
 Eindhoven University of Technology

MASTER

Performance modeling of data intensive applications using SystemC

Ganeshan, A.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/56749cd4-5ae6-4973-bba7-87b153b844c7

Performance Modeling of
Data Intensive

Applications using
SystemC

Master Thesis

Ashwath Ganeshan

Department of Mathematics and Computer Science

Supervisor:
dr.L.J.A.M.Lou Somers

Eindhoven, October 2015

Abstract

This thesis presents the implementation of a Data Intensive Application using SystemC and
the implementation was evaluated to find its strength and weakness.

The Data Path of a Printer has the responsibility of transforming an input file (PDF or a
post script) into matrices specifying every jet moment whether each nozzle in the print heads
of a printer must emit a drop or not. This in turn leads to hundreds of megabits of inform-
ation, making the data path a suitable candidate as an example system for a data intensive
application. The decision of defining and deploying the sub tasks which are responsible for
generation and processing of pixels is a difficult task. Therefore, a modelling method based on
Y chart methodology was proposed by [5] and a prototype of this method was implemented
in Java where the simulation layer was explicitly written.

SystemC is a set of C++ classes and macros which provides a Discrete Event Simulation
interface. It was developed to be a design environment for the development of hardware
and software. An advantage of SystemC is to model and simulate the systems at a higher
abstraction level. SystemC has an inbuilt kernel which takes the responsibility of trigger-
ing and executing the processes of the system. In addition to that, SystemC has ports and
signals in order to establish communication between different modules in a system. These
properties of SystemC were put to use by implementing a data path case of a printer as an
example system in SystemC by creating a generic library and measurements were taken in
order to benchmark its performance with the same system implemented using C++ and Java.

Though the SystemC simulator performs the entire simulation replacing the simulation layer
in C++ and Java, with respect to the simulation speed, SystemC was measured to be nine
times slower than Java and almost eighteen times slower than C++. The main reason for
the slowdown was the context switching it suffered while running multiple threads parallely.
In addition to that, SystemC also suffers a relatively small degradation (up to 10%) in its
performance due to the communication overhead caused by ports and signals.

Performance Modeling of Data Intensive Applications using SystemC iii

About the Company

Océ, a Canon Group Company is an international leader in digital document management and
printing for professionals. Many Fortune 500 companies and leading commercial printers use
Océ solutions for wide format printing, high speed production printing and document related
business services. Océ employs 4,000 specialists at innovation and technology centers in
Europe, North America and Asia. Through its own Research and Development Océ develops
core technologies and majority of its own product concepts. The company was started by
1877 and was involved in coloring dyes and margarines. It was founded by Lodewijk van der
Grinten and was later developed by Louis van der Grinten by taking first step of introducing
a blueprint for wide format drawings. By 1967, the company entered office printing market
and is having its wings over 100 countries today. In 2009, Océ became a Canon company.

Performance Modeling of Data Intensive Applications using SystemC v

Contents

Contents vii

List of Figures ix

List of Tables xi

Listings xiii

1 Introduction 1

1.1 Model Based Performance Analysis . 1

1.2 Data Path of Printer . 3

1.3 Modeling Data Intensive Applications . 4

1.4 Overview . 6

2 Problem Definition 7

2.1 Research Questions . 7

3 Domain Analysis 9

3.1 Discrete Event Simulation . 9

3.2 SystemC . 10

3.2.1 Module . 11

3.2.2 Port and Signal . 12

3.2.3 Process . 12

3.2.4 Wait Statements in SystemC Threads 13

3.2.5 Simulation in SystemC . 14

3.2.6 Event Notification . 17

3.3 SystemC-AMS . 18

3.3.1 SystemC-AMS Language . 19

3.3.2 Timed Data Flow (TDF) Module . 19

3.3.3 Loop in Timed Data Flow . 20

3.3.4 TDF Declarations . 21

3.3.5 Dynamic TDF . 21

3.4 Java Implementation . 22

3.4.1 Task Dynamics . 23

3.5 Proof of Concept . 25

3.5.1 Scheduling Algorithm . 25

3.6 Selection of Evaluation Criteria . 27

Performance Modeling of Data Intensive Applications using SystemC vii

CONTENTS

3.6.1 Simulation Time . 27
3.6.2 Scalability . 27
3.6.3 Program Complexity . 28
3.6.4 Memory Usage . 28

4 Y Chart Layer Implementation in C++ 29
4.1 Y Chart Layer : Application . 30
4.2 Y Chart Layer : Platform . 31

4.2.1 Computational Resource . 32
4.2.2 Storage Resource . 33

4.3 Y Chart Layer: Mapping . 34
4.3.1 enqueue . 34
4.3.2 dequeue . 35
4.3.3 claim . 35
4.3.4 release . 36

5 Execution Layer Implementation in SystemC 37
5.1 Two Task Model . 37
5.2 Design Decisions . 39

5.2.1 State Manager as SystemC Module . 39
5.2.2 Decision on Wait Statements . 39
5.2.3 Design of Timer Module . 42
5.2.4 Implementation With Ports . 44
5.2.5 Implementation without using Ports and Signals 46
5.2.6 Avoiding Race Condition . 47
5.2.7 Five Task System . 49
5.2.8 Randomizing Storage Memory Access 52

5.3 Alternative Implementation in C++ . 54
5.3.1 Simulation Layer Progression . 54

6 Evaluation and Conclusions 57
6.1 Evaluation . 57

6.1.1 Simulation Speed . 57
6.1.2 Scalability . 59
6.1.3 Ease of Modeling . 60
6.1.4 Memory Usage . 63

6.2 Conclusions . 64
6.2.1 Current Findings . 64
6.2.2 Recommendation for Future Work . 65

Bibliography 67

Appendix 68

A Setting Up the SystemC Environment 68

viii Performance Modeling of Data Intensive Applications using SystemC

List of Figures

1.1 Y Chart Methodology . 2

1.2 Data Path of a Printer . 3

1.3 Task Graph of a Printer Data Path . 4

1.4 Blue Print Model from [5] . 5

3.1 Discrete Event Simulation from [9] . 9

3.2 SystemC Compilation from [8] . 11

3.3 Syntax of a SystemC Module . 11

3.4 Example System With Ports and Signals . 12

3.5 SystemC Simulation Steps . 15

3.6 Communication between Modules . 15

3.7 Initialization Phase . 16

3.8 SystemC-AMS from [4] . 19

3.9 Loop Scenario in SystemC-AMS . 20

3.10 Discrete Event Convereter Ports from [6] . 20

3.11 Loop with Discrete Event Ports from [6] . 21

3.12 Sytax of a TDF Module . 21

3.13 Sytax of a Dynamic TDF Module . 22

3.14 Example System from [5] . 22

3.15 Progress Abstraction . 23

3.16 Task Automaton from [5] . 23

3.17 Output Trace Obtained from Java Implementation 24

3.18 Task A progress Graph . 25

3.19 Parallel Execution of Tasks . 26

3.20 Results in Graphical Representation . 27

4.1 Overview of the Implementation . 29

4.2 Task Interface . 30

4.3 Application Layer . 31

4.4 Resource Interface . 32

4.5 Computational Resource . 33

4.6 Storage Resource . 33

4.7 Platform Layer . 34

4.8 Enqueue Process . 34

4.9 Dequeue Process . 35

4.10 Claim Process . 35

Performance Modeling of Data Intensive Applications using SystemC ix

LIST OF FIGURES

4.11 Release Process . 36

5.1 Two Task Model . 37
5.2 Scheduling of Two Task Model . 38
5.3 State Manager as SystemC Module . 39
5.4 Algorithm of Two Task Model . 41
5.5 Interaction Diagram . 44
5.6 Implementation with Ports . 45
5.7 Five Task System . 49
5.8 Automaton with BlLOCKED state . 50
5.9 Algorithm with BLOCKED state . 51
5.10 Output Trace Without Randomness . 52
5.11 Output Trace With Randomness . 53
5.12 Smulation Layer . 54
5.13 Simulation Layer Progress . 55

6.1 Overall Simulation Speed . 57
6.2 Function Call . 58
6.3 Function Call : Read and Write . 58
6.4 Scalability of the System . 59
6.5 Learning Curve . 60
6.6 Simulation Layer in C++ . 61
6.7 Simulation Layer in SystemC . 61
6.8 Line of Code count by CLOC . 62

A.1 Step 1 . 68
A.2 Step 2 . 69
A.3 Step 3 . 69
A.4 Step 4 . 70
A.5 Step 5 . 70
A.6 Step 6 . 71

x Performance Modeling of Data Intensive Applications using SystemC

List of Tables

3.1 Simulation Performance Results . 26

6.1 Java Implementation . 62
6.2 SystemC Implementation With ports . 63
6.3 SystemC Implementation Without ports . 63
6.4 2 Task Model - Number of Input Objects: 100,000 63
6.5 7 Task Model - Number of Input Objects: 100,000 63

Performance Modeling of Data Intensive Applications using SystemC xi

Listings

3.1 Example of Wait Statement . 13
3.2 Elaboration Phase . 15
3.3 SystemC Description . 17
5.1 NOT READY state . 41
5.2 READY state . 41
5.3 RUNNING State . 42
5.4 Timer Module . 43
5.5 Timer Module With Array of Ports . 45
5.6 Module with Multiple Processes . 46
5.7 Avoiding Race Condition . 49

Performance Modeling of Data Intensive Applications using SystemC xiii

Chapter 1

Introduction

Imagining a day without embedded systems in this present generation is impossible. With its
presence being felt in several applications such as mobile phones, automobile, energy genera-
tion, satellite etc. life can never get more interesting. It is difficult to spot an individual who
doesn’t use a mobile phone or a residence which doesn’t use a washing machine. According to
[2], the worldwide market for embedded systems is 160 billion Euros with an annual growth of
9%. With increasing importance, comes the increasing requirements and expectations from
the embedded products. Some of the important nonfunctional requirements include cost,
speed, power usage, and throughput. In order to meet these requirements, all the embedded
devices heavily depend upon the embedded software. The embedded software controls the
machines in which it runs on and as like any other software it comes with time and memory
constraints. According to a recent study, a Boeing 787 air plane has almost 14 million lines
of code; an F-35 fighter jet has almost 24 million lines of code, a car has almost 100 million
lines of code giving a brief picture of size and complexity the engineers and designers deal
with embedded application development. With performance being an important factor of the
application lifetime in the market, Model Based Performance Analysis plays an important
role in evaluating the performance in the design phase itself to make the product meet its
requirements.

1.1 Model Based Performance Analysis

The software life cycle can be briefly divided into three parts. The first phase is where the
specifications are written based on the requirements. Depending upon these specifications,
the software will be designed and then implemented. After the implementation, the software
will be verified for its functionality and also validated to check whether the system meets all
the pre-defined requirements. This verification and validation phase plays a crucial role, as
the deviation in the behavior from the requirement can be identified and rectified in the early
stage itself. The advantage of correcting the behavior in this early stage is to avoid the cost
upon the failure of the system when it gets released. The Software architecture in general
is a high level description giving the details about the interaction taking place between dif-
ferent subsystems. This description is of two types. One is the static description where the
software modules which are necessary for the architecture are identified and the behavior of
these modules during run time is given under dynamic description.

Performance Modeling of Data Intensive Applications using SystemC 1

CHAPTER 1. INTRODUCTION

This description can be denoted in the Unified Modelling language (UML) , which can be
used to visualize a software model in terms of the different subsystems (such as stakeholder,
the building blocks, connectors etc.) through structure diagrams and the way in which they
communicate using Message Sequence Charts. Since the static design deals only with the sub-
systems involved, it cannot be used to identify the performance of a system. The performance
here refers to metrics such as throughput (which measures the amount of information a system
can process), latency (time taken to obtain a response from a system for a given stimulus),
energy consumption, power consumption etc. which can be analyzed only through the be-
havior of the system (dynamic design). After these descriptions, the designers need to come
up with an optimal design which in turn must satisfy the specification. But achieving this
optimal design is not a easy task. This is because of the fact that systems like automobile,
printers; avionics etc comes with a large number of design alternatives. The designers will
need a methodology where they can narrow down the number of design steps to be taken. The
question that will arise now is what would be those selection criterias that make the design
space exploration easier and efficient. In other words, the criteria for the designers to choose
a specific architecture over the other must be clear in order to find the optimal design. This
is where performance comes into play. The designer can choose an architecture model over
its peers by evaluating and analyzing the performance and this process is called as Model
Based Design Space Exploration.

Figure 1.1: Y Chart Methodology

The figure above represents the Y chart methodology. This methodology was first proposed
by [7]. As it is clear from the figure, the Y chart methodology has four important factors:

Application Layer : As the name indicates, this layer contains the set of applications and
the behavior of these application can be obtained through the control dependency (depend-
ence in execution of one task over the other task) to ensure equal workload across all processes
and data dependency (interaction between the tasks) between the tasks and also the order in
which they need to execute.

2 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 1. INTRODUCTION

Platform Layer : The platform layer furnishes the characteristics of the platform to which
the application will be mapped. These characteristics include the type of operating system
being employed (Priority based, First Come First Served), resources like CPU, GPU, FPGA
over which the tasks can run.

Mapping: This is the phase where the applications are mapped to the platform. After being
mapped to the resources, the tasks in the applications are executed pertaining to the depend-
encies they have with each other.

Analysis: The performance of the mapped application is obtained and then it analyzed for
bottlenecks in terms of speed, memory usage, power consumption, energy consumption etc.
For any architecture, the performance is measured for various set of applications. These ap-
plications are mapped with a set of platform and then the performance will be analyzed. The
designers then get a knowledge about the obtained performance, its bottlenecks, advantages
and disadvantages and they pave the way for a new design which will have a different applic-
ation or a platform or mapping respectively. This process is helpful to make design choices
and can also be used as a big motivation for the selection of a particular choice respectively.

1.2 Data Path of Printer

The Data Path in a printer is a complete route of data from a source like a scanner or input
PDF to the target, which is the print head. It plays a vital role in influencing the output
quality. To explain its working in a nutshell, when a user provides an input for the printer
by selecting the PDF file, the data path transforms this input file into matrices which in turn
specify whether a nozzle present in a printer head must emit a drop or not. From [5], the
schematic representation of a high level view of a data path on a high end copier is as follows:

Figure 1.2: Data Path of a Printer

Considering the example of a PDF document being sent as an input by the user to be printed,
the data path contains the image processing steps that are needed to be performed from the
moment a PDF is being fed as an input to the moment the input reaches the print head.

Performance Modeling of Data Intensive Applications using SystemC 3

CHAPTER 1. INTRODUCTION

The interesting factor here is that all these image processing are done real time. The Scan
job in the above figure scans the image, then processes it and sends it over the network to
their destination. The Print job basically receives an input file (such as PDF) and prints the
necessary pages. The RIP expands for Raster Image processing and normally the print jobs
are processed by the RIP and the Print path. The amount of data involved with this kind of
image processing is huge as the jobs specified above has number of additional settings to take
into consideration such as the type of the paper (A3, A4, etc.), the number of images for Copy
and Print jobs, and the export format like (JPEG, PDF etc.) for Scan jobs respectively.

Figure 1.3: Task Graph of a Printer Data Path

The above figure is an task graph representation of a data path of a printer which was
considered as an example system in this research. The precedent constraints are specified
during the design phase. In the above case, an object of Task B can start only after the
completion of the object of Task A. For example, if ten objects are given as an input to
the system, A0 would start first and B0 can start only after the completion of A0. But,
A1 and B0 can run parallely with each other and the same rule applies to all the remaining
tasks in the system. With respect to any job like Scan, Export or Print, several processing
operations/tasks such as scanner corrections, resampling, contrast enhancement needs to be
adopted. The data handled for the operations are obviously high and hence in order to
cope up with these data intensive behavior, they are sometimes implemented in hardware.
Each task of a data path can be executed on a hardware platform such as CPU, GPU, and
FPGA. The important factor to be noted here is the tradeoffs that need to be taken into
account with respect to speed, power usage, cost, latency depending upon the requirement.
Designing a data path like this is out of scope in this thesis project. But with these data
intensive operations, the data path of a printer can easily be chosen as an example system
for evaluating the performance of a library implemented using a modeling language.

1.3 Modeling Data Intensive Applications

As explained in previous section, modeling a system with large volumes of data is a difficult
task. Therefore, a generic modeling blueprint for system level performance analysis has been
proposed in [5]. The blueprint developed was abstract enough to be implemented in different

4 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 1. INTRODUCTION

modeling languages. The approach proposed was implemented in Java and UPPAAL in [5].
The blueprint was developed with an example system which mimics the behavior of a printer
data path. Modeling the behavior of a data path case comes with several design challenges.
For example, the task depend on a computational resource like CPU, GPU or FPGA and
also a storage resource to progress in time. The speed of these tasks are set by the resources.
There must be a claim and release mechanism, such that when a task is ready to run it claims
and when it is finished, it releases the resource. Similarly, when two tasks run on a same
computational resource platform like a CPU or a GPU, the utilization of the resource by the
task must be shared. In other words, 100% utilization is no longer possible.

Figure 1.4: Blue Print Model from [5]

The above figure represents the modeling blueprint and the relationship between the different
elements. It has two layers: Y chart layer and the Execution model layer.

The Y chart layer was already discussed in the previous section 1.3. The Application model
contains the dependencies between the tasks in the form of a task graph and the platform
contains the information about the resources to which the tasks will be mapped to. The
resource information involves the type of resource (memory or computational resource) and
the characteristics of these resources. But, the most interesting part here is the Execution
Model layer.

The Execution Model Layer involves task and resource dynamics. At any time instant,
the Task dynamics covers information whether a task is ready to run or not and also the
information regarding whether a task is finished running or blocked during the course of the
progress. The performance modeling in an application is carried out through following steps

Performance Modeling of Data Intensive Applications using SystemC 5

CHAPTER 1. INTRODUCTION

• Modeling the Application

• Modeling the Platform

• Modeling the Task Dynamics

• Modeling the Resource execution behavior

• Evaluating the performance of the entire system

1.4 Overview

Chapter 2 describes the research questions and the definition of the problem that will be
addressed and solved in this thesis project. Chapter 3 gives a brief introduction on the soft-
ware systems such as SystemC, SystemC-AMS and covers the evaluation of the performance
criteria. It also describes the prior work in Java by [5] and small preparatory study that was
performed before starting with the design of the system. Chapter 4 explains the methodo-
logy in which Y chart Model was implemented. Chapter 5 explains the implementation of
State Manager in SystemC. Chapter 6 addresses performance of different models (SystemC,
C++ and Java) and the reason behind their performance. Finally,Chapter 7 discusses the
conclusion and some recommendations for the future.

6 Performance Modeling of Data Intensive Applications using SystemC

Chapter 2

Problem Definition

Problem Description

Writing a simulation layer explicitly for a data intensive application is an extensive process.
This thesis aims in solving this problem by using the simulator present in SystemC to simulate
the behavior of the system. The implementation was then evaluated under different metrics
to determine where it stands when being compared with other high level modeling languages
such as Java and C++.

2.1 Research Questions

What did the previous Research focused upon?

This thesis extends the research of [5] on presenting a generic modeling blueprint for data
intensive embedded application. The applicability of the approach has been tested in [5]
through a framework which was simulated, developed and tested with a printer data path
case using the tools UPPAAL and Java. The pros and cons of using Java and UPPAAL
has also been addressed in [5]. Both modeling techniques have their own advantages and
disadvantages. UPPAAL has higher support towards modeling the execution layer and also
in analysis power, but it has problems with performance, scalability and integration. In case
of Java, its fares better with performance, scalability and integration when being compared
with the UPPAAL. But, the problem with Java implementation is that the simulation layer
(which defines the behavior of the simulation) was written explicitly.

Is SystemC an interesting candidate compared to Java and UPPAAL?

SystemC is becoming an emerging language in the field of modeling both hardware and soft-
ware components. It uses an open C++ library for system design and validation. SystemC
has an in built simulator which could be used to perform simulations of data intensive ap-
plications like the data path of a printer case. The dynamics of SystemC and the working of
its simulator is explained in detail in chapter 3.

The simulator in SystemC was used to carry out the entire simulation instead of explicitly
writing the execution and simulation layer like Java or C++. In this research, the Y chartlayer
of [5] was implemented in C++ and the execution layer was implemented in SystemC. This

Performance Modeling of Data Intensive Applications using SystemC 7

CHAPTER 2. PROBLEM DEFINITION

is explained in chapter 4 and chapter 5.

Any modelling language will have its own set of positive and negative aspects. In the same
way, SystemC was evaluated under various criterias to determine its strength and weakness.
This is explained in chapter 6.

What are the Modelling challenges in SystemC?

SystemC is a language developed by Open SystemC Initiative which is an open source envir-
onment. In this research, the modeling challenges were analyzed while designing the system
and expressed through a learning curve in chapter 6 .

How does SystemC perform for a Data Intensive Application like a Printer data path case?

SystemC being a powerful modeling language was expected to perform well in terms of speed
when compared with other High Level Modelling Languages such as C++ or Java.

As a part of this reseach, a library was developed and a data intensive application was simu-
lated using the SystemC simulator and its performance was evaluated under different metrics
in chapter 6.

8 Performance Modeling of Data Intensive Applications using SystemC

Chapter 3

Domain Analysis

In order to address the research questions and solve the problem, an analysis must be car-
ried out to study the properties of the software under consideration. This section covers the
concept of discrete event simulation environment. In addition to that, the SystemC environ-
ment is explained and the dynamics of both SystemC and SystemC AMS are analyzed. As a
last step, a simple system (proof of concept) has been built in both SystemC and SystemC
AMS and the results are studied for its feasibility.

3.1 Discrete Event Simulation

In any Industry, simulation plays a pivotal role for its nature of allowing designers to analyze,
design and test complex systems. The important advantage is that these experiments need
not be physically carried out to know the results of the experimentation thereby saving a lot
of expenditure. In addition to it, simulation can be used to predict the results for certain
design decisions or the actions, the effect of modifications that are made and also it enhances
the proper understanding of a system.

Figure 3.1: Discrete Event Simulation from [9]

The above figure represents the various stages of a simulation study. First step is to formu-
late a problem like what was discussed in the previous section. Then, the objective would be

Performance Modeling of Data Intensive Applications using SystemC 9

CHAPTER 3. DOMAIN ANALYSIS

decided. A model will be developed in order to achieve the objective and then the simulation
is run and tested. Once, the verification and validation of the simulation is performed, the
design goes for production run and then documented for the future reference. The Simulation
can be broadly classified into two types: Continuous Simulation and Discrete Event Simu-
lation (DSE). Continuous Simulation is a process in which the behavior of a system will be
characterized through a differential or differential algebraic equation. Thus, the time would
be modeled as a continuous flow (i.e.) the behavior of the system changes gradually over time.
For example, the position and velocity of an airplane flying in the air where its velocity and
position changes continuously with respect to time. The use of Discrete Event Simulation or
Continuous Simulation depends on the system under test.

The key feature of Discrete Event Simulation is its flexibility in modeling the system with
various levels of complexity and detail, which makes it an interesting candidate in several
industries. As stated in [9], another important advantage with it is the property of time
handling. Discrete Event Simulation was first created during 1960s for analyzing and enhan-
cing the research in industrial and the business process. It is a process where we analyze the
performance of the models under study as a discrete sequence of events in time. There are
different states associated with the system and a state change happens whenever an event
occurs. The simulation is achieved by having a set of events to happen. When an event hap-
pens, the simulation time advances with respect to the event. In popular culture, the clients
arriving in a bank can be considered as the suitable example. Here, the customer-arriving and
customer-departing can be considered as events. In addition to this, the states of this system
can be the number of persons in the queue and the service status provided for the customers.
Thus the overall simulation time depends on the customers inter arrival time and the process
service time provided by the bank. This simulation is basically a stochastic process.

The generic principle of discrete event simulation is as follows: when an event arrives, it gets
added up in an event list/queue where the events are stored with time stamps and the event
with smallest time stamp triggers the first execution and results in state change. Thus, the
simulation time here can be advanced based on these events. In other words, the periods of
inactivity are skipped over by jumping from event time to event time respectively. This is
called as event driven Discrete Event Simulation.

3.2 SystemC

SystemC is a set of C++ classes and macros. It is used to describe a hardware/software model
functionally, thereby implementing it on the final stage. Thus, the very basic question to be
addressed here is the motivation behind using SystemC. The SystemC has a big advantage
of creating an executable specification for the system to be developed. For example, in
the problem considered, an example system of a data intensive printer application must be
modeled. Using SystemC and its libraries Discrete Event Simulation environment can be
created through the specifications [10]. In addition to this, the SystemC also provides a rich
set of data types to model our system pertaining to the specifications. The SystemC design
methodology can be understood in detail through the following figure.

10 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

Figure 3.2: SystemC Compilation from [8]

The main advantage of using SystemC is that it is written in only one language and translation
is not necessary. As explained in the above figure, a designer can write a model using the
C++ language with additional functionalities offered by the SystemC standard. Thus, the
model written is an executable specification and can be compiled and linked with the SystemC
library and the simulation kernel. The three major building blocks of the SystemC are:

• Module.

• Port and Signal.

• Process and Thread.

3.2.1 Module

The first building block of SystemC is the Module. It is mainly used to break a complex
design into different simple parts. The main advantage of using it is to hide the information
and data from other modules. The modules have an inbuilt macro and can be declared as
follows:

Figure 3.3: Syntax of a SystemC Module

Performance Modeling of Data Intensive Applications using SystemC 11

CHAPTER 3. DOMAIN ANALYSIS

3.2.2 Port and Signal

Every module interacts with each other using ports. In other words, each module can have
input and output ports. The communication they establish can be explained through the
following example Both the modules have two ports, an input port and an output port. These

Figure 3.4: Example System With Ports and Signals

ports are normally connected in order to establish communication between the modules. The
connection is established through signals which can be declared in the main function by using
sc signal and it can be used to connect the instantiation of ports from individual modules.
In the example figure 3.4 the InA, InB are the input ports and outA, outB are the output
ports. These ports are defined through following syntax

sc in<T >Port Name

The sc in is the keyword for the input port declaration; T refers a generic data type as the
ports can be of data type like boolean, integer etc. and then the port is given a name. The
same syntax applies for output port as follows:

sc out<T >Port Name

In addition to it, each module has sensitivity to an input port or an event which means that
the processes in the module would be activated whenever an input is received through these
input ports or a notification of an event to which the module is sensitive to. This can be
specified explicitly as following using the sensitive keyword

sensitive <<inA
sensitive <<event

3.2.3 Process

In a SystemC module, there are two types of processes: One is called Method and other is
called Thread . In the case of Method, it is defined with the help of the macro SC METHOD
and the important factor here is, once this method is called during simulation, it can never
be interrupted in between. In other words, there are no infinite loops allowed here and also
the process cannot use wait() statements in-between the execution.

12 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

The Thread execution is opposite to that of the SystemC method. It is defined with the help
of macro SC THREAD and in this case the module has its own thread of execution and can
be interrupted or made to wait using wait() statements and starts again after waiting for a
particular event or a period of time. The main difference between a SystemC thread and a
real time thread is that, the SystemC thread uses the concept of Co-operative Scheduling .
In other words, if there are two threads A and B which can run parallel, then A will run till
it encounters a wait() statement. Once it encounters an wait() statement, the scheduler is
passed over to B and the thread B will run till it encounters the first wait () statement and
this repeats till the simulation is finished.

3.2.4 Wait Statements in SystemC Threads

The wait statements could be expressed in different formats in SystemC with each having a
specific functionality of its own.

wait()

SCMODULE(waitTest)
{
i n t i =0;
void run ()
{
whi le (t rue)
{
ev1 . n o t i f y (1 ,SC NS) ;
ev2 . n o t i f y (4 ,SC NS) ;
wait (ev1 | ev2) ;
}
}
SC CTOR(waitTest)
{
SC THREAD(run) ;
s e n s i t i v e << ev1 ;
s e n s i t i v e << ev2 ;
}
} ;

Listing 3.1: Example of Wait Statement

SystemC threads can be sensitive to one or more events. The wait statement without any
parameter makes the SystemC thread to wait for any of the event in sensitivity list to occur.
In other words, it waits for the earliest event of all the events to which the SystemC thread
is sensitive to.

In the above example, though the thread is sentive to both the events ev1 and ev2. The ev1
advances time for 1 nano seconds (SC NS) and ev2 advances the time for 4 nano seonds. The
important thing to be noted here is that for each step the time for the thread will be advanced
only by 1 nanosecond as the wait statement suspends the thread only for the notification from
ev1 as it is the least one and it happens first.

Performance Modeling of Data Intensive Applications using SystemC 13

CHAPTER 3. DOMAIN ANALYSIS

wait(event)

The above statement makes the thread to wait till the event mentioned as parameter occurs.
If the corresponding event is notified for a time period, then the thread resumes with the
updated time stamp.

wait(event1 |event2)

The SystemC thread waits for any one of the event given as the parameter to occur.

wait(Time Period,Time Unit)

When a thread encounters a wait statement like above, then it will wait till the time period
specified to be activated again.

wait(Time Period,Time Unit,event)

The above statement makes the thread wait for a specific time period or for a particular
event, whichever occurs first.

Data Types

SystemC supports all C++ data types such as int, long, short, double, bool, unsigned int etc.
In addition to this, it also provides SystemC data types for hardware modeling respectively.
One type of the SystemC data type is the sc bit. It is the data type which takes values 0 and
1. This is used when there is no need of Z(hi impedance) or X(unknown) values. There are
number of operators such as bitwise AND, bitwise OR, bitwise XOR, AND assignment, OR
assignment etc. But, when real time hardware is modeled, X and Z would be used and in
that case SystemC provides sc logic. The interesting feature is that sc bit and sc logic can
be assigned to each other. Another interesting data type offered by SystemC is fixed and
arbitrary precision which allows the designer to fix a precision (like 16 bit or 32 bit) if there
is a prior knowledge about the values a parameter would take. The sc int and sc unit can be
used to model data up to 64 bits.

3.2.5 Simulation in SystemC

The below figure 3.5 represents the simulation process of a SystemC scheduler. As the first
step, the process/threads will be initialized. Then, the process(i.e) the SystemC methods will
be executed fully or the threads will be executed till its first synchronization point. As the next
step, the evaluation phase starts. In this phase, the events which are notified immediately
will run the processes in the same phase. As it is clear from the figure, the process will
be in this phase till there is no more process to run. Then, the values of the channels of
the previous evaluation phase will be updated. This continues till there is no more event
notification signaling the termination of the simulation. Then it moves to next simulation
which has pending events and starts back from step2 again. Each phase of SystemC scheduler
is illustrated in detail as follows

14 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

Figure 3.5: SystemC Simulation Steps

Elaboration Phase

This is the first phase in SystemC simulation. The different modules which are associated with
the design will be instantiated here. It will be elaborated with all the parameters it needs to
be constructed with. As discussed in previous section, several modules will be interacting with
each other and the signals which connect the ports of these modules will also be elaborated
here and the connection would be established. For example, let us consider two modules M1,
M2 and the signal SIG which connects the output of module M1 to input of module M2 in
order to establish the communication between the two.

Figure 3.6: Communication between Modules

The Elaboration for the above example model will be written in SystemC as follows:

sc main ()
{
Module M1 (. . .) ; \\M1 i s the ob j e c t o f Module 1
Module M2 (. . .) ; \\M2 i s the ob j e c t o f Module 2

s c s i g n a l<T> SIG ;

M1. out (SIG) \\ out i s the output port o f Module M1
M1. in (SIG) \\ in i s the input port o f Module M2
.
}

Listing 3.2: Elaboration Phase

Performance Modeling of Data Intensive Applications using SystemC 15

CHAPTER 3. DOMAIN ANALYSIS

As it is clear from the above fragment, the modules are instantiated , then the signal is defined
and then the communication is established between the modules using the signal SIG.

Initialization Phase

The next phase in the simulation is the initialization phase. The start of the simulation is
initialized here with the sc start() as we can see from the below figure. Practically, the
simulation will never start unless this keyword is specified explicitly.

Figure 3.7: Initialization Phase

Evaluation and Update Phase

Once the simulation starts, the progress of each and every process heavily depends on the
evaluation and the updating phase. From [5], the simulation in SystemC can be summed up
as following

1. The simulation starts immediately after the initialization phase with a set of runnable
process.

2. All the processes (both SC THREAD or SC METHOD) are runnable at the start of
simulation except in the case if a process has a dont initialize() function call.

3. Each runnable process is executed in the evaluation Phase in any order till it encounters
a wait() statement(if it is a SC THREAD) or finishes its execution completely(if it is a
SC METHOD).

4. If there are no more runnable process, then the update Phase comes in to action up-
dating all the SystemC variables and also executing the event notifications, thereby
advancing the time if needed. After update phase, all the process which are sensitive
to the notified event will be added to runnable process for evaluation and the process
would be repeated again.

16 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

5. The delta cycle in SystemC is the transition from the evaluation phase to the update
phase and back to evaluation phase respectively.

6. In SystemC, we have three types of event notifications. They are Timed, Untimed, Zero
Time.

3.2.6 Event Notification

Timed

event.notify(2, SC NS) : Here, an event is notified and will advance the time by 2 nano-
seconds (the time could also be milliseconds, microseconds, picoseconds). Any process which
is sensitive to this event will be updated with an advance in time of 2 nanoseconds. If this
statement is encountered during the evaluation phase, then the event will be notified during
update phase and it will eventually advance the time.

Immediate

event.notify(): This kind of notification is completely different from the above notification.
If this statement is encountered in the evaluation phase, then the event will be notified imme-
diately there by adding all the processes which are sensitive to the event to the set of runnable
process.

Zero Time

event.notify(SC ZERO TIME): If an event is notified with a SC ZERO TIME as para-
meter, then any process which is waiting for this event will be triggered after one delta cycle
(i.e.) after an update phase. But, the time will not be advanced though.

The SystemC simulation engines behavior can be understood by the following example

SCMODULE(TestSystem)
{
s c ou t<bool> outport ;

void proce s s1 ()
{
i n t j = 5 ;
ev1 . n o t i f y () ;
wait (ev2) ;
i n t k = j + 2 ;
}

void proce s s2 ()
{
outport . wr i t e (t rue) ;
ev2 . n o t i f y (3 , SC NS) ;
cout << ”Process 2” << endl ;
}

void proce s s3 ()

Performance Modeling of Data Intensive Applications using SystemC 17

CHAPTER 3. DOMAIN ANALYSIS

{
wait (ev1 | ev2) ;
i n t l = 0 ;
}

SC CTOR(TestSystem)
{
SC THREAD(proce s s1) ;
SC THREAD(proce s s2) ;
SC THREAD(proce s s3) ;
s e n s i t i v e << ev1 ;
s e n s i t i v e << ev2 ;
}
} ;

Listing 3.3: SystemC Description

The example above consists of 3 processes which are SystemC threads and they can start in
any order. Considering the scenario Process 1 starts first, followed by process 2 and then
process 3, the following behavior will be exhibited by the above module:

• The evaluation process will start with process1(). The variable j will be initialized
to the value. The event gets notified for immediate notification, hence the process (in
this case, process 3()) which is sensitive to the event gets added to the set of runnable
Process. Now Process 1 will be terminated as it encounters the wait statement thereby
giving the simulator for the other processes which are ready to run.

• Next Process 2() will start, the output port will be written a value of true. But, the
important point to be noted here is unlike the variable j, the outport will be updated
with a value of true only in update phase (i.e.) when there is no more runnable
process. The event ev2 is said to advance time for 2 nanoseconds, which will also be
done in the update phase. This process now gets suspended as it encounters the wait
statement.

• Process 3() starts. The wait (ev1 |ev2) means that the process waits for which ever event
happens first. As ev1 is already notified immediately by process 1(), it will happen first
than ev2, hence process3() would run till it encounters an wait statement

• As there are no more processes which are ready to run, the update phase starts thereby
the value of outport would be updated and notifying the event. Now, the runnable pro-
cesses are checked and the evaluation phase starts thereby repeating the above process
till there are no more processes to run.

3.3 SystemC-AMS

SystemC AMS stands for Analog and Mixed Signal Design. It is the extension of the existing
SystemC language. It was downloaded as SystemC AMS 2.0 beta version which was released
by Fraunhofer-Gesellschaft [3]. This is the latest version being released and it was used to
build a proof of concept which is discussed in the next section. As the name suggests, the

18 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

main objective of this is to develop analog and mixed signal systems by extending the Sys-
temC language. In other words, the SystemC type of methodology can be used to develop,
refine and verify the mixed and analog systems respectively [1].

The figure 3.8 represents the extensibility offered by the SystemC AMS. By using SystemC
kernel, it allows three different modeling formalisms: Timed Data Flow (TDF), Linear Signal
Flow (LSF) and Electrical Linear networks (ELN)[4]. Out of these three formalisms, only the
TDF model of computation was studied as it was relevant to the topic of discussion. Hence,
the language of SystemC AMS and the TDF formalism is discussed briefly in the following
sections:

Figure 3.8: SystemC-AMS from [4]

3.3.1 SystemC-AMS Language

The SystemC- AMS language is very much similar to that of SystemC. Only the keywords used
are different. For example, the modules are defined in the SystemC AMS with SCA MODULE()
[9]. The important thing to be noted here is that, the modeling formalism being used must
be explicitly specified. For example, in our case the TDF module can be defined by using
the macro SCA TDF MODULE(). Like module definitions, the ports definitions are also
similar to that of SystemC, where sca in<T> and sca out<T> was used for input and
output ports respectively. The modules of AMS could be wrapped inside a SystemC module.
The signal in SystemC-AMS was created using the syntax sca signal<T> which is used to
connect two SystemC AMS ports and a normal SystemC signal could also be used if discrete
event converter ports are used in a module. Thus, the compilation of an AMS model is similar
to that of the SystemC as discussed before except for the fact that, we have a SystemC AMS
library being included to invoke the functionalities.

3.3.2 Timed Data Flow (TDF) Module

The execution of the module is similar to that of the SystemC module [9], where the module
reads the input ports, processes the calculations and writes back the value to the output
port. In this case, the module is said to be a continuous TDF module and the properties of
a continuous TDF module can be summarized as follows:

• Each module execution is tagged with an absolute time point by the Timed Data Flow.

Performance Modeling of Data Intensive Applications using SystemC 19

CHAPTER 3. DOMAIN ANALYSIS

• Hence, the time step/the time difference between the two module executions are always
a constant.

• The time distance/ time step must be specified explicitly in a Timed Data Flow module.

• It also enables to synchronize with the time driven simulation like SystemC MoC and
embedding of time dependent functions like continuous transfer function.

3.3.3 Loop in Timed Data Flow

Figure 3.9: Loop Scenario in SystemC-AMS

As shown in figure, loops in TDF must be handled carefully. If not, then it would result
in cyclic dependency. This scenario can be averted by introducing a delay in the firing of
the next sample. Thus, a module without a delay would not be schedulable. But, it is also
possible to connect a TDF model with a discrete event domain using the TDF converter ports
as follows:

Figure 3.10: Discrete Event Convereter Ports from [6]

In the above case, the module D has a converter input port which reads a discrete event signal
and the module A has a TDF converter port which outputs a discrete event signal. Here, the
discrete event converter ports are given as dashed arrows. [6] When using a discrete event
signal interaction, special care must be taken. In other words, SystemC signals must be used
in order to make the modules communicate effectively. A TDF could become a part of closed
loop having a path through discrete event domain as follows:

20 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

Figure 3.11: Loop with Discrete Event Ports from [6]

Here in the above case TDF module contains no loop and hence no delay is needed for
scheduling. [6] In other words, the module A reads a sample from the discrete event domain
at first delta cycle associated with a sample using a TDF converter port and the module C
writes a sample to the discrete event domain in the same delta cycle.

3.3.4 TDF Declarations

In order to execute a TDF module, we need the following attributes to be explicitly specified:

Figure 3.12: Sytax of a TDF Module

3.3.5 Dynamic TDF

Till SystemC AMS 1.0 version, only continuous TDF was used. The computations would be
executed in discrete time steps considering the input samples as the continuous time signal.
In other words, the continuous TDF executes for every clock tick. Contrary to that, the
dynamic TDF doesnt execute at every clock tick. Rather, it would not activate or calculate
any values until it is been requested by other module. This dynamic feature of TDF can be

Performance Modeling of Data Intensive Applications using SystemC 21

CHAPTER 3. DOMAIN ANALYSIS

used for Discrete Event Simulation. There is a separate function called change attributes()
which can be used to change the value of the time step depending upon the requirement and
we need to use request next activation(). Thus, the declaration of Dynamic TDF in a
module can be written as follows:

Figure 3.13: Sytax of a Dynamic TDF Module

3.4 Java Implementation

As discussed in the problem description section, a generic example mimicing the data path of a
printer was already implemented in the Java programming language. This section of the report
aims at briefly describing the principle behind the implementation and also the simulation
results respectively. The example system [5] which was considered for the implementation is
as follows:

Figure 3.14: Example System from [5]

The application consists of seven tasks. The tasks are mapped to the resources like CPU,
GPU, FPGA, and Memory. The tasks A and G are mapped to the CPU, task B in GPU
and the rest of the tasks in FPGA. The arrows between the tasks describe the precedence
constraints. The numbers next to the task names are the loads associated with the tasks
which are imposed on the memory and the resources respectively. If two tasks share a same
resource, then they are given 50% utilization by the resource till one of the tasks completes.

22 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

For example, the progress abstraction of three objects sharing a same resource can be given
as follows

Figure 3.15: Progress Abstraction

Here, object 1 arrives first and it runs with the full speed till object 3 arrives, then both object
1 and object 3 can be given 50% utilization. This scheduling algorithm represnts the task
interactions on very high level.This kind of task interaction was also achieved using SystemC
and the steps in which it was achieved are explained in chapter 5.

3.4.1 Task Dynamics

Figure 3.16: Task Automaton from [5]

The above automaton was developed in UPPAAL as a part of [5] to describe the different
states of the task and the actions it takes to move from one state to another. The task has

Performance Modeling of Data Intensive Applications using SystemC 23

CHAPTER 3. DOMAIN ANALYSIS

five states and it moves from one state to another if it satisfoes the guard condition. The five
states are defined as follows:

NOT READY: This is the state where not all the inputs are available and hence it is not
functionally enabled.
READY: This process is enabled on the functional level, but it doesnt have any progress
because of the lack of available resources.
BLOCKED: The task has a non zero fraction of primary resource, but it cannot claim its
storage resources.
RUNNING: As the name suggests, the tasks has available storage resources and it makes
progress.
PREEMPTED: Thus, in this state a task which had its primary resource has been stopped
from making progress due to arrival of a higher priority task. Though it cannot make progress
for the moment, it holds on to its resources.

The transition happens from one state of the above to other through enqueue(), dequeue(),
claim() and release(). [5]The enqueue and dequeue pertain to the primary resources of the
task and it adds or removes the tasks to the list of the tasks that need to use the primary
resource. The claim and release are normally used for the storage resources. Thus, all the
blocked tasks are unblocked once the resources become available to it. Then it moves from
the RUNNING to READY state respectively.

Figure 3.17: Output Trace Obtained from Java Implementation

The above figure is the trace obtained for the system discussed above having 3 objects of
input respectively. Each block here represnts the object of a respective task. The scheduling
of two tasks sharing a same resource can be visualized here. Consider Task A (Green) and
Task G (Red). When the Task G arrives, Task A and Task G is given 50% utilization each
and then once the Task G finishes, the Task A is given full CPU again.

24 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

3.5 Proof of Concept

As a part of preparation, a scheduling algorithm was implemented in SystemC, SystemC AMS
and java in order to evaluate the performance of each modeling technique. The algorithm was
also implemented in C++ coding which uses the SystemC clock for the scheduling respectively.
As a whole, five implementations were done, which are as follows:

1. SystemC Implementation using Ports and Signals.

2. SystemC AMS Implementation using Ports and Signals.

3. SystemC Implementation without using Ports and Signals.

4. SystemC AMS Implementation without using Ports and Signals.

5. Java Implementation.

3.5.1 Scheduling Algorithm

The main aim of deciding on this scheduling algorithm is to mimic the behavior of the imple-
mentation done above. It works in the principle that if only one task is present at any time
instant, then it is served fully by the resource (CPU in this case) and if there are two tasks,
then both the tasks are given half utilization (or) 50% utilization respectively. For example,
if Task A arrives at time 0ns and there are no more Tasks competing for the resource, then
it is served fully by the CPU.

Figure 3.18: Task A progress Graph

In the above case, TaskA has 10,000 cycles and CPU has a processing of 50 cycles/Time
period. Thus, as there are no tasks, the Task A is expected to finish by 200ns. But, If a Task
B arrives at 20ns, with a capacity of 5000 cycles, then CPU provides 50% utilization for both
the tasks till one of the task completes (Task B in this case) and gives back 100% utilization
again to the task which needs to be finished with some remaining cycles. It is illustrated in
the below figure.

The Blue represent the full utilization of the CPU by Task A and the red represents the 50%
utilization of both Task A and Task B till the end of Task B. This behavior was adopted in all
the implementations and the principle behind each implementation is given in the following
sections.

Performance Modeling of Data Intensive Applications using SystemC 25

CHAPTER 3. DOMAIN ANALYSIS

Figure 3.19: Parallel Execution of Tasks

Table 3.1: Simulation Performance Results

S.No Implemntation Execution Time

1 SystemC with Ports and Signals 1.357

2 SystemC AMS with Ports and Signals 27.12

3 SystemC without Ports 0.405

4 SystemC AMS without Ports 11.60

5 Java 0.219

The Simulation was performed for 100,000 simulation runs. In other words, the scheduling
algorithm was repeated for 100,000 times and the above computation time values were recor-
ded. The Implementation of SystemC, SystemC AMS with and without signals was measured
in Microsoft Visual Studio 13.0 and the Java implementation was measured in the Java IDE
Eclipse. From the table, it is clear that the SystemC implementation with the ports and also
the SystemC implementation without ports fairs better than Java implementation. Hence,
these two implementations were considered for the modeling of the example system which is
already implemented in Java. The SystemC AMS is said to be the slowest of the lot and
hence it is not considered for modeling the example system.

The important thing to me noted here is that the implementation in SystemC was done with
SystemC methods instead of SystemC threads and also the ports played an important role
in communicating the completion of tasks. But, the implementation of the bigger system
(i.e. the example system explained in the problem statement) was implemented in SystemC
threads. The design of the system is fully furnished in the chapters 4 and 5.

26 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 3. DOMAIN ANALYSIS

Figure 3.20: Results in Graphical Representation

3.6 Selection of Evaluation Criteria

For any implementation, evaluation plays a very important role. It helps in assessing the im-
plementation and finding out its strong and weak points. In this research, the implementation
performed in SystemC and C++ was evaluated across four different criterias. One is to assess
the speed of the simulation which is the important objective of this research. In addition to
it, the effect of increasing the size of the system was also analyzed to characterize the change
in simulation speed. The challenges faced during the implementation of the system using
SystemC was also analyzed as a part of this research.

3.6.1 Simulation Time

The simulation time can correspond to two things: One is the time which is taken to run
a complete simulation of the model, where the time basically refers to the time recorded by
the clock of the system (in this case the PC) in which the model is run. The other kind of
simulation time refers to the time taken by the clock of modeling language. In this evaluation,
the execution time (i.e.) the time for the complete simulation of the model is only measured
and it is measure using the system clock of Intel R©Core TM i5-4570 CPU 3.20 GHz. In this
project, the simulation time was recorded as follows: the model would be implemented in
SystemC language for different inputs and different systems. Then, the model would be made
to run till it finishes its simulation and the total time taken to finish would be measured and
evaluated.

3.6.2 Scalability

The scalability is the ability of the model to perform well or carry on with its functionalities
when the size of the system increases. The data path example system has a total of seven
tasks. In addition to it, two more systems were developed. One was a system with two tasks
and another was a system with five tasks. The performance of each system was tested in order
to analyze the speed of the implementation as the number of tasks in the system increases.

Performance Modeling of Data Intensive Applications using SystemC 27

CHAPTER 3. DOMAIN ANALYSIS

3.6.3 Program Complexity

The documentation with respect to SystemC for modeling is relatively less making it a challen-
ging process to develop a generic library for simulation. In this project, the ease of modeling
would be discused in order to throw light on the problems that were encountered while imple-
menting with SystemC. Also, the code size of the execution layer implemented using SystemC
would be compared with the simulation layer written explicitly with Java in order to obtain
a picture of the gap that exists between the two above mentioned implementations.

3.6.4 Memory Usage

Most of the programms would get loaded on the memory and while they are running, ad-
ditional memory gets allocated to store program level data. As SystemC is a set of C++
macros and a part of the design was also built using C++, the allocation and deallocation
of objects play a crucial role. For increased loads, the increase in memory usage would be
studied in order to understand the behaviour of the system and also its stability.

28 Performance Modeling of Data Intensive Applications using SystemC

Chapter 4

Y Chart Layer Implementation in
C++

The system as a whole is divided into two parts : Y chart layer and the execution layer. The
Y chart layer is responsible for determining the behaviour of the tasks and resources and the
mapping between them. The execution layer creates the task automaton and simulation will
be carried out by performing the transitions and actions of each individual task through a
state manager. In [5], the simulation layer was written explicitly in Java to perform these
transitions and actions.

This approach of writing the simulation layer was avoided in this reasearch by using SystemC
scheduler having the State Manager as the SystemC module. The reason for choosing the
State Manager is explained in the section 5.2. The design process also involved the use of
SystemC ports in order to study the effect of communication overhead. The following figure
provides the overview of the implementation.

Figure 4.1: Overview of the Implementation

To sum up, the following implementations were made for each system that was designed as a
part of this research

1. SystemC Implementation Using Ports

2. SystemC Implementation Without Ports

Performance Modeling of Data Intensive Applications using SystemC 29

CHAPTER 4. Y CHART LAYER IMPLEMENTATION IN C++

3. A Pure C++ Implementation

This chapter explains the design procedure of Y chart. As described in chapter 1, the Y chart
layer has two layers: an Application layer and the Platform layer. This section covers the
design procedure undertook for its implementation in C++.

4.1 Y Chart Layer : Application

The Application layer consists of the tasks and their properties. These properties include
load, name, speed of the tasks, the storage it needs, the amount of resource it needs etc. An
interface Y Chart Entity was created and the operations were made to be inherited by both
the application (task) and the platform (resource).

Figure 4.2: Task Interface

The operations for a task could be observed from the figure 4.2. An important thing to be
noted here is that the above Task class was created as an Interface. The implementation was
taken care by defining two more classes: AbstractTask and the ObjectAwareTask.

The AbstractTask is the class which basically gets constructed with the name of the task and
the computation resource (such as CPU, GPU or FPGA) to which it is going to be mapped
with. In addition to that, the methods to enqueue a task over a computational resource and
dequeue the task after the completion is defined here. As computational resources decide the
speed in which a task would run during the simulation, the speed of a task would be set in
this class through the setSpeed() method and the speed of any task during run time could
be obtained from the getSpeed() method defined in this class. In a nutshell, the interaction
between the tasks and the computational resources would be defined here.

Every task in the system directly inherits from ObjectAwareTask. It gets constructed with
a task name, the storage resources a task uses and the priority of each task. There are two

30 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 4. Y CHART LAYER IMPLEMENTATION IN C++

storage resources used in this system. Another important thing to be noted here is that the
ObjectAwareTask class inherits from the AbstractTask class. As the storage resources also
play a pivotal role in the progress of a task over the course of time, the methods for claiming
a resource and releasing it back was defined here. Every task gets an object type as its input
which could be HIGH, LOW or NORMAL depending upon the load. Thus, the methods to
add the data to a task (add()), removing data from the task (remove()) and also the current
data(cur()) which is being used as input could be obtained from the ObjectAwareTask class.
Thus, the complete class structure of the Application layer (Task) could be summed up with
the following class diagram:

Figure 4.3: Application Layer

Each task in an application is created by inheriting the ObjectAwareTask class and it would
be created with all important parameters. The load of each task and the amount of storage
resource it needs to claim would be defined within respective task classes.

4.2 Y Chart Layer : Platform

As described in chapter 1, the platform layer is the layer which furnishes the information of
the resource to which the application is going to mapped. In this case, two resources will be
needed by the application to progress. They are the computational resources like CPU, GPU,
FPGA etc. and the storage resource such as memory respectively.

The class diagram 4.4 represents the interface created for the platform layer. There is a parent
resource interface which will be inherited by the interface for the computational resource and

Performance Modeling of Data Intensive Applications using SystemC 31

CHAPTER 4. Y CHART LAYER IMPLEMENTATION IN C++

the storage resource. The tasks will enqueue on a computation resource when it is ready to
run and it would dequeue from a resource when it has finished running. Thus, the speed of
the task is determined by how many tasks enqueue upon a specific resource. If only one task
gets mapped to a resource, then it gets 100% utilization (i.e.) it runs in full speed. But, if
there are two tasks, then the speed for be equally divided for both the tasks there by giving
each task only 50% utilization (i.e.) half the speed, until any one of the task completes its
execution thereby giving the full utilization for the other task which is still running

Figure 4.4: Resource Interface

4.2.1 Computational Resource

The AbstractComputationalResource class implements all the methods of computational
resource interface. Every task will call the methods enqueue, dequeue methods of this class
when it gets ready to run and when it has finished running. The communication between
the task and resource is explained in the next section 4.3. The SimpleTDMAResource is
responsible for setting the speed of the task when it is ready to run and resetting the speed
when it has finished running with the help of reschedule method. An important thing to
be noted here is that all computational resources in this model will be initialized with the
object of SimpleTDMAResource by passing the name of the resource, whether usePriorities
is enabled or not and the unitProcessing time of each resource respectively. The usePriorities
would be enabled only if a resource is shared by multiple tasks and the unitProcessing is the
amount of load a resource can serve for a time unit.

32 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 4. Y CHART LAYER IMPLEMENTATION IN C++

Figure 4.5: Computational Resource

4.2.2 Storage Resource

The FirstFitStorage implements the method of the IdentifiableStorageResource interface
where a task would be ready to run only if it can claim the storage resource. In other words,
the storage resource needs to have enough capacity to be claimed by the task; else the task
would be blocked. After the above condition is checked, the canClaim acts as a flag to let
the resource claimed by the task. The class diagram of storage class is shown below:

Figure 4.6: Storage Resource

Performance Modeling of Data Intensive Applications using SystemC 33

CHAPTER 4. Y CHART LAYER IMPLEMENTATION IN C++

The entire platform layer could be summed as following

Figure 4.7: Platform Layer

4.3 Y Chart Layer: Mapping

This is the important stage in the Y chart methodology. It can be observed from the above
class diagrams that the task gets mapped to the resource through four methods enqueue(Task),
dequeue(Task), claim(Task, double).This section throws light on the sequence in which these
methods are called and their outcome.

4.3.1 enqueue

Figure 4.8: Enqueue Process

34 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 4. Y CHART LAYER IMPLEMENTATION IN C++

As explained in section [3], there are totally four states through which the task progress over
time (NOT READY, READY, RUNNING and BLOCKED). The enqueue method would be
called in the NOT READY state when the task gets enabled and becomes ready to run. Thus,
the task enters the queue and the speed is set for the task.

4.3.2 dequeue

Figure 4.9: Dequeue Process

The dequeue method is called when the task has finished its execution.In case of dequeue,
there is a need of reschedule method. For example, in a scenario where there are two tasks
running on same computational resource platform. In that case, when one of the task fnishes
the execution the speed of other task must be rest to full potential again. In this example,
Abstract Task 1 and Abstract Task 2 share the same resource. Therefore, as Abstract Task
1 completes its execution, the dequeue method gets called setting its speed to zero and also
setting back speed for Abstract Task 2 which can run with full speed again.

4.3.3 claim

Figure 4.10: Claim Process

Performance Modeling of Data Intensive Applications using SystemC 35

CHAPTER 4. Y CHART LAYER IMPLEMENTATION IN C++

Every task when it moves from the state of NOT READY to READY, it would be checked
if it can claim a storage resource. Only when it can claim, it can proceed for the further
course of action else it will be BLOCKED and it then needs to wait till it can claim a storage
resource. In other words, it needs to wait till the capacity of storage resource if sufficient
enough to accommodate it.

4.3.4 release

Figure 4.11: Release Process

The release method is called once the task finishes its execution. Normally when the re-
leaseStorage method gets called, it removes the storage resource from the map which keeps
track of the resource by using its corresponding name as the key. Then the data would be
removed and added to the next task that must start. For example, in the example system
Task B can start only after Task A has finished its execution. Thus, when the releaseStorage
method of Task A gets called, it removes the data from itself and adds the same data(High,
Low or Normal) to Task B and it carries on till the last task in execution (Task G in the
example case) is reached.

36 Performance Modeling of Data Intensive Applications using SystemC

Chapter 5

Execution Layer Implementation in
SystemC

The next step in the implementation is the design of the execution layer in SystemC. For
every task, a State Manager will be created for its progress from one state to another and
this State Manager was designed as SystemC module. The example system as a whole had
seven tasks, two storage resources and six computational resources. As a first step, a library
was created. Then, a two task model was designed and implemented. Then, a five task model
was designed and as the final step the example system was implemented using the library.

5.1 Two Task Model

Figure 5.1: Two Task Model

The idea of designing a two task model was to have two different tasks sharing a same
computational resource. Though it was chosen to be CPU in this example, it could also be
a GPU or a FPGA. The idea behind is that Task A starts the execution at first and after
sometime the Task B also starts executing. At this point, both tasks A and B will be running

Performance Modeling of Data Intensive Applications using SystemC 37

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

at same time sharing the same resource (CPU in this case). In such a case, the speed of the
task would be set to 50% in this case (as only two tasks are sharing the same resource). If
any one of the above two tasks finishes, the other task can start running at a full speed till
it needs to share the resource again. The use of Delay task is to separate the start times of
Task A and B. The Dummy resource was created for this delay task. The expected behavior
could be visualized as follows:

Figure 5.2: Scheduling of Two Task Model

The Task A and Delay task will start at time 0. After the Delay task finishes, the data will be
sent to Task B to starts its execution. Two tasks (A and B) will run together with half speed
and once any of the task finishes its execution, the other task will resume to its normal speed
and this process could be repeated for number of times. The above system was implemented
with Task A having a load of 200 (i.e.) it will take 200 time units for the task to finish as the
processing time of CPU is 1 unit. Task B was chosen to have a load of 100 and the load of
Delay task was chosen to be 20. The State Manager of a task was created as SystemC and
since the usage of storage resources was excluded, the task only has three states which are
namely : NOT READY, READY and RUNNING.

1. Every task will start in a NOT READY state. If the task possess a data, then it is said
to be enabled.

2. If the task gets enabled, then it gets enqueued to its computational resource (CPUT,GPU
or FPGA) and moves to RUNNING state.

3. In the RUNNING state, the task would be checked if it can claim a storage resource.
This method would not be active in the above case as it does not use any storage
resource. Hence it will move to the RUNNING state.

4. In the RUNNING state, the task would be executed and once finishing its execution,
it would release all the storage resources, would be dequeued from the computational
resource and moves to NOT READY state till it gets another data to run.

38 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

5.2 Design Decisions

5.2.1 State Manager as SystemC Module

A State Manager is created for every task. The transition of the tasks from one state to
another comes under the responsibility of the state manager. This was the main motivation
of implementing the State Manger as the SystemC module. It was made to interact with the
SystemC engine and used SystemC scheduler to process all the tasks which were created as
SystemC threads respectively.

Figure 5.3: State Manager as SystemC Module

The class diagram 5.3 illustrates the attributes and the methods that were inherited. Only
the methods/attributes used in the implementation were specified above as SystemC macro
is huge and covering all the functionalities is out of scope. The method hasWork() checks
whether a specific task has the object data to run in the NOT READY state. The canRun()
method checks whether the task has enough speed to run and canClaim() method checks
whether a task can claim a storage resource or not. A task must satisfy both these methods
in order to proceed to the RUNNING state. The perform() method performs all the trans-
itions of a task from one state to another after running all the above methods.

5.2.2 Decision on Wait Statements

The condition for four states of a task (NOT READY, READY, RUNNING and BLOCKED)
was implemented using the case statement. Though BLOCKED state would not be en-
countered in this case of Two Task model (due to absence of storage resource), it would be

Performance Modeling of Data Intensive Applications using SystemC 39

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

encountered for later implementations. The important challenge was to use the suitable type
of wait () statement within the SystemC thread. Every SystemC thread must be declared
as a loop; else it will run for only a single time and terminate leading to undesired behavior.
Hence two important factors play a role here: where the wait statements must be placed and
which type of wait statements must be used.

Placing of Wait Systems

• Every task starts with NOT READY state and it can move to the READY state only
if it satisfies the condition of hasWork(). But, if it doesn’t satisfy the condition, then
the thread would never terminate causing a deadlock (it will be keep on looping in
the NOT READY state itself). This was avoided by placing a wait statement for
the scenario where the hasWork() condition was not satisfied, thereby suspending the
current task(thread) and starting the remaining tasks(threads) that are ready to run.

• As there is no storage resource used in this example, the canClaim() method would
not be checked and hence if a task satisfies the NOT READY state, it would go to
RUNNING state from the READY state without any interruption.

• The RUNNING state is most interesting than all the other states as it defines the actual
behavior for the simulation. Considering a scenario from the above example system
where two tasks (Task A and Delay Task) starting at the same time. Considering
Task A starting first, it would satisfy the hasWork() condition and gets enqueued to
its corresponding computational resource (CPU in this case) where the speed of the
task would be set and then moves to READY state. From READY state, it moves
to RUNNING state where the required time for its completion would be calculated by
dividing the load of the task to the speed of the task. At this point, the cooperative
scheduling must happen, thereby giving the scheduler to the Delay task as it is also ready
to run. Hence, a wait statement must be placed here thereby making the Delay task to
move from the NOT READY state to READY, then to RUNNING where the remaining
time for the delay task would also be calculated. After waiting for a particular amount
of time, the new load would be calculated to check whether the task had finished running
or not (in such a case the new load will be zero). The task goes to NOT READY once
getting finished, thereby waiting for the data to start running again The State Manager
cold be represented as follows:

Choosing the Wait Statement Type

Though the placing of the wait statement were straight forward to decide, the type of
wait statement to be used plays a crucial role in proper behaviour of the system. As dis-
cussed in chapter 3, there are four ways of using a wait statement. Considering the case
of NOT READY state, the task/thread would encounter this wait statement when ever it
doesnt have any data. There are only two cases in which this would be a case: when the
task is not yet ready to start and the other scenario would be when the task has done with
its execution. In both these scenarios, one wouldn’t know how long the thread needs to wait.
Hence, wait(Time Period, Time Unit) cannot be used making wait() or wait(event) the ideal
choice. Once encountering these two wait statement, a thread can become active only if there
is an event notification.

40 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

Figure 5.4: Algorithm of Two Task Model

case NOT READY:
i f (hasWork ())
{
s t a t e = READY;
remainingLoad = task−>getLoad () ;
task−>enqueue () ;
run = true ;
}
e l s e
{
wait (event) ;
}

Listing 5.1: NOT READY state

i f (canRun () && canClaim ())
{
s t a t e = RUNNING;
cla im () ;
run = true ;
}
e l s e i f (canRun () && ! canClaim ())
{
s t a t e = BLOCKED;
task−>dequeue () ;
run = true ;
}
break ;

Listing 5.2: READY state

As an event is needed to advance the simulation, the RUNNING state must also have a wait()
or wait(event) system. Though, the amount of time a thread/task needs to wait could be

Performance Modeling of Data Intensive Applications using SystemC 41

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

obtained from the calcularion of remaining time, using wait(Time Unit,Time Period) is not a
wise idea as it will make the threads to behave in a strage manner. For example, considering a
scenario where Task A and Delay Task are ready to run. The tasks will reach the RUNNING
state and wait for their corresponding remaining time. The Task B which has no data to
execute, will not satisy the hasWork() and will encounter the wait statement (waiting for an
event). To make Task B resume its execution again, an event needs to triggered and a value
need to be set for the activation of event. This in turn leads to a complex structure where
one thread/task would wait for an event and the rest will be waiting for its own time making
the simulation non synchronized thereby leading to a deadlock.

5.2.3 Design of Timer Module

An event is needed, as task in both NOT READY and RUNNING states wait for the event
to be notified, so that the time would be advanced and the remaining load could also be
calculated. After all the tasks/threads enconter wait statement, it means they wait for an
event. By Discrete Event Simulation priniciple, when a event is notified at least one of the
tasks/thread must finish its execution respectively. In order to achieve this, a simple and
straightforward strategy was followed:

• The remaining time which indicates the amount of time needed for the completion of
the task was calculated and stored in a C++ list/vector.

• After all tasks/threads gets suspended by the wait statement, the minimum value was
obtained and an event notification occurs advancing the time for that minimum value.

• All the tasks/threads now wake up from the wait statement one after the other and the
task/thread which had the minimum delay would finish.

This same prinicple can be used for the entire simulation till all the tasks/threads finish their
respective execution and the simulation comes to an end. In this example, Delay task will
insert its remaining time value of 20 in the vector and Task A inserting its remaining time
value of 200. Since 20 is the least value here, the event notification will happen for it advancing
the time by 20 time units, thereby the Delay task will now have zero load after the event
notification and Task A will now have a remaining load of 180. If Task B also joins at this
point, the same process would be repeated till the simulation finishes. One important factor to
be noted here is that the vector/list must be cleared everytime a notification happens in order
to prevent non deterministic behaviour and also for the fact that the size of the container will
explode if the simulation is run for several hundred iterations. This principle is generic and
can be applied to application with even larger number of tasks. Another interesting feature
is both wait() and wait(Event) works similarly for this example case.

case RUNNING:

i f (canRun () && ! ca l cu l a t i onPhase)
{
cur r en t t ime = sc t ime stamp () . t o d e f a u l t t im e un i t s () ;
remainingLoad = task−>getLoad () ;
remain ing t ime = remainingLoad / task−>getSpeed () ;
new load = remainingLoad ;
ca l cu l a t i onPhase = true ;

42 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

speed = task−>getSpeed () ;
}
i f (c a l cu l a t i onPhase)
{
remain ing t ime = new load / speed ;
delayy . push back (remain ing t ime) ;
speed = (task−>getSpeed ()) ;
l a s t A c t i v a t i o n h e r e = sc t ime stamp () . t o d e f a u l t t im e un i t s () ;
wait () ;
cu r r en t t ime he r e = sc t ime stamp () . t o d e f a u l t t im e un i t s () ;
new load = new load − (cu r r en t t ime he r e − l a s t A c t i v a t i o n h e r e) ∗ speed ;
run = true ;
}
i f (new load == 0)
{
s t a t e = NOTREADY;
r e l e a s e () ;
cnt t++;
ca l cu l a t i onPhase = f a l s e ;
run = true ;
}
break ;

Listing 5.3: RUNNING State

As the task enters the RUNNING state, the current time could be obtained from the SystemC
datatype sc time stamp().to default time units() which could be used to obtain the timestamp
and store it in a variable. As mentioned before, the remaining time representas the ammount
of time equired for completion for the tasks current speed. The calculationPhase was created
for a purpose. Considering a case of this example where Delay and Task A would run parallely.
First activation would be made for 20 time units. At this time, the load of Delay Task woud be
finished (as the load would become zero). But, Task As remainng time needs to be calculated
again as the Task B would arrive and the speed of Task A would change. To avoid such a
case, a claculationPhase was used to calculate the remaining time of every task during the
course of the simulation till the task finishes disabling this flag.Thus, after calculating the
remaining time, the value gets added to the vector delayy and then the wait(event)/wait()
statement would be encountered.

double Time Period = 0 ;
i f (! de layy . empty ())
{delayy . s o r t () ;
Time period = delayy . f r on t () ;}
event . n o t i f y (Time Period , SC NS) ;

Listing 5.4: Timer Module

The Timer module checks if the vector which keeps in track of remaining time of all the tasks
is empty. If it is empty, it notifies for zero time (no advance in time) else it sorts the vector
and chooses the least value. The event then notifies for this value and advances the time.
Then State Manager resumes and calculates its remaining load and this process gets repeated
till all the tasks finish its execution. The interaction between the State Manager and Timer
could be summarized as following

The State Manager and the Timer can communicate with each other in two ways. One is by
using ports and signals and other would be wihout using a port or signal rather by having

Performance Modeling of Data Intensive Applications using SystemC 43

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

Figure 5.5: Interaction Diagram

the Timer as another SystemC thread or SystemC method. The algorithm was implemented
in both the above mentioned ways and is explained briefly in the following sections.

5.2.4 Implementation With Ports

For any system, the State Manager should communicate with the Timer Module to advance
the time. The State Manager and the Timer was considered as separate SystemC modules.
Since the State Manager is the module which waits for the event from the Timer to be notified,
every State Manager would have an output port sending a signal for an event notification and
then the Timer module needs to have an input port to receive the signal.

Array of Ports

Though a single port is sufficient for every State Manager to send the signal, the Timer needs
to receive the signal from all the State Managers. In other words, if there are seven tasks then
seven State Managers will be created for these tasks and they would signal the Timer Module.
So the Timer module needs to receive signals from all these State Managers. Array of ports
feature in SystemC suits the requirement for a single SystemC module to have multiple ports
to send or recieve different signals respectively. By specifiying the number of tasks in the
system, the array of required number of ports would be created for the Timer module. The
sytax for the array of port is as follow:

sc in<T >Port Name[Size]

The array of input ports is given as an example as this technique is being used in the imple-
mentation. Using the same methodology, array of output ports could also be created. These
array of ports from the Timer can be connected to the ports of the State Manager by using
the array of SystemC signals defined as follows

44 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

sc signal<T >Port Name[Size]

The important thing here is that the State Manager module must be made sensitive to the
event (by specifying sensitive statement and the event name) to sense the advance in time
after the event notification.

Figure 5.6: Implementation with Ports

The figure 5.6 represents the implementation of the system. The functions inside the State
Manager module is a SystemC thread as the tasks needs to run parallely by waiting for each
other. But, for the case of Timer module, the function to notify the event was implemented
as process (SC METHOD) instead of a thread. The motivation for this decision came from
the fact that, during the course of simulation the State Manager of each active task would
run and then would wait for the Timer to advance the time. There is no need for the Timer
to wait now as it just checks the input ports for the signals from the task and then notifies
an event.

s c i n<bool> input [po r tS i z e] ;

void t imer ()
{
double Time Period = 0 ;
i f (! de layy . empty ())
{
delayy . s o r t () ;
Time period = delayy . f r on t () ;
}

}

f o r (i n t i =0; i< po r tS i z e ; i++)
{
i f (input [i] . read ())
{

Performance Modeling of Data Intensive Applications using SystemC 45

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

event . n o t i f y (Time Period , SC NS) ;
}

Listing 5.5: Timer Module With Array of Ports

5.2.5 Implementation without using Ports and Signals

The implementation without ports or signals was not as straight forward as the implement-
ation with the ports and signals. The reason is because the process or thread doesnt have
a specific order of execution in SystemC and if these are not synchronized properly, then
the simulation would lead to a deadlock. The first approach which would seem very obvious
in the implementation is to have two methods in the same module. For example, the State
Manager module would have both the perform() method and timer() method. In this case, a
choice must be made for the timer() method to be a SC METHOD or a SC THREAD. But,
both of these choices will not work. The reasons is when a two or more functions are defined
under the same module, the order in which they would be running is unknown which would
in turn lead to non-deterministic behavior and failure of the simulation as both the processes
would be sensitive to the same event.

void perform ()
{
switch (s t a t e)
{
case NOT READY:
i f (hasWork ())
{
/∗ Do some Proce s s ing ∗/
}
e l s e
{
wait () ;
}
break ;

case READY:
i f (canRun ())
{
/∗ Do some Proce s s ing ∗/
}
break ;

case RUNNING:
i f (canRun ())
{
/∗ Calcu la te the Remaining Time∗/
wait () ;
/∗ Check f o r the New Load∗/
}
break ; }}

void Timer ()
{
double Time Period =0;
i f (! de layy . empty ())

46 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

{
delayy . s o r t () ;
Time period = delayy . f r on t () ;
}
}

Listing 5.6: Module with Multiple Processes

In the above example, if Timer() function starts first, the Time Period would be zero as
the vector would be empty. Hence it will notify the event ev1 for zero time and as Timer()
method is also in the same SystemC module which is sensitive to ev1, it will execute again.
This will repeat forever without allowing the perform() to run thereby leading to deadlock.
The important factor to be noted here is that when Timer() is defined inside the StateMan-
ager class, then this method would be executed for each task there by notifying several times
with different vales and corrupting the time stamp. Using the Timer() as SystemC threads
would also not work in this case. For example, if it is made as a SystemC thread, then all
threads needs to have only wait(event) as using wait() statement only waits for the event
that notifies first corrupting the time stamp again. Another disadvantage is that the design
choice would now get limited as the wait(event) can only be used. This problem was solved
by having Timer() in separate SystemC module. As no ports or signals would be put to
use, establishing communication was difficult. But, this was solved by the SC ZERO TIME
feature. As discussed, this makes a process(SC METHOD) execute with a delay of zero time
units or a thread to wait for zero time units without affecting the behaviour of the system.

If the State Manager module starts first then all the tasks/threads would be executed till wait
statement is reached and the control would be passed to Timer module where the event notified
for it is zero time units, hence it performs the necessary activation and when the threads in
the State Manager wake up to the advanced time and the simulation would proceed till all the
tasks/threads finish the execution. It is to be noted that the same Timer() function could be
implemented as SC METHOD as the function is now sensitive only to the event1 and it won’t
run forever and also SC METHOD has an advantage over SC THREAD as SystemC threads
performs context switching and would be slower when compared to the SC METHOD.

5.2.6 Avoiding Race Condition

Task A and Task B share the same resource CPU. Therefore, the speed of the tasks must
be changed dynamically during the course of the simulation. Since, the order of execution
of threads doesnt follow a specific order; the system has a high risk of race condition. In
the design, the speed of the task would be calculated before encountering a wait statement
and also after waking up from the wait statement to check for the speed change (in case
of arrival of new task sharing the same resource). Then the new load of the task would be
calculated. An example scenario for the race condition to not happen is as follows: Task A
and Delay Task starts simultaneously and after the first event notification Delay Task would
get over. Now, Task A would have calculated its new remaining load. The new load would
be calculated using the following formula.

new load = remainingLoad - (current time - last activation)* speed

Performance Modeling of Data Intensive Applications using SystemC 47

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

As the Delay task finishes, it would send the data to Task B enabling it to run. Thus task
B would come till the wait statement in the RUNNING state and gives the signal to Timer
module to find the least delay and perform event notification. Only if the Task A wakes up
first from the wait statement before Task B, it could calculate the new load with the speed
of 0.5 and recalculate the time it needs to complete thereby leading to successful finish of the
simulation. But, if Task B wakes up from the wait statement first, then it would calculate
its new load and since it would become zero (as task B would have the least delay) it would
finish thereby releasing the resource and updating the CPU speed to 1 instead of 0.5. As B
finishes, Task A would start and the new load calculation of it would become wrong now as
the peed is no longer 0.5 thereby causing the simulation to fail. This makes this algorithm
non generic as it depends on particular order of execution which is not possible with SystemC
engine.

This problem was solved by following a straightforward methodology. Every task has a flag
named speedChange. When a Task resumes its execution from the wait statement in the
RUNNING state, its speed will be checked. If the speed is lesser than one then it means
the resource is being shared and hence the speedChange flag will be set. Even if the Task
finishes its execution, before releasing the resource it checks for the speedChange flag and if
it is set, it waits for zero time units through the statement wait(SC ZERO TIME). This in
turn will ensure that the other running tasks which share the same resource have its new load
calculated correctly with the proper speed thereby eliminating the race condition and making
the design generic.

48 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

CASE RUNNING:

.
wait () ;
new load = remainingLoad − (current t ime− l a s t a c t i v a t i o n) ∗ speed ;
i f (speed < 0)
{
speedChange = true ;
}
.

i f (new load == 0)
{
Fin i shed = true ;
i f (speedChange)
{
wait (SC ZERO TIME) ;
speedChange = f a l s e ;
}

r e l e a s e () ;

Listing 5.7: Avoiding Race Condition

5.2.7 Five Task System

This system consists of five tasks and it also uses a storage resource. It has the same working
characteristics of the example system. The system is schematically represented in figure
5.7. Both the computational resource and storage resource could be shared by one or more
tasks. By designing the following system, the sharing of storage resources and dealing with
BLOCKED state was also performed making the library generic which could be extended for
implementing the main example system (data path case of a printer) and any data intensive
application with the similar behaviour.

Figure 5.7: Five Task System

The dynamics of a system like this is already explained in section 3.4.1. The most important
thing to be considered here is that if two Tasks share a same storage resource and at one
point if the resource cannot accommodate a task, then it sends the task to BLOCKED state

Performance Modeling of Data Intensive Applications using SystemC 49

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

and the task waits till the resource gets available again. It is clear from figure 5.7 that Task
A and B share the same storage M1. The storage resources gets released when ever the tasks
finishes its execution. For example, when Task A needs to start its execution and cannot claim
the storage resource because it is already used by Task B and the claim amount by Task A
exceeds the amount which is free in the storage device, then it goes to the BLOCKED state.
A special care must be taken again in the BLOCKED state as the SystemC thread would
again infinitely remain in the BLOCKED state causing a deadlock. This can be prevented
by having a wait statement in the BLOCKED state. The new state diagram is as follows

Figure 5.8: Automaton with BlLOCKED state

It is clear from the figure 5.8, the canClaim() plays a major role here. It will be used in
READY method to check whether a task can claim a storage resource, if it gets satisfied the
task moves to the RUNNING state, else it moves to BLOCKED and waits till it can claim
the resource again. The algorithm followed is explained in the following diagram

50 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

Figure 5.9: Algorithm with BLOCKED state

It can be noticed that the NOT READY state has a wait(event) statement and RUNNING,
BLOCKED state has wait() statements. In the case of Two Task example, both wait() and
wait(event) were having the same effect as the order of execution was deterministic and only
maximum of two processes was running at any time. But, it won’t be the case with respect to
the five task model or any other model which uses the storage resouce. In case of Five Task
example, if the NOT READY case has the wait() statement instead of wait(event) statement,
then after a notification of event from the Timer module, the tasks/thread which doesnt have
any data to run would resume from the wait statement in NOT READY state and go back
to wait again. The task which is active resumes itself from the wait statement, finishes its
execution and would release the data for the next task. Since the next task to which the
data is being passed already ran once, the task would not become active thereby causing
simulation failure. For example, in a system with a input of 10 objects, by design the Task
A0 is active and all the others are not active at the beginning of the simulation. Now, as
A0 moves to RUNNING state and encounters the wait statement, all the other tasks/threads
would be checked for its input. Since none of the tasks/thread would have input, they would
go back to wait state. Now the Timer module would run and would advance the time for the
corresponding time unit. If we use wait() in NOT READY state, then all the tasks/threads
which were not active before would resume and check for its input. As there is no input yet,
they would return back to wait. After this, A0 would resume and it would eventually finish
thereby giving an input to B0 and also starting A1. Now, A1 and B0 need to execute parallel.
As B0 already encountered a wait statement before, it would not run parallel allowing only
A1 to run. This in turn would cause a domino effect across the starting time of all the
tasks resulting in simulation failure. It was also observed that if a task/thread encounters
a wait()statement and if another task encounters wait(event) statement, after the event gets
notified, the task/thread which encountered wait() statement resumes from the wait first. But,

Performance Modeling of Data Intensive Applications using SystemC 51

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

if two tasks/threads encounter wait() statement or wait(event), then the order in which they
resume their corresponding operations are unknown. Therefore keeping all these observations
under consideration, the above algorithm was designed thereby making it generic and not
depending on a specific order of execution. This approach was tested for the data path
example system and the output was verified using the TRACE software respectively.

5.2.8 Randomizing Storage Memory Access

During the course of simulation, it was explained that a task would go to BLOCKED state
if it doesnt have the capability to claim a storage resouce. With this type of scenario, let us
assume Task A starting with the simulation first, then it would claim the storage resource
and proceed to RUNNING state. Now, when Task B start its execution, it would not have
the capability to claim as most of the storage space is occupied by Task A. Hence, this would
make the Task B to move to BLOCKED state. After an event notification, Task A would
complete its execution, release the resource and again starts the execution of its next input
object while Task B would be in the BLOCKED state till all the input objects of Task A finsi-
hes its execution. Due to this factor, in all the cases a specific Task would only be BLOCKED
which is very evident from the trace below.

Figure 5.10: Output Trace Without Randomness

Instead of blocking Task B everytime, a procedure was analyzed where both the Task A and
Task B randomly access the storage resource M1. In other words, a specific task would not
be blocked always. This randomization was adopted through following steps

1. For every task, the storage resource gets claimed in the READY state.

2. A C++ random generator was used in order to generate a very small random number
(between 0.001 and 0.002) and a seed was generated.

3. A wait statement was placed before checking the canClaim() condition in the READY
state.

52 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

4. As the simulation starts, both the tasks start running parallely.

5. When these tasks reaches the READY state, a random seed would be generated for
each of them and they wait correspondingly with the obtained random seed.

6. The Task which has the least wait time would continue the simulation and the other
task would be blocked.

7. As the running task finishes its execution, it would start with the next input object and
would wait in the READY state. At this moment, the task in the BLOCKED start will
be eligible to claim and it would also move to READY state where the random seed
would be calculated and the tasks would wait for their respective random seed repeating
the process again till the end of the simulation.

Thus, the acquisition of the storage resource was made random between the two tasks and
the following trace was obtained.

Figure 5.11: Output Trace With Randomness

The wait statement used here was not wait(random seed, Time unit). The reason is the same
factor as mentioned in previous chapter. When a wait(random seed, Time unit) alone is used
in a simulation for a system like above, it would cause the simulation to fail. In this case
if Task A proceeds to RUNNING state with the minimum random seed of the two, then it
will encounter the wait sattement. At this moment, Task B needs to move to the BLOCKED
state before an event notification occurs. But this would not happen with wait(random seed,
Time unit) as it would not allow Task B to proceed to BLOCKED state instaed making Task
A to run infinitely as the wait statement in RUNNING state is the wait to an event notification
and since because wait(random seed, Time unit) is not waiting for an event, this would make
Task B to be never active again. This was overcome by using wait(random seed, Time unit,
event) statement in the READY state. This would allow the Task B to go to BLOCKED
state before the event notification happens thereby achieveing the expected behaviour. This
was also made generic enough such that it was adopted in the example system (with 7 tasks)
and the simualtion results were verified using the TRACE software.

Performance Modeling of Data Intensive Applications using SystemC 53

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

5.3 Alternative Implementation in C++

This implemenattion was similar to that of Java where the simulation layer was written expli-
citly and the performance was measured in order to benchmark it with the results of SystemC
and Java. The class diagram of simulation layer is almost the same as Java implementation
in[section 2].

Figure 5.12: Smulation Layer

5.3.1 Simulation Layer Progression

The message exchanged between the different classes is represented in the figure 5.13. The
progress of simulation is as follows:

1. The computational resources (CPU,GPU,FPGA) and storage resources (M1,M2) were
created.

2. The tasks were created and constructed with the resource it will be mapped to and the
priority of each task.

3. The tasks and Resources are added to Y chart Model.

4. The simulation then starts with run() method.

5. As a first step, the State Managers were created by obtaining the Tasks and the resources
to which it was mapped to from the Y chart Model.

6. Then the actions were obtained using getActions() method. The actionList would be
retured with the list that contains the transitions that are pending to happen like
NOT READY TO READY, READY TO RUNNING etc.

54 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 5. EXECUTION LAYER IMPLEMENTATION IN SYSTEMC

Figure 5.13: Simulation Layer Progress

7. After checking whether the obtained actions are Urgent actions (transition from one
state to another state) or delay actions(the advance in time by a specific task), the
corresponding action would be performed.

8. The urgent actions include the progress of task from one state to another like the
transitions from NOT READY to READY state, READY to RUNNING state etc.
This would be performed till there are no urgent actions.

9. After this, the delay action would be performed by advancing the time depending on
the task that was finished and updating the time in state managers of all the other
tasks.

10. This process would be performed till there are no more urgent or delay actions to be
performed.

11. As the action list becomes empty, the simulation comes to an end through finishSimu-
lation() method.

Performance Modeling of Data Intensive Applications using SystemC 55

Chapter 6

Evaluation and Conclusions

6.1 Evaluation

6.1.1 Simulation Speed

By definition, the performance modeling is the process of giving an input or a stimulus to a
system and measuring the time the system takes to produce the output under various load con-
ditions. Therefore, the simulation speed is the primary parameter in terms of measurement.
The Java library with the example system (7 Task Model) was available already. Using the
library, a Two Task model was designed and a 5 task model was also designed. Similarly, a
Two Task model, Five Task Model and Seven Task Model were also designed from the library
created using SystemC (using ports and signals), SystemC (without using Ports and Signals)
and pure C++ Implementation. The input objects were fed to these systems to measure the
performance under increasing load. The number of input objects that were fed to the system
was from 10 to 100,000 and the results were recorded and analyzed.

Figure 6.1: Overall Simulation Speed

The SystemC with ports is the slowest of all the implementation (nine times slower than the
Java implementation and almost eighteen times slower than C++) because of the context

Performance Modeling of Data Intensive Applications using SystemC 57

CHAPTER 6. EVALUATION AND CONCLUSIONS

switching which is explained in this section. The wait statements play the major role in slow
down. Whenever a thread gets suspended by a wait statement, all its variables need to be
stored and when it resumes the activity, the parameters needs to be updated and the advance
in time must also be taken into account. In the example system, there are totally four wait
statements being used. In addition to that, these wait statements are called more often when
tasks/threads run in parallel. This was the bottleneck with respect to SystemC. This was also
confirmed by running the Visual Studio Debugger under the Instrumentation mode. The use
of Instrumentation methodology of profiling is to find the detailed timing information about
each function call

Figure 6.2: Function Call

The above data was collected for a Seven Task model using ports with 100 objects fed as input.
As it is clear from the profiler reults that almost 60% of the time gets spent on the context
switching through wait statement and the rest of the time was for the function calls having
C++ maps and other containers which wouldnt play a major role in simulation performance
when the optimization flags are enabled and the code is run in the Release mode. As the
number of input objects increases, the number of calls to wait statement would also increase
thereby increasing the simulation time lineraly. The ports and signals also contribute to the
slowdown.

Figure 6.3: Function Call : Read and Write

For example, in the case of Two Task With Ports implementation, the model was run for 100
objects and the data were collected. It can be observed that the write doesn’t take much time
due to the fact that each State Manager has only one port and writing the value to it doesnt
take time. But, it is not the case for read as the Timer module needs to read from the array
of ports (3 in this case) and it needs to notify the event. This time would also increase with
increase in number of ports being another reason for slowdown. This explains the reason
behind SystemC implementation without ports being faster than the implementation with
ports and signals. But it must also be noted that the SystemC implementation without using
ports and signals is only slightly faster than the implementation with ports due to the fact
that there must be an event synchronization mechanism again as explained in chapter 5 by

58 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 6. EVALUATION AND CONCLUSIONS

delaying the Timer by using SC ZER TIME or by using a wait statement again if the timer()
method was run as SystemC threads.

It was expected that C++ would outperform Java and hence the results were according to
the hypothesis. After implementing the C++ version exactly as Java, it was having equal
speed of Java and not faster as expected. But some optimiation techniques were followed by
using constant refernces and passing pointers to function which gave a considerable speed up
and therefore the C++ implementation developed is now twice faster than Java. The decision
of designing Y chart layer in C++ and State Manager in SystemC played a crucial role here
as the performance bottleneck for a data intensive application like a data path of a printer
case was able to be identified effectively with the context switching being the cause of the
slowdown.

6.1.2 Scalability

In this section, the speed of the implementation for increase in size of the system is analyzed.
As discussed in previous section, three models were created. One is a model with two tasks
and a signle resource, then a five task model which almost mimiced the example system and as
a final step example system was also created. All these three models were implemented both
using ports and without ports. The models with ports were analyzed for a input ranging from
100 to 1000 in order to study the time spent on communication between the State Manager
module and the Timer Module.

Figure 6.4: Scalability of the System

It is clear from the graph that the system gets degraded in performance as it gets scaled
up with multiple tasks. The obvious reason is the increase in effect of the context switching
by the wait ststements and also the time taken to read and write the SystemC ports. One
interesting point to be noted here is that what ever the size of system is made to run, the
speed of the simulation decreases only in linear fashion.

Performance Modeling of Data Intensive Applications using SystemC 59

CHAPTER 6. EVALUATION AND CONCLUSIONS

6.1.3 Ease of Modeling

Unlike languages like C++ and Java, the biggest problem SystemC faces is the documenta-
tion. Though the Language Reference Manaual (LRM) of SystemC is extensive and covers
almost every aspect of the language, the examples which were given were abstract making the
learning process complicated. Also the online resources (or) forum to discuss certain roadb-
locks is very limited for SystemC. In fact there is only one active forum in order to discuss
about the language. Because of these factors, it consumes a considerable amount of time to
understand the dynamics of the language by trial and error basis.

Debugging in SystemC is also difficult. It is due to the fact that most of the error messages
or the warning can never be identified during the compilation process. Considering a scenario
where two modules communicate with each other using ports. If either of the module gets
designed without an input port, then a error at compile time is expected. But in case of
SystemC, the compilation would run successfully and would fail during simulation with a
error message ”Complete Port Binding failed”. Then it can be made to work by creating the
corresponding port. This is just a sample case. When building bigger models, it would be
little cumbersome to find the place where the error has occured and to rectify it. Modeling
with threads and events made the process tedious as all threads needs to be synchronized
to a specific event. For the example system, it had only four states. For system with more
states, the modeling would also be more difficult due to more wait statements in the system.
Since the entire simulation is run by the SystemC scheduler, special coding strategies must
be made in order to achieve certain requirements. Having a flag ”speedChange” to prevent
the race condition of task with respect to the release of the computational resource is an
example. Another example is the strategy of using the C++ random generator to make the
tasks/threads to access the storage resource. The Learning Curve in modeling in SystemC
could be represented as follows:

Figure 6.5: Learning Curve

60 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 6. EVALUATION AND CONCLUSIONS

On the positive side, the simulator in SystemC avoided writing the simulation layer.Considering
the Simulation layer which was written explicity using java and C++. The layer has five
classes : The State Machine which obtains the actions that are to be performed. As the ac-
tions could be either urgent or delay, it obtains the detail of the action to be performed from
the Urgent Action. The Simulator class then performs these actions of each task till there
are no more actions. The interaction between these classes could be explained as follows:

Figure 6.6: Simulation Layer in C++

The same simulation layer was implemented in SystemC using the following class diagram:

Figure 6.7: Simulation Layer in SystemC

Performance Modeling of Data Intensive Applications using SystemC 61

CHAPTER 6. EVALUATION AND CONCLUSIONS

As it can be observed, the number of classes required to model an execution layer in SystemC
is half the amount of the number of classes in plain C++/Java.

Lines of Code

Considering the execution layer, the amount of code written in SystemC was lesser when
compared with the implementation made in Java/C++. The lines of code were calculated
using the software CLOC. This software was used to accurately measure the number of lines
of code excluding the blanks and comments.

Figure 6.8: Line of Code count by CLOC

The above figure represents the result obtained from running the CLOC for UrgentAction-
Impl.java file. Out of 42 lines in the file, only 24 lines of code were written, while there were
9 lines of blank and 9 lines of comment. Similarly, the lines of code were measured for each
file and tabulated as follows:

Table 6.1: Java Implementation

Function Name Lines of Code

ODSE.java 79

EngineImpl.java 148

StateManagerImpl.java 164

PriorityActionSelector.java 51

UrgentActionImpl.java 24

DelayActionImpl.java 21

Total 487

The above classes were used to perform the simulation as EngineImpl.java runs the simula-
tion creating the State Managers. The StateManagerImpl.java was used to get actions the
PriorityActionSelector.java was used to select urgent actions to be performed and the urgent
actions were performed through urgentActionImpl.java. The DelayActionImpl.java has the
responsibility to obtain the advance in time after a task has finished execution. the ODSE.java
is the file in which the simulation starts by calling the run() method. These classes are not
required for SystemC Implementation as the State Manager was implemented as SystemC
module and the SystemC simulation engine was used to perform the simulation. Hence, the
lines of code used for SystemC Implementation was as follows:

62 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 6. EVALUATION AND CONCLUSIONS

Table 6.2: SystemC Implementation With ports

Function Name Lines of Code

StateManagerImpl.cpp 280

Total 280

Table 6.3: SystemC Implementation Without ports

Function Name Lines of Code

StateManagerImpl.cpp 262

Total 262

As it can be observed from the above analysis, the SystemC implementation without ports is
having almost two times less lines of code when compared with the Java/C++ implementa-
tion.

6.1.4 Memory Usage

With respect to designing in C++, pointers play a very crucial role. That too in case of
designing a library with many abstract classes, pointers must be allocated and deallocated
with atmost precision in order to avoid memory leaks. Visual Leak Detector was used in
order to detect memory leaks and all the implementation were measured for their performance
only after confirming with the report from VLD that none of the implementation has a
memory leak. The following measuremnts were taken for the implementations performed
through SystemC and C++.

Table 6.4: 2 Task Model - Number of Input Objects: 100,000

Implementation Memory Usage (in KB)

C++ Implementation 400

SystemC Implementation With Ports 544

SystemC Implementation Without Ports 528

Table 6.5: 7 Task Model - Number of Input Objects: 100,000

Implementation Memory Usage (in KB)

C++ Implementation 736

SystemC Implementation With Ports 1496

SystemC Implementation Without Ports 1084

This measurement was performed in order to rule out the memory as a limiting factor for
the simulation speed of SystemC. It can be noted from the above results that memory usage
by SystemC is minimal and also the increase in memoory from a 2 Task Model to a 7 Task
Model is not drastic. Thus, for a system Intel R©Core TM i5-4570 CPU 3.20 GHz, a design
with even several thousand tasks could be implemented.

Performance Modeling of Data Intensive Applications using SystemC 63

CHAPTER 6. EVALUATION AND CONCLUSIONS

6.2 Conclusions

In this thesis,a library was developed in SystemC and C++ for running models of Data
Intensive Applications at a high level of abstraction. A Data Path of a printer case was
considered as an example system to use the developed library and perform the simulation.
The library is generic enough in simulating data intensive applicaion like the example system
(printer data path case) just by elaborating the details of the tasks, resources and their
mapping.

• The SystemC simulator was used to perform the activities of both the execution layer
and the simulation layer which were explicitly written in Java by [5] and the results
were verified by comparing its output trace with the trace obtained from Java imple-
mentation.

• After analyzing the domain of SystemC and SystemC AMS, a proof of concept model
was implemented and SystemC AMS was left out of the design choice due to its poor
simulation speed.

• The Y Chart Layer was built on C++ and made to interact with the simulation engine
of SystemC by designing State Manager as SystemC module.

• The State Manager was designed as a SystemC module as it was responsible of task
progress from one state to another.

• The State Managers of every task was created as SystemC threads and Timer module
was designed to manage the time of the system.

• All the threads were synchronized to events.

• The communication between the State Manager and the Timer module was established
through ports and signals. In order to avoid even the communication overhead, the
system was also modeled without ports and signals.

6.2.1 Current Findings

1. SystemC was expected to have a similar performance in terms of simulation speed, but
it was nine times slower than Java and eighteen time slower than C++. This slowdown
was caused mainly due to context switching while running multiple threads parallely.

2. The performance bottleneck for SystemC threads is its wait statement. At every wait
statement, these threads suspends with their information saved and retrieved again as
they resume. As these wait statements are called multiple times, the speed starts to
decrease.

3. The order of evaluation of processes in SystemC is unknown thereby taking much control
from the designer. This in turn leads to race condition among the tasks that shares
the same computational resources like CPU as the order of evaluation of the threads is
unknown. This was overcome by adopting some coding strategies.

64 Performance Modeling of Data Intensive Applications using SystemC

CHAPTER 6. EVALUATION AND CONCLUSIONS

4. Though, there is a small degradation in performance due to the communication overhead
caused by ports and signals, it is not prominent when compared with a system being
used without ports and signals as this kind of system again needs a wait statement or
event notification to synchronize the execution of different processes.

5. As the number of objects increases, the speed of the simulation reduces linearly. This
is a straight forward relationship as the number of wait statements that are called for
increasing number of objects would be more which in turn would cause more context
switching causing the slowdown.

6. C++ implementation was the fastest when compared with Java and SystemC.

6.2.2 Recommendation for Future Work

The implementation of a data intensive application in SystemC was researched in this thesis.
A future research could focus upon the SystemC at scheduler level and try to parallelize
it or optimize it in such a way that the slowdown factor could be reduced. At present
SystemC simulation is slower, but it could be improved in future as it is open source and
the Open SystemC Initiative is also working ont it. There are other C++ based Discrete
Event Simulation tools such as Adevs and PowerDevs. The application could be developed in
these tools and the performance could be checked and benchmarked. POOSL is also another
powerful tool which is an Object Oriented Specification Language with a fast discrete event
simulation.

Performance Modeling of Data Intensive Applications using SystemC 65

Bibliography

[1] Markus Damm. Systemc-ams tutorial. http://www.systemc-ams.org/documents/

SystemC_AMS-Tutorial_Damm.ppt. 19

[2] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Computer,
42(4):42–52, April 2009. 1

[3] FraunhoferIIS. Systemc ams. http://www.eas.iis.fraunhofer.de/en/business_

areas/microelectronic_systems/systemleveldesign/open_source.html. 18

[4] Christoph Grimm, Markus Damm, Jan Haase, Jiong Ou, and Yaseen Zaidi. Refinement of
embedded analog/mixed-signal systems with systemc-ams. http://www.systemc-ams.

org/documents/date08-tutorial-systemc-ams-1.3.pdf. ix, 19

[5] Martijn Hendriks, Twan Basten, Jacques Verriet, Marco Brass, and Lou Somers. A
blueprint for system-level performance modeling of software-intensive embedded systems.
International Journal on Software Tools for Technology Transfer, pages 1–20, 2014. iii,
ix, 3, 4, 5, 6, 7, 22, 23, 24, 29, 64

[6] Open SystemC Initiative. Systemc ams extensions user’s guide. http://kona.ee.pitt.
edu/socvlsi/lib/exe/fetch.php?media=osci_systemc_ams_users_guide.pdf. ix,
20, 21

[7] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach for quantitative
analysis of application-specific dataflow architectures. In Application-Specific Systems,
Architectures and Processors, 1997. Proceedings., IEEE International Conference on,
pages 338–349, July 1997. 2

[8] John Moondanos. Systemc tutorial. https://embedded.eecs.berkeley.edu/

research/hsc/class/ee249/lectures/l10-SystemC.pdf. ix, 11

[9] Prateek Sharma. Discrete-event simulation. International Journal of Scientific and
Technology Research Volume 4, Issue 04, April 2015. ix, 9, 10

[10] Stephen.A.Edwards. Systemc. http://www.cs.columbia.edu/~sedwards/classes/

2001/w4995-02/presentations/systemc.ppt. 10

Performance Modeling of Data Intensive Applications using SystemC 67

http://www.systemc-ams.org/documents/SystemC_AMS-Tutorial_Damm.ppt
http://www.systemc-ams.org/documents/SystemC_AMS-Tutorial_Damm.ppt
http://www.eas.iis.fraunhofer.de/en/business_areas/microelectronic_systems/systemleveldesign/open_source.html
http://www.eas.iis.fraunhofer.de/en/business_areas/microelectronic_systems/systemleveldesign/open_source.html
http://www.systemc-ams.org/documents/date08-tutorial-systemc-ams-1.3.pdf
http://www.systemc-ams.org/documents/date08-tutorial-systemc-ams-1.3.pdf
http://kona.ee.pitt.edu/socvlsi/lib/exe/fetch.php?media=osci_systemc_ams_users_guide.pdf
http://kona.ee.pitt.edu/socvlsi/lib/exe/fetch.php?media=osci_systemc_ams_users_guide.pdf
https://embedded.eecs.berkeley.edu/research/hsc/class/ee249/lectures/l10-SystemC.pdf
https://embedded.eecs.berkeley.edu/research/hsc/class/ee249/lectures/l10-SystemC.pdf
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/systemc.ppt
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/systemc.ppt

Appendix A

Setting Up the SystemC
Environment

1. Open Visual Studio and create New project

Figure A.1: Step 1

2. In that, give a name for the project and select Ok.

3. Now, click Next to go to the Application Setting.

4. In Application Settings, the following has to be set.

68 Performance Modeling of Data Intensive Applications using SystemC

APPENDIX A. SETTING UP THE SYSTEMC ENVIRONMENT

Figure A.2: Step 2

5. Once, the project is created, We need to set some properties which can be done through
solution explorer as follows

6. Right click in the project and choose properties.

7. In properties box, choose General from C/C++ tab and paste the path of the src
folder of SystemC there as follows

Figure A.3: Step 3

8. Then choose Multi-threaded Debug in Code generation.

Performance Modeling of Data Intensive Applications using SystemC 69

APPENDIX A. SETTING UP THE SYSTEMC ENVIRONMENT

Figure A.4: Step 4

9. Then add /vmg in command line.

10. Now, open the General in Linker property and add the path where the Debug folder
of SystemC is present.

Figure A.5: Step 5

11. Now, add the SystemC.lib in the Input section.

70 Performance Modeling of Data Intensive Applications using SystemC

APPENDIX A. SETTING UP THE SYSTEMC ENVIRONMENT

Figure A.6: Step 6

12. Now, The SystemC Environment is set, we can start adding the header and source files
and start building a project

Performance Modeling of Data Intensive Applications using SystemC 71

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Model Based Performance Analysis
	Data Path of Printer
	Modeling Data Intensive Applications
	Overview

	Problem Definition
	Research Questions

	Domain Analysis
	Discrete Event Simulation
	SystemC
	Module
	Port and Signal
	Process
	Wait Statements in SystemC Threads
	Simulation in SystemC
	Event Notification

	SystemC-AMS
	SystemC-AMS Language
	Timed Data Flow (TDF) Module
	Loop in Timed Data Flow
	TDF Declarations
	Dynamic TDF

	Java Implementation
	Task Dynamics

	Proof of Concept
	Scheduling Algorithm

	Selection of Evaluation Criteria
	Simulation Time
	Scalability
	Program Complexity
	Memory Usage

	Y Chart Layer Implementation in C++
	Y Chart Layer : Application
	Y Chart Layer : Platform
	Computational Resource
	Storage Resource

	Y Chart Layer: Mapping
	enqueue
	dequeue
	claim
	release

	 Execution Layer Implementation in SystemC
	Two Task Model
	Design Decisions
	State Manager as SystemC Module
	Decision on Wait Statements
	Design of Timer Module
	Implementation With Ports
	Implementation without using Ports and Signals
	Avoiding Race Condition
	Five Task System
	Randomizing Storage Memory Access

	Alternative Implementation in C++
	Simulation Layer Progression

	Evaluation and Conclusions
	Evaluation
	Simulation Speed
	Scalability
	Ease of Modeling
	Memory Usage

	Conclusions
	Current Findings
	Recommendation for Future Work

	Bibliography
	Appendix
	Setting Up the SystemC Environment

