EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Compositionality of security protocols
independence, message encoding, simulation and name attacks

Ceelen, P.

Award date:
2008

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/168afa70-9fe0-43ad-af76-7896f35fd884

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

Master’s Thesis
Compositionality of Security Protocols

Independence, Message encoding, Simulation
and Name attacks

by
Pieter Ceelen

Supervisors:

prof.dr. J.C.M. Baeten (TU e)
Prof. dr. S. Mauw (UdL)

Eindhoven, December 2007

Abstract

Formal analysis of security protocols has been researtteelhst decades, recent de-
velopments introduced compositionality into the domaisedurity protocols. These
developments enable verification of larger protocol setsis Thesis investigates im-
provements to the theories regarding compositionalityeotisity protocols. Composi-
tionality properties are studied and improved from variangles: the conditions under
which compositional reasoning can be applied is weakenehlimg a wider applica-
tion of compositional reasoning. The remodelling of sagysrotocols such that they
have better compositionality properties is investigatew] the expressive power of a
security protocol is shown by a Turing completeness proafrtfermore a subtlety
in the assumptions used in the formal analysis of securibyoppls emerged during
the research. Specially constructed protocols explataksumption which led to the
discovery of new classes of attacks.

Preface

This Master’s Thesis concludes my study at the Departmelathematics & Com-
puter Science at the Technische Universiteit Eindhovene miajority of the work
executed for this thesis has been done at the UnigedsitLuxembourg, | worked in
Luxembourg from February 2007 until the end of July 2007. alised this thesis af-
ter | returned to the Netherlands. The research done fosussend the concept of
compositionality of security protocols. | tried to improgristing theories by looking
at compositionality from dferent perspectives.

| would like to thank Sjouke Mauw and Sa Radomirovi for the challenging as-
signment, the freedom they gave me when doing my researehintle they spent on
discussions and the useful feedback. A word of gratitudetde/Jos Baeten and the
university of Luxembourg for enabling the opportunity do myaster thesis abroad.
Furthermore | would like to thank Cas Cremers, Kristian &gns, and Suzana An-
dova for the interesting discussions, helpful commentsthagreview of working in
academia. A word of thanks for the members of my Assessmemin@ibee for the
time they spent reading and judging my work.

I would also like to thank Hugo Jonker, Baptiste Alcalde, afidbther people | met
in Luxembourg for the fun we had and the fact that you all madefeel at home in
Luxembourg. Finally, | would like to thank my girlfriend, @adien, for her support
during my master’s project.

Contents

Preface oo 1
1 introduction 4
2 Formal model 6
2 OVeIVIEW 6
2.2 Protocol specification 7
221 Roleterms 7
222 ROIEEVENtS o 8
223 Protocols 9
2.3 Protocol eXeCUtion 10
2.4 Security Propertiés 13
................................. 14
3 Improving Independence Properties 15
3.1 Currentdefiniions 15
3.1.1 Independence 15
3.1.2 Strong independence 16
3.2 Improving strong independehce 8 1
321 Unification 18
3.2.2 Unification algorithm 19
3.2.3 Application of unification 19
3.3 _Improving independence using message encoding 20
3.3.1 Concrete message specification 20
332 Cryptography oo 21
3.3.3 Message encoding 22
B4 CONCIUSIONS . . . o o oot 23

4 Unification & Name attacks

4.1 Chosen-name attacksS 26
411 Preliminariés 26
4.1.2 Selected-name attackso 26
4.1.3 Assigned-name attacks 30
4.2 Related WOTK oo 31
4.3 CoNClUSION . . . o oo 33
5 Turing completeness of the framework 35
5.1 Turing machine 36
5.2 Transformation and mMapping 38
5.2.1 Stateinterpretation 38
5.2.2 Turing machine Transformation 38
5.3 Proof of COMECNESS . . . o v v v oo e e e e 39
5.4 EXAMPIE oo 41
5.5 Which part of the framework is Turing Complete 41
5.6 Simulation of equational theories 42
6 Conclusions 45
6.1 CONtribULIONS o v oot 45
6.2 FUIIE WOTK . . o o o oo oo e e e e e 46
47

/A Protocol constructed for Turing completeness example

Chapter 1

Introduction

In current society, the ways of communication between hunhane changed in recent
years. The current possibilities of e-mail, instant mesgga@nd the Internet gives the
opportunity to communicate with another human at any morireany place. When
using one of these communication means, the content wiltdresterred over the In-
ternet; when using the Internet there is the risk of an adwgrattacking your com-
munication session. This is specifically a problem if one twam transfer information
with a security requirement (for example a secret) from A td®solve this problem
security protocolhave been designed.

A security protocol is a specification of the behaviour of éstragents such that the
communication between these agents meets certain se@gitirements.

An example of a security protocol is the process executednahgerson logs in to an
Internet banking website. We can summarise the importapsss follows:

Go to Internet banking website and retrieve a number
Insert this number and PIN-code in hardware token

Insert response of hardware token on the website
The behaviour of the bank is divided into the following steps

Pick a new random number (a challenge)
Transfer this number to the client
Retrieve response of client

Validate response of the client

One security requirement for this protocol is that the dlisnauthenticated, which
means that the bank is certain that you are the genuine owtiee bank account.

It is very hard to determine whether a security protocol s¢le¢ security require-
ments related to the protocol. The adversary can attacktaqmidn numerous ways,
yet excluding all currently known attacks does not provei@@ment of a security
requirement. To solve these problems numerous formal mdtele been developed
which enable us to detect protocol attacks in a systematicavaleliver a proof of
correctness.

One of the formalism’s used to reason about the correctrfesscorrity protocols is

the Cremers-Mauw operational semantics [14]. This formadiehhas been developed
at the Technische Universiteit Eindhoven. This model isstarected in an intuitive

manner, it is well documented and research is done in impgoand extending this
model.

One of the recent developments of this model is the work onpasitionality. In

general the formal models are aimed at the verification oflgmatocols, verifying a
set of protocols (a protocol suite) requires some form of positional reasoning. In
[1] a framework is presented which extends the Cremers-Msgwantics with com-
positional reasoning. A key ingredient of the presentechéwaork is the notion of
independencehich expresses in which cases the compositional reasaaimdpe ap-
plied.

The purpose of this project is the following:
Study and improve the framework for compositional reagpnin

The starting point for improvement of the formal framewoskthe notion of inde-
pendence. One of the existing notions seems to be a ratheo@delution; a more
thorough study will probably improve this notion.

Another open question is related to the expressive powdrecCtemers-Mauw seman-
tics; it is not exactly clear what the limitations are on tleewwity protocols used as
input for these semantics.

To answer the main goal of the project, the following actiaresdefined:

Try to improve current independence notions.

Study what limitations there are on the protocols that cavebiied.

During the work on the improvement of the independence netuestions emerged
regarding the correctness of the Cremers-Mauw semantitgra thorough study of
certain exceptional settings lead to the discovery of a Hassof attacks.

In Chapter 2 the basic formal model is introduced; Chaptesr8ains the work on the

framework for compositional reasoning; it summarises thistig notions and ideas,

and the research results on independence are describetiapte€ 4 a newly discov-

ered class of attacks is introduced. Chapter 5 containsethearch results regarding
the expressiveness of the current model. Final conclusiomdrawn in Chaptér 6.

Chapter 2

Formal model

One of the first approaches towards a formal analysis of ggguotocols is the BAN—
logic [11], this formalism uses postulates and definitianprove protocols correct. In
[26] Lowe illustrated an attack on a protocol proven coriadBAN-logic, this flaw
was discovered using a tool called CagpBR. The flaw was not detected in the BAN—
logic due to diferent assumptions on the intruders behaviour.

Since the publication of the attack various formal modeld smpporting tools have
been developed. The Strand Spaces [39] approach providesnalfmodel which

enables a rather elegant way of reasoning about protocoliggas. The Cremers-
Mauw semantics [15] take a similar approach as the StrandeSpmodel. One of
the diferences between these models is the fact that in the Crevtara- semantics
the relation between a protocol and a protocol’s executsoaxplicitly formalized,

where the Strand Spaces model uses a partial order on evemtadvantage of this
approach is that the Cremers-Mauw protocol specificatioasirageneral easier to
read and understand.

In the succeeding section a general overview of the Creiersy semantics is given,
Section 2.2 describes how a protocol is specified; in Se@i@nit is shown how a
protocol specification can be executed. Sedtion 2.4 tresmsrisy properties and in
Section 2.5 the model will be applied on an example protocol.

2.1 Overview

The actions of honest agents are specified in role speaificatiA role specification
is an ordered sequence of read, send and claim events detffir@nexact behaviour
of honest agents. Claim events denote the fact that a cestairity goal should be
achieved at that moment in time.

A protocol is a set of role specifications expected to comueatritogether (e.g. one
can have a role specification for an initiator and responadle;;, combining these two
specifications resulting in a security protocol).

An agent is an entity able to execute a role specificationtance Alice is an agent
executing the role of the initiator. The actual executiorthe role specification is

pk(r), ski) pk(i), sKr)

I D B

nonceni

0 {niai}pk(r)

noncenr
0 {ni,nr}pk(i)
0 {nr}pk(r)

Figure 2.1: The Needham—Schroeder key exchange protocol

called a run. A run can be compared with a recording of all irgnd output mes-
sages in a protocol execution in the real world, all varialitem the specification are
replaced by values. A run is local to an agent, it only corgta@wents of one agent.
The communication between two agents is modelled byfibwhich is placed under
full control of the adversary; the content of thistfar can be seen as the Dolev-Yao
intruder knowledge.

All possible executions of the entire system are modelled bgt of traces; a trace is
a sequence of events of the complete system. Reasoningtabaet of traces allows
us to determine whether a certain security claim is met ip@dkible executions.

The Needham-Schroeder protocol [34], as described in &iguk, will be used as
a running example throughout this chapter. This protocéhiswn to be flawed, in
Section 2.5 it is illustrated how this flaw is detected by therfal model.

2.2 Protocol specification

A protocol is specified by a number of role specificationsheate specification is a

list of events which specifies the behaviour of the agenthEdthese events contains
role terms, which are used to specify message content. Qnearapare a protocol

to the preparation instructions of a dinner. Role specifioatare similar to the recipe
of one dish, the role specification is a list of actions (tHe events) which need to be
executed in a certain order. In this comparison ingrediergsanalogous to role terms,
since they are both inputs for the events.

In the remainder of this section we will formalise the notimina security protocol,
before we can do this formal definitions for role term, rolervand role specification
are introduced.

2.2.1 Roleterms

Role terms are terms which represent the data used in evérgg.are used to specify
the contents of messages.

Let 7D be a set of identifiersR a set of role names ar@l a set of functions. The
identifiers can be divided into 3 types, constants, vargahtel parameters

The term &, y) denotes the pairing of andy, {x}y represents the encryption of tepm
with keyy.

Definition 2.2.1. The set of role terms is defined as:

RoleTerm:= 7D | R | ¥ (RoleTerm)
| (RoleTermRoleTerm | {RoleTermgoleterm

Some remarks need to be made regarding this definition:

The value of an identifier is local to a role, in the Needhanm&eder example there

is no global idea of the nonad. The formal model enables reasoning about the value
of ni for the initiator role, omi for the intruder role. This locality of identifiers implies
that the value of a constant is initially only known by oneetolvhich is exactly the
behaviour of a nonce in a security protocol.

Functions with arity O are used to model constants whose\alknown to all agents,
these constants relate to constants defined in standard®FEid etcetera.

The setF is a global set of all functions, we assume that their aritegpected in all
terms. Functions are only used to model global constants mradel long term keys
which are already established by a surrounding key infnagire, typical examples of
long term keys are public keypk(r)), private keys $k(i)) and symmetric keys(x, y)).
Short term session keys are represented by local constants.

Terms which are encrypted can only be decrypted by the ieva&rthe key, the inverse
of the key can be the key itself (symmetric cryptography)minaerse key (asymmetric
encryption). Furthermore we assume that pairing is righteiative, thusX y, z) =

% (%,2), (% Y,2 # ((%¥).2
The subterm relatio on role terms is defined as the smallest transitive relatdis-s

fying:
X1 E X, Xp B (X, %2), X T (X1, %X2), X1 T {Xi)x,, X2 C {Xi}x,-

for any roletermxy, X,

2.2.2 Role events

Role events specify atomic actions of an agent. An esentl(r,r’, X) represents the
sending of the data from agentr intended for agent’. Read events are defined in a
similar way,read(r’, r, X), which resemble the reading of datdy r’, apparently sent
by r. The third type of events are the claim evemdsjm,(r, c[, x]), which claim that

a certain security propertyis true for agent, security properties will be discussed in
more detail in section 2.4. There are two special eventshstart and end of a role,
respectivelycreate(r) andend(r), wherer is the name of the role. The labgis used
to tag events; the purpose of this tagging is to make multplaurrences of similar
events non-ambiguous.

Role events are formally defined as:

& = {create(r), send(r,r’, x), read(r’, r, X), claimy(r, c[, X]), end:(r) |
e L,r,r" eR,xe RoleTermc € Claim}

The sequential order of the list of events in a role R is regrexd] by the ordering
relation . Thusfor2 events;, »inroleR, ; 2if 1 occurs before,.

A role specification can now be defined by the palist, type whereeliste & is alist

of events andype: 79D — {constparam variable} is a function assigning the types
to identifiers. We only consider listist starting with acreateand having aend as
the final event. Thereateand theend are not allowed at any other position in this
list. Furthermore, we require that the role name in thesatsvare the same. This
role name must also be used in the claim events, and as thersandl recipient in
send and read events respectively. This name is callesbka@ame If one of these
requirements is not met, the specification is invalid. Theo$ell valid specifications
is calledRoleSpec

2.2.3 Protocols

Security Protocolsire partial mappingR — RoleSpecthat map a role nameto a role
specificatiorelist Let P be a protocol such thate dom(P) (r is a role in protocoP),

we write£ € P(r) if a label£ occurs in the event list af and extend this notation such
that we can usé € P. 7D(P) is used to denote the set of identifiers occurring in the
protocolP. And Prot represents the universe of protocols .

The labels of two related read and send events in a protoeal teebe the same, all
other labels need to be unique for a given protocolket Prot. This requirement does
not limit the expressive power; one can always rename evesisch a way that they
are unique. We extend thé relation to a protocol P by taking the union of all thg
relations for all roleRRin P. This relation is extended with an ordering on related read
and send events; theendevents precede the correspondiegd event. The transitive
closure of the relation’ is denoted with and this order resembles causalities in the
events of the protocol.

Example 1. The formal security protocol given here corresponds to tleedtham—
Schroeder protocol of Figufe 2.1.
NSi) = (creata(i) sep@.r, {ni,i}p) read.i, {ni,nripg)
send(i,r, {nr}p)) claigl, secrefnr)) enrd),
{ni - constnr — variable})
NSr) = (create(r) read.r (nii}p) ses@. i, {ni,nr}yg)
ready(i,r, {nripry) claiglr, secrefnr)) en(),
{nr > constni - variable})

In this example the protocol consist of two roles, i and r;of these roles have a
role specification. It is clear that the role events in thesk rspecifications have a
unique label except for corresponding read and send evédsice that in the role i
the identifier ni is a constant, in the r ni is a variable.

2.3 Protocol execution

The transformation of role specifications to executionshat tole are done by a pro-
cess callednstantiation the execution of a role is calledran. Multiple runs can be
combined intotraces traces are event sequences of the entire system; theyirgonta
possibly interleaved, events of a collection of runs. Irs théction the instantiation
process and the construction of the traces is defined.

On the abstract specification level the BelleTermwas defined as an specification of
message content. The instantiation of these role termsedireed therun terms run
terms contain the actual messages.

Let A be a set of concrete agent names, this set contains trusteellass untrusted
agents.J7 denotes the set of intruder generated nonces. Furthermerassume the
existence of a set run identifieRanid

RunTerm:= A | ¥ (RunTerm) | ZD§Runid| 77 |
(RunTermRunTerm | {RunTermgunterm

The addition of a run identifier to ah?D makes each local constant unique, another
difference between role and run terms is that the variables stamitated by concrete
values in the run terms. A subterm relations defined in a similar way on run terms
as it was defined on role terms. The same symbol can be usdugaelation since it

is clear from the context which relation is intended.

The instantiation process is defined by a run identifi@rand two functions; the par-
tial function : R — A defines which agent is executing which role. The function
: ID — RunTermis a partial function which assigns run terms to identifierke

actual value of an identifiers can be an arbitrary compldtate term. The instanti-
ation functioninstyiq, . y RoleTerm— RunTermis only defined if all the variables
occurring in the role term are in the domain of and all occurring role names have a
agent name assigned to it by.

If both conditions are fulfilled than any role terrifrom a given specification can be
transformed into a run term using the function inst.

Definition 2.3.1. Let rs= (elist, typé be a role specification, let;xx,..x, be arbitrary
role terms, instantiation has the following recursive difm:

(9] ifx reR
chirid if X ceID Atypgc) = const
. _ (x) if Xx € ID A typdX) € {param variable}
NS =1 flinst(x), ...Linstoe) X F(6.... %)
(inst(x1), inst(x2)) ifx (X% X2)
{INSt(X1) }inst(x,) ifx (X

The instantiation of the events of a role specificatisn= (elist, type is named aun.
Arun is defined as the paiinst, elist’) such thatnstis an instantiation triplet anelist
is a sufix of elist.

10

We do not require the event lislist' to be the complete role specification, it igfstient
to have a list of the remaining events of a given role spetifina This modelling
expresses the focus on the current state of an agent. Tha watues of variables and
agent names are contained in the functionand of the instantiatiorinst. We use
Runsto denote the set of all runs. iin events a pair (nst,e\) € Inst &; run events
are the actual events occurring in the execution of a sysfetnaceis a sequence of
run events which represents the behaviour of the systemséthaf all possible traces
is denoted bylraces

The set of runs that can possibly be created by a protedsldefined by a function
runsof(P). A run (inst elist) is in the setrunsof(P) if and only if don() = dom(P)
anddon() = type{param). This formal requirement expresses that the runs in
runsof(P) all have values assigned for all role parameters (namegthaswariables).

We define the set afinsof(IT) for a protocol setl

runsof(IT) = U runsof(P).

Pell

The system that we consider consists of a number of runs atby agents in parallel,
the agents communicate with each other asynchronouslyghra network bfier. We
use an intruder model which is based upon the Dolev—Yao mtued we assume that
the intruder has full control over the communication netkwdre intruder knowledge,
denoted byM, is a set of run terms; the intruder is able to deduce new mmstdy
encrypting or decrypting terms if the key used for this opereis also inM.

Vuvem(U,v) € M = {u}y € M

1

YuulUl,V "e M = ue M

Vi) eM e uve M

M is used to denote the smallest closed superskt.of

During the execution of a system the intruder knowledge grdte initial knowledge

is denoted withMy and contains the names and public keys of agents and the secre
keys of compromised agents. The initial knowledge can beeffrom the protocol

and the context the protocol is running in; in [15] this detign is treated in more
detail.

The bufer M is not only used to represent the intruder knowledge, it$s aised to
model the asynchronous communication between agents; amegent send out a
certain term, the intruder learns this term. Before an agantread a term, this term
has to be known by the intruder.

The system is defined by a state transition system, statedesgemined by the pair
(M, F) whereM is an intruder knowledge set ada set of active rungunidgF) de-
notes the set of run identifiers appearindgrinWe use~[x/y] to denote the replacement
of x by y. The transitions in the system are labelled with a run event.

The derivation rules of the system are given in Table 2.1. dreaterule expresses
that the run identifier used by a new run cannot be used by anoih in the system.
Theendandclaimrules express that these events have no prerequisites wheutiag

11

these events. Theendrule states that when a run sends a temnthe instantiation of
this termmis added to the intruder knowled@ and the executing run proceeds.

The read rule states that terms in the intruderfilau are accepted in a read event if
there is a match on the pattern for some instantiation of énables. The matching of
a messagein the intruder knowledge on a role temmof the specification is done by a
predicateMatch; the idea of the predicate is that a new instantiati®t which extends
inst by assigning values to free variables such that the incomiegsagé equals the
instantiation ofm.

7’

Match(inst, m t,inst) < inst=(rid, ,)Ainst(rid, ,")A A
dom(') =dom()Uvag(m) Ainst(m) =t A WellTyped ’).

The exact definition of the predicatellTypedis a parameter of the formal model.
This parameter expresses whether type flaws are allowea: flgqps occur when the
type of a message is misinterpreted [10], for example anygtion term might be
confused with a nonce. When the implementation of the protigcsuch that these
misinterpretations are prevented then we can use the folipsiefinition of WellTyped:

Definition 2.3.2. We define the predicate WellTyped that expresses whethesttau
tion is well defined:

WellTyped)=VYvedom() : (v)etypdV)
where type is a function which returns a set of allowed vafoea certain variable.
This definition expresses that if a variablés of type “Agent name” then only agent

names will be accepted.

In an environment where type-flaws are allowed a variablentatch any arbitrary run
term. The following definition ofVellTypedexpresses this fact:

Definition 2.3.3. Let be a substitution, then we set
WellTyped)= True

to express that type-flaws are allowed.

In Chapter 3 and]4 type-flaws and the related attacks aretréamore detail.

The possible state transitions in the system are definedia[fal. All possible be-
haviour of a protocol can be derived by applying these dgomarules to the initial
configurationzy = (Mo, 0).

Let be atrace of length | = n;; is used to denote thi¢h event in the trace . A

trace is avalid trace if and only if there are statgs..X, such thatg S35 33,
can be derived using the derivation rules of Tdble 2.1. Theofgalid traces of a
protocolll is denoted byfr(IT).

12

run = (inst, create(r) elist) € runsof(I1), inst= (rid, ,),rid ¢ runidgF)

(instcreate(r))
-

[creatd

(M, F) (M, F U {(inst, elisi})

run = (inst,endr)) € F,

(inst,e_n)Ck(f)) (M, F[(inst, £)/run])

[end
(M, F)

run = (inst,seng(m) elist) e F

[send -
(instsend(m)) (M U {inst(m)}, F[(inst, elist)/run])

(M, F)

run = (inst,read,(m) elist) € F,t € M, Match(inst, m, t, in5t
(M,F) (nst.rege(m) (M, F[(inst, elist)/run])

[read|

run = (inst, claimy(r,c[,x]) elist) e F

[Claim] in imy(r.c[,X
(M, F) (nstelaimy (L)) (M, F[(inst, elist)/run])

Table 2.1: Derivation rules.
2.4 Security Properties

In the derivation rules claim events are used to mark thetipasiin a trace where a
certain claim should be valid. For instance a claim can esgptie fact that a certain
term is secret; this fact should only be considered if a claent is reached in a valid
trace. Security properties express how to evaluate a cheémtén a trace by defining a
formal statement which is evaluated when a security clam¢gountered in a trace. As
an example we will discuss the secrecy claim. Detailed m&dion on other security
claims like authentication and data-agreement can be fiufigl, Chapter 3].

Definition 2.4.1. Let f; be a security property, I€fl be a protocol set, and let be
the label of a claim event with claim cl. We say thbsatisfieghe claimé, denoted by
sat(l, ¢), if
Y e Tr(INVi: ; = (inst claim(r, cl,m)) =
fo (I, claimg(r, cl, m))(inst,) v (inst=(, ,)AiIm(1).¢ A
A secrecy claim expresses that certain information is nexxaraled to an intruder; in

the formal model this is expressed by demanding that thedetrknowledgeM does
not contain the secret information.

Definition 2.4.2. The security propertysfcetassociates to the protocol sdtand the
claim event e claimg(r, secretm) the statement

fsecre(IL €Y(inst,) & e Tr(ll) Ainst(m) ¢ M,,,

where the initial intruder knowledge is determined froin

13

2.5 Example

In Figurd 2.2 a trace is constructed which is based upon thiehing of the Needham-—
Schroeder protocol (Example 1). This trace illustratesah®us attack on the Needham-
Schroeder protocol. The secrecy claim of the responderisal®lated, the intruder
uses a man in the middle attack in which an honest initiateedieted by agers) is
used as a decryption oracle for the second message.

The trace is an example of the application of the formal moti¢hen working with

this model trace derivations and claim validation is supgmbiby a tool which has
implemented this formal model. This tool enables a fullyoauhted verification of a
security protocol.

instantiation event concrete term
1, ,{niHunre- 1}) creatq (i) -

(2, 2,{ni— L,nr-v}) create(r) -

(4, 1,{ni> unre- 1}) send(i, r, {ni, i}pkr)) {U, Bkeve

(2, 2,{ni— 1L,nr— v} reach(i, r, {nr, i}pir)) {U, Bkb)

(2, 2,{ni - nifl,nr—v}) | send(i,r,{ni,nr}pg) {U, ¥ka)

(L, 1, {ni unrenri2)) | reads(,r, {ni, Nr}pg) {U, ¥ka)

(1, 1,{ni - unr— nrf2}) | send(,r, {nr}pw) {¥keve

(2, 2.{ni - nifl,nr — v}) | reads(i,r, {nr}pwi) {¥kb)

(2, 2, {ni— nifdl, nr— v}) | claimg(r, secrefnr)) \Y

Figure 2.2: Example trace of the Needham—-Schroeder prigtoco = {i — a,r —
eVe, 2:{i I—>a,r|—>b})

The solution for the problem indicated with this attack is thsertion of the name of
the responder in the second message. This prevents thesagvEpm forwarding this
message into another protocol run. The resulting Needhahre&der—Lowe protocol
is depicted in Figure 2.3

PK(r). sK() PK(i), SKr)

I e

nonceni

O {i, ni}pk(r)

noncenr
0 {ni, nr, 1} gy
0 {nr}pk(r)

Figure 2.3: The amended Needham—Schroeder key exchargeqiro

14

Chapter 3

Improving Independence
Properties

In the previous chapter a formal framework is introducedatgénables us to verify
properties of security protocols. The verification procissa complex task and the
complexity increases when verifying larger protocols. émegral the time needed for
verification using a tool grows exponentially in the numblenessages in the protocol.

Consequently verification of large protocols is infeasifolethe current tools. In [1]
a framework for reasoning about compositionality of sagysiotocols is introduced.
This framework uses a divide and conquer approach whichlenais to derive the
correctness of properties of a large protocol suite by cambiverification results of
multiple smaller protocols.

In this chapter we will try to answer the following question:

Can we improve current concepts or ideas regarding the caitipaality of security
protocols?

Section 3.1 contains a short introduction to the framewardk i@sults of [1]. An im-
provement to the theory regarding compositionality isddtrced in Sectioh 3]2. Sec-

tion/3.3 illustrates how remodelling of protocols can hel@chieving better composi-
tionality properties.

3.1 Current definitions

3.1.1 Independence
We say that two protocols are independent if no encryptiom fgroduced by the first

protocol running in the context of the second protocol wéldecrypted or verified by
the second protocol, and vice versa. Formally:

15

Definition 3.1.1. LetII;, I, be two disjoint protocol sets. We say th&t andIl, are
independentdenotedndep(ly, I1y)), if
YV eTr(qUlly;) VXY, XY € RoleTerm
(i = (instsend(m)) A (j = (inst,read,(M)) v ; = (inst, send (M)) v
j = (inst,claims(, ")MA
(Ixly S mA {X'}y £ Aldnst({x}y) = inst ({X}y)))
= (6,0 ey v L, €Tly).

Intuitively, this definition expresses that two protocots aalled independent if there
is no encryption runterm produced by one of the protocolstvicen be read, send or
claimed by the other protocol.

In [1] a number of interesting theorems are proved using definition of indepen-
dence, e.g.

Theorem 3.1.1. LetII; andIl;, be two independent protocol sets. Kdie the label of
some secret claim eventlfy. Then

sat([l, f) = sat(l'[l U I, f)

a proof of this theorem can be found in [1, Thm. 20]

Theorem 3.1.1 expresses that adding an independent pre&ED to the environment
I1; is running in does not break a secrecy clainlgf

3.1.2 Strong independence

Proving that two protocols are independent is non-trivia)1] the assumption is made
that only nonce run terms can be assigned to variables amonpters. Using this
assumption there is a form of strong independence defineallaw$:

Definition 3.1.2. Let I1p and I1; be two disjoint protocol sets. We say tHag and
I1; are strongly independendenoteds-indep(ly, I1,), if for any b € {0, 1}, any role
specificationelist sendm) élispd in a protocol inIly, any role terms xy, any
role specificationgelist’ sendfh elist typ€), (elist” read(fh elist type) or
(elist” claim(r,c,th elist typ€) in protocols ofl1; , any map s on the séiD and
any map son the seRR,

{Xly E m= {(S'(X)}gsy) & M.

This definition expresses that two protocols are calledngisoindependent if there
is no encryption role term in one of the protocols which afesraming the variables
(using the maps ands’) occurs in the other protocol.

Note that any mags on identifiers ands’ on roles naturally induce maps on the set
of role terms and we identify these maps witland s'. Also note that since strong
independence is a syntactical property, there is no neeahisider traces in evaluating
the strong independence criteria.

16

Kasc Kasc, Kasy Kasv
C | AS | | Vv

Key Kyc

{Kve, V; - Jkases

{Kvc, C, .. Jkasy
(T2, {Ikyes

Ko ey

{T2

Kve

secretKyc secretKyc

Figure 3.1: The Kerberos protocol

In [1, thm. 19] a proof is given which shows that strong indegence implies inde-
pendence.

As a consequence this compositionality framework enalde® wetect whether two

protocols are strong independent without evaluating adkfime traces (it is a syntac-
tical property). When two protocols are strong independeen they are independent
according to the previously mentioned theorem. Theoreni 3Hows that in order to

evaluate the correctness of a secrecy claim it fi@ant to evaluate this claim within

an environment where only the related protocol exists. ThadraceseTr(I1; U I1,)

is not evaluated; this framework removes the problemseeél& the computational

complexity related to the evaluation of larger protocokset

A problem with the strong independence definition as suggdesbove lies in the as-
sumption that only nonce run terms are assigned to vari@sidparameters. There
are numerous protocols using a formtikets in these protocols this assumption is
not true. These protocol require an agent to forward a megsag (the ticket) to an-
other agent; this ticket usually is an encryption term whdahnot be read by the agent
forwarding the message. An example of such a protocol is #rbdgos protocol [35],
as illustrated in Figure 3.1. This protocol is widely usegbiactise. For example, it is
a basic building block of the Windows networking environien

The Kerberos-protocol uses an authenticated sek@to establish a session key be-
tween agent€ andV. AgentC receives a term encrypted with the Kéysy as a part
of the second message. The agent forwards this message pgéentV. This is called
ticketing and should be modelled as a variable which is assig complex run term.

Another problem with the assumption used in the strong ieddpnce definition is
the fact that type flaws are excluded. Type flaws [10] occurnvbee message is
confused with another message which has another type. Bong& an encryption
term might be interpreted as a nonce by another agent. Thaaespecial class of
attacks called thgype-flaw attacks which the adversary abuses confusion of the type

17

of a message to break a security protocol. There are mechsutisprevent type flaws
(see[19]), unfortunately not all implementations of sé@gyprotocols incorporate these
mechanisms due to limitations in message size and compuightoad for the agents.

3.2 Improving strong independence
The requirements for an improved definition of strong indejence are the following:

It must be possible to prove independence using the imprdeédition
It should be a syntactical check

The assumptions used in the new definition should be lessctes then the
current assumption

Using this list of requirement we tried to look for an algbrit which did not require
the assumption on the assignment to variables and paranéteather ad-hoc algo-
rithm was sketched but after a more thorough study of liteesit turned out that the
independence definition is strongly related to the unificagiroblem.

3.2.1 Unification

Unification is a fundamental theoretical computer sciemea with a long history. The
unification problem answers the following question: giveteam s containing free
variablesu and a ternt with free variablew, is there an assignment to the variables in
u andv such thats andt are syntactically the same.

Applications of unification theory appear in various arehsamputer science, most
notable it is used in theorem proving, areas of artificiatlidence and in term rewrit-
ing systems.

An algorithm which gives an answer to the unification probleould help proving
the independence property; if a tesn= {x}, andt = {x'}, cannot be unified then
Ainst inst({x}y) = inst({x'}y). The following theorem expresses the relation between
relation between unification and independence more foymall

Theorem 3.2.1.

(le € Iy, mp € T, VX1, Y1, X2, Y2 € RoleTerm

(Xaly, £ MiA{X)y, EMp 1 =UNify(ixaly,, (Xa)y,))
= indep(1y, I1y)

Proof. By the fact that there are no encryption terms frlimwhich can be unified
by an encryption term ofl; it is clear that the independence criteriorst({x},) =
inst({x'}y) can only be true if both termfx}, and {x'}y originated from the same
protocol, which is exactly the independence requirement. O

18

3.2.2 Unification algorithm

In the previous section it is shown that an algorithm soluimg unification problem
would help in proving protocols independent. There are moogealgorithms for uni-
fication, Algorithm 3.2.1 illustrates a rather naive recxgsdescent approach. In [4]
it is shown that this algorithm returns the most general enifithe terms can be uni-
fied, otherwise it returns that the terms are not unifiablefoddunately the time and
space needed for this algorithm can be exponential in tleecdithe terms. More com-
plex algorithms ([37], [30]) have reduced this to a probleithdinear complexity for
instances with non associatimen commutative terms.

Algorithm 3.2.1: Uniry(s,t)

global : substitution

if sis a variable
thens s
if tis a variable
thent t
if sisavariablen s=t
then {do nothing
else if(s= f(sy,..s) At =0(t1, ..tm)
if f=g
thenfori 1lton
do Unify(s,t)
elseexit function, non unifiable, symbol clash
else ifsis not a variable
then Unify(t, 9)
else ifsoccurs int
then exit function, non unifiable, occurs check
else {s> 1}

then

Algorithm[3.2.1 walks through both terms from left to rightglobal substitution is
maintained which is used to store the values of variablesollfs is a variable then it
is substituted by its substitution value in. Whens andt are both functions then the
arguments are unified and wheis a free variable then the substitutionis extended
with the replacemerd — t.

3.2.3 Application of unification
In this section Theorem 3.2.1 is applied in a setting whemstindependence cannot
be used.

Consider a setting in which a Kerberos protocol (Figure ard the NSL-protocol
Figurel 2.3) occur in the same environment. Due to the ticketlin the Kerberos
protocol strong independence cannot be used in this setting

Since all the messages of NSL are encrypted with a key of thma fik(A) and all
encryptions in the Kerberos protocol are of the faktA, B) it might look if none of

19

Syntax Size Notes

PEM-REQ_Message_Format(} {

Management Message Type =9 8 bits

Code 8 bits

PEM Identifier 8 bits

TLV Encoded Attributes variable TLV specific

}

Figure 3.2: A part of the WIMAX specification, (PKM request ssage format)

the encryption terms can be unified with a term of the NSL potto Unfortunately
this argumentation is not exactly correct, consider thiefdhg exact modelling of the
V-role of the Kerberos protocol:

KerberogV) = creatgq(V)
readz(C, V,{T2, .. }kvc, {KVC,C, "'}KASV
send(V, C,{T2}kvc)

In this roleKVC is a variable which is read in the evarad,; thus the message sent
out bysend is actually of the form{x}, wherex andy are both variables. This mes-
sage can be unified with the first message of the NSL-protébi) f()). As a result
these protocols cannot be proven independent using Théam In the succeeding
section we study this problem further and we demonstrate daoemodelling of the
protocols can help in achieving independence.

3.3 Improving independence using message encoding

In the previous sections the independence requirementisngreved by relating in-
dependence to the unification of messages. However thestilhsettings where two
protocols are theoretically not independent. In this sective will look at the mod-
elling of protocols from the independence perspective. dbal of the succeeding
sections is to give some theory, guidelines and example®artdremodel protocols
such that they are more likely to be independent.

The general concept behind the remodelling is the additfatetails who are omit-
ted in the original role specification. These details canitieeeinformation on the
cryptography used or it is information related to the enogdif the message.

3.3.1 Concrete message specification

When implementing a security protocol detailed agreements bre made on how data
is exchanged. Depending on the use of the protocol this ie @oa design document
or it is defined in a standard or RFC. These documents definsagestructures and
the exact encoding of the contents; they specify which bitaikl be set and how the
encryption algorithm should be applied. The specificatibthe messages at bit-level
will be called the concrete message specification, Figuzardd 3.3 illustrate parts of
the concrete message specification as used in the WiMAX atdrd6].

20

CRC

Generic MAC header Payload (optional) (Optional)

~ v

—~
Encrypted portion of the MAC PDU

Figure 3.3: A part of the WIMAX specification, (MAC PDU encityqn)

The concrete message specification contains lots of detadst of them are not of
interest for security analysis purposes. These concreeifgmations are interpreted
and transformed into abstract message specification, veneemessage specifications
as shown throughout this thesis, thus messages of the{fuy). The process of
abstracting away unnecessary details is done manuallyhenaiin of this abstraction
process is to get a version of the protocol which is as shopoasible while still
having all properties relevant for the security of the peoto Certain details might be
omitted in the abstraction process which are interestiri mspect to unification and
independence. We introduce the concept Bhdfication preservingbstraction which
enables us to use properties of concrete message spegificati the abstract message
specification level without introducing too many detailstba abstract level.

Definition 3.3.1. We call a protocol abstraction of protocdl Unification preserving
iff for any two concrete message specifications amd cm used inIT with abstract
message specificationg nmy, respectively

unify(cmy, cmp) < unify(mg, my)

In the two succeeding sections we will look at protocol sfiegiion and improve ab-
stract message specifications such that the abstractioagg @ unification preserving.

3.3.2 Cryptography

There are numerous cryptographic algorithms which areeatiyr used, e.g. RSA,
ECC and AES. These algorithms are based upfiaréint mathematical properties and
the results of these algorithms are in general incompatifiteeach other. A message
encrypted with RSA cannot be decrypted with an ECC algoriimeh vice versa.

However, when specifying a protocol using such an encrypigorithm there is only
one operator available to specify an encryption. If we lootha example illustrated in
Section 3.2.B we see 2 messages which can be unified to eaahatitiough the two
messages useftirent encryption techniques (Kerberos uses a symmetriygian
algorithm, NSL uses a public key algorithm).

Under the assumption that if two messages uffierint encryption algorithms there is
no way that these messages can be unified, we can change tteeipessages such
that they are non-unifiable. This is done using global cantstan the introduction
of the formal model it was already mentioned that global tams are modelled by
nullary functions. We introduce new global constasysend) and pub.end) which
represent symmetric encryption and public encryptioneetyely.

The new abstract role specification for réen the Kerberos protocol becomes :

21

KerberogVv) = creatg(V)
reacy(C, V, {symend), T2, ...}kvc, {symend), KVC,C, .. Jk,sy
sena(V,C, {symend), T2}kvc)

In a similar way the encryption terms in the NSL specificativa extended with the
nullary function pub.end). The abstraction is now unification preserving since the
messagg¢symend), T slikyc cannot be unified with a message of the NSL protocol in
the concrete as well as the abstract message specificatiging this modelling the
protocols are independent by Theorfem 3.2.1.

Instead of introducing global constants for symmetric anblis key encryption one
can also create a global constant for each encryption gtgorthusRS Aend), ECC_end),
AES end) etcetera.

This technique might be of particular use in settings whegpe flaws are permitted.
Using different encryption schemes it is still possible to achieveethdence between
protocol sets.

3.3.3 Message encoding

In the previous section a demonstration is given on how topusperties of the en-
cryption algorithm used to show that two protocols are irthefent. There are other
properties of the concrete message specification whiclretisat messages cannot be
unified; in this section a commonly used encoding schemeaudiext and it is shown
how to take advantage of such a scheme in the role specifisatio

As an example we will study a type-length-value(TLV) encgscheme, in this scheme
each data element is encoded as a type identifier, a lengitifide the actual data el-
ements. The type and length identifiers have a fixed lengtm(lysl to 4 bytes) and
the length of the actual data elements is defined by the leidgtitifier. There are
many protocols which use a form of TLV encoding, TLV encodisghe basic build-
ing block of the Basic Encoding Rules (BER) [21] of the ASNdtation. ASN.1 is a
widely accepted standard in the area of notation and engodime message encoding
in WIMAX [36] is also based upon a TLV scheme.

As an example how we can take advantage of the encoding frenmtiependence
perspective we will consider a setting where 2 agents useefes (Figuré 3/1) to
obtain a new key and they use this key to transfer data usangrthtocol of Figure 3.4

The Kerberos protocol and the data transfer protocol capag@roven to be indepen-
dent of each other since the last message of the key negatitdtocol{T Sxvc can
be unified with{data}kyc.

If these protocols use a TLV encoding scheme the specifitatiatains a table which
defines identifiers for all the fields used in the protocol. Aaraple of such a table
is given in Table 3.1. If an agent needs to send the data "1B84Will construct a

message "/A4/1234", the receiving party sees that this is data (the mess>s with

a 7) and that the length of the data is 4 bytes.

In [38] it is proven that the composition of encoding and d#eg using the Basic
Encoding Rules (a commonly used form of TLV) yields a valugohtis equivalent

22

Kye Kye
C | | v

{data} Ky
{h(data)}k,

Figure 3.4: A data transfer protocol using a Kerberos keytiatjon

Byte value | Field identifier
0 5 reserved
6 Ticket (Ts)
7 Data

Table 3.1: An example table of field identifiers

to the original. The TLV encoding prevents the confusionieein a message con-
taining the ticket and a message containing data by the Hattthe first byte of the
message content has a value of either a 6 or a 7. Using globsiactsyteval6() and
byteval7() in the abstract specification we can express this prppElne last message
of the kerberos protocol becomésyteval6(), T Skvc and first message of the data
transfer protocol is modelled @syteval7(), datajxvc. Applying the unification algo-
rithm immediately results in a symbol clash; the functimyieval6() andbyteval7()
are not unifiable. Using this modelling of the protocols itisar that messages from
one protocol cannot be unified with messages of the otheogobaind thus these two
protocols are independent.

3.4 Conclusions

In this chapter we studied some aspects of compositionaflisgcurity protocols. We
have shown that the problem of independence can be redudkd tmification prob-
lem. Using an unification algorithm we were able to prove gratocols are indepen-
dent without the assumption used in the definition of strordependence . A basic
unification algorithm was gficient for the formal model used throughout this thesis,
other formal models might need unification algorithms aimeghifying commutative-
associative functions or even first order unification dependn the specific properties
of the input language.

In the second part of this chapter the relation between atistind concrete message
specifications was studied and it was shown how properti¢giseofoncrete specifica-
tions can be used to improve compositionality properties pfotocol.

23

Chapter 4

Unification & Name attacks

During the research on unification, compositionality armetflaws the question emerged
which terms used in the model should be unifiable to whichrddrens. More specifi-
cally how does an agent name relate to role terms.

In the literature attacks existed where the adversary @aksnce such that it conflicts
with an agent name breaking a security requirement. An el@aofsuch an attack is
the type flaw attack on a version of the Needham-Schroedéoqmioas illustrated in
Figurd 4.1. In this variant of Needham-Schroeder the orfitrecarguments in the first
message are swapped.

PK(r), sKi) PK(i), SKr)

L JL |

nonceni

i,ni
0 { }pk(r)
noncenr
ni, Nr}pi
0t - {0
0 pk(r)

Figure 4.1: Needham-Schroeder public-key authenticgtiotocol

In this attack (Figure 4.2) a malicious agent uses his nastean of a nonce in the
first message in order to impersonate another agent. Theka#quires two parallel
sessions and is shown in detail in Figlre/4.2. We waite r(b,a) to denote that
agenta executes the responder rolassuming that the corresponding initiator roig
executed by agemt Similarly, eveb) : i(b, a) means that the intrudewveimpersonates
b executing the initiator role in a session with aga®ixecuting the responder role.

The type-flaw attack on the Needham-Schroeder protocol example of a situation

where the adversary selects a nonce according to the valae afjent name. The
guestion whether an adversary could change his name acgdcdihe value of a nonce
lead to the insight that the current formal model excludésipbssibility although this

name-changing might be possible in certain scenarios.

24

| a:r(b,a) | |eve(b):i(b,a)| | eve: i(eve b) | | b:r(eveb) |

b, ev
0 L« evéoka
[na]
{eve Najpk(n)
0 {eveng
-SSR0 fevenalpgy
5]
na {na, nb} pievy
0 {na) pi(a) €-------- {nb) piee)
“l am talking tob”

<secre1na> <knowsna>
—— ——

Figure 4.2: Type-flaw attack on Needham-Schroeder

Common to most security frameworks is the assumption tleativersary has com-
plete control over the network and is only limited by the domsts of cryptographic

operations. The first attempt to precisely formulate theaidvas done in the early
1980s by Dolev and Yao [17].

Dolev and Yao’s threat model assumes that the adversaydgitimate user of the
network able tobe a receiver to any user on the netwaoktain any message passing
through the networkand tryingeverything he can in order to discover the plaintekt
an encrypted message.

There are mechanisms to ensure correctness of types tlmoutite execution of a
protocol, for instance by message tags [19], thereforeliberece of type-flaw consid-
erations in some formalizations can be justified.

In this chapter, we introduce and discuss new intrudertadslconcerning the dynamic
selection of names for compromised agents and potentiadly for honest agents. In
contrast to the well-known type-flaw attacks, such as thesbiogvn on the Needham-
Schroeder protocol, which are based on the assumption ¢iesit @ames are static,
we allow the adversary to choose dynamically created tesniseaname of an agent.
Dynamic agent naming is typically not being considered loggmol verification frame-
works and tools.

While it is easy to craft secure protocols that are suscegptibivhat we call thehosen-
name type-flaw attacke/e don’t expect these attacks to be found frequently irlit=al
protocols. However, to prove their existence, we also shalasen-name type-flaw
attack on a published protocol upon which previously nocktavere known. In the
attack, using a dynamically created name, the intruderstaklgantage of a type flaw
to learn a shared key. This type-flaw attack would not be ptessiith a static name.

These new attacks and intruder abilities have, to the bestioknowledge, not been
taken into account in any formalization. The achieved teshéve been published in

[12].

25

4.1 Chosen-name attacks

4.1.1 Preliminaries

A chosen-name attaabccurs when the intruder violates a security property by gen
erating a suitable name or identity for an agent. Clearly,lélss restricted an agent’s
name space is, the more likely this type of attack is to occur.

We distinguish between two types of chosen-name attacksa sklected-name at-
tack the intruder can select arbitrary names for compromiseshtagonly, while in
an assigned-name attadke intruder may additionally assign arbitrary names to un-
compromised, i.e. honest agents. Aside from the fact tragmasd-name attacks are
much more specialized than selected-name attacks, thel&sses also have distinct
targets. In selected-name attacks malicious agents ctibesename to attack other
agents, hence the veracity of security properties for thgeats may be ignored, while
in assigned-name attacks the victim may very well be thetafeanis being assigned
a name. Note that while the attacker may assign a name to asthagent in order to
attack another victim, in general these attacks can alsxd&euted as selected-name
attacks.

Although attacks that would fit our definition of chosen-naattacks have been known
and described in the literature, they have not been treatedctass of their own, but
have been rather occurring as instances of other class#sasumpersonation attacks,
man-in-the-middle attacks, or relay attacks. Thesen-name type-flaaitacks, how-
ever, are new and did not receive attention before. In theofethis section we will
therefore restrict ourselves to chosen-name type-flawlattaNe will discuss existing
chosen-name attacks in Section 4.2.

4.1.2 Selected-name attacks

We consider attacks where the intruder dynamically seldetsnames of conspiring
agents in such a way that a security claim fails due to a type fld/e split these

selected-name attacks into two subclasses. The first ctasssts of those attacks
where an agent’s selected name will be accepted withoutdugcrutiny, while the

second class requires the name to be confirmed or acceptetiby party, for instance

by a certificate authority or a key server.

We begin by presenting and discussing a protocol vulnetalde attack from the first
class and then discuss Lowe’s modification of the KSL prdtatoch is vulnerable to

an attack from the second class. In both cases we only caorsgdeccy, even though
our methods can be used to attack any security property.

A flawed key-establishment protocol

Consider the protocol in Figure 4.3. It is a fictitious keyaddishment protocol com-
bined with a liveness check. The premise is that initiaeomd serves share the secret
key k(i, s) and similarly responder and servers share the secret kéy(r,s). Oni’s
communication request toin messagél, r contacts the serveyin [J, who then dis-
tributes a fresh secret kéyr tor andi in messagesl andl]. Whenr receives the new

26

k(, s) k(r, s) k(@, s), k(r, s)

L i JL« JL s |

{r,ilke.y

0

generateir

{3,Kir, i, kg 0
0

{4, Kir, i, .9

{r. {9 tker.9)
nr

g
g

<secrekir > <secre1kir > secrekir
* *

Figure 4.3: Key-establishment protocol

keykir he generates a nonoeto check liveness of the serverlihandJ. To demon-
strate the selected-name attack, the liveness check igngpited in a non-standard
manner. The security claim of this protocol for all threeemls thakir is secret, as
indicated by the hexagons at the end of the protocol.

Since this is a specially crafted protocol, we first sketclty e protocol achieves
its security goals in the absence of type-flaw attacks. Tlyekkeis freshly produced
by s, and transmitted only in messagésand [1, encrypted withk(r, s) andk(i, s),
respectively. In both messagdsr is concatenated withandr and encrypted with
keys known only tos and one ofi andr. Thus each of the messages birdls i, r,
andstogether. It follows thakir is secret foii, since all messages containikiy are
bound to the intended agents, must have been produced hytéimeléd agent, and are
only readable by the intended agents. The same reasoningeagplied for ands's
secrecy claim.

Next, we consider conventional type flaws. It is evident thassages§], [1, and[]
cannot interfere with each other due to the message idestf@tained in messages

0 and. Message$] andJ are supposed to be distinguishable by the fact that one
contains an agent name and the other one an encryption terancdnventional type-
flaw attack, an adversary may attempt replacing mesSage certain run by message
0, possibly from another run. In the present protocol, thiackt would be futile, as

it would, at best, lead to an encryption tefif ¢ + This term would not be useful
for the adversary to break the secrecykof since it does not fit the type of any other
message.

Finally, in a selected-name attack, the replacement cattémgted in the other direc-
tion, too, i.e. messagé in a certain run may be replaced by messageom another
run. Figure 4.4 shows a trace demonstrating this attackumeshat the adversary
controls two agents, an agent callegewho pretends to bk and an agent who will
be named3, kah a, blpsny. Agentevelistens to a conversation between the honest
agentsa, b, andsrv. When messagg is sent fromsrv to b, eveintercepts this mes-
sage and the agent with the naf@ekah a, b}y s is created. This agent initiates a

27

k(a, srv) k(b, srv) k(a, srv), k(b, srv) k(b, srv)
| a:i(a b,smn) || b:r(a b,sm) || srv: s(a, b, srv) ||eve(b) r(a b,srv)| |b: r({3, kah &, blkp.sny- b, srv)|

{b, Akp.sry

O

generat&kab

0 {3, kaly a, blp,sr
[}

{45 kab, a, b}k(asrv)

{3, kah a, bjk(p,sry

{3, kah a, blkp.sry._
{b. {3, kah &, bjk.snJkgh.sm
{b, 2 kah a, b}k, s Jkah.sry

{% 3, kah a, blw,sr Jkap.sry

type confusion
(3,kah a, b) andnb

(3. kah a,b)

O

: secrekab : knowskab
.85 | .5 |

Figure 4.4: Attack on key-establishment protocol

session with a second run lof Following the protocol, agefiitconstructs the message
{b, {3, kah &, blp,sny Jkpsy) Which he sends terv. The adversary intercepts this mes-
sage and injects it into the first session as mesgggmpersonatingd to srv. Agent
srvtries to decrypt the message and obtain a, b) due to a type confusion. This
qguadruple is sent back in the clear allowing the adversalgaimkab.

Lowe’s modified KSL

The selected-name attack presented in the previous sectipnequired the adversary
to select names for the agents he controls. Some selected-atiacks additionally
require the conspiring agent to have his selected name t&ccbp a third party, for
instance when obtaining a symmetric key associated withdhee from a key server or
a certificate from a certificate authority. The ability toaibtkey material or certificates
for a chosen name is plausible in identity-based encry@trahsignature schemes and
in systems where users may have one or more pseudonyms.

As an example of a protocol vulnerable to a selected-naraelatinder the assump-
tion that the chosen name is accepted, we consider the KSbqwld22] including
the modifications suggested by Lowe lin [27]. In [29] an exaodailing of Lowe’s
modifications is provided. We will focus on the authentioatphase of this protocol,
shown in Figuré 4.5, and omit the reauthentication protocol

This protocol is similar to the key-establishment protodisicussed in the previous
example in that in messagésthrough i contactsr, who in turn contacts the key

28

k(,) k(r, s), k(r,r) k(@, s), k(r,)

i L] [L_s |

nonceni
ni,i
O
noncenr
ni,i,nr,r
]
generateir
{i, nr,Kirlke.g,
{ni, r, Kir s 0
noncenr’
{ni, r, Kirg,g), Nr',
0 (Tr, i, Kir J(e.r), {r, Nijkir
nr' i
O { }kll'
: secrekir i : secrekir i
|

Figure 4.5: Lowe modified KSL

servers to obtain shared secret keys. Here, however, nonces areageth@nd sent in
the first two messages, and neither of the first two messagesigpted. Further, the
serversdoes not deliver the encrypted shared secret keditectly, but rather sends it
tor in messagél, who forwards the encrypted key along with another frestcear’,
aticket(Tr, i, kir}ir), andi’s original nonce encrypted under the shared secret key to
Finally,i sends backr’ encrypted with the received shared secrethieyThe ticket in
messagé], is only used for the reauthentication protocol which weehamitted. It is
encrypted with the ke}(r, r) known only tor and contains a generalized time stamp,
Tr, made with respect to's local clock. The fact that the kel(r, r) is only known
tor prevents everybody butto tamper with the ticket or create such a ticket. In the
reauthentication protocolusesTr to check the validity of the ticket.

Until now, there have been no attacks known on this protolcofact, if our chosen-
name attacks are disregarded, then the secrecy claims pfdtacol can be shown to
be correct using, for instance, the Cremers-Mauw semaitids

To carry out a selected-name attack, as described in Figéy¢hé attacker waits fa

to initiate a session with ands. The adversary then creates an agent with the ame
which he observed in message This agent obtains a valid kégnb, s) and pretends
thatb has initiated a session with him by sending the messader{a, nb) to s. In
this message interpretsa as a nonce andb as a name and responds with a newly
generated ke¥(b, nb), for b andnb. Agentnb can decrypt the first part of the message
to learn the kek(b, nb). He then reverses the order of the two parts of the messabe an
forwards them tdo. Agentb decrypts(a, nb, k(b, nb)}ip,¢ and thinks thak(b, nb) is the
freshly generated key that he should use in his sessionawithe then forwards the
ticket{b, na, k(b, nb)}knp,¢ together with a newly created nonek to a. The adversary
intercepts this message and respond to it by encrypting dneemb’ with the key

29

k@ 9 k(b, 9), k(b, b) k(a,)., k(b, 9)

| a:i(ab,9) | | b:r(ab,9) | eve s
noncena
naa .
non@
o na a,nb b kb, 9)
a,b,na, nb

type confusion
noncenband namex
I

| generaté(b,nb) |

{b, na, k(b, Nb)}knb,s)»
{a, nb, k(b, Nb)}k(p.s)
o _k(_b,_np)_]
{a, nb, k(b, NB)}(p.5
. {b, na, k(b, nb)}nns)
noncenb/
{b, na, k(b, Nb)}k(nb,s), NB',
o {Th, &, k(b, nb)}kp.n), (b, NAkn.nt
o (N Yi(b,nby
secrek(b, nb) knowsk(b, nb)
|

Figure 4.6: Attack on Lowe modified KSL

k(b, nb) and impersonating.

4.1.3 Assigned-name attacks

So far we have considered the adversary’s ability to seleetnames of conspiring
agents. In some settings, however, the adversary mightleveble to assign names
to honest agents. One example would be a compromised namihgrity, another
possibly more realistic example, would be a compromised BK€rver. In the latter
scenario, a protocol which uses IP-addresses to identéptagcould be vulnerable to
an assigned-name attack.

Consider a variant of the Needham-Schroeder-Lowe (NSLtppod where the nonces
in the second message have been swapped as shown in[Figuiiénd.RSL protocol

is a mutual authentication protocol that has originallyrbsbown to be correct by
Lowe [28] and since then by several other authors as well. Sivapping of the two

nonces has no influence on the correctness of the protoaoldven conventional type
flaws are taken into consideration. For simplicity, we arsrieting ourselves to the
secrecy claims of the protocol.

30

Figure 4.8 demonstrates an assigned-name attack on the &Bintv An honest agent

b starts a conversation with a malicious ageneby sendinginb, b}pkeve. The adver-
sary then assigns the nanmd e) to another honest agent. This honest agent starts a
conversation withb and produces an encryption term of the fofmmbe (nb, €)} o).
The conversation between the two honest agents contindlest dime end of the proto-
col, (nb,e) andb agree on a secret valumbe The adversary takes the first message
of this conversation and inserts it into the running sesbmeerb andeve Agentb
receives this message and confuses the namme)(with noncenb and nameeveand
responds with the messag®bg peva Which enables the adversary to learn the value
nnbe Thus, the secrecy afnbeclaims of the honest agentst(€) andb are falsified

by this attack.

This attack can be modified to impersonkt® nb and invalidate both secrecy claims

of nbas follows. Whenrfb, €) sends out the first message of the protocol, the adversary
can block the communication between the agenibsd) andb and inject the message
{nnbe (nb, €)} k) into his run withb to learnnnbe He then picks a nonaee to con-
struct the messadee, nnbe b} pnbe). The adversary now knows both nonces and has
furthermore impersonatdwito nb. The security claims df are not invalidated though,
sinceb does not finish the protocol.

4.2 Related Work

The attacks we have described in this chapter belong to teesettion of two classes,
namely chosen-name attacks and type-flaw attacks.

Chosen-name attacks have been known and described irettatdite in various forms.

For instance, it is known that in public key infrastructueemalicious or sloppy cer-

tificate authority would make it possible for an attackerrtgpersonate any user by
registering under the user’'s name or a slight variation efubker’'s name. A particu-

lar instance of this attack, which is known as th@mographor unicodeattack [18],

is the registration of Internet domain names resemblind-krelwn domain names.

This attack became particularly popular when internatizad domain names became

pk(r)', sk() pk(i), sKr)

i | | r

|
nonceni

0 {ni’i}pk(r)
noncenr
nr, Ni, r} ok
0 { o }pk(i)
O pk(r)

<secre1ni, nr> <secrehi, nr>
* *

Figure 4.7: A variant of NSL

31

sKb), pk(eve skevg, pk(b) skbg

| b:i(b,eve | | eve: r(b, eve | b: r((nb,e),b)

noncenb

{nb, b} pk(eve

. _sk(nb. €)), pk(b)
assign nam

nb,e) : i((nb,e),b

noncennbe

=

{nnbe (nb, €)} pi)
————————— £
{nnbe (nb, €)} pip)
noncenb’

fype confusion

name (b, €) and 0 {nb’, nnbe b} pi(nbey)
nonce, name pair 0 {0} piny

{nnbg pieve

knowsnnbe : secrennbe: : secrehnbe:
|

Figure 4.8: Assigned-name attack

available, since, for instance, several Cyrillic charecége identical to Latin characters
allowing two distinct Internet domain names to have the sappearance.

A cryptographic impersonation attack, due to flawed keyifoeation schemes, has
been described by Lenstra and Yacobi [23]. In principlehsattacks can also be car-
ried out on identity-based encryption schemes if the peikaly generation algorithm
is weak. For instance, in Boneh and Franklin’s scheme, ia$y ¢o see that the possi-
bility of a chosen-name attack hinges on the quality of tlyptargraphic hash function
Hi [9, Section 4.1].

Another source of chosen-name attacks are man-in-thelenadthcks on authentica-
tion protocols. A malicious agent seeking access to a resauould wait for an honest
agent to initiate a vulnerable authentication protocol emisequently select the honest
agent’'s name to perform the attack. In fact, the attack infél@.2 is another example
of a chosen-name man-in-the-middle attack. The attackeosd#s and impersonates
the agenb to obtain access ta. Similarly, in relay attacks, for instance on protocols
running on radio frequency devices, a rogue device wouldidad the authentication
challenge it receives to any victim it can find in the vicinity

While all these attacks are well-known and have been extelysstudied, they are
different from the type-flaw attacks considered in this chagidher in that they are
not type-flaw attacks at all, or in that the chosen nanstdsc

Since the introduction of type flaws in security protocol lgss [10] various ap-
proaches have been used to detect and prevent type flaws9]la fagging scheme
is presented that prevents simple type flaws. Simple typesftagur when one vari-
able is unified with a complex term or a variable of anotheetyp

More complex type-flaw attacks are described in [31]. Thétseks emerge when tags
are confused with terms or when parts of a term are confusétdamother term. The

32

detection of complex type flaws is formalized in [31] 32,/ 28]. Research in this area
focuses on the transitions from abstract message speicifiégato concrete bit strings
and vice versa.

Some of the formal frameworks aiming at verification of sé@gyprotocols have in-
cluded the concept of simple type-flaw attacks in their mader instance [39, 2, 15].
We have investigated whether the tools based on these maodetely ProVerif [7],

Scyther [14], the constraints solver in prolog [33], and ther tools of the Avispa
project (CL-Atse[40], OFMCI[6], SATMC [3], TA4SP [8]), arebke to detect chosen-
name attacks. These tools cover most of the modern techiges in protocol veri-
fication, such as model checking, constraint solving, SéiVisg, and approximation.
Since all of the selected tools provide a specification of NIt protocol, only mi-

nor modifications were necessary to test the NSL variant guiiei 4.7. None of the
selected tools were able to detect the selected-name aackibed in Figure 4.8.

For Scyther and the Avispa tools it is easy to see why thelattaald not be found.
Scyther has a fixed domain out of which the names of agentsieitedd The reason
why none of the Avispa tools was able to find an attack is rdlat¢heir input language,
HLPSL. This language requires the user to define a set of etsmsessions under
consideration. This set typically only contains sessiogtsvben agents with normal
names. In order to find a chosen-name attack, one has to sesegsi@n where the
name of one of the agents is a concrete run term. Since thé sehorete run terms
is infinite, it is not possible to list all potential choseame attack scenarios. This
implies that for an Avispa tool using the HLPSL input langedg find a chosen-name
attack, the attack has to be known in advance. OFMC cannotfinden-name type-
flaw attacks, even in its native input language, due to anropémizing design choice
in its symbolic session generation algorithm §6,3].

We could not pinpoint the exact reason why the constraivesah prolog did not find

the assigned-name attack, as it seems that this formalig®s wlot require a special
domain for the names of honest agents. This formalism does\er limit the names

of the attacker, as a constant is used to represent his name, and thus precludes the
detection of selected-name attacks. In ProVerif the defeyplementation of NSL

uses the public key of an agent to identify the agent. Instéaending{na, nb, b} pks)

the second message is modeled{bg, nb, pk(b)}pka). Another way to model agent
names in ProVerif is via thbos{() function, but even in that case, the attack could not
be found.

Most formal models underlying tools for verification of setyprotocols can be ex-
tended to express chosen-name attacks. However, it wilhaogéssarily be easy to
extend the tools themselves. Especially tools that searclugh the state space of a
given finite scenario will face the problem of having to chmappropriate agent names
from an infinite domain.

4.3 Conclusion

In this chapter we have presented an intruder ability whiak awverlooked in common
interpretations of the Dolev—Yao threat model and we dernatesi how this ability
can be used to construct a special class of type-flaw attadkes.have identified a
structure related to this intruder ability and classifiegl tiewly found attacks.

33

We have shown that Lowe’s modified KSL protocol is vulnerabla selected-name
attack and that a mere reordering of two nonces renders teéhden-Schroeder-Lowe
protocol vulnerable to an assigned-name attack.

Type-flaw attacks on a protocol are intimately related toithplementation of the
protocol. The attacks presented in this chapter are infetjut as realistic as any
other type-flaw attack and therefore should be taken intowatcby those tools and
models which attempt to detect type flaws. Protocols vulsierto this new class of
attacks can be corrected like protocols vulnerable to fige-attacks by rearranging
fields in messages, by adding extra information in vulnerabéssages, such as was
for instance done in messagésand] of the fictitious key-establishment protocol in
Section 4.1.2, or by using tagging schemes such as thosegeojin [19]. A way to
prevent chosen-name type-flaw attacks in particular, igécipely define the agent’s
name space and enforce strict name checking.

This work shows that the common Dolev-Yao interpretationdscomplete with re-
spect to the requirement that the adverdaigs everything he cam order to learn a
certain message. For instance, in [13] it is shown that fromn attack on a secrecy
claim involvingn agents, an attack can be constructed which involves onlatyents,
assuming that agents may talk to themselves. The constnuetisentially maps all
dishonest agents to one agent and all honest agents to theagint. The attacks
introduced in this chapter indicate that the security of @tqguol can depend on the
names of the agents. It is possible to construct protocokrevan attack requires the
adversary to select several names for dishonest agentse Hgent can only have one
name, such an attack requires more than two agents. Thisghawthe results in [13]
do not hold under the present intruder model. It is concdévéliat there are other
subtle assumptions made in the common interpretation c\Bdao.

34

Chapter 5

Turing completeness of the
framework

Formal modes of security protocols are only of interestéfihotocols under inspection
can express properties of a real world protocol. In Chapieiszhown that this model
can express interesting properties, illustrated by ttecktbn the Needham Schroeder
protocol. Unfortunately the model has some limitationsardgng the real world pro-
tocols it can handle. Certain cryptographic protocols iegthe use of an equational
theory in their execution. Examples are protocols usindékelusive or” operator or
a Diffie—Hellman key negotiation [16]. The fie—Hellman protocol depends on the
property thag?® = gP2,

The formal model used throughout this thesis has no suppogduational theories,
therefore there is a need for simulating these theoriesreTée other security mod-
els which incorporate the concept of an equational thedoytimeir formal model, for

instance OFMCI/[5]. In this chapter it is shown that an agent parform any Tur-

ing computation which indicates that the framework can cefie any computable

equational theory.

Proving Turing completeness is a non-trivial task, sin@relis no looping or recur-
sion operator available in the role specification. Howether,set ofTracesof a given
protocol might contain a trace withexecutions of a certain role for any numiver

A Turing machine is an abstract computational device. Ther€@hTuring thesis as-
serts that anyféective computation done on an abstract computer modelRewgdom
access machines) can also be accomplished by a Turing red@@inp. 166]. We calll
a function# Turing computable if there is a Turing machine that compitteIhe
Church-Turing thesis asserts that all functions which aamipressed as an algorithm
in an abstract computational device are Turing computable.

We call an arbitrary algebra, language or machine Turingptete, if everything that
can be computed by a Turing machine can also be computed laygélera, language
or machine.

In this chapter we will try to answer the following question:

Is the presented framework Turing complete?

35

Turing completeness is usually discussed in the persgectia computational system
or a programming language. Its application to the field otisgc protocol analysis
gives rise to the following questions:

What part of the security framework is Turing complete?
What does Turing completeness mean with respect to secuoityqols?

Can we use the Turing completeness results to simulateiegabtheory?

The goal for the Turing completeness we discuss here is teeptat honest agents
are Turing complete. If we are able to construct a proof fa thct, we can conclude

that any computation done by a Turing machine can be done lagamnt. This agent

must be able to execute the computation by itself, withaigrfarence of an adversary
or another honest agent.

The Turing completeness of an agent should not be confugadivei Turing complete-
ness of the adversary as used in cryptography. In cryptbgraystems are proven
correct under assumption that the intruder is an arbitranng machine; we assume
perfect encryption, and thus limit the intruder in such a wet he can only decrypt a
term when he knows the correct key.

We prove our framework Turing complete by showing that thegeway to map com-
putational steps done by a Turing machine to related stejpeiframework.

In Section 5.1 a Turing machine is described, Section 5.héefa mapping from
Turing machines to protocols and roles. The exact proofgatibn and a proof of
correctness is given in 5.3, an example of the entire proi€eggen in section 5.4.
Section 5.6 describes the work related to the simulatiorhefDiffie—Hellman key
exchange.

5.1 Turing machine

The Turing machine described below is based upon the Turiaghime described in
[20, p. 149].

A single-tape Turing machine is formally defined as the tugdle- (Q,%,B, ,gF)
where:

Q denotes a set of states
I" denotes the set of tape symbols
Bis ablank symbqglB e T'
¥ is a subset of denoting the set of input symbols
denotes thaext movdransition function. :Q X—-Q X {LR}.
g € Qs the initial state

F Qisthe set of final states of the Turing machine

36

The computational stat€ : X Q X of a Turing machine is defined & =
(1.0, 2), where:

g € Q denotes the active state
1 €T is alist of elements on the left side of the reading head

2 €I isalist of element on the right side of the reading head. Teedlement
of ,isthe element under inspection of the reading head.

If ,is a single symbol then the will be extended with a blank symbol.

We define the move function of Turing machine TM as followst Xg X;.... X, 0, Xi+1,Xn
be a computational state.

Suppose that (g, ¥ = (p,Y,R) andi = n+ 1 thenX; = B; this expresses the infinity
of the tape on the right hand side. If(g,¥ = (p,Y,L) andi = 1 then there is no
succeeding computational step. Thus the tape is limitetheteft. ifi > 1 then

X1, Xo.... % },q,Xi,XHl....Xn F Xq, Xo.. X gp,Xi 1Y, Xie1, ... Xn (51)

Alternatively if (g, ¥ = (p, Y, R) then
X1, X0... X 3 g, Xi, Xigg.o. Xn F X1, Xo0... % 1Y, P, Xiz1, Xiz2, ... Xn (52)
In case that = n + 1 thenX, 1 is taken to beB.

The symbol denotes the repeated (0 or more) application of the movdibtmdvore
formally:

Definition 5.1.1. C+C' ©C=C' VC+C1+Co+..C i+ C

whereC; denotes the computational state of a Turing machine asteps.

Furthermore we define the sty = (,§w) as the initial state when the Turing
machine starts with wort € £ on the tape. The accepted language for a Turing
machineT M, denoted byL(T M), is the set of all wordsv € X that let the Turing
machine enter a final state.

Definition 5.1.2. Let T M be a Turing machine, TM (Q,T',B,%, ,gF)
L(TM)=wweX ,peF, 1, 2€X 10WF+ 1P 2}

At the moment a final step is reached, the Turing machine.hEtttsre is no next move
from a final state to another state. If a word is not acceptidpbssible that a Turing
machine never halts.

One can use a Turing machine to calculate a function by defthiem machine in such a
way that the value on the tape in a final position is a reprasentof the output values
of the function.

37

5.2 Transformation and mapping

To prove Turing completeness of the security framework, setwo functions:

a function which relates the computational state of a Turing machin®i®
terms in the intruder knowledge.

a functionA taking a Turing machine as input and producing a relatecbpobt
specification.

Our aim is to prove that

Theorem 5.2.1. For the mapping®, and any computational state C

CorCed _, eraamy (©C)ei

If we can find the functiona and then the security framework can be used to simulate
the execution of a computation by checking for @lle F whether there is a trace

= 1.. pSuUchthat @,q, 2) € M,. Checking whether a certain role term occurs in
the intruder knowledge can easily be done using the alreadtirey secrecy claim.

The interpretation of a computational state of a Turing nraedefined by the function
is described in sectios.2.1. Section 5.2.2 defines thegumiachine transformation
A.

5.2.1 State interpretation

The aim of the function is to relate a computational state to a role termcaRehat
the goal of the simulation is that any ageéhtan perform the execution of a Turing
machine. Assume that each agénhas a symmetric encryption ké§(A) which he
does not share with anybody else.

Definition 5.2.1. LetC=(1,09, 2) be a computational step of a Turing machine TM.
The state interpretation function : ¥ Q X— RoleTerm is defined by

€ 2)={,%% k®

where | denotes the reverse-ordered list gf and g, is a global constant represent-
ing the state q.

5.2.2 Turing machine Transformation

In this section a constructive definition afis given. We will useA(T M) to denote
the transformation of the Turing machifieM to the related protocol. We will usg
to denote a stateX, Y as arbitrary length tuples of role terms axdndy to denote a
single variable.

The intuition behind our Turing machine simulation is th& use roles to model state
transitions; these roles read a valu€ and construct iCC + C’.

38

For eacly € Q a global constargis created.
For eacha € X a global constangis created.

For each elemeng(a) € Q X in the domain of , with indexi , a roleéR
constructed as follows:

—if (g,a) =(ga,L)then

Turing(R) = creatg(R) reafR, R, {(x, X),dq, (Fa Y)IkR))
Sen@(Ri, Ri’ {(X)’ gq', (X’ Oa > Y)’}K(R))

—if (g,a) = (gQa,R)then

TuringR) = creata(R) rea(R, R, (X, q, (@ Y)kr))
send(R,R.{(@, X),q. YHk®))

By the fact that the Turing machine is deterministic it isderit that only one of
these roles can be constructed for a given tugla)(

Construct one role which models the infinity of the tape:

Turing(Rns) = creatg(Rns) rea@Rns, Rinf, (X, 9g, VikRar))
send(Rinf, Rinf, {X, 9g. (Y. 98) K (Rnr)

We construct a special role for the start and terminatidryle ww,..w,, be the
list of elements of the initial word of the Turing machine exton; we define

Ow = (Gw,> W2, ..., Ow,)
Turing(Rnit) = creatg(Rnit) seBRinit, Rinit» {B, 9g0» Gtk (Rue))
readZ(Rinit» Rinit» {X’ gq, Y}K(Rjnn))

and for each statg; € F a claim is constructed:
claim(Rinit, secret{X, d;» Y}k (Rao))

We useA(T M) to denote the protocd?(Riit, Rint, Ry, ...RN)

5.3 Proof of correctness

The functionsA and defined above should fulfill the requirement stated in theore
5.2.1; we prove this theorem in 2 directions.

Lemma 5.3.1. For any honest agent A, computation state C, and trace Tr(A(T M))
(C) e M= Finas = send(A, A, (C))

Proof. Observe that none of the roles constructed\fly M) uses the kek as message

content, as a consequence the adversary will not be ablaro tiee key of an honest

agent. The adversary is not able to construct a ter(@) himself, thus this term must
have been sent by agetat an eveny. O

39

Theorem 5.3.1.For the mapping4a, , any computational state C and any honest agent
Ay

q - emaamy C)eNM=>CorC

Proof. Let e Tr(A(T M)) be a trace of length such that (C) e M

We use induction on the number of send events in the tracand letj(k) to denote the
position of thekth send event in the trace.

The induction hypothesis is:

IH: Yk ik = senc(A, A, (C)) =>g-C

base: i) =send(A,A, (C)) = &+ C;

j(y denotes the first send event of the trace. There is only oeewbich does not
start with a read event. By construction of the roles, ité&aclthat these read events are
not enabled wheM = Mg. The only role which can add anythingkbis the roleRiyj; -
Rnit sends out aterrp 1o 2lkaa) Which is exactly (C), whereC = (, o, »); this

C is the initial configuratiorCy of the Turing machine; by definition ef Co + Co.

Step: Assume the induction hypothesis holds for lalk k’. We have to show that
iy =send(A,A, (C)=&-C

If) is not related to the protoc®,; then by construction of the roles, the send

eventk’ is preceded by a read event, reading a valu§. By the fact that this send

event occurs we are certain that there is an indiex j(k’) such that ; is the read event

preceding the send event. The fact that thi®ccurs implies that the read event was
enabled, thus that (§ € M, . Combining this fact with lemma 5.3.1, the injectivity

of , and the induction hypothesis implies ti§at C’. By construction of the roles,
it is clear that a role can only exist if there is a transitian i such thaiC+ C; thus

Cot+ C. O

Theorem 5.3.2.For the mapping4a, , any computational state C and any honest agent
A1

CorC=3 -, etacrmy (C)eM

Proof. Let A denote an honest agent, &tbe a computational state such tkat- C’.
By definition of+ we obtain thaCy + C; + Co + ...Ch + C’

The remainder of the proof will use induction based upon #reyth of this list of
computations, using the following induction hypothesis:

IH:Vie;Co+Ci =3 _, erarmy (T e M.

Base:There is a trace which start with a create event of Rylg followed by the send
event of this role. This send event sends{ogtl, 2, Oolk(aa) Which is exactly (€

Step:letCo + C1 + Cy +Cj 1+ Cj be a Turing computation and let be a trace of
lengthnwhith (€)e M

LetCj 1=(1,0, 2) and assumethab = . The factthap = implies thab in
computational stat€; ,contained exactly 1 element. The rd&gr was thus enabled

40

in computational stat€; 2 There is a trace in which the events of the rgjg occur
after send event sending out(C 3. The events oR,+ only add a blank to the end of

» thus a read event reading (g 3 is still enabled and will produce (€) but now

> =B. Thusif » = then there is a trace in which tlfnlel, Og- Blk(a) Occurs, thus,
in the role related t&€; 3+ C; the read event is enabled. Therefore we can extend the
trace with the events of this role such tha{ € M,,.

If 5 # then we know by construction of the roles that there is a Rolehich reads
(£ 2 andsends (3. The trace is extended with the events from the réte The

induction hypothesis ensures that the read event of theRateenabled. The send

event of the rolR produces a term ({J, thus (J € M. o

5.4 Example

As an example Turing machine we use a very simple machinetwdgcides whether
an inputstring is in the regular expressiondh £ = {1, 0, B}; this Turing machine is
defined in figuré 5.1. The input for the example is the strinty’;'Which clearly is an

element of the language.

@ B/B.R @

1/B,R

Figure 5.1: a simple Turing machine

If we apply the translation of a Turing machine to this prafowe end up with the
protocol as described in appendix A

When evaluating this protocol Scyther immediately retuhas the secrecy claim fails,
thus there is a final state that is not secret; the Turing machas terminated in that
state. In figure 5.2 the trace which invalidates the secagtitim is shown, each run of
a role relates to a transition, and the value of the tape iritiaé state can be seen in
the claim event block. When running this protocol with an inghat is not accepted
by the Turing machine (e.g. "101”) the secrecy claim will lzdidg.

5.5 Which part of the framework is Turing Complete

In the introduction of this chapter it was claimed that anpést agent should be able
to perform a Turing computation by itself. It might seem ttias requirement is not
fulfilled since the intruder forwards the output of a run gsuinof another run.

If we would verify a Turing simulation in a setting with a eadeopping adversary
then the network would still act as afer. In such a setting it would be possible for

41

k(2) k(2) k(a) k(@) k(@) k(2)
a: Rinit, a:Ri, a: Rinf, a:Ril, a: Rinf, a:R2,
runfl rung2 rung3 rung4 rungs rungé

B’ w’ (1’ 1)}k(a)

(B, B), 0, Ljka
{ B’ B)’ i), 17 B}kla)
(B. B, B), S0, Bl

—_——

{(B,B, B), 0, (B, B

Yk@)

{(E, B$ B’ B)7 Sl’ B k(a)

secret(X, sl, Y}ka

Figure 5.2: The trace invalidating the security claim

the agent to execute the Turing computation. Thus the ietriglnot needed for a
computation.

5.6 Simulation of equational theories

In the previous sections it is shown that an honest agentrisguaomplete. This result
is a first step towards the use of simulation of mathematicgbgrties who cannot be
expressed directly in the formal model.

In this section a first step is made in the simulation of th@&®tHellman key exchange
protocol [16]. This protocol cannot be implemented in therfal model in a straight-
forward manner since it requires mathematical properitesassociativity ¢2° = g°?).
The previously achieved Turing completeness result essusehat this property can
be expressed in the formal model.

As a starting point a list of basic requirements for théiBiHellman simulation was
constructed:

The key exchange protocol must work without interferencehefadversary

There should be a relation between terms in the simulation and terms of the

execution of the Otie-Hellman key exchange protocol

No agent should be able to perform the decryption in the strar which he
could not do in a real Diie-Hellman execution

42

The simulation should be reasonabffigent

These requirements express only some vital parts of theepbio¢ simulation and this
list is far from complete.

In Figure/ 5.3 one of the simulation attempts is illustratdthe idea underlying the
protocol used in the simulation of Figure 5.3 is the intrathreof a special ageri¥,

the number theory agent, which executes all computatioing tise rolesN1 andN2.

An exponentiation is expressed by the encryption with theké€n). To ensure the as-
sociativity requirement of Diie-Hellman, agents do not compute the new key directly,
instead they send out an intermediate result to the numbkeryragent. This number
theory agent can execute either rtd@ or N2 and in one of the roles the argument
order is swapped. Thus there is always a trace where bothshagents receive the
same term. The environment of this protocol ensures thgttbielimaginary agen\l

can obtainpk(n) and thus the third requirement is not violated.

msc

k(a, n), k(b, n), sk(n) k(a,n) k(a,n) k(a, n), k(b, n), skin)
N1 A | B | | N2
nonceZaI
{na}pk(n)
nonceEI

(b} pkry

{{na, {Nb} piry } piery ey {{{na} pi(n)> N0} pigr) oy

{{na} pi(r)> NB} iy gy {{{na} picry» N} piry Yoy

secret secret
{{natpir), Nl pig {{na} piqry, N pig
]]]]

Figure 5.3: A trace of a Diie—Hellman simulating protocol

Unfortunately it turned out that additional theory needbéaaleveloped with respect to
simulating an equational theory from a security perspect®ne of the major problems
encountered in this research direction was the questiond®ean exclude mathemat-
ical properties of a real execution in the simulation. Th&BiHellman key exchange
is usually executed in a commutative group setting, shcwedetfore all properties of
such a group be modelled, or only the equation relevant fhieBHellman? If not
all properties are necessary, how can we prove that the giepenodelled should be
considered in the execution of fie—Hellman? A typical example of a property not
included in the execution illustrated in figure 5.3 is thegeny thatg?®® = g°*2which
expresses that the adversary can exponentiate both pubfipanents with a terra

43

and both honest agent will still compute the same value ferkity. Although this
property cannot be used to breakiiii-Hellman directly it might be that the attained
term can be used by the adversary to attack another protacol r

Research in this area is still ongoing; as illustrated in Ehfiie—Hellman example
there are interesting challenges ahead and future resedggbilead to new insights in
mixing the black-box cryptography assumption with certaal world mathematical
properties of cryptographic schemes.

44

Chapter 6

Conclusions

In this thesis the research done in the area of formal arsabfssecurity protocols is
described. The research is focussed around the concepiroptesitionality”. Various
directions are taken aiming at improving existing theaadtresults.

An important component of the theory regarding compos#iiby are the exact con-
straints on the security protocols. Some of the strict nespients needed in the existing
compositionality framework can be removed by the applocabdf unification theory
The unification theory relaxed the requirements on the #gquiotocols but it turned
out that this was not sficient to use the framework successfully in all cases. Re-
search in the area of message encoding and the relationdretdstract and concrete
message specifications resulted in the concepindfcation preserving abstractions
The results achieved in this area enable a broader applicafithe compositionality
framework.

Another research direction considered the expressive pafitiee security protocols in
the formal model. Equational theories are not supportedieydrmal model although
they are of interest for numerous cryptographic appliceid heTuring completeness
proof shows that theoretically there is no need to extendidhmal model with an

equational theory. Besides the Turing completeness amptts made to model a
protocol which simulates the Bie—Hellman protocol.

Alongside the research related to compositionality anfieation it emerged that there
was a subtle assumption in the common interpretation of\Bdao. Research in this
area led to the discovery oime attackghese attacks illustrate that verification results
might be incorrect in certain environments. The work in diigction illustrates that
there are minor dierences between the scientific attacker models and an attack
the real world.

6.1 Contributions

Improved definition of “strong independence” by introdwimification theory

Introduced “unification preserving abstraction” which bles remodelling of
security protocols with improved compositionality protes

45

Detected a subtle missing intruder ability in the commonewelao interpreta-
tion

Constructed attacks related to the newly discovered ietralility and classified
these attacks

Proved Turing completeness of security protocols in thenedrmodel, this is a
first step towards simulation of equational theoryf{iei-Hellman)

The research related to the missing intruder ability, thatee attacks and the attack
classification have been published/in[[12].

6.2 Future work

Research hidden assumptions in formal modétsChaptéd a subtle hidden
assumption is pointed out which is overseen in various fommadels for se-
curity protocol evaluation. Future research in this dim@timight lead to new
insights in formal attacker models, assumptions on prdteogironments and
the interpretation of protocol verification results.

Improve formal model and tool such that chosen name attaahde detected:
The name attacks introduced in this thesis were found by hawstive search
of existing security protocols. Adjusting current modetsl #ools such that they
can cope with these attacks requires additional reseatimaght even require
a completely dierent strategy for formal security protocol analysis.

Research theory related to simulatiom this thesis it is shown that an agent
can perform an arbitrary computation. Additional theorynéeded on how to
relate a real world cryptographic application to a protagoiulating parts of the
behaviour of this application.

46

Appendix A

Protocol constructed for Turing
completeness example

Turing machine example
usertype Symbol;

usertype state;

secret const K : Function;

protocol Turing(R1,R2,Rinit, Rinfl, Rinf2)
{

const B: Symbol;

const 0: Symbol;

const 1: Symbol;

const s0®,sl: state;

#the initializing role
role Rinit
{
var X, Y:Ticket;
var Q:state;
send_Ril(Rinit,Rinit, {B,(1,1),s0}K(Rinit,Rinit));
read_!Ri2(Rinit,Rinit, {X,Y,Q}K(Rinit,Rinit));
claim_Ri3(Rinit, Secret, {X,Y,s1}K(Rinit,Rinit));
}

The roles for the transformations
role R1

{
var X, Y:Ticket;
read_'R11(R1,R1,{X,(1,Y),s0}K(R1,R1));
send_R12(R1,R1,{(B,X),Y,s0}K(R1,R1));
}

role R2

47

{
var X, Y:Ticket;
read_!R21(R2,R2,{X,(B,Y),s0}K(R2,R2));
send_R22(R2,R2,{(B,X),Y,s1}K(R2,R2));
}

the roles for the infinity of the tape
role Rinfl
{
var x: Symbol;
var Y:Ticket;
var Q:state;
read_!infl11(Rinfl,Rinfl, {x,Y,Q}K(Rinfl,Rinfl));
send_infl12(Rinfl,Rinfl,{(x,B),Y,Q}K(Rinfl,Rinfl));
}

role Rinf2

{
var y: Symbol;
var X:Ticket;
var Q:state;
read_!inf21(Rinf2,Rinf2,{X,y,Q}K(Rinf2,Rinf2));
send_inf22 (Rinf2,Rinf2, {X, (y,B),Q}K(Rinf2,Rinf2));

¥

const Alice, Bob, Eve: Agent;
untrusted Eve;

48

Bibliography

[1]

S. Andova, C.J.F. Cremers, K. Gjgsteen, S. Mauw, S.F. Idgs, and
S. RadomiroM. A framework for compositional verification of securityopr
tocols. Information and Computatiqr2007. To appear.

[2] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Cpagna,

S. Modersheim, M. Rusinowitch, M. Turuani, L. Vigapand L. Vigneron. The
AVISS Security Protocol Analysis TooRProceedings of CA2:349-354, 2002.

[3] A. Armando and L. Compagna. An Optimized Intruder Modet SAT-based

[4]

(5]

[6]

[7]

Model-Checking of Security ProtocolBroc. of ARSPA2004, 2004.

F. Baader and W. Snyder. Unification theory. In A. Robmsmd A. Voronkov,
editors,Handbook of Automated Reasoninglume |, chapter 8, pages 445-532.
Elsevier Science, 2001.

D. Basin, S. Mddersheim, and L. Vigan An On-The-Fly Model-Checker for Se-
curity Protocol Analysis. IfProceedings of ESORICBages 253—-270. Springer,
2003.

D. Basin, S. Mddersheim, and L. Vigan OFMC: A symbolic model checker for
security protocolsinternational Journal of Information Security(3):181-208,
2005.

Bruno Blanchet. An Hicient Cryptographic Protocol Verifier Based on Pro-
log Rules. Inl4th IEEE Computer Security Foundations Workshop (CSFW-14
pages 82-96, Cape Breton, Nova Scotia, Canada, June 2(0&E. C&mputer
Society.

[8] Y. Boichut, P.-C. Htam, O. Kouchnarenko, and F. Oehl. Improvements on the

(9]

[10]

[11]

Genet and Klay technique to automatically verify securitgtpcols. InProc.
Int. Ws. on Automated Verification of Infinite-State Syst@$S’2004), joint to
ETAPS’'04 pages 1-11, Barcelona, Spain, April 2004.

Dan Boneh and Matt Franklin. Identity-based encrypfiiamm the Weil pairing.
Lecture Notes in Computer Scien@439:213-229, 2001.

C. Boyd. Hidden assumptions in cryptographic protecGlomputers and Digital
Techniques, IEE Proceeding4-37(6):433-436, 1990.

M. Burrows, M. Abadi, and R. Needham. A logic of autheation. InPracti-
cal Cryptography for Data Internetwork$EEE Computer Society Press, 1996.

49

Reprinted from the Proceedings of the Royal Society, vold@& number 1871,
1989.

[12] P. Ceelen, S. Mauw, and S. Radomi@viChosen-name attacks: An overlooked
class of type-flaw attacks. IAroceedings of the 3rd International Workshop on
Security and Trust Managemei appear in ENTCS. Elsevier, 2007.

[13] H. Comon-Lundh and V. Cortier. Security propertiesotagents are sficient.
Science of Computer Programmirig(1-3):51-71, 2004.

[14] Cas Cremers.Scyther, Semantics and Verification of Security ProtocétsD
thesis, Technische Universiteit Eindhoven, 2006.

[15] C.J.F. Cremers and S. Mauw. Operational semantics cfirig protocols.
In S. Leue and T.J. Syt editors,Scenarios: Models, Algorithms and Tools
(Dagstuhl 03371 post-seminar proceedings, September,720@3) volume
3466 ofLNCS pages 66—89, 2005.

[16] W. Diffie and M. Hellman. New directions in cryptographgformation Theory,
IEEE Transactions or22(6):644—654, 1976.

[17] D. Dolev and A.C. Yao. On the security of public key protts. IEEE Transac-
tions on Information TheoryT-29(12):198—-208, March 1983.

[18] Evgeniy Gabrilovich and Alex Gontmakher. The homodratack. Commun.
ACM, 45(2):128, 2002.

[19] James Heather, Gavin Lowe, and Steve Schneider. Howeeept type flaw
attacks on security protocol§. Comput. Secyrl1(2):217-244, 2003.

[20] J.E. Hopcroft and J.D. Ullman. Introduction to Automatheory. Languages,
and Computation. Addison-Weslé@79.

[21] X.ITU-T. 690: ITU-T Recommendation X. 690 (1997) Infoation technology-
ASN. 1 encoding rules: Specification of Basic Encoding R(iBsR),Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DE®anonical
Encoding Rules (CER) and Distinguished Encoding Rules {DER

[22] Axel Kehne, dirgen Scbhnwalder, and Horst Langeider. A nonce-based proto-
col for multiple authentication®perating Systems Revig26(4):84—-89, 1992.

[23] Arjen K. Lenstra and Yacov Yacobi. User impersonatiankey certification
schemesJ. Cryptology 6(4):225-232, 1993.

[24] Benjamin W. Long. Formal verification of type flaw attack security proto-
cols. INAPSEC '03: Proceedings of the Tenth Asia-Pacific Softwagiri&ering
Conference Software Engineering Conferemage 415, Washington, DC, USA,
2003. IEEE Computer Society.

[25] B.W. Long, C.J. Fidge, and D.A. Carrington. Cross-layerification of type
flaw attacks on security protocols. In G. Dobbie, ediRmceedings of the 30th
Australasian Computer Science Conference (ACSC 2@@ges 171-180, 2007.

[26] G. Lowe. An Attack on the Needham-Schroeder Public-Kethentication Pro-
tocol. Information Processing Letter56(3):131-133, 1995.

50

[27] G.Lowe. Some new attacks upon security protodetsceedings of the 9th IEEE
Computer Security Foundations Workshppges 162—-169, 1996.

[28] Gavin Lowe. Breaking and fixing the Needham-Schroedddlip-key protocol
using FDR. InProceedings of TACASolume 1055, pages 147-166. Springer
Verlag, 1996.

[29] LSV, ENS Cachan. Security Protocols Open Repository.
http://www.lsv.ens-cachan. fr/spore.

[30] Alberto Martelli and Ugo Montanari. Anficient unification algorithm.ACM
Trans. Program. Lang. Sys#(2):258-282, 1982.

[31] C. Meadows. Identifying potential type confusion irtlaenticated messages. In
Proceedings of Foundations of Computer Secu602.

[32] C. Meadows. A procedure for verifying security agaitygie confusion attacks.
In 16th IEEE Computer Security Foundations Workshop (CSF\2B03) pages
62-72, 2003.

[33] J. Millen and V. Shmatikov. Constraint solving for baled-process crypto-
graphic protocol analysisProceedings of the 8th ACM conference on Computer
and Communications Securjtyages 166—175, 2001.

[34] Roger M. Needham and Michael D. Schroeder. Using erimygor authentica-
tion in large networks of computer€ommun. ACM21(12):993-999, 1978.

[35] B.C. Neuman and T. Ts'o. Kerberos: an authenticatiowise for computer
networks.IEEE Communications Magazing2(9):33—-38, 1994.

[36] IEEE 802.16 Working Group on Broadband Wireless Accdege standard for
local and metropolitan area networks, part 16: Air integféar fixed broadband
wireless access systems, 2004.

[37] M. S. Paterson and M. N. Wegman. Linear unificationSTrOC '76: Proceedings
of the eighth annual ACM symposium on Theory of compupages 181-186,
New York, NY, USA, 1976. ACM Press.

[38] C. Rinderknecht. Proving a Soundness Property for tfiret Design of ASN. |
and the Basic Encoding RuleSystem Analysis And Modeling: 4th International
SDL and MSC Workshop, SAM 2004, Ottawa, Canada, June 1-4; FRyised
Selected Paper2005.

[39] F.J. Thayer Bbrega, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is
a security protocol correct? IRroc. 1998 IEEE Symposium on Security and
Privacy, pages 66—77, Oakland, California, 1998.

[40] M. Turuani. The CL-Atse Protocol Analysef.7th international conference on
term rewriting and applications-rtgpages 277—-286, 2006.

51

http://www.lsv.ens-cachan.fr/spore

	Preface
	Introduction
	Formal model
	Overview
	Protocol specification
	Role terms
	Role events
	Protocols

	Protocol execution
	Security Properties
	Example

	Improving Independence Properties
	Current definitions
	Independence
	Strong independence

	Improving strong independence
	Unification
	Unification algorithm
	Application of unification

	Improving independence using message encoding
	Concrete message specification
	Cryptography
	Message encoding

	Conclusions

	Unification & Name attacks
	Chosen-name attacks
	Preliminaries
	Selected-name attacks
	Assigned-name attacks

	Related Work
	Conclusion

	Turing completeness of the framework
	Turing machine
	Transformation and mapping
	State interpretation
	Turing machine Transformation

	Proof of correctness
	Example
	Which part of the framework is Turing Complete
	Simulation of equational theories

	Conclusions
	Contributions
	Future work

	Protocol constructed for Turing completeness example

