" [0-9]* -> List[[Identifier]]
"&Specifier+"[0-9]* -> Specifier+
"&Specifier*" [0-9]* -> Specifierx*
"gIdentifier" [0-9]* -> Identifier
"&DeclStat" [0-9] * -> DeclStat
"&DualGraph" [0-9] * -> DualGraph
"&DualEdge" [0-9] * -> DualEdge
"gInteger" [0-9]* -> Integer
"&Index" [0-9]* -> Integer
"&Label" [0-9] * -> Label
"gExpression'" [0-9]* -> Expression
"gExpressionx" [0-9] -> {Expression ","}x*

136

F.5 Building the abstract graph (ASF)

equations
Tty —=—=——mmm ATerm level 1 interface declarations ----—-———————- %%
[collectATerms-aterm-1]

&Specifier* ATerm &Identifier ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat (&ATerms, [&Identifier])

[collectATerms-aterm-2]
&Specifier* ATerm &Identifier = &Expression ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-aterm-3]
&Specifier* ATerm &Identifier[&Expression] ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-atbool-1]
&Specifier* ATbool &Identifier ;

====>

collectATerms (&DeclStat, &ATerms) = concat (&ATerms, [&Identifier])

&DeclStat

[collectATerms-atbool-2]
&Specifier* ATbool &Identifier = &Expression ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat (&ATerms, [&Identifier])

[collectATerms-int-1]
&Specifier* ATermInt &Identifier ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat (&ATerms, [&Identifier])

[collectATerms-int-2]
&Specifier* ATermInt &Identifier = &Expression ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-int-3]
&Specifier* ATermInt &Identifier[&Expression] ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat (&ATerms, [&Identifier])

[collectATerms-real-1]
&Specifier* ATermReal &Identifier ; := &DeclStat

====>

137

collectATerms (&DeclStat, &ATerms)

[collectATerms-real-2]
&Specifier* ATermReal &Identifier
====>

collectATerms (&DeclStat, &ATerms)

[collectATerms-real-3]
&Specifier* ATermReal &Identifier
====>

collectATerms (&DeclStat, &ATerms)

[collectATerms-appl-1]
&Specifier* ATermAppl &Identifier
====>

collectATerms (&DeclStat, &ATerms)

[collectATerms-appl-2]
&Specifier* ATermAppl &Identifier
====>

collectATerms (&DeclStat, &ATerms)

[collectATerms-appl-3]
&Specifier* ATermAppl &Identifier
====>

collectATerms (&DeclStat, &ATerms)

[collectATerms-afun-1]
&Specifier* AFun &Identifier ;

====>

concat (&ATerms, [&Identifier])

&Expression ; := &DeclStat

concat (&ATerms, [&Identifier])

&Expression] ; := &DeclStat

concat (&ATerms, [&Identifier])

;= &DeclStat

concat (&ATerms, [&Identifier])

&Expression ; := &DeclStat

concat (&ATerms, [&Identifier])

&Expression] ; := &DeclStat

concat (&ATerms, [&Identifier])

= &DeclStat

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-afun-2]

&Specifier* AFun &Identifier = &Expression ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-afun-3]

&Specifier* AFun &Identifier [&Expression] ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms)

[collectATerms-1list-1]

&Specifier* ATermList &Identifier ;

====>

collectATerms (&DeclStat, &ATerms)

[collectATerms-list-2]
&Specifier* ATermList &Identifier

====>

138

’

concat (&ATerms, [&Identifier])

:= &DeclStat

concat (&ATerms, [&Identifier])

&Expression ; := &DeclStat

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-1list-3]
&Specifier* ATermList &Identifier [&Expression] ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat (&ATerms, [&Identifier])

[collectATerms-placeholder-1]
&Specifier* ATermPlaceholder &Identifier ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-placeholder-2]
&Specifier* ATermPlaceholder &Identifier = &Expression ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-placeholder-3]
&Specifier* ATermPlaceholder &Identifier [&Expression] ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-blob-1]
&Specifier* ATermBlob &Identifier ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-blob-2]
&Specifier* ATermBlob &Identifier = &Expression ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-blob-1]
&Specifier* ATermBlob &Identifier [&Expression] ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-table-1]
&Specifier* ATermTable &Identifier ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-table-2]
&Specifier* ATermTable &Identifier = &Expression ; := &DeclStat

====>

collectATerms (&DeclStat, &ATerms) = concat (&ATerms, [&Identifier])

[collectATerms-table-3]
&Specifier* ATermTable &Identifier [&Expression] ; := &DeclStat

====>

139

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-indexedset-1]
&Specifier* ATermIndexedSet &Identifier ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-indexedset-2]
&Specifier* ATermIndexedSet &Identifier = &Expression ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-indexedset-3]
&Specifier* ATermIndexedSet &Identifier [&Expression] ; := &DeclStat
====>

collectATerms (&DeclStat, &ATerms) = concat(&ATerms, [&Identifier])

[collectATerms-separator-0]
collectATerms (SEPARATE, &ATerms) = concat(&ATerms, [separator])

[purgeATermList-0]
&Identifier := head(&ATerms),
&Identifier == separator
N

purgeATermList (¥ATerms, &ATerms2) = &ATerms2

[purgeATermList-0]
&Identifier := head(&ATerms),
&Identifier != separator
=——==>
purgeATermList (4ATerms, &ATerms2) = purgeATermList(tail (&ATerms),
concat (&ATerms2, [&Identifier]))

[transform-1]
&ATerms := collectATerms(&DualGraph, [1),
&ATerms2 := purgeATermList (&ATerms, []),
&AbstGraphl := emptyAbstGraph(),
&Index := getHighestIndex(&DualGraph, 0),
&AbstGraph := transformGraph(&DualGraph, &AbstGraphl, &ATerms2, &Index)
====>
transform(&DualGraph) = &AbstGraph
[transformGraph-1]
empty (&DualGraph) == true
====>

transformGraph (&DualGraph, &AbstGraph, &ATerms, &Index) = &AbstGraph

[transformGraph-2]

140

empty (&DualGraph) == false,

&DualEdge := head(&DualGraph),

&AbstGraphl := transformEdge(&DualEdge, &ATerms, &Index),
&Indexl := getIndex(&AbstGraphl, 0),

&Index2 := max(&Index, &Indexl),

&AbstGraph2 := mergeAbstGraphs (&AbstGraph, &AbstGraphl)
====>

transformGraph (4DualGraph, &AbstGraph, &ATerms, &Index) =

transformGraph(tail (&DualGraph), &AbstGraph2, &ATerms, &Index2)

[transformEdge-decl]

&DeclStat := snd(&DualEdge),

&Specifier+ &Identifier ; := &DeclStat,

elem(&Identifier, &ATerms) == true,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&AbstGraphl := addEdge(&Integerl, decl_&Identifier, &Integer?2,
emptyAbstGraph())

====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraphl

[transformEdge-array]

&DeclStat := snd(&DualEdge),

&Specifier+ &Identifier [&Expression]; := &DeclStat,

elem(&Identifier, &ATerms) == true,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&AbstGraphl := addEdge(&Integerl, decl_&Identifier, &Integer2,
emptyAbstGraph())

====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraphl

[transformEdge-declinit]

&DeclStat := snd(&DualEdge),

&Specifier+ &Identifier = &Expression ; := &DeclStat,

elem(&Identifier, &ATerms) == true,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&Indexl := &Index + 1,

&AbstGraphl := addEdge(&Integerl, decl_&Identifier, &Index1,
emptyAbstGraph()),

&IdListl := unfoldExpression(&Expression, [], &ATerms),

&AbstGraph2 := useATerms(&IdListl, &Indexl, &Indexl, &Identifier,
&Integer2, &ATerms, &AbstGraphl)

====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraph2

141

[transformEdge-arrayinit]

&DeclStat := snd(&DualEdge),

&Specifier+ &Identifier [&Expressionl] = &Expression ; := &DeclStat,

elem(&Identifier, &ATerms) == true,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&Indexl := &Index + 1,

&AbstGraphl := addEdge(&Integerl, decl_&Identifier, &Index1,
emptyAbstGraph()),

&IdListl := unfoldExpression(&Expression, [], &ATerms),

&IdList2 := unfoldExpression(&Expressionl, &IdListl, &ATerms),

&AbstGraph2 := useATerms(&IdListl, &Indexl, &Indexl, &Identifier,
&Integer2, &ATerms, &AbstGraphl)

====>

transformEdge (¥DualEdge, &ATerms, &Index) = &AbstGraph2

[transformEdge-3]
&DeclStat := snd(&DualEdge),
&Identifier = &Expression ; := &DeclStat,
elem(&Identifier, &ATerms) == true,
&Integerl := fst(&DualEdge),
&Integer2 := trd(&DualEdge),
&Indexl := &Index + 1,
&IdListl := unfoldExpression(&Expression, [], &ATerms),
&AbstGraph2 := useATerms(&IdListl, &Integerl, &Indexl, &Identifier,
&Integer2, &ATerms, emptyAbstGraph())
====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraph2

[transformEdge-array-9]
&DeclStat := snd(&DualEdge),
&Identifier [&Expressionl] = &Expression ; := &DeclStat,
elem(&Identifier, &ATerms) == true,
&Integerl := fst(&DualEdge),
&Integer2 := trd(&DualEdge),
&Indexl := &Index + 1,
&IdListl := unfoldExpression(&Expression, [], &ATerms),
&IdList2 := unfoldExpression(&Expressionl, &IdListl, &ATerms),
&AbstGraph2 := useATerms(&IdList2, &Integerl, &Indexl, &Identifier,
&Integer2, &ATerms, emptyAbstGraph())
====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraph2

[transformEdge-8]
&DeclStat := snd(&DualEdge),
&Identifier = &Expression ; := &DeclStat,
elem(&Identifier, &ATerms) == false,
&Integerl := fst(&DualEdge),

142

&Integer2 := trd(&DualEdge),

&Indexl := &Index + 1,

&IdListl := unfoldExpression(&Expression, [], &ATerms),

&AbstGraph2 := useATerms2(&IdListl, &Integerl, &Indexl, &Integer2,
&ATerms, emptyAbstGraph())

====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraph2

[transformEdge-array-10]

&DeclStat := snd(&DualEdge),

&Identifier [&Expressionl] = &Expression ; := &DeclStat,

elem(&Identifier, &ATerms) == false,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&Indexl := &Index + 1,

&IdListl := unfoldExpression(&Expression, [], &ATerms),

&IdList2 := unfoldExpression(&Expressionl, &IdListl, &ATerms),

&AbstGraph2 := useATerms2(&IdList2,&Integerl, &Indexl, &Integer2,
&ATerms, emptyAbstGraph())

====>

transformEdge (&¥DualEdge, &ATerms, &Index) = &AbstGraph2

[transformEdge-4]

&DeclStat := snd(&DualEdge),

&Expression ; := &DeclStat,
isAssign(&Expression) == false,
isProtect (&Expression) == false,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&Indexl := &Index + 1,

&IdListl := unfoldExpression(&Expression, [], &ATerms),

&AbstGraph2 := useATerms2(&IdListl, &Integerl, &Indexl, &Integer?2,
&ATerms, emptyAbstGraph())

====>

transformEdge (&¥DualEdge, &ATerms, &Index) = &AbstGraph2

[transformEdge-7]

&DeclStat := snd(&DualEdge),

&Expression := &DeclStat,

isAssign(&Expression) == false,

isProtect (&Expression) == false,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&Indexl := &Index + 1,

&IdListl := unfoldExpression(&Expression, [], &ATerms),

&AbstGraph2 := useATerms2(&IdListl, &Integerl, &Indexl,
&Integer2, &ATerms,emptyAbstGraph())

====>

143

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraph2

[transformEdge-prot]
&DeclStat := snd(&DualEdge),
ATprotect (& &Identifier) ; := &DeclStat,
elem(&Identifier, &ATerms) == true,
&Integerl := fst(&DualEdge),
&Integer2 := trd(&DualEdge),
&AbstGraphl := addEdge(&Integerl, prot_&Identifier, &Integer2,
emptyAbstGraph())
====>

transformEdge (¥DualEdge, &ATerms, &Index) = &AbstGraphl

[transformEdge-unprot]
&DeclStat := snd(&DualEdge),
ATunprotect (& &Identifier) ; := &DeclStat,
elem(&Identifier, &ATerms) == true,
&Integerl := fst(&DualEdge),
&Integer2 := trd(&DualEdge),
&AbstGraphl := addEdge(&Integerl, unprot_&Identifier, &Integer2,
emptyAbstGraph())

====>

transformEdge (¥DualEdge, &ATerms, &Index) = &AbstGraphl

[transformEdge-prot-afun-1]
&DeclStat := snd(&DualEdge),
ATprotectAFun (&Identifier) ; := &DeclStat,
elem(&Identifier, &ATerms) == true,
&Integerl := fst(&DualEdge),
&Integer2 := trd(&DualEdge),
&AbstGraphl := addEdge(&Integerl, prot_&Identifier, &Integer2,
emptyAbstGraph())
====>

transformEdge (¥DualEdge, &ATerms, &Index) = &AbstGraphl

[transformEdge-unprot-afun-2]
&DeclStat := snd(&DualEdge),
ATunprotectAFun (&Identifier) ; := &DeclStat,
elem(&Identifier, &ATerms) == true,
&Integerl := fst(&DualEdge),
&Integer2 := trd(&DualEdge),
&AbstGraphl := addEdge(&Integerl, unprot_&Identifier, &Integer2,
emptyAbstGraph())
====>

transformEdge (¥DualEdge, &ATerms, &Index) = &AbstGraphl

[transformEdge-prot-array-1]
&DeclStat := snd(&DualEdge),

144

ATprotectArray (&Identifier , &Expressionl) ; := &DeclStat,

elem(&Identifier, &ATerms) == true,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&AbstGraphl := addEdge(&Integerl, prot_&Identifier, &Integer?2,
emptyAbstGraph())

====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraphl

[transformEdge-unprot-array-2]

&DeclStat := snd(&DualEdge),

ATunprotectArray (&Identifier) ; := &DeclStat,

elem(&Identifier, &ATerms) == true,

&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),

&AbstGraphl := addEdge(&Integerl, unprot_&Identifier, &Integer2,
emptyAbstGraph())

====>

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraphl

[default-transformEdge]

&DeclStat := snd(&DualEdge),
&Integerl := fst(&DualEdge),

&Integer2 := trd(&DualEdge),
&AbstGraphl := addEdge(&Integerl, i, &Integer2, emptyAbstGraph())
N

transformEdge (&4DualEdge, &ATerms, &Index) = &AbstGraphl

[useATerms-1]

empty (&IdList) == true,

&AbstGraphl := addEdge(&Integerl, def_&Identifier, &Integer2,
&AbstGraph)

====>

useATerms (&IdList, &Integerl, &Index, &Identifier, &Integer2,
&ATerms, &AbstGraph) = &AbstGraphl

[useATerms-2]

empty (&IdList) == false,

&Identifierl := head(&IdList),

&AbstGraphl := addEdge(&Integerl, use_&Identifierl,
&Index, &AbstGraph)

====>

useATerms (&IdList, &Integerl, &Index, &Identifier, &Integer2,
&ATerms, &AbstGraph) = useATerms(tail (&IdList), &Index,
(&Index + 1), &Identifier, &Integer2, &ATerms, &AbstGraphl)

145

[useATerms2-1]
empty (&IdList) == true,
&AbstGraphl := addEdge(&Integerl, i, &Integer2, &AbstGraph)
====>
useATerms2 (&IdList, &Integerl, &Index, &Integer2, &ATerms, &AbstGraph) =
&AbstGraphl

[useATerms2-2]

empty(tail (&IdList)) == false,

&Identifierl := head(&IdList),

&AbstGraphl := addEdge(&Integerl, use_&Identifierl, &Index, &AbstGraph)

====>

useATerms2(&IdList, &Integerl, &Index, &Integer2, &ATerms, &AbstGraph) =
useATerms2(tail (&IdList), &Index, (&Index + 1), &Integer2,
&ATerms, &AbstGraphl)

[useATerms2-3]

empty (tail (&IdList)) == true,

&Identifierl := head(&IdList),

&AbstGraphl := addEdge(&Integerl, use_&Identifierl,
&Integer2, &AbstGraph)

====>

useATerms2(&IdList, &Integerl, &Index, &Integer2,
&ATerms, &AbstGraph) = &AbstGraphl

[unfoldExpression-1]

elem(&Identifier, &ATerms) == true,
&ATerms2 := concat(&ATermsl, [&Identifier])
=——==>

unfoldExpression(&Identifier, &ATermsl, &ATerms) = &ATerms2

[isProtect-1]
ATprotect (& &Identifier) := &Expression
N

isProtect (&Expression) = true

[isProtect-2]
ATunprotect (& &Identifier) := &Expression
=——==>

isProtect (&Expression) = true

[isProtect-3]
ATprotectArray (&Identifier, &Expressionl) := &Expression
====>

isProtect (&Expression) = true

[isProtect-4]
ATunprotectArray (&Identifier) := &Expression
N

isProtect (&Expression) = true

146

[isProtect-5]
ATprotectAFun (&Identifier) := &Expression
====>

isProtect (&Expression) = true

[isProtect-6]
ATunprotectAFun (&Identifier) := &Expression
====>

isProtect (&Expression) = true

[default-isProtect]
isProtect (&Expression) = false

[isAssign-1]
&Identifier = &Expression2 := &Expression

====>

isAssign(&Expression) = true

[isAssign-2]
&Identifier [&Expressionl] = &Expression2 := &Expression

====>

isAssign(&Expression) = true

[default-isAssign]
isAssign(&Expression) = false

[isFcall-1]
&Identifier (&Expressionl) := &Expression
====>

isFcall (&Expression) = true

[default-isFcall]
isFcall (&Expression) = false

147

Appendix G

Aldebaran graph

G.1 Quote

%% Quote module for creating " symbols
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)
module Quote
imports basic/Whitespace
imports basic/Strings
exports
sorts Quote

context-free start-symbols Quote

context-free syntax

n\nn > Quote
makeQuote () -> Quote
hiddens
variables
"&Quote'" [0-9] * -> Quote
equations

[makeQuote-1]
makeQuote() = "

148

G.2 AutEdge

%% Module for Aldebaran Edge (including Quote)
%% Model Checking the ATerm Library
%% Joost Gabriels (2007)

module AutEdge
imports basic/Whitespace
imports basic/Integers
imports Label
imports Quote

exports
context-free start-symbols
AutEdge
Integer
Label

sorts AutEdge

context-free syntax

"(" Integer "," Quote Label Quote "," Integer ")"
-> AutEdge
makeAutEdge (Integer, Label, Integer) -> AutEdge

%% Access functions

fst (AutEdge) -> Integer
snd (AutEdge) -> Label
trd (AutEdge) -> Integer
hiddens
variables
"gInteger" [0-9]* -> Integer
"&Label" [0-9]* -> Label
"gAutEdge" [0-9] -> AutEdge
"gQuote" [0-9]* -> Quote
equations

[makeAutEdge-1]
makeAutEdge (&Integerl, &Label, &Integer2) =
(&Integerl, makeQuote()&LabelmakeQuote() ,&Integer2)

[fst-1]

fst((&Integerl, makeQuote()&LabelmakeQuote() ,&Integer2)) =
&Integerl

149

[snd-1]

snd ((&Integerl, makeQuote()&LabelmakeQuote() ,&Integer2))

&Label

[trd-1]

trd((&Integerl, makeQuote()&LabelmakeQuote() ,&Integer?2))

&Integer2

G.3 Aldebaran graph structure (SDF)

%% Module for Aldebaran graph datastructure
%% Model Checking the ATerm Library
ht Joost Gabriels (2007)

module Aldebaran

imports basic/Whitespace
imports basic/Integers
imports Label

imports AutEdge

imports Triple[Integer Integer Integer]
imports AbstractGraph

exports

aliases
Triple[[Integer, Integer,Integer]]

context-free start-symbols
AutEdge
AutEdgex*
AutHeader
Triple[[Integer,Integer,Integer]]
AutGraph

context-free syntax
"des" AutHeader AutEdgex*
makeHeader (Integer, Integer, Integer)
makeEdge (Integer, Label, Integer)
getAutEdgeList (AutGraph)

sorts AutGraph

hiddens

variables

150

-> AutHeader

-> AutGraph
-> AutHeader
-> AutEdge

-> AutEdgex*

"gAutEdge" [0-9]* -> AutEdge

"&AutEdgex" [0-9] * -> AutEdge*
"&Label" [0-9] * -> Label
"&Integer" [0-9] * -> Integer
"gAutHeader" [0-9] * -> AutHeader
"gAutGraph" [0-9] * -> AutGraph
"&DualGraph" [0-9] * -> DualGraph

G.4 Aldebaran graph structure equations (ASF)

equations

[makeAutHeader-1]
&AutHeader := makeTriple(&Integerl, &Integer2, &Integer3)
====>

makeHeader (&Integerl, &Integer2, &Integer3) = &AutHeader

[makeAutEdge-1]
&AutEdge := makeAutEdge(&Integerl, &Label, &Integer2)
====>

makeEdge (&Integerl, &Label, &Integer2) = &AutEdge

G.5 Building the Aldebaran graph (SDF)

%% Module for transformation of the abstract graph
%% into Aldebaran format

%% Model Checking the ATerm Library

%% Joost Gabriels (2007)

module BuildAut

imports Abstraction
imports AbstractGraph
imports Aldebaran

exports
context-free start-symbols
AutEdgex
Triple[[Integer,DeclStat,Integer]]
AutEdge
Integer
AutGraph

context-free syntax

%% Build function and conversion function from abstract
%% edge to Aldebaran Edge

151

buildAut (AbstGraph, AutEdgex) -> AutEdgex
convert (Triple[[Integer,Label,Integer]]) -> AutEdge

%% Get functions for abstract graph

getNodesNumber (AbstGraph, Integer) -> Integer
getEdgesNumber (AbstGraph) -> Integer

%% Main function

buildAutGraph (AbstGraph) -> AutGraph

hiddens

variables

"&AutEdgex*" [0-9] * -> AutEdgex*
"&AutEdge+" [0-9] * -> AutEdge+
"&AutEdge" [0-9]* -> AutEdge
"gInteger" [0-9]* -> Integer
"&Label" [0-9]* -> Label
"&AutGraph" [0-9] * -> AutGraph
"gAutHeader" [0-9] * -> AutHeader
"&AbstGraph" [0-9] * -> AbstGraph
"&AbstEdge" [0-9] * -> AbstEdge

G.6 Building the Aldebaran graph (ASF)

equations
%% Convert edge

[convert-1]
&Integerl := fst(&AbstEdge),
&Label := snd(&AbstEdge),
&Integer2 := trd(&AbstEdge),
&AutEdgel := makeEdge(&Integerl, &Label, &Integer?2)
====>

convert (&¥AbstEdge) = &AutEdgel
%% Build Aldebaran graph (not newline separation in indentation)

[buildAut-1]
empty (tail (&AbstGraph)) == false,
&AbstEdge := head(&AbstGraph),
&AutEdge := convert(&AbstEdge),
&AutEdge*1 := &AutEdgex*

&AutEdge

====>

152

buildAut (&AbstGraph, &AutEdgex) =
buildAut (tail (¥AbstGraph) ,&AutEdge*1)

[buildAut-2]
empty(tail (&AbstGraph)) == true,
&AbstEdge := head(&AbstGraph),
&AutEdge := convert(&AbstEdge),
&AutEdge*1 := &AutEdgex
&AutEdge
====>

buildAut (&AbstGraph, &AutEdgex) = &AutEdgex*1
%% Get node/edge number from abstract graph edge

[getNodesNumber-1]
empty (¥AbstGraph) == true,
&Integerl := &Integer + 1
====>

getNodesNumber (&AbstGraph, &Integer) = &Integerl

[getNodesNumber-2]
empty (&AbstGraph) == false,
&AbstEdgel := head(&AbstGraph),
&Integerl := trd(&AbstEdgel),
&Integer2 := max(&Integer, &Integerl)
====>
getNodesNumber (4AbstGraph, &Integer) =
getNodesNumber (tail (&AbstGraph) ,&Integer2)

[getEdgesNumber-1]
getEdgesNumber (&AbstGraph) = length(&AbstGraph)

%% Main function

[buildAutGraph-1]
&AutEdge* := buildAut(&AbstGraph,),
&Integerl := getNodesNumber (&AbstGraph, 0),
&Integer2 := getEdgesNumber (&AbstGraph),
&AutHeader := makeHeader(0, &Integer2, &Integerl),
&AutGraph := des &AutHeader

&AutEdgex*

====>

buildAutGraph (&AbstGraph) = &AutGraph

153

	Abstract
	Acknowledgments
	Contents
	Introduction
	Annotated Terms
	Parsing ANSI-C with ASF+ SDF
	The Cotrol Flow Graph
	The Dual Graph
	Abstraction
	Model Checking with CADP
	results and Conclusions
	Bibliography
	List of Figures
	Appendix A List of Tools
	Appendix B Using the ATerm Library
	Appendix C Normaalizing
	Appendix D Control Flow Graph
	Appendix E Dual Graph
	Appendix F Absract Graph
	Appendix Aldebaran graph

