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Abstract

Formal analysis of security protocols has been researched the last decades, recent de-
velopments introduced compositionality into the domain ofsecurity protocols. These
developments enable verification of larger protocol sets. This thesis investigates im-
provements to the theories regarding compositionality of security protocols. Composi-
tionality properties are studied and improved from variousangles: the conditions under
which compositional reasoning can be applied is weakened, enabling a wider applica-
tion of compositional reasoning. The remodelling of security protocols such that they
have better compositionality properties is investigated,and the expressive power of a
security protocol is shown by a Turing completeness proof. Furthermore a subtlety
in the assumptions used in the formal analysis of security protocols emerged during
the research. Specially constructed protocols exploit this assumption which led to the
discovery of new classes of attacks.
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Chapter 1

Introduction

In current society, the ways of communication between humans have changed in recent
years. The current possibilities of e-mail, instant messaging, and the Internet gives the
opportunity to communicate with another human at any momentin any place. When
using one of these communication means, the content will be transferred over the In-
ternet; when using the Internet there is the risk of an adversary attacking your com-
munication session. This is specifically a problem if one wants to transfer information
with a security requirement (for example a secret) from A to B. To solve this problem
security protocolshave been designed.

A security protocol is a specification of the behaviour of honest agents such that the
communication between these agents meets certain securityrequirements.

An example of a security protocol is the process executed when a person logs in to an
Internet banking website. We can summarise the important steps as follows:

² Go to Internet banking website and retrieve a number

² Insert this number and PIN-code in hardware token

² Insert response of hardware token on the website

The behaviour of the bank is divided into the following steps:

² Pick a new random number (a challenge)

² Transfer this number to the client

² Retrieve response of client

² Validate response of the client

One security requirement for this protocol is that the client is authenticated, which
means that the bank is certain that you are the genuine owner of the bank account.

4



It is very hard to determine whether a security protocol meets the security require-
ments related to the protocol. The adversary can attack a protocol in numerous ways,
yet excluding all currently known attacks does not prove achievement of a security
requirement. To solve these problems numerous formal models have been developed
which enable us to detect protocol attacks in a systematic way or deliver a proof of
correctness.

One of the formalism’s used to reason about the correctness of security protocols is
the Cremers-Mauw operational semantics [14]. This formal model has been developed
at the Technische Universiteit Eindhoven. This model is constructed in an intuitive
manner, it is well documented and research is done in improving and extending this
model.

One of the recent developments of this model is the work on compositionality. In
general the formal models are aimed at the verification of small protocols, verifying a
set of protocols (a protocol suite) requires some form of compositional reasoning. In
[1] a framework is presented which extends the Cremers-Mauwsemantics with com-
positional reasoning. A key ingredient of the presented framework is the notion of
independencewhich expresses in which cases the compositional reasoningcan be ap-
plied.

The purpose of this project is the following:

Study and improve the framework for compositional reasoning

The starting point for improvement of the formal framework is the notion of inde-
pendence. One of the existing notions seems to be a rather ad-hoc solution; a more
thorough study will probably improve this notion.

Another open question is related to the expressive power of the Cremers-Mauw seman-
tics; it is not exactly clear what the limitations are on the security protocols used as
input for these semantics.

To answer the main goal of the project, the following actionsare defined:

² Try to improve current independence notions.

² Study what limitations there are on the protocols that can beverified.

During the work on the improvement of the independence notions questions emerged
regarding the correctness of the Cremers-Mauw semantics; amore thorough study of
certain exceptional settings lead to the discovery of a new class of attacks.

In Chapter 2 the basic formal model is introduced; Chapter 3 contains the work on the
framework for compositional reasoning; it summarises the existing notions and ideas,
and the research results on independence are described. In Chapter 4 a newly discov-
ered class of attacks is introduced. Chapter 5 contains the research results regarding
the expressiveness of the current model. Final conclusionsare drawn in Chapter 6.
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Chapter 2

Formal model

One of the first approaches towards a formal analysis of security protocols is the BAN–
logic [11], this formalism uses postulates and definitions to prove protocols correct. In
[26] Lowe illustrated an attack on a protocol proven correctin BAN–logic, this flaw
was discovered using a tool called Casper/FDR. The flaw was not detected in the BAN–
logic due to different assumptions on the intruders behaviour.

Since the publication of the attack various formal models and supporting tools have
been developed. The Strand Spaces [39] approach provides a formal model which
enables a rather elegant way of reasoning about protocol executions. The Cremers-
Mauw semantics [15] take a similar approach as the Strand Spaces model. One of
the differences between these models is the fact that in the Cremers-Mauw semantics
the relation between a protocol and a protocol’s execution is explicitly formalized,
where the Strand Spaces model uses a partial order on events.An advantage of this
approach is that the Cremers-Mauw protocol specifications are in general easier to
read and understand.

In the succeeding section a general overview of the Cremers-Mauw semantics is given,
Section 2.2 describes how a protocol is specified; in Section2.3 it is shown how a
protocol specification can be executed. Section 2.4 treats security properties and in
Section 2.5 the model will be applied on an example protocol.

2.1 Overview

The actions of honest agents are specified in role specifications. A role specification
is an ordered sequence of read, send and claim events definingthe exact behaviour
of honest agents. Claim events denote the fact that a certainsecurity goal should be
achieved at that moment in time.

A protocol is a set of role specifications expected to communicate together (e.g. one
can have a role specification for an initiator and responder role, combining these two
specifications resulting in a security protocol).

An agent is an entity able to execute a role specification, forinstance Alice is an agent
executing the role of the initiator. The actual execution ofthe role specification is
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Figure 2.1: The Needham–Schroeder key exchange protocol

called a run. A run can be compared with a recording of all input and output mes-
sages in a protocol execution in the real world, all variables from the specification are
replaced by values. A run is local to an agent, it only contains events of one agent.
The communication between two agents is modelled by a buffer which is placed under
full control of the adversary; the content of this buffer can be seen as the Dolev–Yao
intruder knowledge.

All possible executions of the entire system are modelled bya set of traces; a trace is
a sequence of events of the complete system. Reasoning aboutthe set of traces allows
us to determine whether a certain security claim is met in allpossible executions.

The Needham–Schroeder protocol [34], as described in Figure 2.1, will be used as
a running example throughout this chapter. This protocol isknown to be flawed, in
Section 2.5 it is illustrated how this flaw is detected by the formal model.

2.2 Protocol specification

A protocol is specified by a number of role specifications, each role specification is a
list of events which specifies the behaviour of the agent. Each of these events contains
role terms, which are used to specify message content. One can compare a protocol
to the preparation instructions of a dinner. Role specifications are similar to the recipe
of one dish, the role specification is a list of actions (the role events) which need to be
executed in a certain order. In this comparison ingredientsare analogous to role terms,
since they are both inputs for the events.

In the remainder of this section we will formalise the notionof a security protocol,
before we can do this formal definitions for role term, role event and role specification
are introduced.

2.2.1 Role terms

Role terms are terms which represent the data used in events.They are used to specify
the contents of messages.
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Let ID be a set of identifiers,R a set of role names andF a set of functions. The
identifiers can be divided into 3 types, constants, variables and parameters

The term (x, y) denotes the pairing ofx andy, {x}y represents the encryption of termx
with keyy.

Definition 2.2.1. The set of role terms is defined as:

RoleTerm::= ID | R | F (RoleTerm¤)

| (RoleTerm,RoleTerm) | {RoleTerm}RoleTerm

Some remarks need to be made regarding this definition:
The value of an identifier is local to a role, in the Needham–Schroeder example there
is no global idea of the nonceni. The formal model enables reasoning about the value
of ni for the initiator role, orni for the intruder role. This locality of identifiers implies
that the value of a constant is initially only known by one role; which is exactly the
behaviour of a nonce in a security protocol.

Functions with arity 0 are used to model constants whose value is known to all agents,
these constants relate to constants defined in standards andRFC’s etcetera.

The setF is a global set of all functions, we assume that their arity isrespected in all
terms. Functions are only used to model global constants or to model long term keys
which are already established by a surrounding key infrastructure, typical examples of
long term keys are public keys (pk(r)), private keys (sk(i)) and symmetric keys (k(x, y)).
Short term session keys are represented by local constants.

Terms which are encrypted can only be decrypted by the inverse of the key, the inverse
of the key can be the key itself (symmetric cryptography) or an inverse key (asymmetric
encryption). Furthermore we assume that pairing is right associative, thus (x, y, z) =
(x, (y, z)), (x, y, z) , ((x, y), z)

The subterm relation⊑ on role terms is defined as the smallest transitive relation satis-
fying:

x1 ⊑ x1, x1 ⊑ (x1, x2), x2 ⊑ (x1, x2), x1 ⊑ {x1}x2, x2 ⊑ {x1}x2.

for any roletermx1, x2

2.2.2 Role events

Role events specify atomic actions of an agent. An eventsend
ℓ
(r, r ′, x) represents the

sending of the datax from agentr intended for agentr ′. Read events are defined in a
similar way,read

ℓ
(r ′, r, x), which resemble the reading of datax by r ′, apparently sent

by r. The third type of events are the claim events,claim
ℓ
(r, c [, x]), which claim that

a certain security propertyc is true for agentr, security properties will be discussed in
more detail in section 2.4. There are two special events for the start and end of a role,
respectivelycreate

ℓ
(r) andend

ℓ
(r), wherer is the name of the role. The labelℓ is used

to tag events; the purpose of this tagging is to make multipleoccurrences of similar
events non-ambiguous.
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Role events are formally defined as:

E =
{

create
ℓ
(r), send

ℓ
(r, r ′, x), read

ℓ
(r ′, r, x), claim

ℓ
(r, c [, x]),end

ℓ
(r)
∣

∣

∣

ℓ ∈ L, r, r ′ ∈ R, x ∈ RoleTerm, c ∈ Claim
}

The sequential order of the list of events in a role R is represented by the ordering
relationÁ′R. Thus for 2 events²1,²2 in role R,²1Á′R²2 if ²1 occurs before²2.

A role specification can now be defined by the pair (elist, type) whereelist ∈ E¤is a list
of events andtype : ID → {const,param, variable} is a function assigning the types
to identifiers. We only consider listselist starting with acreateand having aendas
the final event. Thecreateand theend are not allowed at any other position in this
list. Furthermore, we require that the role name in these events are the same. This
role name must also be used in the claim events, and as the sender and recipient in
send and read events respectively. This name is called therole name. If one of these
requirements is not met, the specification is invalid. The set of all valid specifications
is calledRoleSpec.

2.2.3 Protocols

Security Protocolsare partial mappingsR → RoleSpecthat map a role namer to a role
specificationelist. Let P be a protocol such thatr ∈ dom(P) (r is a role in protocolP),
we writeℓ ∈ P(r) if a labelℓ occurs in the event list ofr and extend this notation such
that we can useℓ ∈ P. ID(P) is used to denote the set of identifiers occurring in the
protocolP. And Prot represents the universe of protocols .

The labels of two related read and send events in a protocol need to be the same, all
other labels need to be unique for a given protocol setΠµ Prot. This requirement does
not limit the expressive power; one can always rename eventsin such a way that they
are unique. We extend theÁ′ relation to a protocol P by taking the union of all theÁ′R
relations for all rolesR in P. This relation is extended with an ordering on related read
and send events; thesendevents precede the correspondingreadevent. The transitive
closure of the relationÁ′ is denoted withÁ and this order resembles causalities in the
events of the protocol.

Example 1. The formal security protocol given here corresponds to the Needham–
Schroeder protocol of Figure 2.1.
NS(i) = (create1(i)¢ send2(i, r, {ni, i}pk(r))¢ read3(r, i, {ni,nr}pk(i))¢

send4(i, r, {nr}pk(r))¢ claim5(i, secret(nr))¢ end6(i),
{ni 7→ const,nr 7→ variable})

NS(r) = (create7(r)¢ read2(i, r, {ni, i}pk(r))¢ send3(r, i, {ni,nr}pk(i))¢
read4(i, r, {nr}pk(r))¢ claim8(r, secret(nr))¢ end9(r),
{nr 7→ const,ni 7→ variable})

In this example the protocol consist of two roles, i and r; both of these roles have a
role specification. It is clear that the role events in these role specifications have a
unique label except for corresponding read and send events.Notice that in the role i
the identifier ni is a constant, in the r ni is a variable.
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2.3 Protocol execution

The transformation of role specifications to executions of that role are done by a pro-
cess calledinstantiation, the execution of a role is called arun. Multiple runs can be
combined intotraces, traces are event sequences of the entire system; they contain,
possibly interleaved, events of a collection of runs. In this section the instantiation
process and the construction of the traces is defined.

On the abstract specification level the setRoleTermwas defined as an specification of
message content. The instantiation of these role terms are defined therun terms, run
terms contain the actual messages.

LetA be a set of concrete agent names, this set contains trusted aswell as untrusted
agents.IT denotes the set of intruder generated nonces. Furthermore,we assume the
existence of a set run identifiersRunid.

RunTerm::= A | F (RunTerm¤) | ID♯Runid | IT |

(RunTerm,RunTerm) | {RunTerm}RunTerm

The addition of a run identifier to anID makes each local constant unique, another
difference between role and run terms is that the variables are instantiated by concrete
values in the run terms. A subterm relation⊑ is defined in a similar way on run terms
as it was defined on role terms. The same symbol can be used for this relation since it
is clear from the context which relation is intended.

The instantiation process is defined by a run identifierrid and two functions; the par-
tial function½ : R → A defines which agent is executing which role. The function
¾ : ID → RunTermis a partial function which assigns run terms to identifiers.The
actual value of an identifiers can be an arbitrary complicated run term. The instanti-
ation functioninst(rid ,½,¾): RoleTerm→ RunTermis only defined if all the variables
occurring in the role term are in the domain of¾ and all occurring role names have a
agent name assigned to it by½.

If both conditions are fulfilled than any role termx from a given specification can be
transformed into a run term using the function inst.

Definition 2.3.1. Let rs= (elist, type) be a role specification, let x1, x2..xn be arbitrary
role terms, instantiation has the following recursive definition:

inst(x) =



















































½(r) if x´ r ∈ R
c♯rid if x ´ c ∈ ID ∧ type(c) = const
¾(x) if x ∈ ID ∧ type(x) ∈ {param, variable}
f (inst(x1), . . . , inst(xn)) if x´ f (x1, . . . , xn)
(inst(x1), inst(x2)) if x´ (x1, x2)
{inst(x1)}inst(x2) if x´ {x1}x2

The instantiation of the events of a role specificationrs = (elist, type) is named arun.
A run is defined as the pair (inst,elist′) such thatinst is an instantiation triplet andelist′

is a suffix of elist.
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We do not require the event listelist′ to be the complete role specification, it is sufficient
to have a list of the remaining events of a given role specification. This modelling
expresses the focus on the current state of an agent. The actual values of variables and
agent names are contained in the functions½ and¾ of the instantiationinst. We use
Runsto denote the set of all runs. Arun eventis a pair (inst,ev) ∈ Inst£E; run events
are the actual events occurring in the execution of a system.A trace is a sequence of
run events which represents the behaviour of the system. Theset of all possible traces
is denoted byTraces.

The set of runs that can possibly be created by a protocolP is defined by a function
runsof(P). A run (inst,elist) is in the setrunsof(P) if and only if dom(½) = dom(P)
and dom(¾) = type¡1(param). This formal requirement expresses that the runs in
runsof(P) all have values assigned for all role parameters (names as well as variables).

We define the set ofrunsof(Π) for a protocol setΠ

runsof(Π) =
⋃

P∈Π

runsof(P).

The system that we consider consists of a number of runs executed by agents in parallel,
the agents communicate with each other asynchronously through a network buffer. We
use an intruder model which is based upon the Dolev–Yao model, thus we assume that
the intruder has full control over the communication network. The intruder knowledge,
denoted byM, is a set of run terms; the intruder is able to deduce new run terms by
encrypting or decrypting terms if the key used for this operation is also inM.

∀u,v∈M(u, v) ∈ M ⇒ {u}v ∈ M

∀u,v{u}v, v
¡1∈ M ⇒ u ∈ M

∀u,v(u, v) ∈ M ⇔ u, v ∈ M

M is used to denote the smallest closed superset ofM.

During the execution of a system the intruder knowledge grows, the initial knowledge
is denoted withM0 and contains the names and public keys of agents and the secret
keys of compromised agents. The initial knowledge can be derived from the protocol
and the context the protocol is running in; in [15] this derivation is treated in more
detail.

The buffer M is not only used to represent the intruder knowledge, it is also used to
model the asynchronous communication between agents; whenan agent send out a
certain term, the intruder learns this term. Before an agentcan read a term, this term
has to be known by the intruder.

The system is defined by a state transition system, states aredetermined by the pair
(M, F) whereM is an intruder knowledge set andF a set of active runs.runids(F) de-
notes the set of run identifiers appearing inF. We useF[x/y] to denote the replacement
of x by y. The transitions in the system are labelled with a run event.

The derivation rules of the system are given in Table 2.1. Thecreaterule expresses
that the run identifier used by a new run cannot be used by another run in the system.
Theendandclaim rules express that these events have no prerequisites when executing
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these events. Thesendrule states that when a run sends a termm, the instantiation of
this termm is added to the intruder knowledgeM and the executing run proceeds.

The read rule states that terms in the intruder buffer are accepted in a read event if
there is a match on the pattern for some instantiation of the variables. The matching of
a messaget in the intruder knowledge on a role termmof the specification is done by a
predicateMatch; the idea of the predicate is that a new instantiationinst′ which extends
inst by assigning values to free variables such that the incomingmessaget equals the
instantiation ofm.

Match(inst,m, t, inst′) ⇐⇒ inst= (rid ,½,¾) ∧ inst′ = (rid ,½,¾′) ∧¾µ¾′ ∧

dom(¾′) = dom(¾) ∪ varrs(m) ∧ inst′(m) = t ∧WellTyped(¾′).

The exact definition of the predicateWellTypedis a parameter of the formal model.
This parameter expresses whether type flaws are allowed. Type flaws occur when the
type of a message is misinterpreted [10], for example an encryption term might be
confused with a nonce. When the implementation of the protocol is such that these
misinterpretations are prevented then we can use the following definition of WellTyped:

Definition 2.3.2. We define the predicate WellTyped that expresses whether a substitu-
tion is well defined:

WellTyped(¾) = ∀v ∈ dom(¾) :¾(v) ∈ type(v)

where type is a function which returns a set of allowed valuesfor a certain variable.

This definition expresses that if a variablev is of type “Agent name” then only agent
names will be accepted.

In an environment where type-flaws are allowed a variable canmatch any arbitrary run
term. The following definition ofWellTypedexpresses this fact:

Definition 2.3.3. Let¾ be a substitution, then we set

WellTyped(¾) = True

to express that type-flaws are allowed.

In Chapter 3 and 4 type-flaws and the related attacks are treated in more detail.

The possible state transitions in the system are defined in table 2.1. All possible be-
haviour of a protocol can be derived by applying these derivation rules to the initial
configurationΣ0 = (M0, ∅).

Let® be a trace of length|®| = n; ®i is used to denote theith event in the trace®. A

trace® is avalid trace if and only if there are statesΣ1, ..Σn such thatΣ0
®0
→ Σ1..

®n
→ Σn

can be derived using the derivation rules of Table 2.1. The set of valid traces of a
protocolΠ is denoted byTr(Π).
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[create]
run = (inst, create

ℓ
(r)¢ elist) ∈ runsof(Π), inst= (rid ,½,¾), rid < runids(F)

〈M, F〉
(inst,create

ℓ
(r))

→ 〈M, F ∪ {(inst,elist)}〉

[end]
run = (inst,end(r)) ∈ F,

〈M, F〉
(inst,end

ℓ
(r))

→ 〈M, F[(inst, ε)/run]〉

[send]
run = (inst, send

ℓ
(m)¢ elist) ∈ F

〈M, F〉
(inst,send

ℓ
(m))

→ 〈M ∪ {inst(m)}, F[(inst,elist)/run]〉

[read]
run = (inst, read

ℓ
(m)¢ elist) ∈ F, t ∈ M,Match(inst,m, t, inst′)

〈M, F〉
(inst′,read

ℓ
(m))

→ 〈M, F[(inst′,elist)/run]〉

[claim]
run = (inst, claim

ℓ
(r, c [, x])¢ elist) ∈ F

〈M, F〉
(inst,claim

ℓ
(r,c [,x]))
→ 〈M, F[(inst,elist)/run]〉

Table 2.1: Derivation rules.

2.4 Security Properties

In the derivation rules claim events are used to mark the positions in a trace where a
certain claim should be valid. For instance a claim can express the fact that a certain
term is secret; this fact should only be considered if a claimevent is reached in a valid
trace. Security properties express how to evaluate a claim event in a trace by defining a
formal statement which is evaluated when a security claim isencountered in a trace. As
an example we will discuss the secrecy claim. Detailed information on other security
claims like authentication and data-agreement can be foundin [14, Chapter 3].

Definition 2.4.1. Let fcl be a security property, letΠ be a protocol set, and letℓ be
the label of a claim event with claim cl. We say thatΠ satisfiesthe claimℓ, denoted by
sat(Π, ℓ), if

∀® ∈ Tr(Π)∀i :®i = (inst, claim
ℓ
(r, cl,m))⇒

fcl(Π, claim
ℓ
(r, cl,m))(inst,®) ∨ (inst= (¢,½,¢) ∧ im(½) * AT).

A secrecy claim expresses that certain information is neverrevealed to an intruder; in
the formal model this is expressed by demanding that the intruder knowledgeM does
not contain the secret information.

Definition 2.4.2. The security property fsecretassociates to the protocol setΠ and the
claim event ev= claim

ℓ
(r, secret,m) the statement

fsecret(Π,ev)(inst,®)⇔® ∈ Tr(Π) ∧ inst(m) < M®|®|+1,

where the initial intruder knowledge is determined fromΠ.
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2.5 Example

In Figure 2.2 a trace is constructed which is based upon the modelling of the Needham–
Schroeder protocol (Example 1). This trace illustrates thefamous attack on the Needham–
Schroeder protocol. The secrecy claim of the responder roleis violated, the intruder
uses a man in the middle attack in which an honest initiator (executed by agenta) is
used as a decryption oracle for the second message.

The trace is an example of the application of the formal model. When working with
this model trace derivations and claim validation is supported by a tool which has
implemented this formal model. This tool enables a fully automated verification of a
security protocol.

instantiation event concrete term
(1,½1, {ni 7→ u,nr 7→ ⊥}) create1(i)¢ -
(2,½2, {ni 7→ ⊥,nr 7→ v}) create7(r)¢ -
(1,½1, {ni 7→ u,nr 7→ ⊥}) send2(i, r, {ni, i}pk(r))¢ {u,a}pk(eve)

(2,½2, {ni 7→ ⊥,nr 7→ v}) read2(i, r, {nr, i}pk(r))¢ {u,a}pk(b)

(2,½2, {ni 7→ ni♯1,nr 7→ v}) send3(i, r, {ni,nr}pk(i))¢ {u, v}pk(a)

(1,½1, {ni 7→ u,nr 7→ nr♯2}) read3(i, r, {ni,nr}pk(i))¢ {u, v}pk(a)

(1,½1, {ni 7→ u,nr 7→ nr♯2}) send4(i, r, {nr}pk(i))¢ {v}pk(eve)

(2,½2, {ni 7→ ni♯1,nr 7→ v}) read4(i, r, {nr}pk(i))¢ {v}pk(b)

(2,½2, {ni 7→ ni♯1,nr 7→ v}) claim8(r, secret(nr))¢ v

Figure 2.2: Example trace of the Needham–Schroeder protocol, ( ½1 = {i 7→ a, r 7→
eve},½2 = {i 7→ a, r 7→ b} )

The solution for the problem indicated with this attack is the insertion of the name of
the responder in the second message. This prevents the adversary from forwarding this
message into another protocol run. The resulting Needham–Schroeder–Lowe protocol
is depicted in Figure 2.3

pk(r), sk(i)

i

pk(i), sk(r)

r

nonceni

➀
{i,ni}pk(r)

noncenr

➁
{ni,nr, r}pk(i)

➂
{nr}pk(r)

Figure 2.3: The amended Needham–Schroeder key exchange protocol
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Chapter 3

Improving Independence
Properties

In the previous chapter a formal framework is introduced which enables us to verify
properties of security protocols. The verification processis a complex task and the
complexity increases when verifying larger protocols. In general the time needed for
verification using a tool grows exponentially in the number of messages in the protocol.

Consequently verification of large protocols is infeasiblefor the current tools. In [1]
a framework for reasoning about compositionality of security protocols is introduced.
This framework uses a divide and conquer approach which enables us to derive the
correctness of properties of a large protocol suite by combining verification results of
multiple smaller protocols.

In this chapter we will try to answer the following question:

Can we improve current concepts or ideas regarding the compositionality of security
protocols?

Section 3.1 contains a short introduction to the framework and results of [1]. An im-
provement to the theory regarding compositionality is introduced in Section 3.2. Sec-
tion 3.3 illustrates how remodelling of protocols can help in achieving better composi-
tionality properties.

3.1 Current definitions

3.1.1 Independence

We say that two protocols are independent if no encryption term produced by the first
protocol running in the context of the second protocol will be decrypted or verified by
the second protocol, and vice versa. Formally:
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Definition 3.1.1. LetΠ1,Π2 be two disjoint protocol sets. We say thatΠ1 andΠ2 are
independent, denotedindep(Π1,Π2)), if

∀® ∈ Tr(Π1 ∪ Π2;Â) ∀x, y, x′, y′ ∈ RoleTerm:
(

®i = (inst, send
ℓ
(m)) ∧

(

®j = (inst′, read
ℓ

′ (m′)) ∨®j = (inst′, send
ℓ

′ (m′)) ∨

®j = (inst′, claim
ℓ

′(¢,¢,m′))
)

∧

(

{x}y ⊑ m∧ {x′}y′ ⊑ m′ ∧ inst({x}y) = inst′({x′}y′ )
)

)

⇒ (ℓ, ℓ′ ∈ Π1 ∨ ℓ, ℓ
′ ∈ Π2).

Intuitively, this definition expresses that two protocols are called independent if there
is no encryption runterm produced by one of the protocols which can be read, send or
claimed by the other protocol.

In [1] a number of interesting theorems are proved using thisdefinition of indepen-
dence, e.g.

Theorem 3.1.1.LetΠ1 andΠ2 be two independent protocol sets. Letℓ be the label of
some secret claim event inΠ1. Then

sat(Π1, ℓ)⇒ sat(Π1 ∪ Π2, ℓ).

a proof of this theorem can be found in [1, Thm. 20]

Theorem 3.1.1 expresses that adding an independent protocol setΠ2 to the environment
Π1 is running in does not break a secrecy claim ofΠ1.

3.1.2 Strong independence

Proving that two protocols are independent is non-trivial;in [1] the assumption is made
that only nonce run terms can be assigned to variables and parameters. Using this
assumption there is a form of strong independence defined as follows:

Definition 3.1.2. Let Π0 andΠ1 be two disjoint protocol sets. We say thatΠ0 and
Π1 are strongly independent, denoteds-indep(Π0,Π1), if for any b ∈ {0,1}, any role
specification(elist¢ send(m)¢ elist′

, type) in a protocol inΠb, any role terms x, y, any
role specifications(elist′′¢ send(m′)¢ elist′′′, type′), (elist′′¢ read(m′)¢ elist′′′, type′) or
(elist′′¢claim(r, c,m′)¢elist′′′, type′) in protocols ofΠ1¡b, any map s on the setID and
any map s′ on the setR,

{x}y ⊑ m⇒ {s(s′(x))}s(s′(y)) 6⊑ m′.

This definition expresses that two protocols are called strongly independent if there
is no encryption role term in one of the protocols which afterrenaming the variables
(using the mapss ands′) occurs in the other protocol.

Note that any maps on identifiers ands′ on roles naturally induce maps on the set
of role terms and we identify these maps withs and s′. Also note that since strong
independence is a syntactical property, there is no need to consider traces in evaluating
the strong independence criteria.
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KAS,C

C

KAS,C, KAS,V

AS

KAS,V

V

C,V,..

Key KV,C

{KV,C,V, ...}KAS,C ,

{KV,C,C, ...}KAS,V

{T2, ...}KV,C ,

{KV,C,C, ...}KAS,V

{T2}KV,C

secretKV,C secretKV,C

Figure 3.1: The Kerberos protocol

In [1, thm. 19] a proof is given which shows that strong independence implies inde-
pendence.

As a consequence this compositionality framework enables us to detect whether two
protocols are strong independent without evaluating all possible traces (it is a syntac-
tical property). When two protocols are strong independent then they are independent
according to the previously mentioned theorem. Theorem 3.1.1 shows that in order to
evaluate the correctness of a secrecy claim it is sufficient to evaluate this claim within
an environment where only the related protocol exists. Thusthe tracesetTr(Π1 ∪ Π2)
is not evaluated; this framework removes the problems related to the computational
complexity related to the evaluation of larger protocol sets.

A problem with the strong independence definition as suggested above lies in the as-
sumption that only nonce run terms are assigned to variablesand parameters. There
are numerous protocols using a form oftickets; in these protocols this assumption is
not true. These protocol require an agent to forward a message part (the ticket) to an-
other agent; this ticket usually is an encryption term whichcannot be read by the agent
forwarding the message. An example of such a protocol is the Kerberos protocol [35],
as illustrated in Figure 3.1. This protocol is widely used inpractise. For example, it is
a basic building block of the Windows networking environment.

The Kerberos-protocol uses an authenticated serverAS to establish a session key be-
tween agentsC andV. AgentC receives a term encrypted with the keyKAS,V as a part
of the second message. The agent forwards this message part to agentV. This is called
ticketing and should be modelled as a variable which is assigned a complex run term.

Another problem with the assumption used in the strong independence definition is
the fact that type flaws are excluded. Type flaws [10] occur when one message is
confused with another message which has another type. For example an encryption
term might be interpreted as a nonce by another agent. There is a special class of
attacks called thetype-flaw attacksin which the adversary abuses confusion of the type
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of a message to break a security protocol. There are mechanisms to prevent type flaws
(see [19]), unfortunately not all implementations of security protocols incorporate these
mechanisms due to limitations in message size and computational load for the agents.

3.2 Improving strong independence

The requirements for an improved definition of strong independence are the following:

² It must be possible to prove independence using the improveddefinition

² It should be a syntactical check

² The assumptions used in the new definition should be less restrictive then the
current assumption

Using this list of requirement we tried to look for an algorithm which did not require
the assumption on the assignment to variables and parameters. A rather ad-hoc algo-
rithm was sketched but after a more thorough study of literature it turned out that the
independence definition is strongly related to the unification problem.

3.2.1 Unification

Unification is a fundamental theoretical computer science area with a long history. The
unification problem answers the following question: given aterm s containing free
variablesu and a termt with free variablesv, is there an assignment to the variables in
u andv such thatsandt are syntactically the same.

Applications of unification theory appear in various areas of computer science, most
notable it is used in theorem proving, areas of artificial intelligence and in term rewrit-
ing systems.

An algorithm which gives an answer to the unification problemwould help proving
the independence property; if a terms = {x}y and t = {x′}y′ cannot be unified then
∄inst inst({x}y) = inst′({x′}y′ ). The following theorem expresses the relation between
relation between unification and independence more formally:

Theorem 3.2.1.
(

∀m1 ∈ Π1,m2 ∈ Π2 ∀x1, y1, x2, y2 ∈ RoleTerm:

{x1}y1 ⊑ m1∧{x2}y2 ⊑ m2 : ¬Uni f y({x1}y1, {x2}y2)
)

⇒ indep(Π1,Π2)

Proof. By the fact that there are no encryption terms fromΠ1 which can be unified
by an encryption term ofΠ2 it is clear that the independence criterioninst({x}y) =
inst′({x′}y′ ) can only be true if both terms{x}y and {x′}y′ originated from the same
protocol, which is exactly the independence requirement. ¤
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3.2.2 Unification algorithm

In the previous section it is shown that an algorithm solvingthe unification problem
would help in proving protocols independent. There are numerous algorithms for uni-
fication, Algorithm 3.2.1 illustrates a rather naive recursive descent approach. In [4]
it is shown that this algorithm returns the most general unifier if the terms can be uni-
fied, otherwise it returns that the terms are not unifiable. Unfortunately the time and
space needed for this algorithm can be exponential in the size of the terms. More com-
plex algorithms ([37], [30]) have reduced this to a problem with linear complexity for
instances with non associative/non commutative terms.

Algorithm 3.2.1: U(s, t)

global ¾ : substitution

if s is a variable
then sÃ s¾

if t is a variable
then tÃ t¾

if s is a variable∧ s= t
then {do nothing}
else if(s= f (s1, ..sn) ∧ t = g(t1, ..tm)

then































if f = g
then for i Ã 1 to n
do Uni f y(si , ti)
elseexit function, non unifiable, symbol clash

else ifs is not a variable
then Uni f y(t, s)
else ifs occurs int
then exit function, non unifiable, occurs check
else¾Ã¾{s 7→ t}

Algorithm 3.2.1 walks through both terms from left to right,a global substitution¾ is
maintained which is used to store the values of variables. Ift or s is a variable then it
is substituted by its substitution value in¾. Whens andt are both functions then the
arguments are unified and whens is a free variable then the substitution¾ is extended
with the replacements 7→ t.

3.2.3 Application of unification

In this section Theorem 3.2.1 is applied in a setting where strong independence cannot
be used.

Consider a setting in which a Kerberos protocol (Figure 3.1)and the NSL-protocol
Figure 2.3) occur in the same environment. Due to the ticket used in the Kerberos
protocol strong independence cannot be used in this setting.

Since all the messages of NSL are encrypted with a key of the form pk(A) and all
encryptions in the Kerberos protocol are of the formK(A, B) it might look if none of
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Figure 3.2: A part of the WiMAX specification, (PKM request message format)

the encryption terms can be unified with a term of the NSL protocol. Unfortunately
this argumentation is not exactly correct, consider the following exact modelling of the
V-role of the Kerberos protocol:

Kerberos(V) = create1(V)¢
read2(C,V, {T2, ...}KVC, {KVC,C, ...}KAS,V¢

send3(V,C, {T2}KVC)

In this roleKVC is a variable which is read in the eventread2; thus the message sent
out bysend3 is actually of the form{x}y wherex andy are both variables. This mes-
sage can be unified with the first message of the NSL-protocol ({Ni}pk(r)). As a result
these protocols cannot be proven independent using Theorem3.2.1. In the succeeding
section we study this problem further and we demonstrate howa remodelling of the
protocols can help in achieving independence.

3.3 Improving independence using message encoding

In the previous sections the independence requirements areimproved by relating in-
dependence to the unification of messages. However there arestill settings where two
protocols are theoretically not independent. In this section we will look at the mod-
elling of protocols from the independence perspective. Thegoal of the succeeding
sections is to give some theory, guidelines and examples on how to remodel protocols
such that they are more likely to be independent.

The general concept behind the remodelling is the addition of details who are omit-
ted in the original role specification. These details can be either information on the
cryptography used or it is information related to the encoding of the message.

3.3.1 Concrete message specification

When implementing a security protocol detailed agreements must be made on how data
is exchanged. Depending on the use of the protocol this is done in a design document
or it is defined in a standard or RFC. These documents define message structures and
the exact encoding of the contents; they specify which bits should be set and how the
encryption algorithm should be applied. The specification of the messages at bit-level
will be called the concrete message specification, Figures 3.2 and 3.3 illustrate parts of
the concrete message specification as used in the WiMAX standard [36].
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Figure 3.3: A part of the WiMAX specification, (MAC PDU encryption)

The concrete message specification contains lots of details, most of them are not of
interest for security analysis purposes. These concrete specifications are interpreted
and transformed into abstract message specification, whichare message specifications
as shown throughout this thesis, thus messages of the form{na}pk(n). The process of
abstracting away unnecessary details is done manually and the aim of this abstraction
process is to get a version of the protocol which is as short aspossible while still
having all properties relevant for the security of the protocol. Certain details might be
omitted in the abstraction process which are interesting with respect to unification and
independence. We introduce the concept of aUnification preservingabstraction which
enables us to use properties of concrete message specifications on the abstract message
specification level without introducing too many details onthe abstract level.

Definition 3.3.1. We call a protocol abstraction of protocolΠ Unification preserving
iff for any two concrete message specifications cm1 and cm2 used inΠ with abstract
message specifications m1, m2 respectively

uni f y(cm1, cm2)⇔ uni f y(m1,m2)

In the two succeeding sections we will look at protocol specification and improve ab-
stract message specifications such that the abstraction process is unification preserving.

3.3.2 Cryptography

There are numerous cryptographic algorithms which are currently used, e.g. RSA,
ECC and AES. These algorithms are based upon different mathematical properties and
the results of these algorithms are in general incompatiblewith each other. A message
encrypted with RSA cannot be decrypted with an ECC algorithmand vice versa.

However, when specifying a protocol using such an encryption algorithm there is only
one operator available to specify an encryption. If we look at the example illustrated in
Section 3.2.3 we see 2 messages which can be unified to each other although the two
messages use different encryption techniques (Kerberos uses a symmetric encryption
algorithm, NSL uses a public key algorithm).

Under the assumption that if two messages use different encryption algorithms there is
no way that these messages can be unified, we can change the abstract messages such
that they are non-unifiable. This is done using global constants; in the introduction
of the formal model it was already mentioned that global constants are modelled by
nullary functions. We introduce new global constantssymenc() andpub enc() which
represent symmetric encryption and public encryption respectively.

The new abstract role specification for roleV in the Kerberos protocol becomes :
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Kerberos(V) = create1(V)¢
read2(C,V, {symenc(),T2, ...}KVC, {symenc(),KVC,C, ...}KAS,V¢

send3(V,C, {symenc(),T2}KVC)

In a similar way the encryption terms in the NSL specificationare extended with the
nullary function pub enc(). The abstraction is now unification preserving since the
message{symenc(),T s}KVC cannot be unified with a message of the NSL protocol in
the concrete as well as the abstract message specification. Using this modelling the
protocols are independent by Theorem 3.2.1.

Instead of introducing global constants for symmetric and public key encryption one
can also create a global constant for each encryption algorithm, thusRS Aenc(), ECC enc(),
AES enc() etcetera.

This technique might be of particular use in settings where type flaws are permitted.
Using different encryption schemes it is still possible to achieve independence between
protocol sets.

3.3.3 Message encoding

In the previous section a demonstration is given on how to useproperties of the en-
cryption algorithm used to show that two protocols are independent. There are other
properties of the concrete message specification which ensure that messages cannot be
unified; in this section a commonly used encoding scheme is studied and it is shown
how to take advantage of such a scheme in the role specifications.

As an example we will study a type-length-value(TLV) encoding scheme, in this scheme
each data element is encoded as a type identifier, a length identifier, the actual data el-
ements. The type and length identifiers have a fixed length (usually 1 to 4 bytes) and
the length of the actual data elements is defined by the lengthidentifier. There are
many protocols which use a form of TLV encoding, TLV encodingis the basic build-
ing block of the Basic Encoding Rules (BER) [21] of the ASN.1 notation. ASN.1 is a
widely accepted standard in the area of notation and encoding. The message encoding
in WiMAX [36] is also based upon a TLV scheme.

As an example how we can take advantage of the encoding from the independence
perspective we will consider a setting where 2 agents use Kerberos (Figure 3.1) to
obtain a new key and they use this key to transfer data using the protocol of Figure 3.4

The Kerberos protocol and the data transfer protocol cannotbe proven to be indepen-
dent of each other since the last message of the key negotiation protocol{T s}KVC can
be unified with{data}KVC.

If these protocols use a TLV encoding scheme the specification contains a table which
defines identifiers for all the fields used in the protocol. An example of such a table
is given in Table 3.1. If an agent needs to send the data ”1234”he will construct a
message ”7/4/1234”, the receiving party sees that this is data (the message starts with
a 7) and that the length of the data is 4 bytes.

In [38] it is proven that the composition of encoding and decoding using the Basic
Encoding Rules (a commonly used form of TLV) yields a value which is equivalent
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KV,C

C

KV,C

V

{data}KV,C

{h(data)}KV,C

Figure 3.4: A data transfer protocol using a Kerberos key negotiation

Byte value Field identifier
0¡ 5 reserved

6 Ticket (Ts)
7 Data

Table 3.1: An example table of field identifiers

to the original. The TLV encoding prevents the confusion between a message con-
taining the ticket and a message containing data by the fact that the first byte of the
message content has a value of either a 6 or a 7. Using global constantsbyteval6() and
byteval7() in the abstract specification we can express this property. The last message
of the kerberos protocol becomes{byteval6(),T s}KVC and first message of the data
transfer protocol is modelled as{byteval7(),data}KVC. Applying the unification algo-
rithm immediately results in a symbol clash; the functionbyteval6() andbyteval7()
are not unifiable. Using this modelling of the protocols it isclear that messages from
one protocol cannot be unified with messages of the other protocol and thus these two
protocols are independent.

3.4 Conclusions

In this chapter we studied some aspects of compositionalityof security protocols. We
have shown that the problem of independence can be reduced tothe unification prob-
lem. Using an unification algorithm we were able to prove thatprotocols are indepen-
dent without the assumption used in the definition of strong independence . A basic
unification algorithm was sufficient for the formal model used throughout this thesis,
other formal models might need unification algorithms aimedat unifying commutative-
associative functions or even first order unification depending on the specific properties
of the input language.

In the second part of this chapter the relation between abstract and concrete message
specifications was studied and it was shown how properties ofthe concrete specifica-
tions can be used to improve compositionality properties ofa protocol.
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Chapter 4

Unification & Name attacks

During the research on unification, compositionality and type flaws the question emerged
which terms used in the model should be unifiable to which other terms. More specifi-
cally how does an agent name relate to role terms.

In the literature attacks existed where the adversary picksa nonce such that it conflicts
with an agent name breaking a security requirement. An example of such an attack is
the type flaw attack on a version of the Needham-Schroeder protocol as illustrated in
Figure 4.1. In this variant of Needham-Schroeder the order of the arguments in the first
message are swapped.

pk(r), sk(i)

i

pk(i), sk(r)

r

nonceni

➀
{i, ni}pk(r)

noncenr

➁
{ni, nr}pk(i)

➂
{nr}pk(r)

Figure 4.1: Needham-Schroeder public-key authenticationprotocol

In this attack (Figure 4.2) a malicious agent uses his name instead of a nonce in the
first message in order to impersonate another agent. The attack requires two parallel
sessions and is shown in detail in Figure 4.2. We writea : r(b,a) to denote that
agenta executes the responder roler assuming that the corresponding initiator rolei is
executed by agentb. Similarly,eve(b) : i(b,a) means that the intrudereveimpersonates
b executing the initiator role in a session with agenta executing the responder role.

The type-flaw attack on the Needham-Schroeder protocol is anexample of a situation
where the adversary selects a nonce according to the value ofan agent name. The
question whether an adversary could change his name according to the value of a nonce
lead to the insight that the current formal model excluded this possibility although this
name-changing might be possible in certain scenarios.

24



a : r(b, a) eve(b) : i(b, a) eve: i(eve, b) b : r(eve, b)

➀
{b, eve}pk(a)

na

➁
{eve, na}pk(b)

{eve, na}pk(b)
{eve, na}pk(b)

nb
{na, nb}pk(eve)

na

➂
{na}pk(a) {nb}pk(b)

“I am talking tob”

secretna knowsna

Figure 4.2: Type-flaw attack on Needham-Schroeder

Common to most security frameworks is the assumption that the adversary has com-
plete control over the network and is only limited by the constraints of cryptographic
operations. The first attempt to precisely formulate this idea was done in the early
1980s by Dolev and Yao [17].

Dolev and Yao’s threat model assumes that the adversary isa legitimate user of the
network, able tobe a receiver to any user on the network, obtain any message passing
through the network, and tryingeverything he can in order to discover the plaintextof
an encrypted message.

There are mechanisms to ensure correctness of types throughout the execution of a
protocol, for instance by message tags [19], therefore the absence of type-flaw consid-
erations in some formalizations can be justified.

In this chapter, we introduce and discuss new intruder abilities concerning the dynamic
selection of names for compromised agents and potentially even for honest agents. In
contrast to the well-known type-flaw attacks, such as the oneshown on the Needham-
Schroeder protocol, which are based on the assumption that agent names are static,
we allow the adversary to choose dynamically created terms as the name of an agent.
Dynamic agent naming is typically not being considered by protocol verification frame-
works and tools.

While it is easy to craft secure protocols that are susceptible to what we call thechosen-
name type-flaw attacks, we don’t expect these attacks to be found frequently in real-life
protocols. However, to prove their existence, we also show achosen-name type-flaw
attack on a published protocol upon which previously no attacks were known. In the
attack, using a dynamically created name, the intruder takes advantage of a type flaw
to learn a shared key. This type-flaw attack would not be possible with a static name.

These new attacks and intruder abilities have, to the best ofour knowledge, not been
taken into account in any formalization. The achieved results have been published in
[12].
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4.1 Chosen-name attacks

4.1.1 Preliminaries

A chosen-name attackoccurs when the intruder violates a security property by gen-
erating a suitable name or identity for an agent. Clearly, the less restricted an agent’s
name space is, the more likely this type of attack is to occur.

We distinguish between two types of chosen-name attacks. Ina selected-name at-
tack, the intruder can select arbitrary names for compromised agents only, while in
an assigned-name attackthe intruder may additionally assign arbitrary names to un-
compromised, i.e. honest agents. Aside from the fact that assigned-name attacks are
much more specialized than selected-name attacks, the two classes also have distinct
targets. In selected-name attacks malicious agents choosetheir name to attack other
agents, hence the veracity of security properties for theseagents may be ignored, while
in assigned-name attacks the victim may very well be the agent that is being assigned
a name. Note that while the attacker may assign a name to an honest agent in order to
attack another victim, in general these attacks can also be executed as selected-name
attacks.

Although attacks that would fit our definition of chosen-nameattacks have been known
and described in the literature, they have not been treated as a class of their own, but
have been rather occurring as instances of other classes, such as impersonation attacks,
man-in-the-middle attacks, or relay attacks. Thechosen-name type-flawattacks, how-
ever, are new and did not receive attention before. In the rest of this section we will
therefore restrict ourselves to chosen-name type-flaw attacks. We will discuss existing
chosen-name attacks in Section 4.2.

4.1.2 Selected-name attacks

We consider attacks where the intruder dynamically selectsthe names of conspiring
agents in such a way that a security claim fails due to a type flaw. We split these
selected-name attacks into two subclasses. The first class consists of those attacks
where an agent’s selected name will be accepted without further scrutiny, while the
second class requires the name to be confirmed or accepted by athird party, for instance
by a certificate authority or a key server.

We begin by presenting and discussing a protocol vulnerableto an attack from the first
class and then discuss Lowe’s modification of the KSL protocol which is vulnerable to
an attack from the second class. In both cases we only consider secrecy, even though
our methods can be used to attack any security property.

A flawed key-establishment protocol

Consider the protocol in Figure 4.3. It is a fictitious key establishment protocol com-
bined with a liveness check. The premise is that initiatori and serversshare the secret
key k(i, s) and similarly responderr and servers share the secret keyk(r, s). On i’s
communication request tor in message➀, r contacts the servers in ➁, who then dis-
tributes a fresh secret keykir to r andi in messages➂ and➃. Whenr receives the new
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Figure 4.3: Key-establishment protocol

key kir he generates a noncenr to check liveness of the server in➄ and➅. To demon-
strate the selected-name attack, the liveness check is implemented in a non-standard
manner. The security claim of this protocol for all three roles is thatkir is secret, as
indicated by the hexagons at the end of the protocol.

Since this is a specially crafted protocol, we first sketch why the protocol achieves
its security goals in the absence of type-flaw attacks. The key kir is freshly produced
by s, and transmitted only in messages➂ and ➃, encrypted withk(r, s) and k(i, s),
respectively. In both messages,kir is concatenated withi and r and encrypted with
keys known only tos and one ofi and r. Thus each of the messages bindskir, i, r,
ands together. It follows thatkir is secret fori, since all messages containingkir are
bound to the intended agents, must have been produced by the intended agent, and are
only readable by the intended agents. The same reasoning canbe applied forr ands’s
secrecy claim.

Next, we consider conventional type flaws. It is evident thatmessages➁, ➂, and➃
cannot interfere with each other due to the message identifiers contained in messages
➂ and➃. Messages➁ and➄ are supposed to be distinguishable by the fact that one
contains an agent name and the other one an encryption term. In a conventional type-
flaw attack, an adversary may attempt replacing message➄ in a certain run by message
➁, possibly from another run. In the present protocol, this attack would be futile, as
it would, at best, lead to an encryption term{i}k(r,s)¡1. This term would not be useful
for the adversary to break the secrecy ofkir, since it does not fit the type of any other
message.

Finally, in a selected-name attack, the replacement can be attempted in the other direc-
tion, too, i.e. message➁ in a certain run may be replaced by message➄ from another
run. Figure 4.4 shows a trace demonstrating this attack. Assume that the adversary
controls two agents, an agent calledevewho pretends to beb and an agent who will
be named{3, kab,a,b}k(b,srv). Agentevelistens to a conversation between the honest
agentsa, b, andsrv. When message➂ is sent fromsrv to b, eveintercepts this mes-
sage and the agent with the name{3, kab,a,b}k(b,srv) is created. This agent initiates a
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Figure 4.4: Attack on key-establishment protocol

session with a second run ofb. Following the protocol, agentb constructs the message
{b, {3, kab,a,b}k(b,srv)}k(b,srv) which he sends tosrv. The adversary intercepts this mes-
sage and injects it into the first session as message➄, impersonatingb to srv. Agent
srv tries to decrypt the message and obtains (3, kab,a,b) due to a type confusion. This
quadruple is sent back in the clear allowing the adversary tolearnkab.

Lowe’s modified KSL

The selected-name attack presented in the previous sectiononly required the adversary
to select names for the agents he controls. Some selected-name attacks additionally
require the conspiring agent to have his selected name accepted by a third party, for
instance when obtaining a symmetric key associated with thename from a key server or
a certificate from a certificate authority. The ability to obtain key material or certificates
for a chosen name is plausible in identity-based encryptionand signature schemes and
in systems where users may have one or more pseudonyms.

As an example of a protocol vulnerable to a selected-name attack under the assump-
tion that the chosen name is accepted, we consider the KSL protocol [22] including
the modifications suggested by Lowe in [27]. In [29] an exact modelling of Lowe’s
modifications is provided. We will focus on the authentication phase of this protocol,
shown in Figure 4.5, and omit the reauthentication protocol.

This protocol is similar to the key-establishment protocoldiscussed in the previous
example in that in messages➀ through➂ i contactsr, who in turn contacts the key
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Figure 4.5: Lowe modified KSL

servers to obtain shared secret keys. Here, however, nonces are generated and sent in
the first two messages, and neither of the first two messages isencrypted. Further, the
serversdoes not deliver the encrypted shared secret key toi directly, but rather sends it
to r in message➂, who forwards the encrypted key along with another fresh noncenr′,
a ticket{Tr, i, kir}k(r,r), andi’s original nonce encrypted under the shared secret key toi.
Finally, i sends backnr′ encrypted with the received shared secret keykir. The ticket in
message➃, is only used for the reauthentication protocol which we have omitted. It is
encrypted with the keyk(r, r) known only tor and contains a generalized time stamp,
Tr, made with respect tor ’s local clock. The fact that the keyk(r, r) is only known
to r prevents everybody butr to tamper with the ticket or create such a ticket. In the
reauthentication protocolr usesTr to check the validity of the ticket.

Until now, there have been no attacks known on this protocol.In fact, if our chosen-
name attacks are disregarded, then the secrecy claims of theprotocol can be shown to
be correct using, for instance, the Cremers-Mauw semantics[15].

To carry out a selected-name attack, as described in Figure 4.6, the attacker waits fora
to initiate a session withb ands. The adversary then creates an agent with the namenb
which he observed in message➁. This agent obtains a valid keyk(nb, s) and pretends
that b has initiated a session with him by sending the message (a,b,na,nb) to s. In
this messages interpretsa as a nonce andnb as a name and responds with a newly
generated key,k(b,nb), for b andnb. Agentnbcan decrypt the first part of the message
to learn the keyk(b,nb). He then reverses the order of the two parts of the message and
forwards them tob. Agentb decrypts{a,nb, k(b,nb)}k(b,s) and thinks thatk(b,nb) is the
freshly generated key that he should use in his session witha. He then forwards the
ticket {b,na, k(b,nb)}k(nb,s) together with a newly created noncenb′ to a. The adversary
intercepts this message and respond to it by encrypting the noncenb′ with the key
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Figure 4.6: Attack on Lowe modified KSL

k(b,nb) and impersonatinga.

4.1.3 Assigned-name attacks

So far we have considered the adversary’s ability to select the names of conspiring
agents. In some settings, however, the adversary might evenbe able to assign names
to honest agents. One example would be a compromised naming authority, another
possibly more realistic example, would be a compromised DHCP server. In the latter
scenario, a protocol which uses IP-addresses to identify agents could be vulnerable to
an assigned-name attack.

Consider a variant of the Needham-Schroeder-Lowe (NSL) protocol where the nonces
in the second message have been swapped as shown in Figure 4.7. The NSL protocol
is a mutual authentication protocol that has originally been shown to be correct by
Lowe [28] and since then by several other authors as well. Theswapping of the two
nonces has no influence on the correctness of the protocol even when conventional type
flaws are taken into consideration. For simplicity, we are restricting ourselves to the
secrecy claims of the protocol.
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Figure 4.8 demonstrates an assigned-name attack on the NSL variant. An honest agent
b starts a conversation with a malicious agenteveby sending{nb,b}pk(eve). The adver-
sary then assigns the name (nb,e) to another honest agent. This honest agent starts a
conversation withb and produces an encryption term of the form{nnbe, (nb,e)}pk(b).
The conversation between the two honest agents continues and at the end of the proto-
col, (nb,e) andb agree on a secret valuennbe. The adversary takes the first message
of this conversation and inserts it into the running sessionbetweenb andeve. Agentb
receives this message and confuses the name (nb,e) with noncenb and nameeveand
responds with the message{nnbe}pk(eve) which enables the adversary to learn the value
nnbe. Thus, the secrecy ofnnbeclaims of the honest agents (nb,e) andb are falsified
by this attack.

This attack can be modified to impersonateb to nb and invalidate both secrecy claims
of nbas follows. When (nb,e) sends out the first message of the protocol, the adversary
can block the communication between the agents (nb,e) andb and inject the message
{nnbe, (nb,e)}pk(b) into his run withb to learnnnbe. He then picks a noncene to con-
struct the message{ne,nnbe,b}pk((nb,e)). The adversary now knows both nonces and has
furthermore impersonatedb to nb. The security claims ofb are not invalidated though,
sinceb does not finish the protocol.

4.2 Related Work

The attacks we have described in this chapter belong to the intersection of two classes,
namely chosen-name attacks and type-flaw attacks.

Chosen-name attacks have been known and described in the literature in various forms.
For instance, it is known that in public key infrastructuresa malicious or sloppy cer-
tificate authority would make it possible for an attacker to impersonate any user by
registering under the user’s name or a slight variation of the user’s name. A particu-
lar instance of this attack, which is known as thehomographor unicodeattack [18],
is the registration of Internet domain names resembling well-known domain names.
This attack became particularly popular when internationalized domain names became
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Figure 4.7: A variant of NSL
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available, since, for instance, several Cyrillic characters are identical to Latin characters
allowing two distinct Internet domain names to have the sameappearance.

A cryptographic impersonation attack, due to flawed key certification schemes, has
been described by Lenstra and Yacobi [23]. In principle, such attacks can also be car-
ried out on identity-based encryption schemes if the private key generation algorithm
is weak. For instance, in Boneh and Franklin’s scheme, it is easy to see that the possi-
bility of a chosen-name attack hinges on the quality of the cryptographic hash function
H1 [9, Section 4.1].

Another source of chosen-name attacks are man-in-the-middle attacks on authentica-
tion protocols. A malicious agent seeking access to a resource would wait for an honest
agent to initiate a vulnerable authentication protocol andconsequently select the honest
agent’s name to perform the attack. In fact, the attack in Figure 4.2 is another example
of a chosen-name man-in-the-middle attack. The attacker chooses and impersonates
the agentb to obtain access toa. Similarly, in relay attacks, for instance on protocols
running on radio frequency devices, a rogue device would forward the authentication
challenge it receives to any victim it can find in the vicinity.

While all these attacks are well-known and have been extensively studied, they are
different from the type-flaw attacks considered in this chapter,either in that they are
not type-flaw attacks at all, or in that the chosen name isstatic.

Since the introduction of type flaws in security protocol analysis [10] various ap-
proaches have been used to detect and prevent type flaws. In [19] a tagging scheme
is presented that prevents simple type flaws. Simple type flaws occur when one vari-
able is unified with a complex term or a variable of another type.

More complex type-flaw attacks are described in [31]. These attacks emerge when tags
are confused with terms or when parts of a term are confused with another term. The
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detection of complex type flaws is formalized in [31, 32, 24, 25]. Research in this area
focuses on the transitions from abstract message specification into concrete bit strings
and vice versa.

Some of the formal frameworks aiming at verification of security protocols have in-
cluded the concept of simple type-flaw attacks in their models, for instance [39, 2, 15].
We have investigated whether the tools based on these models, namely ProVerif [7],
Scyther [14], the constraints solver in prolog [33], and thefour tools of the Avispa
project (CL-Atse[40], OFMC[6], SATMC [3], TA4SP [8]), are able to detect chosen-
name attacks. These tools cover most of the modern techniques used in protocol veri-
fication, such as model checking, constraint solving, SAT-solving, and approximation.
Since all of the selected tools provide a specification of theNSL protocol, only mi-
nor modifications were necessary to test the NSL variant in Figure 4.7. None of the
selected tools were able to detect the selected-name attackdescribed in Figure 4.8.

For Scyther and the Avispa tools it is easy to see why the attack could not be found.
Scyther has a fixed domain out of which the names of agents are picked. The reason
why none of the Avispa tools was able to find an attack is related to their input language,
HLPSL. This language requires the user to define a set of concrete sessions under
consideration. This set typically only contains sessions between agents with normal
names. In order to find a chosen-name attack, one has to set up asession where the
name of one of the agents is a concrete run term. Since the set of concrete run terms
is infinite, it is not possible to list all potential chosen-name attack scenarios. This
implies that for an Avispa tool using the HLPSL input language to find a chosen-name
attack, the attack has to be known in advance. OFMC cannot findchosen-name type-
flaw attacks, even in its native input language, due to an over-optimizing design choice
in its symbolic session generation algorithm [6,§6.3].

We could not pinpoint the exact reason why the constraint solver in prolog did not find
the assigned-name attack, as it seems that this formalism does not require a special
domain for the names of honest agents. This formalism does however limit the names
of the attacker, as a constant² is used to represent his name, and thus precludes the
detection of selected-name attacks. In ProVerif the default implementation of NSL
uses the public key of an agent to identify the agent. Insteadof sending{na,nb,b}pk(a)

the second message is modeled by{na,nb, pk(b)}pk(a). Another way to model agent
names in ProVerif is via thehost() function, but even in that case, the attack could not
be found.

Most formal models underlying tools for verification of security protocols can be ex-
tended to express chosen-name attacks. However, it will notnecessarily be easy to
extend the tools themselves. Especially tools that search through the state space of a
given finite scenario will face the problem of having to choose appropriate agent names
from an infinite domain.

4.3 Conclusion

In this chapter we have presented an intruder ability which was overlooked in common
interpretations of the Dolev–Yao threat model and we demonstrated how this ability
can be used to construct a special class of type-flaw attacks.We have identified a
structure related to this intruder ability and classified the newly found attacks.
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We have shown that Lowe’s modified KSL protocol is vulnerableto a selected-name
attack and that a mere reordering of two nonces renders the Needham-Schroeder-Lowe
protocol vulnerable to an assigned-name attack.

Type-flaw attacks on a protocol are intimately related to theimplementation of the
protocol. The attacks presented in this chapter are infrequent, but as realistic as any
other type-flaw attack and therefore should be taken into account by those tools and
models which attempt to detect type flaws. Protocols vulnerable to this new class of
attacks can be corrected like protocols vulnerable to type-flaw attacks by rearranging
fields in messages, by adding extra information in vulnerable messages, such as was
for instance done in messages➂ and➃ of the fictitious key-establishment protocol in
Section 4.1.2, or by using tagging schemes such as those proposed in [19]. A way to
prevent chosen-name type-flaw attacks in particular, is to precisely define the agent’s
name space and enforce strict name checking.

This work shows that the common Dolev–Yao interpretation isnot complete with re-
spect to the requirement that the adversarytries everything he canin order to learn a
certain message. For instance, in [13] it is shown that from any attack on a secrecy
claim involvingn agents, an attack can be constructed which involves only twoagents,
assuming that agents may talk to themselves. The construction essentially maps all
dishonest agents to one agent and all honest agents to the other agent. The attacks
introduced in this chapter indicate that the security of a protocol can depend on the
names of the agents. It is possible to construct protocols where an attack requires the
adversary to select several names for dishonest agents. If one agent can only have one
name, such an attack requires more than two agents. This shows that the results in [13]
do not hold under the present intruder model. It is conceivable that there are other
subtle assumptions made in the common interpretation of Dolev–Yao.
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Chapter 5

Turing completeness of the
framework

Formal modes of security protocols are only of interest if the protocols under inspection
can express properties of a real world protocol. In Chapter 2it is shown that this model
can express interesting properties, illustrated by the attack on the Needham Schroeder
protocol. Unfortunately the model has some limitations regarding the real world pro-
tocols it can handle. Certain cryptographic protocols require the use of an equational
theory in their execution. Examples are protocols using the“exclusive or” operator or
a Diffie–Hellman key negotiation [16]. The Diffie–Hellman protocol depends on the
property thatgab = gba.

The formal model used throughout this thesis has no support for equational theories,
therefore there is a need for simulating these theories. There are other security mod-
els which incorporate the concept of an equational theory into their formal model, for
instance OFMC [5]. In this chapter it is shown that an agent can perform any Tur-
ing computation which indicates that the framework can copewith any computable
equational theory.

Proving Turing completeness is a non-trivial task, since there is no looping or recur-
sion operator available in the role specification. However,the set ofTracesof a given
protocol might contain a trace withn executions of a certain role for any numbern.

A Turing machine is an abstract computational device. The Church-Turing thesis as-
serts that any effective computation done on an abstract computer model (e.g.Random
access machines) can also be accomplished by a Turing machine [20, p. 166]. We call
a functionF Turing computable if there is a Turing machine that computesit. The
Church-Turing thesis asserts that all functions which can be expressed as an algorithm
in an abstract computational device are Turing computable.

We call an arbitrary algebra, language or machine Turing complete, if everything that
can be computed by a Turing machine can also be computed by thealgebra, language
or machine.

In this chapter we will try to answer the following question:

Is the presented framework Turing complete?
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Turing completeness is usually discussed in the perspective of a computational system
or a programming language. Its application to the field of security protocol analysis
gives rise to the following questions:

² What part of the security framework is Turing complete?

² What does Turing completeness mean with respect to security protocols?

² Can we use the Turing completeness results to simulate equational theory?

The goal for the Turing completeness we discuss here is to prove that honest agents
are Turing complete. If we are able to construct a proof for this fact, we can conclude
that any computation done by a Turing machine can be done by anagent. This agent
must be able to execute the computation by itself, without interference of an adversary
or another honest agent.

The Turing completeness of an agent should not be confused with the Turing complete-
ness of the adversary as used in cryptography. In cryptography, systems are proven
correct under assumption that the intruder is an arbitrary Turing machine; we assume
perfect encryption, and thus limit the intruder in such a waythat he can only decrypt a
term when he knows the correct key.

We prove our framework Turing complete by showing that thereis a way to map com-
putational steps done by a Turing machine to related steps inthe framework.

In Section 5.1 a Turing machine is described, Section 5.2 defines a mapping from
Turing machines to protocols and roles. The exact proof obligation and a proof of
correctness is given in 5.3, an example of the entire processif given in section 5.4.
Section 5.6 describes the work related to the simulation of the Diffie–Hellman key
exchange.

5.1 Turing machine

The Turing machine described below is based upon the Turing machine described in
[20, p. 149].

A single-tape Turing machine is formally defined as the tupleM = (Q,Σ, B,±,q0, F)
where:

² Q denotes a set of states

² Γ denotes the set of tape symbols

² B is ablank symbol; B ∈ Γ

² Σ is a subset ofΓ denoting the set of input symbols

² ± denotes thenext movetransition function.± : Q£ Σ→ Q£ Σ£ {L,R}.

² q0 ∈ Q is the initial state

² F µ Q is the set of final states of the Turing machine
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The computational stateC : Σ¤£ Q£ Σ¤, of a Turing machine is defined asC =
(¯1,q,¯2), where:

² q ∈ Q denotes the active state

² ¯1 ∈ Γ
¤is a list of elements on the left side of the reading head

² ¯2 ∈ Γ
¤is a list of element on the right side of the reading head. The first element

of¯2 is the element under inspection of the reading head.

If ¯2 is a single symbol then thē2 will be extended with a blank symbol.

We define the move function of Turing machine TM as follows. Let X1,X2....Xi ,q,Xi+1, ....Xn

be a computational state.

Suppose that±(q,Xi) = (p,Y,R) andi = n + 1 thenXi = B; this expresses the infinity
of the tape on the right hand side. If±(q,Xi) = (p,Y, L) and i = 1 then there is no
succeeding computational step. Thus the tape is limited on the left. if i > 1 then

X1,X2....Xi¡1,q,Xi ,Xi+1....Xn ⊢ X1,X2....Xi¡2, p,Xi¡1,Y,Xi+1, ....Xn (5.1)

Alternatively if±(q,Xi) = (p,Y,R) then

X1,X2....Xi¡1,q,Xi ,Xi+1....Xn ⊢ X1,X2....Xi¡1,Y, p,Xi+1,Xi+2, ....Xn (5.2)

In case thati = n+ 1 thenXi+1 is taken to beB.

The symbol
¤
⊢ denotes the repeated (0 or more) application of the move function. More

formally:

Definition 5.1.1. C
¤
⊢ C′ ⇔ C = C′ ∨C ⊢ C1 ⊢ C2 ⊢ ....Cn ⊢ C′

whereCi denotes the computational state of a Turing machine afteri steps.

Furthermore we define the stateC0 = (²,q0,w) as the initial state when the Turing
machine starts with wordw ∈ Σ¤on the tape. The accepted language for a Turing
machineT M, denoted byL(T M), is the set of all wordsw ∈ Σ¤that let the Turing
machine enter a final state.

Definition 5.1.2. Let T M be a Turing machine, T M= (Q,Γ, B,Σ,±,q0, F)

L(T M)= {w|w ∈ Σ¤, p ∈ F,¯1,¯2 ∈ Σ
¤: q0w

¤
⊢¯1p¯2 }

At the moment a final step is reached, the Turing machine halts. There is no next move
from a final state to another state. If a word is not accepted itis possible that a Turing
machine never halts.

One can use a Turing machine to calculate a function by defining the machine in such a
way that the value on the tape in a final position is a representation of the output values
of the function.
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5.2 Transformation and mapping

To prove Turing completeness of the security framework, we use two functions:

² a function¶ which relates the computational state of a Turing machine torole
terms in the intruder knowledge.

² a function∆ taking a Turing machine as input and producing a related protocol
specification.

Our aim is to prove that

Theorem 5.2.1.For the mappings∆,¶ and any computational state C

C0
¤
⊢ C⇔ ∃

®=®1..®n∈Tr(∆(T M)) ¶(C) ∈ M®n

If we can find the functions∆ and¶ then the security framework can be used to simulate
the execution of a computation by checking for allq ∈ F whether there is a trace
® = ®1..®n such that¶(¯1,q,¯2) ∈ M®n . Checking whether a certain role term occurs in
the intruder knowledge can easily be done using the already existing secrecy claim.

The interpretation of a computational state of a Turing machine defined by the function
¶ is described in section5.2.1. Section 5.2.2 defines the Turing machine transformation
∆.

5.2.1 State interpretation

The aim of the¶ function is to relate a computational state to a role term. Recall that
the goal of the simulation is that any agentA can perform the execution of a Turing
machine. Assume that each agentA has a symmetric encryption keyK(A) which he
does not share with anybody else.

Definition 5.2.1. Let C= (¯1,q,¯2) be a computational step of a Turing machine TM.
The state interpretation function¶ : Σ¤£ Q£ Σ¤→ RoleTerm is defined by

¶(¯1,q,¯2) = {¯¡1
1 ,gq,¯1}K(A)

where¯¡1
1 denotes the reverse-ordered list of̄1, and gq is a global constant represent-

ing the state q.

5.2.2 Turing machine Transformation

In this section a constructive definition of∆ is given. We will use∆(T M) to denote
the transformation of the Turing machineT M to the related protocol. We will useq
to denote a state,X,Y as arbitrary length tuples of role terms andx andy to denote a
single variable.

The intuition behind our Turing machine simulation is that we use roles to model state
transitions; these roles read a value¶C and construct¶C′ if C ⊢ C′.
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² For eachq ∈ Q a global constantgq is created.

² For eacha ∈ Σ a global constantga is created.

² For each element (q,a) ∈ Q£ Σ in the domain of±, with index i , a roleRi is
constructed as follows:

– if ±(q,a) = (q′,a′, L) then

Turing(Ri) = create1(Ri)¢ read2(Ri ,Ri , {(x,X),gq, (ga,Y)}K(Ri ))¢
send3(Ri ,Ri , {(X),gq′ , (x,ga′ ,Y),}K(Ri ))

– if ±(q,a) = (q′,a′,R) then

Turing(Ri) = create1(Ri)¢ read2(Ri ,Ri , {X,q, (a,Y)}K(Ri ))¢
send3(Ri ,Ri , {(a′,X),q′,Y}}K(Ri ))

By the fact that the Turing machine is deterministic it is evident that only one of
these roles can be constructed for a given tuple (q,a).

² Construct one role which models the infinity of the tape:

Turing(Rin f ) = create1(Rin f )¢ read2(Rin f ,Rin f , {X,gq, y}K(Rin f ))¢
send3(Rin f ,Rin f , {X,gq, (y,gB)}}K(Rin f ))

² We construct a special role for the start and termination; let w = w1w2..wn be the
list of elements of the initial word of the Turing machine execution; we define
gw = (gw1,gw2, ...,gwn)

Turing(Rinit ) = create1(Rinit )¢ send3(Rinit ,Rinit , {B,gq0,gw}K(Rinit ))¢
read2(Rinit ,Rinit , {X,gq,Y}K(Rinit ))¢

and for each stateqf ∈ F a claim is constructed:
claim(Rinit , secret, {X,gqf ,Y}K(Rinit ))

We use∆(T M) to denote the protocolP(Rinit ,Rin f ,R1, ...RN)

5.3 Proof of correctness

The functions∆ and¶ defined above should fulfill the requirement stated in theorem
5.2.1; we prove this theorem in 2 directions.

Lemma 5.3.1. For any honest agent A, computation state C, and trace® ∈ Tr(∆(T M))

¶(C) ∈ M®n ⇒ ∃i<nai = send
ℓ
(A,A,¶(C))

Proof. Observe that none of the roles constructed by∆(T M) uses the keyK as message
content, as a consequence the adversary will not be able to learn the key of an honest
agent. The adversary is not able to construct a term¶(C) himself, thus this term must
have been sent by agentA at an eventj. ¤
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Theorem 5.3.1.For the mappings∆,¶, any computational state C and any honest agent
A,

∃
®=®1..®n∈Tr(∆(T M)) ¶(C) ∈ M®n ⇒ C0

¤
⊢ C

Proof. Let® ∈ Tr(∆(T M)) be a trace of lengthn such that¶(C) ∈ M®n .

We use induction on the number of send events in the trace®, and let j(k) to denote the
position of thekth send event in the trace.

The induction hypothesis is:

IH: ∀k<K®j(k) = send(A,A,¶(C))⇒ C0
¤
⊢ C

base:®j(1) = send
ℓ
(A,A,¶(C))⇒ C0

¤
⊢ C;

®j(1) denotes the first send event of the trace. There is only one role which does not
start with a read event. By construction of the roles, it is clear that these read events are
not enabled whenM = M0. The only role which can add anything toM is the roleRinit .
Rinit sends out a term{¯¡1

1 ,q0¯2}K(A,A) which is exactly¶(C), whereC = (¯1,q0,¯2); this

C is the initial configurationC0 of the Turing machine; by definition of
¤
⊢, C0

¤
⊢ C0.

Step: Assume the induction hypothesis holds for allk < k′. We have to show that

®j(k′) = send
ℓ
(A,A,¶(C))⇒ C0

¤
⊢ C

If ®(k′) is not related to the protocolRinit then by construction of the roles, the send
eventk′ is preceded by a read event, reading a value¶(C′). By the fact that this send
event occurs we are certain that there is an indexi, i < (k′) such that®i is the read event
preceding the send event. The fact that this®i occurs implies that the read event was
enabled, thus that¶(C′) ∈ M®i . Combining this fact with lemma 5.3.1, the injectivity

of ¶, and the induction hypothesis implies thatC0
¤
⊢ C′. By construction of the roles,

it is clear that a role can only exist if there is a transition in± such thatC′ ⊢ C; thus

C0
¤
⊢ C. ¤

Theorem 5.3.2.For the mappings∆,¶, any computational state C and any honest agent
A,

C0
¤
⊢ C⇒ ∃

®=®1..®n∈Tr(∆(T M)) ¶(C) ∈ M®n

Proof. Let A denote an honest agent, letC′ be a computational state such thatC0
¤
⊢ C′.

By definition of
¤
⊢ we obtain thatC0 ⊢ C1 ⊢ C2 ⊢ ....Cn ⊢ C′

The remainder of the proof will use induction based upon the length of this list of
computations, using the following induction hypothesis:

IH: ∀i< j C0
¤
⊢ Ci ⇒ ∃®=®1..®n∈Tr(∆(T M)) ¶(Ci) ∈ M®n .

Base:There is a trace which start with a create event of roleRinit followed by the send
event of this role. This send event sends out{¯¡1

1 ,¯2,q0}K(A,A) which is exactly¶(C0)

Step: let C0 ⊢ C1 ⊢ C2 ⊢ ....C j¡1⊢ C j be a Turing computation and let® be a trace of
lengthn whith¶(Cj¡1) ∈ M

Let C j¡1= (¯1,q,¯2) and assume that̄2 = ². The fact that̄2 = ² implies that¯2 in
computational stateC j¡2contained exactly 1 element. The roleRin f was thus enabled

40



in computational stateC j¡2. There is a trace in which the events of the roleRin f occur
after send event sending out¶(Cj¡2). The events ofRin f only add a blank to the end of
¯2 thus a read event reading¶(Cj¡2) is still enabled and will produce¶(Cj¡1) but now
¯2 = B. Thus if¯2 = ² then there is a trace in which the{¯¡1

1 ,gq, B}K(A) occurs, thus,
in the role related toC j¡1⊢ C j the read event is enabled. Therefore we can extend the
trace with the events of this role such that¶(Cj) ∈ M®n .

If ¯2 , ² then we know by construction of the roles that there is a roleR which reads
¶(Cj¡1) and sends¶(Cj). The trace® is extended with the events from the roleR. The
induction hypothesis ensures that the read event of the roleR is enabled. The send
event of the roleRproduces a term¶(Cj), thus¶(Cj) ∈ M. ¤

5.4 Example

As an example Turing machine we use a very simple machine which decides whether
an inputstring is in the regular expression 1¤on Σ = {1,0, B}; this Turing machine is
defined in figure 5.1. The input for the example is the string “11”, which clearly is an
element of the language.

S0 S1
B/B,R

1/B,R

Figure 5.1: a simple Turing machine

If we apply the translation of a Turing machine to this protocol we end up with the
protocol as described in appendix A

When evaluating this protocol Scyther immediately returns that the secrecy claim fails,
thus there is a final state that is not secret; the Turing machine has terminated in that
state. In figure 5.2 the trace which invalidates the securityclaim is shown, each run of
a role relates to a transition, and the value of the tape in thefinal state can be seen in
the claim event block. When running this protocol with an input that is not accepted
by the Turing machine (e.g. ”101”) the secrecy claim will be valid.

5.5 Which part of the framework is Turing Complete

In the introduction of this chapter it was claimed that any honest agent should be able
to perform a Turing computation by itself. It might seem thatthis requirement is not
fulfilled since the intruder forwards the output of a run as input of another run.

If we would verify a Turing simulation in a setting with a eavesdropping adversary
then the network would still act as a buffer. In such a setting it would be possible for
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k(a)

a : Rinit,
run♯1

k(a)

a : R1,
run♯2

k(a)

a : Rin f,
run♯3

k(a)

a : R1,
run♯4

k(a)

a : Rin f,
run♯5

k(a)

a : R2,
run♯6

{B, s0, (1,1)}k(a)

{(B, B), s0,1}k(a)

{(B, B), s0,1, B}k(a)

{(B, B, B), s0, B}k(a)

{(B, B, B), s0, (B, B)}k(a)

{(B, B, B, B), s1, B}k(a)

secret{X, s1,Y}ka

Figure 5.2: The trace invalidating the security claim

the agent to execute the Turing computation. Thus the intruder is not needed for a
computation.

5.6 Simulation of equational theories

In the previous sections it is shown that an honest agent is Turing complete. This result
is a first step towards the use of simulation of mathematical properties who cannot be
expressed directly in the formal model.

In this section a first step is made in the simulation of the Diffie–Hellman key exchange
protocol [16]. This protocol cannot be implemented in the formal model in a straight-
forward manner since it requires mathematical properties like associativity (gab = gba).
The previously achieved Turing completeness result ensures us that this property can
be expressed in the formal model.

As a starting point a list of basic requirements for the Diffie-Hellman simulation was
constructed:

² The key exchange protocol must work without interference ofthe adversary

² There should be a relation¶ between terms in the simulation and terms of the
execution of the Diffie-Hellman key exchange protocol

² No agent should be able to perform the decryption in the simulation which he
could not do in a real Diffie-Hellman execution
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² The simulation should be reasonably efficient

These requirements express only some vital parts of the concept of simulation and this
list is far from complete.

In Figure 5.3 one of the simulation attempts is illustrated.The idea underlying the
protocol used in the simulation of Figure 5.3 is the introduction of a special agentN,
the number theory agent, which executes all computations using the rolesN1 andN2.
An exponentiation is expressed by the encryption with the key pk(n). To ensure the as-
sociativity requirement of Diffie-Hellman, agents do not compute the new key directly,
instead they send out an intermediate result to the number theory agent. This number
theory agent can execute either roleN1 or N2 and in one of the roles the argument
order is swapped. Thus there is always a trace where both honest agents receive the
same term. The environment of this protocol ensures that only the imaginary agentN
can obtainpk(n) and thus the third requirement is not violated.

k(a, n), k(b, n), sk(n)

N1

k(a, n)

A

k(a, n)

B

k(a, n), k(b, n), sk(n)

N2

noncena

{na}pk(n)

noncenb

{nb}pk(n)

{{na, {nb}pk(n)}pk(n)}k(a,n) {{{na}pk(n), nb}pk(n)}k(b,n)

{{{na}pk(n),nb}pk(n)}k(a,n) {{{na}pk(n), nb}pk(n)}k(b,n)

secret
{{na}pk(n),nb}pk(n)

secret
{{na}pk(n),nb}pk(n)

msc

Figure 5.3: A trace of a Diffie–Hellman simulating protocol

Unfortunately it turned out that additional theory needs tobe developed with respect to
simulating an equational theory from a security perspective. One of the major problems
encountered in this research direction was the question howwe can exclude mathemat-
ical properties of a real execution in the simulation. The Diffie–Hellman key exchange
is usually executed in a commutative group setting, should therefore all properties of
such a group be modelled, or only the equation relevant to Diffie–Hellman? If not
all properties are necessary, how can we prove that the properties modelled should be
considered in the execution of Diffie–Hellman? A typical example of a property not
included in the execution illustrated in figure 5.3 is the property thatgaeb= gbea which
expresses that the adversary can exponentiate both public components with a terme
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and both honest agent will still compute the same value for the key. Although this
property cannot be used to break Diffie–Hellman directly it might be that the attained
term can be used by the adversary to attack another protocol run.

Research in this area is still ongoing; as illustrated in theDiffie–Hellman example
there are interesting challenges ahead and future researchmight lead to new insights in
mixing the black-box cryptography assumption with certainreal world mathematical
properties of cryptographic schemes.
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Chapter 6

Conclusions

In this thesis the research done in the area of formal analysis of security protocols is
described. The research is focussed around the concept of “compositionality”. Various
directions are taken aiming at improving existing theoretical results.

An important component of the theory regarding compositionality are the exact con-
straints on the security protocols. Some of the strict requirements needed in the existing
compositionality framework can be removed by the application of unification theory.
The unification theory relaxed the requirements on the security protocols but it turned
out that this was not sufficient to use the framework successfully in all cases. Re-
search in the area of message encoding and the relation between abstract and concrete
message specifications resulted in the concept ofunification preserving abstractions.
The results achieved in this area enable a broader application of the compositionality
framework.

Another research direction considered the expressive power of the security protocols in
the formal model. Equational theories are not supported by the formal model although
they are of interest for numerous cryptographic applications. TheTuring completeness
proof shows that theoretically there is no need to extend theformal model with an
equational theory. Besides the Turing completeness an attempt is made to model a
protocol which simulates the Diffie–Hellman protocol.

Alongside the research related to compositionality and unification it emerged that there
was a subtle assumption in the common interpretation of Dolev–Yao. Research in this
area led to the discovery ofname attacks, these attacks illustrate that verification results
might be incorrect in certain environments. The work in thisdirection illustrates that
there are minor differences between the scientific attacker models and an attacker in
the real world.

6.1 Contributions

² Improved definition of “strong independence” by introducing unification theory

² Introduced “unification preserving abstraction” which enables remodelling of
security protocols with improved compositionality properties
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² Detected a subtle missing intruder ability in the common Dolev–Yao interpreta-
tion

² Constructed attacks related to the newly discovered intruder ability and classified
these attacks

² Proved Turing completeness of security protocols in the formal model, this is a
first step towards simulation of equational theory (Diffie–Hellman)

The research related to the missing intruder ability, the related attacks and the attack
classification have been published in [12].

6.2 Future work

² Research hidden assumptions in formal models:In Chapter4 a subtle hidden
assumption is pointed out which is overseen in various formal models for se-
curity protocol evaluation. Future research in this direction might lead to new
insights in formal attacker models, assumptions on protocol environments and
the interpretation of protocol verification results.

² Improve formal model and tool such that chosen name attacks can be detected:
The name attacks introduced in this thesis were found by an exhaustive search
of existing security protocols. Adjusting current models and tools such that they
can cope with these attacks requires additional research and might even require
a completely different strategy for formal security protocol analysis.

² Research theory related to simulation:In this thesis it is shown that an agent
can perform an arbitrary computation. Additional theory isneeded on how to
relate a real world cryptographic application to a protocolsimulating parts of the
behaviour of this application.
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Appendix A

Protocol constructed for Turing
completeness example

# Turing machine example

usertype Symbol;

usertype state;

secret const K : Function;

protocol Turing(R1,R2,Rinit, Rinf1, Rinf2)

{

const B: Symbol;

const 0: Symbol;

const 1: Symbol;

const s0,s1: state;

#the initializing role

role Rinit

{

var X, Y:Ticket;

var Q:state;

send_Ri1(Rinit,Rinit,{B,(1,1),s0}K(Rinit,Rinit));

read_!Ri2(Rinit,Rinit,{X,Y,Q}K(Rinit,Rinit));

claim_Ri3(Rinit, Secret, {X,Y,s1}K(Rinit,Rinit));

}

# The roles for the transformations

role R1

{

var X, Y:Ticket;

read_!R11(R1,R1,{X,(1,Y),s0}K(R1,R1));

send_R12(R1,R1,{(B,X),Y,s0}K(R1,R1));

}

role R2
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{

var X, Y:Ticket;

read_!R21(R2,R2,{X,(B,Y),s0}K(R2,R2));

send_R22(R2,R2,{(B,X),Y,s1}K(R2,R2));

}

# the roles for the infinity of the tape

role Rinf1

{

var x: Symbol;

var Y:Ticket;

var Q:state;

read_!inf11(Rinf1,Rinf1,{x,Y,Q}K(Rinf1,Rinf1));

send_inf12(Rinf1,Rinf1,{(x,B),Y,Q}K(Rinf1,Rinf1) );

}

role Rinf2

{

var y: Symbol;

var X:Ticket;

var Q:state;

read_!inf21(Rinf2,Rinf2,{X,y,Q}K(Rinf2,Rinf2));

send_inf22(Rinf2,Rinf2,{X,(y,B),Q}K(Rinf2,Rinf2) );

}

}

const Alice, Bob, Eve: Agent;

untrusted Eve;
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