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Abstract—The focus of this paper is on a vision-based car 

detection pipeline for a Cooperative Cruise Control system, 

based on Histograms of Oriented Gradients and Support Vector 

Machines. The pipeline is implemented on an automotive-grade 

embedded computation platform which features a Tegra K1 

System on Chip, enclosing also a Graphics Processing Unit. The 

system is evaluated using the KITTI Vision Benchmark Suite, a 

standard in computer vision research. The results show that the 

pipeline reaches accuracies up to 65.5%, which is acceptable 

given the limited training dataset size of 1,174 samples and that 

application context has not yet been exploited. 
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I. INTRODUCTION 

A major automotive innovation in the coming decades will 

come from intelligent communication, sensing and perception 

technologies that enable cooperative automated driving. The 

potential benefit of cooperative automated driving is that all 

vehicles jointly optimize their actions in order to improve 

traffic efficiency and safety. The transition from current-day 

driving to cooperative automated driving, has already started 

with Advanced Driver Assistance Systems (ADAS), such as 

Adaptive Cruise Control (ACC) and lane keeping assist.  

Existing autonomous driving technologies [1] [2] [3] tend to 

depend on active sensors such as LIDAR [4] [5] along with 

accurate pre-configured maps.  However, the use of passive 

camera sensors is becoming more practical due to recent 

advances in machine learning-based computer vision 

algorithms [6], [7]. Vision-based object detection algorithms 

can be applied for various object ranges, orientations, and 

lighting conditions. The drawback of these algorithms is that 

they are computationally intensive, which makes real-time 

deployment in cooperative automated driving challenging.  

Recent innovations in commodity hardware such as 

Graphics Processing Units (GPUs) have advanced into an 

extremely powerful computational resource that can meet the 

computational requirements of state-of-the-art vision-based 

object detection applications. The GPU provides a streaming-

based, data-parallel arithmetic architecture, which performs 

repetitive computations on an array of data. This Single 

Instruction Multiple Data (SIMD) capability of GPUs is 

suitable for computer vision tasks, which traditionally have 

repeated calculations operating on an entire image. In this 

work, we exploit the capabilities of embedded GPUs to realize 

a real-time vision-based car detection pipeline. 

Vision-based object detection algorithms consists typically 

of an image feature detector, which provides a digital 

description of local image content, and a pattern recognizer 

that classifies this local image content, e.g. as a car or 

background.  Fig. 1 shows an example detection obtained with 

the developed vision-based car detection pipeline. 

  

Fig. 1: Example detection of the developed pipeline. 

    There are different feature detectors, e.g. Haar-like [8], 

Local Binary Pattern (LBP) [14], and Histogram of Oriented 

Gradients [7] (HOG) which can be used to develop a car 

detection application. The HOG feature, proposed by Dalal 

and Triggs, has gained wide recognition as a successful 

feature-based method for object detection, especially for real-

time applications. The HOG feature provides reliable high-

level representations of image regions underlying many state-

of-the-art object detection algorithms [9] [10] [11]. 

    For our implementation, we have chosen to use the HOG 

features with linear Support Vector Machines (SVMs) as 

pattern classifier. A key benefit of using linear SVM, is that it 

is extremely efficient and therefore well-suited for real-time 

applications. The main focus of this work is to deploy the car 

detection pipeline, using existing open source libraries, on an 

automotive-grade embedded computation platform featuring a 

Tegra K1 SoC, which houses a GPU and ARM quad-cores.  

This work is a part of ongoing research to develop a dense 

multi-class detector.  

    Section II describes the methodology used to extract the 

HOG features for positive and negative data samples that are 

fed to linear SVM to obtain a trained model for the car 

detection pipeline. Section III presents an implementation of 

the car detection pipeline on the Tegra TK1 SoC. Section IV 

introduces the dataset that is used for training, testing, and 

evaluation of the car detection pipeline. Section V presents an 

overall evaluation and comparison using the publicly available 

KITTI Vision Benchmark Suite. It also presents a 

comprehensive analysis of the results. Section V concludes 

this paper. 



  

 

II. METHODOLOGY 

This section provides an overview of the feature detector 

(HOG), the pattern recognizer (SVM), and the training 

pipeline used for our implementation. 

A. Feature detector 

The basic concept behind the HOG descriptor is that 

local object appearance and shape within an image, can be 

characterized by the distribution of intensity gradient 

magnitudes and directions. The HOG divides an image into 

small spatial connected regions, called cells, and the local 1-

D histogram of gradient directions of each pixel within each 

cell is accumulated, according to the gradient magnitudes. 

These histograms are then concatenated to get the 

descriptors. The histograms of each cell, can be contrast-

normalized for better invariance to illumination, shadowing, 

etc., by calculating a measure of the intensity across a larger 

region of the image, called blocks, and then using this value 

to normalize all cells within the block [7]. These steps are 

summarized in Fig. 2. Dalal and Triggs proposed 

overlapping blocks in which each cell contributes several 

components to the final descriptor vector, each normalized 

with respect to a different block. The normalized descriptor 

blocks are referred to as HOG descriptors.  

For our car detection pipeline, we use the following 

HOG parameters: 

 Window size is 96 × 64 pixels (Width × Height) 

 Block size is 16 × 16 pixels 

 Block stride is 8 × 8 pixels 

 Cell size is 8 × 8 pixels 

 Number of gradient bins per cell is 9 

    In order to be able to detect objects of different sizes, a 

multi-scale approach is used. For this, we rescale the 

original image with 12 different scale factors. For an 

original resolution of 1224×370 pixels, the scale factors, the 

multiple resolutions, and the effective window sizes, are 

provided in Table I. It can be observed that with our multi-

scale approach we can detect objects of sizes in between 

96×64 to 370×227 pixels.  

B. Pattern Recognizer 

    A linear SVM trained on HOG features can be considered 

a de facto standard across many visual perception tasks [15].  

The SVM algorithm fits a hyper plane in between positive 

and negative data samples (e.g. cars and non-cars). Fig. 3, 

illustrates this with + indicating positive data points and – 

indicating negative data points. This hyperplane is optimal 

in the sense that it is the maximum margin separating 

hyperplane between positive and negative data samples.  

TABLE I.  LEVEL, SCALE, RESOLUTION AND WINDOW SIZE 

INFOMATION 

Level Scale Stride 
Resolution 

 (WxH) 

Window Size  

(WxH) 

1 1.00 1224×370 96×64 

2 1.11 1103×333 107×71 

3 1.23 993×300 118×79 

4 1.36 895×271 131×88 

5 1.51 806×244 145×98 

6 1.68 726×220 161×109 

7 1.87 654×198 179×121 

8 2.07 590×178 199×134 

9 2.30 531×161 221×149 

10 2.55 478×145 246×165 

11 2.83 431×130 273×184 

12 3.15 388×117 333×204 

13 3.49 350×106 370×227 

    The hyperplane extruded with the margin, is often called 

the slab. The support vectors are the points which are on the 

boundary of the slab; these data points are closest to the 

separating hyperplane. Once the optimal maximum margin 

separating hyperplane is estimated on data samples, it can 

be used to classify new data samples. Each new data sample 

is classified on basis of on which side of the hyperplane it 

is. To tune the detector, one typically uses a distance 

threshold that offsets the hyperplane in a perpendicular 

direction (its normal vector). 

 
Fig.  3: Support vector machine. 

    

Fig. 2: Feature detector chain. 



C. Training Pipeline 

To estimate the SVM hyperplane, positive and negative 

data samples have to be extracted from image data. This 

process is depicted in Fig. 4 and is explained in more detail 

below. 

 In order to extract positive samples, we have to use 

training labels. A training label minimally contains the 

coordinates of a rectangular region in a training image, 

which contains the object of interest. From these 

coordinates, the correct multi-scale level needs to be 

selected and the HOG descriptor for the particular 

rectangular image region needs to be extracted.  To select 

the correct multi-scale level, we select that level for which 

effective window size (see last column of Table I) fully 

contains the rectangular region of a training label. Once we 

have the correct level, we can extract the HOG feature 

corresponding to the particular rectangular image region.   

Similarly, in order to extract the HOG features that 

belong to negative samples, a random region is selected 

over the image. This selected area is then checked for 

collision with the object of interest using the label 

information of the image. In case there is a collision with 

the object of interest, a new random region is selected. This 

process is repeated until a region is found which does not 

collide with the object of interest. Once the randomly 

selected region that does not collide with the object of 

interest is chosen, the same block feature extraction method 

mentioned above for positive feature can be used in order to 

extract the blocks that correspond to the randomly selected 

region.  

III. IMPLEMENTATION 

The implementation of our car detection pipeline is based 

on the Open Source Computer Vision (OpenCV) library, 

and targets an embedded Linux development platform that 

features a Tegra K1 SoC, enclosing a GPU. The main 

reason to choose this embedded platform is that it provides 

the same architecture and advanced features as a modern 

desktop GPU, while still using the low power draw of a 

mobile chip. Furthermore, the Tegra K1 SoC will be used 

for many next-generation automotive systems. The Tegra 

TK1 development board, used to implement our car 

detection pipeline, is shown in the Fig. 5. 

 

Fig. 5: Tegra TK1 board (13×13 cm). [12] 

    The Tegra K1 SoC has a Kepler GPU, which is clocked at 

900 MHz and has 192 Compute Unified Device 

Architecture (CUDA) cores. Furthermore, it has 4 ARM 

cores that support SIMD operations (Neon).  

    The GPU can be programmed with the CUDA 

programming language, which is also used by OpenCV. The 

current version of OpenCV has a preconfigured HOG-SVM 

people detector. This we used as the basis for our car 

detection pipeline, see Fig. 6. We added new functionality 

to OpenCV that allows exporting HOG blocks from the 

GPU. This can be used to train general detectors other than 

people detectors. We also added functionality that allows 

importing pre-trained SVM models to the GPU.  With this 

added functionality, we have a full-feature general training 

and detecting pipeline. In this work, it is used to detect cars 

but it can also be used for any other object. 

 

     

 

 

 

 

Fig.  6: Detector training pipeline. (Everything in black is 

available in standard OpenCV, everything in blue is 

functionality that we added) 
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Fig.  4: Positive and negative feature extraction chain 



IV.     Dataset 

    The dataset used for training the car detection pipeline 

and for evaluating it, originates from the KITTI Vision 

Benchmark Suite [11]. This benchmark consists of 7,481 

training images and 7,518 test images.  Only for the training 

images, the ground truth labels are made publically 

available, giving a total of 80,256 labeled objects. Out of all 

label objects, which are cars, vans, pedestrians, etc., there 

are 1,174 labels related to rear-view of cars. In this work, 

we limit our car detection pipeline to detect rear-view of 

cars only. To train and evaluate our pipeline, we split the 

1,174 rear-view car labels into two equal size sets, one set is 

used for training and the other set is used for evaluation. In 

the remainder of this section, we provide the details on how 

we use the KITTI Vision Benchmark Suite to obtain our 

positive and negative data samples.  

    For each label, there are 15 variables that are provided in 

Table II.  

 
TABLE II.  LABEL INFORMATION 

Values Name Description 

1 Type 

Describes the type of object: 'Car', 'Van', 
'Truck', 'Pedestrian', 'Person_sitting', 

'Cyclist', 'Tram', 'Misc' or 'DontCare' 

1 Truncated 

Float from 0 (non-truncated) to 1 
(truncated), where truncated refers to the 

object leaving image boundaries 

1 Occluded 

Integer (0,1,2,3) indicating occlusion state: 

0 = fully visible 

1 = partly occluded 

2 = largely occluded 
3 = unknown 

1 Alpha 
Observation angle of object, ranging [-

pi..pi] 

4 Bbox 

2D bounding box of object in the image (0-
based index): contains left, top, right, 

bottom pixel coordinates 

3 Dimensions 
3D object dimensions: height, width, length 
(in meters) 

3 Location 
3D object location x, y, z in camera 

coordinates (in meters) 

1 Rotation_y 
Rotation ry around Y-axis in camera 

coordinates [-pi..pi] 

1 Score 

Only for results: Float, indicating 

confidence in detection, needed for p/r 
curves, higher is better 

    To obtain positive data samples, we use the Type 

variable, to select all Car labels. Next, we use the Truncated 

and Occluded variables, to only select Car labels which are 

fully visible and are truncated less than 15%. We use the 

Alpha variable, to select the rear view Car labels. Finally, 

we use 2-D bounding Bbox variable, to select Car labels 

whose height is larger than 40 pixels. This specific selection 

puts our evaluation in the Easy class, according to the 

KITTI guidelines that are provided in Table III. 

TABLE III.  DIFFICULT LEVEL DESCRIPTION 

Sr. No. Level Description 

 

 
 

1 

 

 
 

Easy 

These were separated for Easy Training, 

which is done by using the observation 
angle information of the type 'Car' in the 

labels of the images.  

Minimum bounding box height: 40 Pixel 
Maximum occlusion level: Fully visible 

Maximum truncation: 15 % 

 
2 

 
Moderate 

Minimum bounding box height: 25 Pixel, 
Maximum occlusion level: Partly 

occluded, Maximum truncation: 30 % 

 

3 

 

Hard 
Minimum bounding box height: 25 Pixel 

Maximum occlusion level: Difficult to see 
Maximum truncation: 50 % 

    To obtained negative data samples, we randomly generate 

rectangular images regions. For each region we checked if it 

overlaps with all Car labels (i.e. all observation angles, all 

truncation values, all occluded values, etc. are considered). 

If it overlaps, the negative data sample is rejected.  

V. RESULTS AND EVALUATION 

The dataset used to train, test, and evaluate the car 

detection pipeline originate from the KITTI Vision 

Benchmark Suite. There are 1,174 images in the dataset and 

half of the images (587) are used to train the linear SVM 

and the other half are used for evaluation, as mentioned in 

Section IV.  

Prior to illustrating the performance of the classifier, 

some terminology related to the classifier performance is 

introduced. True Positive (TP) is the number of positive 

samples that are classified correctly, True Negative (TN) is 

the number of negative samples that are correctly classified, 

False Positive (FP) is the number of negative samples 

misclassified as positive samples, and False Negative (FN) 

is the number of positive samples wrongly classified as 

negative samples [13]. From these performance indicators, 

we construct our evaluation metric, i.e. Precision and 

Recall. These metrics are defined as: 

                                   Precision = TP / (TP+ FP),                                 (3)                                          

                                    Recall = TP / (TP + FN). 

    The parameter Precision conceptually expresses the 

percentage of detections referring to true objects that we are 

looking for (cars). Recall indicates the percentage of the 

total detected cars during evaluation.  

    The third performance metric that we used is Accuracy. It 

is defined as  

                      Accuracy = TP + TN / (TP + FP + FN + TN)                    (4) 

    and it is providing the percentage of correctly classified 

objects in the evaluation dataset. In this case, objects are 

both the objects of interest (cars) and objects that are not of 

interest (e.g. houses). It requires that objects that are not of 

interests (e.g. houses) are also labelled in the evaluation 

dataset.  



    The precision and recall metrics are used to generate the 

Precision-Recall (PR) curves. They are obtained by 

sweeping the distance threshold parameter of the linear 

SVM between -3 to 2 with steps of 0.1. We have performed 

the following three experiments.  

1. In the first experiment, we take 587 positive training 

samples and 1,761 negative training samples (a ratio 

1:3) and generate the PR curve using 500 positive test 

samples.  With this experiment we give insight in the 

Precision Recall trade-off of the car detection pipeline. 

2. In the second experiment, we vary the ratio of positive 

and negative training samples between 1:1 and 1:3. 

This shows the influence of the ratio on the number of 

false positives, and hence on Precision.  

3. In the third experiment, we have used the ratio of 1:3 

but employ different numbers of positive and negative 

training samples. This experiment is performed to 

observe when the performance saturates at an increased 

number of training samples.  

A. Results 

First we show some qualitative results in Fig. 7.  These 

results indicate that the car detection pipeline is working as 

it successfully detects the object of interest (car) in the 

testing images. Especially the detection of the object of 

interest (car) in the shadow in the middle image indicates 

the robustness of the detection. Besides this, the detector can 

also handle multiple detections simultaneously, as is shown 

in by the bottom subfigure.  

   

 

 

 
Fig. 7: Car detection pipeline results. 

    The numerical detection results of our first experiments 

are shown as PR curve in Fig. 8. The details of the 

experiment are provided by Table IV. The PR values are not 

as high as that of state-of-the-art vision-based object 

detection pipelines. However, they are acceptable, when 

considering that only 587 positive training samples are used 

and that application context information is absent. 

TABLE IV.   EXPERIMENT 1 

Sr. No. Positive 

Samples 

Negative 

Samples 

Pos/Neg. 

Ratio  

SVM_587_1761 587 1,761 1:3 

 
Fig. 8: Precision Recall curve. 

    The results of the second experiment are provided in Fig. 

9, where the numerical details are provided in Table V. It 

can be observed that increasing the number of negative 

samples improves the Precision (as it reduces the number of 

false positives). The applied benefit is that one can use a 

higher value for the SVM distance threshold, thereby 

achieving a higher level of the Recall at the same level of 

Precision (one can detect more cars without increasing the 

number of wrong detections). 

TABLE V.     EXPERIMENT 2 

Sr. No. Positive 

Samples 

Negative 

Samples 

Pos/Neg. 

Ratio  

Average 

Accuracy 

(%) 

SVM_587_587 587 587 1:1 58.36 

SVM_587_1761 587 1,761 1:3 65.51 



 

Fig. 9: PR curves for two different pos/neg. ratios. 

    The results of the third experiment are provided by Fig. 

10 and the numerical details in Table VI. It can be observed 

that increasing the number of training samples improves the 

performance. Especially, the average accuracies reported in 

the Table VI and the last row in Table V show that the 

performance is not yet saturated. The improvement of using 

587 positive training samples (last row Table V) over using 

500 positive training samples (last row Table VI), is  1.28 % 

for 87 extra positive training samples. Unfortunately, we 

cannot increase the number of positive training samples 

further, as we also need test samples for our evaluation. 

Nevertheless, in a real application, using more training 

samples is recommended.  After considering the 

experiments in more detail, we found that a number of 

positive data samples in the dataset are redundant, which 

decreases the overall quality of the positive data samples in 

terms of variation. 

 

TABLE VI.  EXPERIMENT 1 

Sr. No. Positive 

Samples 

Negative 

Samples 

Pos/Neg. 

Ratio  

Average 

Accuracy 

(%) 

SVM_100_300 100 300 1:3 57.95 

SVM_200_600 200 600 1:3 60.66 

SVM_300_900 300 900 1:3 63.07 

SVM_400_1200 400 1,200 1:3 63.87 

SVM_500_1500 500 1,500 1:3 64.23 

 

Fig. 10:  PR Curves with different number of training samples. 

    Let us also report on the computational performance of 

the algorithm mapped on the proposed embedded 

computation platform. We present the number of frames that 

the pipeline can process per second, in Table VII. The 

throughput numbers are obtained with our GPU-based 

implementation and an CPU-based implementation. It can 

be observed that for higher resolution (1224×370 pixels), 

the GPU-based implementation executes a factor of 4 faster 

than the CPU-based implementation. The installation details 

of the Firewire1394 driver are provided as an Appendix at 

the end of this paper. 

 

TABLE VII.  FRAMES EXECUTED PER SECOND FOR GPU AND CPU 

Resolution GPU (FPS) CPU (FPS) 

1224×370 4.310 0.998 

816×246 6.436 2.351 

544×164 11.740 5.324 

CONCLUSION 

We have presented an implementation of a vision-based 

car detection pipeline, based on HOG and linear SVM. The 

pipeline is developed for a GPU of an automotive-grade 

embedded SoC, i.e. a Tegra K1. The results show that the 

pipeline reaches accuracies up to 65.51% and executes at 4 

frames per second at a resolution of 1224×370 pixels. This 

yields a 4 times faster execution compared to a single-core 

ARM implementation. The accuracy can be improved by 

using more (non-redundant) training samples and exploiting 

application context information. The context helps in 

rejecting false positives, which in turn allows the pipeline to 

become more sensitive and detect more true positives. The 

presented pipeline can be utilized in future research to 

implement a dense multi-class detector. 
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APPENDIX 

    This section provides installation pipeline details that are 

needed in order to run the car detection pipeline, which 

includes a kernel for Firewire1394 driver support. Step 1 

should be performed in order to check if the running kernel 

on Tegra Tk1 board provides Firewire1394 driver support. 

If the running kernel does not have the Firewire1394 driver 

support, then installation from Step 2 onwards should be 

followed.  

Step 1: Check Firewire 1394 driver support 

Use the following Linux command on Nvidia Tegra board 

to check if the running kernel provides Firewire 1394 driver 

support. 

lsmod | grep –E -i "(1394|firewire)" 

If there is no output, the running kernel does not have 

Firewire 1394 driver support. In that case follow step 2 

onwards. 

Step 2: Install L4T 21.3 

Install Linux for Tegra 21.3 version 3.0 available on Nvidia 

Developer Zone. 

Step 3: Extract L4T 21.3 

The downloaded L4T 21.3 is extracted using the following 

Linux commands. 
tar -xvf Tegra124_Linux_R21.3.0_armhf.tbz2 

cd Linux_for_Tegra/rootfs 
sudo tar xpf ../../Tegra_Linux_SampleRootFilesystem_R21.3.0_armhf.tbz2 

 

Step 4: Apply binaries 

The extracted file is run using the following Linux 

command. 
sudo ./apply_binaries.sh 

 

Step 5: Flash Jetson TK1Board 

Tegra board should be flashed using the following Linux 

command. 
sudo ./flash.sh jetsontk1 mmcblk0p1 

Step 6: Login to Jetson TK1 board and download Grinch 

Kernel 

After flashing the Jetson TK1 board, login to the board and 

download the Grinch kernel. 

Step 7: Check MD5 sums 

MD5 sums are checked in order to verify the MD5 hashes 
md5sum zImage 

a4a4ea10f2fe74fbb6b10eb2a3ad5409 zImage 

md5sum jetsontk1grinch21.3.4modules.tar.bz2 

3f84d425a13930af681cc463ad4cf3e6 
jetsontk1grinch21.3.4modules.tar.bz2 

md5sum jetsontk1grinch21.3.4firmware.tar.bz2 

f80d37ca6ae31d03e86707ce0943eb7f 
jetsontk1grinch21.3.4firmware.tar.bz2 

 

Step 8: Update kernel 

The kernel is updated using the following Linux commands. 
sudo tar -C /lib/modules -vxjf 

jetsontk1grinch21.3.4modules.tar.bz2 

sudo tar -C /lib -vxjf jetsontk1grinch21.3.4firmwaretar.bz2 
sudo cp zImage /boot/zImage 

 

Step 9: Reboot the JetsonTK1 

Reboot the Jetson TK1 board in order to make changes 

effective. 

 

http://elinux.org/Jetson_TK1

