
 Eindhoven University of Technology

MASTER

DNS-based detection of malicious activity

Dodopoulos, R.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/23082ccb-d289-4bf9-aca7-2539a1229c4e

DNS-based Detection of
Malicious Activity

Master Thesis

Romanos Dodopoulos

Department of Mathematics and Computer Science
Section Security and Embedded Networked Systems (SENS)

Security Research Group (SEC)

Assessment committee:

Dr. Nicola Zannone (TU/e)
Roland van Rijswijk-Deij, M.Sc (SURFnet)

Dr. Rudolf Mak (TU/e)

version 1.0

Eindhoven, November 2015

Abstract

The Domain Name System (DNS) is the primary directory service of the Internet and an essential
component of almost every network service. The DNS has made the Internet more accessible
to regular users via the human-readable domain names. However, since it is well-known it is
frequently exploited by attackers. Analyzing or monitoring DNS traffic is an efficient way to
detect attacks. Cyber attacks are a highly significant threat for the reliability and operation of
on-line services. Moreover, they threaten individuals, where privacy and personal information are
at stake.

In this report, we focus on DNS-based detection of malicious activity. We examine and sum-
marize dynamic methods that detect malicious activities and, especially, previously unknown
malicious domain names. The methods are also classified according to a set of well-defined crite-
ria. Next, we focus on the effective detection of infected computers within a network by taking
advantage of DNS-based monitoring. To this end, we evaluate a detection system that combines
DNS-based and flow-based monitoring. The basic approach utilizes DNS-based prefiltering before
performing flow-based filtering. The goal is to increase performance, while maintaining a high level
of accuracy. Our evaluation indicates that although the performance is increased, the accuracy
is depleted and the method cannot be considered adequate. Finally, we examine the DNS-based
monitoring as a standalone detection method. The performed measurements indicate that this
detection method has low recall and precision rates. Therefore, it is unsuitable for live deployment
at present.

DNS-based Detection of Malicious Activity iii

Acknowledgments

• I would like to express my gratitude to Dr. Nicola Zannone, my internal supervisor at TU/e,
who gave me invaluable suggestions and comments on my work.

• I would also like to express my gratitude to Roland M. van Rijswijk-Deij, my external/daily
supervisor at SURFnet, for his guidance and assistance through the work of this thesis.

• I am grateful to Xander Jansen from SURFnet for the useful discussions and the information
that he shared with me.

• I want to thank the Spamhaus Project for providing the blacklists the were used in the
performed experiments.

DNS-based Detection of Malicious Activity v

Contents

Contents vii

List of Figures ix

List of Tables xi

Listings xiii

1 Introduction 1

2 Domain Name System 3
2.1 Overview . 3
2.2 Domain name space . 3

2.2.1 Domain name hierarchy . 4
2.2.2 DNS zone . 4

2.3 Architecture . 5
2.3.1 Stub resolver . 5
2.3.2 Recursive caching name server . 6
2.3.3 Authoritative name servers . 6

2.4 Query resolution . 7
2.5 Advanced technologies . 7

2.5.1 DynDNS . 7
2.5.2 Reverse DNS resolution . 8
2.5.3 Prefetching . 8
2.5.4 Other applications . 8

3 Challenges 9
3.1 Attacker model . 9

3.1.1 Spyware . 9
3.1.2 Botnets . 10
3.1.3 Phishing . 10

3.2 Exploitation techniques . 10
3.2.1 Fast flux . 11
3.2.2 Domain flux . 11

3.3 Monitoring . 12
3.3.1 Types of monitored information . 12

3.3.1.1 Network flow . 12
3.3.1.2 Active probing and pDNS . 13

3.3.2 Monitoring positions . 13
3.3.3 Advantages and effectiveness of DNS monitoring 14

3.4 Detection . 15
3.4.1 Blacklist . 15

3.4.1.1 Common type . 15

DNS-based Detection of Malicious Activity vii

CONTENTS

3.4.1.2 Extended type . 15
3.4.1.3 Indication . 16

3.4.2 Whitelist . 16
3.4.3 Dynamic detection . 16

3.5 Discussion . 16
3.5.1 Limitations of dynamic detection . 17
3.5.2 Privacy issues . 17
3.5.3 Summary . 18

4 Literature review 19
4.1 Properties . 19
4.2 Criteria . 20
4.3 Classification . 21

4.3.1 Group activity . 21
4.3.2 Co-occurrence . 23
4.3.3 DNS features . 24

4.3.3.1 Reputation systems . 24
4.3.3.2 Data mining . 26

4.3.4 Sequential correlation . 27
4.3.5 NXDomains . 28

5 Approach 31
5.1 Overview . 31
5.2 Performance of flow-based filtering . 33
5.3 User classification . 34
5.4 Scenarios . 35

6 Experiment setup 39
6.1 Dataset . 39
6.2 Blacklists . 40
6.3 Groups of users . 41

6.3.1 Methodology to identify the destination . 41
6.3.2 Methodology to determine the user groups 42

6.4 Database . 42
6.5 Scenarios . 42

7 Evaluation 47
7.1 User classification . 47

7.1.1 Identification of destinations . 47
7.1.2 Determination of user groups . 47

7.2 Processed data . 48
7.3 Results of Scenario 1 . 48
7.4 Results of Scenario 2 . 50
7.5 Results of Scenario 3 . 50

8 Conclusions 51
8.1 Threats to validity . 51
8.2 Summary . 51
8.3 Future work . 52

Bibliography 53

Appendix 57

A Detailed experiment results 57

viii DNS-based Detection of Malicious Activity

List of Figures

2.1 Overview of the domain name space . 4
2.2 Overview of the DNS . 6

3.1 Monitoring places . 14

5.1 Approach for Scenario 1 and Scenario 2 . 32
5.2 Approach for Scenario 1 and Scenario 2 including the user classification module. 32
5.3 Approach for Scenario 3 using only DNS-based filtering. 32
5.4 Performance of filtering network flows . 33
5.5 Definition of user groups . 34
5.6 Design of Scenario 1 . 36
5.7 Design of Scenario 2 . 36
5.8 Comparison of DNS-based and flow-based filtering. 37

7.1 Measurements for Scenario 1 . 49
7.2 Measurements for Scenario 3 . 50

DNS-based Detection of Malicious Activity ix

List of Tables

3.1 Monitoring effect on privacy . 17

4.1 Properties of each system. 20
4.2 Judgments about the criteria . 22

6.1 Information about the obtained data volume. 39
6.2 The obtained blacklists . 40

7.1 User classification, including description, size and source. 48
7.2 Data that each scenario processes. 48

A.1 Detailed results of Scenario 1. 58
A.2 Detailed results of Scenario 2. 59
A.3 Detailed results of Scenario 3. 60

DNS-based Detection of Malicious Activity xi

Listings

6.1 MySQL query to obtain the flow-based results . 43
6.2 MySQL query to obtain the results of Scenario 1 44
6.3 MySQL query to extract the false negatives of Scenario 1. 44
6.4 MySQL query to obtain the results of Scenario 3 46
6.5 MySQL query to obtain the true positives of Scenario 3 46

DNS-based Detection of Malicious Activity xiii

Chapter 1

Introduction

The Domain Name System (DNS) is the primary directory service of the Internet. Therefore,
it is an essential component of almost every network service. The DNS has made the Internet
more accessible to regular users via the human-readable domain names. Its main purpose is to
translate (or resolve) domain names, such as “www.example.com”, into IP addresses, such as
“93.184.216.34”. However, since it is well-known it is frequently exploited by attackers.

There are exploitation techniques that leverage its properties and actively abuse it. These
techniques have an impact on the DNS by mainly exploiting flaws in the software. As a result,
compromised servers might host fake information (e.g., cache poisoning attack). However, other
types of attacks consider adequate to legitimately utilize domain names. These malicious activities
do not directly rely on the DNS, although they misuse it for greater success.

Analyzing or monitoring DNS traffic is an efficient way to detect attacks. Cyber attacks
are a highly significant threat for the reliability and operation of on-line services. Moreover,
they threaten individuals, where privacy and personal information are at stake. When a node
is compromised the only way to prevent further negative consequences is to detect it as soon as
possible.

Security analysts are increasingly focusing on the DNS in order to detect malicious activities.
It has also been argued that DNS-based monitoring is the most effective security countermeasure.
Sensors that monitor DNS traffic have been deployed in large networks and operators. However,
the successful identifications of malicious activities usually depend on manual investigation. This is
a costly process that cannot be effective in large scale. Consequently, dynamic detection methods
have been proposed in order to automate the process.

The generic research question of this report is the following: can we detect malicious activity
by observing DNS traffic? In order to answer this broad question we break it down into three
specific research (sub-)questions. Each answer to a research question contributes to the answer of
the generic question. The specific research questions are the following:

Q 1 Can we dynamically detect new malicious activities by monitoring DNS traffic?

Q 2 Can we effectively detect infected computers within a network by taking advantage of DNS-
based monitoring?

Q 3 Can DNS-based monitoring be a valid standalone detection method?

In order to answer the first question (Q1), we investigate proposed methods [29, 30, 31, 32] that
detect malicious activities and, especially, previously unknown malicious domain names. These
methods automatically identify entities that are controlled by attackers.

However, our literature survey reveals that designing dynamic systems to detect new malicious
activities remains a difficult task. Most of the existing methods have limited real-life applications
and have not actually evolved further. The main obstacle of the proposed methods is their false
positive rate. False positives are the pitfall of a dynamic system because it loses its reliability.

DNS-based Detection of Malicious Activity 1

CHAPTER 1. INTRODUCTION

Due to the lack of resources and available implementations, further comparison of the methods is
not feasible.

The second research question (Q2) focuses on reliably detecting existing threats within a net-
work. The infected nodes are insider threats because they have already penetrated the network.
After they are detected, ideally, network administrators put them in quarantine until they are
cleaned. In addition to DNS-based detection, commercial and widely adopted systems detect in-
fections by monitoring network flows. These systems traditionally leverage historical information
of known malicious destinations (blacklists) in order to identify suspicious connections. The strong
advantage of DNS-based monitoring is performance because the volume of DNS traffic is just a
fraction of the network flows. On the other hand, an observed flow can increase the confidence of
a DNS-based alert, which by itself is not a conclusive evidence that the computer contacted the
malicious destination.

In order to answer the second research question (Q2), we examine the effectiveness of a sin-
gle detection system which combines DNS-based and flow-based filtering. The intuition is that
observing an established connection (flow) increases the confidence of a DNS-based alert. The
system aims at effectively reducing a given blacklist using DNS-based prefiltering to the minimum
possible. Next, the output, the intermediate blacklist, is fed to the flow-based filtering process.
We define two scenarios with alternative designs in order to find the optimal setup. Scenario 1
places the DNS sensor between the resolver and the remote name servers. Scenario 2 places the
DNS sensor between the clients and the resolver. The second has the advantage that there is not
cache involved and all the queries of the users are visible. On the other hand, the plain queries
compose privacy-sensitive data and should be treated with respect.

Furthermore, we define Scenario 3 that examines the effectiveness of exclusively monitoring
DNS traffic, without considering the network flows. This can answer the third research question
(Q3). A valid method should have high precision, recall and accuracy rates. Specifically, we want
to identify how much information does the DNS-based detection miss in comparison to flow-based
detection.

Outline The remainder of this report is structured as follows.

Chapter 2 explains the Domain Name Systems.

Chapter 3 introduces the challenges regarding the dynamic detection of malicious activities.

Chapter 4 classifies the related literature according to a set of well-defined criteria.

Chapter 5 presents the proposed method that combines flow-based and DNS-based monitoring
in order to increase performance and accuracy.

Chapter 6 documents the methodology and the measurements to evaluate the proposed method.

Chapter 7 contains the results and the evaluation.

Chapter 8 concludes this report.

2 DNS-based Detection of Malicious Activity

Chapter 2

Domain Name System

The Domain Name System (DNS) is the primary directory service of the Internet. Therefore, it is
an essential component of almost every network service. In this chapter, we present an overview
of the DNS along with the domain name hierarchy and its basic components. We describe the
functionality of the system and, finally, specific advanced technologies.

2.1 Overview

The DNS has been used for many years in order to make the Internet more accessible to regular
users. Its purpose is to function as the “phone book” of the Internet. Computers actually com-
municate using the Internet Protocol (IP) which is sufficient for establishing an active connection.
However, humans cannot easily memorize this structure of numbers, and, besides, IP addresses
are often interchanged. Domain names are essential for the memorization of digital locations.
Moreover, it makes it possible to assign a changeless reference without reserving a costly static IP
address.

The DNS is a distributed database system. Its role is to correlate any domain name with at
least one IP address. Clients send DNS queries including domain names to initiate the protocol
and receive DNS answers (or replies) with the corresponding IP addresses. Domain names are
usually constant and associated with the trademark of a company or an organization. Normally,
registering a domain is easier and cheaper because the collection of IP addresses (v4) is limited.

The necessity of domain names was already realized during the ARPANET era1. Initially,
a centralized location was providing a single “hosts.txt” file containing the mapping of human-
friendly names to numerical addresses. Meanwhile, the number of interconnected hosts had been
increasingly growing. As a result, the Domain Name System was published in 1983 [1, 2].

2.2 Domain name space

An important part of implementing and operating domain name facilities is the definition of
the hierarchical name space. During the ARPANET era, system administrators were setting
their own host names. The Network Information Center (NIC) had to manually approve them
before inserting them into the “hosts.txt” file. Later on, organizations wanted the ability to
register additional domain names under the existing ones, with some form of local hierarchy.
This hierarchy would roughly represent the organizational structure. In addition, faster approval
of their modification was a vital request. This flexibility is satisfied by the introduction of the
domain name hierarchy.

1The Advanced Research Projects Agency Network (ARPANET) was the leading implementation of the early
Internet in the 1960s.

DNS-based Detection of Malicious Activity 3

CHAPTER 2. DOMAIN NAME SYSTEM

2.2.1 Domain name hierarchy

The hierarchical structure of the domain name space is a tree that consists of five distinct abstract
levels. An illustration of the tree is given in Figure 2.1 and the abstract levels are listed in the
right side of the same figure. At the top we can find the root-level domain that has only 13 root
name servers, from A-root to M-root, deployed in approximately 500 sites across the world2. The
root domain label is actually embedded in every DNS query which contains an invisible empty
label at the end of the actual domain name. For instance, “www.example.com.” specifies the exact
location and is referred to as absolute domain name or, more formally, fully qualified domain name
(FQDN).

com

Domain Name
Hierarchy

root-level
domain

top-level
domain (TLD)

second-level
domain (SLD)

subdomain

 host name

example.www. .

edu

example

it

ftpwww

 ..

 .

 .

 .

.

com

Figure 2.1: An overview of the domain name space. The tree in the middle is the hier-
archical and logical structure of the domain namespace. The illustrated domain names
are: “edu”, “www.example.com” and “ftp.it.example.com”. In the right side is the domain
name hierarchy which separates the levels of the tree.

In any domain name, like the previously mentioned example, we can clearly distinguish the
hierarchy of the different labels separated by the full stop character. By convention, it is written
from right to left. The rightmost element is the root-level (although it is actually invisible/null)
and the leftmost is the host name label. As we can see in Figure 2.1, lower (or left) of the root-level
is the top-level domain (TLD) label. In the given FQDN (“www.example.com.”), the TLD domain
label is the “com” field. It is followed by the second-level domain label (SLD), i.e. “example”
in the our illustration. Additionally, there can be numerous subdomains before the actual label
“www” of the host. The existence of a subdomain is not mandatory as it is for the TLD and SLD
labels. Generally speaking, a domain name identifies the path that a client has to follow to locate
a host, starting from the universally known location of the root.

2.2.2 DNS zone

The DNS allows decentralized administration and uses a distributed database because different
authorities need to coexist in the same system. The whole name space is partitioned into various
DNS zones. Specifically, a zone is a portion of the domain name space which is delegated to a

2http://www.root-servers.org, retrieved April 20, 2015

4 DNS-based Detection of Malicious Activity

CHAPTER 2. DOMAIN NAME SYSTEM

single administrator. The last one is authorized to maintain the DNS records of this contiguous
portion. However, a DNS zone is not necessarily a complete branch of the domain name space.
This means that a subdomain could belong to different DNS zones than the upper domain name
and, therefore, under different administrations.

To illustrate the point further, let us consider the “www.example.com” domain name. A single
entity is authoritative for the “example.com” zone. This entity manages DNS records that map
domain names to resources. Specifically, these records contain the IP address of the web service
hosted at “www.example.com” among others.

Furthermore, entities may have departments. For instance, the entity that is authoritative for
the “example.com” domain could have an information technology (IT) department. In this case,
the “it.example.com” domain could be managed by the department itself. This is an individual
DNS zone under different authority. The IT department can register additional domain names un-
der its own. For instance, it can register the “ftp.it.example.com” domain name for its ftp service.
Any registration can happen without contacting the upper domain “example.com” administrator.
The IT department is the only responsible for maintaining its own resource records.

2.3 Architecture

The Domain Name System uses a client-server model, where clients seek information located on
servers throughout the Internet. The distributed model of the DNS involves various separate
components and acts as a distributed database system. Moreover, it aims to equally distribute
the network load in order to ensure availability and increased performance of the protocol. As a
matter of fact, the DNS is continuously used by all the users of the Internet.

The DNS has three major fundamental elements [3]: first, the domain name space and resources
records (RR) that specifies the hierarchical name space and data associated with domain names.
Second, the name servers that are server programs and hold information about a subset of the
domain space. Third, the resolvers which are the client programs of the protocol and extract the
information from the name servers. Resolvers can optionally implement a cache.

An overview of the DNS components in a typical network is given in Figure 2.2. The left side
of the figure shows the hosts (users). They belong to an ordinary network and want to access a
domain name. It is not necessary that they are all in a single local area network. It can be a
group of users sharing the same Internet service provider. Consequently, they share some common
routing settings, such as the digital location of the default recursive name server. The latter is
assigned by the network administrator. It can be seen in the figure, connected to the clients with
the red curved lines. In the right side of the figure are the remote name servers, in the Internet,
that contain the information that the hosts want to retrieve.

Now that we have defined the internal and external structure of the network, we will explain
the role of a resolver, the utility of a name server, and finally, we will discuss how the DNS operates
with a paradigm of a user case.

2.3.1 Stub resolver

Any host must have direct access to a local resolver which transforms requests from applications
into standard queries. This local resolver is usually called a stub resolver. After processing the
queries, it replies back to the application with a valid answer.

The norm is that the local resolver utilizes a network-wide recursive name server. The last
one is responsible for answering the questions for the complete network. This is done to offload
the network and prevent the deployment of a full resolver in every host. Moreover, it ensures
the sharing of cache among the hosts. The use of centralized cache allows for a high hit ration,
which eliminates the redundancy of unused information. This kind of network configuration is
very common, where lighter stub resolvers are installed in the operating system. A stub resolver
acts as the front end to the resolver located in the recursive caching name server [4].

DNS-based Detection of Malicious Activity 5

CHAPTER 2. DOMAIN NAME SYSTEM

Root name
server

 3

2

1

Recursive caching
name server

Top-level
name server

Second-level
name server

 Clients
(Stub resolvers)

Figure 2.2: Overview of the DNS

2.3.2 Recursive caching name server

A recursive (caching) name server receives queries from clients and it is responsible to resolve
them. By convention, it is simplistically referred to as resolver. Alternatively, the term recursive
DNS server (RDNS) is used less frequently.

Clients initiate queries, which are simple questions for the IP address of a specific domain
name. A resolver is responsible to conclusively answer with either an IP address or an error. An
error means that the resolver could not find the requested information. Usually, this is caused
because the domain name actually does not exist. While resolving a query, a resolver contacts as
many servers as needed in order to obtain the information. We describe in detail the resolution
process in Section 2.4.

A resolver has a very important goal to eliminate network delay and the load at the remote
name servers by utilizing a cache [3]. It answers requests from its cache of prior responses.
Consequently, a cache that is shared by multiple nodes is more efficient than a non-shared cache.
A resolver that utilizes a cache is properly named as recursive caching name server.

2.3.3 Authoritative name servers

An authoritative name server (AuthNS) is the authority for a specific zone of the domain name
space. Authoritative information is organized and maintained by domain administrators. The
information is the complete database for a specific “pruned” subtree of the domain space [4]. This
database contains the resource records of the zone. Records are, for example, the mapping of
domain names to either IP addresses or references to another zone. Authoritative name servers
also contain information about other applications of the DNS, which are described in Section 2.5.4.

In the right side of Figure 2.2, we can distinguish the separate authorities for three different
abstract levels of the domain hierarchy. At top is the root name server that is authoritative for
the root zone. It contains a list with every top-level domain name of the Internet. Although the
distributed nature of the DNS, the root zone is coordinated by a single organization3. Currently,
there are 1011 TLDs4 worldwide, which are either generic (e.g., com, net) or country-code (e.g.,
nl). Below the root name server (Figure 2.2) there is a top-level name server, which is delegated
administrative responsibility for a specific TLD. In turn, it hosts a list of lower-level authoritative
name servers in their respective zone. At the bottom right of the figure we can find an authoritative
name server for a specific SLD (e.g., “example.com”).

3https://www.iana.org/domains, retrieved July 2015.
4http://data.iana.org/TLD/tlds-alpha-by-domain.txt, last updated Mon Jul 13 07:07:01 2015 UTC.

6 DNS-based Detection of Malicious Activity

CHAPTER 2. DOMAIN NAME SYSTEM

2.4 Query resolution

Clients send queries to the resolver (the recursive caching name server in Figure 2.2) whenever
they want to access a domain name. The resolution of a user query is the process of translating a
domain name to an IP address. It may involve several network accesses and an arbitrary amount
of time [4]. The resolver is trusted to perform all the necessary steps to reply with the requested
information.

Normally, the resolution process requires iteration of multiple steps. As an example consider
the case where a client requests the IP address of “www.example.com” from the resolver. In turn,
the resolver asks the root name server. This step is the first (1) green curved line in Figure 2.2.
It is highly possible that the root name server does not know the exact information. However,
it knows every existing TLD domain name (see Section 2.3.3). Then, it suggests the resolver to
contact the name server for the “com” domain name. The resolver obtains this information and
repeats the question to the top-level name server. That is the second (2) connection in Figure 2.2.
It is possible that neither this server knows the final digital location. Therefore, it replies with
the location of the name server for “example.com”. The resolver retransmits for a third (3) time
the query to the last name server. Eventually, the name server replies with the IP address for
“www.example.com”. The client receives this information from the resolver and connects to the
destination.

The resolution process can be reduced when a cache is used. A resolver can use cache memory
to temporarily store every information. As a result, whenever a domain names has been priorly
requested, the resolver replies instantly with the cached information. Alternatively, a domain
name with the same TLD may has been queried. In the last case, the resolver will contact directly
the top-level name server, skipping the root.

The time that the domain name is temporarily stored is define by the authority of that domain.
Every DNS record has a Time To Live (TTL) field. A resolver caches a domain name for as long
as its TTL value indicates.

During the query resolution process, a resolver may return an error message. The error means
that the resolver failed to correctly retrieve the information. One of the reasons could be that
the requested domain name actually does not exist. In this case, the resolver replies with a
non-existent domain (NXDomain) response. Although, NXDomain is not the only possible error
message, a discussion of other messages is out of the scope of this report.

2.5 Advanced technologies

The ubiquitous integration of the DNS caused the development of technologies outside the standard
scope. This has been done for many purposes, ranging from performance boosting to its utilization
for other applications. In this section, we discuss the main extensions to the DNS.

2.5.1 DynDNS

Dynamic DNS (DDNS or DynDNS) is a mechanism that allows real time updating of resource
records in a name server. DynDNS can assign a changeless reference to machines that change often
IP address. A DynDNS client automatically updates the DNS record whenever the IP address
changes. There are over fifty5 DynDNS providers that offer free and fee-based services. It is widely
used by users who want to easily host a personal website or connect to their home Virtual Private
Network (VPN). Users can choose a subdomain name out of a list of existing domain names owned
by the DynDNS provider.

5http://blogs.cisco.com/security/dynamic-detection-of-malicious-ddns, retrieved July 2015.

DNS-based Detection of Malicious Activity 7

CHAPTER 2. DOMAIN NAME SYSTEM

2.5.2 Reverse DNS resolution

Until now, we have discuss the process of resolving a domain name to an IP address. This is
also known as forward DNS resolution. Similarly, reverse DNS resolution (rDNS) can get an IP
address and determine the associated domain name. This process is also known as reverse DNS
lookup.

Reverse resolution is primary used for network troubleshooting. It is feasible because a host
name is assigned to every Internet-reachable host. This information is routed in the “arpa” TLD
that stands for Address and Routing Parameter Area. A query for reverse resolving contains a
different record type than a “forward” query.

2.5.3 Prefetching

In Section 2.4 we mentioned that the resolution of a user query may involve an arbitrary amount of
time. This means that users may perceive latency. Prefetching is a mechanism used to pre-resolve
domain names that are likely to be requested in the near future.

A resolver can prefetch domain names that are stored in the cache and expire shortly. As a
result, it keeps the cache up to date and popular domain names never expire. Due to the fact that
this functionality gives about 10 percent more traffic and load on the resolver, it is disabled by
default6.

Furthermore, prefetching is deployed in web browsers. The idea is that websites tend to have
multiple links that may be interesting for visitors. Therefore, whenever a web page is fetched
the browser automatically pre-resolves all the domain names contained in it. For instance, it is
extremely likely that a user will select a result of a search engine. Prefetching attempts to save
approximately 200 milliseconds7 in users’ navigation. Although this might be trivial, the main
goal of prefetching is to prevent the worst case scenario. A severe delay during the query resolution
is regularly over 1 second7 which is at least noticeable.

2.5.4 Other applications

The DNS is not only about mapping domain names to IP addresses. The DNS has also been
used in other applications for distributing information. Mail transfer agents are such an example.
They leverage the DNS to deliver e-mails faultlessly. The mail exchanger mapping has a specific
resource record that provides an extra layer of load distribution and fault tolerance.

Furthermore, an important nonstandard application is the Domain Name System Block List
(DNSBL). A DNSBL is an on-line database of blacklisted elements that can be queried in realtime.
We will discuss blacklists, in detail, in Section 3.4.1. A DNSBL is commonly used to filter bulk
incoming emails. It can either support blacklisted domain names or IP addresses. DNSBLs utilize
the light DNS format to offer conventional queries and transportation of the information. The
small DNS answers can prevent a bandwidth overhead.

6Unbound 1.5.4 documentation, https://www.unbound.net/documentation/unbound.conf.html, retrieved Aug
2015.

7https://www.chromium.org/developers/design-documents/dns-prefetching, retrieved July 2015.

8 DNS-based Detection of Malicious Activity

Chapter 3

Challenges

DNS traffic is generated by the majority of a computer’s networking usage. Since the Domain
Name System became widespread it has been frequently used by attackers. Generic malicious
activities may use domain names similarly to legitimate services. Furthermore, other malicious
activities may exploit properties of the DNS in order to achieve specific goals. In this chapter, we
introduce the attacker model and misuses of the DNS. Then, we focus on detection methods and
their privacy implications.

3.1 Attacker model

The DNS has properties that can increase the success of specific malicious activities. According
to Cisco Security Intelligence Operations1: a malicious software (a.k.a. malware) is designed to
“damage, disrupt, steal, or in general inflict some other bad or illegitimate action on data, hosts,
or networks”. Attackers use the DNS whenever they want to establish a channel of communication
with the spread malware. In this report, we focus on malicious activities that transfer information
through the Internet. They, for instance, exfiltrate stolen private information or attack legitimate
on-line services.

Malicious software that communicate with the attacker can either be remotely controlled or
not. The first kind is more flexible and adjustable. The second kind is usually more static and
cannot evolve. In either case, attackers want to keep the communication undetected. Both kinds
of malware can collect sensitive information to a dropzone. The remotely controlled malware can
additionally receive updates or commands for further attacks.

Finally, malicious domain names are used by various types of attacks. In addition to using
domain names for establishing a connection, malicious domain names may direct users to phishing,
spamming or generic malicious websites.

3.1.1 Spyware

A spying software (a.k.a. spyware) is a type of malware that secretly gathers information about
a person or an organization. A spyware is one of the most dangerous forms of malware because
it does not damage or disturb services but it looks for and discloses personal information and
real assets2. For instance, criminal organizations use this tool to collects financial information
from infected hosts. Other attackers may use it to track on-line activities and deliver targeted
advertisements. The last is also called an adware.

In particular, this kind of malware is designed to transmit the collected information to a
dropzone, where an unauthorized party can collect them. Finally, some specific kinds may allow
remote control over the device by disabling security settings.

1http://www.cisco.com/web/about/security/intelligence/virus-worm-diffs.html, retrieved July 2015.
2http://www.avg.com/a/us-en/what-is-spyware, retrieved Aug 2015.

DNS-based Detection of Malicious Activity 9

CHAPTER 3. CHALLENGES

3.1.2 Botnets

Botnets are a significant threat for the security and operation of legitimate networks. A botnet is
a group of bots remotely controlled by an attacker, called botmaster. Bots are infected computers
without the users noticing or consenting. This concentration of machines gives the attacker a
powerful tool to perform many illegitimate actions such as distributed denial-of-service (DDoS)
attacks, spam campaigns and hosting of phishing websites.

Computers are often compromised through outdated software that makes it vulnerable to
exploits. Then, a botmaster can set up a command and control (C&C) communication channel
with the infected hosts. This communication has been analyzed by security researchers since its
early development [5]. It seems that building a botnet is not as difficult as maintaining it and
keeping it undetected -from security analysts or law enforcements- for a long period of time.

Botnets adopted the same architecture as legal networks of bots used for administrating an
Internet Relay Chat (IRC) channel. Although the original term was benign, henceforth we consider
only its malicious connotation.

Furthermore, this centralized communication of botnets has a single point of failure, the C&C
server. If the infected hosts cannot access the C&C server, the botnet instantly become inoperable.
Attackers were powerless to resist a take down operation. As a result, they started developing
even more sophisticated techniques. There is a variety of obfuscated communication technologies
(e.g., P2P-based C&C structures) [5], but from now on we focus on technologies based on the
DNS.

Attackers want to hide the C&C server by repeatedly changing its digital location (IP address).
They also want a reference in order for the bots to locate and reconnect to the C&C server. An
easy way to achieve this goal is by taking advantage of the Domain Name System. However, a
naive use of the DNS by a botmaster would still be unprotected from a take down operation. If a
single domain name is used and it is forcibly unregistered, there still is a single point of failure.

Attackers’ main goal is to prevent loss of control of the entire botnet. A milestone has been
the development of automatically generated pseudo-random domains names [5]. Moreover, recent
intelligent botnets operate even if their C&C server is blocked [31]. This survivability is due to
the encoding of redundant domain names. These domains are used only when the control is lost
in order to update the binary of the malware.

3.1.3 Phishing

Phishing is a high-tech scam that attempts to fraudulently acquire sensitive information (such as
usernames, passwords, credit card details and bank account information) by masquerading as a
trustworthy entity in an electronic communication3. Attackers usually reach the target by email
or pop-up messages that direct users to disclose information at a fake website.

A phishing attack commonly directs users to official-looking website through similar-looking
domain names. Therefore, an unaware and incautious user could be easily deceived. Detecting
such malicious domain names is useful and could be used to protect users. Domain names related
to phishing are malicious, but they do not indicate infection. In contrast to the implication of
infection when connecting to a botnets’ C&C domain name, visiting a phishing website does not
prove that the user has disclosed any information.

3.2 Exploitation techniques

The DNS is being used by attackers to hide their activities and servers. Naive use of domain
names could have no advantage or benefit. On the contrary, advanced techniques are exploited by
attackers to become a powerful tool against detection.

3http://www.cisco.com/c/en/us/products/security/email-security-appliance/phishing index.html, retrieved
July 2015.

10 DNS-based Detection of Malicious Activity

CHAPTER 3. CHALLENGES

3.2.1 Fast flux

Fast flux is a technique that rapidly modifies DNS records in order to renew the IP address of a
domain name. It has been used by legitimate operators to increase performance and availability of
their services. The main objective is to equally distribute the network traffic among various servers
of the same domain entity. Large server farms [30] and content distribution networks (CDN) have
similar redundancy in their behavior.

Technically, fast flux is characterized by short-living TTL value, which usually is less than five
minutes4. As a result, every temporary storage (cache) will refresh the malicious DNS entry after
the time is passed. Meanwhile, the botmaster has already changed the IP address of the original
entry. Consequently, any further query for the malicious domain -after this period of time- will get
a different IP. This frequent renewal of IP addresses could evade most of the IP address oriented
security countermeasures [6].

Fast flux has been intensively used by botnets to evade IP-based blacklist and resist take down
operations against them [22]. Interestingly, no legitimate use of this technology had been noticed
before the malicious use. Attackers deployed it for the first time in the Storm/Peacomm botnets in
2007 [5]. The malicious objective is that by the time an authority issues a warrant to intervene to
take down a bot, its location will have already been changed. Likewise, the addition of a malicious
IP into a blacklist is usually slower than the change happening with fast flux.

However, the simple version of fast flux can be neutralized by taking down the registered
domain name. This is called simple-flux and its weaknesses led to the emerge of the improved
double-flux architecture. In addition to the rapid change of IP addresses in DNS records, double-
flux rapidly changes the authoritative name server of an entire DNS zone. In particular, attacker
can set up a rogue authoritative name server which is actually part of the fast flux scheme. The
server, instead of answering a query like an ordinary name server, it forwards the request to a
hidden back-end to obtain the concealed information.

3.2.2 Domain flux

Domain flux is characterized by the abnormal use of multiple domain names. It eliminates the
disadvantage of single point of failure, which is noticed in fast flux. It was firstly observed in
2009 by Stone-Gross et al. [7], who identified that bots were using a domain generation algorithm
(DGA). The use of a DGA leads to the domain flux behavior. That is, the utilization of multiple
domain names by the malware.

A DGA is shared between the botmaster and the bots. Its responsibility is to generate a list of
pseudo-random domain names. A shared DGA approximately generates the same list of domain
names, regardless the environment of the host machine. A pseudo-random DGA uses a seed, for
example the current date, and roughly generates the same list as long as the same seed is used.
The communication between the botmaster and the bots is possible because, the former registers
a few of the generated domain names beforehand. Then, the bots send consecutive DNS queries,
requesting the domain names in the list until one of them is registered. After retrieving the current
IP address of the C&C server, the bots communicate with it to receive signals for attacks or deliver
sensitive information.

One important part of a DGA is the given seed. Considering only the date could be easily
analyzed to predict the malicious domain names of the following days. This is exactly what Stone-
Gross et al. [7] did to take over the Torpig botnet. Firstly, they recognized the pattern of the
generator. Secondly, they registered first -before the botmaster- the domain names that the botnet
was going to use later. Interestingly, the botmaster changed the DGA, after retaking control over
his botnet by distributing a new binary. Nowadays, botnets use as seed not only the date but
also public information in order to make the domain names unpredictable. For instance, one of
Torpig’s DGA variations was using a character of the most popular Twitter search5. This variable
character was used as an additional seed byte.

4http://www.spamhaus.org/faq/section/ISP%2520Spam%2520Issues#164, retrieved June 2015.
5https://seclab.cs.ucsb.edu/academic/projects/projects/your-botnet-my-botnet/, retrieved July 2015.

DNS-based Detection of Malicious Activity 11

CHAPTER 3. CHALLENGES

The main advantage of domain flux is that the domain name itself is not important and blocking
it subsequently is fruitless. This matches the attackers’ goal to expose the C&C server for the
minimum amount of time. It has been recorded [8] that the whole process (i.e. the time window
that the bots can contact the C&C server) takes less than an hour.

DGAs are continuously examined by the academic community [9, 32]. The domain names
generated by a DGA are not totally indistinguishable because the generator is not a random
oracle. Malware analysts intensively use reverse engineering to interpret these pseudo-random
domain names [10]. The goal is to identify a pattern of the domain name generation that could
lead to a botnet take down. However, manual investigation and especially reverse engineering is
tedious and the results are uncertain. Therefore, researchers have started focusing on dynamical
detection.

Finally, it is worth mentioning that domain flux is not only used by botnets. Antonakakis et
al. [27] mention that DNS agility, as they refer to domain flux, is used by adware and spywares,
among others.

3.3 Monitoring

Detection of malicious activities is crucial for the security, integrity and availability of any network.
From a network administrator’s point of view, mitigating malicious activity focuses on detecting
malicious communications. That is, the communication between infected clients and hidden servers
maintained by attackers. This detection varies on the detection method and the activity that
can be detected. In the previous section we discussed about the emerging threat of malicious
activities that take advantage of the DNS. Below, we focus on such activity and we discuss whether
monitoring DNS traffic can be an effective detection strategy.

To understand deeply the network topology we must consider not only the DNS but also the
forwarding devices (e.g., routers, switches or firewalls) and the network flow. An overview of a
typical network can be seen in Figure 3.1. Figure 3.1 has the components that we described in
Section 2.3 for Figure 2.2. In addition to the described components, we have included a centralized
point where all the traffic of the network passes through. Forwarding devices are centralized and
forward the traffic of a network. Additionally, they can perform basic filtering or mirror traffic
to another machine that can process the packets in detail. For example, intrusion detection
systems (IDS) can perform deep packet inspection to detect hostile actions that match specific
rules. In Figure 3.1 we have included a flow collector that processes network traffic in order to
extract network flows. There exist detection methods that are based on network flows [11, 12].
Nevertheless, in this report, we consider any technology beyond the DNS as supplementary to
DNS-based detection.

The network topology is introduced because the centralized nodes can record every established
connection. The reason for checking this is that a DNS query does not necessarily convert into an
actual flow. In other words, a device may not always visit a queried domain name. Methods that
combine DNS traffic with flows in order to verify this connection have been proposed [13]. In this
report, we consider the network flows as a valid mean to increase the confidence of a DNS alert.

3.3.1 Types of monitored information

This report is based on two types of information that can be monitored: network flows and DNS
data. Network flows can be observed so as to reveal suspicious connections. DNS information
can be either generated or observed. The former is called active probing and the DNS data are
extracted through multiple queries. The latter is called passive DNS (pDNS) and we discuss below
the reasons that it is preferred.

3.3.1.1 Network flow

A network flow (also known as traffic flow, packet flow or just flow) is defined [16] as “a set of
packets passing an observation point in the network during a certain time interval, such that all

12 DNS-based Detection of Malicious Activity

CHAPTER 3. CHALLENGES

packets belonging to a particular flow have a set of common properties”. These common properties
are meta-data, such as who talked with whom, for how long and with which protocol. A flow probe
is responsible to process the traffic of a network and output flow traces.

Network flows satisfy two basic requirements for monitoring large and high-speed networks [13].
These requirements are the near real-time data analysis and the low storage space. Moreover, flow
export protocols are widely integrated into high-end packet forwarding devices. Steinberger et
al. [14] performed a survey and stated that 70% of the examined forwarding devices supported a
flow export protocol. Additionally, Hofstede et al. [11] state that flow export protocols are well
understood and are widely used for security analysis, capacity planning, accounting, and profiling,
among others. They also show that network flow can significantly reduce data, in the order of
1/2000 of the original volume.

3.3.1.2 Active probing and pDNS

The DNS is an ubiquitous Internet protocol, which can carry both benign and malicious informa-
tion. Therefore, it is a valuable target for security analysis. Monitoring and analyzing DNS traffic
has been proposed as one of the most promising options to detect malicious activities [15]. There
are two ways to take advantage of the DNS in order to extract interesting information. First,
active probing that generates DNS queries regarding suspicious domain names. Then, it resolves
these names to a number of name servers and analyzes the responses. The second way is passive
DNS (pDNS) that records DNS traffic generated by others.

Passive monitoring has many advantages over active monitoring, such as comprehensiveness
and easier implementation [17]. Moreover, it allows the observation of realistic behavior that is
unpredicted and cannot be generated. It increases the network load on neither the name server
nor the network. Finally, and more importantly, the observation remains stealthy because of
its non-intrusiveness characteristics [15]. On the contrary, active DNS probing methods can be
detected by the attacker. In this report, we examine methods that analyze pDNS traffic to detect
malicious activities.

3.3.2 Monitoring positions

In general, monitoring network traffic is carried out for performance analysis, troubleshooting, re-
searching and detection of security risks. Monitoring transmitted data to detect malicious activity
can happen at several locations of a network. The different monitoring places lead to different
kind of captured data with more or less information. In this report, we consider five different
locations.

The first sensor (1) in Figure 3.1 can perform regular packet capture. It can be a forwarding
device (e.g., central router) that can filter all the traffic of a network. This spot represents the
elementary monitoring of raw packet traces that involves every transmitted packet and its payload.
It is not necessary that the analysis is performed on the forwarding device. For instance, an IDS
system might get mirrored traffic from the router, while the latter just forwards the packets without
examining them.

The second observation point (2) analyzes network flows, gathered by a flow collector. Gener-
ating flows requires extra resources. However, a flow is aggregated information of each connection
that may have transmitted several packets.

The third observation point (3) in Figure 3.1 can monitor the communication between the
clients and the resolver. This location reveals all the DNS traffic generated by the users. The
third link contains the greatest amount of information, regarding the DNS traffic of a single
network. Although the resolution process is not visible (i.e. recursive queries), this information is
public and can be reconstructed. Interestingly, even the total DNS traffic is only a small fraction
of the total network traffic passing through the centralized forwarding device.

Another observation point can monitor traffic above the resolver, which is represented by the
fourth sensor (4) in Figure 3.1. This link contains the communication between the resolver and
remote authoritative name servers. The identity of the clients is masked because the resolver is

DNS-based Detection of Malicious Activity 13

CHAPTER 3. CHALLENGES

Root name
server

Recursive caching
name server

Top-level
name server

Second-level
name server

 Clients
(Stub resolvers)

Flow collector

(4)(3)

(1)

(5)

(5)

(2)

Forwarding
device

Figure 3.1: Monitoring places

responsible for obtaining the requested information. The resolver acts as a traffic mixer [18]. As
a result, this is the only observation point within the network that does not allow detection of
individual infected machines. Another property is that the resolver’s cache replies for domain
names whose TTL has not expired. Therefore, although users may constantly request a popular
domain name, the domain name is visible on this link once in a while.

Outside of the local network, monitoring can happen at the upper DNS hierarchy. These are
the fifth observation points (5) in Figure 3.1. Sensors are places at one or more authoritative name
servers. These servers are delegated authorities for a complete zone (see Section 2.2.2). Therefore,
monitoring at this level offers global visibility. That is, the visibility on all DNS messages related to
the delegated zone. Positioning the monitoring at the upper DNS hierarchy reveals every resolver
around the world that requested information for that zone.

3.3.3 Advantages and effectiveness of DNS monitoring

The main advantage of monitoring DNS traffic is that it is scalable. DNS traffic is only a small
percentage of the overall network traffic [19]. Thus, it is feasible for a detection mechanism to
process huge amount of data in real-time. On the other hand, monitoring the whole traffic of a
network could be impractical in a large-scale network [24].

In addition, due to the nature of the DNS, a malicious activity can be detected before it
actually happens. For instance, a bot may know the domain name of the C&C server. Then, in
order to connect, it has to resolve the name to an IP address. At this point the activity could
be detected, before the bot being able to connect to the C&C server. However, taking actions in
such short notice is challenging. Such real-time processing could be used to block the malicious
connection. In any case, it gives a slight time advantage.

Another advantage of monitoring DNS traffic is the robustness against encrypted or obfuscated
communication [31]. Attackers have been using these techniques for years to evade traditional
detection systems. Nevertheless, this does not apply to the DNS because it is not encrypted.

Furthermore, there are methods that can be applied only on DNS traffic. These are specifically
designed for and depend on specific DNS behavior. For instance, DGA-based botnets query a lot
of non-existing domain names. Monitoring such DNS traffic could quickly detect bot-infected
hosts [19], before they actually act.

Remotely communicating malware have evolved during the last years. Similarly, dynamic
detection methods that monitor DNS traffic have been proposed. A drawback of any DNS-based

14 DNS-based Detection of Malicious Activity

CHAPTER 3. CHALLENGES

detection system is that it misses other types of communications. For example, Choi et al. [23]
argue that a malware evades detection if it uses the DNS only in initialization and never again.
Moreover, observing a DNS query does not necessarily mean that the connection was established.
Although that the two functions are related, it is always possible that a requested domain names
was never accessed by the initiator.

Regardless the limitations, the use of the DNS has become essential for the operation of mali-
cious network infrastructures. As shown by Lee and Lee [31], analysis of DNS traffic has become
the most effective method to restrain them.

3.4 Detection

The detection of malicious activities goes beyond capturing data. The places where a sensor can be
deployed in order to monitor traffic were discussed previously. In addition, the captured data can
be examined in order to detect malicious activities, which, eventually, can lead to their mitigation.
Detection of malicious activities can involve techniques such as blacklisting or dynamic detection
methods.

3.4.1 Blacklist

It is very common that a node running a malicious software repeats the action regularly. Therefore,
network administrators want to isolate these nodes. Blacklists have been the most reliable solution
for a basic access control mechanism. The main idea is that whenever an element is involved in a
recorded malicious activity then it is inserted into the blacklist as a hostile entity. Consequently,
any repetition of the recorded action can be blocked immediately, before having any effect.

The most popular area that blacklists are deployed is spamming. They are used as a basic filter
to block unwanted e-mails, part of a spamming or phishing campaign. Blacklists are not limited
in this field and can be found in a diversity of environments. For instance, chatting applications
have been using them to block unwanted users from accessing a chat room. A disadvantage of
using blacklists is that an entity is blocked as long as it preserves the same identifier. The moment
that the identifier is changed it is not blocked any longer.

3.4.1.1 Common type

There can be different types of blacklists with various entries. In this report, we consider IP-based
and DNS-based blacklists, where malicious IP addresses and malicious domain names are listed,
respectively.

Although there is a clear correlation between IP addresses and domain names, it is risky
to modify a blacklist arbitrarily. Blacklists should be applied unaltered because every unverified
addition has a significant risk of being a false positive. The safest option is to deploy a high-quality
blacklist maintained by a reliable organization.

DNS-based blacklists tend to have less false positives than an IP-based blacklist. We can argue
that nobody would choose to use a domain with a questionable history. On the other hand, users
cannot freely choose their IP address. It is possible that an IP address related to a very heavy
attack is released. Then, this blacklisted IP could be assigned to a benign user. This is one of
the reasons that every IP-based blacklist should be updated often. There are blacklist that are
updated every 10 or 15 minutes6,7.

3.4.1.2 Extended type

In addition to the IP-based and DNS-based, there can be two expanded kinds of blacklist. One
is a blacklist as an on-line service that gets IP addresses and performs reverse DNS lookups (see

6http://www.spamhaus.org/faq/section/Spamhaus%20SBL#9, retrieved July 2015.
7http://www.spamhaus.org/faq/section/Spamhaus%20XBL#98, retrieved July 2015.

DNS-based Detection of Malicious Activity 15

CHAPTER 3. CHALLENGES

Section 2.5.2). Then, these retrieved domain names are matched against a DNS-based blacklist.
Another option can be to fully resolve a DNS-based blacklist and use the answers to create an
IP-based blacklist. Both options are not as accurate as applying directly the original blacklist.
Especially the latter can be easily polluted. An attacker that performs an attack can subsequently
change the DNS record. For instance, he could assign an IP address of a legitimate service that
he does not own. Then, resolving a DNS-based blacklist would include this benign service. This
example can illustrate the risk of arbitrary modification of a blacklist.

3.4.1.3 Indication

There is a variety of blacklists that indicate different malicious activities. For instance a blacklists
may contain nodes that regularly send spam e-mails and, therefore, the acceptance of electronic
mail is not recommended. Another kind of blacklist (or blocklist) is advisory “drop all traffic”
list, where the nodes are part of identified cyber-crime operations. The latter is very strict and
only a subset of the previous kind.

In this report, we are especially interested in blacklists that indicate infected users. Any
node communicating with a blacklisted element should be considered as infected. For instance,
communicating with a C&C server is a strong indication that the machine is part of a botnet. On
the contrary, visiting a blacklisted domain name that hosts a phishing website, does not mean that
the node is infected. In the last case, a user could be a victim of scamming and his identity could
be stolen. However, the machine is not definitely infected and the user may not have disclosed
any information at all. Consequently, only specific blacklists, such as a list of C&C servers, can
indicate infected nodes with high confidence.

3.4.2 Whitelist

A whitelist is a list of entities that are being provided a specific access. Sometimes a whitelist
is complete, in a way that anything absent is blocked. In this report, we consider whitelists of
legitimate Internet locations, which cannot be complete.

The most interesting type of whitelist contains legitimate domain names. The identification of
benign domain names is usually based on the popularity. Thus, a whitelist is normally a list of a
number of the most visited domain names.

3.4.3 Dynamic detection

Although blacklists have been an important weapon for fighting cyber threats, they are not sat-
isfactory. There are two obvious limitations. First, the malicious activity will succeed at least
once before it can be detected. Second, the human resources that have to investigate this activity
are time-consuming and costly. The fact that a malware can operate for a long period of time
before it can be blocked makes the dynamic detection imperative. Disposable domain names make
the situation even worse. Short-lived domain names are utilized to evasively move the C&C in-
frastructure [27]. In many cases, by the time the manual investigation is completed the domain
is already abandoned. Dynamic detection could be used to automatically identify new malicious
domain names while they are still active.

3.5 Discussion

Dynamic detection of malicious activity is important in order to automatically monitor intruders
in networks. However, there are a number of challenges that should be addressed to enable this
operation. In the remainder of this section we discuss these challenges.

16 DNS-based Detection of Malicious Activity

CHAPTER 3. CHALLENGES

3.5.1 Limitations of dynamic detection

We distinguish three important properties of every dynamic detection system. If these properties
are not fulfilled, the system is limited. First, it must be able to run in real-time. A real-time
system can process data virtually immediately after they appear. This mean that it will not be
too long before threats are detected. Real-time systems [15, 25] are important in order to detect
threats while they are still active. It is particularly important when suppressing the detected
threats with countermeasures.

The second critical property is the ability to run automatically. The system must require as
little human interference as possible. Manual investigation is a bottleneck for an autonomous
system, which eliminates the advantages of dynamic detection.

Third, the false positive rate of an autonomous system should be low. A false positive is a false
alert regarding a user’s activity. Although sophisticated algorithms exist, they always produce a
percentage of false alerts. Eventually, it may lead to inconvenience if the user is notified or blocked.
False positives are a pitfall because the system loses its reliability. We consider any false positive
rate above 1% as inadequate. Assuming that for a large user population the system generates
1000s of alerts, this would affect 10s of users misleadingly.

3.5.2 Privacy issues

In accordance with the EU Data Protection Directive8, the fundamental rights and freedoms of
natural persons should be protected, and in particular their right to privacy. Among the given
concepts of privacy [20] we consider the following: control over personal information, freedom from
surveillance and protection of one’s reputation.

Monitoring any kind of traffic generated by users may remove, challenge or lessen privacy. In
general, either capturing data that may contain personally identifiable information or identifying
a single user’s activities could be a violation of privacy. Furthermore, depending on the level of
intrusion (infringe on the principle of data minimisation), it could be incompatible with EU data
protection law9. Next, we discuss the privacy implications regarding the monitoring positions,
described in Section 3.3.2. A summary of the effects on users’ privacy can be seen in Table 3.1.

position privacy
1 violated
2 violated
3 violated
4 preserved
5 preserved

Table 3.1: Effect on users’ privacy when monitoring at each position in Figure 3.1.

To begin with, monitoring the forwarding device, position (1) in Figure 3.1, definitely violates
privacy and data protection laws. Capturing directly the packets of the network traffic allows
access to the data payload, which may contain personal information9. The fact that the payload
is observable means that monitoring can identify not only the visited address but also what was
typed or viewed.

Network flow exports, that can be seen at the second observation point (2), traditionally
inspect only the header of a packet which is less privacy-sensitive than inspecting the entire
packet. However, analyzing flow traces can still identify individuals and track individual activity
[21]. Therefore, it violates the privacy of the users.

The remaining three positions observe DNS traffic, which may violate the privacy of users de-
pending on the exact location of the sensor. Formally, the only personally identifiable information
that queries and replies contain is a client’s source IP address. Any personal information is not

8http://ec.europa.eu/justice/data-protection/, retrieved October 2015.
9https://ec.europa.eu/digital-agenda/en/net-neutrality-challenges, retrieved July 2015.

DNS-based Detection of Malicious Activity 17

CHAPTER 3. CHALLENGES

directly revealed, apart from accidental disclosure (e.g., typing a user’s name instead of a domain
name). However, queries could conceivable reveal the end-user’s activities, which would be con-
sidered as personally identifiable information under some international definitions [17]. Whenever
DNS traffic can be linked back to the initiator, it is considered as “sensitive information” (i.e.
personal information).

Specifically, monitoring between the clients and the resolver, which is the third observation
point (3) in Figure 3.1, reveals the source IP address of each query. This means that every query
can be linked back to an end-user. Thus, this link is highly privacy-sensitive and should be treated
with respect.

A resolver receives queries from users and initiates the recursive mode (see Section 2.4), without
revealing who originated the query in the first place. Consequently, the fourth position (4), which
is located between the resolver and the name servers, has the significant advantage that the IP
addresses of the individuals are masked. As long as there are not just a handful of users, their
privacy is preserved. Spring et al. [17] demonstrate that a larger number of users increases the
uncertainty in identifying a user session. Although confidentiality restrictions may apply, the
fourth monitoring position (4) does not violate the privacy of the users. Interestingly, Perdisci et
al. [18] state that systems that monitor DNS traffic at this position are easier to be adopted, due
to being respectful of privacy. Finally, for the fifth observation point (5) applies the same privacy
preserving property as for the fourth.

3.5.3 Summary

To summarize, the following are the challenges that we distinguished regarding a dynamic detection
system.

real-time: A system should be able to process all the traffic in real-time. A real-time system
processes data virtually immediately after they appear.

autonomous: A system should operate without manual intervention.

low false positive rate: The rate of false alert should be lower than 1%. In case that the
threshold is exceeded the system is considered to be ineffective.

respectful of privacy: A system should respect the privacy of the users. In other words, it
should be able to neither read a packet’s payload nor link the captured data back to an end-user.

18 DNS-based Detection of Malicious Activity

Chapter 4

Literature review

There is a large body of work related to the detection of malicious activity by analyzing DNS
traffic. The methods vary on several fundamental attributes, which makes every proposed scheme
quite unique. In this chapter, we summarize and categorize the related literature. Moreover, we
characterize a set of criteria for each method.

We have picked methods that excelled and set the ground truth for detection using DNS traffic.
A visual and comprehensive representation of the characterization is given in two tables. Firstly,
we present the fundamental properties of each method (Table 4.1). Then, we discuss the criteria
that are summarized in Table 4.2. Finally, we classify the examined literature according to the
detection approach used by researchers.

4.1 Properties

For each method we determine a set of properties, summarized in Table 4.1. The table provides an
overall picture of the proposed methods. Moreover, it intends to introduce to the reader their fun-
damental differences. The determination of such simple characterizations is challenging, especially
for the first three abstract properties. It symbolizes a bold attempt to create a generic view of
the prominent existing literature. In total, Table 4.1 includes six properties. The system property
is a very simplistic characterization of an overall method (e.g., reputation system). Normally, we
reproduce the authors’ choice, but in case that they have not named it, we use an intuitive name.

The approach property attempts to identify what the authors have chosen as their own criteria
to perform detection. In other words, it is mainly an indication of what a method examines in
order to achieve its goals. For instance, a method may examine features of domain names (e.g.,
the name’s lexicology or TTL values) or patents of specific behavior (e.g., group activity) that
could indicate maliciousness.

The methodology represents the families of the applied algorithms. For instance, if a method
uses the “X-means unsupervised machine learning” algorithm to correlate domain names, we note
machine learning in the methodology. Methods usually classify actions, which is an ambiguous
term. Therefore, mentioning “classification” in the methodology field is only happening for meth-
ods with a rigorous classifier module.

The detection property is the detection target of the method. That is, the type of malicious
activity that a method attempts to discover. There are three options: generic, botnet and domain
flux detection. The detection target can give an insight of how the system performs and how it
affects other properties. For instance, a correlation between detection target and approach could
been noticed.

The availability (available) of the actual implementations of a method is listed for anyone
interested in future work. The available attribute denotes whether the implementation is available
for download and execution. There are three different notations: “no”, “yes” and the conditionally
available “R”. The verdict “no” means that -to the best of our knowledge- the implementation is

DNS-based Detection of Malicious Activity 19

CHAPTER 4. LITERATURE REVIEW

not publicly available. “yes” means that the implementation is a fully developed free and open-
source software (FOSS). “R” means that a closed-source version is available by request. We should
note that we have not requested every method. Therefore, it does not necessarily mean that a
unavailable implementations is not available by request.

Finally, external source states whether a method leverages historical information. Such infor-
mation can be an external blacklist (BL) or whitelist (WL). Generating a blacklist beforehand
(e.g., by executing malware samples in a control environment) is considered an external source as
well. The motivation for choosing this attribute is that external source can influence the detection
rate. For instance, a method could mark as malicious a domain name that has similar features
with a blacklisted one. Such a method relies heavily on the blacklist’s quality. For instance, using
a private blacklist, instead of a publicly available, could increase the accuracy of a method [27].

Method System Approach Methodology Detection Available
External
source

Choi et al. [23]
(pre BotGAD)

anomaly-based group activity similarity botnet no WL

Choi et al. [24]
(first BotGAD)

metric model group activity
similarity,
stochastic

botnet no WL

Choi et al. [25]
(BotGAD)

machine learning group activity

correction,
similarity,
clustering,
hypothesis

botnet R WL, BL

Sato et al. [26] scoring co-occurrence
classification,
similarity

generic no BL

Antonakakis et al. [27]

(Notos)
reputation

statistical
features

classification,
clustering,
characterization

generic no WL, BL

Antonakakis et al. [28]

(Kopis)
reputation

statistical
features

machine learning,
classification

generic no WL, BL

Bilge et al. [29]
(EXPOSURE)

reputation features
machine learning,
decision tree

generic no WL, BL

Marchal et al. [30]
(DNSSM)

data mining features
machine learning,
clustering

tunneling,
fast flux

yes -

Lee et al. [31]
(GMAD)

graph structure
sequential
correlation

correlation,
graph-
construction,
filtering,
clustering

generic no BL

Antonakakis et al. [32]

(Pleiades)
DGA-bot NXDomain

clustering,
correlation,
classification

domain flux no WL, BL*

Table 4.1: Properties of each system.

4.2 Criteria

In addition to the properties, we introduce a set of criteria that highlight the details of applying
each method. We discuss the reasons for choosing the criteria, the limitations and challenges.
The final verdicts are a result of our understanding, conclusions derived from the papers and our
overall experience.

Table 4.2 contains our judgments for six specific criteria. First, we examine whether a method
can dynamically detect new malicious domain names. Second, the method’s capability of dynam-
ically detecting infected users. The first two criteria determine the overall detection target of a

20 DNS-based Detection of Malicious Activity

CHAPTER 4. LITERATURE REVIEW

method. It is worth noting the difference from the detection property which detects the type. For
instance, a method’s goal could be to detect new domain names of malicious domain flux activity.
Alternatively, it could aim to detect hosts infected by a botnet.

Third, we examine the privacy implication of applying a method in real-life. Satisfying this
criterion depends on whether the privacy of users is respected. Normally, monitoring users without
taking measures to ensure privacy is considered a violation. The significance of protecting privacy
is discussed in Section 3.5.2.

Fourth, the autonomous criterion is strongly related with the first two criteria. It is satisfied if
the dynamic detection of either new domains or infected users is completely automated. A system
is autonomous if it does not require supervision or manual intervention at any step apart from
training. Formally, the output of an autonomous system must be a list with either new malicious
domains or infected hosts. If the output is a group of domains that require manual inspection,
the system is not considered autonomous even though it may run automatically.

Fifth, we report the performance ability of a method to run in real-time. A real-time system
processes data virtually immediately after they appear.

Sixth, we record the maximum false positive (FP) rate of a method. This is a reliable indication
of how well the system performs. For example, marking a legitimate domain name as malicious
is considered as false positive. We have selected the FP rate, rather than for instance false
negatives, because it could seriously damage a system’s reliability. False positives cause complains
from legitimate entities that consider themselves as treated unfairly.

At this point we must emphasize the impossibility of independently verifying the last three
criteria. It is extremely challenging to justify if a method is autonomous, able to run in real-time
and its max FP rate by theory. Unfortunately, most of the implementation are not available.
Therefore, the reported values are approximate estimations based on the description and claimed
results by the authors. Even this way is sometimes difficult because not all researchers consider
the same criteria. For instance, some tend to report the maximum FP rate, while others report
the average rate. Therefore, the comparison is slightly unbalanced. The ideal scenario for the FP
rate would be to run each method given the same dataset, which was not possible.

4.3 Classification

Below, we classify existing proposals in the area of DNS-based detection of malicious activity. The
main classification is based on the detection approach. Moreover, we summarize the methods and
justify the verdicts for the criteria set out in Section 4.2.

4.3.1 Group activity

In 2007, the time that researching botnet mitigation was in an early stage, Choi et al. [23] identified
group activity as an inherent property of botnets. As we have defined in Section 3.1.2, a botnet
consist of a group of bots. The authors demonstrated how monitoring group activities can be used
as an anomaly-based mechanism to dynamically detect botnets.

The basic definition of group activity states that it has fixed size of bots which have intermittent
activities. To elaborate, they assume that a group has fixed size because only botnet members
query the malicious domain name. In addition, they state that these queries are temporary and
simultaneously. The last assumption is that botnets usually use DynDNS (see Section 2.5.1) to
register malicious domain names. Interestingly, the method leverages historical information. They
use a whitelist to exclude queries for legitimate domain names. Although, the method is obsoleted,
it is noteworthy due to the original introduction of group activity.

One interesting limitation is the focus on DynDNS traffic. It has been noticed that most pro-
fessional criminal botnets have moved away from DynDNS services1. The reason is the provider’s

1Operation Aurora - The Command Structure,
https://www.damballa.com/downloads/r pubs/Aurora Botnet Command Structure.pdf, retrieved July 2015.

DNS-based Detection of Malicious Activity 21

CHAPTER 4. LITERATURE REVIEW

Method
New domain
detection

Infection
detection

Respectful
of privacy

Autonomous
Real-
time

Max
FP(%)

Choi et al. [23]
(pre BotGAD)

3 ? 7 3 7 ?

Choi et al. [24]
(first BotGAD)

3 3 7 3 3 ?

Choi et al. [25]
(BotGAD)

3 3 7 3 3 0.31

Sato et al. [26] 3 3 7 ? ? 4

Antonakakis et al. [27]
(Notos)

3 7 ? 3 ? 0.38

Antonakakis et al. [28]
(Kopis)

3 7 3 3 7 0.5

Bilge et al. [29]
(EXPOSURE)

3 ? 3 3 3 1

Marchal et al. [30]
(DNSSM)

7 7 3 7 7 -

Lee et al. [31]
(GMAD)

3 3 7 7 ? 0.5

Antonakakis et al. [32]
(Pleiades)

3 3 7 * 7 ? 1

Table 4.2: Judgments about the criteria. ‘3’ means that the criterion is satisfied, ‘7’ that
it is unsatisfied and ‘?’ that it is uncertain.

aggressive stance against abuse. Although there are still incidents2, this focus excludes, for exam-
ple, botnets with rogue name servers.

Two years later, Choi et al. [24] presented a primitive version of BotGAD, which stands for
Botnet Group Activity Detector. Similarly to the prior work, it is also based on group activities.
They claim that group activity had remained a common property of botnets at that time. The
method does not depend on the content of the transferred packets nor the signature, but only on
behavior properties. It follows the same concept as before and it utilizes a whitelist. However,
the new method can run in real-time and uses a different generic metric model. The definition
of group activity has slightly more flexible size, because trivial changes in groups may occur. In
addition to the intermittent property, they recognize that it has intensive occurrence.

The new proposed scheme has two extra steps: group classifier and botnet reporter. The first
keeps separate storage for each group, that makes it easier to process. The latter takes the final
decision whether the group is malicious, suspicious or false positive, according to the combination
of the similarity, periodicity and intensity of the group’s activities. Moreover, they have used
stochastic methods to optimize the parameters of the system, such as the time window and the
group size threshold. Finally, they described six well-defined steps to manually verify the results.

In 2012, Choi et al. [25], acknowledged three limitations of the previous systems. These are:
(i) the flexibility of the group size is not sufficient enough, (ii) a slight change in a parameter could
have huge impact in the results and (iii) DGA-based botnets are not detected. Consequently,
BotGAD was extended with error correction, cluster analysis and hypothesis test. The most
advanced and complicated enhancement is the cluster analysis method that uses the “X-means”

2Microsoft takes on global cybercrime epidemic in tenth malware disruption,
https://blogs.microsoft.com/blog/2014/06/30/microsoft-takes-on-global-cybercrime-epidemic-in-tenth-malware-
disruption/, retrieved July 2015.

22 DNS-based Detection of Malicious Activity

CHAPTER 4. LITERATURE REVIEW

unsupervised machine learning algorithm to correlate domain names. Domain correlation is a
significant improvement that allows detection of botnets that use evasion techniques, such as
domain flux. Specifically, it correlates domain names according to a set of features related to DNS
lexicology, query and answer information. As a result, all domain names of a cluster are labeled
together depending on the output of the hypothesis test. Eventually, BotGAD achieves less than
0.4% false positive rate with good performance.

To conclude, Choi et al. [23, 24, 25] keep sub-optimizing the method which has achieved
good results. However, the modules have been increased that could lead to needlessly complexity.
Scrutinizing traffic to identify group activity has been proven a useful tool to dynamically detect
new malicious domains. Nonetheless, it remains a tough challenge to successfully apply it in
real-life. One fundamental limitation is that investigating group activity can only detect infected
groups but not single nodes. Furthermore, depending exclusively on the behavior property makes
the system vulnerable to simple evasion techniques that bypass specific rules. Notably, in addition
to a whitelist, the authors examine the presence of blacklisted SLD names to influence the results
of the latest BotGAD.

Finally, the only criterion in Table 4.2 that has not been convert in the discussion so far is
privacy. None of the methods based on group activity is respectful of privacy. This is true due
to the fact that these methods examine DNS traffic generated directly from users without taking
privacy into consideration.

4.3.2 Co-occurrence

Sato et al. [26] propose a scoring system to expand blacklists by monitoring co-occurrence relation.
The authors examine pairs of domain names that are frequently queried by multiple infected hosts.
The assumption is that if one is black (where they mean malicious) the other one is black as well.

The method consists of three steps. First, the identification of infected hosts using a blacklist.
Second, the expansion of the blacklist. This step distinguishes suspicious domain names requested
by infected hosts. Then, checks if a suspicious domain name has hight co-occurrences relation with
a blacklisted name. Third, the identification of unknown infected hosts that request a domain name
of the expanded blacklist.

The degree of co-occurrence relation between two domain names is measured with a similarity
coefficient3. The similarity is determined by: the total number of hosts that requested both domain
names, divided by the total number of hosts that requested at least one. For each suspicious
domain name the similarity coefficient between it and every malicious domain is calculated. The
aggregation of these similarity coefficients is the final score. If the score is above a given threshold,
the domain name is considered as malicious. The relation of a malicious and a suspicious domain
name strongly relies on defined thresholds.

The authors have proposed an improvement to reduce the negative score of popular domain
names. The assumption is that if a domain name is popular it will be requested multiple times
by both infected and non-infected hosts. Therefore, they define the weight ratio -for each domain
name- of the total number of infected hosts over the total number of all the hosts that requested
it.

The authors also examine a variation where heavily infected users influence less the score. In
general, they examined four different variations. However, the system fails to achieve less than 4%
false positive rate. This could be considered as a drawback of not taking into account the positive
reputation (e.g., domain’s relation with a legitimate service). Moreover, the authors recognize
that it could easily be polluted if bots were querying legitimate domain names.

Finally, we cannot conclude about the performance or the implementation’s autonomy because
they are not clearly documented.

3The authors do not use the term similarity. However, they refer to Jaccard index which is also known as Jaccard
similarity coefficient. We prefer the second term to ensure consistency in this report.

DNS-based Detection of Malicious Activity 23

CHAPTER 4. LITERATURE REVIEW

4.3.3 DNS features

A different class of methods identifies and measures DNS features to detect malicious activities.
This category is mainly composed by reputation systems, that compute reputation scores for sets
of domain names. In addition, we examine a data mining system that is based on DNS features.

A reputation system considers various features that are fed as input to the reputation engine
along with the actual domain names. Often, the process intensively leverage historical information,
such as blacklists or whitelists, to evaluate unknown domain names. This external source of
information is used to model profiles of legitimate and malicious activity. Then, the assignment
of proper reputation to newly emerging domain names is usually based on the similarity to these
modeled profiles. Normally, the assigned reputation score is in range, instead of being either good
or bad.

Additionally, next to the reputation systems we describe a data mining system. This system
examines features of domain names too. However, it does not consider historical information. As
a result, the suspicious features of domain names are not flexible.

4.3.3.1 Reputation systems

Notos [27] was the first comprehensive dynamic reputation system for evaluating unknown domain
names. It was introduced in 2010. Notos has extended preexisting spam detection systems by
exploiting network-based features. At that time, the handful of reputation systems were using
-and could evaluate- only IP addresses. The authors propose a more general system that can
identify a variety of previously unknown malicious domain names, not limited to spam.

The key idea of Notos is the creation of a benign and a malicious profile, according to a set of
domain features. Then, it matches unknown domain names to one of the two profiles. Antonakakis
et al. [27] assume that hostile registrations of domains have unique characteristics, distinguishable
from benign ones. The reason behind this assumption is that fraudulent activities act stealthily
in order to avoid triggering alerts. Therefore, they are not ordinary.

Building the model of the benign profile requires a large amount of data that was gathered
from multiple resolvers across the world. These datasets contain, as they call it, historical DNS
information. Additionally, for the model of the malicious profile the authors gathered data from
spam-traps, honeynets and malware analysis services. A common tactic is to run malware samples
in a controlled environment in order to capture the other end of the communication. These logs
and publicly available blacklists constitute the malicious knowledge base.

Notos extracts features from historical information to categorize the knowledge base of legit-
imate or malicious domains. Then, it is fed to the reputation engine. The output of Notos is
a reputation score for each examined domain name. Specifically, if there is evidence of relation
with a known source of malicious activity, the reputation of the unknown domain name is de-
creased. Likewise, if there is evidence that connects it with a professionally run service, the score
is increased.

Notos identifies three categories of statistical features that should be different for each profile.
Firstly, the network-based features are used to detect any use of fast-flux and allow through
domain names that have a noticeable static profile. In total they distinguish eighteen statistical
features. For example, Notos examines the total number of IP addresses historically assigned
to the domain name as well as the diversity of the geographical locations. The network-based
features are extracted from a set of IP addresses. This set includes IP addresses associated with
the unknown domain or any of its subdomain names.

Secondly, the zone-based features extract statistical information from all the domain names
historically associated with the unknown domain. This association is determined based on IP
addresses. This is, any domain name that has used the same IP address as the domain name
under inspection. The knowledge base is used to extract statistical features of two groups of
characteristics: string features of the actual domain names and TLD features related to the number
of distinct top-level domain labels among the set. The assumption, in this case, is that domain
names with common IP addresses will have strong similarities. For instance, “www.example.com”

24 DNS-based Detection of Malicious Activity

CHAPTER 4. LITERATURE REVIEW

could have the same IP address as “ftp.example.com” because the same server hosts both a web
server and an FTP server. On the other hand, malicious names pointing to the same IP address will
not have such similarities. This is because attackers want their domain names to look random. In
total, the zone-based features are seventeen. For example three of those features are the average
length of their names, the total number of different TLD values and the deviation of 2-grams
distribution. For more details on this set of features see Section 3.2.2 of [27].

Thirdly, evidence-based features are simple alerts of how many of the IP addresses exist in the
malicious knowledge base. Their noteworthy assumption is that malicious domain names often
point to the same IP addresses, as a consequence of the more expensive renewal of domain names
than IP addresses. However, a domain name queried by a malware is not instantly assigned with
low reputation. Evidence-based features are not an ultimate proof without considering the other
two categories of features.

The described features are investigated by the reputation engine of Notos in order to evaluate
unknown domain names. The engine has to complete an off-line training phase before being
able to operate in on-line mode. This preprocessing creates (i) network profiles models, using the
network-based features, for classes with well-known network behaviors (e.g., popular domain zones
or DynDNS). Moreover, it uses, in addition to network-based, zone-based features to execute the
domain clustering module. (ii) The clusters are marked as high or low risk depending on their
percentage of malicious entries. Finally, (iii) it calculates the evidence-based feature for every
domain in the knowledge base and stores the output. The three output vectors of the training
phase can be occasionally reconstructed off-line.

During the on-line mode the statistical features of the unknown domain are calculated and fed
to the reputation engine. The engine determines whether it belongs to a specific well-known class
(i), which is the risk of the closest cluster (ii) and, finally, if there is any direct evidence of relation
with a blacklisted IP address (iii). The output is the final reputation score.

Regarding the privacy criterion, Notos does not utilize the source information of users that
initiate DNS queries. Therefore the system -as it is- cannot detect infected users and may respect
privacy. However, the data that they obtain could contain private information and they do not
explicitly state of considering privacy. The final verdict of this criterion is uncertainty.

There are not sufficient statistics of the implementation’s performance and the ability to run
real-time is difficult to determine. Although there is preprocessing (off-line) phase, it is unclear
whether the on-line mode can run in real-time or not, hence the uncertainty in the corresponding
cell in Table 4.1.

Antonakakis et al. [28] proposed a more abstract reputation system, called Kopis, in 2011.
At that time the most sophisticated approaches were the aforementioned Notos and a primitive
version of EXPOSURE, which we will discuss further down. The authors state that the existing
solutions are limited due to their local deployment. They, instead, propose a system that uses
data collected at the upper DNS hierarchy (see Section 3.3.2).

Monitoring at the upper DNS hierarchy collects data from multiple resolvers. Therefore, it has
global visibility. On the other hand, local visibility involves monitoring a few resolvers. Anton-
akakis et al. [28] define that global visibility should be a property of every dynamic detection -of
malicious domains- system. The reason is that an early warning will detect malware at another
network before they actually penetrate into the local network. From an administrator point of
view this could have significant importance if the administrated network is a secondary target.

They emphasize that to achieve a “meaningful level of visibility” it is not sufficient to obtain
data below the resolver (see Section 2.3.2). It is extremely challenging to combine various sources
in order to increase the partial visibility due to the operational cost, communication issues and,
undoubtedly, privacy concerns. Therefore, monitoring anonymized data at the upper level can
overcome these issues. However, this convenience comes with two limitations. First, being unable
to detect infected clients. Second, miss any request for cached information.

The approach of Kopis is similar to Notos and involves the extraction and comparison of
statistical features of domain names. Similarly, a knowledge base and public blacklists are used
to train the system, before switching on the operation mode. However, monitoring at the upper
DNS hierarchy, naturally, requires the extraction of alternative features. For instance, the diverse

DNS-based Detection of Malicious Activity 25

CHAPTER 4. LITERATURE REVIEW

location of the resolvers that resolved a specific domain and their cardinality of users. Additionally,
they examine IP reputation information for each domain. They, also, claim that the system can
succeed in detecting new malicious domains even if this information is missing.

Initially, the training phase utilizes a knowledge base of well-known legitimate and malicious
domains to build a statistical classifier. This is done using supervised machine learning that may
last several days. Eventually, during the operation mode, Kopis collects queries and replies for one
day, which they consider as optimal, and computes several statistical features of every requested
name. Then, the classifier evaluates the domain name and output the final verdict.

We should note that we have marked Kopis, in Table 4.2, as not being able to run in real-time.
If we consider that a blacklist may change in less than one hour (see Section 3.4.1, 3.4.3) detecting
new malicious domain every 24 hours is not considered as real-time.

Kopis is a neat system with an essential classifier, in contrast to Notos that involved three
different components. However, selecting the right classifier and the best-suited machine learning
algorithm is far from trivial. In a long-term experiment they used three different classifiers:
random forest, random committee and k-nearest neighbors, which had been selected among much
more options during a short-term experiment.

Bilge et al. [29] propose EXPOSURE, a successful detection method of new generic malicious
domain names. To the best of our knowledge, it is the only method -of the examined literature-
that was applied in real life. EXPOSURE was offered as an on-line4 free service for a long period
of time, over one and a half years.

The authors distinguish fifteen features of domain names that can be used to distinguish
malicious domain names from benign ones. Six of them had been priorly used to detect fast flux
networks, but the others form a novel approach. The features are grouped in four categories: time-
based features, dns-answer-based features, TTL-based features, and domain-name-based features.
These features can be extracted from anonymized DNS records.

Technically, EXPOSURE gets DNS traffic and extract the proposed features. Then, the system
uses a blacklist as well as a whitelist to distinguish between known and unknown traffic. The
labeled domain names are sent to the learning module, while the unlabeled ones are sent to the
classifier. The learning module processes the historical information to produce two detection
models. Specifically, after an optimal seven-day machine learning process it creates a benign and
a malicious model. Eventually, the classifier, which is build as a decision tree algorithm, decides
whether a domain names is malicious or benign. Thereafter, the training stage can be repeated
daily. Notably, Bilge et al. [29] applied a genetic algorithm, a search heuristic, to refine the list of
examined DNS features.

4.3.3.2 Data mining

Marchal et al. [30] propose a data mining approach to dynamically detect new malicious domains.
The authors focus on the practical aspects of monitoring DNS traffic. They designed and im-
plemented the DNSSM framework, which is not standalone, but can be used by an analyst or a
software to detect previously unknown malicious domain names. The authors have distinguished
a set of relative features and proposed a machine learning methodology.

Most of the related literature, that we discuss in this chapter, uses pDNS (see Section 3.3.1.2)
as the source of detection. However, it is not explicitly documented how data are processed and
the majority of the implementations are unavailable. Marchal et al. [30] actually implemented a
passive DNS sensor that extracts DNS related traffic from captured traces. Next, it inserts every
DNS answer to a relational database system (MySQL). The centralized storage allows adjustable
display of the data for an inquisitive analyst. Each view can extract and display specific features.
For instance, given a threshold, the domain flux view prints domain names which have at least
this number of NS records. Interestingly, the authors published DNSSM with a functional user
interface as a FOSS, which is the only FOSS that we came along during this report. DNSSM
is not publicly available because nobody hosts it on-line at this moment. Nevertheless, we have

4http://exposure.iseclab.org, retrieved July 2015.

26 DNS-based Detection of Malicious Activity

CHAPTER 4. LITERATURE REVIEW

marked it as available, in Table 4.1, because the license allow redistribution under the terms of
the GNU General Public License version 2.

DNSSM focuses on behavior property and does not require any external knowledge, such as
blacklists. This means that it can only detect specific kinds of malicious activities. DNSSM
targets two major exploited techniques. First, the tunneling of IP traffic over DNS traffic, which
is a known abuse of camouflaging regular traffic to look like DNS traffic and remain undetected.
The second target is to detect fast-flux techniques (see Section 3.2.1).

The relative features are related to the aforementioned detection targets. The simplest of the
10 features are: the mean TTL value and the subdomain count for a given domain. Additionally,
they calculate an entropy-based index of IP address scattering through different subnets on the
Internet, among other features. The authors claim that these attributes are adequate to distinguish
DNS tunneling and fast flux activity from regular DNS traffic.

DNSSM detects group of domains that share common behaviors related to the proposed fea-
tures. They propose the use of machine learning that can perform a classical unsupervised clus-
tering algorithm to achieve essential mining on the extracted features. In their experiments they
used the “weka” machine learning tool and the “k-means” algorithm for clustering.

The final output of the experiments was seven clusters of domains that were presented through
manual investigation. Due to the fact that it does not characterize individual domains, we have
marked it as not been autonomous as well as unable to detect new malicious domains. Although the
clusters are created automatically, we have defined an autonomous system as a system that outputs
new malicious domains without requiring manual intervention. The cluster could significantly
reduce the search area for new malicious domains but marking all domain as malicious would
be irrational. Furthermore, DNSSM monitors traffic in the upper DNS hierarchy and, therefore,
cannot detect infected users and respects privacy.

4.3.4 Sequential correlation

Recently, it has been observed that sophisticated malware uses various evasion techniques to
remain undetected, in real life [31]. Most of them have been discussed in the limitations of the
current literature [25] but have not been very well confronted. For instance, sub-grouping is used
to evade detection by monitoring group activities. Additionally, interleave queries of legitimate
(or invalid) domains with malicious queries could corrupt clustering.

Lee et al. [31] have proposed a Graph based Malware Activity Detection (GMAD) mechanism,
that constructs a graph expression of the overall DNS queries. The goal is to detect new mali-
cious domains, infected clients and specific malicious activities. These activities involve blacklist
checking and fake querying.

The approach examines the sequential correlation of domain names, that is the correlation
between two domains that are queried after or before each other. For instance, using a web
browser to visit “www.example.com” will automatically resolve “www.iana.org” as well. These
DNS query patterns have high sequential dependency, due to pre-resolving (see Section 2.5.3) or
redirections.

Sequential correlation is a spatial property caused by the query patterns of infected clients.
The authors distinguish spatial properties from temporal properties, such as timing synchronicity
of group activities. They claim that sequential correlation is much less influenced by the amount
of queries, the infection rate and legitimate activities. As a result, the mechanism can detect even
malicious domains with a low rate of queries.

Technically, the domain-nodes are connected with a correlation value, depending on the per-
centage of common query source IP addresses. Then, a clustering is performed with a simple
threshold of the correlation value, the number of queries and the number of clients. Finally, if a
cluster contains a blacklisted domain, it is marked as malicious.

It is worthy mentioning that this mechanism is robust against intentionally injection of legit-
imate domains by a malware. An attacker may inject a legitimate domain name (for instance,
“www.example.com”) between malicious ones. By this way a detection system may categorize it
as malicious. However, the natural sequential correlation of legitimate domains prevails and these

DNS-based Detection of Malicious Activity 27

CHAPTER 4. LITERATURE REVIEW

names cluster separately. For instance, “www.example.com” and “www.iana.org” cluster together,
although the malicious injections. Consequently, GMAD utilizes a blacklist but not a whitelist.
The assumption is that a cluster has either malicious or legitimate domain names. If it is not
malicious, it is legitimate.

Moreover, this mechanism can increase the chances of a botnet’s successful take down, that
requires the blocking of its malicious domains, altogether. In contrast to the preceding systems,
GMAD is not limited to inconstant patterns or fixed features. The mechanism categorizes the
botnet’s domains in a single cluster and the only requirement is that one of them is blacklisted.

The authors compared GMAD with BotGAD, described in Section 4.3.1, using the same data
set. They claim that GMAD detected twenty-eight times more malicious domains. Their inter-
pretation of the superior performance is that GMAD can detects sparse and low-rate malware
activities. BotGAD has been expanded to detect DGA-based botnets, in addition to group ac-
tivity. Nevertheless, Lee et al. [31] indicate that BotGAD cannot detect multi-domain malware5

that do not use a DGA or cause little lexical similarity.
Finally, the authors claim that GMAD achieves scalable detection in huge network environ-

ments. However, they also mention that “the mechanism is not yet fully automated and does not
necessarily work in real time”. We have marked GMAD as being neither autonomous nor able to
run in real-time, due to the fact that any evidence to support the opposite is not provided.

4.3.5 NXDomains

The systems in this category target malicious domains of botnets that use the domain flux tech-
nique. Malicious use of domain flux is strongly aligned with the use of domain generation al-
gorithms (DGAs), a fact which is described in Section 3.2.2. Researches have used non-existing
domain signals (NXDomain), that are mentioned in Section 2.4, as a tool to detect such algo-
rithmically generated domain names. This category mainly involves various methods to analyze
clusters of NXDomain and dynamically flag those generated by a DGA-bot.

Pleiades [32] is a DGA-bot detection system, placed below the local resolver. Initially, it
monitors and stores all the NXDomain replies within the network. Pleiades aims to automatically
identify DGA domain names. To this end, it searches for relatively large clusters of NXDomains
that have common properties. Specifically, domain names clustered together have (i) similar
syntactic features, which is based on the assumption that a single DGA does not create completely
indistinguishable domains. For instance, two of the syntactic features examine if domains have
similar length or similar character frequency distribution. In addition, domains in the same cluster
(ii) must have been queried by overlapping suspicious machines during a time window. The
intuition behind the second property is that multiple nodes will be infected by the same DGA-
based malware within a network.

Technically, all the NXDomain packets are fed to the DGA Discovery process. The process pre-
forms clustering according to the statistical features and the “overlapping” property, individually.
Then, the two distinct views of similarities are reconciled in a single cluster during the correlation
phase. The objective of the overall stage is that each cluster represents non-existing domain names
generated by the same DGA binary. After the unsupervised clustering is completed, the clusters
are filtered, where legitimate, known malicious DGAs and -clusters grouped due to- common typos
are discarded.

Next, the DGA Classification and C&C Detection module uses supervised learning techniques
to process every new DGA cluster discovered during the previous phase. An important component
of this module is the DGA Modeling, which already possesses a whitelist and a blacklist. The last
ones are generated only by executing known DGA-based malware in a controlled environment.
The DGA Modeling expands the unlabeled clusters to include every NXDomain triggered by the
involved hosts. This is needed to extend the data in order to build better statistical models. The
authors claim that the statistical learning algorithms eliminates the limited unrelated domains.
Moreover, the supervised DGA Classifier is used to assign scores of confidence of the relation

5A malware that uses multiple domain names is characterized as multi-domain.

28 DNS-based Detection of Malicious Activity

CHAPTER 4. LITERATURE REVIEW

between a set of NXDomains and a modeled DGA. This is the classifier that is actually used
during the cluster filtering, that we mentioned before, to discard already known and modeled
DGAs.

Pleades can also detect infected hosts. This is achieved by extracting the statistical features
-that are used for the clustering- from subsets of NXDomains produced by a single host. Then,
the DGA Classifier evaluates them. If there is strong correlation with a specific DGA the host is
reported as compromised.

Eventually, the C&C Detection part of the module monitors the valid DNS queries initiated by
the recorded infected hosts. These active queries are compared with non-existing domain names
generated by a DGA, using Hidden Markov Models. The output is the likelihood of a domain
name, as a sequence of characters, being generated by a specific DGA. If the probability is high,
the domain name is marked as malicious.

Although the clustering is unsupervised, the classification and, especially, the C&C detection
rely on supervised learning and require manual inspection. Therefore, we consider that the system
does not satisfy the autonomous criterion in Table 4.2.

The system clearly monitors DNS traffic directly from the clients and could be strongly argued
that it violates privacy. We have, indeed, marked the criterion as unsatisfied but we have also
added a remark in Table 4.2. It is worthy mentioning that Pleiades mainly processes NXDomains
and it expands the monitoring only if there is evidence of infection. It could be argued that privacy
is respected at some level but this would be a debate out of the scope of this report.

DNS-based Detection of Malicious Activity 29

Chapter 5

Approach

In the previous chapter we examined methods that perform DNS-based detection of malicious
activity. It would be interesting to compare these methods to determine their efficiency and
accuracy. Unfortunately, the majority of them are unavailable; hence, the comparison is not
feasible. Another idea has been to create a reputation-based system that evaluates the outputs
of the examined methods. If multiple implementations mark the same activity as malicious, we
increase the confidence that it is indeed malicious. However, the methods do no adequately satisfy
the defined criteria. There is only one method that is autonomous, able to run in real-time and
with (claimed) false positive rate lower than 1%.

Nevertheless, this report attempts to observe the generic behavior of DNS-based detection. The
remainder of this report examines whether monitoring DNS traffic can increase the effectiveness
of detecting infected computers. Initially, we investigate the concept of combining DNS-based
and flow-based monitoring into a single detection system. To this end, we define Scenario 1 and
Scenario 2, which are evaluated regarding performance and accuracy. Finally, we investigate
whether DNS-based monitoring can be a standalone detection method, by defining Scenario 3.

5.1 Overview

Monitoring DNS traffic is an efficient way to detect attacks. Furthermore, observing a network
flow can increase the confidence of a DNS alert. This is true because a DNS query indicates that
a node requested the IP address of a digital location, while a flow demonstrates that the node
actually connected to that digital location.

DNS-based and flow-based monitoring clearly have both advantages and disadvantages. Per-
formance is the strong advantage of the former because the volume of DNS traffic is just a fraction
of the network flows. On the other hand, false alerts could be triggered by DNS queries whose
answers were never used to establish a connection. These properties are reversed when monitor-
ing network flows. Flow-based detection that processes all the flows (non-sampled data) is 100%
accurate about the establishment of a connection. However, network flows consist a larger volume
of information than DNS traffic.

An ideal detection system would have the performance of DNS-based monitoring and the
accuracy of flow-based monitoring. In this report, we investigate three scenarios that monitor
DNS traffic in order to effectively detect infected computers. Before describing them we define the
common ground and a set of common characteristics.

The target of each scenario is to detect infected users within a network, based on historical
knowledge. A common way to detect infections is by utilizing a blacklist with reported malicious
end-nodes. Any connection to a blacklisted node should be considered as malicious and the
initiator as infected. More information about the challenge of choosing the appropriate blacklist
that indicates infection with high probability can be found in Section 3.4.1.

Scenario 1 and Scenario 2 combine DNS-based and flow-based monitoring into a single

DNS-based Detection of Malicious Activity 31

CHAPTER 5. APPROACH

blacklist
DNS-based
prefiltering

minimum
blacklist

flow-based
filtering

alerts

pcap nfcapd

Figure 5.1: Approach for Scenario 1 and Scenario 2 using DNS-based prefiltering before
performing flow-based filtering. The rectangles are processes. The rectangles with rounded
corners are data and, specifically, the dotted are input or output of the system.

detection system. An overview can be seen in Figure 5.1. Both scenarios include two processes:
the DNS-based prefiltering and the flow-based filtering. The first process receives a blacklist and
the DNS packets (pcap). It is not necessary that the datasets are static but they could be inputs
from live traffic. The DNS-based prefiltering process matches the blacklist against the feed of DNS
responses. Every match is stored into an intermediate blacklist (minimum blacklist), which would
be much smaller than the original. Normally, there are only a few hits of a given blacklist. This
minimum blacklist contains only threats that are “active” in the network at that moment. Next,
a traditional flow-based filtering matches the minimum blacklist against the feed of network flows
(nfcapd). The last process produces the alerts of this detection system.

The motivation is that observing an established connection increases the confidence of a DNS-
based alert. Moreover, reducing the blacklist fed to the flow-based monitoring can increase its
performance. In Section 5.2, we discuss in detail the relation between blacklist size and perfor-
mance of flow-based filtering.

blacklist
DNS-based
prefiltering

minimum
blacklist

flow-based
filtering

alerts

pcap nfcapduser classification

Figure 5.2: Approach for Scenario 1 and Scenario 2 including the user classification
module.

The proposed system strongly relies on the DNS information. In order to precisely evaluate it,
it is essential to estimate the percentage of users that utilize monitored or unmonitored resolvers.
The initial step of the measurements is to distinguish the users using the user classifier module.
This module can be seen in Figure 5.2 among the other processes of the approach (i.e. DNS-based
prefiltering and flow-based filtering). The user classification module takes into consideration both
the DNS and flow data in order to distinguish the user groups. Eventually, evaluating each group
individually can specify separate potential for detection regarding the group that the user belongs.

Another possible advantage of the approach for Scenario 1 and Scenario 2, besides per-
formance, could be noticed in networks with not many infected user. Whenever the DNS-based
detection does not output an alert, the flow-based monitoring could be halted (if it is used for
only this task). Consequently, the machine could be maintained or just perform another task.
Moreover, we could argue that privacy of the users could be respected, which can lead to halt
monitoring whenever there does not exist a security threat.

blacklist
DNS-based
filtering

alerts
flow-based
filtering

alerts

pcap

Figure 5.3: Approach for Scenario 3 using only DNS-based filtering.

32 DNS-based Detection of Malicious Activity

CHAPTER 5. APPROACH

Finally, Scenario 3 examines whether DNS-based monitoring can be a valid standalone de-
tection method. Consequently, we completely remove the flow-based filtering process, as it can be
seen in Figure 5.3. The single DNS-based filtering process does not precede another filtering pro-
cess and outputs the alerts directly. The motivation for this scenario is to determine the accuracy
rate of a DNS-based detection system.

5.2 Performance of flow-based filtering

Applying a large blacklist on flow-based monitoring could be highly demanding. Exporting network
flows and even storing them consumes resources. Expanding this functionality to filter a big
blacklist may not always be possible and, especially, for large institutes, such as SURFnet, with
billions of flows per hour.

Scenario 1 and Scenario 2 examine whether we can effectively reduce a blacklist before it is
fed to flow-based filtering. However, it must be priorly examined whether this reduction makes the
filtering of network flows feasible or at least faster. In order to examine the last point, consecutive
filters on network flows were executed for various sizes of blacklist. Moreover, the experiment
was repeated over different datasets, provided by SURFnet, in order to verify that the results are
typical. Each experiment was executed three times and the median value has been recorded so as
to discard extreme values. The results are displayed in Figure 5.4, where we can see the relation
between size of blacklist and number of flows per second that can be processed.

The experiments were run on a modern server that runs GNU/Linux (Debian squeeze-lts
x86 64), has two INTEL XEON L5640 processors (2.26GHZ, 6 Cores, 12 threads) and 32GB
memory, using nfdump version 1.6.1.

0 1 2 3 4 5 6 7

·106

1

2

3

4

·106

blacklist size

n
u
m
b
er

of
p
ro
ce
ss
ed

fl
ow

s
p
er

se
co
n
d
s

Performance of filtering network flows

126 million flows
249 million flows
362 million flows

Figure 5.4: Filtering network flows for variable size of blacklist. The range of the size is
between 10 elements and 7.6 millions elements.

Figure 5.4 displays three separate lines, one for each dataset, which largely overlap. The figure
indicates that a reduction of the blacklist can increase the performance. Specifically, filtering a
blacklist with 500 thousands elements can process approximately 1.29 million flows per second. If
the blacklist is reduced to one tenth of its size (50 thousands elements), the system can process
more than 1.81 million flows per second. This means that the performance of network flow filtering
is increased by 40%. Further reduction to one hundredth of the original blacklist can increase the
performance by 86% and process roughly 2.41 million flows per second.

DNS-based Detection of Malicious Activity 33

CHAPTER 5. APPROACH

The determination of a more accurate metric for the ideal reduction and the most efficient
processing is out of the scope of this report. Considering the variation of flows per seconds that
depends on the day time, future work can examine the optimal reduction to ensure that the
processing does not exceed the hardware capabilities.

5.3 User classification

Monitoring DNS traffic at the resolver does not necessarily contain all the queries and replies that
were transferred within the network. Although we can observe the queries to and the responses
from the monitored resolver, any user can choose to utilize an external unmonitored resolver. It
is also possible for smaller networks, such as a laboratory, to run their local unmonitored resolver.
DNS-based detection is expected to fail to detect infected users, if they utilize unmonitored re-
solvers, due to lack of information. For further analysis, it is essential to separate those users.
The user classification module is used to evaluate the system, although it is not necessary for its
operation.

Umr

(a) Users whose queries
are monitored.

Uur

(b) Users whose queries
are not monitored.

UmurU ′
mr U ′

ur

Umur = Umr ∩ Uur

U ′
mr = Umr − Umur

U ′
ur = Uur − Umur

(c) Overlap of Umr and Uur.

Ulr

(d) Users that run their
own resolver.

Uu

(e) Users that do not
utilize the DNS.

Umr Uur

Ulr

U

Uu

Uu = U − (Umr ∪ Uur ∪ Ulr)

U = Umr ∪ Uur ∪ Ulr ∪ Uu

(f) All users (U) and subsets.

Figure 5.5: Definition of user groups

In order to understand the behavior of the users, they must be categorized according to the
resolver that they utilize. Figure 5.5 helps illustrate the distinction of the user groups and their
overlap. We consider four generic groups of users. First, the set Umr, which stands for users (U)
that send queries to and receive responses from the monitored (m) resolvers (r). This set of users
can be seen in Figure 5.5a. The second generic group is defined as Uur and consists of users that
have communicated with an unmonitored (u) resolver (see Figure 5.5b). However, the first two
are not exclusive groups because a node may belong in both. Any host can be configured to utilize
multiple resolvers.

In Figure 5.5c we can see the overlap of the two generic groups that reveals the exclusive
groups of users. The subset U ′

mr (relative complement of Uur in Umr) represent the users that
exclusively utilize internal monitored resolvers. The subset U ′

ur (relative complement of Umr in
Uur) is the group of users that exclusively utilize external unmonitored resolvers. Eventually, the
subset Umur is the intersection of Umr and Uur. It represents users that utilize both monitored
and unmonitored resolvers.

34 DNS-based Detection of Malicious Activity

CHAPTER 5. APPROACH

Another generic group (Ulr) contains users that run their own local (l) resolvers (r) (see Figure
5.5d). These nodes are resolvers that independently communicate with authoritative name servers
to request information about zones. They are distinguished based on specific DNS labels that
appear only when a query is directly answered by an authoritative name server. Their purpose
might be to serve a single node or a small group of users in an office or a laboratory.

Finally, the users in group Uu utilize an unspecified (u) number of resolvers because no such
communication can be detected. It is possible that a user has not requested DNS information at all
within the examined time-window. Alternatively, the node might utilize one of the unmonitored
resolvers in group Ulr. Another possibility is that the node contacts an external resolver in a
non-standard way that could not be identified (e.g., different port that the standardized for DNS
traffic).

To summarize, we consider five distinct groups of users. The first group (U ′
mr) consist of nodes

that exclusively use monitored resolvers. The second group (U ′
ur) consist of nodes that exclusively

use unmonitored resolvers. The third group (Umur) contains nodes that utilize both monitored
and unmonitored resolvers. The nodes that run their own local resolver compose the fourth group
(Ulr) and finally, the users that do not communicate with any resolver compose the fifth group
(Uu).

5.4 Scenarios

Below we define the scenarios that are investigated.

Scenario 1 The first scenario examines whether DNS-based prefiltering can effectively increase
the performance of flow-based filtering. The goal is to perform flow-based filtering using a much
smaller blacklist than the original. The decrease of the size of blacklist can significantly increase
the performance of flow-based filtering, as it is shown in Section 5.2. In addition, this reduction
should not have a considerable effect on the results. It should not lead to inaccurate results,
beyond the accepted false tolerance.

Technically, Scenario 1 operates at two observation points at the same time. The described
processes: DNS-based prefiltering and flow-based filtering (see Section 5 and Figure 5.1) are placed
one at each observation point. Firstly, the DNS-based prefiltering process is placed at position
(1) in Figure 5.6 (this figure has the components that were described for Figure 3.1, without the
extra sensors and name servers). The monitored link is above the resolver or, in other words,
between the recursive caching name server and the remote name servers. Monitoring at this link
is respectful of privacy as it is discussed in Section 3.5.2. DNS-based prefiltering depends on an
IP-based blacklist (IPBL) in order to detect malicious IP addresses included in DNS responses.
The output of the first sensor is an intermediate blacklist (Minimum IPBL) that indicates active
threats at that moment. Then, flow-based filtering is performed at the second observation point
(2), using the intermediate blacklist. Eventually, the last process reports the detected infections
to the administrator.

Furthermore, we can examine whether this design can detect infected users whose DNS traffic is
not monitored. DNS-based prefiltering produces an intermediate blacklist by observing the users
that contact the monitored resolver. The intermediate blacklist can then be applied to another
population (i.e. another group of users). In case that most of the infected users are detected
we can support the universality of this method. That is, applying the intermediate blacklist to
another group of users will have the same accuracy as if their DNS traffic was monitored. This
might work for two reasons: the homogeneity of the user population (if they all exist in the same
network) and -most importantly- the “popularity” of a malware. A “popular” (or active) malware
acts intensely at a specific period of time.

Scenario 2 This scenario examines whether DNS-based prefiltering can be optimized by slightly
altering the design. For this scenario we move the DNS sensor from the link above the resolver
(between the recursive caching name server and the remote name servers as it is shown in Figure

DNS-based Detection of Malicious Activity 35

CHAPTER 5. APPROACH

Recursive caching
name server IPBL

Infected hosts

192.168.1.1
…
...

Minimum IPBL

 Clients
(Stub resolvers)

Forwarding
device

Flow collector

(1)

(2)

Remote
name server

Figure 5.6: Design of Scenario 1, where the DNS-based prefiltering process is placed
between the resolver and the remote name servers.

5.6) to the link below the resolver (between the clients and the resolver as it is shown in Figure
5.7). The advantage of monitoring the link below the resolver is that it indicates DNS records
that have already been cached. This leads to rise the alert frequency in case of domain names
that stay in the cache for a long period of time (high TTL values). What we want to examine is
whether there are more DNS-based alerts and the detection rate is increased.

Recursive caching
name server

Infected hosts

192.168.1.1
…
...

Minimum IPBL

 Clients
(Stub resolvers)

Forwarding
device

Flow collector

(2)

Remote
name server

(1)IPBL

Figure 5.7: Design of Scenario 2, where the DNS-based prefiltering process is placed
between the clients and the resolver.

An important drawback of this possible optimization is that the new position is more privacy-
sensitive (see Section 3.5.2). In fact, the IP addresses of the clients are visible, despite the fact
that the method neither records nor examines them. Under specific circumstances there could be
a trade-off between privacy preservation and detection accuracy, which should be balanced.

36 DNS-based Detection of Malicious Activity

CHAPTER 5. APPROACH

Scenario 3 In this scenario we examine whether DNS-based filtering can be used as a standalone
detection system. Until now we have examined DNS-based filtering only as prefiltering that reduces
a blacklist fed to flow-based filtering. However, the DNS sensor at position (1) in Figure 5.7 can
report not only malicious destinations but also the probable infected clients that requested them.
What we want to investigate is whether these reports are satisfactory so as to completely skip the
monitoring of network flows.

D

(a) DNS-based alerts

N

(b) flow-based alerts

TPFP FN

TP = D ∩N

FP = D − TP

FN = N − TP

(c) Overlap of (a) and (b)

Figure 5.8: Comparison of DNS-based and flow-based filtering.

In order to measure the detection rate, given a blacklist, we separately filter DNS traffic and flows.
Since we consider the flow-based results as the correct (most accurate), we want to examine how
close to those are the DNS-based results. What we take into account is the number of infected
nodes that are detected in either case. Consequently, there are two overlapping sets of results,
as it is shown in Figure 5.8. The infected nodes, detected by both detection methods, are in the
intersection of the two sets. They compose the true positive (TP) alerts of DNS-based detection
(see Figure 5.8c). Moreover, the nodes that appear in a flow-based alert but not in a DNS-based
are false negatives (FN). Likewise, those that appear in a DNS-based alert but not in a flow-based
alert are false positives (FP). Everything outside both sets is a true negative (TN) of DNS-based
filtering.

In order to evaluate the system we examine precision (i.e. the proportion of the true positives
among all the positive results), recall (i.e. the proportion of the true positives among the flow-based
alerts, which are the true positives and the false negatives) and accuracy (i.e. the proportion of
true results -both true positives and true negatives- among the results). Accuracy is the strongest
measurement because it includes precision and considers trueness. In addition to the precision
rate, it examines the proportion of true negatives against all the negative results.

DNS-based Detection of Malicious Activity 37

Chapter 6

Experiment setup

The setup of our experiments requires a dataset, blacklists and tools to analyze them. In this
chapter, we characterize the obtained data, we describe how they are analyzed and we define the
hypothesis that we want to validate for each scenario.

6.1 Dataset

The dataset consists of DNS traffic and network flows for a specific period of time. We obtained
this data from a large university in the Netherlands, which is connected to SURFnet. The original
volume of information that we obtained can been seen in Table 6.1. There are two types of
captures: pcap files that contain only DNS packets and nfcapd that contain exported flows. All
the data were captured on September 4th between 12:00 and 14:00 CEST.

First of all, we must clarify that the flow data had been reduced before they were given out.
We have been informed that the total number of flows, prior to the reduction, was 61782973.
Roughly two third of them were removed in compliance with the following rules: the flows must
originate within the network and they must egress the network. Next, the origin IP address in the
flow data has been anonymized (interchanged) with a prefix-preserving symmetric cryptographic
algorithm. The DNS data have not been reduced but they have also been anonymized using the
same -unknown to us- secret key. The anonymized DNS field are: the source address in queries
and the destination address in responses. These rules have been applied by the provider in order
to reduce the privacy impact of this analysis.

pcap (below) pcap (above) nfcapd
size 3487MB 705MB 520MB
total (packets/flows) 16712328 3569186 20766404*
IPv4 (packets/flows) 16594995 3032016 20029309
IPv6 (packets/flows) 117333 531152 737095
unique source IP addresses 16589 36781 12623
unique destination IP addresses 16612 38275 3506477
unique connections (src,dst) - - 5719619
unique connections (src,dst,date) - - 6047220

Table 6.1: Information about the obtained data volume.

In Table 6.1, beyond the size and total number of packets there are statistics about the Internet
Protocol (version 4 or 6). Moreover, the number of unique source and destination addresses are
recorded. There are three columns in the table. The first two are for the DNS data below and above
the resolver. That is, the links between the clients and the resolver and between the resolver and
the authoritative name servers, respectively. Actually, there are five monitored resolvers, whose

DNS-based Detection of Malicious Activity 39

CHAPTER 6. EXPERIMENT SETUP

packets are gathered together. Therefore, we consider them as one. Finally, the last column show
information about the flow data.

In addition to the previous statistics, we record the unique connection for the flow data. A
unique connection is when the tuple source and destination IP addresses is the same. Furthermore,
we record the triplet that takes into consideration the timestamp. As a result, latter appearances
of flows from the same node and to the same destination are not aggregated. The last does
not distinguish flows that were consecutive and at exactly the same time (fraction of a second
difference).

6.2 Blacklists

One important component of the experiments is the blacklist that indicates malicious activities
and particularly infected users. We have obtained several blacklists from two distinct sources.

First, we have been granted access to a set of blacklists provided by the Spamhaus Project: the
Spamhaus Botnet Controller List (BCL), which is an advisory “drop all traffic” blacklist1 consisting
of single IPv4 addresses, used by cybercriminals to control infected computers (bots). The DROP
(Don’t Route Or Peer) and EDROP blacklists2, which are advisory “drop all traffic” too. They
consist of netblocks (range of IP addresses) that are “hijacked” or leased by professional spam or
cyber-crime operations (used for dissemination of malware and botnet controllers). Finally, the
Spamhaus Exploits Block List (XBL)3, which is a realtime database of IP addresses of hijacked
computers infected by illegal third party exploits, including open proxies, worms/viruses with
built-in spam engines, and other types of trojan-horse exploits.

Second, we obtained a publicly available blacklist4 of known botnet command and control
servers, by the Emerging Threats provider of threat intelligence. According to their website4:
“the list should be considered very highly reliable indications that a host is communicating with
a known and active Bot or Malware C&C server”. This blacklist includes external sources from
four additional providers (Shadow Server, Spyeye Tracker, Palevo Tracker and Zeus Tracker).

blacklist IP addresses netblocks updated every
botnetcc 492 - 20 minutes
botnetcc extensive 17 - 20 minutes
emergingcc 915 - 1 day
sbl drop - 712 1 hour
sbl edrop - 71 1 hour
xbl 10380840 - 15 minutes

Table 6.2: The obtained blacklists, including information about their entries and frequency
of updating.

An overview of all the blacklists that were used in our measurements can be seen in Table
6.2. We are especially interested in the botnetcc and emergingcc lists because they both list only
active C&C servers. These can indicate infected hosts with high confidence, as it is discussed in
Section 3.4.1.3.

The botnetcc list is updated more frequently than two hours, that is the captured time window.
For our complete analysis we selected the instance that existed at exactly one hour after the
capture had started. However, we may have missed blacklisted elements which may have been
added later or elements that may have been used and then removed within the first hour. This
is possible because botnet activity may last less than an hour as it is mentioned in Section 3.2.2.
Consequently, we created a separate botnetcc extensive list that contains every extra element of

1https://www.spamhaus.org/bcl/, retrieved September 2015.
2https://www.spamhaus.org/drop/, retrieved September 2015.
3https://www.spamhaus.org/xbl/, retrieved September 2015.
4http://doc.emergingthreats.net/bin/view/Main/BotCC, retrieved September 2015.

40 DNS-based Detection of Malicious Activity

CHAPTER 6. EXPERIMENT SETUP

the botnetcc list within a larger time window of four hours (two hours before and two hours after
the original).

Finally, we want to examine whether the removed flows influence our measurements. As it
is mentioned in Section 6.1, flows whose destination IP address remains inside the network have
been removed. Specifically, we look for blacklisted elements that belong to those netblocks that
were removed. We observed that 1 IP address in the emerging blacklist and 10 in the xbl belong
to the removed netblocks. This means that we cannot see any possible flow with a destination
one of those 11 blacklisted IP addresses. Nevertheless, we can examine if any host received one of
those IP addresses in a DNS response. We are able to observe it because the DNS responses are
plain, apart from the destination field which is anonymized. By filtering the DNS traffic we did
not see any response with a discarded blacklisted destination. Consequently, we assume that the
reduction does not considerably influence the overall measurements.

6.3 Groups of users

Before describing the evaluation methodology of each scenario, the possibility of users using ex-
ternal resolvers must be examined (see Section 5.3). It is expected that the majority of the
users utilize the monitored resolvers. People commonly keep the default configuration of their
connectivity. The characterization of the user groups can reveal the trend regarding the users’
preferred utilized resolvers. If many users utilize unmonitored resolvers, it is clear that DNS-based
monitoring misses a large amount of information.

In order to determine the groups we can examine the obtained network flows. The objective is
to observe utilization of unmonitored resolvers. It is reasonably assumed that connections related
to the DNS are established on destination (remote) port number 53, which is the standardized
behavior [4]. However, it is also possible that other types of connection are established on port
number 53. The kinds of the destinations are not instantly clear and need further examination.

6.3.1 Methodology to identify the destination

The initial step is to extract the destination IP address of every flow that was established on
port 53. Each destination is either a public resolvers or an authoritative name server. A query
for “surfnet.nl” is actually sent to each one of those. In case the reply is a refused response
(REFUSED), the destination is an authoritative name server, which refuses to resolve queries.
Otherwise, if it replies with a valid response (NOERROR), it is probably a resolver. Finally, if
there is another type of answer or no answer at all, the node cannot be identified and it is ignored.

Normally, an authoritative name server answers only queries regarding its own zone and local
information. However, misconfigured authoritative name servers may reply to any query, even for
a completely different zone. An additional step can distinguish misconfigured authoritative name
servers from the detected resolvers.

To illustrate the instructions let us consider the authoritative name server for “surfnet.nl”,
whose IP address is 192.87.106.101. What we know is the IP address and we want to examine
whether it is authoritative for any domain name (although we actually know that it is authoritative
for “surfnet.nl ’). Initially, we perform a reverse DNS lookup (see Section 2.5.2) for 192.87.106.101,
whose answer is5 “ns1.surfnet.nl.”. Next, we request the Start of Authority (soa) record for the
second-level domain name of the previous answer. In our example6 the requested soa is for
“surfnet.nl.”. The process is repeated for the third-level domain name in case that the second
is a generic, such as “co.uk”. Eventually, if the reply is an authoritative answer (flag aa in the
response), the server is an authoritative name server. In our example it is an authoritative answer
and we verify that there is an authoritative name server.

5The executed command is dig -x 192.87.106.101
6The executed command is dig soa surfnet.nl. @192.87.106.101

DNS-based Detection of Malicious Activity 41

CHAPTER 6. EXPERIMENT SETUP

6.3.2 Methodology to determine the user groups

Previously, we retrieved the flows, established on port 53, and identified the type each destination.
The identified types are either resolvers or authoritative name servers. In this step, we examine
the source of the flows in order to determine the user groups.

Any user who contacted an identified authoritative name server belongs to the group Ulr

that run their own local resolver. An IP address that appears in this group cannot appear in
another group. The reason is that they obtain DNS information directly from the source and
their behavior is dissimilar to a normal user’s. Furthermore, the users who communicated with
an external resolver compose the group Uur. Likewise, the users who appear in the DNS capture
compose the Umr group that utilize the monitored resolver. However, they must have received a
response that contains a queried domain name and at least one valid IP address in the answer
section.

Eventually, the users that do not belong to any other group are part of the Uu group. Unfor-
tunately, we cannot identify if, for instance, they utilize a local resolver (group Ulr) because the
internal flows are missing (see Section 6.1).

The final step is to separate the exclusive groups from the Umr and Uur groups. The IP
addresses that appear in both groups compose the Umur group. The U ′

mr and U ′
ur groups consist

of those that are unique in Umr and Uur, respectively.

6.4 Database

Every extracted information is inserted into a MySQL database. This can increase the processing
time without maintaining custom lookup tables that are prone to human errors.

DNS data are stored in four tables, two for each dataset (see Section 6.1). Specifically, table
resp contains every DNS response sent from the resolver to the clients. The response must have
valid an A record field (i.e. IPv4 address) and a queried domain name. Each row of the table has
four columns: the number of the frame (increasing unique identifier from the pcap file), the IP
address of the client (destination of the response), the queried domain name and the timestamp.
A second table resp dnsa is used to record the IP addresses contained in the answer. The unique
frame number is used to relate them back to the response without violating the first normal form
(i.e. each attribute contains only atomic values). Likewise, tables aaresp and aaresp dnsa contain
the authoritative answers from the link between the resolver and authoritative name servers.

Table flows stores the obtained flow data and has three columns: the source IP address, the
destination IP address and the timestamp. Moreover, there is one table for each user group, with
their IP address in a single column.

Finally, the blacklists are also loaded. The tables for the blacklists that contain single IPv4
addresses have a single column. Meanwhile, the tables for the blacklists that contain netblocks
have two columns. The reason is that in addition to an IP address they contain a network mask
(CIDR notation). In order to increase the lookup process, the minimum and maximum hosts
of that subnetwork are calculated and stored in the database. For instance, if the CIDR in the
blacklist is “192.168.1.0/24”, it is inserted the minimum host “192.168.1.1” and the maximum
host “192.168.1.254” of that netblock. Consequently, we can easily evaluate if an IP address
belongs to a subnetwork by comparing if it is greater than the minimum host and lower than the
maximum host.

6.5 Scenarios

Below we examine how to evaluate each scenario and what do the results mean. Each investigation
methodology corresponds to the relative scenario in Section 5.4.

Scenario 1 The first scenario examines whether DNS-based prefiltering can effectively increase
the performance of flow-based monitoring. We want to validate the following hypothesis:

42 DNS-based Detection of Malicious Activity

CHAPTER 6. EXPERIMENT SETUP

(a) the intermediate blacklist should be much smaller in order to increase the performance of
flow-based filtering.

(b) this reduction should not decrease the detection rate, beyond some accepted false tolerance.

For the first hypothesis (a), we can record the size of the intermediate database at the end of
the time window. Technically, DNS-based prefiltering requires a DNS sensor that filters responses
using a given blacklist. Every detected malicious IP address is then inserted into the intermediate
blacklist. Normally, the IP address remains there either until its TTL value expires or until it
is removed from the original blacklist. For simplicity and due to the limited time window of our
dataset, we do not consider removing elements from the intermediate blacklist. As a result, the
intermediate blacklist in our experiments is only growing. Eventually, we record its maximum size
in the results.

It is possible that the processing time would be further reduced if DNS-based prefiltering was
running for a larger time window. However, due to the larger intermediate blacklist the detection
rate could be increased. Our experiments were performed for a two-hour time window and we
assume that two hours is the limit that an element can remain in the intermediate blacklist.

In order to evaluate the results we can consider the relation between blacklist size and the per-
formance of flow-based filtering, that was discussed in Section 5.2. The smaller the intermediate
blacklist the faster the processing of flows.

Regarding the second hypothesis (b), we can test the accuracy by comparing the results of Sce-
nario 1 with the original. The original results occur if only flow-based detection was applied
(i.e. without the DNS-based prefiltering) given the same blacklist. The alerts that appear in both
results are the true positives of Scenario 1. Those that appear in the original results but not
in the results of Scenario 1 are false negatives. Finally, false positives do not exist because the
DNS sensor is not used for detection but only reduces the blacklist fed to flow-based monitoring.

1 SELECT f lows .∗
2 FROM (
3 f l ows
4 INNER JOIN (
5 umur
6) ON f l ows . s r c=umur . s r c
7)
8 INNER JOIN (
9 botnetcc

10) ON f lows . dst=botnetcc . ip ;

Listing 6.1: MySQL query to obtain the flow-based results for the Umur user group, given
the botnetcc blacklist.

Since all the information exist in the database (see Section 6.4) we can obtain the original results
by executing a single MySQL query that can be seen in Listing 6.1. The sample MySQL query
returns the flow-based alerts for all the flows of the user group Umur (see lines 3-6), given the
botnetcc blacklist (see lines 2-10).

The results of Scenario 1 can be produced by executing a MySQL query with more joins. There
are five tables that need to be processed: the flows, the DNS traffic between the resolver and
the authoritative name servers (2 tables), the selected user group and the blacklist. Listing 6.2
illustrates how the tables are combined. We will begin explaining from the most nested join
between the lines 12 and 16. All the IP addresses that appear in the answer section of a DNS
response are examined whether they exist into the given blacklist. Next, code in lines 10-18
retrieves the timestamps when those IP addresses were requested, using the unique number (i.e.
frame) of the packet. The latest result is grouped by the blacklisted IP address that was detected
and its earliest timestamp (lines 9-19). The reason is that after a malicious IP address is inserted

DNS-based Detection of Malicious Activity 43

CHAPTER 6. EXPERIMENT SETUP

1 SELECT f lows .∗
2 FROM (
3 f l ows
4 INNER JOIN (
5 umur
6) ON f l ows . s r c=umur . s r c
7)
8 INNER JOIN (
9 SELECT aaresp dnsa . dnsa as dnsa , MIN(aaresp . timestamp) as timestamp

10 aaresp
11 INNER JOIN (
12 aaresp dnsa
13 INNER JOIN (
14 botnetcc
15)
16 ON aaresp dnsa . dnsa=botnetcc . ip
17)
18 ON aaresp . frame=aaresp dnsa . frame
19 GROUP BY dnsa
20) as a l e r t s
21 ON f l ows . dst=a l e r t s . dnsa AND f lows . timestamp+INTERVAL 5 MINUTE>=a l e r t s . timestamp

Listing 6.2: MySQL query to obtain the results of Scenario 1 for the Umur user group,
given the botnetcc blacklist.

in the intermediate blacklist it is redundant to insert it again. Eventually, the IP addresses and
their earliest timestamps compose the table alerts (line 20) that DNS-based prefiltering produces.

The remaining lines in the query process the flow data. Similarly to the previous query (see Listing
6.1), users that do not belong to the examined user group are discarded (lines 3-6). Finally, line
21 determines the flows that have destination an entry of the intermediate blacklist, but only after
the entry was inserted. The timing condition verifies that the timestamp of a DNS-based alert is
earlier than the timestamp of a flow. Notably, we delay the timestamp of the flows by five minutes
because separate machines captured the two datasets, which may not be synchronized. In any
case, it usually takes a few minutes for the flows to be exported.

The results produced by executing the second query are the true positives. Meanwhile, the false
negatives can be identified by subtracting the true positives from the original results. This can
be easily done if the original results (Listing 6.1) are inserted into a temporary table n and the
results of Scenario 1 (Listing 6.2) are inserted into another temporary table p. Then, executing
the mysql query is Listing 6.3 outputs the false negatives.

1 /∗ n conta in s the o r i g i n a l r e s u l t s ∗/
2 /∗ p conta in s the r e s u l t s o f Scenar io 1 ∗/
3 SELECT ∗
4 FROM n
5 WHERE n . frame NOT IN (SELECT frame FROM p)

Listing 6.3: MySQL query to extract the false negatives of Scenario 1.

What we specifically want to observe in this comparison is the number of infected users that
were detected. This is related to the alerts but not absolute. A single user may have produced
multiple alerts by contacting multiple malicious destination or multiple times a single malicious
destination. Therefore, in addition to the number of alerts we distinguish the number of unique
source and destination IP addresses. The sources reveal the number of detected infected users,
while the destinations reveal how many entries of the intermediate blacklist were observed.

Scenario 2 The investigation of Scenario 2 is identical to the investigation of Scenario 1. We
actually repeat the exact steps and analysis with the only alternation the different DNS capture

44 DNS-based Detection of Malicious Activity

CHAPTER 6. EXPERIMENT SETUP

given as input. For instance, the query to obtain the results of Scenario 2 for the Umur user
group, given the botnetcc blacklist, is the same as Listing 6.2, where aaresp (lines 9, 10 and 18)
and aaresp dnsa (lines 9, 12, 16 and 18) are replaced by resp and resp dnsa, respectively. As it is
described in Section 6.4, tables aaresp and aaresp dnsa contain the DNS responses from the link
between the resolver and the authoritative name server, while tables resp and resp dns contain
the responses from the link between the clients and the resolver.

For Scenario 2 we want to validate the same hypothesis as for Scenario 1, including one more:

(a) the intermediate blacklist should be much smaller in order to increase the performance of
flow-based filtering.

(b) this reduction should not decrease the detection rate, beyond some accepted false tolerance.

(c) the detection rate is increased compared to Scenario 1.

We would expect this scenario to increase the detection rate as a consequence of eliminating the
cache effect. The link between the clients and the resolver can see queries whenever they are
requested. On the contrary, in the design of the previous scenario the queries are visible only
when they are initially requested or when a TTL value expires and the resolver re-requests the
information. However, if the accuracy of this scenario is the same as the accuracy of Scenario 1,
the latter is preferred due to the privacy benefits.

Scenario 3 In the previous scenarios, DNS-based prefiltering was performed prior to flow-based
filtering. In this scenario, the standalone DNS-based detection reports directly any detected alert.
In order to evaluate Scenario 3 we separately filter DNS traffic and flows, given the same blacklist.
The experiments are repeated only for the groups whose queries are monitored at least partially
(i.e. U ′

mr, Umur and Ulr). The rest of the groups are excluded because we have not obtained DNS
traffic generated from those at all.

For Scenario 3 we want to validate the following hypothesis:

(a) the precision rate should be high, which means that the nodes that are detected by DNS-based
filtering should be detected by flow-based filtering as well.

(b) the recall rate should be high, which means that the nodes detected by flow-based filtering
should be detected by DNS-based filtering as well.

(c) the accuracy should be high, which means that DNS-based and flow-based filtering should
have approximately the same results.

In order to calculate the precision, recall and accuracy rates, we priorly need to count the true
positives, false positives, true negatives and false negatives. In order to count the true or false
alerts, we firstly need to produce the results of Scenario 3 and the original results. The original
results occur if only flow-based detection was applied given the same blacklist. They are produced
using Listing 6.1 as it was described before. Similarly to the measurements for Scenario 1, we
will compare the results of Scenario 3 with the original results.

The results of Scenario 3 can be produced using the query in Listing 6.4. The query is similar
to the one in Listing 6.2 (lines 10-18), without considering the flow information. In addition, the
user distinction is performed on the client that received the DNS response, instead of the source
of the flow. In detail, all the IP addresses that appear in the answer section of a DNS response are
examined whether they exist into the given blacklist (lines 5-9). Next, code in lines 3-11 retrieves
the client that requested those IP addresses, using the unique number (i.e. frame) of the packet.
Finally, in lines 2-15, users that do not belong to the examined user group are discarded. The
results are the alerts produced by DNS-based filtering.

The next step is to compare the results of Scenario 3 with the original. The original flow-based
results, produced by Listing 6.1, are stored into a temporary table n. The DNS-based results,
produced by Listing 6.4, are stored into a temporary table d. From the two temporary tables
we can now extract the true positives. A DNS-based alert is a true positive if and only if there

DNS-based Detection of Malicious Activity 45

CHAPTER 6. EXPERIMENT SETUP

1 SELECT resp . ∗ , r e sp dnsa . dnsa
2 FROM (
3 resp
4 INNER JOIN (
5 resp dnsa
6 INNER JOIN (
7 botnetcc
8)
9 ON resp dnsa . dnsa=botnetcc . ip

10)
11 ON resp . frame=resp dnsa . frame
12)
13 INNER JOIN (
14 umur
15) ON resp . c l i e n t=umur . s r c

Listing 6.4: MySQL query to obtain the results of Scenario 3 for the Umur user group,
given the botnetcc blacklist.

1 /∗ n conta in s the o r i g i n a l r e s u l t s ∗/
2 /∗ d conta in s the r e s u l t s o f Scenar io 3 ∗/
3 SELECT n . frame as nframe , n . src , n . dst , d . dframe
4 FROM n
5 INNER JOIN (
6 d
7) ON d . c l i e n t=n . s r c AND d . dnsa=n . dst AND d . timestamp<=n . timestamp+INTERVAL 5

MINUTE AND d . timestamp+INTERVAL 9 MINUTE>=n . timestamp

Listing 6.5: MySQL query to obtain the true positives of Scenario 3.

is a flow to the detected malicious destination within nine minutes. The true positives can be
extracted by executing the query in Listing 6.5. The query joins the two temporary tables and for
every DNS-based alert verifies the following: there is a flow (n.dst) to the requested malicious IP
address (d.dnsa), from the same user (d.client=n.src) and within nine minutes. Notably, we again
delay the timestamp of the flows by five minutes but only when it is checked that the flow started
after the response was sent. The results are the true positive DNS-based alerts.

Since the goal is to detect infected users, we can count the distinct source IP addresses in order to
extract the actual true positives. Since the true positives are known we can easily count the false
positives, which are the unique source IP addresses that exist in the temporary table d without
the true positives. Likewise, the false negatives are the unique source IP addresses that exist
in the temporary table n without the true positives. Eventually, the true negatives are all the
users of the group that do not belong to any of the true positive, false positive or false negative.
Eventually, we can use the formulas to compute the precision, recall and accuracy rates.

46 DNS-based Detection of Malicious Activity

Chapter 7

Evaluation

In this chapter, we present the results of our experiments. We initially describe the user groups
and, next, we evaluate each scenario.

7.1 User classification

In order to determine the user groups we firstly need to examine the destinations. After they are
identified, we present the user groups along with their cardinality.

7.1.1 Identification of destinations

The initial step is to export network flows that were established on port 53. In total, there are
172141 such flows. The unique flows, regarding the source and destination IP addresses, are 8708.
Specifically, there are 1779 unique users and 3758 unique possible resolvers.

Further analysis on the possible resolvers showed that 2501 of the 3758 are authoritative name
servers. In fact, these are the name servers that refused to answer a query. 700 nodes cannot
be identified and 557 are functional publicly available resolvers. Out of the 557 public resolvers,
333 have replied with authoritative answer. Consequently, we consider them as misconfigured
authoritative name servers that reply to queries. Although they actually have the role of the
resolver and name server at the same time, we classify them only in the group of authoritative
name servers.

7.1.2 Determination of user groups

Each group of users has a different size, which is determined next. An overview is shown in Table
7.1. There are 271 users who contacted one of the 2834 (2501 + 333) discovered authoritative
name servers. These users belong to the group Ulr. In total, 224 (557 − 333) public resolvers
-that are not misconfigured authoritative name servers- have been detected. The generic group
of user Uur that communicated with an external resolver can be identified using this information.
Eventually, filtering the flows reveals 1179 nodes within the network that connected to one of those
destinations.

Next, we want to identify the second generic group Umr of users that resolve their queries
to the monitored resolver. From the DNS capture we extracted 16382 users that belong to this
group. Eventually, from the 17509 users that appear in either the flow or the DNS dataset, 740
do not belong to any group and are categorized in the Uu group. The calculation of the remaining
groups can be seen in Table 7.1.

DNS-based Detection of Malicious Activity 47

CHAPTER 7. EVALUATION

group utilized resolvers cardinality extracted from
U any 17509 flow & DNS data
Ulr (l)ocal (r)esolver 271 flow data
Umr (m)onitored (r)esolvers 16382 DNS data
Uur external (u)nmonitored (r)esolvers 1179 flow data
Umur monitored & unmonitored resolvers 1063 Umr ∩ Uur

U ′
mr exclusively monitored resolvers 15319 Umr − Umur

U ′
ur exclusively unmonitored resolvers 116 Uur − Umur

Uu (u)nspecified number of resolvers 740 U − (Umr ∪ Uur ∪ Ulr)

Table 7.1: User classification, including description, size and source.

7.2 Processed data

The primary assumption, stated in Section 5.1, is that the DNS traffic is just a fraction of the
network flows. The number of DNS packets and the number of flows that each scenario processes
can be seen in Table 7.2. The first two scenarios rely on the fact that filtering DNS responses
is trivial compared to filtering network flows. As we can see from the table, the DNS responses
examined by Scenario 1 are just 1.6% of the total number of flows. Assuming that processing
1 flow requires the same time as processing 1 DNS packet, the primary assumption holds. As a
result, DNS-based prefiltering is time-efficient. Possible reduction of the blacklist, that is fed to
flow-based filtering, results to increased performance of the overall system.

Scenario 1 Scenario 2 Scenario 3
DNS packets to inspect 959808 5908639 5908639
flows to inspect 61782973 61782973 -

Table 7.2: Data that each scenario processes.

For Scenario 2 there are more DNS packets because it monitors the link between the clients
and the resolver. This reveals queries for domain names that are cached in the resolver. In this
case, the DNS packets are 9.6% of the flows. Finally, Scenario 3 is the fastest alternative because
the network flows are not monitored at all.

7.3 Results of Scenario 1

The measurements for Scenario 1 can be seen in Table 7.1. The figure is divided into four parts,
one for each blacklist. The botnetcc extensive and sbl edrop blacklists have been excluded from
all the results because there were no hits.

The only metric for the results is the recall rate. Recall is the proportion of the detected alerts
among all the results that should have been detected. Each table firstly presents the number (N)
of infected users that can be detected in flows by filtering the original blacklist. These are the
correct result that should be detected.

The next column of the table records the number (P) of infected users, detected using the
proposed approach. The users are detected in flows by filtering the intermediate blacklist. The
intermediate blacklist has been produced by the DNS-based prefiltering, as it is described in
Section 5.1, given the original blacklist. At the caption we can see the size of the intermediate
blacklist out of all the elements of the original blacklist. More detailed results of the experiments
can be found in Appendix A.

Moreover, we divide the groups -in each table- between those whose queries are monitored at
least partially (i.e. U ′

mr, Umur and Ulr) and those whose queries are not monitored at all (i.e. U ′
ur

and Uu). The first three groups can reveal the performance of the method. Meanwhile, applying

48 DNS-based Detection of Malicious Activity

CHAPTER 7. EVALUATION

group N P Recall

monitored queries

U ′
mr 4 1 25%

Umur 1 1 100%
Ulr 0 0 -
subtotal 5 2 40%

unobserved queries

U ′
ur 0 0 -

Uu 0 0 -
subtotal 0 0 -

total 5 2 40%

(a) botnetcc (1/490)

group N P Recall

monitored queries

U ′
mr 12 3 25%

Umur 2 1 50%
Ulr 9 5 56%
subtotal 23 9 39%

unobserved queries

U ′
ur 2 1 50%

Uu 2 0 0%
subtotal 4 1 25%

total 27 10 37%

(b) emerging (13/915)

group N P Recall

monitored queries

U ′
mr 568 24 4%

Umur 121 6 5%
Ulr 57 1 2%
subtotal 746 31 4%

unobserved queries

U ′
ur 2 0 0%

Uu 35 0 0%
subtotal 37 0 0%

total 783 31 4%

(c) sbl drop (32/712)

group N P Recall

monitored queries

U ′
mr 6183 677 11%

Umur 828 102 12%
Ulr 196 47 24%
subtotal 7207 826 11%

unobserved queries

U ′
ur 65 9 14%

Uu 369 44 12%
subtotal 434 53 12%

total 7641 879 12%

(d) xbl (633/10380840)

Figure 7.1: Measurements for Scenario 1, where we divide the groups between those whose
queries are monitored at least partially and those whose queries are not monitored at all.

the intermediate blacklist on the groups whose queries are not monitored can reveal the universality
of the method. That is, whether the intermediate blacklist generated by the “monitored” groups
can detect infected users of other groups.

In Table 7.1a we can see that DNS-based prefiltering reduces the original botnetcc blacklist
from 490 elements to only 1. By filtering the flows given this single malicious destination, 40%
of the infected users are detected. Moreover, in Table 7.1b, DNS-based prefiltering reduces the
original emerging blacklist from 915 elements to 13. These 13 blacklisted elements reveal roughly
less than 40% of all the infected users. Since for this blacklist there are hits in the “unmonitored”
groups, we can observe that 25% of those are detected, although their queries are not monitored.

The first two blacklists contain IP addresses related to botnet activity, which utilize frequently
the DNS. Therefore, as it is expected, the recall rate is higher for those. However, we can clearly
see that 40% is the peak that can be achieved. The remaining experiments show a much less recall
rate which can be lower than 5%.

The largest experiment is for the xbl blacklist which has more than 10 millions entries. We can
see that DNS-based prefiltering reduces the blacklist to only 633 elements. According to Section
5.2, this reduction could lead to a performance increase greater than 300% (from 0.7 to 2.9 million
flows processed per second). However, the recall rate is still significantly low, between 11% and
24%, regarding the “monitored” group.

Eventually, we can argue that the hypothesis Scenario 1a is strongly validated, while the
hypothesis Scenario 1b is definitely not validated.

DNS-based Detection of Malicious Activity 49

CHAPTER 7. EVALUATION

7.4 Results of Scenario 2

The results of the measurements for Scenario 2 are identical to those of Scenario 1; hence, we
do not present them. There is a slight increase in the intermediate blacklist (from 633 to 646)
for the xbl experiments. However, the percentages of the results remain the same. More details
regarding the measurements can be found in Appendix A.

This experiment did not result to the expected increase in the detection rate. The main reason
is that malicious IP addresses commonly have short TTL value. As a result, the cache effect is
eliminated and the queries appear in the link between the resolver and the authoritative name
servers. Eventually, we can argue that, similarly to Scenario 1, the hypothesis Scenario 2a is
validated, while the hypothesis Scenario 2b is not. In addition, the hypothesis Scenario 2c is
not validated, since the detection rate has not been increased.

7.5 Results of Scenario 3

The measurements for Scenario 3 can be seen in Table 7.2, where we repeat the analysis for
each blacklist and each “monitored” group. For this scenario, we compare the flow-based filtering
(N) to individual DNS-based filtering (D). We present the detected infected users of each and the
true positives (TP), which are common in both. Technically, a DNS-based alert is a true positive
only if it initiates a flow within nine minutes. Anything in the flow-based results that was not
detected by the standalone DNS-based filtering (N−TP) is considered as false negative. Likewise,
anything detected by DNS-based filtering and not by flow-based filtering (D − TP) is considered
as false positive.

By knowing the true positives, false negatives and false positives we can compute the recall (the
proportion of the true positives among the true positives and the false negatives) and precision (the
proportion of the true positives among all the positive results) rates. Furthermore, we consider
the accuracy rate which takes into account the true negatives. True negatives are all the users of
the group that do not appear in any of the true positives, false negatives or false positives. The
total number of users in each group has been presented in Table 7.1. Specifically, accuracy is the
proportion of true results -both true positives and true negatives- among all the users.

blacklist group N D TP Recall Precision Accuracy

Umr′ 4 4 1 25% 25% 99.96%
botnetcc Umur 1 2 1 100% 50% 99.91%

Ulr 0 1 0 - 0% 99.63%
Umr′ 12 8 1 8% 12% 99.88%

emerging Umur 2 2 1 50% 50% 99.81%
Ulr 9 2 2 22% 100% 97.42%
Umr′ 568 36 23 4% 64% 96.36%

sbl drop Umur 121 6 6 5% 100% 89.18%
Ulr 57 4 1 2% 25% 78.23%
Umr′ 6183 899 188 3% 21% 56.22%

xbl Umur 828 77 22 3% 29% 19.00%
Ulr 196 44 17 9% 39% 23.99%

Figure 7.2: Measurements for Scenario 3. The cardinalities of the U ′
mr, Umur and Ulr

groups are 15319, 1063 and 271, respectively

The recall rates are low and close to those of the measurements for Scenario 1. The precision
rates are generally higher but still not satisfactory. Finally, the accuracy rate is very high for
the small blacklist but only because there are not a lot of hits (i.e. a huge percentage of true
negatives). For the largest xbl blacklist, the accuracy can be lower than 20%. Eventually, we can
argue that none of the hypothesis is validated.

50 DNS-based Detection of Malicious Activity

Chapter 8

Conclusions

8.1 Threats to validity

We recognize two threats to validity regarding the dataset and one regarding the measurements.
First of all, the experiments have been performed using a single dataset which does not prove the
universality of the results. Ideally, the experiment could be repeated on a dataset obtained from
another entity. Similarly, the limited two-hour time window may have influenced the results. The
reason is that we cannot observe the behavior of malicious activity for a longer time window or at
different time, like, for instance, at night.

Another threat to validity is that a blacklist is the exclusive indication of malicious activity.
Although they are frequently updated, a blacklist can never be complete. There are always
malicious entities that are not blacklisted. In addition, there is a slight possibility that a blacklisted
element is not malicious. Further rigorous manual investigation is required in order to prove the
results.

8.2 Summary

In this section, we present the conclusions which are linked to the research questions.

Can we dynamically detect new malicious activities by monitoring DNS traffic? Our
investigations show that dynamically detecting new malicious activities by monitoring DNS traffic
remains a difficult task. We have presented various methods that detect malicious activities and,
especially, previously unknown malicious domain names. The examined methods show limited
real-life applications and performance. Only a single system (EXPOSURE) has evolved from
prototype, whose results were available in an on-line service for a long period of time, before it
was shut down. Under private communication we were informed that the reason for the shut down
was the complains about false positives.

Can we effectively detect infected computers within a network by taking advantage of
DNS-based monitoring? Scenario 1 and Scenario 2 examined a single detection system that
combines DNS-based and flow-based monitoring. This method performs DNS-based prefiltering
in order to increase the processing time of flow-based filtering. Although performance-wise the
results are good, the system fails to achieve a sufficient level of accuracy. Our measurements show
that the infected computers that are detected are at most 40% of the actual infected.

Can DNS-based monitoring be a valid standalone detection method? The results of
Scenario 3 show that standalone DNS-based detection does not have adequate accuracy. The
recall rate is often lower than 20% (between 4% and 19% for the experiments with at least two true

DNS-based Detection of Malicious Activity 51

CHAPTER 8. CONCLUSIONS

positives) which means that more than 80% of the infected users are not detected. The precision
rate is higher (between 40% and 100% for the experiments with at least two true positives) but it
often remains under 51% which cannot be considered sufficient.

8.3 Future work

In this section, we present some recommendations for future work.

More precise measurements for the standalone DNS-based detection (Scenario 3).
The measurements in this report have been based on blacklists maintained by reliable organi-
zations. Nevertheless, no dynamic blacklist can be complete. There always will be malicious
elements that are not listed in any blacklist. The evaluation of Scenario 3 assumes that the re-
sults of flow-based monitoring are the correct. If there is a DNS-based alert but not a flow-based,
the former is marked as false positive. However, it could actually be a true positive that does not
appear in the flow-based results.

This can happen if a single response contains multiple IP addresses from which one is black-
listed. The response triggers a DNS-based alert that this node is infected (requested a blacklisted
element). Then if the node connects to an IP address from the response, other than the blacklisted,
a flow-based alert is not triggered. However, it is highly likely that the other IP addresses in the
same response are malicious too. Manual investigation is necessary to verify if the DNS-based
alert is actually a false positive or a missed true positive.

Evaluation of standalone DNS-based detection based on domain names. In this report,
we have focused on IP-based detection. In addition, filtering blacklisted domain names is used as
a detection mechanism. Future work can examine the precision of DNS-based detection given a
domain name blacklist.

The measurement of the false positive rate could be interesting. False positives are the DNS-
based alert that have not initiated a flow. For instance, if a node sends a query and receives an
answer for “malicious.com” then there is a DNS-based alert. If a flow has been established to one
of the IP addresses in the answer, the DNS-based alert is a true positive. Otherwise, if no flow
has been observed, the alert has been a false positive.

Interestingly, it is not possible to calculate the false negative rate. A domain name blacklist can
be applied neither directly nor indirectly on flows. As it is mentioned in Section 3.4.1, converting
by resolving a list of domain name to a list of IP addresses is not 100% accurate, especially if
attackers maintain these domain names. The list of IP addresses could vary depending on the
time of the resolution and could always contain deliberate false positives.

Blacklist expansion using flow information. It is common for a single DNS response to
contain multiple IP addresses. Even if one is blacklisted, it is risky to instantly blacklist the
rest of them. As we have previously mentioned an attacker could deliberately put legitimate IP
addresses next to the malicious. This would result in blacklisting legitimate services if this process
was autonomous.

A way to expand a blacklist could consider the DNS responses and flow information. Network
flows record not only the source and destination of a connection but also the type, such as port
number, number of packets and protocol (UTP or TCP). By observing the malicious destinations
one could create their profile (e.g., 10-12 packets via TCP on port number 1025). Any IP ad-
dress is matched against the malicious profile if both IP addresses appear in the same response.
This expansion can be evaded if the attacker emulates the behavior of the legitimate IP address.
However, this would at least reduce the flexibility of the attack.

52 DNS-based Detection of Malicious Activity

Bibliography

[1] P.V. Mockapetris. Domain names: Concepts and facilities. RFC 882, November 1983. Obso-
leted by RFCs 1034, 1035, updated by RFC 973. 3

[2] P.V. Mockapetris. Domain names: Implementation specification. RFC 883, November 1983.
Obsoleted by RFCs 1034, 1035, updated by RFC 973. 3

[3] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034 (INTERNET STAN-
DARD), November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936. 5, 6

[4] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035 (INTERNET
STANDARD), November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996,
2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936,
5966, 6604. 5, 6, 7, 41

[5] Security Whitepaper, The Role of DNS in Botnet Command & Control. Techni-
cal report, OpenDNS, 2012. http://info.opendns.com/rs/opendns/images/OpenDNS_

SecurityWhitepaper-DNSRoleInBotnets.pdf. 10, 11

[6] A. Caglayan, M. Toothaker, D. Drapeau, D. Burke, and G. Eaton. Real-time detection of fast
flux service networks. In Conference For Homeland Security, 2009. CATCH ’09. Cybersecurity
Applications Technology, pages 285–292, March 2009. 11

[7] Brett Stone-gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski, Richard
Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your Botnet is My Botnet : Anal-
ysis of a Botnet Takeover. In Proceedings of the 16th ACM conference on Computer and
communications security, volume 97 of UCSB Technical Report, pages 635–647. Univesity of
California, Santa Barbara, ACM, 2009. 11

[8] Martin Grill, Ivan Nikolaev, Veronica Valeros, and Martin Rehak. Detecting dga malware
using netflow. In Integrated Network Management (IM), 2015 IFIP/IEEE International Sym-
posium on, pages 1304–1309, May 2015. 12

[9] Hachem Guerid, Karel Mittig, and Ahmed Serhrouchni. Privacy-preserving domain-flux bot-
net detection in a large scale network. 2013 5th International Conference on Communication
Systems and Networks, COMSNETS 2013, 2013. 12

[10] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski, Richard
Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your botnet is my botnet: Analysis
of a botnet takeover. In Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security, CCS ’09, pages 635–647, New York, NY, USA, 2009. ACM. 12

[11] A. Sperotto and A. Pras. Flow-based intrusion detection. In Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on, pages 958–963, May 2011. 12, 13

[12] G. Androulidakis and S. Papavassiliou. Improving network anomaly detection via selective
flow-based sampling. Communications, IET, 2(3):399–409, March 2008. 12

DNS-based Detection of Malicious Activity 53

http://info.opendns.com/rs/opendns/images/OpenDNS_SecurityWhitepaper-DNSRoleInBotnets.pdf
http://info.opendns.com/rs/opendns/images/OpenDNS_SecurityWhitepaper-DNSRoleInBotnets.pdf

BIBLIOGRAPHY

[13] Milan Čermák, Pavel Čeleda, and Jan Vykopal. Detection of DNS Traffic Anomalies in
Large Networks. In Advances in Communication Networking, pages pp 215–226. Springer
International Publishing, 2014. 12, 13

[14] Jessica Steinberger, Lisa Schehlmann, Sebastian Abt, and Harald Baier. Anomaly detection
and mitigation at internet scale: A survey. In Guillaume Doyen, Martin Waldburger, Pavel
eleda, Anna Sperotto, and Burkhard Stiller, editors, Emerging Management Mechanisms for
the Future Internet, volume 7943 of Lecture Notes in Computer Science, pages 49–60. Springer
Berlin Heidelberg, 2013. 13

[15] Leyla Bilge, Engin Kirda, Christopher Kruegel, Marco Balduzzi, and Sophia Antipolis. EX-
POSURE : Finding Malicious Domains Using Passive DNS Analysis. Ndss, pages 1–17, 2011.
13, 17

[16] B. Claise, B. Trammell, and P. Aitken. Specification of the IP Flow Information Export (IP-
FIX) Protocol for the Exchange of Flow Information. RFC 7011 (INTERNET STANDARD),
September 2013. 12

[17] Jonathan M Spring and Carly L Huth. The Impact of Passive DNS Collection on End-user
Privacy. Satin, pages 1–11, 2012. 13, 18

[18] Roberto Perdisci, Igino Corona, and Giorgio Giacinto. Early detection of malicious Flux
networks via large-scale passive DNS traffic analysis. IEEE Transactions on Dependable and
Secure Computing, 9:714–726, 2012. 14, 18

[19] Reza Sharifnya and Mahdi Abadi. A novel reputation system to detect DGA-based botnets.
In Computer and Knowledge Engineering (ICCKE), 2013 3th International eConference on,
number Iccke, pages 417–423. 2013. 14

[20] Daniel J Solove. Understanding Privacy. Harvard University Press, May 2008; GWU Legal
Studies Research Paper No. 420; GWU Law School Public Law Research Paper No. 420,
(May), 2008. 17

[21] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras. Flow
monitoring explained: From packet capture to data analysis with netflow and ipfix. Commu-
nications Surveys Tutorials, IEEE, 16(4):2037–2064, Fourthquarter 2014. 17

[22] Yacin Nadji, M Antonakakis, and R Perdisci. Beheading hydras: performing effective botnet
takedowns. Proceedings of the 2013 ACM SIGSAC conference on Computer & communica-
tions security, pages 121–132, 2013. 11

[23] Hyunsang Choi, Hanwoo Lee, Heejo Lee, and Hyogon Kim. Botnet detection by monitoring
group activities in DNS traffic. In CIT 2007: 7th IEEE International Conference on Computer
and Information Technology, pages 715–720, 2007. 15, 20, 21, 22, 23

[24] Hyunsang Choi, Heejo Lee, and Hyogon Kim. Botgad: Detecting botnets by capturing group
activities in network traffic. In Proceedings of the Fourth International ICST Conference on
COMmunication System softWAre and middlewaRE, COMSWARE ’09, pages 2:1–2:8, New
York, NY, USA, 2009. ACM. 14, 20, 22, 23

[25] Hyunsang Choi and Heejo Lee. Identifying botnets by capturing group activities in DNS
traffic. Computer Networks, 56:20–33, 2012. 17, 20, 22, 23, 27

[26] Kazumichi Sato, Keisuke Ishibashi, Tsuyoshi Toyono, and Nobuhisa Miyake. Extending black
domain name list by using co-occurrence relation between dns queries. In Proceedings of the
3rd USENIX Conference on Large-scale Exploits and Emergent Threats: Botnets, Spyware,
Worms, and More, LEET’10, pages 8–8, Berkeley, CA, USA, 2010. USENIX Association. 20,
22, 23

54 DNS-based Detection of Malicious Activity

BIBLIOGRAPHY

[27] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster. Build-
ing a Dynamic Reputation System for DNS. USENIX Security’10: Proceedings of the 19th
USENIX conference on Security, pages 1–17, 2010. 12, 16, 20, 22, 24, 25

[28] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou II, and David Dagon.
Detecting Malware Domains at the Upper DNS Hierarchy. In USENIX Security Symposium.,
volume 11, pages 1–16, 2011. 20, 22, 25

[29] Leyla Bilge, S Sen, and D Balzarotti. EXPOSURE: a passive DNS analysis service to detect
and report malicious domains. ACM Transactions on . . . , V(4), 2014. 1, 20, 22, 26

[30] Samuel Marchal, Jerome Francois, Cynthia Wagner, Radu State, Alexandre Dulaunoy,
Thomas Engel, and Olivier Festor. DNSSM: A large scale passive DNS security monitoring
framework. In Proceedings of the 2012 IEEE Network Operations and Management Sympo-
sium, NOMS 2012, pages 988–993, 2012. 1, 11, 20, 22, 26

[31] Jehyun Lee and Heejo Lee. GMAD: Graph-based malware activity detection by DNS traffic
analysis. Computer Communications, 49:33–47, 2014. 1, 10, 14, 15, 20, 22, 27, 28

[32] Manos Antonakakis and Roberto Perdisci. From throw-away traffic to bots: detecting the
rise of DGA-based malware. Proceedings of the 21st USENIX Security Symposium, page 16,
2012. 1, 12, 20, 22, 28

DNS-based Detection of Malicious Activity 55

Appendix A

Detailed experiment results

Table A.1 presents a more comprehensive view of the results of Scenario 1. A part of this
information has been presented in Section 7.3. In detail, Table A.1 contains the results for each
blacklist and for each user group. The column N contains the original results, that are produced
by filtering the network flows given the full blacklist. This column is divided into three parts: the
total number of hits, the unique source IP addresses and the unique destination IP addresses. The
column blacklist shows the size of the intermediate blacklist out of the total blacklisted elements
of each blacklist. The intermediate blacklist is produced by the DNS-based prefiltering process.
Furthermore, the column P contains the results of Scenario 1, that are produced by filtering the
network flows given the intermediate blacklist. This column is divided into three parts, similarly
to the N column. Eventually, we present the recall rate.

Likewise, Table A.2 contains the full results of Scenario 2. The structure of this table is the
same as of Table A.1.

In addition, more detailed results of Scenario 3 can be found in Table A.3. This table shows
the flow-based results (N), the individual DNS-based results (D) and the true positives of DNS-
based detection (P). Eventually, we present the recall, precision and accuracy rates based on the
detected infected users (i.e. unique source IP addresses).

DNS-based Detection of Malicious Activity 57

APPENDIX A. DETAILED EXPERIMENT RESULTS

group
N

blacklist
P

Recall
total uniq src uniq dst total uniq src uniq dst

b
ot
n
et
cc

U 245 5 4 3 2 1 40%
U ′
mr 244 4 4 2 1 1 25%

U ′
ur 0 0 0

1/490
0 0 0 -

Umur 1 1 1 1 1 1 100%
Ulr 0 0 0 0 0 0 -
Uu 0 0 0 0 0 0 -

em
er
g
in
g

U 1539 27 25 207 10 6 37%
U ′
mr 528 12 12 26 3 2 25%

U ′
ur 3 2 2

13/915
2 1 1 50%

Umur 47 2 2 31 1 1 50%
Ulr 742 9 13 148 5 4 56%
Uu 219 2 4 0 0 0 0%

em
er
gi
n
g
ex
t

U 15 4 1

No DNS-based alert

-
U ′
mr 0 0 0 -

U ′
ur 0 0 0

0/23
-

Umur 0 0 0 -
Ulr 15 4 1 -
Uu 0 0 0 -

sb
l
d
ro
p

U 2671 783 405 193 31 18 4%
U ′
mr 1348 568 122 124 24 14 4%

U ′
ur 13 2 3

32/712
0 0 0 0%

Umur 399 121 85 64 6 13 5%
Ulr 794 57 265 5 1 2 2%
Uu 117 35 11 0 0 0 0%

sb
l
ed
ro
p

U 234 52 46

Empty set

0%
U ′
mr 63 21 19 0%

U ′
ur 0 0 0

1/71
-

Umur 28 10 10 0%
Ulr 142 20 21 0%
Uu 1 1 1 0%

x
b
l

U 1084289 7641 234295 3928 879 185 12%
U ′
mr 398200 6183 101168 2833 677 152 11%

U ′
ur 12978 65 4402

633/10380840
27 9 5 14%

Umur 157792 828 44835 361 102 41 12%
Ulr 505712 196 145083 370 47 37 24%
Uu 9607 369 1873 337 44 15 12%

Table A.1: Detailed results of Scenario 1.

58 DNS-based Detection of Malicious Activity

APPENDIX A. DETAILED EXPERIMENT RESULTS

group
N

blacklist
P

TP
total uniq src uniq dst total uniq src uniq dst

b
ot
n
et
cc

U 245 5 4 3 2 1 40%
U ′
mr 244 4 4 2 1 1 25%

U ′
ur 0 0 0

1/490
0 0 0 -

Umur 1 1 1 1 1 1 100%
Ulr 0 0 0 0 0 0 -
Uu 0 0 0 0 0 0 -

em
er
gi
n
g

U 1539 27 25 207 10 6 37%
U ′
mr 528 12 12 26 3 2 25%

U ′
ur 3 2 2

13/915
2 1 1 50%

Umur 47 2 2 31 1 1 50%
Ulr 742 9 13 148 5 4 55%
Uu 219 2 4 0 0 0 0%

sb
l
d
ro
p

U 2671 783 405 193 31 18 4%
U ′
mr 1348 568 122 124 24 14 4%

U ′
ur 13 2 3

27/712
0 0 0 0%

Umur 399 121 85 64 6 13 5%
Ulr 794 57 265 5 1 2 2%
Uu 117 35 11 0 0 0 0%

x
b
l

U 1084289 7641 234295 5417 875 192 11%
U ′
mr 398200 6183 101168 4302 670 159 11%

U ′
ur 12978 65 4402

645/10380840
27 9 5 14%

Umur 157792 828 44835 340 101 40 12%
Ulr 505712 196 145083 385 48 37 24%
Uu 9607 369 1873 363 47 18 13%

Table A.2: Detailed results of Scenario 2.

DNS-based Detection of Malicious Activity 59

APPENDIX A. DETAILED EXPERIMENT RESULTS

gr
ou

p
N

D
P

R
ec
al
l

P
re
ci
si
on

A
cc
u
ra
cy

to
ta
l

u
n
iq

sr
c

u
n
iq

d
st

to
ta
l

u
n
iq

sr
c

u
n
iq

d
st

to
ta
l

u
n
iq

sr
c

u
n
iq

d
st

U
′ m
r

24
4

4
4

12
4

1
6

1
1

25
%

25
%

99
.9
6%

b
ot
n
et
cc

U
m

u
r

1
1

1
3

2
1

1
1

1
10

0%
50

%
99
.9
1%

U
lr

0
0

0
2

1
1

0
0

0
-

0%
99
.6
3%

U
′ m
r

52
8

12
12

11
8

7
2

1
1

8%
12

%
99
.8
8%

em
er
gi
n
g

U
m

u
r

47
2

2
4

2
2

1
1

1
50

%
50

%
99
.8
1%

U
lr

74
2

9
13

6
2

6
7

2
2

22
%

10
0%

97
.4
2%

U
′ m
r

13
48

56
8

12
2

17
2

36
24

14
1

23
13

4%
64

%
96
.3
6%

sb
l
d
ro
p

U
m

u
r

39
9

12
1

85
67

6
21

73
6

13
5%

10
0%

89
.1
8%

U
lr

79
4

57
26

5
24

4
13

11
1

2
2%

25
%

78
.2
3%

U
′ m
r

39
82

00
61

83
10

11
68

66
72

89
9

58
8

30
44

79
18

6
14

4
3%

21
%

56
.2
0%

x
b
l

U
m

u
r

15
77

92
82

8
44

83
5

23
9

77
67

64
5

22
28

3%
29

%
19
.0
0%

U
lr

50
57

12
19

6
14

50
83

13
8

44
53

40
0

17
14

9%
39

%
23
.9
9%

T
a
b
le

A
.3
:
D
et
a
il
ed

re
su
lt
s
o
f
S
c
e
n
a
ri
o
3
.

60 DNS-based Detection of Malicious Activity

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Domain Name System
	Overview
	Domain name space
	Domain name hierarchy
	DNS zone

	Architecture
	Stub resolver
	Recursive caching name server
	Authoritative name servers

	Query resolution
	Advanced technologies
	DynDNS
	Reverse DNS resolution
	Prefetching
	Other applications

	Challenges
	Attacker model
	Spyware
	Botnets
	Phishing

	Exploitation techniques
	Fast flux
	Domain flux

	Monitoring
	Types of monitored information
	Network flow
	Active probing and pDNS

	Monitoring positions
	Advantages and effectiveness of DNS monitoring

	Detection
	Blacklist
	Common type
	Extended type
	Indication

	Whitelist
	Dynamic detection

	Discussion
	Limitations of dynamic detection
	Privacy issues
	Summary

	Literature review
	Properties
	Criteria
	Classification
	Group activity
	Co-occurrence
	DNS features
	Reputation systems
	Data mining

	Sequential correlation
	NXDomains

	Approach
	Overview
	Performance of flow-based filtering
	User classification
	Scenarios

	Experiment setup
	Dataset
	Blacklists
	Groups of users
	Methodology to identify the destination
	Methodology to determine the user groups

	Database
	Scenarios

	Evaluation
	User classification
	Identification of destinations
	Determination of user groups

	Processed data
	Results of Scenario 1
	Results of Scenario 2
	Results of Scenario 3

	Conclusions
	Threats to validity
	Summary
	Future work

	Bibliography
	Appendix
	Detailed experiment results

