
 Eindhoven University of Technology

MASTER

HOG-SVM car detection on an embedded GPU

Nawaz, S.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/43771e4f-a601-46aa-bd4b-d11ed8902368

HOG-SVM Car Detection on an Embedded GPU

Shah Nawaz

SPS/VCA Research Group, Department of Electrical Engineering

Technical University of Eindhoven

Eindhoven, Netherlands

<s.nawaz.1@student.tue.nl>

Abstract—The focus of this paper is on a vision-based car

detection pipeline for a Cooperative Cruise Control system,

based on Histograms of Oriented Gradients and Support Vector

Machines. The pipeline is implemented on an automotive-grade

embedded computation platform which features a Tegra K1

System on Chip, enclosing also a Graphics Processing Unit. The

system is evaluated using the KITTI Vision Benchmark Suite, a

standard in computer vision research. The results show that the

pipeline reaches accuracies up to 65.5%, which is acceptable

given the limited training dataset size of 1,174 samples and that

application context has not yet been exploited.

Keywords— Car Detection, HOG, Linear SVM, GPU.

I. INTRODUCTION

A major automotive innovation in the coming decades will

come from intelligent communication, sensing and perception

technologies that enable cooperative automated driving. The

potential benefit of cooperative automated driving is that all

vehicles jointly optimize their actions in order to improve

traffic efficiency and safety. The transition from current-day

driving to cooperative automated driving, has already started

with Advanced Driver Assistance Systems (ADAS), such as

Adaptive Cruise Control (ACC) and lane keeping assist.

Existing autonomous driving technologies [1] [2] [3] tend to

depend on active sensors such as LIDAR [4] [5] along with

accurate pre-configured maps. However, the use of passive

camera sensors is becoming more practical due to recent

advances in machine learning-based computer vision

algorithms [6], [7]. Vision-based object detection algorithms

can be applied for various object ranges, orientations, and

lighting conditions. The drawback of these algorithms is that

they are computationally intensive, which makes real-time

deployment in cooperative automated driving challenging.

Recent innovations in commodity hardware such as

Graphics Processing Units (GPUs) have advanced into an

extremely powerful computational resource that can meet the

computational requirements of state-of-the-art vision-based

object detection applications. The GPU provides a streaming-

based, data-parallel arithmetic architecture, which performs

repetitive computations on an array of data. This Single

Instruction Multiple Data (SIMD) capability of GPUs is

suitable for computer vision tasks, which traditionally have

repeated calculations operating on an entire image. In this

work, we exploit the capabilities of embedded GPUs to realize

a real-time vision-based car detection pipeline.

Vision-based object detection algorithms consists typically

of an image feature detector, which provides a digital

description of local image content, and a pattern recognizer

that classifies this local image content, e.g. as a car or

background. Fig. 1 shows an example detection obtained with

the developed vision-based car detection pipeline.

Fig. 1: Example detection of the developed pipeline.

 There are different feature detectors, e.g. Haar-like [8],

Local Binary Pattern (LBP) [14], and Histogram of Oriented

Gradients [7] (HOG) which can be used to develop a car

detection application. The HOG feature, proposed by Dalal

and Triggs, has gained wide recognition as a successful

feature-based method for object detection, especially for real-

time applications. The HOG feature provides reliable high-

level representations of image regions underlying many state-

of-the-art object detection algorithms [9] [10] [11].

 For our implementation, we have chosen to use the HOG

features with linear Support Vector Machines (SVMs) as

pattern classifier. A key benefit of using linear SVM, is that it

is extremely efficient and therefore well-suited for real-time

applications. The main focus of this work is to deploy the car

detection pipeline, using existing open source libraries, on an

automotive-grade embedded computation platform featuring a

Tegra K1 SoC, which houses a GPU and ARM quad-cores.

This work is a part of ongoing research to develop a dense

multi-class detector.

 Section II describes the methodology used to extract the

HOG features for positive and negative data samples that are

fed to linear SVM to obtain a trained model for the car

detection pipeline. Section III presents an implementation of

the car detection pipeline on the Tegra TK1 SoC. Section IV

introduces the dataset that is used for training, testing, and

evaluation of the car detection pipeline. Section V presents an

overall evaluation and comparison using the publicly available

KITTI Vision Benchmark Suite. It also presents a

comprehensive analysis of the results. Section V concludes

this paper.

II. METHODOLOGY

This section provides an overview of the feature detector

(HOG), the pattern recognizer (SVM), and the training

pipeline used for our implementation.

A. Feature detector

The basic concept behind the HOG descriptor is that

local object appearance and shape within an image, can be

characterized by the distribution of intensity gradient

magnitudes and directions. The HOG divides an image into

small spatial connected regions, called cells, and the local 1-

D histogram of gradient directions of each pixel within each

cell is accumulated, according to the gradient magnitudes.

These histograms are then concatenated to get the

descriptors. The histograms of each cell, can be contrast-

normalized for better invariance to illumination, shadowing,

etc., by calculating a measure of the intensity across a larger

region of the image, called blocks, and then using this value

to normalize all cells within the block [7]. These steps are

summarized in Fig. 2. Dalal and Triggs proposed

overlapping blocks in which each cell contributes several

components to the final descriptor vector, each normalized

with respect to a different block. The normalized descriptor

blocks are referred to as HOG descriptors.

For our car detection pipeline, we use the following

HOG parameters:

 Window size is 96 × 64 pixels (Width × Height)

 Block size is 16 × 16 pixels

 Block stride is 8 × 8 pixels

 Cell size is 8 × 8 pixels

 Number of gradient bins per cell is 9

 In order to be able to detect objects of different sizes, a

multi-scale approach is used. For this, we rescale the

original image with 12 different scale factors. For an

original resolution of 1224×370 pixels, the scale factors, the

multiple resolutions, and the effective window sizes, are

provided in Table I. It can be observed that with our multi-

scale approach we can detect objects of sizes in between

96×64 to 370×227 pixels.

B. Pattern Recognizer

 A linear SVM trained on HOG features can be considered

a de facto standard across many visual perception tasks [15].

The SVM algorithm fits a hyper plane in between positive

and negative data samples (e.g. cars and non-cars). Fig. 3,

illustrates this with + indicating positive data points and –

indicating negative data points. This hyperplane is optimal

in the sense that it is the maximum margin separating

hyperplane between positive and negative data samples.

TABLE I. LEVEL, SCALE, RESOLUTION AND WINDOW SIZE

INFOMATION

Level Scale Stride
Resolution

 (WxH)

Window Size

(WxH)

1 1.00 1224×370 96×64

2 1.11 1103×333 107×71

3 1.23 993×300 118×79

4 1.36 895×271 131×88

5 1.51 806×244 145×98

6 1.68 726×220 161×109

7 1.87 654×198 179×121

8 2.07 590×178 199×134

9 2.30 531×161 221×149

10 2.55 478×145 246×165

11 2.83 431×130 273×184

12 3.15 388×117 333×204

13 3.49 350×106 370×227

 The hyperplane extruded with the margin, is often called

the slab. The support vectors are the points which are on the

boundary of the slab; these data points are closest to the

separating hyperplane. Once the optimal maximum margin

separating hyperplane is estimated on data samples, it can

be used to classify new data samples. Each new data sample

is classified on basis of on which side of the hyperplane it

is. To tune the detector, one typically uses a distance

threshold that offsets the hyperplane in a perpendicular

direction (its normal vector).

Fig. 3: Support vector machine.

Fig. 2: Feature detector chain.

C. Training Pipeline

To estimate the SVM hyperplane, positive and negative

data samples have to be extracted from image data. This

process is depicted in Fig. 4 and is explained in more detail

below.

 In order to extract positive samples, we have to use

training labels. A training label minimally contains the

coordinates of a rectangular region in a training image,

which contains the object of interest. From these

coordinates, the correct multi-scale level needs to be

selected and the HOG descriptor for the particular

rectangular image region needs to be extracted. To select

the correct multi-scale level, we select that level for which

effective window size (see last column of Table I) fully

contains the rectangular region of a training label. Once we

have the correct level, we can extract the HOG feature

corresponding to the particular rectangular image region.

Similarly, in order to extract the HOG features that

belong to negative samples, a random region is selected

over the image. This selected area is then checked for

collision with the object of interest using the label

information of the image. In case there is a collision with

the object of interest, a new random region is selected. This

process is repeated until a region is found which does not

collide with the object of interest. Once the randomly

selected region that does not collide with the object of

interest is chosen, the same block feature extraction method

mentioned above for positive feature can be used in order to

extract the blocks that correspond to the randomly selected

region.

III. IMPLEMENTATION

The implementation of our car detection pipeline is based

on the Open Source Computer Vision (OpenCV) library,

and targets an embedded Linux development platform that

features a Tegra K1 SoC, enclosing a GPU. The main

reason to choose this embedded platform is that it provides

the same architecture and advanced features as a modern

desktop GPU, while still using the low power draw of a

mobile chip. Furthermore, the Tegra K1 SoC will be used

for many next-generation automotive systems. The Tegra

TK1 development board, used to implement our car

detection pipeline, is shown in the Fig. 5.

Fig. 5: Tegra TK1 board (13×13 cm). [12]

 The Tegra K1 SoC has a Kepler GPU, which is clocked at

900 MHz and has 192 Compute Unified Device

Architecture (CUDA) cores. Furthermore, it has 4 ARM

cores that support SIMD operations (Neon).

 The GPU can be programmed with the CUDA

programming language, which is also used by OpenCV. The

current version of OpenCV has a preconfigured HOG-SVM

people detector. This we used as the basis for our car

detection pipeline, see Fig. 6. We added new functionality

to OpenCV that allows exporting HOG blocks from the

GPU. This can be used to train general detectors other than

people detectors. We also added functionality that allows

importing pre-trained SVM models to the GPU. With this

added functionality, we have a full-feature general training

and detecting pipeline. In this work, it is used to detect cars

but it can also be used for any other object.

Fig. 6: Detector training pipeline. (Everything in black is

available in standard OpenCV, everything in blue is

functionality that we added)

On-line GPU (OpenCV)

HOG SVM

Off-line CPU (MATLAB)

Features Training

Detection

SVM Model

Images

HOG Blocks

Fig. 4: Positive and negative feature extraction chain

IV. Dataset

 The dataset used for training the car detection pipeline

and for evaluating it, originates from the KITTI Vision

Benchmark Suite [11]. This benchmark consists of 7,481

training images and 7,518 test images. Only for the training

images, the ground truth labels are made publically

available, giving a total of 80,256 labeled objects. Out of all

label objects, which are cars, vans, pedestrians, etc., there

are 1,174 labels related to rear-view of cars. In this work,

we limit our car detection pipeline to detect rear-view of

cars only. To train and evaluate our pipeline, we split the

1,174 rear-view car labels into two equal size sets, one set is

used for training and the other set is used for evaluation. In

the remainder of this section, we provide the details on how

we use the KITTI Vision Benchmark Suite to obtain our

positive and negative data samples.

 For each label, there are 15 variables that are provided in

Table II.

TABLE II. LABEL INFORMATION

Values Name Description

1 Type

Describes the type of object: 'Car', 'Van',
'Truck', 'Pedestrian', 'Person_sitting',

'Cyclist', 'Tram', 'Misc' or 'DontCare'

1 Truncated

Float from 0 (non-truncated) to 1
(truncated), where truncated refers to the

object leaving image boundaries

1 Occluded

Integer (0,1,2,3) indicating occlusion state:

0 = fully visible

1 = partly occluded

2 = largely occluded
3 = unknown

1 Alpha
Observation angle of object, ranging [-

pi..pi]

4 Bbox

2D bounding box of object in the image (0-
based index): contains left, top, right,

bottom pixel coordinates

3 Dimensions
3D object dimensions: height, width, length
(in meters)

3 Location
3D object location x, y, z in camera

coordinates (in meters)

1 Rotation_y
Rotation ry around Y-axis in camera

coordinates [-pi..pi]

1 Score

Only for results: Float, indicating

confidence in detection, needed for p/r
curves, higher is better

 To obtain positive data samples, we use the Type

variable, to select all Car labels. Next, we use the Truncated

and Occluded variables, to only select Car labels which are

fully visible and are truncated less than 15%. We use the

Alpha variable, to select the rear view Car labels. Finally,

we use 2-D bounding Bbox variable, to select Car labels

whose height is larger than 40 pixels. This specific selection

puts our evaluation in the Easy class, according to the

KITTI guidelines that are provided in Table III.

TABLE III. DIFFICULT LEVEL DESCRIPTION

Sr. No. Level Description

1

Easy

These were separated for Easy Training,

which is done by using the observation
angle information of the type 'Car' in the

labels of the images.

Minimum bounding box height: 40 Pixel
Maximum occlusion level: Fully visible

Maximum truncation: 15 %

2

Moderate

Minimum bounding box height: 25 Pixel,
Maximum occlusion level: Partly

occluded, Maximum truncation: 30 %

3

Hard
Minimum bounding box height: 25 Pixel

Maximum occlusion level: Difficult to see
Maximum truncation: 50 %

 To obtained negative data samples, we randomly generate

rectangular images regions. For each region we checked if it

overlaps with all Car labels (i.e. all observation angles, all

truncation values, all occluded values, etc. are considered).

If it overlaps, the negative data sample is rejected.

V. RESULTS AND EVALUATION

The dataset used to train, test, and evaluate the car

detection pipeline originate from the KITTI Vision

Benchmark Suite. There are 1,174 images in the dataset and

half of the images (587) are used to train the linear SVM

and the other half are used for evaluation, as mentioned in

Section IV.

Prior to illustrating the performance of the classifier,

some terminology related to the classifier performance is

introduced. True Positive (TP) is the number of positive

samples that are classified correctly, True Negative (TN) is

the number of negative samples that are correctly classified,

False Positive (FP) is the number of negative samples

misclassified as positive samples, and False Negative (FN)

is the number of positive samples wrongly classified as

negative samples [13]. From these performance indicators,

we construct our evaluation metric, i.e. Precision and

Recall. These metrics are defined as:

 Precision = TP / (TP+ FP), (3)

 Recall = TP / (TP + FN).

 The parameter Precision conceptually expresses the

percentage of detections referring to true objects that we are

looking for (cars). Recall indicates the percentage of the

total detected cars during evaluation.

 The third performance metric that we used is Accuracy. It

is defined as

 Accuracy = TP + TN / (TP + FP + FN + TN) (4)

 and it is providing the percentage of correctly classified

objects in the evaluation dataset. In this case, objects are

both the objects of interest (cars) and objects that are not of

interest (e.g. houses). It requires that objects that are not of

interests (e.g. houses) are also labelled in the evaluation

dataset.

 The precision and recall metrics are used to generate the

Precision-Recall (PR) curves. They are obtained by

sweeping the distance threshold parameter of the linear

SVM between -3 to 2 with steps of 0.1. We have performed

the following three experiments.

1. In the first experiment, we take 587 positive training

samples and 1,761 negative training samples (a ratio

1:3) and generate the PR curve using 500 positive test

samples. With this experiment we give insight in the

Precision Recall trade-off of the car detection pipeline.

2. In the second experiment, we vary the ratio of positive

and negative training samples between 1:1 and 1:3.

This shows the influence of the ratio on the number of

false positives, and hence on Precision.

3. In the third experiment, we have used the ratio of 1:3

but employ different numbers of positive and negative

training samples. This experiment is performed to

observe when the performance saturates at an increased

number of training samples.

A. Results

First we show some qualitative results in Fig. 7. These

results indicate that the car detection pipeline is working as

it successfully detects the object of interest (car) in the

testing images. Especially the detection of the object of

interest (car) in the shadow in the middle image indicates

the robustness of the detection. Besides this, the detector can

also handle multiple detections simultaneously, as is shown

in by the bottom subfigure.

Fig. 7: Car detection pipeline results.

 The numerical detection results of our first experiments

are shown as PR curve in Fig. 8. The details of the

experiment are provided by Table IV. The PR values are not

as high as that of state-of-the-art vision-based object

detection pipelines. However, they are acceptable, when

considering that only 587 positive training samples are used

and that application context information is absent.

TABLE IV. EXPERIMENT 1

Sr. No. Positive

Samples

Negative

Samples

Pos/Neg.

Ratio

SVM_587_1761 587 1,761 1:3

Fig. 8: Precision Recall curve.

 The results of the second experiment are provided in Fig.

9, where the numerical details are provided in Table V. It

can be observed that increasing the number of negative

samples improves the Precision (as it reduces the number of

false positives). The applied benefit is that one can use a

higher value for the SVM distance threshold, thereby

achieving a higher level of the Recall at the same level of

Precision (one can detect more cars without increasing the

number of wrong detections).

TABLE V. EXPERIMENT 2

Sr. No. Positive

Samples

Negative

Samples

Pos/Neg.

Ratio

Average

Accuracy

(%)

SVM_587_587 587 587 1:1 58.36

SVM_587_1761 587 1,761 1:3 65.51

Fig. 9: PR curves for two different pos/neg. ratios.

 The results of the third experiment are provided by Fig.

10 and the numerical details in Table VI. It can be observed

that increasing the number of training samples improves the

performance. Especially, the average accuracies reported in

the Table VI and the last row in Table V show that the

performance is not yet saturated. The improvement of using

587 positive training samples (last row Table V) over using

500 positive training samples (last row Table VI), is 1.28 %

for 87 extra positive training samples. Unfortunately, we

cannot increase the number of positive training samples

further, as we also need test samples for our evaluation.

Nevertheless, in a real application, using more training

samples is recommended. After considering the

experiments in more detail, we found that a number of

positive data samples in the dataset are redundant, which

decreases the overall quality of the positive data samples in

terms of variation.

TABLE VI. EXPERIMENT 1

Sr. No. Positive

Samples

Negative

Samples

Pos/Neg.

Ratio

Average

Accuracy

(%)

SVM_100_300 100 300 1:3 57.95

SVM_200_600 200 600 1:3 60.66

SVM_300_900 300 900 1:3 63.07

SVM_400_1200 400 1,200 1:3 63.87

SVM_500_1500 500 1,500 1:3 64.23

Fig. 10: PR Curves with different number of training samples.

 Let us also report on the computational performance of

the algorithm mapped on the proposed embedded

computation platform. We present the number of frames that

the pipeline can process per second, in Table VII. The

throughput numbers are obtained with our GPU-based

implementation and an CPU-based implementation. It can

be observed that for higher resolution (1224×370 pixels),

the GPU-based implementation executes a factor of 4 faster

than the CPU-based implementation. The installation details

of the Firewire1394 driver are provided as an Appendix at

the end of this paper.

TABLE VII. FRAMES EXECUTED PER SECOND FOR GPU AND CPU

Resolution GPU (FPS) CPU (FPS)

1224×370 4.310 0.998

816×246 6.436 2.351

544×164 11.740 5.324

CONCLUSION

We have presented an implementation of a vision-based

car detection pipeline, based on HOG and linear SVM. The

pipeline is developed for a GPU of an automotive-grade

embedded SoC, i.e. a Tegra K1. The results show that the

pipeline reaches accuracies up to 65.51% and executes at 4

frames per second at a resolution of 1224×370 pixels. This

yields a 4 times faster execution compared to a single-core

ARM implementation. The accuracy can be improved by

using more (non-redundant) training samples and exploiting

application context information. The context helps in

rejecting false positives, which in turn allows the pipeline to

become more sensitive and detect more true positives. The

presented pipeline can be utilized in future research to

implement a dense multi-class detector.

ACKNOWLEDGMENT

 This work gets help from Dr. Gijs Dubbelman, and the

Video Coding and Architectures (VCA) Group in the

Department of Electrical Engineering, Technical University

of Eindhoven, Netherlands, with the group leader Prof. Dr.

Peter de With.

REFERENCES

[1] E. Guizzo11, “How Google’s self-driving car works”. IEEE
Spectrum, 2011.

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, et.al., “Towards fully
autonomous driving: systems and algorithms”. In Procedding of the
IEEE Intelligent Vehicles Symposium, pages 163–168, 2011.

[3] C. Urmson, J. Anhalt, H. Bae, D. Bagnell, et.al., “Autonomous
driving in urban environments: boss and the urban challenge”.
Journal of Field Robotics, 25(8):425–466, 2008.

[4] A. Kirchner and C. Ameling, “Integrated obstacle and road tracking
using a laser scanner”. In Proceeding of the IEEE Intelligent Vehicles
Symposium, pages 675–681, 2000.

[5] D. Streller, K. Furstenberg, and K. Dietmayer, “Vehicle and object
models for robust tracking in traffic scenes using laser range images”.
In Proceeding of the IEEE International Conference on Intelligent
Transportation Systems, pages 118–123, 2002.

[6] Viola, P., & Jones, M. J. (2004), “Robust real-time face detection”.
International journal of computer vision, 57(2), 137-154.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection”. In Proceeding of the IEEE Conference on Compute Vision
and Pattern Recognition, pages 886–893, 2005.

[8] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features”. In Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, vol. 1, 2001, pp. 511–518.

[9] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models”. In
IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(9):1627–1645, 2010.

[10] P. Rybski, D. Huber, D. Morris, and R. Hoffman, “Visual
classification of coarse vehicle orientation using histogram of
oriented gradients features”. In Proceeding of the IEEE Intelligent
Vehicles Symposium, pages 921–928, 2010.

[11] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite”. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3354–3361.

[12] eLinux.org, “Jetson TK1”, 2015. [Online]. Available:
http://elinux.org/Jetson_TK1

[13] G. de Haan, “Object detection," in Video processing for multimedia
system”, Eindhoven, Netheralands, 2010 .

[14] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Li, “Learning multi-scale
block local binary patterns for face recognition,” In Advances in
biometrics, 2007, pp. 828–837.

[15] H. Bristow and S. Lucey, “Why do linear SVMs trained on HOG
features perform so well?”. In arXiv preprint arXiv:1406.2419,
(2014).

APPENDIX

 This section provides installation pipeline details that are

needed in order to run the car detection pipeline, which

includes a kernel for Firewire1394 driver support. Step 1

should be performed in order to check if the running kernel

on Tegra Tk1 board provides Firewire1394 driver support.

If the running kernel does not have the Firewire1394 driver

support, then installation from Step 2 onwards should be

followed.

Step 1: Check Firewire 1394 driver support

Use the following Linux command on Nvidia Tegra board

to check if the running kernel provides Firewire 1394 driver

support.

lsmod | grep –E -i "(1394|firewire)"

If there is no output, the running kernel does not have

Firewire 1394 driver support. In that case follow step 2

onwards.

Step 2: Install L4T 21.3

Install Linux for Tegra 21.3 version 3.0 available on Nvidia

Developer Zone.

Step 3: Extract L4T 21.3

The downloaded L4T 21.3 is extracted using the following

Linux commands.
tar -xvf Tegra124_Linux_R21.3.0_armhf.tbz2

cd Linux_for_Tegra/rootfs
sudo tar xpf ../../Tegra_Linux_SampleRootFilesystem_R21.3.0_armhf.tbz2

Step 4: Apply binaries

The extracted file is run using the following Linux

command.
sudo ./apply_binaries.sh

Step 5: Flash Jetson TK1Board

Tegra board should be flashed using the following Linux

command.
sudo ./flash.sh jetsontk1 mmcblk0p1

Step 6: Login to Jetson TK1 board and download Grinch

Kernel

After flashing the Jetson TK1 board, login to the board and

download the Grinch kernel.

Step 7: Check MD5 sums

MD5 sums are checked in order to verify the MD5 hashes
md5sum zImage

a4a4ea10f2fe74fbb6b10eb2a3ad5409 zImage

md5sum jetsontk1grinch21.3.4modules.tar.bz2

3f84d425a13930af681cc463ad4cf3e6
jetsontk1grinch21.3.4modules.tar.bz2

md5sum jetsontk1grinch21.3.4firmware.tar.bz2

f80d37ca6ae31d03e86707ce0943eb7f
jetsontk1grinch21.3.4firmware.tar.bz2

Step 8: Update kernel

The kernel is updated using the following Linux commands.
sudo tar -C /lib/modules -vxjf

jetsontk1grinch21.3.4modules.tar.bz2

sudo tar -C /lib -vxjf jetsontk1grinch21.3.4firmwaretar.bz2
sudo cp zImage /boot/zImage

Step 9: Reboot the JetsonTK1

Reboot the Jetson TK1 board in order to make changes

effective.

http://elinux.org/Jetson_TK1

