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ABSTRACT v

Abstract

In this thesis, galloping of overhead transmission lines is studied.This is a
low frequency, large amplitude, wind-induced vibrations of both a single and
a bundle of overhead transmission lines. The model for this phenomenon is
derived from the first principles of Newton’s and Hooke’s laws.

We analyze the model and develop an algorithm for solving the system. We
will present two numerical schemes, that have been chosen for this task,
namely the upwind and ADER schemes. Lastly, conduct several galloping
simulations under practically relevant conditions.
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Chapter 1

Introduction

Overhead transmission lines provide the transport highways to move elec-
tricity from the generation sources to concentrated areas of customers. From
there, the distribution system moves the electricity to where the customer
uses it at a business or at home. Unlike other commodities, electricity is gen-
erated as it is used and there is very little ability to store it [8]. Because of
the instantaneous nature of the electric system, constant modifications must
be made to assure that the generation of power matches the consumption of
power. The amount of power on a transmission line at any given moment
depends on production and dispatch, customer use, the status of other trans-
mission lines and their associated equipment, and even the weather. These
transmission lines are cables of aluminium alloy suspended by several towers
in a row. The part of the transmission line between two towers is called a
span. The cables are connected to the towers by a freely moveable suspension
string or insulator, therefore the dynamical motion of neighbouring spans is
coupled.

Companies that supply electricity need to defend against weather-related
damage and power outages. Ice and snow build-up on high-voltage electric
power lines in moderate to high winds cause large scale mechanical vibrations.
This phenomenon of low frequency, large amplitude, wind-induced vibrations
of both a single and a bundle of overhead transmission lines, with a single or a
few standing waves per span, is called galloping [3]. Galloping of transmission
lines is a dangerous phenomenon that seriously threatens the security of
power systems. It is known that galloping causes such serious transmission
problems as short circuits due to the entanglement of lines, snapping of the
line-to-line spacers and the breakage of transmission towers. It is a result
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of aerodynamic instability of conductors related to many aspects, such as
parameters of transmission lines, temperature, speed and direction of wind,
shape and position of the attached ice, etc [5]. It has attracted the attention
of many researchers who are attempting to understand and control this costly
vibration. To avoid accidents such as marginal discharge, break or line mixing
in regions where galloping is likely to occur, the maximum amplitude of the
transmission lines should be calculated. Some analytical and experimental
methods have been proposed and implemented in the past years. In general,
galloping can roughly be divided into two types, vertical galloping without
twist and torsional galloping with elliptical vibrating trajectory [5]. The
latter is a much more complex non-linear problem, related to many aero-
dynamic conditions as well as the stiffness of the conductors.

In this thesis we will consider the former. Although both torsional motion
and horizontal cable deflection are important for the full problem we assume
torsion to be decoupled from the vertical vibration and the horizontal motion
to be negligible. This type of galloping have been mathematically simulated
using the finite element method [5], but we will derive a suitable algorithm
and numerical techniques (ADER and upwind) for the simulation.

The outline of this thesis is as follows.

In Chapter 2, a mathematical model based on first principles of Newton’s and
Hooke’s law is derived. Asymptotic reduction of the full model, resulting in
a systematic model, is discussed [4].

Chapter 3, we come up with a numerical solution procedure by analyzing
both the stationary and time dependent part of the systematic model derived
in the previous chapter. The procedure includes a hyperbolic system which
needs to be solved.

In chapter 4, we discuss the solution of the hyperbolic system. The upwind
and ADER schemes are discussed in detail. The abbreviation ADER stands
for ”Arbitrary high order schemes using DERivatives”. This is a finite volume
scheme. In general, we approximate every smooth function to arbitrary high
order of accuracy using its Taylor expansion. Boundary conditions are also
derived.

In chapter 5, the schemes are implemented. Simulations are conducted using
practical relevant example parameters from [4]. Numerical results are given.

The last chapter , we summarize the work done, give some conclusive remarks
and some ideas for the extension of this work.



Chapter 2

Problem Formulation

In this chapter we will derive a systematic model by asymptotic reduction
of the model found in [4] and [3]; details on asymptotic reduction are found
in the same references. We derive the model from the first principles of
Newton’s and Hooke’s laws. Then present a reduced model based on asymp-
totic analysis. Last in this chapter we shall discuss boundary and coupling
conditions.

2.1 Mathematical model

We consider a cable fixed at the outer ends, and divided into N equal spans
by N − 1 equal supports . The supports are inextensible suspension strings
(isolators) of length a and negligible weight, suspended from fixed pivots
separated by a distance S(m), the span size. We assume that the cable
is linearly elastic, with negligible bending stiffness, of uniform undeformed
effective cross section A(m2), mass per unit length m(kg/m), and Youngs
modulus E(N/m2). We define the length per span when the cable is free of
tension to be L(m). If stationary, each span has the maximum deflection,
the so-called sag D(m), which depends on S and L, see Figure 2.1.
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Figure 2.1: Impression of a suspended cable consisting of two interconnected
spans

Let ` ∈ [0, NL], describe the position along the cable such that it represents
the arc length when the cable is unstretched, i.e., there is no tension in the
cable. The dimensional time variable is denoted by t. Although in reality
the cable moves along a slightly tilted ellipse, we will consider only the cable
motion in a vertical plane which is provided with a Cartesian coordinate
system orientated such that the gravity vector −gey points into the negative
y-direction. The cable position is defined by the position vector X(`, t) =
(X(`, t), Y (`, t)), measured in meters, with a corresponding tension vector
T(`, t) = T (`, t)(cosψ, sinψ), measured in Newtons, where ψ is the positively
oriented angle between the cable tangent and the horizontal. The tension
vector is tangent to the cable because of the assumed negligible bending
stiffness; see Figure 2.2.

Let us now consider a small cable element d`. The element is stretched due
to gravity, cable tension and inertial forces but we note that the mass does
not change. According to Hooke’s law [9], which states that the amount by
which a material body is deformed (the strain) is linearly proportional to the
force causing the deformation (the stress), a cable element is elongated in
proportional to the tension and can therefore be represented by

√
(dX)2 + (dY )2 − d`

d`
=

1

E

T

A
. (2.1)
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Figure 2.2: Tension vector

Rearranging terms in equation (2.1), we obtain(
∂X

∂`

)2

+

(
∂Y

∂`

)2

=

(
1 +

T

EA

)2

. (2.2)

.

According to Newton’s second law, the net force on a particle is proportional
to the rate of its linear momentum, usually represented as F = ma. Since
momentum is a product of mass and velocity, this is given by

∂T

∂`
= m

(
∂2X

∂t2
+ gey

)
. (2.3)

The x-component of the tension is given by

∂

∂`
(Tx) = m

∂2X

∂t2
, (2.4)

and along the y-component, since gravitational force is acting, the tension is
described by



2.2. REDUCED PROBLEM 6

∂

∂`
(Ty) = m

(
∂2X

∂t2
+ g

)
, (2.5)

where Tx = T cosψ and Ty = T sinψ . The tension vector is tangent to the
cable because of the assumed negligible bending stiffness. From (2.2) it is
obvious that

∣∣∣∣∂X∂`
∣∣∣∣ = 1 +

T

EA
, (2.6)

and therefore we have the sine and cosine of ψ defined by

cosψ =
∂X
∂`

1 + T
EA

, sinψ =
∂Y
∂`

1 + T
EA

. (2.7)

We then substitute (2.7) into (2.4) and (2.5) resulting in the system

∂

∂`

(
T

1 + T/EA

∂X

∂`

)
= m

∂2X

∂t2
, (2.8a)

∂

∂`

(
T

1 + T/EA

∂Y

∂`

)
= m

∂2Y

∂t2
+mg. (2.8b)

The mathematical model is described by (2.2) and (2.8).

2.2 Reduced problem

The type of motion we are interested in allows further reduction of the model.
This is motivated by the ratio of sag D, which is the stationary vertical dis-
placement and the cable length L. The ratio is known to be small, according
to [3] it is typically in the order of 1

30
. Therefore we have the slenderness,

ε = D/L→ 0

and this is clearly a small parameter problem. This basic small parameter ε
is used to reduce the general problem to an asymptotic model. Asymptotic
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methods are usually most powerful precisely when numerical approaches en-
counter their most serious difficulties, such as in cases of small parameters,
phenomena on vastly different scales etc. Perturbation / asymptotic analysis
can then provide accurate information in analytic forms which are very well
suited for both understanding and for further analysis [6].

The longitudinal wave speed is given by cL = (EA/m)
1
2 , and the longitudinal

wave length λL is large compared to the length of the cable L leading to the
estimate L/λL = O(ε). The frequency ω is inversely proportional to the wave
length and we have L/λL = ωL/cL = O(ε). We now introduce the reference
frequency ωref = εcL/L. The dimensionless frequency ω∗ and time variable
t∗ are given by

ω = ωrefω
∗, t = t∗/ωref . (2.9)

We also have that the total vertical non-stationary displacement Y is of
the order of the sag D,and the transversal wave length λT is of order L
so that Y/L = O(ε) and λT/L = O(1). Clearly, we see that Y scales on

εL. The transversal wave velocity is given by cT = (T/m)
1
2 , thus we have

λT/L = cT/ωL = O(1). This yields that the tension scales on Tref = ε2EA.
Putting everything together, we have for ` ∈ {the n− th span}

` = (n− 1 + s)L, Y (`, t) = εLY ∗(s, t∗;n), T (`, t) = TrefT
∗(s, t∗;n),

(2.10)
where (∗) are dimensionless variables and where the variable s is a local
nondimensional parameter, such that s ∈ [0, 1] parametrizing, the position
within a span. We also have to scale X, and we are only interested in the
x-displacements that are very small. By substituting the above estimates in
equation (2.8b), it transpires that ∂

∂`
X = 1+O(ε2), therefore for X from the

n-th span we have

X(`, t) = (n− 1)S + Ls+ ε2LX∗(s, t∗;n). (2.11)

If we substitute the present estimates in (2.8b),we get the term mgL/EAε3

next to terms of order 1,so it is either has to be of order 1 or smaller. Assum-
ing that it is smaller, then the stationary solution would be Y = 0 to leading
order, so D = 0, which contradicts our scaling assumptions. Therefore it
follows that the term is of order 1. We introduce

µ =
mgL

8EAε3
= O(1) (2.12)

where the factor 8 comes from the assumption that the cable has a ratio of
sag to span of about 1:8 see [7]. For details on asymptotic expansions see [4]
and [3].
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Finally, we substitute all the above estimates in the system of equations (2.2)
and (2.8). We obtain, under the approximation of small ε, the governing
equations [4].

∂T ∗

∂s
= 0, (2.13a)

∂

∂s

(
T ∗
∂Y ∗

∂s

)
= 8µ+

∂2Y ∗

∂t∗2
, (2.13b)

∂X∗

∂s
+

1

2

(
∂Y ∗

∂s

)2

= T ∗. (2.13c)

2.3 Boundary and coupling conditions

In this section we derive the boundary and coupling conditions for the model
of two spans (N = 2). We will then scale them using the estimates from the
previous section.

• We have fixed supports at ` = 0 and ` = 2L, therefore we have

X(0, t) = 0, Y (0, t) = 0 (` = 0), (2.14a)

X(2L, t) = 2S Y (2L, t) = 0 (` = 2L). (2.14b)

• At the suspension string ` = L the position vector X is continuous,
the rigid but hinged suspension strings restrict the motion to a circle,
while the force component normal to the string is continuous [3]. This
gives the coupling conditions

X(L+, t)−X(L−, t) = 0 ⇔
{
X(L+, t) = X(L−, t)
Y (L+, t) = Y (L−, t) (2.15a)

(X − S)2 + (Y − a)2 = a2, (2.15b)

[T cos(φ− ψ)]l=L+
l=L− = 0, (2.15c)

where φ denotes the positively oriented angle of the suspension string with
the vertical and ` = L± denotes the limit from either side of the support,
see Figure 2.3.
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Figure 2.3: Sketch of cables connected at a suspension string

In the first span we have n = 1 and s ∈ [0, 1]. Substituting these into the
relations (2.10) and (2.11) we have

` = sL, Y (`, t) = εLY ∗(s, t∗; 1), T (`, t) = TrefT
∗(s, t∗; 1),

X(`, t) = Ls+ ε2LX∗(s, t∗; 1).
(2.16)

At the first fixed support we have s = 0 and ` = 0, hence we obtain the
boundary conditions

X(0, t) = 0 ⇐⇒ ε2LX∗(0, t∗; 1) = 0 ⇐⇒ X∗(0, t∗; 1) = 0, (2.17)

Y (0, t) = 0 ⇐⇒ εLY ∗(0, t∗; 1) = 0 ⇐⇒ Y ∗(0, t∗; 1) = 0. (2.18)

For the second span we have n = 2 and s ∈ [0, 1] and substituting these into
(2.10) and (2.11) we have

` = (1 + s)L, Y (`, t) = εLY ∗(s, t∗; 2), T (`, t) = TrefT
∗(s, t∗; 2),

X(`, t) = S + Ls+ ε2LX∗(s, t∗; 2).

(2.19)
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In the second span there is a fixed support at the end point, where ` = 2L
and s = 1, leading to the boundary conditions

X(2L, t) = 2S ⇐⇒ S + L+ ε2LX∗(1, t∗; 2) = 2S

⇐⇒ X∗(1, t∗; 2) =
S − L

ε2L
= S0,

Y (2L, t) = 0 ⇐⇒ εLY ∗(1, t∗; 2) = 0 ⇐⇒ Y ∗(1, t∗; 2) = 0.

(2.20)

For the conditions at the suspension string we have for the first span, s = 1
and ` = 1 and for the same point on the second span we have s = 0 and
` = 2. It is observed that aφ/L = O(ε2), as it is of order of the x-variation,
therefore φ = O(ε) [3]. For small ε we obtain the scaled coupling conditions.

From (2.15c) we have

T ∗(1, t∗; 1) = T ∗(0, t∗; 2). (2.21)

We have

Y (L, t) = 0 ⇐⇒ εLY ∗(1, t∗; 1) = εLY ∗(0, t∗; 2) = 0

⇐⇒ Y ∗(1, t∗; 1) = Y ∗(0, t; 2) = 0.
(2.22)

For X(L, t) we have the coupling condition

X(L−, t) = X(L+, t) ⇐⇒ L+ ε2LX∗(1, t∗; 1) = S + ε2LX∗(0, t∗; 2) = 0

⇐⇒ X∗(1, t∗; 1) = X∗(0, t∗; 2) + S0.

(2.23)



Chapter 3

Numerical Solution Procedure

In this chapter we will analyze how to solve the governing equations (2.13)
incorperating the boundary and the coupling conditions derived in the pre-
vious chapter. In practice, the sag D and the span size S are known but the
length of the cable L is unknown and is to be determined. This means that
ε and µ are to be determined from the stationary solution. We assume that
all problem parameters are the same for all spans and hence the stationary
solution is periodic in space. This motivates the analysis of a stationary and
a nonstationary part. The stationary solution will later be used as the initial
condition for the the nonstationary solution.

3.1 Stationary solution

For the steady part of the problem we will represent the variables with a
subscript 0, and then from (2.10) and (2.11) we have

T0(`) = Tref .T
∗
0 (s;n), X0(`) = (n− 1)S + Ls+ ε2LX∗

0 (s;n),

Y0(`) = εLY ∗
0 (s;n).

(3.1)

We then have the governing equations for the stationary state given by

dT ∗0
ds

= 0, (3.2a)

T ∗0
d2Y ∗

0

d2s
= 8µ, (3.2b)

dX∗
0

ds
+

1

2

(
dY ∗

0

ds

)2

= T ∗0 . (3.2c)
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For the first span we have the boundary conditions, Y ∗
0 (0; 1) = Y ∗

0 (1; 1) = 0
and X∗

0 (0; 1) = 0. Since Y is scaled on the sag D, from symmetry we
expect the location of the maximum deflection half-way, hence we have
Y (1

2
L) = −D ⇔ Y ∗

0 (1
2
; 1) = −1.To compute Y ∗

0 we integrate twice equation
(3.2b) on the interval [0, 1] with respect to s and incoperate the boundary
equations. To find the steady solution of T we substitute the maximum
deflection condition of Y ∗

0 . We obtain

T ∗0 (s; 1) = µ and Y ∗
0 (s; 1) = 4s(s− 1). (3.3)

We note that at the suspension spring, s = 1, we do not have a boundary
but a coupling condition which implicitly determines the unknown length L.
Therefore, substituting Y ∗

0 into (3.2c), integrate the equation with respect to
s and incoperate the boundary condition we obtain

X∗
0 (s; 1) = µs− 4

3
[(2s− 1)3 + 1]. (3.4)

The distance from the first fixed point to the suspension point is just the
span size S, thus we have

X∗
0 (L) = S ⇐⇒ L+ ε2LX∗

0 (1; 1) = S. (3.5)

Since from (3.4) we have X∗
0 (1; 1) = µ− 8

3
, we now have

X∗
0 (L) = S0 ⇐⇒ L2 − SL+D2

(
µ− 8

3

)
= 0, D = εL. (3.6)

Substituting µ = mgL
8EAε3 in (3.6) we obtain the equation which determines the

length L, i.e.,

αL4 + L2 − SL− 8

3
D2 = 0 α :=

mg

8EAD
. (3.7)

In the second span we have ` = (1 + s)L . For the boundaries we have
the first suspension string s = 0, ` = L and the condition Y0(L) = 0 ⇔
Y ∗

0 (0; 2) = 0. At the last fixed support s = 1, ` = 2L we have the boundary
condition Y0(2L) = 0 ⇔ Y ∗

0 (1; 2) = 0. From symmetry we assume again
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that the maximum deflection is halfway the second span, hence we have
Y (3

2
L) = −D ⇔ Y ∗

0 (1
2
; 2) = −1. We obtain the solutions for the second span

T ∗0 (s; 2) = µ, Y ∗
0 (s; 2) = 4s(s−1), X∗

0 (s; 2) = µs−4

3
[(2s−1)3+1]. (3.8)

These results show that the solution is indeed periodic and we have the last
boundary condition automatically satisfied, i.e.,

X∗
0 (2L) = 2S0 ⇐⇒ X∗

0 (L) = S0. (3.9)

3.2 Non-stationary solution

In this section we will analyze the solution of the time depend part of the
governing equations. From (2.13a) we have T ∗ = T ∗(t∗) in a single span.
Since we have the coupling condition (2.21) we conclude that

T ∗(t∗; 1) = T ∗(t∗; 2) = T ∗(t∗). (3.10)

From (2.13b) we have

T ∗
∂2Y ∗

∂s2
=
∂2Y ∗

∂t2
+ 8µ. (3.11)

We define

v :=
∂Y ∗

∂t
+ 8µt, w :=

∂Y ∗

∂s
. (3.12)

We then obtain

∂v

∂t∗
=

∂2Y ∗

∂t∗2
+ 8µ = T ∗

∂2Y ∗

∂s∗2
= T ∗

∂w

∂s
(3.13a)

∂w

∂t∗
=

∂

∂s

(
∂Y ∗

∂t∗

)
=

∂

∂s
(v − 8µt∗) =

∂v

∂s
. (3.13b)

Substituting w into equation (2.13c) we obtain

∂X∗

∂s
+

1

2
w2 = T ∗. (3.14)
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From (3.13) we have

∂u

∂t
+ A.

∂u

∂s
= 0, (3.15)

where

u =

(
v

w

)
A(u) =

(
0 −T ∗
−1 0

)
.

Note that since T ∗ = T ∗(t∗), we have A = A(t∗). The matrix A has two
different nonzero eigenvalues and two linearly independent eigenvectors. It
then follows that system (3.15) is diagonalizable and therefore hyperbolic.
Numerical methods used to solve this hyperbolic system will the discussed in
detail in the next chapter. Y ∗(s, t∗;n) can therefore be computed per span
from the solutions w or v by integrating with respect to s equation w = ∂Y ∗

∂s
.

From (3.14) we can compute the tension. Integrating equation (3.14) with
respect to s over the first span and incorporating the boundary condition
X∗(0, t∗; 1) = 0 we obtain

T ∗(t∗) = X∗(1, t; 1) +
1

2

∫ 1

0

w2(s, t∗; 1)ds > 0. (3.16)

For the second span we apply the same procedure but use the boundary
condition X∗(1, t∗; 2) = S0 and we obtain

T ∗(t∗) = S0 −X∗(0, t; 2) +
1

2

∫ 1

0

w2(s, t∗; 2)ds. (3.17)

To find the tension in both spans we add the two relatons (3.16) , (3.17) and
apply the coupling condition X∗(1, t∗; 1) − X∗(0, t∗; 2) = S0 and obtain the
expression

T ∗(t∗) = S0 +
1

4

∫ 1

0

w2(s, t∗; 1)ds+
1

4

∫ 1

0

w2(s, t∗; 2)ds. (3.18)

We then compute X∗(s, t∗;n). We differentiate (3.14) with respect to s and
obtain
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∂2X∗

∂s2
+ w

∂w

∂s
= 0. (3.19)

We solve this system per span and incoperate the boundary conditionsX∗(0, t∗; 1) =
0,X∗(1, t∗; 2) = S0 and the coupling condition X∗(1, t∗; 1) = S0 +X∗(0, t∗; 2).

We summarize the procedure discussed above in the form of an algorithm

Algorithm 1 Swinging cables algorithm

1: Compute L from αL4 + L2 − SL− 8
3D2 = 0 , α := mg

8EAD

compute ε = D
L , µ = αL4

D2 , S0 = µ− 8
3

2: Give initial conditions: X∗
0 (s), Y ∗

0 (s), T ∗0
3: Compute T ∗(0)

T ∗(0) = S0 + 1
4

∫ 1
0 w2(s, 0; 1)ds + 1

4

∫ 1
0 w2(s, 0; 2)ds

4: repeat
5: Solve ∂un

∂t∗ + A.∂un
∂s = 0 (numerical scheme)

6: Compute Y ∗(s, t∗;n).
∂Y ∗

n
∂s = wn

Y ∗(0, t∗; 1) = 0, Y ∗(1, t∗; 1) = 0
Y ∗(0, t∗; 2) = 0, Y ∗(1, t∗; 2) = 0.

7: Compute T ∗(t∗)
T ∗(t∗) = S0 + 1

4

∫ 1
0 w2(s, t∗; 1)ds + 1

4

∫ 1
0 w2(s, t∗; 2)ds

8: Solve ∂2X∗
n

∂s2 + wn.∂wn
∂s = 0

X∗(0, t∗; 1) = 0, X∗(1, t∗; 2) = S0

X∗(1, t∗; 1) = S0 + X∗(0, t∗; 2).
9: t∗n = t∗n+1

10: until tmax



Chapter 4

Numerical Solution of the
Hyperbolic System

In this chapter we present two numerical schemes, viz the upwind and the
ADER schemes, to solve the linear system of hyperbolic conservation laws.
First we will compute the analytical solution of system (3.15). We will then
derive the two numerical schemes and apply the schemes to our problem
of interest. Stability for both schemes is investigated. Finally we derive
boundary conditions.

4.1 Analytical solution

Considering the initial value problem

ut + Aus = 0 in R2 × (0, Tmax), (4.1a)

u(s, 0) = υ(s) in R2, (4.1b)

where

u =

(
v

w

)
A =

(
0 −T ∗
−1 0

)
.
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The matrix A has the eigensystem,

r1 =

(
c

1

)
, r2 =

(
−c
1

)
, λ1 = −c < 0, λ2 = c > 0, c =

√
T ∗.

(4.2)

Since we have two linear independent eigenvectors, the system (4.1) is diago-
nalizable so that A = RΛR−1 where Λ =diag(λ1, λ2) and R = (r1 r2). We
now introduce the characteristic variable ũ(s, t) := R−1u(s, t) satisfying the
decoupled system

ũt + Λũs = 0. (4.3)

We have the characteristic variable ũ given by ũ(s, t) = R−1u(s, t) compo-
nentwise, we obtain

ṽ =
1

2

(v
c

+ w
)
, w̃ =

1

2

(
−v
c

+ w
)
. (4.4)

We find, see [4], ṽ(s, t) = ṽ(s+ ct, 0) and w̃(s, t) = w̃(s− ct, 0).

Combining these results with the above relations for the characteristic vari-
ables, we obtain the analytic solution,

v(s, t) =
1

2

[
υ1(s+ ct) + υ1(s− ct) +

c(υ2(s+ ct)− υ2(s− ct))
]
, (4.5a)

w(s, t) =
1

2

[1

c

(
υ1(s+ ct)− υ1(s− ct)

)
+

(υ2(s+ ct) + υ2(s− ct))
]
, (4.5b)

thus the solution u consists of two components, one propagating with velocity
λ1 = −c and the other with velocity λ2 = c. Since λ1 < 0, a wave propagates
in the negative x−direction and since λ2 > 0, the other wave propagates in
the positive x−direction.

4.2 Upwind scheme

In order to compute a numerical solution of (3.15), we cover the domain
Ω := R× [0,∞) with grid point (sj, t

n), where sj := j∆s for j ∈ Z and tn :=
n∆t for n ∈ N with ∆s the spatial grid size and ∆t the time step. We will
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first introduce the upwind scheme for the componentwise decoupled system
and subsequently give the scheme for u. Since by (4.5) each component of
the solution is constant along characteristics and therefore has an upwind
direction determined by the sign of the corresponding eigenvalue λk. The
eigenvalues λk are split as

λk = λ+
k + λ−k , λ+

k := max(λk, 0) ≥ 0, λ−k := min(λk, 0) ≤ 0. (4.6)

We therefore have the upwind scheme for componentwise decoupled system
as follows

1

∆t
(ũn+1

k,j − ũn
k,j) +

λ+
k

∆s
(ũn

k,j − ũn
k,j−1) +

λ−k
∆s

(ũn
k,j+1 − ũn

k,j) = 0, (4.7)

where k = 1, 2. ũn
k,j denotes the numerical approximation of ũk(sj, t

n) and
we have ũn

1,k = ṽn
k while ũn

2,k = w̃n
k . The upwind scheme for all characteristic

variables ũk can be combined in vector form and we have

1

∆t
(ũn+1

j − ũn
j ) +

Λ+

∆s
(ũn

j − ũn
j−1) +

Λ−

∆s
(ũn

j+1 − ũn
j ) = 0, (4.8)

where, Λ+ := diag(λ+
1 , λ

+
2 ) and Λ− := diag(λ−1 , λ

−
2 ).To formulate the upwind

scheme in terms of the original variable u we substitute the condition ũ :=
R−1u into (4.8) and multiply the resulting scheme by matrix R giving

1

∆t
(un+1

j − un
j ) +

A+

∆s
(un

j − un
j−1) +

A−

∆s
(un

j+1 − un
j ) = 0, (4.9)

where A+ := RΛ+R−1, A− := RΛ−R−1 and A = A+ +A−. From (4.1) and
(4.2) we have

A+ =
1

2

(
c −c2
−1 c

)
, A− = −1

2

(
c c2

1 c

)
.

Substituting A+ and A− into (4.9) we obtain the scheme

vn+1
j = vn

j +
1

2
γ

[
(vn

j+1 − 2vn
j + vn

j−1) + c(wn
j+1 − wn

j−1)
]
, (4.10a)

wn+1
j = wn

j +
1

2
γ
[1

c
(vn

j+1 − vn
j−1) +

(wn
j+1 − 2wn

j + wn
j−1)

]
. (4.10b)
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where γ = c∆t
∆s

.

The stability of the upwind scheme is ensured if the corresponding scalar
upwind schemes for all variables ũk are stable. This is shown in details in
[4]. This requirement gives the Courant, Friedrichs and Lewy (CFL) stability
condition

λ
∆t

∆s
≤ 1 ⇐⇒ c

∆t

∆s
≤ 1, (4.11)

where λ is the maximum absolute eigenvalue of the problem. This require-
ment means that all characteristics through the point (sj, t

n+1) intersect the
grid line t = tn at the points in the interval [sj−1, sj+1], see Figure 4.1. Since
the stability condition restricts the choice of the time step, the upwind scheme
is termed to be conditionally stable.

Figure 4.1: Stencil for the upwind scheme
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4.3 ADER schemes

ADER is an abbreviation for “Arbitrary high order schemes using DERiv-
atives”. This a finite volume scheme, the hyperbolic conservation laws are
integrated over a control-volume which covers space and time. The special
feature of the ADER is the computation of the numerical flux. In this section
we will derive the ADER scheme by solving the general system of hyperbolic
conservation laws. We will introduce the notation needed and the basic prin-
ciple of the ADER scheme. Finally we will show how the ADER scheme
works for our linear hyperbolic system (4.1).

Considering the general system of one-dimensional hyperbolic conservation
laws

∂u

∂t
+

∂

∂s
F(u) = 0, s ∈ R, t > 0, (4.12)

with the initial solution u(x, 0) = u0(s). For the spatial coordinates we use
a uniform grid, which contains the cells Ii = [si− 1

2
, si+ 1

2
], for i ∈ Z of grid

size ∆s = si+ 1
2
− si− 1

2
. Time is also divided uniformly with the time levels

denoted by tn, n ∈ N and the stepsize by ∆t. Applying the finite volume
scheme to (4.12),we integrate over the control volume V := Ii× [tn, tn+1] and
obtain

un+1
i = un

i −
∆t

∆s
(Fi+ 1

2
− Fi− 1

2
), (4.13)

where the cell average value and the time average flux are given by

un
i =

1

∆s

∫ s
i+1

2

s
i− 1

2

u(s, tn)ds and Fi+ 1
2

=
1

∆t

∫ tn+1

tn
F(u(si+ 1

2
), t)dt.

(4.14)
Given F̃i+ 1

2
, which is an approximation of the flux Fi+ 1

2
, then the scheme

(finite volume) to solve (4.12) is completely determined. We therefore have
to compute the numerical flux F̃i+ 1

2
and we will use the ADER scheme.

There are two versions of the ADER scheme which are the state-expansion
and the flux expansion version. The two are identical for linear functions
F but differ for nonlinear F. For the computation of the numerical flux we
require a certain order of accuracy m. The advantage of using ADER is
that is possesses a property that it can be extended to any given order of
accuracy m. To compute the numerical flux we solve at each cell interface
si+ 1

2
a general Riemann problem of degree m− 1 (GRPm−1), but instead of
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a piecewise constant initial conditions we have polynomials of degree m− 1
on the left and right side of the discontinuity. Thus we have to solve

∂tu + ∂sF(u) = 0, s ∈ R, t > tn

u(s, t) =

{
uL(s) := pi(s), s < si+ 1

2

uR(s) := pi+1(s), s > si+ 1
2

(4.15)

The initial conditions uL(s) and uR(s) are computed using some construction
method described briefly later. To obtain a scheme of order m, we express
the approximate solution of (GRPm−1) (4.15) as a Taylor series expansion in
time at the cell interface. Defining τ = t− tn, we have

u(si+ 1
2
, t) = u(si+ 1

2
, tn+) +

m−1∑
k=1

[
∂

(k)
t u(si+ 1

2
, tn+)

] τ k

k!
+O(τm), (4.16)

where ∂k
t u(s, t) := ∂k

∂tk
u(s, t). The leading term u(si+ 1

2
, tn+) is the Godunov

state solution of the conventional Riemann problem (with piecewise constant
data) GRP0

∂tu + ∂sF(u) = 0, s ∈ R, t > tn

u(s, t) =

{
uL(si+ 1

2
), s < si+ 1

2

uR(si+ 1
2
), s > si+ 1

2
.

(4.17)

We now have to compute ∂
(k)
t u(si+ 1

2
, tn+) for the remaining m − 1 terms.

Since the derivatives with respect to time are usually not available at each
cell interface si+ 1

2
, we use a method that is based on the representation of the

time derivatives in terms of spatial derivatives of u; for details see [1]. We

therefore compute the spatial derivatives.We define u(k) = ∂
(k)
s u the k − th

spatial derivative. Taking the derivative of (4.12) with respect to s we obtain

0 = ∂s(∂tu) + ∂s[∂sF(u)]

= ∂tu
(1) + F′(u)∂su

(1) + ∂s

(
F′(u)

)
u(1). (4.18)
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Hence, u(1) is determined from ∂tu
(1) + F′(u)∂su

(1) = −∂s

(
F′(u)

)
u(1). Re-

peating the procedure of taking the derivative with respect to s of (4.12) k
times, we obtain

∂tu
(k) + F′(u)∂su

(k) = Gk(u,u
(1), ...,u(k)). (4.19)

The function Gk is an algebraic function of u and all its derivative are of
degree less than or equal to k. For the linear system the function Gk = 0.
We only need u(k) at the first instant interaction of the left and right intial
states. According to [1] it is justified to neglect the source terms. The system
is linearized hence we obtain the state variable u(k) by solving the RP0

∂tu
(k) + F′(u(si+ 1

2
, tn+))∂su

(k) = 0, s ∈ R, t > tn

u(s, tn) =

{
u

(k)
L = ∂

(k)
s uL(si+ 1

2
), s < si+ 1

2

u
(k)
R = ∂

(k)
s uR(si+ 1

2
), s > si+ 1

2
.

(4.20)

We note that, to obtain the state variables for the numerical flux we solve one
nonlinear and m− 1 linear Riemann-problems. We express time derivatives
in terms of space derivatives. After computing all spatial derivatives we set
up the Taylor expansion (4.16) as follows

u(si+ 1
2
, τ) = C0 + C1τ + ...Cm−1

τm−1

(m− 1)!
. (4.21)

Ck are constant vectors obtained from the Cauchy-Kovalevskaya method
[14] together with spatial derivatives computed from (4.20). Hence (4.21)
approximates the value of u at the interface si+ 1

2
with an order of accuracy

m in time.

Finally we compute the numerical flux F̃i+ 1
2
. This is where the two ver-

sions of ADER differ. For the state expansion method, the numerical flux
is computed by using the approximate quadrature rules. Applying Gaussian
quadrature we obtain

F̃i+ 1
2

=
Kα∑
α=0

F(u(si+ 1
2
, γα∆t))ωα, (4.22)

where γα and ωα are properly chosen nodes and weights. Kα is the number
of nodes and has to be chosen accordingly to the order m. For the flux



4.3. ADER SCHEMES 23

expansion version, we consider the Taylor series expansion of the physical
flux with respect to time

F(si+ 1
2
, t) = F(si+ 1

2
, tn+)

m−1∑
k=1

[∂
(k)
t F(si+ 1

2
, tn+)]

τ k

k!
+O(τm). (4.23)

Hence, from (4.14) and (4.23), omitting the term O(τm), the numerical flux
is given by

F̃i+ 1
2

= F(si+ 1
2
, tn+) +

m−1∑
k=1

[∂
(k)
t F(si+ 1

2
, tn+)]

∆tk

(k + 1)!
. (4.24)

The first term of (4.24) accounts for the interaction of the initial data and it
is approximated using monotone flux functions like Godunov, Lax-Friedrich,
etc [1]. in terms of the left and right cell boundary values. The other terms
are computed by taking the derivatives of F(u) with respect to time t up to
order m− 1. These two methods (4.22) and (4.24) are the same for a linear
system since we can compute the integral (4.14) exactly.

4.3.1 ADER scheme for a linear system

In this section we apply the scheme derived in the previous section to the
linear system of conservation laws (3.15). Since both the state-expansion
and the flux-expansion versions of ADER give the same results for the linear
system we can choose either one of the two. We will therefore use the state-
expansion. To compute the numerical flux we first solve the appropriate
Generalized Riemann problem GRPm−1. Its solution will then be expressed
in terms of a Taylor series expansion, see(4.16). We then express the time

derivatives in terms of spatial derivatives ∂
(k)
s u(s, t). The first derivative

∂tu(s, t) follow from the conservation law

∂tu(s, t) = −A∂su(s, t). (4.25)

Taking the time derivative of (4.25), we obtain the second time derivative

∂
(2)
t u(s, t) = A2∂

(2)
s u(s, t). Therefore, we can conclude by induction for gen-

eral k, we have the k − th time derivative

∂
(k)
t u(s, t) = (−A)k∂(k)

s u(s, t). (4.26)
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The determination of the time derivatives of u reduces to the estimation of
the spatial derivatives u(k)(s, t). The spatial states u(k)(s, t) are associated
to the conventional Riemann problem RP0

∂tu + A∂su
(k) = 0, s ∈ R, t > tn

u(k)(s, tn) =

{
u

(k)
L = u

(k)
L (si+ 1

2
), s < si+ 1

2

u
(k)
R = u

(k)
R (si+ 1

2
), s > si+ 1

2
.

(4.27a)

The sought particular values of the solutions to GRP0 is u(k)(si+ 1
2
, tn+), the

so-called the Godunov state. Using (4.26), the Taylor expansion reads

u(si+ 1
2
, t) = u(si+ 1

2
, tn+) +

m−1∑
k=1

[
(−A)ku(k)(si+ 1

2
, tn+)

] τ k

k!
+O(τm), (4.28)

and hence the flux is computed from (4.14),i.e.,

F̃i+ 1
2

= Au(si+ 1
2
, tn+) +

m−1∑
k=1

[
(−A)ku(k)(si+ 1

2
, tn+)

] ∆tk

(k + 1)!
. (4.29)

The cell average value un+1
i in the next step is given by (4.13). Finally we

have to compute the solutions of GRP0u
(k)(s, τ). We are interested in the

Godunov state u(k)(si+ 1
2
, tn+). For the linear system (4.1) the solution can

be expressed explicitly. We therefore express the solution of (4.27) in terms
of eigenvectors (4.2), i.e;

u
(k)
i (s, t) =

2∑
j=1

ũ
(k)
j,i (s, t)rj, (4.30)

with scalar functions ũ
(k)
j,i (s, t) to be determined later. The double notation

j, i is emphasized since ũ
(k)
j,i differ for every i. The initial functions uL(s)

and uR(s) can also decoupled since υ1 and υ2 are linearly independent. We
obtain

u
(k)
L (si+ 1

2
) =

2∑
j=1

α
(k)
j,i υj and u

(k)
R (si+ 1

2
) =

2∑
j=1

β
(k)
j,i υj, (4.31)
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with suitable constants α
(k)
j,i and β

(k)
j,i . We are now considering the decoupled

system of equations. Using knowledge of the linear advection equation, the
scalar function are given by

ũ
(k)
j,i (s− si+ 1

2
, t) = ũ

(k)
j,i (s− si+ 1

2
− λj(t− tn), tn)

=


α

(k)
j,i ,

s−s
i+1

2

t−tn
< λj,

β
(k)
j,i ,

s−s
i+1

2

t−tn
> λj.

(4.32)

The values ũ
(k)
j,i (si+ 1

2
, tn+) correspond to the condition

ũ
(k)
j,i (si+ 1

2
, tn+) =


α

(k)
j,i , 0 < λj,

β
(k)
j,i , 0 > λj.

(4.33)

We note that, since the first eigenvalue is negative and the second one is
positive, the Godunov state using (4.32) and (4.33) is given by

u
(k)
i (si+ 1

2
, tn+) = β

(k)
1,i r1 + α

(k)
2,i r2. (4.34)

4.3.2 Reconstruction and initial data

In this section we will show the basic issues, which are important for a numer-
ical implementation of the ADER scheme. We will also present the structure
of the conventional Riemann problems, i.e., we will state the initial data
for arbitrary expansion index m. In this thesis we will concentrate on the
cases m = 2 and m = 3 for the fixed stencil approximation and the ENO-
reconstruction.

The initial polynomials uL(s) and uR(s) of the GRP (m − 1) are computed
using the same construction methods. The technique is to construct the cell
interface values of a function using given cell average values. Hence, given
all cell averages un

i at time tn we should be able to construct the cell bound-
ary values u±

i+ 1
2

with an accuracy of order m. These methods include the

essentially nonoscillatory (ENO), weighted ENO (WENO) reconstructions
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etc. Form [2],[10], [11] or [12] we obtain for each interface two reconstructed
values, u+

i+ 1
2

and u−
i+ 1

2

.These are the cell boundary reconstructions at si+ 1
2

of

u when using a reconstruction stencil based on the i − th cell (denoted by
-) and the i+ 1− th cell (denoted by +). For smooth functions these values
are equal but they differ at discontinuities. We additionally get two recon-
struction polynomials which provide the cell boundary values, which are of
degree m− 1. These polynomials are used to set up the initial conditions of
(4.17). The polynomial obtained by reconstruction based on the i − th cell
corresponds to uL(s) while the one based on the i + 1− th cell corresponds
to uR(s).

Fixed stencil approximation uses a fixed (defined by the left shift r, which is
fixed for all cells) stencil Sr(i) for each cell Ii of length m. We have

Sr(i) = {Ii−r, ..., Ii, ..., Ii+m−r−1} (4.35)

to determine pi(s). For each cell we obtain from the reconstruction an inter-
polation polynomial polynomial pi,r(s) of degree m − 1, which provides the
cell interface values of the function u at si+ 1

2
and si− 1

2
with an m-th order

accuracy. These polynomials are used to set up the conventional Riemann
problem RP0, which have to be solved to get the solution to the GRPm−1. We
then have the RP0 for the cell interface si+ 1

2
, arbitrary order k = 0, ...,m− 1

and time tn as

∂tu
(k) + A∂su

(k) = 0, s ∈ R, t > tn

u(k)(s, tn) =

{
u

(k)
L = p

(k)
i,r (si+ 1

2
), s < si+ 1

2

u
(k)
R = p

(k)
i+1,r(si+ 1

2
), s > si+ 1

2
.

(4.36)

We now present the formulas for the initial values u
(k)
L and u

(k)
R at an ar-

bitrary cell interface si+ 1
2
. We note that these values differ in every time

step n and therefore have to be calculated at each time step from the given
approximation un

i .
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Fixed stencil approximation m = 2

For the fixed stencil reconstruction for the choice r = 0 we obtain, considering
the cell interface si+ 1

2
, the following initial values for the RP0:

u(s, 0) =

{
1
2
(ui+1 + ui), s < si+ 1

2
1
2
(−ui+2 + 3ui+1) s > si+ 1

2

(4.37a)

u(1)(s, 0) =

{
1

∆s
(ui+1 − ui), s < si+ 1

2
1

∆s
(ui+2 − ui+1) s > si+ 1

2

(4.37b)

For the choice r = 1 we obtain, considering the cell interface si+ 1
2
, the fol-

lowing initial values for the RP0:

u(s, 0) =

{
1
2
(3ui − ui−1), s < si+ 1

2
1
2
(ui+1 + ui) s > si+ 1

2

(4.38a)

u(1)(s, 0) =

{
1

∆s
(ui − ui−1), s < si+ 1

2
1

∆s
(ui+1 − ui) s > si+ 1

2

(4.38b)

Fixed stencil Approximation m = 3

For the fixed stencil reconstruction for the choice r = 0 and m = 3 we obtain,
considering the cell interface si+ 1

2
, the following initial values for RP0:

u(s, 0) =

{
1
6
(−ui+2 + 5ui+1 + 2ui), s < si+ 1

2
1
6
(2ui+3 − 7ui+2 + 11ui+1) s > si+ 1

2

(4.39a)

u(1)(s, 0) =

{
1

∆s
(ui+1 − ui), s < si+ 1

2
1

∆s
(−ui+3 + 3ui+2 − 2ui+1) s > si+ 1

2

(4.39b)

u(2)(s, 0) =

{
1

∆s2 (ui+2 − 2ui+1 + ui), s < si+ 1
2

1
∆s2 (ui+3 − 2ui+2 + ui+1) s > si+ 1

2
.

(4.39c)

Furthermore for r = 1 and m = 3 we have obtain the following initial value
for the RP0:
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u(s, 0) =

{
1
6
(2ui+1 + 5ui − ui−1), s < si+ 1

2
1
6
(−ui+2 + 5ui+1 + 2ui), s > si+ 1

2

(4.40a)

u(1)(s, 0) =

{
1

∆s
(ui+1 − ui), s < si+ 1

2
1

∆s
(ui+1 − ui), s > si+ 1

2

(4.40b)

u(2)(s, 0) =

{
1

∆s2 (ui+1 − 2ui + ui−1), s < si+ 1
2

1
∆s2 (ui+2 − 2ui+1 + ui), s > si+ 1

2

(4.40c)

and for r = 2 and m = 3 we have the following initial conditions:

u(s, 0) =

{
1
6
(11ui − 7ui−1 + 2ui−2), s < si+ 1

2
1
6
(2ui+1 + 5ui − ui−1), s > si+ 1

2

(4.41a)

u(1)(s, 0) =

{
1

∆s
(2ui − 3ui−1 + ui−2), s < si+ 1

2
1

∆s
(ui+1 − ui), s > si+ 1

2

(4.41b)

u(2)(s, 0) =

{
1

∆s2 (ui − 2ui−1 + ui−2), s < si+ 1
2

1
∆s2 (ui+1 − 2ui + ui−1), s > si+ 1

2

(4.41c)

ENO for m = 2, 3

The ENO reconstruction procedure is defined via the fixed stencil reconstruc-
tion, but instead of fixing the left shift r on each cell Ii, we choose r such that
the function u is the smoothest on the chosen stencil. The Newton divided
differences are used to decide which r should be chosen. The idea is to start
with a two point stencil, then add in each step another cell depending on
the value of the Newton divided differences. The procedure is to be repeated
until the m-th order stencil is obtained. In the case of m = 2 we can use
either r = 0 or r = 1. Depending on the value of r we use either the results
(4.37) or (4.38) as the initial data to solve the RP0 at each cell interface si+ 1

2
.

For m = 3 we have three choices of r which are r = 0, r = 1 and r = 2 again
depending on the value of r we use as the initial data of the RP0 either one
of (4.39) , (4.40) or (4.41).
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We now summarize the procedure discussed above for computing the numer-
ical flux. Solving the appropriate GRPm−1

∂tu + ∂sF(u) = 0, s ∈ R, t > tn

u(s, t) =

{
uL(s) := pi(s), s < si+ 1

2

uR(s) := pi+1(s), s > si+ 1
2

Algorithm 2 ADER flux
1: Express the approximate solution as a Taylor series expansion in time at the

cell interface

u(si+ 1
2
, t) = u(si+ 1

2
, tn+) +

m−1∑
k=1

[
∂

(k)
t u(si+ 1

2
, tn+)

] τk

k!
+O(τm).

2: Express time derivatives in terms of spatial derivatives

∂
(k)
t u(s, t) = (−A)k∂(k)

s u(s, t), k = 1, 2...., m− 1.

3: Solve the conventional Riemann problem RP0

∂tu(k) + A∂su(k) = 0, s ∈ R, t > tn

u(k)(s, tn) =

 u(k)
L = u(k)

L (si+ 1
2
), s < si+ 1

2

u(k)
R = u(k)

R (si+ 1
2
), s > si+ 1

2
.

4: Express solutions to RP0 using Taylor expansion

u(si+ 1
2
, t) = u(si+ 1

2
, tn+) +

m−1∑
k=1

[
(−A)ku(k)(si+ 1

2
, tn+)

] τk

k!
+O(τm).

5: Compute the flux

F̃i+ 1
2

= Au(si+ 1
2
, tn+) +

m−1∑
k=1

[
(−A)ku(k)(si+ 1

2
, tn+)

] ∆tk

(k + 1)!
.
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4.3.3 Stability analysis

Investigating the stability of the ADER schemes is complicated, and becomes
more complicated to analyze for higher m. Choosing the ENO/WENO re-
constructions we would have to distinguish a lot of different cases, since
different left-shifts r are used for different cells Ii and hence different com-
binations have to be investigated. Investigating the stability using the fixed
stencil reconstruction for m = 2 and r = 0. Considering the linear advection
equation

∂t + a∂su = 0, s ∈ R, t > 0, a ∈ R. (4.42)

Where u is uniquely determined by (4.42) and the initial condition u(s, 0) =
u0(s), s ∈ R. We assume that a > 0 hence the result is right moving wave.
This gives the stability condition

γ ≤ 1, (4.43)

where γ = a∆t
∆s

, see [12] for full derivation. Subsequently, investigating the
stability using the fixed stencil reconstruction for m = 2 and r = 1. Con-
sidering the advection equation (4.42) and assuming now that a < 0. We
obtain the stability condition

−γ ≤ 2. (4.44)

We use the above conditions to investigate the stability of the decoupled
system. Making use of the characteristic decomposition presented in this
section,we choose different reconstruction methods for the two independent
equations.We consider the fixed stencil approximation and for the left moving
wave r = 0 and r = 1 for the right moving wave. From the stability conditions
above, we obtained the CLF- condition |γ| ≤ 2. Therefore, we obtain the
restriction

γ = λ
∆t

∆s
≤ 2, (4.45)

where λ is the maximum absolute eigenvalue of the considered problem.

4.4 Numerical boundary conditions

In this section we will discuss and derive the boundary conditions and the
coupling conditions for the hyperbolic system (3.15). Our two span model
has two boundaries at j = 1 and j = 2N−1, the coupling condition at j = N
as show in Figure 4.2.
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Figure 4.2: Boundary and coupling conditions of the hyperbolic system

At the left boundary, from (3.12) we have v(0, t) = 8µt and w(0, t) is un-
known. We have to compute w(0, t) numerically. We use the characteristic
variable ṽ = R−1v and the scalar equation ṽt + cṽs = 0. Along the first
characteristic in the first span, C1,1, we have

dṽ

dt∗
= 0, (4.46)

therefore,ṽ is constant along C1,1. We define ṽn
j = ṽ(sj, t

n), hence ṽn+1
1 =

ṽ(A). We have the slope
ds

dt∗
= −c = λ1, (4.47)

hence we have s(t∗) = −c(t∗ − t∗n+1). We assume that γ = c∆t
∆s
≤ 1. Using

linear interpolation we find

ṽn
2 − ṽn

1

∆s
=
ṽ(A)− ṽn

1

c∆t
, (4.48)

and subsequently

ṽ(A) =
1

∆s

[
(∆s− c∆t)ṽn

1 + c∆t ṽn
2

]
= (1− γ)ṽn

1 + γṽn
2 . (4.49)

Since ṽn+1
1 = ṽ(A) we have

ṽn+1
1 = (1− γ)ṽn

1 + γṽn
2 (4.50)
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This is just the upwind scheme for ṽt + cṽs = 0.

From (4.4) we have

ṽ =
1

2

(v
c

+ w
)

=⇒ w = 2ṽ − v

c
. (4.51)

Thus we have the boundary conditions;

ṽn
2 =

1

2

(
1

c
vn

2 + wn
2

)
.

vn+1
1 = 8µt∗n+1.

wn+1
1 = 2ṽn+1

1 − 1

c
vn+1

1 .

At the right boundary, from equation (3.12) we have v(S2N−1, t) = 8µt and
w(S2N−1, t) has to be computed numerically. We have on C2,2

ds

dt∗
= c = λ2, (4.52)

hence we have s(t∗) = 1 + c(t∗ − t∗n+1). Since

dw̃

dt∗
= 0, (4.53)

this means that w̃ is constant along the characteristic C2,2 hence w̃n+1
2N−1 =

w̃(B).

Assuming that γ = c∆t
∆s
≤ 1, and using linear interpolation we find

w̃n
2N−1 − w̃n

2N−2

∆s
=
w̃2N−1 − w̃(B)

c∆t
, (4.54)

and subsequently

w̃(B) =
1

∆s

[
c∆t w̃n

2N−2 + (∆s− c∆t)w̃n
2N−1

]
= γw̃n

2N−2 + (1− γ)w̃n
2N−1. (4.55)

Since w̃n+1
2N−1 = w̃(B) we have

w̃n+1
2N−1 = γw̃n

2N−2 + (1− γ)w̃n
2N−1. (4.56)
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From (4.4) we have

w̃ =
1

2

[
−v
c

+ w

]
=⇒ w = 2w̃ +

v

c
. (4.57)

Thus, we have

w̃n
2N−1 =

1

2

(
−1

c
vn

2N−1 + wn
2N−1

)
.

vn+1
2N−1 = 8µt∗n+1.

wn+1
2N−1 = 2w̃n+1

2N−1 +
1

c
vn+1

2N−1.

We now consider the coupling condition occurring at j = N . We have from
(3.12) that v(1, t∗; 1) = v(0, t∗; 2) = 8µt∗. Along the characteristic C1,2 we
have

ds

dt∗
= c =⇒ s(t∗) = 1 + c(t∗ − t∗n+1). (4.58)

Since dw̃
dt

= 0, it implies that w̃ is constant along the characteristic C1,2.
Therefore w̃n+1

N = w̃(E). Assuming that γ = c∆t
∆s

< 1 and using interpolation
we obtain

w̃(E) = γw̃n
N−1 + (1− γ)w̃n

N . (4.59)

Hence we have
w̃n+1

N = γw̃n
N−1 + (1− γ)w̃n

N . (4.60)

Thus;

w̃n
N =

1

2

(
−1

c
vn

N + wn
N

)
.

vn+1
N = 8µt∗n+1.

wn+1
N = 2w̃n+1

N +
1

c
vn+1

N .

Similarly along C2,1, we have

ds

dt∗
= −c =⇒ s(t∗) = −c(t∗ − t∗n+1). (4.61)

Since dṽ2

dt
= 0, it implies that ṽ is constant along C2,1. Therefore ṽn+1

N =
ṽ(D). Assuming that γ = c∆t

∆s
< 1 and using interpolation we obtain

ṽ(D) = (1− γ)ṽn
N + γṽn

N+1. (4.62)
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Thus;

ṽn
N =

1

2

(
1

c
vn

N + wn
N

)
.

vn+1
N = 8µt∗n+1.

wn+1
N = 2ṽn+1

N − 1

c
vn+1

N .



Chapter 5

Numerical Results

In this chapter, we illustrate the performance of the schemes presented in this
thesis. We will first present numerical results and analysis of the accuracy
of the ADER scheme for solving the hyperbolic system (3.15). Next we will
present the simulation results of galloping transmission lines for the upwind
scheme.

5.1 Numerical experiments for ADER scheme

In this section we perform numerical tests and measure the error with respect
to the given analytical solution (4.5). We are expecting an error of the order
m for constant CLF number, which is defined by

γ = c
∆t

∆s
,

For our experiments we choose T ∗ = 4, therefore we get c = 2. Thus, the ratio
between the step size ∆t and the grid size ∆s has to be a constant in order
to obtain the desired order of accuracy m. The linear stability condition,
mentioned in [1], is the CLF condition γ ≤ 1. All tests are performed using
the initial condition,

u0(s) =

(
sin πs

cos πs

)
.
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Furthermore the errors are measured in the L∞-norm and the L2−norm. The
L∞-norm is used additionally to get an impression of the maximum error.
Both errors are presented in the Tables 5.1-5.7. In each cell the upper value
is the L∞- error and the lower is the L2- error.We have chosen several values
for the spatial grid size and time step size for testing the order of accuracy.
The final time we used to measure the error is tmax = 2 for all experiments.

∆t
∆s 0.08 0.04 0.02 0.01

0.2 8.117.10−2 1.380.10−1 1.613.10−1 1.955.10−1

7.862.10−2 1.337.10−1 1.470.10−1 1.387.10−1

0.1 6.961.1010 2.758.10−2 6.627.10−2 9.294.10−2

3.298.1010 2.728.10−2 6.147.10−2 8.058.10−2

0.05 3.422.1026 2.747.1024 6.756.10−3 1.738.10−2

2.128.1026 2.255.1024 7.412.10−3 1.758.10−2

0.025 1.793.1041 2.449.1057 7.311.1053 1.664.10−3

6.709.1040 1.358.1057 5.104.1053 1.913.10−3

Table 5.1: Reconstruction using the fixed stencil approximation of order
m = 2 and left shift r = 0.

∆t
∆s 0.08 0.04 0.02 0.01
0.2 2.047.10−1 3.626.10−1 4.183.10−1 4.175.10−1

1.516.10−1 2.294.10−1 2.760.10−1 3.126.10−1

0.1 5.142.1011 5.236.10−2 8.592.10−2 1.054.10−1

4.241.1011 4.819.10−2 7.349.10−2 9.085.10−2

0.05 5.858.1027 8.203.1025 1.340.10−2 1.875.10−2

3.353.1027 5.907.1025 1.299.10−2 1.949.10−2

0.025 2.335.1042 6.666.1058 3.168.1055 3.397.10−3

9.097.1041 3.302.1058 1.934.1055 3.363.10−3

Table 5.2: Reconstruction using the fixed stencil approximation of order
m = 2 and left shift r = 1.
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∆t
∆s 0.08 0.04 0.02 0.01
0.2 2.115.10−2 6.578.10−1 1.925.101 1.084.101

1.605.10−2 3.420.10−1 9.826.100 5.530.101

0.1 1.268.1016 5.167.10−3 1.733.100 3.181.104

1.118.1016 3.978.10−3 8.672.10−1 1.153.104

0.05 1.754.1038 2.683.1036 9.059.10−4 5.157.103

1.139.1038 2.131.1036 6.916.10−4 2.567.103

0.025 6.645.1058 1.267.1081 3.326.1078 1.233.10−4

3.105.1058 7.162.1088 2.541.1078 1.009.10−4

Table 5.3: Reconstruction using the fixed stencil approximation of order
m = 3 and left shift r = 0.

∆t
∆s 0.08 0.04 0.02 0.01
0.2 1.957.10−2 2.006.10−2 2.032.10−2 2.292.10−2

1.577.10−2 1.715.10−2 1.831.10−2 1.912.10−2

0.1 3.700.10−3 3.100.10−3 5.591.10−3 7.136.10−3

3.381.10−3 3.266.10−3 4.840.10−3 5.695.10−3

0.05 3.208.1026 7.471.10−4 6.857.10−4 1.715.10−3

2.858.1026 6.030.10−4 5.229.10−4 1.026.10−3

0.025 3.497.1053 6.424.1057 1.128.10−4 1.023.10−4

2.341.1053 4.228.1057 8.826.10−5 7.339.10−5

Table 5.4: Reconstruction using the fixed stencil approximation of order
m = 3 and left shift r = 1.

In the Tables 5.1 and 5.2 the errors of the fixed stencil approximation for
m = 2 are depicted. The Tables 5.3-5.5 show the errors of the fixed stencil
approximation for m = 3. The errors for the ENO reconstruction for m = 2
and m = 3 are shown in Tables 5.6 and 5.7 respectively. On the diagonal
of the tables the CLF condition number γ has the value 0.8. We note that
on the lower subdiagonal the methods are unstable since γ > 1 there. Table
5.8 presents the L2− and L∞− error orders for several grid sizes ∆s and the
constant CLF-number γ = 0.8.

From 5.8 we see that we achieve the desired order of accuracy using the fixed
point approximation when compared to ENO. We note that in our case we are
only considering continuous function, if we would consider the discontinuous
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∆t
∆s 0.08 0.04 0.02 0.01
0.2 6.754.10−2 1.694.100 5.076.101 2.856.102

4.841.10−2 8.611.10−1 2.710.101 1.526.102

0.1 6.094.1016 1.302.10−2 5.304.100 8.341.104

5.374.1016 1.005.10−2 2.818.100 3.449.104

0.05 8.341.104 1.305.1037 2.783.10−3 1.151.104

3.449.104 1.039.1037 1.514.10−3 5.902.103

0.025 3.2083.1059 6.260.1081 1.639.1079 3.895.10−4

1.522.1059 3.547.1081 1.255.1079 2.032.10−4

Table 5.5: Reconstruction using the fixed stencil approximation of order
m = 3 and left shift r = 2.

∆t
∆s 0.08 0.04 0.02 0.01
0.2 1.265.10−1 1.704.10−1 1.814.10−1 1.929.10−1

1.208.10−1 1.345.10−1 1.470.10−1 1.399.10−1

0.1 2.469.105 3.197.10−2 9.260.10−2 1.655.10−1

1.521.105 3.415.10−2 6.216.10−2 9.571.10−2

0.05 6.404.1018 1.185.1014 7.703.10−3 2.597.10−2

2.929.1018 4.839.1013 8.899.10−3 1.361.10−2

0.025 1.843.1032 5.094.1040 5.188.1029 2.062.10−3

8.653.1031 1.606.1040 1.620.1029 2.287.10−3

Table 5.6: Reconstruction using the ENO of order m = 2.

solution, the fixed stencil approximation would lead to oscillations. The
performance of ENO could have been affected due to numerical flux not
being continuous.
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∆t
∆s 0.08 0.04 0.02 0.01
0.2 1.957.10−2 2.006.10−2 2.032.10−2 2.282.10−2

1.577.10−2 1.715.10−2 1.830.10−2 1.909.10−2

0.1 8.320.103 3.115.10−3 6.004.10−3 8.865.10−3

2.711.103 3.290.10−3 5.199.10−3 6.947.10−3

0.05 3.032.1026 2.481.1012 6.858.10−4 1.713.10−3

9.108.1025 7.222.1011 5.229.10−4 1.028.10−3

0.025 2.009.1047 3.352.1057 3.009.1032 1.021.10−4

6.739.1046 1.367.1057 5.443.1031 7.335.10−5

Table 5.7: Reconstruction using the ENO of order m = 3.

ADER scheme ∆s ∆t L2 error L2 order L∞ error L∞ order
m = 2 0.2 0.08 1.516.10−1 2.047.10−1

FSA 0.1 0.04 4.819.10−2 1.87 5.236.10−2 1.95
r = 1 0.05 0.02 1.299.10−2 1.85 1.311.10−2 1.95

0.025 0.01 3.363.10−3 1.93 3.397.10−3 2.00
m = 3 0.2 0.08 1.577.10−2 1.957.10−2

FSA 0.1 0.04 3.266.10−3 2.41 3.100.10−3 3.16
r = 1 0.05 0.02 5.229.10−4 3.12 6.857.10−4 3.26

0.025 0.01 7.339.10−5 3.56 1.023.10−4 3.35
m = 2 0.2 0.08 1.208.10−1 1.265.10−1

ENO 0.1 0.04 3.415.10−2 1.77 3.197.10−2 1.98
0.05 0.02 8.899.10−3 1.92 7.703.10−3 2.08

0.025 0.01 2.287.10−3 1.94 2.062.10−3 1.87
m = 3 0.2 0.08 1.577.10−2 1.957.10−2

ENO 0.1 0.04 3.290.10−3 2.40 3.115.10−3 3.14
0.05 0.02 5.229.10−4 3.15 6.858.10−4 2.27

0.025 0.01 7.335.10−5 3.56 1.021.10−4 3.39

Table 5.8: L2 and L∞ errors and orders for different ∆s, γ = 0.8 and tmax =
2 .

5.2 Cable simulation results

We now show examples of a two span model simulation. The parameters
used are practically relevant and were taken from [3]. In all cases we have
used m = 1 kg/m, g = 9.8m/s2, EA = 2.156 × 107N , S = 320m, D = 9m
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and time step ∆t = 10−3 for grid sizes ∆s = 0.01 and initial positions of the
cable. The final time used is tmax = 10. For all the experiments the upwind
scheme was used.

In the first simulation, we present the initial the position of the cable, that
is the steady state of the cable. We then multiply the the initial conditions
of the steady solution by several factors to change the initial position of the
cable for simulations. The results below show the initial position of the cable,
the vertical displacement of the cable and the tension against time in each
simulation.
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(a) Initial position of the cable

(b) Vertical displacement of the cable

(c) Tension against time

Figure 5.1: An oscillating cable section, for Ns=100 and has minimum at
D = 9m in both spans,the steady state solution.
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(a) Initial position of the cable (b) Displacement of the cable at
t = 0.1

(c) Displacement of the cable at
t = 0.4

(d) Displacement of the cable at
t = 1

(e) Displacement of the cable at
t = 10

(f) Tension against time

Figure 5.2: An oscillating cable section, for Ns=100 and has a minimum=
at 8m.
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(a) Initial position of the cable (b) Vertical displacement of the
cable at t = 0.2

(c) Vertical displacement of the ca-
ble at t = 0.7

(d) Vertical displacement of the
cable at t = 1.2

(e) Vertical displacement of the ca-
ble at t = 10

(f) Tension against time

Figure 5.3: An oscillating cable section, for Ns=100 and initially has a min-
imum at 6m in both spans.
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(a) Initial position of the cable (b) Vertical displacement of the
cable at t = 0.1

(c) Vertical displacement of the ca-
ble at t = 0.4

(d) Vertical displacement of the
cable at t = 1

(e) Vertical displacement of the ca-
ble at t = 10

(f) Tension against time

Figure 5.4: An oscillating cable section, for Ns=100 and has a minimum at
15m in both spans.
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(a) Initial position of the cable (b) Vertical displacement of the
cable at t = 0.1

(c) Vertical displacement of the ca-
ble at t = 0.8

(d) Vertical displacement of the
cable at t = 1

(e) Vertical displacement of the ca-
ble at t = 10

(f) Tension against time

Figure 5.5: An oscillating cable section, for Ns=100 and has minimum at 9m
in the first span and 0 in the second span.
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The first case Figure 5.1, we have a steady solution. Tension is constant
throughout, this is expected because the cable is stationary. In the second
case, the initial conditions of a steady state are changed such that the cable
is raised up such that it has a minimum at 8m. When released the cable
falls down first and oscillate up and down. The results are shown in Figure
5.2. In the first subfigure the initial position of the cable is shown, the next
one shows the vertical displacement of the cable as it oscillates and the last
figure shows tension variation in time. For the third case we repeat the
same procedure but with the minimum is at 6m and for the fourth case the
minimum is at 15m. In last case we change the initial position only on the
second span such that minimum of the cable in the second span is at 0.
When released, on the second span the cable falls down and the motion is
transferred to the first span. This is expected as we have middle point is not
fixed, we have coupling conditions.

The motion of the cable seems to be symmetric for the first four tests, but
thats not the case for the last test. The last test clearly shows the decoupling
galloping as the motion is transferred from span to another. The tension is
changing per unit time when the cable vibrates, this is expected because as
the cable displacement changes the tension is also affected. From analysis of
the system we expect tension to be greater than zero, and this is the case
with our results. The length of the cable, L, does not change throughout the
computation.



Chapter 6

Conclusion and
Recommendations

The problem of galloping transmission lines was simulated. The model was
first derived from first principles of Newton’s and Hooke’s laws. Asymptotic
analysis was used to reduce the problem, by exploiting the geometrical thick-
ness and relative elasticity, resulting in a system of equations to be solved
numerically. Practically relevant parameter were used to simulate the mo-
tion of the cable in Matlab. Two schemes, the upwind and ADER, were
implemented. Although the ADER schemes showed more accurate and sta-
ble results when solving linear hyperbolic conservation laws, it is complicated
to implement the scheme to solve the system. This could be due to the fact
that the tension is changing per time step, hence the matrix is not fixed.
Therefore several tests were conducted using the upwind scheme. The mo-
tion is symmetric when the same initial conditions are set on both spans.
For the case where different initial conditions were set per span, the motion
was seen to be asymmetric then tends to be symmetric after some time.

The results we obtained do not clarify the characteristics of the galloping phe-
nomenon, which could be used to prevent galloping. Therefore the following
are possible suggestions for the extension of the work.

• Propose various external driving forces that improve the model.

• Derive ADER schemes for a non-fixed matrix

• Formulate and simulate the related problem for motion of the cable in
three dimensions.
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• Conduct several galloping simulations under various analytical condi-
tions.
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