
 Eindhoven University of Technology

MASTER

Algorithms for flow maps

van de Ven, B.M.F.J.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c3a8e9e0-2ba1-4c2f-8d52-7e8c5ada7c66

Supervisor

Dr. B. Speckmann

Eindhoven, December 17, 2007

Master’s Thesis

Algorithms for flow maps

by

B.M.F.J. van de Ven

technische universiteit eindhoven

Department of Mathematics and Computer Science

Abstract

Flow maps are a specific type of map used to depict interaction or movement between regions
(e.g. migration of people, goods, etc.). Each flow representing such a movement is visualized
by an edge with thickness corresponding to the value of the flow connecting the associated pair
of interacting regions. In this thesis we explore algorithms to draw flow maps by automated
means depending on aesthetic criteria such as vertex-edge distance and angular resolution. We
show that optimizing these maps only for vertex-edge distance is NP -hard already, and therefore
explore heuristics which can generate good flow maps in general.

i

Contents

Abstract i

Acknowledgements ix

1 Introduction 1

1.1 Thematic maps types . 2

1.2 Overlay and variations . 2

1.3 History of flow mapping . 5

1.4 Flow mapping with computer assistance . 5

1.5 Related studies . 6

1.6 Thesis overview . 7

2 Quality criteria for flow maps 9

2.1 Clear and concise base map . 9

2.2 Suitable data set to visualize . 10

2.3 Proper depiction of the data . 10

2.4 Edge ordering . 11

2.5 Minimizing overlap with critical features . 12

2.6 Vertex positioning . 14

2.7 Overview . 14

3 Complexity analysis 17

3.1 Formalization . 17

3.2 Lower envelopes . 18

3.3 Davenport-Schinzel sequences . 19

3.4 Vertex-edge distance optimization of a single vertex 20

3.5 Vertex-edge distance optimization of n vertices 23

3.6 Overview . 25

4 Algorithmic approach 27

4.1 Introduction . 27

4.2 Related research . 28

4.3 Force-directed approach . 29

4.3.1 Cooling schedule . 30

4.3.2 Region boundary clipping . 31

4.3.3 Force computation . 31

4.3.4 Termination requirement . 34

4.4 Computation of the region boundaries . 34

4.5 Edge visualization . 36

4.6 Algorithm overview . 37

iii

5 Test and results 39

5.1 First test case: Flow map of the Netherlands . 40
5.1.1 Initial map . 41
5.1.2 VE distance (C) . 42
5.1.3 VE distance and angular resolution (C) 43
5.1.4 VE distance, angular resolution and critical features (C) 44
5.1.5 VE distance (S) . 45
5.1.6 VE distance and angular resolution (S) 46
5.1.7 VE distance, angular resolution and critical features (S) 47
5.1.8 VE distance (P) . 48
5.1.9 VE distance and angular resolution (P) 49
5.1.10 VE distance, angular resolution and critical features (P) 50

5.2 Second test case: Flow map of the USA . 51
5.2.1 Initial map . 52
5.2.2 VE distance (C) . 53
5.2.3 VE distance and angular resolution (C) 54
5.2.4 VE distance, angular resolution and critical features (C) 55
5.2.5 VE distance (S) . 56
5.2.6 VE distance and angular resolution (S) 57
5.2.7 VE distance, angular resolution and critical features (S) 58
5.2.8 VE distance (P) . 59
5.2.9 VE distance and angular resolution (P) 60
5.2.10 VE distance, angular resolution and critical features (P) 62

5.3 Comparison to Tobler’s flow map . 63
5.3.1 VE distance, Angular Resolution and Critical Features (P) 63

5.4 Discussion . 65
5.4.1 Metrics . 65
5.4.2 Visual appearance . 66
5.4.3 Comparison to Tobler’s mapper . 67

6 Conclusions 69

A Dutch flow map test set input table 71

B US flow map test set input table 73

C Tobler’s map test set input 75

List of Figures

1.1 Geographic and Thematic maps. 1

1.2 A thematic choropleth map. 2

1.3 Four distinct types of thematic maps with overlay. 4

1.4 Flow map on the exportation of red wine by Minard. 5

1.5 Different types of flow map generation by computer. 6

2.1 A completely connected flow map. 10

2.2 The five classes for edge thickness. 11

2.3 Several candidate variations for bidirectional edges. 11

2.4 Six methods of flow map edge visualization. 13

3.1 Example of vertex-edge distance optimization with square regions. 17

3.2 Example 2D Lower Envelope of 3 functions. 18

3.3 Maximum complexity example. 20

3.4 Complexity for Vertex-Edge distance setting. 21

3.5 Sweep-line algorithm for vertex-edge distance optimization. 22

3.6 Counter example to the argument of using straight line segments. 22

4.1 Example map showing region boundaries. 27

4.2 Two types of boundary clipping. 31

4.3 Optimization of angular resolution. 32

4.4 Improvement for angular resolution metric. 33

4.5 The largest inscribed circle of a simple polygon. 35

4.6 Sample of circular regions for the 48 continental US states. 36

4.7 Splitting the edge and raising the head of the edge. 37

4.8 Example of edge weaving. 37

4.9 Pseudo-code listing for the implementation of our flow mapper. 38

5.1 Initial lay-out. 41

5.2 Figure 5.1 optimized for VE-distance (C). 42

5.3 Figure 5.1 optimized for VE-distance and angular resolution (C). 43

5.4 Figure 5.1 optimized for VE-distance, angular resolution and critical features (C). 44

5.5 Figure 5.1 optimized for VE-distance (S). 45

5.6 Figure 5.1 optimized for VE-distance and angular resolution (S). 46

5.7 Figure 5.1 optimized for VE-distance, angular resolution and critical features (S). 47

5.8 Figure 5.1 optimized for VE-distance (P). 48

5.9 Figure 5.1 optimized for VE-distance and angular resolution (P). 49

5.10 Figure 5.1 optimized for VE-distance, angular resolution and critical features (P). 50

5.11 Initial flow map lay-out. 52

5.12 Figure 5.11 optimized for VE-distance (C). 53

5.13 Figure 5.11 optimized for VE-distance and angular resolution (C). 54

5.14 Figure 5.11 optimized for VE-distance, angular resolution and critical features (C). 55

v

5.15 Figure 5.11 optimized for VE-distance (S). 56
5.16 Figure 5.11 optimized for VE-distance and angular resolution (S). 57
5.17 Figure 5.11 optimized for VE-distance, angular resolution and critical features (S). 58
5.18 Figure 5.11 optimized for VE-distance (P). 59
5.19 Figure 5.11 optimized for VE-distance and angular resolution(P). 60
5.20 Figure 5.11 optimized for VE-distance, angular resolution and critical features (P). 62
5.21 Movement of 1 USD bank notes between the 12 Federal Bank Reserve districts. . 63
5.22 Data set from Table C.1 mapped by Tobler’s flow mapper [29]. 64
5.23 Data set from Table C.1 mapped by our implementation. 64

List of Tables

3.1 Overview of complexity for various settings for vertex-edge distance optimization 25

5.1 Metric comparison table test set 1. 66
5.2 Metric comparison table test set 2. 67

A.1 Migration of people in the Netherlands in 1996. 71

B.1 Movement of 1 USD bank notes between the states of America. 73

C.1 Movement of 1 USD bank notes between Federal bank districts. 75

vii

Acknowledgements

I would like to acknowledge and thank my graduation supervisor Bettina Speckmann for all
the comments, ideas, discussions and critical reviews that helped to improve this thesis. Fur-
thermore I wish to express my gratitude to Jack van Wijk and Alexander Wolff for being in
my examination committee. I would also like to thank my officemates for their additional help
Joost, Chantal, Dennis, Remko, Ludo and Arjan. Lastly, I’d also like to thank my friends and
my family.

Bas van de Ven

Eindhoven
December 17, 2007

ix

Chapter 1

Introduction

In the field of cartography maps are generated to depict specific characteristics of spatial or
geographical data about certain regions visually. A clear distinction can be made between two
types of maps, namely: geographic maps and thematic maps. Geographic maps are the most
well known type of maps as they can be found almost anywhere, from atlases to informative
signs next to the road at a town’s entrance. They display the geographical features of the region
(e.g. cities, country borders, streets, rivers, etc.) accurately and often with much detail. An
example of a simple geographic map of the city of Eindhoven in the Netherlands can be seen in
Figure 1.1(a).

(a) Geographic map of Eindhoven [1].

RUS

NOR

CAN

USA

MEX

NZL

PNG

PHL

TWN

JPN

CHL

ARG

AUS

PRK

CHN

MNGKAZ

GEO

UKR

BLR
LVA
EST

FIN

KOR

VNM

LAO

NPL

IND

PAK

AFG

TJK

KGZ

IDN

MYS

THA

SGP TLS

LKA

YEM

OMN

SOM

MUS

MDG

BGD

BTN

UZB
TKM

IRN

ARM

TUR

SYR

GRC

BGR

SAU

ISR

LBN

EGY

ARE

ROU

MDA

GBR
DNK

DEU

NLD
IRL

FRA

ESP

BEL

SWE

POL

ITA SVN HRV

BIH SCG

ALB
PRT

CHE AUT

CZE SVK

HUN

MKB

MAR DZA
MRT

MLI
SEN

GINGNB

GMB

CIVLBR

SLE

TUN
LBY

NER

SDN

TCD
BFA

NGA

BEN

CAF

CMR

ERI

ETH

KEN

UGA

COD

GHA

TGO

COG

GAB

RWA

BDI

TZA

ZMBAGO
MOZ

MWI

NAM ZWE

ZAF
LSO

COL

VEN

BRA

PERECU

PAN

BOL

URY
PRY

TTO

CRI

GTM

CUB

JAM

HTI DOM

HND

SLV NIC

NORTH

SOUTH

T

S

A

E

T

S

E

W

LTU
AZE

BWA SWZ

JOR

KWT

IRQ

MMR

KHM

(b) Thematic map of the world scaled by actual population per coun-
try shown as rectangles generated by a computer [34].

Figure 1.1: Geographic and Thematic maps.

Thematic maps on the other hand visualize data of certain characteristics of the region in a
geographical context. One can think of many different data sets including, but not limited to:
population, occurrences of tidal waves, inflation, life expectance rate or migration of people.
Several types of thematic maps exist including some mixed variations. Each type has its own
properties and therefore certain data sets can be shown more succinctly using a specific type as
shown in the following sections. An example of a thematic map is shown in Figure 1.1(b).

1

2 Chapter 1. Introduction

1.1 Thematic maps types

All thematic maps have in common that they use a geographical base map showing the regions
by their boundaries. Essentially these are the contours of the landmasses and the internal
borders separating the individual regions on them. In some cases the information of the data
set is used to modify this map accordingly.

The most commonly known type is the choropleth1 map. This kind of map fills each of the
regions on the map using one out of several shades of the same color to denote the value for the
corresponding data value. As expected intuitively a light color means a low value and a darker
shade corresponds to a higher value. Data sets which are often used for this map type are of
a single variable such as data sets for population. Such a specific one-variable thematic map
is also called a cartogram. See Figure 1.2 for an example of such a choropleth cartogram. It
can also be done by applying different visualization methods. One of them is changing the size
of the regions corresponding to the data values. If this mapping is used the cartographer does
need to take care that the generated map is still recognizable. The size modification may cause
some areas to completely vanish from the map, or conversely they could take up so much room
that the rest of the map becomes invisible. The map in Figure 1.1(b) is an example of such a
cartogram generated using a computer by Speckmann and van Kreveld [34].

Figure 1.2: A choropleth map depicting birthrate per country in the world in the year 2000 [36].

1.2 Overlay and variations

Some data sets cannot be drawn nicely on the base map itself or if modification of the base map
is unwanted in the first place an alternative solution must be found. In these cases an overlay
can be used to draw the required information on top of the base map. Such a layer is called a
thematic overlay. Several types of these maps can be seen in Figures 1.3 and 1.4.

For each of these map types there are two main quality criteria to which they must comply
in order to be aesthetically good map. Firstly, the base map should be clear and concise as
it would otherwise only distract the reader from the important information of the map. And

1in the literature this is sometimes mistakenly spelled as chloropleth map as people falsely assume that it is
derived from the Greek word for color.

1.2. Overlay and variations 3

secondly, the overlay has to avoid overlapping either too much or specific critical features of the
underlying base map. With critical features one can think of distinct parts of the region and
its boundary which are its trademarks that make them easy recognizable for humans. These
include three country points, bodies of water, and the borders themselves. In all three cases
one wishes to minimize the coverage of these parts of the maps as much as possible.

Labeled map. If one has a data set on the locations of, say active volcanoes, in the vicinity
it would be fitting to show them on the base map as little red triangles. Hence creating an
overlay with these icons depending on their location generates a labeled map. Labeled maps
occur frequently in combination with other map types as adding additional (textual) labels can
often clarify the orientation and position for the viewer.

Proportional symbol map. Data sets consisting of quantities of more than one parameter like
the production of several types of ore per country can be depicted by labels too. But since
these values represent individual quantities it would be better to generate symbols which are
proportional to their value. By doing so it allows the viewer to compare the differences per
type in a single view. This type of visualization gives rise to the so-called proportional symbol
maps. One of the familiar examples is the pie chart which shows distribution of the parameters
for each individual region within the pie. The size of the pie itself shows the relative values
between the regions themselves. Figure 1.3(c) displays a map about the types of employment
in the Netherlands as a proportional symbol map.

Dot map. Other possibilities include dot maps where each dot represents a certain value for
that specific area in the region, thus the intensity of dots depicts the proportional value for that
region. A setting which fits the use of this kind of map are the ones showing exact locations
for specific types of agricultural use of the land. These are often very local of nature, because
of the way the environment is built up. This often results in clusters at specific areas of the
region, which fits this method of visualization properly. An example of this map type can be
seen in Figure 1.3(b).

Isoline map. Isolines can be used for example to depict temperature or air pressure. These
values are not bound to the borders of the countries and therefore the use of an additional
layer shows these lines more adequately. This leads to the creation of an isoline map as shown
in 1.3(a). This particular map is of the mixed kind as it shows the temperature in isolines,
some major cities as dots with textual labels and the base map is a choropleth map depicting
the quantity of rainfall.

Flow map. Maps which display movement or interaction between places are hard to visualize
with any of the aforementioned techniques as those methods only represent the data locally
(e.g. a symbol, color, etc.). In order to overcome this problem these data sets can be visualized
with the aid of a so-called flow map2. Examples of typical data sets for these are migration of
people between certain places, the exportation of red wine from one country to others and the
movement of companies within the Netherlands. The last two examples are shown in figures 1.4
and 1.3(d).

Depiction of the flows in a flow map is done by drawing lines on top of the base map between
the corresponding locations which represent the flow from one region to another. The color in-
tensity and/or thickness of the flow depict the volume which is proportional to its corresponding

2also referred to as dynamic map in some cases

4 Chapter 1. Introduction

(a) A mixed isoline map showing average temperatures
in July, the quantities of rainfall as a choropleth map of
the same month, and some of the important cities with
textual labels in most of Asia [36].

(b) A dot map showing the showing the locations of great
fires after El Niño hit parts of Indonesia in September
1997 [36].

(c) A proportional symbol map showing employment of
people in pie charts [36].

(d) A flow map on the movement of companies in the
Netherlands [35].

Figure 1.3: Four distinct types of thematic maps with overlay taken from the Bos Atlas [35, 36].

1.3. History of flow mapping 5

value. This can be done by translating the value using a linear3 function to line thickness, and
also by classifying the values to between certain ranges (5 to 7 ranges is the most common). In
most cases these lines are strait, but there also exist maps which use arcs or polylines to draw
them. Arrowheads may be used to show the actual direction of the flow’s movement if required.

1.3 History of flow mapping

Flow maps originate from back in the late 18th century. At that time Henry Drury Harness and
Charles Joseph Minard were among the first to make these type of maps [11]. Their motivation
for creating maps with flows was that they wanted to show large amounts of numerical data
about migration in an easy to read format. Instead of using large tables with many numbers
a visual depiction on the map could easily explain the special characteristics of the table in an
instant. They drastically simplified the underlying map to attract the reader’s attention to the
most important parts (namely the flows themselves). Figure 1.4 shows a flow map drawn by
Minard. It doesn’t require much insight to see that the Straits of Dover and countries such as

Figure 1.4: A flow map drawn by Minard on the exportation of red wine from France to other
countries in the world in the year 1864 as seen in the book by Tufte [33].

Spain are deformed vastly in order to make the flows fit and preventing overlap with the land.
In this case however such deformations are acceptable as it improves the map aesthetically and
the result is recognizable without difficulty.

1.4 Flow mapping with computer assistance

The problem of drawing flow maps with the computer relates to graph drawing in the area of
geometric algorithms within the field of computer science. One of the main topics which is

3Tobler [31] also reasoned about using exponential or logarithmic functions.

6 Chapter 1. Introduction

researched in this area is about drawing a graph visually optimized for one or more aesthetic
criteria. One can think of several criteria such as vertex-edge distance, angular resolution,
number of edge crossings and uniform edge length to name a few. One specific approach in this
research area is force-directed graph drawing. The name force-directed comes from the analogie
in physics, because one assigns repulsive forces to the edges and vertices which build up the
graph. The edges can be treated as springs which exert force F conform Hooke’s law :

F = −kx, (1.1)

where x is the distance the spring has been stretched or compressed from its equilibrium position
in meters, F is the restoring force exerted by the material in newtons, and k is the spring constant
or force constant which is defined for a spring in N/m.

The vertices move similarly to charged particles using the law of Coulomb which can be stated
for two particles with charge q1 and q2 separated at distance r. The repulsive force F in vector
form becomes:

F =
1

4πε0

q1q2

r2
r̂21, (1.2)

where ε0 is the constant for vacuum permittivity and r̂21 is defined as the unit vector parallel
with the line from charge q2 to charge q1. When all forces are defined the graph is simulated as
if it is an actual physical system, until an equilibrium state has been reached. In this state there
is no movement because all of the forces cancel each other out leading to the equilibrium which
is the final drawing. Several papers each using their own distinct methods have be written on
this topic. The fundamentals of this graph drawing method and several references to related
work in this area are treated in the book by Battista et al. [3]. This approach is used for the
implementation in this thesis as to be defined in more detail in the following chapters.

1.5 Related studies

The topic of computer-assisted flow mapping is far from extensively researched. The best-known
flow mapper to date is the one by Tobler [29]. This mapper produces generic maps without any
optimization with respect to the visualization of the data. A picture from the mapper’s output
can be seen in 1.5(a). There are two main problems with the mapper which could be improved.

(a) Data set from Table C.1 mapped by Tobler’s
flow mapper [29]

(b) Output map from the mapper by Phan et al. [21]
It shows the migration from California between
1995-2000.

Figure 1.5: Different types of flow map generation by computer.

The first problem is that the algorithm which generates the thematic layer doesn’t take any

1.6. Thesis overview 7

features of the base map into account. As explained earlier, the obfuscation of certain parts
of the areas can make it harder for the viewer to understand the map. In data sets with huge
deviations it can cause poorly readable maps, because the arrows may become unforbiddingly
wide covering complete areas or other flows. This, however, is a data scaling problem and falls
outside the scope of this thesis.

Another flow mapper exists created by Phan et al. [21]. This mapper generates flow maps
that are somewhat different from the conventional type as the mapping algorithm distorts vertex
positions in order to improve the readability of the entire picture. For some applications this
is no problem, but for our setting it leads to undesirable results. In general it is preferred
to leave the base map as it is, because the map is better understandable to the viewer if the
relative positions of the regions are maintained. An example of their mapper’s output is depicted
in 1.5(b).

1.6 Thesis overview

In this thesis new methods for the automated generation of flow maps are treated. First of all,
the cartographic issues and the aesthetic criteria for flow maps are considered in Chapter 2.
This is required as the problem needs to be defined properly before attempting to create an
algorithm for the mapper. The complexity analysis of vertex-edge distance problem is covered in
Chapter 3 which also shows NP -hardness for the two-dimensional version. Chapter 4 describes
how the criteria can be transformed to an algorithm which optimizes the flows on the map.
After that the implementation and the test results of various settings are shown and compared
in Chapter 5. These tests are carried out to see which configuration gives the most aesthetically
pleasing maps. Afterwards the conclusions, enhancements and ideas for future improvements
are described.

Chapter 2

Quality criteria for flow maps

In this chapter the in- and output for our mapper are defined along with the criteria our output
has to comply with. We are given a base map consisting of n regions and an input table of
size n × n containing all the input values in a from-to format corresponding to each of the
regions on the base map. The required output is a flow map which shows the data from the
table on top of the base map in an aesthetically pleasing way. By the definition of a flow map
each edge drawn on the map will be associated with the two regions which are its begin- and
endpoints. Therefore these points must be inside the regions they correspond to. One can allow
these locations to be anywhere inside the region, but for this thesis we constrain ourselves to
associating all edges connected to a region with a single vertex. This vertex acts as the begin-
or endpoint for all the edges connected to that region. Alternatively, one could choose to use
distinct endpoints within the region for each edge. Furthermore we restrict ourselves to edges
that are visualized as straight line segments with arrowheads to denote direction in stead of
using polylines or curved lines. The critical features of the map are defined as the three country
points, and some additional specified regions (internal bodies of water) on the base map which
should not be occluded by the flow lines. This also includes that the flow lines should try to
minimize the amount of overlap with the region boundaries. Next to that the output must
comply to each of the quality criteria given below in order to be readable and aesthetically
pleasing.

Several references in the literature are used to define the quality criteria for flow maps in
general. The best resources can be found in chapter 12 from Dent’s book Cartography: Thematic
Map Design [11], the research of Ravenstein [24, 25], the work of Tobler [30, 31, 32], and the
Master’s thesis by Parks [19]. However, some of these criteria such as the placement of the
legend and similar aspects do not apply to this study. A few others such as vertex positioning
need to be refined as generating a map with a computer requires well-defined metrics for which
we can optimize the map.

2.1 Clear and concise base map

As information of a flow map is in the thematic layer the base map should not show too many
details as it distracts the reader from the most important parts of the map which are the flows
themselves. Hence the use of simple polygons which follow the bounding contours for each of
the n regions is sufficient to display the base map adequately. The polygons can be filled with a
single color in order to make them stand out from the background, but at the same time these
regions on the base map should not attract too much attention. Therefore it was chosen to use
a light to medium tone of grey for filling the regions with a background color.

9

10 Chapter 2. Quality criteria for flow maps

2.2 Suitable data set to visualize

Given the square input matrix with n2 values an equal amount of edges have to be displayed
as the movement from region A to region B is not the same as its reverse. If one would naively
do such a thing the output is hardly readable if the graph has more than a few vertices. The
example in Figure 2.1 shows the complete graph in only a single direction for all 48 contiguous

Figure 2.1: Visualizing a dense or complete graph as a flow map always leads to unreadable
maps.

states of the USA. It doesn’t require any additional argumentation that flow maps can only be
of any good if the number of edges is limited. Ideally, a sparse, near-plane graph is what one
wants to get as it is clear to draw. To get from an arbitrary data set to a reasonably sparse
graph edges need to be removed. Tobler [31] states that the small flows only contribute very
little information to the total view. Hence by applying a threshold on the data set all edges
below a certain data value will be removed. Experiments by Tobler in the same paper show
that choosing a threshold which cuts out approximately 2/3 of all the edges works in general.
The resulting graph is less cluttered and it decreases the amount of edge crossings significantly.
Cutting away this many of the thinner edges also makes the larger, more important flows stand
out better.

2.3 Proper depiction of the data

Each of the edges that needs to be drawn in the graph is associated with a value from the input
table. To represent that value the edge thickness is proportional to it. One can apply a function
to translate this value to the actual thickness in either a linear, quadratic, or exponential fashion.
Linear seems most likely to work out, but when edges get wider the human eye has difficulty to
determine which edge is thicker. Hence one might wish to choose for a faster quadratic or even
exponential growth function. This however doesn’t work out as the large values in the data set
become too wide to show on the map even for small numbers. Therefore a linear function is
the only practical solution, but with many edges that have a similar value there will be several
cases where two distinct edges seem to have an identical width. This makes it hard to notice
any difference between them.

Instead of trying to show the difference for each individual edge a classification can help

2.4. Edge ordering 11

improving the overall readability of the map. The classification goes at the expense of the exact
value the edge represents, but graphs in general are made to show interesting characteristics
of data sets they show. A linear classification with 5 to 7 classes is most suitable as adding
more classes decreases the benefits of the classification, which is counterproductive. To make
the difference stand out even better the edges for each class receive a color. An effective and
intuitive way to do so is by using a single color with a variable shade from light to dark depending
on its thickness of corresponding class. Picture 2.2 shows the five classes used for our mapper.

Figure 2.2: The five classes for edge thickness.

The type of arrowheads to use when direction is required has to be considered as well. Tobler
did some investigations on which types are aesthetically pleasing in [31]. The possible variations
he came up with are shown in Figure 2.3(a). All three have the problem that the view of

(a) Bidirectional edges by Tobler. (b) Bidirectional edges by us.

Figure 2.3: Several candidate variations for bidirectional edges.

the begin and endpoints must not be obstructed by any other edges or else the direction of
the flow becomes ambiguous. Furthermore some additional types are created for this study
to contemplate any other possibilities. Two of the most useful ones are depicted in Figure ??.
These two both have the drawback that the width of the arrow might be impossible to determine
if critical parts are covered by other edges. In the end the double edged harpoon arrow as shown
in the center of Figure 2.3 is chosen as it is the arrow uses its space most efficiently. The only
thing one has to bear in mind is that the arrowheads must remain visible when the edges are
drawn on the map.

2.4 Edge ordering

Intuitively one would indeed agree that thin lines have to be put over fatter ones as the former
ones would hardly be visible on the map otherwise. Tobler [31], however, states that it is better
to do it the other way around. As counter intuitive as it may seem experiments lead to the
same results as the ones Tobler found. They show that maps become better readable if the most
important lines (namely the biggest flows) have the highest priority. An argument in favor for
this approach is that thin lines only contribute very little to the overall view, whereas a huge

12 Chapter 2. Quality criteria for flow maps

flow attracts much of the viewer’s attention as they appear to be more relevant. Apart from
that the map becomes very cluttered if many thin edges are placed over the fatter ones, which
is usually the case as the edges with the lowest width class appear the most. See for an example
Figure 2.4. In this figure the two images at the top show the same map, but in Figure 2.4(a)
the edges are sorted in descending order and in Figure 2.4(b) they are sorted in ascending order
of thickness. The image of Figure 2.4(b) seems more clear at the first glance as there is much
less cluttering.

Unfortunately, the arrowheads of the thinner edges have gone missing making the map less
readable as it becomes harder to see where the smaller edges are going towards. In order to
overcome this the edges receive additional shortening depending on their class weight as shown
in Figure 2.4(c). This map shows all of the edges again in order of ascending thickness, but
now the thickness of an edge also determines how much the edge gets shortened. As visible this
technique allows one to see all edge heads and tails without losing the advantages of ascending
thickness. This situation is still not optimal as the shortening itself however should be dynamic.
There could be large gaps when there are only a few thick edges ending at the same vertex.
To take this into account an edge only receives shortening if there is another edge coming into
the same point at a similar angle. Hence shortening depends on the size of the smallest angle
between the two edges. This type of shortening for the same situation is shown in Figure 2.4(d).
By comparing all four images it can be observed that applying some form of shortening in general
leads to better pictures as the edges take up less space in the graph.

Even though the previous method solves arrow head overlap for the edges coming together
at that vertex it does not solve this problem for all cases. Suppose an edge d has its arrowhead
obfuscated by any other arbitrary bypassing edge e, then the direction of the arrow cannot be
determined on that side of the edge. One could try to raise d to be over e, but then e might
cause problems with another edge. This issue is referred to as the weaving of edges. Resolving
it in this case can either be done by moving the vertex associated with the end of the edge d
away from e or by drawing only the obfuscated head of d on top of e and leaving the rest of d
as it was. This is also shown in Figure 2.4(e).

Lastly, if we look at the ordering of the incoming edges at a vertex it becomes notable that a
proper ordering of edges of the same thickness class (counter)-clockwise around the vertex can
improve the visibility of the edges as well. By similar means as for the issue with weaving we can
improve this situation by raising only part of the edge head that was obfuscated. Figure 2.4(f)
shows a picture of the same area where the edges have been sorted in ascending order received
dynamic shortening. Higher priority has been given to edge heads and edges have been ordered
around each vertex.

2.5 Minimizing overlap with critical features

Suppose the view of a critical feature cf is blocked by the edge e = {v1, v2}. Then the situation
can only be improved by moving edge e away, because cf is part of the base map and thus
cannot be moved around. Improving the visibility of cf occurs by moving either one of the
vertices in the direction that is perpendicular to the axis of the edge between them. If feature
cf is a point then a small movement will suffice as the edges are relatively thin in width. In the
case that cf is a shape such as a polygon it is possible that the region boundaries of v1 and v2

can not always be positioned in such a way that the feature is completely visible. The only thing
which can be done is trying to minimize overlap as much as possible. Next to explicitly defined
features the boundaries of the regions themselves are also important to take into consideration,
hence they should have minimal overlap as well.

Other techniques to minimize the overlap are using edges with bends in them or curved edges.
Applying and implementing such edges are not taken into consideration for this thesis, but it

2.5. Minimizing overlap with critical features 13

(a) Sorted descending in thickness. (b) Sorted ascending in thickness.

(c) Same as Figure 2.4(b), but with edge
shortening.

(d) Same as Figure 2.4(b), but with dynamic
edge shortening.

(e) Same as Figure 2.4(d), and with inclusion
of raising edge heads.

(f) Same as Figure 2.4(e), and with ordering
around vertices (e.g. see the lower left vertex)

Figure 2.4: A sample of a flow map of internal migration of people in the Netherlands, using
different methods of edge visualization (data acquired from [5]).

14 Chapter 2. Quality criteria for flow maps

is worth investigating this in the future. References to related material in drawing edges of
arbitrary width nicely around obstacles can be found in [12] by Duncan et al..

2.6 Vertex positioning

Initially, one would like to situate each of the n vertices near the center of their respective
regions. This can be done by placing each vertex in the center of the largest inscribed circle for
each polygon. This position may not be ideal at all with respect to certain aesthetic criteria.
For each region bi and its associated vertex vi we need to optimize the vertex location such that
the following criteria are optimized.

Vertex-edge distance. For graphs in general it holds that a proper view the reader should be
able to distinguish the vertices and the edges clearly. Hence the distance between a vertex vi

in the graph should not be too close to any of the edges that are not incident to vi. To comply
with this the vertex-edge distance needs to be maximized, but at the same time each vertex
needs to remain inside its region.

Overlap with critical features. One of the edges associated with vi, say {vi, vj}, runs over a
critical feature cf . If such a feature is a point then slightly moving vi and vj such that the
distance between the edge and the point becomes greater than a small constant is sufficient.
If the feature is a region the problem becomes harder moving both away might not solve the
situation completely. The reason for this is because of the region bounds both vertices are tied
to. One can try to minimize the overlap in these cases at best.

Angular resolution. If two edges converge at a vertex with only a small angle between them
they have so much overlap that it becomes hard to tell them apart. This situation can be
improved by moving either vi or either of the other two vertices which are at the other end
of those edges. Therefore we wish to optimize the smallest angle in the graph, which is by
definition optimizing the angular resolution of the graph.

Edge crossings. A graph drawing with fewer crossings is in general a better drawing, so an-
other task is to minimize the number of edge crossings. This, however, is difficult to achieve in
the given setting as disjoint regions often disallow any movement which minimizes the number
of edge crossings. One thing we do wish to take into account is that any edges near a vertex
lead to bad situations, because any edge crossings in this vicinity can cause trouble with the
overlap of the arrowheads. Therefore the distance between the vertices and the edges should be
optimized which coincides with the vertex-edge distance criteria.

All of these criteria imply that the vertices need to be moved around. However since these
vertices are associated with the regions of the base map their movement is limited to the
boundaries of those regions at most. This is strengthened further as positioning the vertex on
the boundary itself may lead to undesirable results (e.g. edges ending near the region boundary
can confuse the view to which region the edge is pointing). Several types of regions can be used
such as circles, squares or a simple polygon that is contained in the region of the base map
itself.

2.7 Overview

We’ve shown several edge visualization techniques such as dynamic edge shortening and ordering
of edges to improve the visualization of the data. Next to that the criteria for the optimization of

2.7. Overview 15

the vertex positions have been defined. Now we need to analyze the complexity of our problem
in order to find out whether an exact solution is possible in polynomial time. As Chapter 3
shows the optimization of vertex-edge distance for all vertices in 2 dimensions is NP -hard.
Unless P = NP no solution in polynomial running time exists, therefore Chapter 4 is devoted
to finding an algorithm for our optimization problem which is based on heuristics rather than
an exact algorithm.

Chapter 3

Complexity analysis

In this chapter we show several complexity bounds for optimizing vertex-edge distances in
different dimensions. For the required two- dimensional type the problem is already NP -hard as
proven in Section 3.5. This justifies our choice for an iterative algorithm as treated in Chapter 4.
We will first give a formal description of our problem for the optimization of vertex-edge distance
with respect to one vertex. After that we go through the one- and two-dimensional settings.
The two-dimensional bound can extended to higher dimensions yielding a general bound for all
dimensions. After that we reformulate the problem for optimization of all vertices in the graph
and show a polynomial bound for the one-dimensional setting as well as an hardness proof for
any higher dimension.

3.1 Formalization

Given a graph G = (V, E) with n vertices V and m edges E ⊂
(
V
2

)
(i.e. each pair of vertices).

Each vertex vi is associated with a simple region bi in the plane where all bi are disjoint. We wish
to find the optimal location for each vi inside bi such that the vertex-edge distance of a straight
line drawing of G is maximized. An example of such an optimization is shown in Figure 3.1.
For the optimization the shortest vertex-edge distance for a vertex vi and an arbitrary edge

Figure 3.1: Example of vertex-edge distance optimization with square regions.

ej = {va, vb} under the Euclidean metric, also called L2-metric, is defined as

dj(vi) =

d(vi, va) α ≥ π
2

d(vi, vb) β ≥ π
2

d(vi, vb) ∗ sin(β) α, β ≤ π
2

(3.1)

va

vb

vi

α

β

17

18 Chapter 3. Complexity analysis

in which d(v, v′) =
√

(vx − v′x)2 + (vy − v′y)
2 is the Euclidean distance between two vertices

v and v′. Given that d(vi, va) = d(vi, vb) · sin(β)/ sin(α) it is possible to simplify the case
distinction to a single formula of the shape

dj(vi) = d(vi, vb) · sin(min(β,
π

2
))/ sin(max(α,

π

2
)), α 6= π.

If α = π then β is equal to zero (the three vertices are collinear). In this case one could
switch vertices va and vb to properly calculate the distance. Although the latter is shorter and
somewhat easier to implement it is also harder to understand the shape of the curve the function
creates. Formula 3.1 shows more intuitively that function has a linear segment in between two
parabolic curves.

3.2 Lower envelopes

Figure 3.2 is an example with three edges e1, e2 and e3 along with a horizontal line segment
representing a simple region for bi. Above it is a plot for all three distance functions dj(z)
with z ∈ bi. We are interested in the minimum over d1, d2 and d3 at every point z ∈ bi. This
minimum is also called the lower envelope of {d1, d2, d3}. Its value at any given point is the
function with the smallest value from the given set. This kind of function is denoted in our
vertex-edge distance problem as V ED where D is the set of distance functions of which the
lower envelope is computed.

z

e1

e2

V E{d1(z),d2(z),d3(z)}

bi

e3

d2(z)

d3(z)

d1(z)

1 2 1 3

Figure 3.2: Example of a plot for the shortest vertex-edge distance function for three edges with
on the right its lower envelope given region bi as a straight line segment.

We are interested only in the vertex-edge distance of the m′ edges in E′ = E\{vi, vj} (i.e. all
edges not incident to vi). The current setting gives the following set of functions D = {dj(z)},
with j 6= i. The lower envelope of D can now be defined as V ED : R

2 → R that gives the
distance between a vertex and the closest edge

V ED(z) = min
j 6=i

dj(z), z ∈ bi.

Finding the optimal position v∗i for vertex vi is the same as finding the instance z for which the
distance function is maximal

v∗i = max
z∈bi

V ED(z).

3.3. Davenport-Schinzel sequences 19

Once V ED is computed the optimal position v∗i can only be found at any of the intersection
points between any pair of distance functions on the lower envelope (including the begin- and
endpoints of the interval to which the distance function is applied to inside region bi). These
transition points are the only candidates, because it holds for those points that the distance to
the closest edges in the graph is locally optimal.

Theorem 1 The optimal position v∗i can only be found on one of the intersection points on
the lower envelope V ED.

Proof. Suppose for a proof by contradiction that v∗ is not on a transition point, but on an
edge of the lower envelope (i.e. a local optimum is generated by a single function). This can
never be the case as a curve generated by the Euclidean distance function can only yield a local
minimum. The location directly to the left or right of v∗ will always improve the metric.

In the degenerate case when an edge is running parallel along the region all values for the
distance function are the same. When such a situation occurs one can use the transition points
at the beginning or end of that segment to overcome this issue. Finding the best position
amongst all those points yields the global optimum by construction of V ED. Hence in order to
obtain the optimal position the lower envelope has to be computed and one has to search for
the most optimal transition point on V ED itself. �

3.3 Davenport-Schinzel sequences

The question now remains to determine how hard it is to compute the lower envelope for the
given set of distance functions and determining the maximum amount of intersections on it.
In other words the bounds for the algorithmic and combinatorial complexity of V ED must
be proven. Equation 3.1 and the corresponding plots from Figure 3.2 show that the distance
function consists of three segments, one linear and two parabolas of second order. A consequence
of this is that each pair of functions can intersect at most a constant number of times which
will be shown later on. Given these restrictions it is possible to analyze both the combinatorial
and the algorithmic complexity of the lower envelope using Davenport-Schinzel (DS)-sequences
as described in [27]. A DS(n,s)-sequence is a sequence U = 〈u1, ..., um〉 of integers with n being
the number of symbols in U and s is defined as the order of U . All DS(n,s)-sequences satisfy
the following three conditions:

1. 1 ≤ ui ≤ n for each i

2. ui 6= ui+1 for each i < m

3. There do not exist s+2 indices 1 ≤ i1 < i2 < ... < is+2 ≤ m such that ui1 = ui3 = ... = a,
ui2 = ui4 = ... = b and a 6= b.

DS-sequences do not contain any pair of adjacent elements which have the same value and they
have no subsequences of length s + 2 between two alternating symbols. The order of U defines
the maximal possible length |U | of a DS(n,s)-sequence to be

λs(n) = max{|U | : U is a DS(n, s)-sequence}.

Using this definition and reconsidering the example of Figure 3.2 the DS-sequence for the three
distance functions becomes U(d1(z), d2(z), d3(z)) = 〈1, 2, 1, 3〉.

The number of symbols n corresponds to the number of input functions, which equals m′ for
our problem. For the order s the longest sequence of two alternating functions has to be found.
To elaborate the concept of the maximum complexity we give a small example. Consider a
pair of straight line segments e1 and e2 and use a single variable distance function fj(x) which

20 Chapter 3. Complexity analysis

calculates the distance on the y-axis between the edge and x-axis at that point. If the distance
is undefined for a value of x the distance can be taken as ∞. The two edges can intersect
in at most one location, but because the edges can also intersect with the x-axis the distance
function generates symmetrical v -shaped line segments. Therefore f1(x) and f2(x) can intersect
in at most two locations. This results in the longest possible sequence for U(f1(x), f2(x)) being
〈1, 2, 1, 2, 1〉 as shown in Figure 3.3. This yields s = 4 as there exists no alternating sequence

e2

e1

1 2 1 2 1

f1(x)

f2(x)

xbi

Figure 3.3: Example of maximum complexity for a pair of straight line segments for distance
function f(x) = min f1(x), f2(x).

between a pair of functions for a length of s + 2 = 6 indices. Given that the distance function
fj(x) is univariate (i.e. depends on a single variable) Theorems 3.12 and 3.16 by Sharir and
Agarwal [27] yield that λ4(n) = Θ(n ·2α(n)), where α(n) is the slowly-growing functional inverse
of Ackermann’s function. Ackermann’s function grows so rapidly that its functional inverse is
nearly a constant factor for any conceivable input set. This means that even with the exponential
factor in the term the function grows slightly slower than linear.

The algorithmic complexity also depends on λs(n), hence the problem can be solved efficiently
using a sweep-line algorithm as to be discussed in the paragraph for the two-dimensional vertices
with one-dimensional regions in Section 3.4.

3.4 Vertex-edge distance optimization of a single vertex

We first consider our problem for a single vertex in the one-dimensional case and then in two
dimensions. In the latter setting we can also make a distinction for the complexity between
1D and 2D regions. For all cases an algorithm can be derived for locating the optimal vertex
position within its region in polynomial time.

1D vertices and 1D regions. With the vertices in R the regions are also effectively reduced to
one dimension. Without loss of generality all vertices can be aligned with the x-axis. Optimizing
the distance for a single vertex vi is the same as finding the closest vertex (which is part of
an edge) to the left and right and placing vi in the center. If there happens to be an edge
ej intersecting region bi then there exists no optimization as it always holds that the distance
dj(vi) = 0, because it was assumed that all regions are disjoint.

For the complexity we need to find the closest neighbors to the left and right of vi and check
whether there is no overlap with any of the edges. Finding these neighbors clearly takes O(n)
with n being the number of vertices.

3.4. Vertex-edge distance optimization of a single vertex 21

2D vertices and 1D regions. In the two-dimensional version of the problem with one-dimensional
regions bi it can be observed that these become straight line segments which makes them depen-
dant on only the x or the y variable. Without loss of generality we choose to fix the y-coordinate,
thus the regions bi become straight line segments on the x-axis. As a consequence the distance
function dj(v) becomes univariate. This leads to the same type of two-dimensional lower en-
velopes as shown earlier in Figure 3.2. The value for s is the same as with the vertical distance
problem treated in the previous section, because under the Euclidean metric for this problem no
new transition points are introduced (see Figure 3.4). With s = 4 the combinatorial complexity
is also the same, namely λ4(n) = Θ(n · 2α(n)).

1 2 1 2 1x
y

f1(z)

f2(z)

e2

e1

bi

z

Figure 3.4: Example of a maximum complexity for two edges in 2D Vertex-Edge distance setting
with 1D region bi.

For the algorithmic complexity an efficient solution to this problem is applying a divide-and-
conquer strategy on the set of lower envelopes as described in general by Sharir and Agarwal [27].
Let D be the set of n distance functions. Split D into D1 and D2 such that each set has at most
⌈n/2⌉ functions. Compute the lower envelope of both recursively and merge them to obtain the
lower envelope for the entire set of D.

Store the transition points between the functions in V ED1
and V ED2

in sorted order from left
to right in their own respective lists. Next to that also store for each transition point the curve
which appears on its lower envelope immediately to the right of the transition, hence include
an additional (virtual) point x = −∞ at the beginning. Because each of V ED1

and V ED2
can

only have ⌈n/2⌉ curves the length of each list is at most O(λ4(⌈n/2⌉) + 1).
Given the transition points and their associated curves for both V ED1

and V ED2
we can use

a sweep-line from left to right to compute V ED for the merger step. Starting at −∞ at any
point t the sweep-line intersects with exactly one curve δ1 ∈ V ED1

and δ2 ∈ V ED2
. Let σ1 and

σ2 be the following transition points in the respective lists, and let ξ be first the intersection
point to the right of δ1 and δ2 if existent, otherwise let ξ = ∞.

The sweep-line moves to point t′ which is the leftmost point of ξ, σ1 and σ2. Each of the
three causes one of the following events to take place. If t′ = ξ then we add ξ to the list of
transition points of V ED and associate that point with the either δ1 or δ2 depending on which
one is lower immediately to the right of it. In the case t′ = σ1 and δ1 is below δ2 then add σ1

to V ED and associate δ1 with that point. On the account of symmetry similar events occur for
t′ = σ2. A depiction of the sweep-line algorithm in action can be seen in Figure 3.5.

In all the sweep-line generates the lower envelope in a number of steps which equals the
transition points in V ED1

and V ED2
plus the amount of intersection points between the two

22 Chapter 3. Complexity analysis

V ED2

V ED1

t t′

δ2

δ1

ξ

σ1

σ2
V ED

−∞

Figure 3.5: Sweep-line algorithm used in the merge procedure for computing the lower envelope
of two sets of distance functions. For this instance the next upcoming event is the intersection
point at ξ.

envelopes. By construction each intersection point of the two envelopes is a transition point in
V ED and given that we spend O(1) in all the steps the merge requires O(λ4(n)) time in total.
Let T (n) be the maximum running time for our set of n curves, then the recurrence is:

T (n) =

{
O(1) if n = 1
2T (n/2) + O(λ4(n)) if n > 1

(3.2)

Using Equation 3.2 the total time then becomes O(λ4(n) log n). Given that λ4(n) = Θ(n ·
2α(n)) the V ED can be computed in O(n · 2α(n) log n) time. Reviewing the combinatorial com-
plexity shows that O(λ4(⌈n/2⌉)+1) = O(λ4(n)), hence putting this all together we can conclude
that:

Theorem 2 Given a set of m edges the optimal vertex-edge distance placement v∗i for a vertex
vi confined to a straight line segment bi can be computed in O(m · 2α(m) log m) time by the
sweep-line algorithm as presented above.

2D vertices and 2D regions. The bivariate function in the 2D setting generates two-dimensional
lower envelopes embedded in 3-space. Although the setting is similar it does complicate matters.
Since the regions bi are disjoint any edges in the graph can only intersect bi, but they cannot
start or end in it (apart from the edges connected to vi itself). Therefore we could try to simplify
the problem to a set of piecewise-linear functions which yield a set of n 2-dimensional simplices
(i.e. triangles). This allows an easier way to compute the lower envelope using a randomized
algorithm. Unfortunately, it turns out that this will not work because there may be situations
where a vertex vj is the closest point of an edge outside the region bi. A simple counter example
is depicted in Figure 3.6 where the vertex-edge distance between vi and e{vj ,vk} results in vertex

vi

vj

e{vj ,vk}

vk

Figure 3.6: Counter example to the argument of using straight line segments in the 2 dimensional
setting. The closest point between vertex vi and edge e{vj ,vk} is vertex vj itself.

3.5. Vertex-edge distance optimization of n vertices 23

vj being the closest point. As a consequence of this, the disjointness of the regions does not
makes a difference for the complexity.

Because of this we can only use the less tight solution for the general setting. For the analysis
of a bivariate DS(n,s)-sequence our distance function has to satisfy four criteria:

1. Each function di is a set of the form P (x1, ..., xd) = 0 for some polynomial P of degree at
most b. In other words, each di is part of an algebraic surface which has a constant degree
of at most b (e.g. a cone x2 + y2 = z2 would be P (x2, y2,−z2) = 0 yielding b = 2).

2. The vertical projection on the xy-plane of each distance function dj is a planar region
consisting of algebraic arcs of degree at most b.

3. Given a triple of the given surfaces their relative interiors can intersect in at most s points.

4. The functions in D are in general position, that is the given boundaries of the functions
can be defined as polynomials with a constant maximum degree and the coefficients of
these polynomials are algebraically independent over the rationals.

The requirements essentially state that the function dj(vi) should have a relative simple shape
which our Euclidean distance function complies to. To simplify matters we can take the square
of the distance function to eliminate the square root from Equation 3.1. A plot generated by
the distance function has the shape of a cone which is split in two vertically through the center.
In between these two halves the shape is linear. In all the polynomial P (x2, y2, dj({x, y})2) = 0
has two as the highest degree. The last requirement about the general position is only used to
simplify the proofs as Sharir and Agarwal show that it involves no loss in generality [27]. This
because it has no influence on slightly larger asymptotic bounds for the results that they give.
Furthermore by requirement 4 and Bezout’s theorem [16] it always holds that s ≤ b3, which
means that s ≤ 8 for the vertex-edge distance problem.

Theorem 3 Given a set m edges the optimal vertex-edge distance placement v∗i for a vertex
vi confined to simple region bi in the plane can be computed in O(m2+ε) time, for any ε > 0,
where ε is a constant factor depending on s and b.

Proof. In order to prove this we must show the upper bounds for both the combinatorial and
algorithmic complexity of the V ED. Given that our set D of distance functions comply to the
four requirements above Sharir and Agarwal proved in [27] that the combinatorial complexity
κ(D) of the lower envelope of a set of m bivariate functions D is O(m2+ε), for any ε > 0, where
ε is a constant factor depending on ε, s and b.

Furthermore they also provided an algorithm based on a sweep-line (by e.g. Preparata and
Shamos [23]) which can compute V ED in O(m2+ε) time, for any ε > 0, where ε is a constant
factor depending on ε, s and b, under the same assumption that the bivariate functions in D
comply to the four requirements as mentioned above. Hence the total running time required to
find the optimal position on the lower envelope is O(m2+ε). �

3.5 Vertex-edge distance optimization of n vertices

Now that we have determined the complexity of optimizing a single vertex we look at the
optimization of the minimal vertex-edge distance of all n vertices. To this end redefine function
V ED : (R2)n → R in the same way as before

V ED(z1, ..., zn) = min
1≤j<m′

dj(zi), zi ∈ bi.

24 Chapter 3. Complexity analysis

Finding the optimal vertex set V ∗ for which the smallest distance between any edge and vertex
pair is optimal becomes the same as finding instances zi for which the distance function is
maximal

V ∗ = max
(z1,...,zn)∈b1×...×bn

V ED(z1, ..., zn).

The complexity of the problem increases rather quick leading to NP -hard results for the 2D
setting as shown in the following paragraphs.

1D Vertices and 1D regions. The optimization for the one-dimensional setting is essentially
the same as optimizing vertex-vertex distance. This problem in one dimension leads to a family
D of intervals on real numbers. In such a situation we can formulate the problem as a scheduling
problem: Let V be the set of tasks to be executed without preemption on a single processor. All
tasks are processed with same time length q which are to be scheduled with the given release
and due times respectively ri and di. With the sets Di = (ri + q

2 , di −
q
2) on the family D the

question is whether a feasible schedule exists. The processor scheduling algorithm mentioned
in [4, 14] and described by Simons [28] which runs in O(n2 log n) provides a solution to this
problem.

For vertex-edge distance the problem becomes more complex as the number of vertex pairs
is an order of magnitude smaller than the number of vertex-edge pairs. Because all vertices
are one-dimensional and their respective regions are disjoint, the vertex-edge distance metric
simplifies to the vertex-vertex distance metric. Disjointness also means that the order of the
vertices can never change no matter how the vertices move. If a vertex vi is connected by an
edge with another vertex vj , then vj doesn’t influence vi’s schedule but the neighbor of vj does.
All regions are given as disjoint, therefore a vertex can only have a degree of at most two. If
we store for each vertex its two neighboring vertices this allows us to find in constant time the
closest non-connected vertex which does influence the schedule of vi. Because the order of the
vertices never changes this introduces no additional complications for the computation of the
schedule.

Theorem 4 The optimal vertex-edge distance placement for n vertices and m edges in R where
each vertex vi is confined to a region bi with all regions bi disjoint can be computed (if possible)
in O(n2 log n) time.

2D vertices and 1D regions. Currently this is still an open problem. The algorithm for the
one-dimensional version cannot be generalized to two-dimensional vertices, because an arbitrary
number of processes can be running simultaneously. An NP -hardness proof has not been found
either as we cannot reuse the arguments for the two-dimensional regions as shown below.

2D vertices and 2D regions. Again considering the same situation as for the single vertex
optimization we now prove that optimizing the Vertex-Edge distance problem for n vertices in
2D is NP -hard. The associated decision problem for this optimization problem is

max
(z1,...,zn)∈b1×...×bn

V ED(z1, ..., zn) ≥ t,

in which t is an arbitrary value greater than 0.

Theorem 5 The decision version of the vertex-edge distance placement problem for m edges
in R

2 where each vertex vi is confined to a simple region bi in the plane is NP-hard.

3.6. Overview 25

Proof. To show NP -hardness for the decision problem we have to show that it can be reduced
from another problem which is NP -hard.

The decision problem of vertex-edge distance placement can be restricted to the decision
problem for Spreading Points which was shown NP -hard by Cabello in [4] using reduction from
the distant representatives problem as shown by F́ıala et al. [14]. Spreading Points problem
optimizes vertex-vertex distance in which the vertices can move around in (possible intersecting)
disc shaped regions. Our problem uses simple regions which allow restriction to discs. Further-
more consider that by taking all edge distances as zero all edges collapse into single vertices
for which the distance function becomes the same as the Euclidean metric used for Spreading
Points. We have now restricted our problem to Spreading Points which shows that vertex-edge
distance optimization for 2D vertices and regions is NP -hard. �

Now, because the optimization problem is at least as difficult as its associated decision problem
it also holds that the optimization problem is NP -hard.

3.6 Overview

The proof for NP -hardness can be extended generically to higher dimensions. For the single
vertex vi ∈ R

3 the combinatorial complexity holds for any higher dimension O(md+ε) with d
for the number of dimensions. The algorithm for calculating the lower envelope can only be
extended to trivariate functions using a randomized algorithm running in O(m3+ε) [27].

This algorithm cannot be used for any higher dimensions leaving the problem open for R
d

with d ≥ 4. Agarwal et al. [2] show that the vertices of the lower envelope in d dimensions
can be computed in O(md+ε). Since we only need to look at the vertices of the lower envelope
to find the optimal position this will do. All results are shown in Table 3.1. The complexity

vi ∈ R
d bi ∈ R

d Single vertex n vertices

d = 1 d = 1 O(n) O(n2 log n)

d = 2 d = 1 O(m ∗ 2α(m) log m) ?
d ≥ 2 d ≥ 2 O(md+ε) NP -hard

Table 3.1: Overview of complexity for various settings for vertex-edge distance optimization

bounds of the problem for two-dimensional vertices with one-dimensional regions is an open
problem at this moment. Another thing to consider is that the restriction of disjoint regions bi

was only required for the 1D vertex-edge problems. We could consider the general case to see
what the differences in complexity are when we give up the disjoint region restriction. Lastly,
the time-bound of O(n2 log n) for optimizing one-dimensional vertices is very likely not optimal,
because in this setting the vertices can never change their order.

Chapter 4

Algorithmic approach

4.1 Introduction

Suppose we are given a base map consisting of n simple polygons representing the regions of
the map and a corresponding n × n table with input values for the flows between each pair of
regions. All flows are represented by edges between these regions placed on top of the base map.
As a design decision we choose to associate each region with a single vertex vi in such a way
that all edges related to that region have vi as its begin- or endpoint. Alternatively, one could
have chosen to allow the endpoints of each edge to float around in the region independently.
This yields a graph G = (V, E) with n vertices in V and m edges in E ⊂

(
V
2

)
defined by the

input table. Each vertex vi is confined to its own respective regions bi. A region bi is defined
as a shape which is contained in the input region that is given on the base map. An example
of a map with such regions can be seen in Figure 4.1.

Figure 4.1: Example map showing region boundaries bi as polygons with dashed edges for each
input region.

We wish to find the optimal location for all vertices within their corresponding regions such
that the resulting flow map is aesthetically pleasing conform the criteria as treated in Chapter 2.
In Chapter 3 we showed that even if we restrict ourself to optimizing vertex-edge distance in
two dimensions the problem is already NP -hard. Unless P=NP it is not possible to find an
optimization which runs in polynomial time. Including any of the other criteria will naturally
only make this problem harder. Instead of calculating the exact optimal placement we have to

27

28 Chapter 4. Algorithmic approach

adjust our goals and look for a generally good solution with an acceptable running time given
the restrictions and criteria we must comply to.

All vertices are confined to their own respective regions implying that optimization can only
occur at a local level. This suggests a neighborhood search as method of optimization. Such an
optimization technique repeatedly optimizes the current solution using a predetermined set of
local operators. Starting out with a initial configuration the algorithm iteratively repeats the
optimization, until no further improvement can be made. The most common problem however
with this type of optimization is that the solution can get stuck in a so-called local minimum.
Such a situation prevents any further optimization as all neighboring solution are worse than
the current solution. In our case this could occur in areas that are crowded with edges. Since a
flow map should be reasonably sparse in order to be readable to the viewer we assume that our
input set does not result in the worst-case. Next to that we apply a cooling schedule as defined
later on in Section 4.3.1 which allows one to overcome problems with local minima. From this
it can be concluded that one can try to implement an algorithm based on sensible ”rules of
thumb” for each of the criteria.

4.2 Related research

Algorithms that optimize aesthetic criteria for graph lay-outs use different types of strategies
such as spectral, orthogonal, force-directed, tree and hierarchical lay-outs to name a few. Our
problem is most similar to those often tackled by force-directed graph-drawing methods.

As explained in Section 1.4 force-directed methods calculate the forces exerted between the
vertices and the edges based on the analogy with physical systems made up of rings and springs.
The attractive and repulsive forces caused by the springs move the vertices around until a state
has been reached where the total amount of force is reduced to a minimum. Depending on the
applied criteria these forces can influence the vertices’ movement in the plane. The most common
aesthetic criteria applied in this setting are optimizations regarding vertex-vertex distance, edge
crossings, uniform edge length, reflection of symmetry and angular resolution. Several papers
have been written about this topic and each of them uses a different approach to optimize the
graph as much as possible depending on the criteria the authors of the respective papers find
most valuable.

All force-directed algorithms follow more or less the same approach. They start out with
a given initial configuration. This configuration can be set up to prevent any bad situations
from occurring at the beginning which could get the algorithm stuck. For most algorithms a
random placement works fine as long as it prevents overlap of two vertices. It then performs
three basic steps during each iteration: computation of the effect of both attractive/repulsive
forces and delimiting maximal displacement to prevent any unbound repulsions. Lastly, when a
termination requirement has been met, the iterative process comes to a halt. This requirement
is not easy to define in numbers as test results by all of the methods below show that no specific
constant or a value depending on the number of vertices/edges will suffice in all situations.
Reconsidering the analogy with the physical system the optimization of a graph continues, until
the total amount of energy in the graph reaches a state where it is minimal.

Eades [13] was the first to use the concept of a spring embedder to optimize the lay-out of a
graph. He introduced the main concept on which all of the succeeding papers are based upon.
Eades, however, did not implement Hooke’s law as shown in Equation 1.2 which reflects the
physical analogy, but he choose his own formula to calculate the exerted forces placed upon the
graph. Next to that he reasoned that a vertex only needs to be close to its immediate neighbors.
This means that only the attractive forces between neighboring vertices need to be calculated,
which can be done in Θ(|E|) time. All repulsive forces still need to be computed in between
all vertex pairs. For the termination requirement Eades used a constant value of 100 iterations

4.3. Force-directed approach 29

because that worked out pretty well for most graphs.

Kamada and Kawai [17] modeled the physical forces after Eades, but they solved the partial
differential equations created by Hooke’s law. Their processes stays close to the original concept
from the physical model by reducing the sum of compression and tension on all the springs to
reach an equilibrium state. For the termination requirement they check each iteration whether
the total amount of energy drops down below a preset value. Because their algorithm moves
only one vertex at a time only the forces with respect to that vertex need to be computed which
takes Θ(|V |) time for the inner loop to complete.

A different method by Davidson and Harel [9] also involves a method of reduction of the total
amount of energy in the graph. Their method is based on a powerful, generic, but computation-
ally costly process called simulated annealing which is also used in various other optimization
problems. They choose an energy function which combines the terms for all criteria (e.g. vertex-
edge distance, edge-crossings, etc.). Furthermore their method of delimiting maximal movement
is very loose in the beginning and gradually becomes stricter over time. Hence in the beginning
large leaps are possible whereas later on more fine grained adjustments can be made. This pro-
gressively more tight delimitation of movement is often referred to as the cooling schedule. This
originates from the analogy of the behavior of particles in the annealing process. The particles
have greater mobility under high temperatures and can move only very little if the tempera-
ture drops to a lower level. Using this approach graphs with a high quality are attainable, but
as with all processes based on simulated annealing it comes at the price of being rather slow.
This is caused by the gradually decreasing cooling schedule as bounding vertex movement more
rapidly can lead to problems with local minima.

Fruchterman and Reingold [15] base their simulation on only two simple principles to compute
new vertex locations. Vertices connected by an edge should be drawn near each other and the
vertices themselves should not get too close to each other. Hence two vertices connected by an
edge will attract each other, but any pair of vertices at close range repel each other. This can lead
to problematic situations if two vertices are very close, because the repelling forces become too
large. To overcome this problem they allow the vertices to move in a discrete manner allowing
the vertex to move past an edge in a single step. Similar to Davidson and Harel they delimit the
maximal displacement by a temperature variable which gradually decreases over time. They
also make their algorithm’s termination depend on it, because when the temperature gets close
to zero only little movement is possible and finishes the optimization process of the graph.
Fruchterman and Reingold also provide a variation on their algorithm which has a shorter
running time. In order to speed up the algorithm they divide the plane in equally sized grid
boxes. By doing so they can compute the repelling forces between the vertices more efficiently
as only the vertices of neighboring boxes need to be checked.

Lastly, the method as proposed by Lin and Yen [18] focusses on optimization of angular
resolution by edge-edge repulsion. Their approach differs from the other that they do not mind
about vertex overlap at all. This leads to graphs which look somewhat different from the graphs
generated by the other force-directed methods which do prevent vertex overlap.

4.3 Force-directed approach

Our problem poses an additional restriction of movement on the vertices in the graph as they
are confined to the given set of disjoint regions. This implies that our graph is already in a
near-optimal situation to begin with and it is only possible to make improvements on a local
scale. The force-directed methods described above all had to take into account that the vertices
must remain close to each other, because otherwise the graph would explode out of proportion.
For our problem such an expansion cannot occur. Now let us consider any of the distance
metrics used in the previously mentioned approaches. They all use a function to compute the

30 Chapter 4. Algorithmic approach

repulsion based on the actual distance. Such a function would not yield satisfactory results here
as vertex movement is very limited. Taking these matters into account shows that a modification
is required for this method to be successful under the given circumstances. Our method closely
relates to what Fruchterman and Reingold did, but because we wanted to overcome local minima
by allowing jumps outside the current neighborhood it also influenced by the simulated annealing
approach by Davidson and Harel.

Reconsidering the general approach we can modify any parts accordingly to meet our needs.
For the initial configuration any set of vertices which are already inside the corresponding regions
will do. For convenience we place the initial vertices in some center of the given region. The
polygons defining the regions are simple so it does require care to place them properly. More on
this topic in Section 4.4. Calculation of the attractive and repulsive forces is not the same, as
it is not required to keep the vertices close together explicitly. However without any attractive
forces all vertices will remain moving endlessly throughout the region, because an equilibrium
can never be reached. Therefore we apply a cooling schedule which gradually restricts movement
until all vertices come to a halt. A property of such a cooling schedule is that we can use this
as our termination requirement as well. Now that we globally outlined our algorithm we can
formally describe the cooling schedule, the termination requirement and the calculation of the
forces. Next to that we introduction the notion of boundary clipping, because our vertices need
to remain inside the given regions.

4.3.1 Cooling schedule

The maximal allowable distance for the movement of vertex vi is defined as mmax
i . For the

first iteration mmax
i is computed as the distance between the two points which are farthest

away from each other on the region’s boundary, because we wish to allow maximal movement
in the first few iterations. After the first loop the distance has to decrease each consecutive
iteration slowly towards zero. This can be done using a function which is either linear or
exponential for example. A linear function however tends to diminish the allowable movement
too rapidly causing problems with local minima. The problem with a linear function is that it
allows equally many large movements as small movements, whereas a few large jumps in the
beginning followed by many smaller optimizations works out better. This can be reflected on
the gradually decreasing temperature for the simulated annealing process which following the
physical model uses an exponential function [9]. Thus we try to look for a simple function.
After several experiments it was found that dividing mmax

i by the number of iterations works
out, but the function dies out somewhat too fast. Therefore the formula was slightly modified
to:

mi =
mmax

i

1 + iteration ∗ c
,

In which mi is the distance the vertex can move, iteration stands for the iteration number
starting at 0 and c is a given constant with a domain of 〈0, 1〉. This function results in a few
large steps in the beginning and many smaller local movements after that. The steepness of this
curve depends on c which we have taken as 0.5. Because this function converges to zero slowly
the differences between the mobility of vertices with large and small regions is reasonably small.
For a linear function a vertex with a small region in the graph would reach an equilibrium sooner
than any of the neighboring vertices that have more freedom. Other cooling schemes which can
be used are simple exponential functions such as initializing mi as mmax

i and decreasing mi by
a constant percentage each iteration.

4.3. Force-directed approach 31

4.3.2 Region boundary clipping

If either one of the endpoints passes bi’s boundary the edge is clipped off there and that endpoint
on the region is taken instead. It does make a difference if one takes the location of the
intersection itself or if the vertex is allowed to slide along the boundary towards the location
minimizing the Euclidean distance to the unreachable endpoint. For any type of region it seems
that allowing the vertex to slide along the boundary generates better results as the vertex
tends to get stuck on the intersection point with the boundary otherwise. Figure 4.2 shows the
difference between (dis)allowing movement along bi’s boundary for a square shape.

emin

vi

v′
i

v′′
i

emin

vi

v′
i

v′′
i

bi bi

y

x

Figure 4.2: Boundary clipping by taking the actual cross point as shown left, or by splitting the
vector’s x- and y-components and using those to move the vertex to the closest point near the
desired location.

4.3.3 Force computation

The most important part of the algorithm is the actual computation of the forces. These allow
us to optimize the graph to our own preference. In Chapter 2 four criteria were defined to which
the algorithm must comply to namely, vertex-edge distance, angular resolution, avoidance of
critical features and edge crossings.

Vertex-edge distance. Optimization of this metric means that the distance for each vertex
with respect to the closest needs to be maximized. The formula de(vi) used for this metric of
vertex vi and any of the m′ edges in E′ = E\{vi, v∗} can be defined as following:

de(vi) = min
1≤k≤m′

dist(vi, ek)

With dist(v, e) being the Euclidean distance function between vertex v and edge e. Calculating
this distance also allows one to determine the closest edge emin as well. To improve this distance
vertex vi moves along the axis perpendicular to emin in both directions with distance mi. The
endpoints v′i and v′′i are generated which are towards and away of emin starting at vi respectively
with length mi. Because we allow movement in both directions the vertices have to move
discretely. Our motivation for doing so is that a vertex can never overcome the local minima
when it is about to cross an edge. To decide whether to use v′i or v′′i the location with the
largest distance to emin is taken.

We could argue that this method yields poor results as we do not take any of the other edges in
the graph into account. However very dense graphs do not make up useful flow maps in practice.

32 Chapter 4. Algorithmic approach

Another thing to consider is that due to the movements of the other vertices the graph may look
completely different from a local point of view, hence any exact or complex computations for a
single vertex will not yield much better results either. But apart from those reasons allowing
vertex to move to a worse situation allows the vertices to escape the problematic situation
generated by local minima. During the first few iterations a lot of these jumps occur, but for
the later iterations this degree of freedom decreases until only local movements are possible
permitting final adjustments to the graph.

Angular resolution. The second metric to consider is the angular resolution ari of a vertex vi.
This property is defined as the smallest angle between any pair of edges that come in at the
same vertex vi provided that vi has at least two edges attached to it. In the same context the
formula for this metric becomes:

ari = min
{vi,vj},{vi,vk}∈E

angle({vi, vj}, {vi, vk})

with i 6= j 6= k and angle(ev, ew) is the smallest angle between two edges ev and ew. This
metric could be incorporated into the vertex-edge distance metric updating them both at the
same time. Observe that most of the flow maps often have some specific regions which are
important (i.e. have many edges connected to them). If the region is not in the center of the
map, then all edges will come in at the associated vertex with small angles creating a small
angular aperture as shown in Figure 4.3. This cone shape prevents any significant improvements

Figure 4.3: Vertex v has all edges coming in from the same side resembling a cone making it
hard to optimize angular resolution for this vertex. Vertex w is in the center of its respective
graph and therefore it can optimize its position for the same metric much easier.

for angular resolution, because no matter where the vertex is placed inside the region the angles
are still relatively small. It would be computationally costly to update the metric each time
a vertex is moved during an iteration. Instead we update it once during an iteration after
vertex-edge distance has been optimized for that vertex.

Restricting ourselves to local movements the optimization can be confined to an area bounded
by the closest edge and the maximal allowable displacement factor mi. Hence the maximal
allowed movement for vertex vi with respect to angular resolution is mar

i = min(mi, de(vi)−c2),
where c2 ≥ 0 is a constant value depending on how close one is willing to let the vertex get
to the closest edge. For the implementation of our mapper a value of 20 pixels is sufficient as
the arrow heads and tails do not overlap with the closest edge if this distance is taken. After
computing the vertices in question and determining for each vertex its allotted movement mar

i

one can compute the optimal location for all three vertices. An example is shown in Figure 4.4.

4.3. Force-directed approach 33

vi

vj

vk

mar

i

Figure 4.4: Improvement for angular resolution metric.

Avoidance of critical features. The metric for the set critical features CF is harder to define.
What can be accounted for as overlap? Does it only count when a feature is covered completely,
or if the distance to the feature is less than a certain constant threshold. One can also consider
giving up a critical feature when it is covered by several edges, so attention can be focused on
the other features (i.e. is seeing all features barely aesthetically better than seeing some with a
clear view?). The preference goes to giving up features which are very hard visualize. Reasoning
for this is that visualizing every single feature may be impossible given the regions and the fact
that the edges often concentrate around certain regions. Even if it can be made visible then
there’s hardly anything to see of its surrounding environment. This makes it hard to judge its
locations, hence one could favor the other approach. For each feature cf ∈ CF the metrics
are defined as the number of times the feature has overlap cfo and the shortest distance cfd

between the feature and any of the m edges in E:

cfo = #1≤k≤mdist(cf, ek) = 0

cfd = min
1≤k≤m

dist(cf, ek),

where dist(cf, e) is the smallest Euclidean distance between critical feature cf and edge e =
{vi, vj}. Optimization of the feature is only useful if the number of overlaps is less than a
constant minimum cfo ≤ c3. The value of the constant c3 is rather small. Supposedly, when
three or more edges cover up the feature, then even if all three edges improve the distance to the
feature locally, then still only very little can be seen of the feature and its direct surroundings.
Hence we can consider optimization of such a feature only worthwhile if this value less than
three.

If a feature requiring optimization is found we allow to move one vertex away from the feature
per iteration. To that end the vertex with the best ratio between being closest to the feature
and having the largest degree of freedom for movement is chosen. Similarly to what happened
when updating angular resolution the distance in which either vertex vi or vj has to move is
mc = min(de(vi), c4−dce) in which dce is the distance between the feature cf and edge e, and c4

is a small constant representing the minimal distance that is needed to make the feature visible
clearly.

For our implementation we chose 8 pixels as this distance shows enough of the feature’s
surroundings to make it recognizable. The angle in which vi moves is perpendicular the edge
between vi and vj in order to maximize the effect of the movement. Again, any movement
outside the region is clipped off at the region’s boundary. Hence we should allow movement in
the opposite direction as was used for determining the best location for vertex-edge distance.

It may be the case however that vi’s old location also causes other critical features to get
blocked. Therefore the vertex which obstructs the most critical features has to be the first one
to move. The distance then becomes the maximum of all the displacements mc. Since the
maximal displacement is chosen the angle should be taken from the corresponding angle for
that feature. One could try alternatives such as taking the average, but this can only work if
all angles are in the same quadrant as opposing movements negate each other.

34 Chapter 4. Algorithmic approach

Prevent bad edge crossings. Because of the local nature of movement which is allowed by the
vertices most improvements for this metric only apply in certain special cases. Hence instead
of minimizing the number edge crossings the graph it would be a better approach to minimize
edge crossings near the edge heads or the direction of flow would become ambiguous otherwise.
This metric however coincides with vertex-edge distance so no additional optimizations need to
be applied. Due to the nature of certain maps bad situations can still occur, hence we still need
to solve problems regarding edge weaving and arrowhead obfuscation. This is a visualization
problem and is discussed in Section 4.5).

4.3.4 Termination requirement

A termination requirement is necessary to stop the iterative process when a good state has been
reached. One could take a constant number of iterations, but then there is hardly anything
useful to be said about the value of this number. Inspecting the cooling schedule shows that it
converges slowly to zero. We can use this to stop the process when all max1≤i≤n(mi) < ε for a
given constant ε. The value of ε can be taken as one pixel or slightly larger than that, because
after that many iterations all vertices can move only so little that any further improvements
are of no significance to the human eye.

4.4 Computation of the region boundaries

A proper definition of the regions bi has been left open so far. We could take the regions on
the base map themselves as a restriction. This however can lead to confusion if the vertices
end up on the boundaries of those regions, because the region to which the arrows are pointing
will become ambiguous. The regions are also arbitrary simple shapes leading to very unideal
optimizations, therefore one could try to work with a simple shape such as the largest inscribed
circle, square or convex polygon. For the latter we do not necessarily need a convex shape,
because the vertices move around in a discrete manner. Instead looking for a large polygon
with a high degree of fatness is more interesting, where a polygon’s fatness is defined by the
ratio between the smallest enclosing circle and the largest inscribed circle of a polygon. For all
of these shapes it goes that they are shrunken down by 10% to avoid any possibilities where
vertices may end up on the region’s boundary.

Largest inscribed circle Let P be a simple polygon in the plane with n vertices pi. The largest
inscribed circle LIC can be defined as the circle of which its center is a point v inside P for which
it holds that it is farthest away to all of the edges which P is composed of. If one would move
all the edges inwards perpendicular to their own respective axis with the additional requirement
that concave vertices turn into curves the last remaining point is v. The edges which are created
by the movement of vertices pi during this shrinking process generate the medial axis M(P) of
P . This medial axis has the property that the LIC is always on one of the vertices on M(P).
An example of this shrinking process, the corresponding medial axis and the LIC of a simple
polygon can be seen in Figure 4.5.

Chin et al. [7] show a method based on histograms to compute this medial axis in O(n) time
and thus it allows for calculation of the largest inscribed circle in linear time as well. In our
case an implementation is required for polygons with a relative small value of vertices (n < 50).
Because of this a slower, but more simple approach was taken to find the largest inscribed
circle which follows the method as described by Preparata [22]. Skipping the details which are
explained in the following paragraph general one can say that he computes the medial axis by
removing the segments in P one by one, because each event of three segments intersecting at
point c generates a vertex on the medial axis. Provided that the associated circle C with c as it

4.4. Computation of the region boundaries 35

Figure 4.5: The largest inscribed circle of a simple polygon by moving the edges inwards. The
figure on the right shows the medial axis as dotted lines generated by the vertices’ movement
during the shrinking process.

center and radius r being the distance to each of the intersecting segments must lie completely
inside P . To find the largest inscribed circle itself we only need to reduce polygon P to a single
vertex. The implementation sketched below uses the algorithm as shown in the same paper.
The only difference is that any additional steps to construct the medial axis itself are left out.

Given our vertices in sorted order around the polygon’s boundary one can store them as a
list of segments S. These segments are all the edges and also includes the concave vertices
separately which will represent the curves. If we have m concave vertices than the list will have
n + m items with m ≤ n − 3, hence the number of segments is linear with respect to n. We
now calculate for each triplet 〈Si, Sj , Sk〉 of consecutive segments their intersection point c and
store this in a list ordered by the radius of C (if there is no intersection take the radius as ∞).
This can be done in O(n log n) time. We pick the smallest intersection point c from the list and
check it against all edges in O(n) time. If there is an edge intersecting the circle at more than
one position we continue with the next event, otherwise we remove Sj and recalculate the new
values for the two neighboring segments. Storing these new values in the sorted list for each
event takes O(2 log n) time. This needs to be done until there is only one triplet left in the
list (i.e. only three segments) for which the last remaining intersection point, which is also the
center of LIC, can be found in constant time.

The algorithm requires O(n) time per iteration and there are O(n) iterations at most. This
yields a running time of O(n2), which is fine for the any arbitrary simple polygon with the
limited amount of vertices used in the implementation. An example of the final output where
all circles have been shrunken down by 10% can be seen in Figure 4.6.

Largest inscribed square From a computational point of view the largest inscribed axis-parallel
square LIS can be found using the same method as shown for the circle. The difference is that
instead of using the L2 Euclidean metric we now use the Chebyshev metric also referred to as
the L∞-metric. For two vertices v and w the metric is defined as d∞(v, w) = max(|vx − wx| +
|vy − wy|).

Largest inscribed polygon Apart from using circles and squares the use of the largest inter-
nal convex polygon inside simple polygon P is interesting enough to investigate. Chang and
Yap [6] show how to compute this convex polygon. They describe a polynomial algorithm, but
unfortunately the algorithm has a running time of O(n7) due to the difficulty of determining
which internal convex polygon has the largest area. Even for our simple polygons with at most
50 vertices it would be computationally too expensive to implement.

36 Chapter 4. Algorithmic approach

Figure 4.6: The set of largest inscribed circles shrunken down by 10% for all 48 states on the
continental USA.

Because our vertices move discretely the use of simple polygons should work out. The bound-
aries themselves can be taken for the regions, but it is not hard to imagine that certain shapes
can cause difficulties for our iterative process. To overcome this problem one could use the
notion of fatness for a polygon. The diameter of a simple polygon P is the diameter of the
smallest enclosing circle and the width can be defined as the diameter of the largest inscribed
circle. The ratio α between these two determines the fatness of the polygon, where a small α
represents a high degree of fatness. Damian [8] describes an algorithm that decomposes a given
simple polygon into set of α-fat polygons in O(m4n3) with m being the number of edges in the
visibility graph of P . Again, such an algorithm is not very practical to implement.

Therefore we resorted to drawing these polygons automatically for base maps used in our
experiments. The given polygons on the base map are shrunken down by the required distance
which yields a polygon which is 10% smaller than the original. This is done by moving all edges
inwards perpendicular to their own respective axes (see also Section 4.4). Any curve generated
by a concave vertex is removed and replaced by a straight edge which connects both endpoints.

4.5 Edge visualization

After the graph has been computed all edge segments are visualized one by one on top of the base
map. This can cause problems with some of the edge heads as they can get hidden underneath a
bypassing edge. The method as described in as treated in 2.4 can help minimizing this problem,
but it can never solve it completely. To make sure that an edge head always appears over the
blockading edge one can compute the intersection points the other edges have with this edge.
Then find the closest location to the arrowhead where the edge is visible over the entire width.
Cut the edge in two at that position to create two open polylines namely the head and the tail.
The tail can been left as it was, but the head needs to be raised in height to appear over the
edge which was obfuscating it. An example of this method is shown in Figure 4.7. This works
fine for most instance, but if an edge is completely covered than raising that entire edge can
cause problems for the other edges if the graph is very dense (see Figure 2.1 for an example
of this). Therefore the head is only raised if its length is smaller than that of the tail. This

4.6. Algorithm overview 37

Figure 4.7: Splitting the edge and raising the head of the edge.

method will also work if the edge is bidirectional, but now one has to take both heads into
account. For our problem this procedure is needed only once after the optimization process is
finished. If we were to simulate the optimization process in real-time then the current solution
would become too slow for any practical use. In that case one could use binary space partition
trees commonly abbreviated to BSP-trees. These BSP-trees partition the objects that need to
be drawn efficiently allowing a more fluent computation of the drawing order. BSP-trees are
described in detail in by Paterson and Yao [20] and de Berg et al. [10].

The problem of cyclic edge ordering where the edges are not nicely stacked up in order at
begin or endpoint can lead to situations which render certain edge heads invisible. An example
of this phenomenon is depicted in the left image of Figure 4.8. This can be solved using similar
strategy as in the previous case. We calculate the angles of all edges with respect to a given
reference, say the x-axis. Go through all edges (counter)clockwise and check whether each
consecutive edge of the same class is below the next. If this is not the case and if the angle
between the edges is fairly small we can raise that edge in similar to the method shown above.

Figure 4.8: On the left a situation where edge weaving occurs. Right shows the result after
ordering the edges in height clockwise w.r.t. their angles with a reference.

4.6 Algorithm overview

Here we present a simple version of the algorithm as it was presented above. This algorithm is
also the base for the implementation as to be used for our test cases. The pseudo-code our flow
mapper is listed in Figure 4.9.

38 Chapter 4. Algorithmic approach

Algorithm Optimize Flow Map(V, E, B, CF)
Input. A set of vertices V , a set of edges E, a set of regions B corresponding to
each of the vertices and a set of critical features CF
Output. A drawing of a flow map optimized for the three metrics
1. Compute mmax

i for all regions bi ∈ B
2. Set mi = mmax

i

3. while max1≤i≤n(mi) ≥ ε
4. for each vi ∈ V
5. Find closest edge ej to vi

6. Move vi perpendicular to angle of ej inside bi for vertex-edge dis-
tance

7. Find smallest angle of two neighboring edges incident to vi

8. Move vi, vj and vk inside bi, bj and bk for angular resolution
9. for each cfi ∈ CF
10. Find closest edge ej to cfi

11. Move vertices of edge ej inside their respective regions for feature-
edge distance

12. for each vi ∈ V
13. Apply cooling schedule on mi

14. draw map

Figure 4.9: Pseudo-code listing for the implementation of our flow mapper.

Chapter 5

Test and results

Now that we have defined how our algorithm operates we tested our algorithm on three maps
and with several different data sets to see how it all comes together in practice. The code for
the program was implemented in Java. The region data for the test maps, namely the provinces
of the Netherlands, 48 continental states of America and the 12 Federal bank districts of the US
are created by hand in a simple ASCII format which the program can read during run-time. For
some countries additional regions need to be specified which aren’t part of the actual regions,
but they do need to be displayed to make the map appear coherent and complete. Examples
of these regions are the Frisian Islands in the Netherlands. They are required in order to show
a complete and coherent picture of the area in question. To distinguish these regions from the
normal regions they are colored with a darker shade of grey in the mapper. All test sets run
on a 1.7 GHz Pentium IV laptop running under Windows XP. The execution time of most
optimizations including the visualization is less than 1 second. The only ones which take longer
are those for the polygonal regions as these regions allow greater movement of the vertices. The
output is shown on-screen as a raster image, but a save option is included which can store the
map as a vector graphic file along with the statistics in a separate file either in LATEX format
or plain text.

The notation is the same for all maps. At the top the resulting map is shown after completing
the optimization one complete with all labels and regions and another without to give a clear
view of the end result. The region type is denoted by one of the following abbreviations:

• (C) = Circular regions

• (S) = axis parallel Square regions

• (P) = Polygonal regions

For vertex-edge distance (V-E distance) we list the actual distance measured in pixels, plus the
end points of the edge e = {u, w} that realizes this distance. Critical feature-edge distance (C-E
distance) is enlisted in the same format. Angular resolution is listed as the smallest angle in
degrees for two edges with a common endpoint in a vertex together with the endpoints vj and
vk of those two edges. For each map we also listed some statistical data for a better overview
on vertex-edge distance and angular resolution in a separate table. For the sake of simplicity
all values receive symmetric arithmetic rounding in order to truncate them to one decimal.

In the following three sections we go through three different test cases. First, a map of the
Netherlands divided into the twelve provinces is optimized for a data set concerning the local
migration of people. The second test set is the continental American map divided into the 48
states. The data set applied here is the movement one 1 USD bank notes in 1976. For the
last data set we reused the data from the previous set, but now for the 12 Federal bank reserve
districts. For this case we only generated one map which we compare to the output of Tobler’s

39

40 Chapter 5. Test and results

mapper [29] using the exact same input. We conclude with a discussion of the results and our
findings in Section 5.4.

5.1 First test case: Flow map of the Netherlands

We have used two distinct test setups for the analysis of our application. The topic of the first
case is about local movement of people between the provinces of the Netherlands in 1996. The
data set corresponding to this test case can be obtained from the website of Centraal Bureau
voor de Statistiek (CBS) [5] and is also shown in Table A.1 in Appendix A.

To obtain the actual data set used for the edge set we applied the average of all values as the
threshold, and classified the remaining values on a scale from one to five corresponding to the
number of edge classes our implementation can draw. The base map was manually traced from
a bitmap and the coordinates were stored in a text file. Notice that the province of Zeeland
consists of several disjoint islands introducing another issue for determining the region to which
the vertices are confined to. This problem can be solved by determining the region that follows
the contours on the set of islands that form Zeeland. This region was traced manually and is
used for the computation of the regions to be associated with Zeeland.

5.1. First test case: Flow map of the Netherlands 41

5.1.1 Initial map

This is the flow map before applying the optimization algorithm. It shows all the regions and
the initial vertex configuration along with all the edges and the critical features marked by the
small dots. For these test setups the features appear on top of any edges to show where bad
situations may occur.

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 148.5 FR OV 8.9 ZH NH
FR 39.7 NH GR 9.4 ZH NH
OV 30.6 GR DR 33.9 DR ZH
DR 47.7 GR GE 4.6 UT ZH
FL 11.3 NH DR 24.4 UT ZH
GE 9.9 NB DR 9.4 ZH UT
UT 12.1 ZH GE 6.7 FL GR
NH 45.3 ZH FR 4.9 FL DR
ZH 129.5 NB NH 2.7 NB LI
ZE 212.1 GR ZH 45.8 NB ZH
NB 8.4 ZH LI 3.6 GE DR
LI 146.5 DR NB 3.1 NH UT

V-E dist. Angle

Smallest 8.4 2.7
Largest 212.1 45.8
Average 70.1 13.1
Median 42.5 7.8

C-E distance Overlap
cfi cfd u w cfo

1 3.5 ZH FR 0
3 0.0 NH NB 1
5 4.2 UT GR 0
6 0.0 GR ZH 1

Figure 5.1: Graph of local movements in the Netherlands in 1996 [5] prior to optimization with
circular regions along with the metrics and statistics for the map.

42 Chapter 5. Test and results

5.1.2 VE distance (C)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 150.5 FR OV 7.0 ZH NH
FR 59.3 NH GR 6.3 ZH NH
OV 56.7 GR DR 31.4 DR ZH
DR 41.6 GR GE 9.2 UT ZH
FL 32.4 NH DR 24.2 ZH NH
GE 73.5 DR NB 12.4 GR DR
UT 31.1 GE NH 16.5 FL GR
NH 40.3 ZH FR 8.7 LI NB
ZH 145.4 NB NH 7.3 OV DR
ZE 247.9 LI ZH 40.6 NB ZH
NB 41.1 ZH LI 18.1 DR GE
LI 230.4 GE NB 10.1 ZH NB

de(v∗) ar∗
Smallest 31.1 6.3
Largest 247.9 40.6
Average 95.9 16.0
Median 58.0 11.3

C-E distance Overlap
cfi cfd u w cfo

1 0.0 NB NH 1
3 0.0 ZH GE 1
6 0.0 OV FR 1

Figure 5.2: Figure 5.1 optimized for VE-distance (C).

5.1. First test case: Flow map of the Netherlands 43

5.1.3 VE distance and angular resolution (C)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 154.5 FR OV 10.3 ZH NH
FR 61.2 NH GR 10.9 ZH NH
OV 80.0 GR DR 36.5 DR ZH
DR 60.5 GR GE 6.8 UT ZH
FL 34.1 NH DR 33.0 ZH NH
GE 45.2 DR NB 13.0 UT NH
UT 29.5 ZH GE 14.3 FL GR
NH 50.5 ZH FR 10.1 FL DR
ZH 75.9 NB NH 9.0 DR UT
ZE 287.5 NB ZH 44.4 NB ZH
NB 50.0 LI ZH 9.5 DR GE
LI 189.2 GE NB 11.1 NH UT

de(v∗) ar∗
Smallest 29.5 6.8
Largest 287.5 44.4
Average 93.2 17.4
Median 60.9 11.0

C-E distance Overlap
cfi cfd u w cfo

1 0.0 NH NB 2
2 1.7 NH NB 0
3 1.9 LI NH 0
4 0.0 GE NB 1
6 6.7 GR UT 0

Figure 5.3: Figure 5.1 optimized for VE-distance and angular resolution (C).

44 Chapter 5. Test and results

5.1.4 VE distance, angular resolution and critical features (C)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 150.7 FR OV 8.8 UT ZH
FR 37.0 NH GR 16.3 ZH NH
OV 75.9 GR DR 34.9 DR ZH
DR 120.0 OV ZH 5.4 ZH UT
FL 26.7 GR ZH 24.2 UT ZH
GE 55.5 DR ZH 14.4 UT NH
UT 23.3 OV ZH 10.3 FL GR
NH 87.5 ZH FR 7.2 FR GR
ZH 117.9 NB NH 5.1 GR FL
ZE 225.1 ZH GR 34.2 NB ZH
NB 39.8 LI ZH 13.9 GE DR
LI 143.8 DR NB 6.1 NH UT

de(v∗) ar∗
Smallest 23.3 5.1
Largest 225.1 34.9
Average 91.9 15.1
Median 81.7 12.1

C-E distance Overlap
cfi cfd u w cfo

1 7.1 NB NH 0
3 7.4 ZH GE 0
4 7.6 LI GE 0
5 8.0 FR DR 0
6 8.0 GR UT 0

Figure 5.4: Figure 5.1 optimized for VE-distance, angular resolution and critical features (C).

5.1. First test case: Flow map of the Netherlands 45

5.1.5 VE distance (S)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 142.0 FR OV 7.0 ZH NH
FR 55.1 NH GR 5.9 ZH NH
OV 56.6 GR DR 26.2 DR ZH
DR 36.7 GR GE 9.7 UT ZH
FL 38.4 NH DR 24.3 ZH NH
GE 48.0 DR NB 10.8 GR DR
UT 29.9 ZH GE 12.3 FL GR
NH 37.3 ZH FR 8.4 FR GR
ZH 138.4 NB NH 5.9 OV DR
ZE 225.0 NB ZH 48.4 NB ZH
NB 41.6 LI ZH 10.1 DR GE
LI 170.9 GE NB 7.9 NH UT

de(v∗) ar∗
Smallest 29.9 5.9
Largest 225.0 48.4
Average 84.8 14.7
Median 51.5 9.9

C-E distance Overlap
cfi cfd u w cfo

1 0.0 NB NH 1
2 2.1 NH NB 0
3 0.0 UT ZH 2
4 0.0 NB GE 1
6 4.2 FR OV 0

Figure 5.5: Figure 5.1 optimized for VE-distance (S).

46 Chapter 5. Test and results

5.1.6 VE distance and angular resolution (S)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 81.3 FR OV 7.0 DR GE
FR 77.1 NH GR 10.3 ZH NH
OV 83.5 GR DR 36.6 DR ZH
DR 33.1 GR GE 8.4 UT ZH
FL 27.3 NH DR 35.6 ZH NH
GE 62.8 DR NB 12.1 UT NH
UT 32.2 GE NH 21.0 FL GR
NH 46.0 ZH FR 10.0 FL DR
ZH 89.2 NB NH 6.6 GR FL
ZE 299.6 NB ZH 46.1 NB ZH
NB 33.8 LI ZH 14.3 DR GE
LI 170.9 GE NB 10.1 NH UT

de(v∗) ar∗
Smallest 27.3 6.6
Largest 299.6 46.1
Average 86.6 18.2
Median 69.9 11.2

C-E distance Overlap
cfi cfd u w cfo

1 0.0 ZH FL 1
2 0.0 NB NH 1
3 2.3 LI NH 0
4 0.0 NB GE 1
5 3.8 UT GR 0
6 1.2 GR ZH 0

Figure 5.6: Figure 5.1 optimized for VE-distance and angular resolution (S).

5.1. First test case: Flow map of the Netherlands 47

5.1.7 VE distance, angular resolution and critical features (S)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 124.7 FR OV 7.0 DR GE
FR 74.8 NH GR 10.9 ZH NH
OV 82.2 GR DR 33.6 DR ZH
DR 40.9 GR GE 6.4 UT ZH
FL 30.1 NH DR 36.1 UT ZH
GE 40.8 DR NB 14.4 GR DR
UT 25.8 DR ZH 14.0 FL GR
NH 53.7 ZH FR 9.7 FL DR
ZH 114.6 NB NH 7.6 GR FL
ZE 270.0 NB ZH 46.8 NB ZH
NB 38.5 LI ZH 9.5 DR GE
LI 147.6 GE NB 7.0 NH UT

de(v∗) ar∗
Smallest 25.8 6.4
Largest 270.0 46.8
Average 87.0 16.9
Median 64.2 10.3

C-E distance Overlap
cfi cfd u w cfo

1 7.7 NB NH 0
3 6.1 UT ZH 0
4 7.0 DR NB 0
6 8.0 FR OV 0

Figure 5.7: Figure 5.1 optimized for VE-distance, angular resolution and critical features (S).

48 Chapter 5. Test and results

5.1.8 VE distance (P)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 193.1 FR OV 11.7 DR OV
FR 60.7 NH GR 7.3 OV DR
OV 42.1 FR DR 61.8 ZH FR
DR 113.4 OV ZH 6.5 NB UT
FL 41.9 GR ZH 27.2 GE UT
GE 68.9 DR NB 21.5 NH FL
UT 41.8 NB DR 20.8 FL GR
NH 76.5 ZH FR 7.3 UT LI
ZH 75.9 NB NH 6.3 GR FL
ZE 202.6 NB ZH 38.1 NB ZH
NB 63.0 LI ZH 7.9 UT DR
LI 332.8 GE NB 5.7 NH UT

de(v∗) ar∗
Smallest 41.8 5.7
Largest 332.8 61.8
Average 108.5 18.5
Median 72.4 9.8

C-E distance Overlap
cfi cfd u w cfo

1 4.0 GR ZH 0
2 0.0 NB UT 1
3 0.0 UT ZH 1
4 0.0 GE NB 1
5 3.2 GR ZH 0

Figure 5.8: Figure 5.1 optimized for VE-distance (P).

5.1. First test case: Flow map of the Netherlands 49

5.1.9 VE distance and angular resolution (P)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 109.1 FR OV 14.0 DR GE
FR 49.4 NH GR 19.7 ZH NH
OV 91.3 GR DR 32.6 DR ZH
DR 67.1 GR GE 10.1 FL NH
FL 39.0 ZH OV 41.4 GE UT
GE 81.0 DR NB 10.9 NH FL
UT 26.8 ZH GE 23.1 FL GR
NH 74.5 ZH FR 13.1 GE UT
ZH 54.3 NB NH 9.2 FL OV
ZE 307.5 NB ZH 41.4 NB ZH
NB 76.2 LI ZH 14.5 ZH NH
LI 146.3 GE NB 11.3 NH UT

de(v∗) ar∗
Smallest 26.8 9.2
Largest 307.5 41.4
Average 93.5 20.1
Median 75.3 14.2

C-E distance Overlap
cfi cfd u w cfo

1 0.0 NB NH 1
3 1.2 LI NH 0
4 1.5 GE NB 0
6 5.9 GR UT 0

Figure 5.9: Figure 5.1 optimized for VE-distance and angular resolution (P).

50 Chapter 5. Test and results

5.1.10 VE distance, angular resolution and critical features (P)

V-E distance Smallest Angle
vi de(vi) v w ari vj vk

GR 103.3 FR OV 11.3 DR GE
FR 34.3 NH GR 24.1 ZH NH
OV 82.0 GR DR 33.2 FR GR
DR 53.3 GR GE 10.2 UT ZH
FL 34.8 ZH OV 43.4 UT ZH
GE 102.5 DR NB 11.1 NH FL
UT 31.8 ZH GE 13.4 FL GR
NH 79.3 ZH FR 9.0 UT LI
ZH 90.1 NB NH 6.9 FL OV
ZE 318.6 NB ZH 37.7 NB ZH
NB 42.1 LI ZH 19.1 DR GE
LI 160.7 GE NB 8.3 NH UT

de(v∗) ar∗
Smallest 31.8 6.9
Largest 318.6 43.4
Average 94.4 19.0
Median 80.7 12.4

C-E distance Overlap
cfi cfd u w cfo

1 3.5 OV ZH 0
3 4.6 NB UT 0
4 6.0 GE NB 0
6 8.0 GR UT 0

Figure 5.10: Figure 5.1 optimized for VE-distance, angular resolution and critical features (P).

5.2. Second test case: Flow map of the USA 51

5.2 Second test case: Flow map of the USA

The second case analysis is about the movement of 1-US-Dollar banknotes between the individ-
ual counties of the USA in 1976. The data sets used for the American maps originate from the
Excel tables that come along W. Tobler’s implementation of the mapper [29]. Using the same
method as for the Dutch data input the set of edges is obtained for the five distinct width classes.
For this map we only work with the 48 states on the mainland of America also referred to as
the continental United States. Because a table for the properties of all regions would become
too large to display nicely, we’ve opted to show the vertex-edge distance and angular resolution
for the vertices which have any edges attached to them, and we only show the complete map
with the interior regions and all of its labels. All state names are abbreviated to match the two
character United States Postal Service (USPS) codes [26]. The input table after applying the
median as threshold can be found in Appendix B in Table B.1.

52 Chapter 5. Test and results

5.2.1 Initial map

de(vi) ari

vi dist. u w angle vj vk

AZ 24.3 TX CA N/A - -
CA 257.3 OR WA 1.2 CO IL
CO 3.2 CA IL 117.1 CA TX
CT 18.2 FL MA N/A - -
FL 134.3 GA CA 1.3 NC NJ
GA 12.4 IL FL 101.0 CA NY
IL 54.3 CA VA 43.5 IN FL
IN 34.4 CA VA N/A - -
LA 0.0 CA FL N/A - -
MD 0.0 NY FL N/A - -
MA 46.4 NY CT 73.0 FL NY
MI 0.0 NY CA N/A - -
NV 51.8 OR CA N/A - -
NJ 20.1 NY FL 65.2 FL PA
NY 69.8 PA NJ 3.3 NC FL
NC 0.0 NY FL 22.1 VA NY
OH 22.9 MI FL N/A - -
OK 19.3 CA GA N/A - -
OR 1.9 WA CA 175.6 CA WA
PA 41.9 GA NY 37.9 NY NJ
SC 3.6 FL PA N/A - -
TX 61.3 FL CA 18.3 LA FL
VA 12.4 FL NY 20.5 NY MD
WA 112.0 CA OR 3.0 CA OR
WI 71.7 CA NY N/A - -

de(v∗) ar∗
Smallest 0.0 1.2
Largest 257.3 175.6
Average 42.6 27.3
Median 22.9 30.0

C-E distance Overlap
cfi cfd u w cfo

1 0.0 CA WA 1
3 0.0 CA AZ 1
5 0.0 IL CA 1

15 0.0 TX CO 1
23 0.0 CA IL 1
27 2.7 CA IL 0
29 0.0 CA NY 1
38 0.0 IL FL 1
43 3.5 OH FL 0
44 4.5 FL MI 0
48 4.6 FL PA 0
49 6.5 NY GA 0
50 0.0 FL NY 1
51 0.0 NY FL 2
52 5.5 NY FL 0
53 3.3 FL NJ 0
54 0.0 NJ NY 1
55 2.0 MA NY 0
56 0.0 NY CT 1
57 2.6 NY MA 0
58 4.6 FL MA 0

Figure 5.11: Movement of 1 USD bank notes between each of the 48 states in the United States
of America prior to optimization with circular regions along with the metrics and statistics for
the map.

5.2. Second test case: Flow map of the USA 53

5.2.2 VE distance (C)

de(vi) ari

vi dist. u w angle vj vk

AZ 27.7 TX CA N/A - -
CA 303.7 OR WA 4.5 CO NY
CO 26.4 CA NY 94.3 CA TX
CT 24.0 NY NJ N/A - -
FL 161.9 GA CA 2.9 VA NC
GA 32.3 FL IL 103.8 CA NY
IL 78.6 NY CA 46.8 TX CA
IN 37.8 IL FL N/A - -
LA 35.2 CA FL N/A - -
MD 8.5 NY FL N/A - -
MA 48.9 NY CT 87.7 FL NY
MI 49.8 NY CA N/A - -
NV 86.6 CA CO N/A - -
NJ 28.7 NY FL 73.2 PA NY
NY 95.7 FL MA 4.1 FL NC
NC 12.3 VA FL 28.9 VA NY
OH 51.2 MI FL N/A - -
OK 64.3 CA GA N/A - -
OR 96.8 WA CA 122.2 CA WA
PA 57.0 GA NY 43.9 NY NJ
SC 11.0 OH FL N/A - -
TX 117.9 FL CA 14.9 OK IL
VA 20.2 NY GA 17.7 NC FL
WA 162.1 CA OR 38.4 CA OR
WI 96.8 CA NY N/A - -

de(v∗) ar∗
Smallest 8.5 2.9
Largest 303.7 122.2
Average 69.4 27.3
Median 49.8 41.1

C-E distance Overlap
cfi cfd u w cfo

3 0.0 CA GA 1
5 0.9 NY CA 0
9 0.8 CA VA 0

23 0.0 IL CA 1
25 0.5 GA CA 0
27 0.0 IL CA 1
29 7.8 NY CA 0
30 3.2 GA CA 0
35 5.9 VA CA 0
37 6.6 FL MI 0
40 7.5 FL GA 0
42 4.0 FL MI 0
44 0.0 MI FL 1
45 0.0 OH FL 1
46 7.1 OH FL 0
49 6.9 NY VA 0
50 0.0 FL NY 1
51 0.0 NY FL 1
52 5.8 NY FL 0
55 0.2 NY CT 0
56 6.8 NY NJ 0
59 5.7 NY MA 0

Figure 5.12: Figure 5.11 optimized for VE-distance (C).

54 Chapter 5. Test and results

5.2.3 VE distance and angular resolution (C)

de(vi) ari

vi dist. u w angle vj vk

AZ 44.2 TX CA N/A - -
CA 274.6 OR WA 3.9 VA CO
CO 26.8 VA CA 121.5 TX CA
CT 26.1 NY NJ N/A - -
FL 168.2 GA CA 3.3 VA NC
GA 37.4 FL IL 101.7 CA NY
IL 69.4 CA VA 51.9 TX CA
IN 49.1 FL MI N/A - -
LA 30.4 CA FL N/A - -
MD 10.2 NY FL N/A - -
MA 50.4 NY CT 76.4 FL NY
MI 12.0 CA NY N/A - -
NV 84.9 OR CA N/A - -
NJ 33.0 FL MA 62.9 PA NY
NY 79.5 PA NJ 3.8 FL NC
NC 13.0 VA FL 23.6 VA NY
OH 46.2 MI FL N/A - -
OK 63.2 VA CA N/A - -
OR 100.3 WA CA 118.7 CA WA
PA 55.7 GA NY 41.6 NY NJ
SC 9.9 FL OH N/A - -
TX 134.8 FL CA 23.9 IL LA
VA 18.3 NY GA 12.4 NC FL
WA 166.0 CA OR 38.9 CA OR
WI 98.5 CA NY N/A - -

de(v∗) ar∗
Smallest 9.9 3.3
Largest 274.6 121.5
Average 68.1 27.4
Median 49.1 40.3

C-E distance Overlap
cfi cfd u w cfo

3 6.8 FL CA 0
5 0.0 CA VA 1
9 2.5 CO CA 0

11 3.5 CA NY 0
18 5.5 CA IL 0
22 2.9 CA IL 0
25 3.4 IL TX 0
27 3.1 IL CA 0
29 7.1 NY CA 0
45 5.2 FL OH 0
46 0.2 OH FL 0
50 0.0 FL NY 1
51 0.0 NY FL 2
52 7.4 NY FL 0
54 6.2 NJ NY 0
57 7.3 MA NY 0
59 4.9 NY MA 0

Figure 5.13: Figure 5.11 optimized for VE-distance and angular resolution (C).

5.2. Second test case: Flow map of the USA 55

5.2.4 VE distance, angular resolution and critical features (C)

de(vi) ari

vi dist. u w angle vj vk

AZ 48.6 TX CA N/A - -
CA 278.7 OR WA 3.8 NY IL
CO 24.9 IL CA 114.9 CA TX
CT 24.4 NY NJ N/A - -
FL 189.8 GA CA 2.1 NC MA
GA 28.0 FL MI 106.6 CA NY
IL 46.2 NY CA 44.6 IN FL
IN 63.5 FL MI N/A - -
LA 50.5 CA FL N/A - -
MD 4.3 NY FL N/A - -
MA 47.7 NY CT 86.4 FL NY
MI 40.1 NY CA N/A - -
NV 86.6 CA NY N/A - -
NJ 31.4 NY NC 71.3 PA NY
NY 90.9 PA NJ 3.1 FL VA
NC 10.3 NJ FL 41.0 FL SC
OH 24.1 MI FL N/A - -
OK 38.8 CA GA N/A - -
OR 98.2 WA CA 120.0 CA WA
PA 60.0 GA NY 41.1 NY NJ
SC 16.2 PA FL N/A - -
TX 113.4 FL CA 20.8 OK IL
VA 9.5 FL NY 19.4 NY MD
WA 164.4 CA OR 38.5 CA OR
WI 95.5 CA NY N/A - -

de(v∗) ar∗
Smallest 4.3 2.1
Largest 278.7 120.0
Average 67.4 28.5
Median 47.7 41.0

C-E distance Overlap
cfi cfd u w cfo

3 1.0 FL CA 0
5 1.1 CO CA 0

11 5.5 CA NY 0
18 0.0 IL CA 1
22 7.3 IL CA 0
35 0.7 CA VA 0
38 7.1 IL FL 0
43 3.2 FL OH 0
44 5.0 FL MI 0
45 7.6 CA VA 0
46 7.6 GA NY 0
49 7.5 VA NY 0
50 0.0 FL NY 1
51 0.0 NY FL 1
52 0.4 NY NC 0
55 5.5 NY CT 0
56 7.5 NY NJ 0
57 4.5 MA NY 0

Figure 5.14: Figure 5.11 optimized for VE-distance, angular resolution and critical features (C).

56 Chapter 5. Test and results

5.2.5 VE distance (S)

de(vi) ari

vi dist. u w angle vj vk

AZ 54.3 TX CA N/A - -
CA 228.2 OR WA 2.6 VA CO
CO 18.0 VA CA 114.9 TX CA
CT 25.0 FL MA N/A - -
FL 138.0 GA CA 2.4 NC NY
GA 22.8 FL IL 99.8 CA NY
IL 79.7 NY CA 48.4 TX CA
IN 55.8 FL MI N/A - -
LA 9.6 FL CA N/A - -
MD 10.4 NY FL N/A - -
MA 52.4 NY CT 81.8 FL NY
MI 54.7 NY CA N/A - -
NV 70.6 OR CA N/A - -
NJ 30.4 NY FL 67.8 PA NY
NY 94.0 FL MA 2.6 FL NC
NC 8.0 FL NY 31.9 FL SC
OH 41.6 MI FL N/A - -
OK 61.4 VA CA N/A - -
OR 89.2 WA CA 128.9 CA WA
PA 58.4 OH FL 47.8 NY NJ
SC 10.6 OH FL N/A - -
TX 123.8 FL CA 18.8 OK IL
VA 19.8 NC NY 28.4 NY MD
WA 205.1 CA OR 27.0 CA OR
WI 84.6 CA NY N/A - -

de(v∗) ar∗
Smallest 8.0 2.4
Largest 228.2 128.9
Average 65.8 28.1
Median 54.7 39.8

C-E distance Overlap
cfi cfd u w cfo

3 4.4 CA TX 0
5 1.5 VA CA 0

11 0.0 CA NY 1
18 4.6 CA IL 0
19 6.1 CA NY 0
22 3.3 CA IL 0
25 5.0 GA CA 0
27 1.8 IL CA 0
30 3.0 GA CA 0
35 5.4 VA CA 0
38 1.9 FL IL 0
40 6.5 FL GA 0
45 0.6 CA VA 0
46 1.8 OH FL 0
49 1.1 NY VA 0
50 0.0 FL NY 1
51 0.0 NY FL 1
52 7.1 NY FL 0
54 5.9 NJ NY 0
55 3.7 NY CT 0
59 5.2 NY MA 0

Figure 5.15: Figure 5.11 optimized for VE-distance (S).

5.2. Second test case: Flow map of the USA 57

5.2.6 VE distance and angular resolution (S)

de(vi) ari

vi dist. u w angle vj vk

AZ 76.2 TX CA N/A - -
CA 219.4 OR WA 4.7 GA FL
CO 33.1 VA CA 128.0 TX CA
CT 25.2 FL MA N/A - -
FL 144.7 GA CA 2.6 NC NY
GA 18.2 FL IL 99.9 CA NY
IL 75.2 CA VA 45.8 IN FL
IN 58.7 IL FL N/A - -
LA 25.5 FL CA N/A - -
MD 11.3 NY FL N/A - -
MA 52.4 NY CT 81.8 FL NY
MI 56.7 NY CA N/A - -
NV 69.2 OR CA N/A - -
NJ 32.2 FL MA 66.2 PA NY
NY 95.7 PA NJ 2.7 FL NC
NC 8.5 FL NY 31.5 FL SC
OH 46.1 FL PA N/A - -
OK 50.3 CA GA N/A - -
OR 89.1 WA CA 126.6 CA WA
PA 58.8 GA NY 47.7 NY NJ
SC 10.2 FL PA N/A - -
TX 121.3 FL CA 29.0 CO OK
VA 22.2 NY GA 30.2 NC FL
WA 196.2 CA OR 28.3 CA OR
WI 77.6 CA NY N/A - -

de(v∗) ar∗
Smallest 8.5 2.6
Largest 219.4 128.0
Average 67.0 28.7
Median 56.7 38.6

C-E distance Overlap
cfi cfd u w cfo

3 4.1 TX CA 0
5 6.5 CO CA 0

11 6.8 NY CA 0
15 5.4 CO TX 0
18 0.0 IL CA 1
19 0.0 CA NY 1
22 0.0 IL CA 1
25 0.0 IL TX 1
28 1.2 CA NY 0
29 7.1 IL WI 0
38 0.3 IL FL 0
44 7.5 FL MI 0
45 4.9 FL OH 0
46 1.7 OH FL 0
49 4.3 NY VA 0
50 0.0 FL NY 1
51 0.0 NY FL 1
54 5.0 NJ NY 0
55 4.7 NY CT 0
59 5.3 NY MA 0

Figure 5.16: Figure 5.11 optimized for VE-distance and angular resolution (S).

58 Chapter 5. Test and results

5.2.7 VE distance, angular resolution and critical features (S)

de(vi) ari

vi dist. u w angle vj vk

AZ 78.9 TX CA N/A - -
CA 221.8 OR WA 4.6 VA CO
CO 31.6 VA CA 129.5 TX CA
CT 12.9 NY NJ N/A - -
FL 136.4 GA CA 2.0 NC MA
GA 3.9 MI FL 95.2 CA NY
IL 62.0 NY CA 29.1 IN FL
IN 38.5 IL FL N/A - -
LA 39.0 CA FL N/A - -
MD 9.5 NY NC N/A - -
MA 68.9 NY CT 77.2 FL NY
MI 44.0 NY CA N/A - -
NV 68.4 OR CA N/A - -
NJ 31.4 CT NY 60.9 PA NY
NY 87.1 PA NJ 3.5 VA GA
NC 8.2 NJ FL 35.9 FL SC
OH 56.4 MI FL N/A - -
OK 41.9 CA GA N/A - -
OR 88.3 WA CA 127.3 CA WA
PA 63.4 NY CA 45.8 NY NJ
SC 10.5 PA FL N/A - -
TX 97.6 FL CA 28.0 OK IL
VA 11.7 NY GA 27.8 NY MD
WA 195.4 CA OR 28.2 CA OR
WI 81.0 CA NY N/A - -

de(v∗) ar∗
Smallest 3.9 2.0
Largest 221.8 129.5
Average 63.5 27.8
Median 56.4 32.5

C-E distance Overlap
cfi cfd u w cfo

3 5.3 TX CA 0
5 4.8 CO CA 0

11 3.4 NY CA 0
18 4.9 IL CA 0
19 0.4 CA NY 0
22 6.6 IL CA 0
25 7.8 IL TX 0
28 4.8 CA NY 0
29 7.6 IL WI 0
35 7.9 FL IL 0
39 5.2 MI FL 0
43 7.2 OH FL 0
45 7.4 VA CA 0
49 0.1 FL NY 0
50 0.0 NY FL 1
51 0.0 VA MD 1
54 2.4 NJ NY 0
56 7.1 NY CT 0
57 6.9 MA NY 0
59 8.0 NY MA 0

Figure 5.17: Figure 5.11 optimized for VE-distance, angular resolution and critical features (S).

5.2. Second test case: Flow map of the USA 59

5.2.8 VE distance (P)

de(vi) ari

vi dist. u w angle vj vk

AZ 27.4 VA CA N/A - -
CA 312.5 TX CO 5.3 IL VA
CO 68.8 CA NY 87.5 CA TX
CT 29.3 FL MA N/A - -
FL 206.4 GA CA 3.3 VA NY
GA 37.1 FL IL 100.1 CA NY
IL 69.4 CA VA 49.4 TX CA
IN 51.6 FL MI N/A - -
LA 44.3 GA CA N/A - -
MD 14.9 FL NJ N/A - -
MA 53.7 NY CT 91.0 FL NY
MI 52.7 CA NY N/A - -
NV 73.3 WA CA N/A - -
NJ 36.1 FL MA 59.9 PA NY
NY 111.1 FL MA 4.3 GA NC
NC 18.2 FL MI 19.9 NY VA
OH 38.6 FL PA N/A - -
OK 75.1 VA CA N/A - -
OR 135.7 CA WA 114.5 CA WA
PA 42.9 OH FL 56.7 NY NJ
SC 13.6 FL VA N/A - -
TX 130.8 FL CA 15.3 OK IL
VA 19.2 FL NY 40.5 NC CA
WA 232.0 OR CA 38.3 OR CA
WI 114.7 CA NY N/A - -

de(v∗) ar∗
Smallest 13.6 3.3
Largest 312.5 114.5
Average 80.4 27.4
Median 52.7 44.9

C-E distance Overlap
cfi cfd u w cfo

3 0.0 CA VA 2
5 1.1 CO CA 0
9 0.0 IL CA 1

18 0.0 NY CA 1
23 0.5 CA IL 0
26 0.0 IL TX 1
27 0.0 CA IL 1
29 0.2 NY CA 0
40 4.6 GA CA 0
43 0.0 CA VA 1
44 1.0 NC FL 0
46 3.6 FL OH 0
47 7.8 FL PA 0
48 1.5 NY NC 0
49 0.0 NY VA 1
50 0.0 FL NY 1
51 0.0 NY FL 1
54 0.0 NJ NY 1
55 5.8 NY CT 0
59 2.1 NY MA 0

Figure 5.18: Figure 5.11 optimized for VE-distance (P).

60 Chapter 5. Test and results

5.2.9 VE distance and angular resolution (P)

Figure 5.19: Figure 5.11 optimized for VE-distance and angular resolution (P). Statistics on
page 61.

5.2. Second test case: Flow map of the USA 61

de(vi) ari

vi dist. u w angle vj vk

AZ 36.6 CO CA N/A - -
CA 275.2 TX CO 5.5 IL VA
CO 130.4 CA NY 72.2 CA TX
CT 29.9 NY NJ N/A - -
FL 134.6 GA CA 3.4 VA PA
GA 12.0 FL IL 105.9 CA NY
IL 63.4 CA VA 47.3 TX CA
IN 62.8 IL FL N/A - -
LA 12.7 FL CA N/A - -
MD 10.9 NJ FL N/A - -
MA 62.1 NY CT 59.6 NY FL
MI 103.0 CA NY N/A - -
NV 34.1 WA CA N/A - -
NJ 28.0 FL MA 67.8 PA NY
NY 85.2 PA NJ 4.0 GA VA
NC 20.7 FL NY 43.6 FL SC
OH 46.4 MI FL N/A - -
OK 51.6 CA GA N/A - -
OR 162.3 CA WA 106.1 CA WA
PA 45.5 VA NY 46.2 NY NJ
SC 10.8 MI FL N/A - -
TX 139.4 FL CA 25.3 OK IL
VA 15.6 OH FL 36.6 NY MD
WA 232.0 OR CA 47.2 OR CA
WI 160.5 CA NY N/A - -

de(v∗) ar∗
Smallest 10.8 3.4
Largest 275.2 106.1
Average 78.6 26.8
Median 51.6 46.7

C-E distance Overlap
cfi cfd u w cfo

2 6.2 CA WA 0
4 0.0 WA CA 1

15 0.7 IL CA 0
16 6.7 CA IL 0
17 0.6 CA IL 0
23 0.0 CA NY 1
24 2.9 VA CA 0
26 2.7 TX IL 0
27 6.3 NY CA 0
28 7.6 IL WI 0
29 4.1 IL WI 0
34 0.7 CA VA 0
35 3.7 IL FL 0
37 0.8 NY CA 0
40 4.2 GA CA 0
44 1.2 FL MI 0
45 2.1 FL OH 0
46 5.5 OH FL 0
49 1.8 NC NY 0
50 0.0 NY FL 1
51 0.0 NY FL 1
52 6.4 NJ PA 0
53 1.7 NJ PA 0
54 0.0 NY NJ 1
55 3.6 MA NY 0
56 0.0 NY CT 1
57 0.8 MA NY 0
58 5.6 FL MA 0
59 4.1 FL MA 0

62 Chapter 5. Test and results

5.2.10 VE distance, angular resolution and critical features (P)

de(vi) ari

vi dist. u w angle vj vk

AZ 11.8 CA FL N/A - -
CA 278.0 TX CO 4.2 GA AZ
CO 53.5 CA NY 92.3 CA TX
CT 36.9 MA NY N/A - -
FL 165.9 GA CA 3.3 PA VA
GA 29.4 FL MI 103.8 CA NY
IL 56.2 CA VA 55.5 TX CA
IN 69.0 FL MI N/A - -
LA 34.4 CA FL N/A - -
MD 15.4 FL MA N/A - -
MA 68.3 NY CT 66.0 NY FL
MI 73.0 CA NY N/A - -
NV 65.8 WA CA N/A - -
NJ 38.0 FL MA 34.8 PA NY
NY 61.0 PA NJ 3.8 VA NC
NC 13.1 FL PA 14.0 NY VA
OH 35.5 MI FL N/A - -
OK 33.5 VA CA N/A - -
OR 139.3 CA WA 108.6 CA WA
PA 33.8 GA NY 57.2 NY NJ
SC 7.8 FL OH N/A - -
TX 187.9 FL CA 16.6 IL LA
VA 12.0 FL NY 25.6 FL NC
WA 232.0 OR CA 39.4 OR CA
WI 127.2 CA NY N/A - -

de(v∗) ar∗
Smallest 7.8 3.3
Largest 278.0 108.6
Average 75.1 25.0
Median 53.5 37.1

C-E distance Overlap
cfi cfd u w cfo

3 7.0 CA TX 0
5 0.0 CA NY 1
9 0.2 CA VA 0

18 3.6 NY CA 0
29 3.8 IL WI 0
31 8.0 CA GA 0
35 7.0 IL FL 0
42 4.0 FL MI 0
43 2.3 FL OH 0
44 1.5 MI FL 0
47 7.0 FL PA 0
48 1.7 NC NY 0
53 7.9 NJ PA 0
55 5.0 NY MA 0
58 8.0 MA NY 0

Figure 5.20: Figure 5.11 optimized for VE-distance, angular resolution and critical features (P).

5.3. Comparison to Tobler’s flow map 63

5.3 Comparison to Tobler’s flow map

Test results in this section use the same input as the flow mapping program by Tobler does. The
input set is again the movement of 1 USD bank notes in America, but now map is divided into
regions as defined by the 12 Federal Reserve Banks. To compare the results the final pictures
are shown in Figures 5.22 and 5.23. For a fair comparison the input table from the actual
mapper itself has been reused. The input set can be found in Table C.1 in Appendix C. Instead
of showing all optimization we chose to show only the optimization for all three metrics with
polygon regions (Figure 5.21).

5.3.1 VE distance, Angular Resolution and Critical Features (P)

de(vi) ari

vi dist. u w angle vj vk

BO 83.8 NY RI 14.6 RI AT
NY 95.0 RI BO 10.8 AT PH
PH 19.6 NY AT 40.5 RI AT
CL 33.1 CH PH 12.3 LO SF
RI 56.7 BO AT 11.5 CH CL
AT 48.0 RI SF 6.5 NY RI
CH 118.8 SF NY 8.2 LO DA
LO 26.6 SF RI 34.5 SF KC
MI 210.7 KC CH 37.2 CH KC
KC 119.4 CH MI 38.8 CH LO
DA 251.3 AT SF 27.9 SF KC
SF 186.7 DA KC 3.9 LO RI

de(v∗) ar∗
Smallest 19.6 3.94
Largest 251.3 40.46
Average 103.9 20.56

C-E distance Overlap
cfi cfd u w cfo

1 8.0 SF MI 0
6 5.6 CL SF 0
7 7.7 CH AT 0
8 8.0 AT NY 0

Figure 5.21: Movement of 1 USD bank notes between the 12 Federal Bank Reserve districts.

64 Chapter 5. Test and results

Figure 5.22: Data set from Table C.1 mapped by Tobler’s flow mapper [29].

Figure 5.23: Data set from Table C.1 mapped by our implementation.

5.4. Discussion 65

5.4 Discussion

The optimization of the maps are implemented as following. During each iteration each vertex is
moved according to the methods as described in Section 4.3.3. If no better position can be found
the vertex remains in its original location. Vertices are moved in an arbitrary but fixed order,
first for vertex-edge distance and then for angular resolution. Once all vertices have been moved
accordingly we try to improve the situation for the critical features, if required. This is done
by moving the closest edge for each of feature on the map away for it. The distance the edge
moves away from the edge depends on the shortest distance between the feature and the edge.
The larger the distance the less the edge will move. For all movements it goes that the vertices
can move in both x- and y-directions at the same time. During early stages of our research
we also considered moving the vertices only by the x- or y-component in an alternating way.
The maps generated by this method under the same circumstances as the normal optimizations
always yielded less satisfying results. Hence we dropped this method of optimizing altogether.

Before going into detail for each test set it can be noted that because of the restriction certain
areas on the map are always the bottleneck. For vertices in the center of the map it holds that
optimizing vertex-edge distance can be difficult. A vertex near the boundary of the map only
needs to move away from the center to get farther away from all the edges in the graph. For
angular resolution the converse is true. Any vertex near the boundary of the map with more
than a few incoming edges will yield the smallest angle in almost any case, whereas vertices
located in the center of the map have a near-optimal value.

The optimization for vertex-edge distance by itself got stuck at local minima in certain situ-
ations, because vertices can only move away from edges and not the other way around. If we
were to compute the contribution of all the forces exerted by the edges the algorithm would
become much slower, therefore it was chosen to compromise this by moving only the edge (and
thus its associated vertices) which is closest to any of the vertices. By repeating this process
every iteration it improves the minimal vertex-edge distance metric significantly. It can however
still get stuck in local minima for certain cases. Even though the vertices move around in the
region in a discrete manner they can get stuck in non-optimal locations for the larger polygonal
regions. This can be partly attributed to the fact that smaller regions have a smaller search
space and therefore it is easier to optimize the vertex’s locations. Also the less a vertex moves
around the less its environment will be affected by the movement.

There is however more to say about the quality of the maps than comparing the metrics by
themselves. Apart from the numbers the visual aspect itself is at least as significant. Therefore
we split the discussion in separate parts, one for the metrics and one for visual appearance.
Afterwards we give a complete overview.

5.4.1 Metrics

If we examine the criteria for the Dutch map with the data set considered in Section 5.1 shows
that the map is reasonably dense and spread out evenly. The values for the smallest and
average vertex-edge distance and angular resolution for all maps are shown in Table 5.1 for a
quick overview. This test set has the property of generating the output as one would expect.
Further experiments with other data sets, which we don’t report in detail, confirm this behavior
as described below. Optimizing for only vertex-edge distance naturally yields the best results
for that metric. If we include the other metrics angular resolution goes up as well as the critical
feature-edge distance, but this goes partly at the expense of vertex-edge distance. However
because the updates occur only locally the differences are not very dramatic for circles and
squares. The polygonal regions do exhibit significant differences as this type of region allows
more movement for the vertices. This explains why the absolute differences are larger compared
to the other region types. Purely based on the metrics for the minimum the optimization for all

66 Chapter 5. Test and results

three metrics with polygonal regions yield the best results. The same can be concluded when
comparing the average values. The map as depicted in Figure 5.10 has the best appearance if
we trade-off all three metrics.

Optimization type Smallest Average

Region VE. Ang. CF. de(v∗) ar∗ de(v∗) ar∗
- 8.4 2.7 71.9 15.1

(C) X 31.1 6.3 95.9 16.0
(C) X X 29.5 6.8 93.2 17.4
(C) X X X 23.3 5.1 91.9 15.1
(S) X 29.9 5.9 84.8 14.7
(S) X X 27.3 6.6 86.6 18.2
(S) X X X 25.8 6.4 87.0 16.9
(P) X 41 .8 5.7 108 .5 18.5
(P) X X 26.8 9 .2 93.5 20 .1
(P) X X X 31.8 6.9 94.4 19.0

Table 5.1: Comparison table of the smallest and average values of the vertex-edge distance and
angular resolution metrics for each map of the first test set used in Section 5.1.

For the American test set up in Section 5.2 the story goes quite differently. This data set
has two extremely dense regions (namely Florida and California) and the edge from New York
to Florida is wide enough to completely covers of the regions of the smaller states Maryland,
North Carolina and Virginia. This area is clearly the biggest issue for this map. Next to that
this map also has 59 critical features of which most are located near the already dense looking
east coast. On the other hand 23 states on the map do not even have a single edge pointing to
them because of the threshold applied to the data set.

Comparing the metrics as shown in Table 5.1 we notice that the differences are quite small
apart from the trade-off between the decrease in the number of critical features-edge distance
and vertex-edge distance. This can be observed best by comparing the maps of Figure 5.19 and
Figure 5.20. The first one has 29 features within the 8 pixel range and the latter has 15 features
within the same range, of which only 5 are at very close range (3 pixels or less).

That our optimization has some difficulties with certain local minima can be noticed if we
compare the minimal vertex-edge distance of the maps with circular regions. Improving only
vertex-edge distance resulted in a worse map compared to one which also includes angular
resolution. Another noticeable difference is that the average value for angular resolution is
worse for polygonal regions than for the other two region types. If we compare all values with
equal weight, the polygonal regions are still, but only slightly, in the advantage. The best map
based on the overall comparison of all three metrics is the map as shown in Figure 5.20, which
is the polygonal region map optimized for all three metrics.

5.4.2 Visual appearance

For all settings it holds that the maps that are only optimized for vertex-edge distance tend
to look more dense than the ones which improve other metrics as well. This makes sense as
vertex-edge distance optimization increases the length of its the associated edges. If any of
these edges is in highest classes, the edge will appear very dominantly on the map. When we
include angular resolution, the result looks much more compact (e.g. just compare the situation
of Limburg for Figures 5.8 and 5.9). As most maps have less vertices in the center than near
the border optimization of the angular resolution metric implies that the vertices move inward
towards the center.

5.4. Discussion 67

Optimization type Smallest Average

Region VE. Ang. CF. de(v∗) ar∗ de(v∗) ar∗
- 0.0 1.2 42.6 27.3

(C) X 8.5 2.9 69.4 27.3
(C) X X 9.9 3.3 68.1 27.4
(C) X X X 4.3 2.1 67.4 28.5
(S) X 8.0 2.4 65.8 28.1
(S) X X 8.5 2.6 67.0 28 .7
(S) X X X 3.9 2.0 63.5 27.8
(P) X 13 .6 3.3 80 .4 27.4
(P) X X 10.8 3 .4 78.6 26.8
(P) X X X 7.8 3.3 75.1 25.0

Table 5.2: Comparison table of the smallest values of the vertex-edge distance and angular
resolution metrics for each map of the second test set used in Section 5.2.

Maps with worse values do seem to appear as being aesthetically more pleasant, when the
situation around the thicker edges is better. From this we can conclude that the optimization of
our flow maps could improve if we assign a higher priority to the thicker edges. Applying such
a scheme leads to weighted optimization as we assign weights to our edges depending on their
relevance. The optimization for critical features can contribute to an aesthetically more pleasing
image, but because only 3-region points are identified as critical features in this implementation
the effects seem less significant. This could also be due to the fact that most viewers spend
most time looking at the edges to interpret the data. The base map becomes more important
if the viewer is not immediately able to recognize the region.

5.4.3 Comparison to Tobler’s mapper

The last comparison can be made between Tobler’s mapper and our implementation. Both con-
vey the same information and simplified the base map considerably, but result is very different.
Tobler’s map doesn’t optimize or move the vertices on the thematic layer at all and therefore
the edges between the vertices near the east coast are collinear just because the vertices where
chosen to be positioned there. The result is the obfuscation of several edges making them
hard to recognize. Secondly, the mapper doesn’t show the interior region boundaries making
it somewhat harder to judge to which area the edges point towards. Apart from the contents
Tobler’s mapper can only store images as a bitmap which can generate artifacts when the image
is scaled.

Chapter 6

Conclusions

The research in this thesis has lead to several improvements for the problem of optimizing flow
maps by automated means. By taking the base map into consideration when visualizing the
edges the resulting flow map becomes more clear and better readable to the viewer. A few tech-
niques have been introduced like the use of additional (dynamically) shorting of the edges to
maintain the advantages the ascending thickness order without losing the arrow head visibility.

Given what has been done in this area of research so far the mapper created for this thesis
is a step forwards, but there are still many possible additions worth implementing. The test
results show that the approach taken in this thesis can be problematic for some types of graphs
in certain cases such as dense areas. One could improve the situation by using the exact calcu-
lation of the optimal position for the worst vertex, which can be done for vertex-edge distance
in polynomial time as shown in Section 3.4. Changing the order in which the vertices are op-
timized each iteration depending on the quality of the current situation or in a random order
rather than a fixed arbitrary order may help too.

However as described in the discussion of the test sets in Section 5.4 some of the maps that
are less optimal metrically-wise do appear as being aesthetically more pleasant. One situation
for which this is true is that a good appearance of the thicker edges is more important than for
the thinner edges. Therefore we could consider using a weighted optimization. Other than that
there may be other metrics that we haven’t discussed in this thesis which can help to further
improve the appearance of the flow maps generated by automated means.

One metric which comes to mind here is minimizing the coverage of region borders. One
could try to minimize the intersected area of the region borders by placing the edge such that
it is at a straight angle with the line marking the region’s border. Another thing to take into
consideration is that we do not consider giving a penalty to vertices that ended up near the
boundary of their respective regions. People associate the vertices more with the corresponding
region if the vertex remains in the center (or the closest thing that can be defined as a center)
of the region. This leads us to an important observation, which is that the human eye perceives
data with a subjective view rather than with an objective one. Therefore the output of the
automated mapper should always be verified and checked by people. They always have the last
word about the quality of the map.

The use of edges that are displayed as polylines or curves will certainly allow improvements as
they allow us to completely avoid problems that are otherwise imminent. This comes however
at the price of making the optimization of the flow map a more complex task. For the polylines
one might wish to restrict the number of angles and avoid using arbitrary angles for the edges
(e.g. allow only vertical, horizontal and diagonal segments). Another possibility comes to mind
if one allows the endpoints of the edges to roam freely inside their associated regions instead of

69

70 Chapter 6. Conclusions

using a single vertex for all edges of a single region.

In all the difficulty of the problem even for smaller graphs makes it worthwhile to continue
research on this topic, as NP -hardness can already be proven for the case where we are only in-
terested in optimizing vertex-edge distance. It is however an open problem for two-dimensional
vertices if this property still holds when the regions are restricted to 1 Dimensional line seg-
ments. There are many aspects of the base map and the thematic layer which require attention,
and optimizing all of these criteria at the same time is not an easy task. The topic is far
from exhaustively researched leaving open new techniques or ideas which is beneficial to the
readability of the flow map in general.

Appendix A

Dutch flow map test set input table

This is the original collection of data on the migration of people for the twelve provinces of
the Netherlands in 1996 retrieved from the website of the CBS [5] used for the flow maps of
Section 5.1.

From
To

GR FR DR OV FL GE UT NH ZH ZE NB LI

GR - 2135 4586 1646 406 1165 1061 1902 1587 101 595 261
FR 2783 - 1256 1397 625 988 728 1826 1308 154 619 255
DR 4372 1095 - 2026 352 897 625 767 864 81 393 168
OV 1669 1044 1865 - 903 5238 1876 2111 2074 182 1236 449
FL 409 735 424 1154 - 1595 1245 4389 1312 153 579 225
GL 1310 909 936 5753 1444 - 6709 4084 4737 531 5530 1973
UT 662 688 635 1481 1420 6473 - 6933 5238 436 2595 771
NH 1253 1777 981 1817 6803 3920 7092 - 8684 521 2898 1137
ZH 1336 1356 1391 2167 1460 5782 6582 10124 - 2570 7478 1642
ZE 73 115 74 171 86 553 424 553 2035 - 2021 217
NB 597 447 376 1092 561 5856 3281 3359 6764 1918 - 4469
LI 235 148 151 470 193 2169 1161 1517 1837 212 4895 -

Table A.1: Data set of local movement of people between the 12 provinces of the Netherlands
in 1996 [5].

71

Appendix B

US flow map test set input table

This is the original collection of data for the continental states of the USA with respect to the movement of 1 USD bank notes between each of
the states. The data is retrieved input table from Tobler’s mapper that comes along with the program [29].

From
To

AZ CA CO CT FL GA IL IN LA MD MA MI NV NJ NY NC OH OK OR PA SC TX VA WA WI

AZ - 92 31 2 17 9 15 7 3 4 4 11 23 4 10 9 10 8 16 7 3 38 9 21 7

CA 186 - 111 15 94 66 68 32 22 29 36 40 199 27 65 56 37 38 132 34 18 183 62 156 23

CO 35 56 - 3 22 11 14 6 4 5 6 8 11 4 9 10 9 12 11 7 4 47 12 18 7

CT 7 18 5 - 47 11 7 3 2 7 38 4 2 11 39 15 5 1 2 15 7 9 15 4 2

FL 22 65 26 18 - 157 38 28 17 24 30 39 15 35 70 96 47 10 6 44 38 81 58 16 13

GA 9 29 11 5 99 - 15 9 11 11 7 12 3 8 18 48 18 6 3 12 41 42 26 10 4

IL 48 74 27 6 86 35 - 85 6 9 11 43 18 12 21 21 30 8 7 15 10 64 19 13 81

IN 13 20 8 2 47 14 48 - 3 4 4 32 4 3 7 12 37 4 3 8 7 23 9 5 9

LA 4 18 6 1 22 20 6 4 - 6 2 4 3 2 5 9 5 6 1 3 4 86 9 5 2

MD 7 27 8 5 50 19 9 4 3 - 10 6 2 11 22 31 11 2 2 53 13 19 79 6 3

MA 10 44 8 29 68 13 10 3 2 10 - 6 3 14 48 14 8 1 3 17 5 14 15 7 3

MI 25 36 14 3 75 24 35 33 4 6 7 - 8 5 15 20 43 4 4 11 9 29 13 9 20

NV 19 60 10 1 8 3 5 2 2 1 1 3 - 2 4 3 4 3 10 2 2 12 4 11 2

NJ 12 35 8 16 119 27 12 5 3 24 25 7 7 - 98 37 11 2 2 110 17 21 37 5 3

NY 31 96 21 76 308 67 26 11 7 44 73 20 17 207 - 101 31 5 7 112 40 46 75 14 7

NC 9 27 9 5 58 51 12 9 7 18 8 11 3 10 20 - 19 6 3 18 65 33 63 8 4

OH 20 34 12 4 91 31 30 44 5 10 9 48 7 8 21 35 - 5 4 34 18 32 24 9 8

OK 9 17 10 1 12 8 7 4 5 3 1 4 3 1 4 6 5 - 3 3 3 83 6 6 2

OR 21 68 10 1 7 3 4 2 1 1 2 3 10 1 5 4 3 3 - 3 1 12 3 83 2

PA 17 39 12 11 92 27 16 11 3 51 20 14 6 88 67 43 43 3 4 - 21 25 47 8 6

SC 3 10 4 2 31 46 5 4 3 7 3 5 1 4 9 61 9 2 1 8 - 13 20 3 2

TX 45 116 63 6 77 59 39 22 57 16 13 28 18 11 28 43 27 73 12 19 16 - 39 31 13

VA 12 45 15 8 76 38 16 9 7 66 12 12 4 19 28 89 21 5 4 32 24 40 - 13 5

WA 38 95 18 3 19 11 9 5 4 6 5 7 14 3 10 8 7 5 72 6 4 31 11 - 6

WI 18 17 11 1 25 7 42 8 1 3 3 17 5 2 6 6 8 3 3 4 3 15 5 6 -

Table B.1: Data set of movement of 1 USD bank notes between the individual states in 1976 (x1000). The data was retrieved from the input
tables included with Tobler’s flow mapper [29]. To conserve space only the states after applying the average as threshold are shown.

73

Appendix C

Tobler’s map test set input

This is the original collection of data for the twelve Federal bank districts in the USA with
respect to the movement of 1 USD bank notes between each of the districts. The data is
retrieved input table from Tobler’s mapper that comes along with the program [29].

From
To

BO NY PH CL RI AT CH ST MI KC DA SA

Boston - 289 47 52 137 118 90 10 16 15 13 80
New York 602 - 231 209 388 307 286 15 48 26 18 261
Philadelphia 143 414 - 84 342 130 134 8 25 10 10 80
Cleveland 68 192 47 - 171 177 618 16 44 43 19 131
Richmond 150 266 158 226 - 578 295 20 62 54 22 152
Atlanta 122 159 57 186 319 - 439 30 51 78 102 189
Chicago 97 155 39 496 143 266 - 74 278 100 40 290
St. Louis 31 56 14 142 80 201 573 - 46 128 47 109
Minneapolis 14 26 11 32 29 41 295 10 - 51 14 138
Kansas City 20 41 8 55 40 71 215 33 129 - 86 247
Dallas 31 41 8 38 46 165 125 20 37 253 - 203
San Francisco 82 81 23 84 114 106 251 22 127 128 43 -

Table C.1: Data set of movement of 1 USD bank notes between the 12 Federal bank districts
of the USA in 1976 (x1000) [29].

75

Bibliography

[1] http://www.eindhoven.com.

[2] Pankaj K. Agarwal, Boris Aronov, and Micha Sharir. Computing envelopes in four di-
mensions with applications. In SCG ’94: Proceedings of the tenth annual symposium on
Computational geometry, pages 348–358, New York, NY, USA, 1994. ACM Press.

[3] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[4] Sergio Cabello. Geometric Problems in Cartographic Networks. PhD thesis, University of
Utrecht, department of Computer Science, Utrecht, NL, 2004.

[5] Centraal Bureau voor de Statistiek. http://www.cbs.nl, December 2006.

[6] J. S. Chang and Chee K. Yap. A polynomial solution for the potato-peeling problem.
Discrete and Computational Geometry, 1(1):155–182, December 1986.

[7] Francis Y. Chin, Jack Snoeyink, and Cao An Wang. Finding the medial axis of a simple
polygon in linear time. In ISAAC ’95: Proceedings of the 6th International Symposium on
Algorithms and Computation, pages 382–391, London, UK, 1995. Springer-Verlag.

[8] Mirela Damian. Exact and approximation algorithms for computing optimal fat decompo-
sitions. Computational Geometry, 28(1):19–27, 5 2004.

[9] Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing. ACM
Transactions on Graphics, 15(4):301–331, 1996.

[10] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwartzkopf. Computa-
tional Geometry: algorithms and applications. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2 edition, 2000.

[11] Borden D. Dent. Cartography: Thematic Map Design. McGraw-Hill, 5 edition, 1999.

[12] Christian A. Duncan, Alon Efrat, Stephen G. Kobourov, and Carola Wenk. Drawing
with fat edges. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing: 9th
International Symposium, pages 162–177, Vienna, Austria, September 2001.

[13] Peter Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.

[14] Jiŕı Fiala, Jan Kratochv́ıl, and Andrzej Proskurowski. Geometric systems of disjoint rep-
resentatives. In GD ’02: Revised Papers from the 10th International Symposium on Graph
Drawing, pages 110–117, London, UK, 2002. Springer-Verlag.

[15] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Software Pract. Experience, 21(11):1129–1164, 1991.

77

78 Bibliography

[16] Robin Hartshorne. Algebraic Geometry. Springer-Verlag, New York-Berlin-Heidelberg,
1977.

[17] Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, 1989.

[18] Chun Cheng Lin and Hsu-Chun Yen. A new force directed graph drawing method based
on edge-edge repulsion. In IV ’05: Inproceedings of the ninth Internation Conference of
Information Visualization, pages 329–334, Washington, DC, USA, 2005. IEEE Computer
Society.

[19] Mary J. Parks. American flow mapping: A survey of the flow maps in twentieth century
geography textbooks, including a classification of the various flow map designs. Master’s
thesis, Georgia State University, department of Geography, Atlanta, GA, USA, 1987.

[20] Michael S. Paterson and F. Frances Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete Comput. Geom., 5(5):485–503, 1990.

[21] Doantam Phan, Ling Xiao, Ron Yeh, Pat Hanrahan, and Terry Winograd. Flow map layout.
In INFOVIS ’05: Proceedings of the 2005 IEEE Symposium on Information Visualization,
volume 0, pages 219–224, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[22] Franco P. Preparata. The medial axis of a simple polygon. Mathematical Foundations of
Computer Science, 53:443–450, 1977.

[23] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[24] Ernest G. Ravenstein. The birthplace of the people and the laws of migration. The
Geographical Magazine, 3(2):173–177,201–206,229–233, 1876.

[25] Ernest G. Ravenstein. The laws of migration. Journal of the Royal Statistical Society,
52(2):241–305, June 1889.

[26] United States Postal Services. http://www.usps.com/ncsc/lookups/abbreviations.html#states.

[27] Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, New York, NY, USA, 1996.

[28] Barbera Simons. A fast algorithm for single processor scheduling. In Proceedings 19th
Annual IEEE Symposium on Foundations of Computer Science, pages 246–252. Piscataway,
1978.

[29] Waldo R. Tobler. http://www.csiss.org/clearinghouse/flowmapper/.

[30] Waldo R. Tobler. A computer model simulation of urban growth in the detroit region.
Economic Geography, 46(2):234–240, 1970.

[31] Waldo R. Tobler. Experiments in migration mapping by computer. American Cartographer,
14:155–163, 1987.

[32] Waldo R. Tobler. Global spatial analysis. Computers, Environment and Urban Systems,
26(8):493–500, November 2002.

[33] Edward R. Tufte. The Visual Display of Quantitative Information. Graphic Press, Cheshire,
CT, USA, 2 edition, May 2001.

Bibliography 79

[34] Marc van Kreveld and Bettina Speckmann. On rectangular cartograms. Computational
Geometry: Theory and Applications, 37(3):175–187, August 2007.

[35] Wolters-Noordhoff. Grote Bos Atlas. Wolters-Noordhoff B.V., 51 edition, 1995.

[36] Wolters-Noordhoff. Grote Bos Atlas. Wolters-Noordhoff B.V., 52 edition, 2003.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Chapter 1Introduction
	Chapter 2Quality criteria for flow maps
	Chapter 3Complexity analysis
	Chapter 4Algorithmic approach
	Chapter 5Test and results
	Chapter 6Conclusions

