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Abstract

In this thesis the Capacitated Lot Sizing Problem under demand uncertainty is considered. In this
problem production has to be planned for a single resource over a finite horizon for a fixed number
of products while being constraint by per period capacity restrictions. Costs are incurred for setting
up production, holding inventory and back-orders. Based on a Mixed Integer Linear Optimization
formulation we have derived a Stochastic Counterpart that assumes demand to be normally distributed
as well as a Robust Counterpart that assumes demand to range in a specified interval. The realized
service level when using the Stochastic Counterpart can be influenced by means of a β-service level
constraint whereas for the Robust Counterpart we can set the back-order cost and the size of the
demand interval.

Both methods were compared in a simulation study in a rolling horizon setting whereby the per
period demands for each product are drawn from the Normal distribution. First, we fitted the right
parameters to a realized service level. Second, we assessed how these models performed under various
circumstances. We observed that the Robust Counterpart delivers more stable service levels at lower
cost when capacity decreases and demand uncertainty gets higher. In general, the Robust Counterpart
is superior of the Stochastic Counterpart.
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Chapter 1

Introduction

1.1 The Capacitated Lot Sizing Problem

In this thesis we will study the Capacitated Lot Sizing Problem (CLSP) under demand uncertainty.
More specifically, we will take a Robust Optimization (RO) approach based on the work of Ben-Tal
and Nemirovski (1998) to deal with demand uncertainty. We will start with a thorough introduction
into the field of RO based on a basic production planning problem. It should provide solid ground to
explain our new approach to the CLSP. In a simulation study this model will be compared to two other
models: the nominal model and its Stochastic Counterpart. The former of these assumes deterministic
demand whereas the latter assumes demand to be randomly distributed. All models will be compared
in an simulated environment in a rolling horizon setting where demand is randomly generated from a
known probability distribution.

Karimi et al. (2003) define production planning to be “the activity that considers the best use
of production resources in order to satisfy production goals (satisfying production requirements and
anticipating sales opportunities) over a certain period named the planning horizon”. One of the problems
in production planning is the lot sizing problem, which according to Karimi et al. (2003) revolves around
deciding on “when and how much of a product to produce such that set-up, production and holding
costs are minimised”. We can account the first lot sizing model to Wagner and Whitin (1958). They
considered time-varying but deterministic demand without any capacity restrictions. When a capacity
restriction is introduced we get the CLSP. When demand is stationary and randomly distributed we
talk about the Stochastic Economic Lot Sizing Problem, while in case demand is non-stationary, but
independent, we talk about the Stochastic CLSP.

Production planning typically encompasses three levels of decision making: strategic, tactical and
operational. Besides that, it encompasses three time ranges for decision making: long-term, medium-
term and short-term. Long-term and strategic usually revolves around deciding on the product mix to
offer or where to locate a new facility. In general, one may regard this level as one where the prime
focus is on anticipating aggregate needs (Karimi et al. (2003)). Medium-term planning revolves around
Material Requirements Planning and determining production plans. This is the level at which the lot
sizing decision resides. The production plans are then disaggregated into day-to-day schedules and this
is the level of short-term operational planning.

The lot sizing decision can be found in many companies. Winands et al. (2011) state that it is a
common problem for glass and paper production, injection molding, metal tamping, semi-continuous
chemical processes and in bulk production of consumer products. For example, Fransoo et al. (1995)
describe a situation at a glass-containers manufacturing company. There exists a lot sizing decision
in this situation, because if a different colour product needs to be produced, then the temperature of
the oven in which the glass is heated has to change, which takes fours days. These four days can be
regarded as the setup time and this leads to a lot sizing decision. Hence, production has to be planned
in a optimal (or near optimal) way while costs are minimized. Since there is a trade-off in inventory
holding costs and setup costs, we do not want to produce too long as inventory builds up, nor do we
want to switch too often between producing different products as it costs money and consumes valuable
capacity.

Clearly, from a practical point of view, the CLSP is worth studying for successful operations planning

11



12 CHAPTER 1. INTRODUCTION

and control. Besides a practical motivation, there is a scientific one as well. Therefore, we will continue
in the next section with providing more background on the problem as well as giving a more thorough
motivation for taking a RO approach to the CLSP under demand uncertainty.

1.2 Motivation and Background

In the previous section we gave a brief introduction to the CLSP, its relation to other decision problems
in Operations Management and the relevance of studying the problem for practice. In this section we
will dive deeper in the background of the problem and we will motivate this research. This motivation
is predominantly based on existing research in which future directions are recommended. As we will
discuss next, the first reason for this research is that the developments in the field of RO might provide
better ways to deal with uncertainty and the second reason stems from the fact that most, if not all,
of the research done on the CLSP does not perform a simulation study in which the models are run in
a rolling horizon setting.

When studying literature there are two aspects of research on the CLSP that stand out: increase
the computation speed and deal with uncertainty. Both Allahverdi et al. (1999) and Jans and Degraeve
(2008) state that one of the major limitations of the lot sizing problems they discuss is the assumption
of deterministic demand and their inability to deal with demand uncertainty. From the work of Belvaux
and Wolsey (2001), Wolsey (2002) and Pochet and Wolsey (2006) we know that we can formulate
the CLSP as a Mixed Integer Linear Optimization (LO) problem. Now given the desire to deal with
uncertainty, the questions rises if we can deal with these type of problems.

The work of Dantzig (1955) can be regarded as one of the first accounts to incorporate uncertainty
into LO problems. This was done by letting the parameters of the LO problem belong to a uncertain
but known distribution of demand. A few years later, Wagner and Whitin (1958) proposed their famous
model for determining ordering quantities under time-varying deterministic demand. Around that time
Manne (1958) came up with a LO problem for economic lot sizing models. Dzielinksi et al. (1963)
simulated the models of Manne (1958) in an uncertainty environment and observe that models that
don’t take uncertainty explicitly into account perform reasonably well in a rolling horizon. Thereafter,
attention for the subject was lost for quite a while until it was revived by the work of Soyster (1973).
However, the model proposed by Soyster (1973) and others have some undesirable properties: they are
either too conservative or non-linear (Soyster (1973); Bertsimas and Sim (2004)).

However, the work of Soyster (1973) has been significantly improved later on by Ben-Tal and
Nemirovski (1998, 1999 and 2000). The later authors developed methodologies to deal with uncertainty
in LO problems in which conservativeness can be controlled and that are computationally tractable in
most cases. By introducing uncertainty into these problems, they become Semi-Infinite Optimization
problems. Ben-Tal and Nemirovski show that under certain circumstances these can be rewritten into
their so called Robust Counterpart, that are again LO problems in most cases. After the work of the
aforementioned authors the field of RO was born and a lot of research followed.

For example, Bertsimas and Sim (2004) propose an approach to solve uncertain LO by means of a
robust formulation that is linear and has a parameter to regulate per period the conservativeness. The
work of Bertsimas and Thiele (2006) show the usefulness of this technique by applying it to problems
in inventory theory. Furthermore, this work can be regarded as the spark that led to the widespread
attention for the use of RO. The work of Ben-Tal et al. (2004) introduces multi-stage RO. In terms of
production planning this would mean that instead of considering the production quantities in the next
T periods as here and now decisions, we would let the production quantities in period t depend in an
affine fashion on the realizations of demand in previous periods. Some interesting results based on this
technique have been achieved by Ben-Tal et al. (2005) regarding retailer-supplier flexible commitment
contracts, and Ben-Tal et al. (2009b) in relation to multi-echelon inventory theory.

Furthermore, it is worth noticing that the work of Ben-Tal et al. (2009a, pp. 4-7) illustrates the
impact of minor deviations in the nominal values of the parameters used in LO problems. In their
work they show that even the slightest deviation from the chosen parameter might render an optimal
solution infeasible and thereby meaningless. In such situation the RO techniques show their capability
in coming up with a more robust solution which can deal with uncertainty. All in all, it can be said that
RO became a proven technique to deal with uncertainty in Mathematical Optimization problems.

With the ascent of RO we can now distinct two different approaches to deal with uncertainty: one in
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which uncertainty is defined by means of probability distribution and one where there is a more geometric
interpretation of uncertainty. In the former case a probability distribution is underlying demand, while
in the latter we extend the polyhedron of the solution space. There are examples of applications of the
former to the CLSP like the work of Helber et al. (2013), Rossi et al. (2015) and Tempelmeier and Hilger
(2015) shows. They take the nominal CLSP as starting point and deal with it from a stochastic point
of view. This means that demand is assumed to be identically and independently normally distributed.

However, in case of taking a stochastic approach two additional complexities are introduced as
Winands et al. (2011) and Ben-Tal et al. (2005) point out. The first is that in practice information
regarding the demand distribution is unavailable or hard (costly) to obtain. Second, the curse of
dimensionality might render it (computationally) impossible to consider multiple products or a realistic
number of time periods. When taking a RO approach we do not suffer from these complexities. So,
with the possibility to formulate the CLSP as a Mixed Integer LO problem, a RO approach lends itself
very well to deal with uncertainty, while avoiding the aforementioned complexities.

The second shortcoming of previous research that we mentioned and that we want to overcome
is the fact that little is known about the performance of CLSP models in a rolling horizon setting.
Dzielinksi et al. (1963) were most likely one of the first to note the importance of studying production
planning problems in a rolling horizon and more specifically, Bookbinder and Tan (1988) in relation to
lot sizing. Drexl and Kimms (1997) as well as Helber et al. (2013) mention the importance of future
research on simulating lot sizing problems in a rolling horizon setting. This becomes even more clear
if we look at the work of Tempelmeier and Hilger (2015). The model proposed herein is run and they
only look at the objective value and this tells us nothing on how such model would perform in practice.
If we want to assess how this model would perform in practice we should conduct a simulation study
in a rolling horizon setting. We are very eager to get to know how this model would perform and for
that reason we will investigated their approach.

Above we discussed two shortcomings in present day research on the CLSP. These shortcomings
motivate our research and we want to contribute to the field by coming up with solutions for these
shortcomings. Hence, our contributions to the field are as follows:

� We will take a novel approach based on RO to deal with demand uncertainty in the nominal
CLSP. This has not been done before at the scale we will do it in this research. This step will lead
to the so called Robust Counterpart of the nominal CLSP under the assumption that demand is
known to range in an interval.

� We will derive our own Stochastic Counterpart of the nominal CLSP and compare it to the one
of Tempelmeier and Hilger (2015). Contrary to before, we will now assume demand to randomly
distributed.

� We will conduct an extensive simulation study in which the various models will be compared in
a rolling horizon setting. Literature is scarce, if not non-existing, on the effects of running CLSP
models under demand uncertainty in a rolling horizon, despite the fact that in practice models
run in such a setting. This way we hope to shed light on the effects a rolling horizon.

In the next section we translate these contributions in a research proposition. We define the problem
we want to study and come up with related research questions.

1.3 Problem Statement and Research Questions

In this section we start by giving a more formal introduction to the CLSP. We start by expressing the
problem as a Mixed Integer LO Problem. Thereafter, we discuss relevant aspects to the problem. In
combination with the motivation of the research this will lead to the research questions.

From the description of the CLSP in the previous section it became clear that we have a trade-off
between holding inventory or setting up production for a specific product more frequently. This trade-
off should be represented in the objective function of a Mixed Integer LO formulation. Furthermore,
there are some aspects to take into account. First, if demand is deterministic then the resulting lot
size will not account for any other realization of demand. Hence, we might get some back-orders if it
turns out to be higher than expected in case of demand uncertainty. This means that we should allow
for negative inventory contrary to a lot of other models. Second, if we allow for negative inventory



14 CHAPTER 1. INTRODUCTION

there is no incentive to produce anymore. For that reason we will introduce back-order costs. We are
fully aware about the controversies that exist in literature, like Tempelmeier and Hilger (2015) arguing
that backlog costs are “difficult if not impossible to quantify”. However, including back-order costs
will turn out to be a great advantage in the models we propose and seems realistic too from the large
body of supply chain optimization articles that do assume that back-order costs can be quantified, e.g.
de Kok and Fransoo (2003). For that reason we do take back-orders into account. Third, as we will see
later on, we will introduce a service level constraint. The introduction of this constraint might have as
consequence that we want to produce more than the capacity allows. In order to come up with feasible
production plans during the simulation study we allow overtime to relax the problem.

Based on the problem description that we gave in the previous section, taking into account the
points mentioned above and based on the work of Helber et al. (2013), we can describe the CLSP as
the Mixed Integer LO problem found in Problem 1.1 below.

Problem 1.1 (Nominal CLSP).

min
T∑
t=1

∑
k∈K

(sckγkt + ykt) +

T∑
t=1

ocot (1.1)

s.t. hck

(
Ik0 +

t∑
τ=1

(qkτ − dkτ )
)
≤ ykt k ∈ K, t ∈ T (1.2)

− bck
(
Ik0 +

t∑
τ=1

(qkτ − dkτ )
)
≤ ykt k ∈ K, t ∈ T (1.3)

qkt ≤Mγkt k ∈ K, t ∈ T (1.4)∑
k∈K

(tpkqkt + tskγkt) ≤ Ct + ot t ∈ T (1.5)

γkt ∈ {0, 1} k ∈ K, t ∈ T (1.6)

qkt, ot ≥ 0 k ∈ K, t ∈ T (1.7)

In Problem 1.1 we have sck, hck, bck and oc representing, respectively, the setup cost, inventory holding
cost, back-order cost and overtime cost. Furthermore, we have decision variables ykt, qkt, ot and γkt
representing, respectively, the upper bound on the maximum cost, the production quantity for product
k in period t, the overtime in period t and the setup decision for product k in period t. Besides that
we have input parameter dkt representing the per period demand for product k and Ik0 representing
the initial inventory level for product k.

The objective function in 1.1 wants to minimize these costs. Constraint 1.2 and 1.3 are a closed
form representation of the inventory balance equation. 1.4 ensures that the binary decision variable
γkt becomes one if there is some production for product k in period t. In Constraint 1.5 we have
the processing time tpk and setup time tsk. These times are multiplied with, respectively, the amount
produced and consequently its setup variable to account for capacity consumption. This value can be
greater than the available capacity, but then we its extended with overtime.

The objective of the research presented in this thesis is to make a contribution to the development
of more effective models for solving the CLSP aided by recent advances in the field of RO. The
nominal problem above should be a good starting point. Though, first of all, we should have a
thorough understanding about RO. Building on the understanding of the methodologies we will be able
to represent the Robust Counterpart to the nominal model introduced above. Furthermore, we are very
much interested in a comparison to existing work. For that reason we will compare the nominal model
to the Robust Counterpart and to a Stochastic Counterpart that is heavily inspired by the work of
Tempelmeier and Hilger (2015). The comparison is conducted in a simulation study in a rolling horizon
setting.

As a direct consequence of the objective of this research we arrive at the following main research
question:

� What is the relative performance advantage of taking a RO approach to the CLSP over using the
nominal model and its Stochastic Counterpart, which is based on the work of Tempelmeier and
Hilger (2015), in a rolling horizon setting where demand is identically and independently normally
distributed?
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In order to answer this question we will formulate the following sub questions,

1. How can we apply the methodologies of RO to production planning problems?

2. How can we derive a Stochastic Counterpart in case we take a stochastic perspective on demand
uncertainty?

3. Can we formulate a Robust Counterpart for the nominal CLSP if demand is known to range in a
specified interval?

4. How should we setup an experimental framework and measure the relative performance of the
models?

5. We know that we can influence the realized β-service level in the Stochastic Counterpart by means
of a parameter. However, is the required service level equal to the realized one? If not, how can
we fit the right input to the desired output?

6. How can we influence the realized β-service level in the Robust Counterpart?

7. How much does either of the two models, the Stochastic and Robust Counterpart, perform better
than the other under different circumstances?

These sub questions conclude this section. We have seen our motivation, research problem, objec-
tives and research questions. In the next sections we will discuss the experimental framework that we
use and describe the research design.

1.4 Experimental Framework

In order to be able to make a proper comparison between the various models that we will study in our
research project, we need to define a cost structure and certain performance critera. Of course, this
depends on the costs we take into consideration and the objective function that we want to minimize.
We define the objective function C, and with that the cost structure of the optimization problems
introduced in this research, as follows:

C =

T∑
t=1

∑
k∈K

(sckγkt + max{hckIkt,−bkIkt}) +

T∑
t=1

ocot (1.8)

where qi,t is the amount of units of prodcut k produced in time period t, hck is the inventory holding
cost for one unit of prodcut k, bck is the back-order cost for one unit of prodcut k, skk is the setup cost
for associated with product k, Ikt is the inventory level for product k at time period t, and γkt is a
binary decision variable indicating whether or not prodcut k is produced in time period t.

This cost structure can relate to many production problems in which we take into consideration the
inventory holding cost, back-order cost, setup cost as well as overtime cost. Moreover, the structure
relates to a minimize the sum of maximum costs per period, hence, the optimal production quantity
minimizes the cost function C. Note that in the definition of the nominal CLSP we already eliminated
this maximum with the introduction of the piece-wise linear upper bound on it by means of a new
decision variable ykt.

In the simulation study we run the various models in a setting where demand is drawn from the
Normal distribution. The reason for this is that this distribution is the one most encountered in work
on stochastic models on lot sizing, e.g. Helber et al. (2013), Tempelmeier and Hilger (2015) and
Rossi et al. (2015). Besides that, we want to give all advantage to the Stochastic Counterpart as we
assume demand to be normally distributed in our derivation for the Stochastic Counterpart. Since we
use exactly the same distribution in our simulation study, we give all the advantage to one model and
this should give better grounds for a good comparison between the models.

We will compare the models cost-wise, that is, the average costs of running the model while rolling
forward for a fixed number of time periods. Furthermore, to make a sensible comparison we report the
confidence intervals of various statistics like the realized service level, utilization rate, cycle lengths etc.

It is worth saying something about the choice for hck and bck and its relation to service level con-
straints. Note, that we do not consider lost sales, but deal with insufficient inventory by means of
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Table 1.1: The relation between the probability of no stock out and the backorder cost.

px<(x0) hck bck
0.8 1 3
0.9 1 6
0.95 1 9
0.99 1 99
0.995 1 199

back-orders. When we compare the decision on how much to produce in a period as a unconstrained,
single-item news vendor problem, we can consider the related decision rule,

px<(Q∗) =
bck

bck + hck
(1.9)

where px<(x0) is the probability that the total demand x is less than value x0 (Silver et al., 1998,
pg. 385) or put differently, the probability of no stock out. The latter can be related directly to a
service level constraint, because we can state things like the fraction of demand we want to satisfy from
inventory. When the inventory holding cost is normalized to h = 1 and when taking various values
for px<, we can obtain the related values for bck from Equation 1.9. We give an overview for some
combinations in Table 1.1.

By now we have explained our experimental framework. The cost function is explained as well as
various performance criterion that are of interest. We will continue with describing our the design of
our research.

1.5 Research Design and Outline of the Thesis

The aim of the research presented in this thesis is to make a contribution to the development of more
effective models for solving the CLSP under demand uncertainty. We are aided in this effort by recent
advances in the field of RO. For that reason, we should first have thorough understanding how a
RO approach can be taken to the single item production planning problem. Building on the insights
obtained from doing so, we will continue with the CLSP presented in a previous section and formulate
its Stochastic and Robust Counterpart. These models will then be extensively investigated during an
simulation study in a rolling horizon setting.

First of all, we will give a thorough introduction to RO. The topics relevant for this thesis will be
discussed and the reader should get enough knowledge about RO to follow along with explanations of
the models that use it. Having a clear picture of what RO is about will lead to a better understanding
of how to use it in an production planning context. We will give and thoroughly study some basic
production planning models in which a RO approach is taken.

We rely on the knowledge obtained when we continue with studying the CLSP. We will start from
the nominal CLSP described before and introduce uncertainty into this from a stochastic perspective.
Furthermore, a Robust Counterpart will be derived. All models will be thoroughly studied in a simulation
study by comparing the nominal model against its counterparts for various settings of the parameters,
e.g. the number of periods to commit production in advance, the level of demand uncertainty or
the available capacity. We will gain insight in the behaviour of the various models by conducting the
thorough simulation studies.

In Chapter 2 we will start with introducing RO. The knowledge obtained herein will be applied in
Chapter 3 where we will introduce the CLSP. The models introduced in Chapter 3 will be subject to
thorough testing in our simulation study which is discussed in Chapter 4. The final chapter is Chapter
5 in which we will present our research findings, conclusions and suggest future research. Furthermore,
the notation and abbreviations used in this thesis can be found in Appendix A and we present some
preliminary mathematical knowledge in Appendix B.



Chapter 2

Models for Robust Production
Planning

“If a man will begin with certainties, he
shall end in doubts; but if he will be content
to begin with doubts, he shall end in
certainties.”

Francis Bacon, The Advancement of
Learning

2.1 Introduction

In this chapter we give an introduction into RO and explain its concepts using a basic production
planning problem. The nominal production planning model that we present in this chapter is one for
planning production for a single item, at a single location, under a per period capacity restriction.
Demand needs to be satisfied either by the end of the period in which it occurs or at a later stage when
put on back-order. This basic problem deals with the trade-off between holding inventory and accepting
back-orders. Costs are incurred for holding inventory and putting demand on back-order. Hence, the
objective of the problem is to minimize the maximum of inventory holding costs and back-order costs
subject to the given constraints.

We start this chapter with discussing multi-stage decision problems in general. This should provide
a solid foundation for understanding the nominal production planning problem that we will introduce.
This problem serves us in explaining the concepts and methodologies behind RO. Although we could
have only referred to the numerous of introductory papers on RO, we will give a thorough introduction
ourself by using the nominal production planning model as starting point. Nevertheless, we could
certainly recommend the interested reader the work of Ben-Tal et al. (2009a), Bertsimas et al. (2011)
and Gorissen et al. (2015) for a more general introduction to the field.

After introducing our nominal problem, we will introduce uncertainty into it. The problem then
becomes a semi-infinite optimization problem, which is computationally untractable. However, for
specific types of uncertainty sets we will show how to come up with tractable representations, i.e.
their Robust Counterparts. The Robust Counterparts range from the most conservative to the least
conservative, one where conservatives can be controlled by means of a parameter and the Affinely
Adjustable Robust Counterpart (AARC). These Robust Counterparts can be classified under the heading
of static or multi-stage RO. The former only considers “here and now” decisions, while the latter lets
the current period production quantity depend on the demand in pervious periods in an affine fashion.
Using this dependency in the form of Linear Decision Rules results in the so called AARC. We conclude
with a future outlook of RO and we especially discuss Distributionally RO and Multi-Stage Adjustable
Robust Mixed-Integer Optimization.

17
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2.2 Multi-Stage Decision Problems

Multi-stage optimization problems under uncertainty can be found in numerous fields of study and a wide
variety of solutions methods exists to solve them, e.g. exact and approximate dynamic programming,
stochastic programming, sampling-based methods and robust (multi-stage) optimization. We start in
this chapter from the broad idea of a multi-stage decision problem.

Problem 2.1 (Multi-Stage Decision Problem). Consider the following one-dimensional, discrete-time,
linear dynamical system,

It+1 = αkIt + βtqt + γtdt (2.1)

where It represents the state of system at period t, and given the initial state of the system I1 ∈ R.
Furthermore, αt, βt, γt 6= 0 are known scalars. The system is affected by random disturbances dt which
are unknown, but range with certainty in a specified interval centered around d̄t with half-width d̂t,

dt ∈ Dt
def
= [d̄t − d̂t, d̄t + d̂t] (2.2)

We are interested in finding a sequence of controllers q1, q2, . . . , qT , that are constraint by fixed and
known upper and lower bounds for each period,

qt ∈ [Lt, Ut] (2.3)

with Lt, Ut ∈ R and that minimizes the following cost function over a finite horizon 1, 2, . . . , T ,

J = c1q1 + max
d1

[f1(I2) + c2q2 + max
d2

[f2(I3) + . . .+ max
dT−1

[cT qT + max
dT

fT (IT+1)] . . .]] (2.4)

where the functions f : R→ R∪{+∞} are extended real and convex, and scalars ct ≥ 0 are fixed and
known.

The production planning problems that we study in this chapter are examples of multi-stage decision
problems. For instance, to obtain our nominal production planning problem, the case were demand is
known, the first step would be to set the half-width of the demand to zero, d̂t = 0. We then let It
represent the state of the inventory level at time t and we would take ft(It+1) = max{hIt+1,−bIt+1}
to represent the trade-off between holding inventory and accepting back-orders. We set α, β = 1,
γ = −1, such that the behavior of the linear dynamical system represented by Equation 2.1 mimics the
inventory balance equation. Furthermore, Lt = 0, Ut = Ct, with Ct being sufficiently large in case we
do not want capacity to influence production.

In general, we could take a Dynamic Programming (DP) approach to solve Problem 2.1 based on
the work of Bertsekas (2001). Interestingly, the resulting policy would then exactly correspond to the
base-stock ordering policies of Clark and Scarf (1960). Though, as we will see in the next section, when
demand is certain, a linear optimization formulation would suffice. In the sections thereafter we explore
the situation in which demand is made uncertain in the nominal model. We will investigate various
Robust Counterparts like the least conservative, the most conservative and the cardinality constraint
robust counterparts. Until then, the problems studied only revolve around “here and know” decisions
or what we will call static RO. However, a interesting class of policies comes into being when the
controllers qt are affine parameterizations in the observed disturbances, e.g. the past demand:

qt(d) ∈ [Lt, Ut], ∀d ∈ D1 ×D2 × . . .×Dt−1 (2.5)

As we will see in a later section, the optimal affine policies qt(d) of these so called disturbance
affine feedback control policies, essentially multi-stage RO, can be obtained by deriving the AARC of
Problem 2.1. Though, before diving in these complexities, we will start with formulating the nominal
production planning problem in the next section.

2.3 Production Planning as Linear Optimization Problem

In our nominal problem we consider planning production for single item under deterministic demand.
Costs are incurred for holding inventory and back-orders. The objective of our nominal production
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planning then becomes,

min

T∑
t=1

max{hIt,−bIt} (2.6)

where qt is the per period production quantity, h is the per unit inventory holding cost, b is the
per unit back-order cost, It is the inventory level at the end of period t and T indicates the finite
time horizon on which we consider the production planning problem. This results in a min-max type
of optimization problem where we need to make a decision on the per period production quantities qt
while taking into consideration related costs and subject to the capacity constraint.

Next, we formulate the problem as a linear optimization problem by introducing the related con-
straints. One of the constraints represents the inventory balance equation, It = It−1 + qt − dt and the
other represents the capacity as upper bound on the per period production quantities.

min
T∑
t=1

max{hIt,−bIt} (2.7)

s.t. It = It−1 + qt − dt t = 1 . . . T (2.8)

qt ≤ Ct t = 1 . . . T (2.9)

qt ≥ 0 t = 1 . . . T (2.10)

Note, the initial inventory level, I0 is an input parameter. We can eliminate the maximum in the
objective function by introducing a new decision variable and two new constraints. The new decision
variable yt is introduced to represent the upper bounds on the piece-wise linear components in the
objective function.

min
T∑
t=1

yt (2.11)

s.t. yt ≥ −bIt t = 1 . . . T (2.12)

yt ≥ hIt t = 1 . . . T (2.13)

It = It−1 + qt − dt t = 1 . . . T (2.14)

qt ≤ Ct t = 1 . . . T (2.15)

qt, yt ≥ 0 t = 1 . . . T (2.16)

The inventory level at time t can be formulated as the sum of production quantities up to t minus
the demand up to t, plus the initial inventory level I0. Therefore, we can go from a recursive definition
of the inventory level at time t to a closed form expression, It = I0 +

∑T
t=1 qt−dt. Substituting this for

It in the respective constraints results in the following linear optimization formulation for our nominal
production planning problem.

Problem 2.2 (Nominal Production Planning Problem).

min
T∑
t=1

yt (2.17)

s.t. h
(
I0 +

t∑
s=1

(qs − ds)
)
≤ yt t = 1 . . . T (2.18)

− b
(
I0 +

t∑
s=1

(qs − ds)
)
≤ yt t = 1 . . . T (2.19)

qt ≤ Ct t = 1 . . . T (2.20)

qt, yt ≥ 0 t = 1 . . . T (2.21)

The nominal production planning problem defined in Problem 2.2 will serve as the basis for the
Robust Counterparts we discuss in the upcoming sections.
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2.4 Static Robust Optimization Models

2.4.1 Introducing Uncertainty

We introduce uncertainty into the nominal production planning problem formulated in Problem 2.2 by
stating that demand is an element of uncertainty set U and we define this set as follows,

U =

{
d = d0 +

T∑
t=1

ζtd
t : ζ ∈ Z ⊂ RT

}
(2.22)

with,

d0 =


d̄1
d̄1
...
d̄T

 , dt = d̂tet (2.23)

Introducing this uncertainty set in Problem 2.2 leads to the semi-infinite optimization problem of
Problem 2.3, because we have a finite number of constraints and a infinite amount of possible demand
realizations. However, as we will see in the next subsection, depending on how we define the set of
perturbation vectors ζ ∈ Z ⊂ RT we are able to derive a tractable representation for Problem 2.3,
otherwise known as its Robust Counterpart.

Problem 2.3 (Uncertain Production Planning Problem).

min
T∑
t=1

yt (2.24)

s.t. h
(
I0 +

t∑
s=1

(qs − ds)
)
≤ yt d ∈ U , t = 1 . . . T (2.25)

− b
(
I0 +

t∑
s=1

(qs − ds)
)
≤ yt d ∈ U , t = 1 . . . T (2.26)

qt ≤ Ct t = 1 . . . T (2.27)

qt, yt ≥ 0 t = 1 . . . T (2.28)

2.4.2 A Conservative Robust Counterpart: l∞-norm

We now consider the case a l∞-norm is defined on the set of perturbation vectors. This type of
uncertainty is also known as box or interval uncertainty, i.e. we assume the per period realization of
demand to range in the interval dt = [d̄t − d̂t, d̄t + d̂t]. We continue from the uncertain production
planning problem found in Problem 2.3 and define the set of perturbation vectors Z as,

Z = {ζ ∈ RT : ‖ζ‖∞ ≤ 1} (2.29)

The demand vector is parameterized in an affine fashion by the perturbation vectors,

d(ζ) = d0 +

T∑
t=1

dtζt ‖ζ‖∞ ≤ 1 (2.30)

For this reason the individual per period demand can be described as follows,

dt(ζ) = d̄t + d̂tζt |ζt| ≤ 1 (2.31)

Clearly, when we enforce the l∞-norm on the perturbation vectors and bound it from above by 1,
we obtain interval uncertainty. When we combine this all, we get uncertainty set U∞,

U∞ =

{
d = d0 +

T∑
t=1

ζtd
t : ζ ∈ Z = {ζ ∈ RT : ‖ζ‖∞ ≤ 1} ⊂ RT

}
(2.32)
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We rewrite some of the constraints in the uncertain production planning problem for the sake of
convenience and this leads to the following,

min
T∑
t=1

yt (2.33)

s.t. − yt + h
( t∑
s=1

qs −
t∑

s=1

dszs
)
≤ −hI0 ∀d ∈ U∞, t = 1 . . . T (2.34)

− yt − b
( t∑
s=1

qs −
t∑

s=1

dszs
)
≤ bI0 ∀d ∈ U∞, t = 1 . . . T (2.35)

qt ≤ Ct t = 1 . . . T (2.36)

zt = 1 t = 1 . . . T (2.37)

qt, yt ≥ 0 t = 1 . . . T (2.38)

We can introduce the parameterized versions of the per period demand, dt(ζ) = d̄t + d̂tζt, into the
uncertain production planning problem and use the definition of uncertainty set U∞ to arrive at the
following,

min
T∑
t=1

yt (2.39)

s.t. − yt + h
( t∑
s=1

qs −
t∑

s=1

(d̄s + d̂sζs)zs
)
≤ −hI0 ‖ζ‖∞ ≤ 1, t = 1 . . . T (2.40)

− yt − b
( t∑
s=1

qs −
t∑

s=1

(d̄s + d̂sζs)zs
)
≤ bI0 ‖ζ‖∞ ≤ 1, t = 1 . . . T (2.41)

qt ≤ Ct t = 1 . . . T (2.42)

zt = 1 t = 1 . . . T (2.43)

qt, yt ≥ 0 t = 1 . . . T (2.44)

which can be rewritten into,

min
T∑
t=1

yt (2.45)

s.t. − yt + h
( t∑
s=1

qs −
t∑

s=1

d̄szs −
t∑

s=1

d̂sζszs
)
≤ −hI0 |ζt| ≤ 1, t = 1 . . . T (2.46)

− yt − b
( t∑
s=1

qs −
t∑

s=1

d̄szs −
t∑

s=1

d̂sζszs
)
≤ bI0 |ζt| ≤ 1, t = 1 . . . T (2.47)

qt ≤ Ct t = 1 . . . T (2.48)

zt = 1 t = 1 . . . T (2.49)

qt, yt ≥ 0 t = 1 . . . T (2.50)
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and from this, we obtain,

min
T∑
t=1

yt (2.51)

s.t. − yt + h
( t∑
s=1

qs −
t∑

s=1

d̄szs + max
ζ:‖ζ‖∞≤1

t∑
s=1

d̂sζszs
)
≤ −hI0 t = 1 . . . T (2.52)

− yt − b
( t∑
s=1

bqs −
t∑

s=1

d̄szs − max
ζ:‖ζ‖∞≤1

t∑
s=1

d̂sζszs ≤ bI0 t = 1 . . . T (2.53)

qt ≤ Ct t = 1 . . . T (2.54)

zt = 1 t = 1 . . . T (2.55)

qt, yt ≥ 0 t = 1 . . . T (2.56)

In general, and as a consequence of Hölder’s inequality (see Appendix B), when p, q ∈ [1,∞] and
1
p + 1

q = 1, then the norms ‖.‖p and ‖.‖q are conjugates of each other,

‖x‖p = max
y:‖y‖q≤1

|〈x, y〉| (2.57)

We can use this to find the maximum in our constraints,

max
ζ:‖ζ‖∞≤1

t∑
s=1

d̂sζszs = max
ζ:‖ζ‖∞≤1

|〈ζ, d̂z>〉| = ‖


d̂1z1
d̂2z2

...

d̂szT

 ‖1 =

t∑
s=1

|d̂szs| (2.58)

Therefore, using U∞ as our uncertainty set, we arrive at the following Robust Counterpart of Problem
2.3,

Problem 2.4 (Robust Counterpart l∞-norm).

min
T∑
t=1

yt (2.59)

s.t. h
(
I0 +

t∑
s=1

qs −
t∑

s=1

d̄szs +

t∑
s=1

ωs

)
≤ yt t = 1 . . . T (2.60)

− b
(
I0 +

t∑
s=1

qs −
t∑

s=1

d̄szs −
t∑

s=1

ωs

)
≤ yt t = 1 . . . T (2.61)

− ωt ≤ d̂tzt ≤ ωt t = 1 . . . T (2.62)

qt ≤ Ct t = 1 . . . T (2.63)

zt = 1 t = 1 . . . T (2.64)

qt, yt ≥ 0 t = 1 . . . T (2.65)

What is of interest is the fact that when introducing uncertainty into our nominal production plan-
ning problem, formulated as linear optimization problem, we got a semi-infinite optimization problem
which in itself is intractable. However, when using interval uncertainty, we showed how to rewrite
this problem to obtain a tractable formulation known as its Robust Counterpart. The beauty in this
derivation lies in the fact that its Robust Counterpart happens to be a linear optimization problem
again.

Furthermore, we see that the Robust Counterpart is indeed the most conservative approach to
deal with demand uncertainty, because for each period it penalizes the constraints in the model by∑t
s=1 |d̂szs|, being the worst-case deviation. The interested reader might find more about the conser-

vativeness in RO in the work of Gorissen and den Hertog (2013). Though, one should keep in mind,
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even though the model is conservative, as far as the objective value concerned, nothing is said by that
on how the model would perform in a simulation study in a rolling horizon setting. Moreover, as we
will see later when discussing optimality, the parameters for the inventory holding cost and back-order
cost in Problem 2.4 lend themselves very well to control the conservativeness of the model.

2.4.3 A Less Conservative Robust Counterpart: l1-norm

In the this subsection we investigate the least conservative Robust Counterpart. We will start again from
the uncertain production planning problem of Problem 2.3. Though, now define the set of perturbation
vectors as Z = {ζ ∈ RT : ‖ζ‖1 ≤ γ}. Therefore, we obtain the following uncertainty set,

U1 =

{
d = d0 +

T∑
t=1

ζtd
t : ζ ∈ Z = {ζ ∈ RT : ‖ζ‖1 ≤ γ} ⊂ RT

}
(2.66)

Analogous to what we have done in case of interval uncertainty, we can introduce the parameterized
versions of demand, dt(ζ) = d̄t + d̂tζt, into the problem and arrive at the following,

min
T∑
t=1

yt (2.67)

s.t. − yt +

t∑
s=1

hqs − h
t∑

s=1

(d̄s + d̂sζs)zs ≤ −hI0 t = 1 . . . T (2.68)

− yt −
t∑

s=1

bqs + b

t∑
s=1

(d̄s + d̂sζt)zs ≤ bI0 t = 1 . . . T (2.69)

qt ≤ Ct t = 1 . . . T (2.70)

zt = 1 t = 1 . . . T (2.71)

qt, yt ≥ 0 t = 1 . . . T (2.72)

which can be rewritten in the same fashion as before into,

min
T∑
t=1

yt (2.73)

s.t. − yt +

t∑
s=1

hqs − h
t∑

s=1

d̄szs − h max
ζ:‖ζ‖1≤γ

t∑
s=1

d̂sζszs ≤ −hI0 t = 1 . . . T (2.74)

− yt −
t∑

s=1

bqs + b

t∑
s=1

d̄szs + b max
ζ:‖ζ‖1≤γ

t∑
s=1

d̂sζszs ≤ bI0 t = 1 . . . T (2.75)

qt ≤ Ct t = 1 . . . T (2.76)

zt = 1 t = 1 . . . T (2.77)

qt, yt ≥ 0 t = 1 . . . T (2.78)

We again use the fact that the l1-norm and l∞-norm are conjugates of each other to obtain the
maximum in our constraints,

max
ζ:‖ζ‖1≤γ

t∑
s=1

d̂sζszs = max
ζ:‖ζ‖1≤γ

|〈ζ, d̂z>〉| = ‖


d̂1z1
d̂2z2

...

d̂szT

 ‖∞ = γmax
s
|d̂szs| (2.79)

Therefore, when using U1 as our uncertainty set, we arrive at the following Robust Counterpart of
Problem 2.3,
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Problem 2.5 (Robust Counterpart l1-norm).

min
T∑
t=1

yt (2.80)

s.t. − yt +

t∑
s=1

hqs − h
t∑

s=1

d̄szs − γhmax
s:s<t

|d̂szs| ≤ −hI0 t = 1 . . . T (2.81)

− yt −
t∑

s=1

bqs + b

t∑
s=1

d̄szs + γbmax
s:s<t

|d̂szs| ≤ bI0 t = 1 . . . T (2.82)

qt ≤ Ct t = 1 . . . T (2.83)

zt = 1 t = 1 . . . T (2.84)

qt, yt ≥ 0 t = 1 . . . T (2.85)

The Robust Counterpart found in Problem 2.5 gets a penalty for robustness of γmaxs |d̂szs| or
the maximum deviation over all possible deviations for the planning horizon t = 1 . . . T times γ, a
parameter set to be set by the decision maker. We explore this more in the one of the next subsection
when we compare it to the conservative Robust Counterpart.

2.4.4 Cardinality Constrained Robust Counterpart

In this section we assume cardinality constrained uncertainty and derive a robust counterpart for the
nominal problem found in Problem 2.2. This type of uncertainty was first introduced by Bertsimas
and Sim (2004) and gained widespread attention after showing its usefulness in a supply chain setting
by Bertsimas and Thiele (2006). Other examples include the work of Alem and Morabito (2012) in
furniture production and the work of Aouam and Brahimi (2013) on integrated production planning
and order acceptance.

When using this type of uncertainty the per period demand dt is still assumed to range in the
interval, [d̄t − d̂t, d̄t + d̂t], though, each period the maximum allowed deviation of the center is dif-
ferent and constraint from above. The set of perturbation is defined in this case as, ζ ∈ Z ={
ζ ∈ RT : ‖ζ‖∞ ≤ 1 ∧

∑t
s=1 |ζs| ≤ Γt

}
and hence, we obtain the following uncertainty set,

Uc =

{
d = d0 +

T∑
t=1

ζtd
t : ζ ∈ Z =

{
ζ ∈ RT : ‖ζ‖∞ ≤ 1 ∧

t∑
s=1

|ζs| ≤ Γt

}
⊂ RT

}
(2.86)

Again, demand is parameterized by the perturbation vectors, hence, dt(ζ) = d̄t + d̂tζt. We can
substitute this in the nominal problem and obtain the following,

min
T∑
t=1

(cqt + yt) (2.87)

s.t. yt ≥ h

(
I0 +

t∑
s=1

(qs − (d̄t + d̂tζt))

)
∀d ∈ Uc, t = 1 . . . T (2.88)

yt ≥ −b

(
I0 +

t∑
s=1

(qs − (d̄t + d̂tζt))

)
∀d ∈ Uc, t = 1 . . . T (2.89)

qt ≤ Ct t = 1 . . . T (2.90)

qt, yt ≥ 0 t = 1 . . . T (2.91)
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Clearly, we have to solve the following auxiliary linear programming problem for all periods t,

max
t∑

s=1

d̂tζt (2.92)

s.t.
t∑

s=1

ζt ≤ Γt (2.93)

0 ≤ ‖ζt‖ ≤ 1 (2.94)

Following Theorem C.1 we obtain the dual which we can substitute back in the aforementioned
problem. It readily follows that the robust counterpart is as follows,

Problem 2.6 (Robust Counterpart Cardinality Constrained Uncertainty).

min
T∑
t=1

(cqt + yt) (2.95)

s.t. yt ≥ h(I0 +

t∑
s=1

(qs − d̄t) + vtΓk +

t∑
i=1

rit) t = 1 . . . T (2.96)

yt ≥ b(−I0 −
t∑

s=1

(qs − d̄t) + vtΓk +

t∑
i=1

rit) t = 1 . . . T (2.97)

vt + rit ≥ d̂i i < t, t = 1 . . . T (2.98)

vt ≥ 0 i < t, t = 1 . . . T (2.99)

rit ≥ 0 i < t, t = 1 . . . T (2.100)

qt ≤ Ct t = 1 . . . T (2.101)

2.5 On Optimality of Static Robust Optimization

2.5.1 Notes on Interval Uncertainty

Bertsimas and Thiele (2006) derive some interesting properties for the Robust Counterpart under car-
dinality constraint uncertainty. In this subsection we extend them to the case of interval uncertainty.
Though, we only consider the case where there are no fixed ordering costs, because we didn’t take
those into account thus far. In order to comprehend these results we have to start with the following
definition,

Definition 2.1 ((S,S) and (s,S) Policies, cf. Bertsimas and Thiele (2006)). The optimal policy of
an inventory optimization problem is (s, S), or base-stock, if there exists a threshold sequence (st, St)
such that at each period it is optimal to let the linear dynamical system of Problem 2.1 be corrected
by qt = St − dt if It < st and zero otherwise. If there is no fixed ordering cost, st = St.

This definition is essential in the theorem and corollary that we will see shortly. Below we repeat a
theorem from Bertsimas and Thiele (2006) on the optimal robust policy in case of cardinality constraint
uncertainty.

Theorem 2.1 (Optimal Robust Policy for Uc, cf. Bertsimas and Thiele (2006)). 1. In case of
cardinality constraint uncertainty, the optimal policy for the Robust Counterpart found in Problem
2.6, evaluated at time 1 for the rest of the horizon, is the optimal policy for the nominal problem
with the modified demand,

d′t = d̄t +
b− h
b+ h

(At −At−1) (2.102)

where At = v?t Γt +
∑t
i=1 r

∗
it is the deviation of the cumulative demand from its mean at time t,

v?t and r?it being the optimal variables in Problem 2.6.
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2. If there is no fixed cost, the optimal robust policy is (S, S) with St = d′t for all t.

The interested reader is referred to Bertsimas and Thiele (2006) for a formal proof of Theorem 2.1.
It can readily been seen that this theorem is more generic and interval uncertainty is a specific case as
the following corollary shows.

Corollary 2.1 (Optimal Robust Policy for U∞). 1. In case of interval uncertainty, the optimal
policy for the Robust Counterpart found in Problem 2.4, evaluated at time 1 for the rest of the
horizon, it the optimal policy for the nominal problem with the modified demand,

d′t = d̄t +
b− h
b+ h

d̂t (2.103)

2. The optimal robust policy is (S, S) with St = d′t for all t.

Proof. The proof of this corollary is based on the fact that uncertainty set U∞ can be expressed as
a instance of Uc. This is the case if we take Γt to be greater than or equal to the sum of maximum
values ζs, s ≤ t, can take. We know that 0 ≤ |ζt| ≤ 1, so taking Γt ≥ t should suffice and hence, in
this case Uc = U∞. Therefore, without any loss of optimality we can let At − At−1 be d̄t in Theorem
2.1 as it accounts for the deviation of the demand from its mean at time t.

Corollary 2.1 leads to an interesting result, being that the production quantities in the Robust
Counterpart aren’t covering the worst-case realization of demand: d̄t + d̂t. Instead, they are based
on the modified demand pattern as expressed by Equation 2.103. In other words, they are based on
what seems like a critical fractal that is frequently encountered in stochastic (multi-echelon) inventory
optimization (see Clark and Scarf (1960), van Houtum (2006)). Clearly, RO applied to the nominal
production planning problem does not lead to a Robust Counterpart which produces for the worst-case,
but to a Robust Counterpart where we can influence resulting production plan by means of our input
parameters, i.e. the inventory holding cost and the back-order cost.

2.5.2 The Effect of Using the l∞-norm or l1-norm

Albeit the l∞-norm and l1-norm being the complete opposite of each other, they show some resemblance
for certain input parameters. This is especially true when simulating the models in a rolling horizon
fashion where only the next period’s production quantity has to be committed after planning.

In Proposition 2.1 we show that for certain input parameters the first period production quantities,
q1 are equal in case a l∞-norm or l1-norms is used.

Proposition 2.1. Consider the semi-infinite optimization problem found in Problem 2.3. No matter
which of the two uncertainty sets, U∞ or U1, we are using, if γ = 1 and the demand half-length for
period t is equal in both Robust Counterparts, then the resulting first period production quantities from
both models are equal.

Proof. For an arbitrary uncertainty set Up, p = 1 ∨ p =∞, and time period t, consider the constraint
related to holding inventory,

− yt +

t∑
s=1

hqs − h
t∑

s=1

dszs ≤ −hI0 ∀d ∈ Up (2.104)

Remark that the demand vector is parameterized in an affine fashion by the perturbation vectors,

d(ζ) = d0 +

T∑
t=1

dtζt ‖ζ‖p ≤ κ (2.105)

and that the per period demand can then be described as follows,

dt(ζ) = d̄t + d̂tζt |ζt| ≤ κ (2.106)
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We can substitute this in Equation 2.104 and rewrite everything in a similar fashion as before,

− yt +

t∑
s=1

hqs − h
t∑

s=1

d̄szs − h max
ζ:‖ζ‖p≤κ

t∑
s=1

d̂sζszs ≤ −hI0 (2.107)

Again, we use the fact that if p, q ∈ [1,∞] and 1
q + 1

p = 1, then ‖.‖p and ‖.‖p are conjugates of
each other and,

max
y:‖y‖q≤κ

|〈x, y〉| = ‖x‖p (2.108)

or specific to this situation,

max
ζ:‖ζ‖p≤κ

t∑
s=1

d̂sζszs = κ‖


d̂1z1
d̂2z2

...

d̂szT

 ‖q (2.109)

Then, in case p =∞, κ = 1, and t = 1 we obtain the following,

max
ζ:‖ζ‖∞≤1

1∑
s=1

d̂sζszs = ‖
(
d̂1z1

)
‖1 =

1∑
s=1

|d̂szs| = |d̂1z1| (2.110)

and in case p = 1, κ = γ = 1, and t = 1 we obtain the following,

max
ζ:‖ζ‖1≤1

1∑
s=1

d̂sζszs = ‖
(
d̂1z1

)
‖∞ = max

s=1
|d̂szs| = |d̂1z1| (2.111)

Equations 2.110 and 2.111 are equal. In an analogous way this can be shown to hold for the
constraint regarding the back-order cost. Consequently, this will result in the same penalty for both
models with regards to the first period production quantity q1 and because of that, the first period
production quantity will be equal in both cases. This concludes the proof.

A very important insight follows from Proposition 2.1. If we use the Robust Counterpart resulting
from taking the l∞-norm or the l1-norm in our uncertain production planning problem and set γ = 1,
then we get equal first period production quantities. As a consequence, if we compare both approaches
in a rolling horizon setting during a simulation study and only have to commit the first period after
planning, then we would obtain equal first period production quantities and because of that, both
models will give the same result.

2.6 Multi-Stage Robust Optimization

2.6.1 Affinely Adjustable Robust Counterpart

A careful reader might have noticed that in static RO the decisions concern “here and now” decisions
and because of that, the production quantity for a certain period is not dependent on the realization of
demand in the previous periods. However, as one can might imagine, there is a desire to let the current
periods decision depend on the realization of the pervious periods disturbances. Of course, this could
be done in a rolling horizon setting. Though, even in a rolling horizon setting we want to be able to
let a periods production quantity depend on pervious realizations of demand if we had to commit for
more than 1 period in advance.

The methodologies developed in Ben-Tal et al. (2004), Ben-Tal et al. (2005), Ben-Tal et al. (2009b)
and Bertsimas et al. (2010) enable us to let the current periods production quantity depend on pervious
realization in demand. The Robust Counterpart that is able to deal with these previous realization
is called the Adjustable Robust Counterpart (ARC). However, in order for this to be computationally
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tractable, we restrict ourselves in this case to interval uncertainty, i.e. the uncertainty set U∞. Fur-
thermore, we define Linear Decision Rules for all t, where the current periods production quantity is
depends in an affine fashion on the pervious periods realizations of demand,

qt = q0t +

t−1∑
τ=1

qτt dτ (2.112)

By letting the production quantities be define by the Linear Decision Rule above, we have to do the
same for the upper bounds on the inventory holding costs and back-order costs, Ben-Tal et al. (2009b),

yt = y0t +

t∑
τ=1

yτt dτ (2.113)

A detailed explanation why we loss nothing when restricting yt to be an affine function of all dt
until t instead of T can be found in Ben-Tal et al. (2009b, pp. 426-428). Furthermore, when using
Linear Decision Rules, our Robust Counterpart becomes known as the AARC.

We use the Linear Decision Rules we defined above and start from the nominal production planning
problem we have seen before in Problem 2.2 to derive the AARC. For the sake of completeness we
repeat the nominal problem below,

Problem 2.7 (Nominal Production Planning Problem).

min κ (2.114)

s.t. κ ≥
T∑
t=1

(cqt + yt) (2.115)

yt ≥ h

(
I0 +

t∑
s=1

(qs − ds)

)
t = 1 . . . T (2.116)

yt ≥ −b

(
I0 +

t∑
s=1

(qs − ds)

)
t = 1 . . . T (2.117)

qt ≤ Ct t = 1 . . . T (2.118)

qt ≥ 0 t = 1 . . . T (2.119)

Demand is uncertain and is assumed to range within a specific interval, dt ∈ [d̄t − d̂t, d̄t + d̂t], i.e.
we have uncertainty set U∞. This brings us at the following semi-infinite optimization problem,

Problem 2.8 (Semi-Infinite Optimization Problem).

min κ (2.120)

s.t. κ ≥
T∑
t=1

(
c(q0t +

t−1∑
τ=1

qτt dτ ) + (y0t +

t∑
τ=1

yτt dτ )

)
∀d ∈ U∞ (2.121)

y0t +

t∑
τ=1

yτt dτ ≥ h

(
I0 +

t∑
s=1

(
(q0s +

t−1∑
τ=1

qτt dτ )− ds
))

t = 1 . . . T, ∀d ∈ U∞ (2.122)

y0t +

t∑
τ=1

yτt dτ ≥ −b

(
I0 +

t∑
s=1

(
(q0s +

t−1∑
τ=1

qτt dτ )− ds
))

t = 1 . . . T, ∀d ∈ U∞ (2.123)

q0t +

t−1∑
τ=1

qτt dτ ≤ Ct t = 1 . . . T, ∀d ∈ U∞ (2.124)

q0t +

t−1∑
τ=1

qτt dτ ≥ 0 t = 1 . . . T, ∀d ∈ U∞ (2.125)
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We rewrite this semi-infinite optimization problem into a linear optimization problem by separately
rewriting each of its constraints. We start by rewriting the first constraint which is related to the
objective function,

κ ≥
T∑
t=1

(cqt + yt) (2.126)

⇔ κ ≥
T∑
t=1

(
c(q0t +

t−1∑
τ=1

qτt dτ ) + (y0t +

t∑
τ=1

yτt dτ )
)

(2.127)

⇔ κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
t=1

t−1∑
τ=1

(cqτt dτ ) +

T∑
t=1

t∑
τ=1

(yτt dτ ) (2.128)

We use the fact that,

T∑
t=1

t−1∑
τ=1

cqτt dτ =

T−1∑
τ=1

T∑
t=τ+1

cqτt dτ =

T∑
τ=1

T∑
t=τ+1

cqτt dτ ,

T∑
t=1

t∑
τ=1

yτt dτ =

T∑
τ=1

T∑
t=τ

yτt dτ (2.129)

Remark that, we can safely let the first summation in
∑T−1
τ=1

∑T
t=τ+1 cq

τ
t dτ run from τ = 1 to T

instead, because if τ = T then
∑T
t=τ+1 cq

τ
t dτ evaluates to the zero sum. For the sake of convenience,

we define an additional variable αt,

ατ ≡
T∑

t=τ+1

(cqτt ) +

T∑
t=τ

(yτt ) (2.130)

Furthermore, in the next derivation and in those that will follow, we will make extensive use of
the following equivalences to arrive at the computational tractable representation of the semi-infinite
optimization problem.

T∑
t=1

dtxt ≤ y,∀dt ∈ [d̄t − d̂t, d̄t + d̂t] (2.131)

⇔
∑
t:xt<0

(d̄txt − d̂txt) +
∑
t:xt>0

(d̄txt + d̂txt) ≤ y (2.132)

⇔
T∑
t=1

d̄txt +

T∑
t=1

d̂t|xt| ≤ y (2.133)

⇔
T∑
t=1

d̄txt +

T∑
t=1

d̂tλt ≤ y,with − λt ≤ xt ≤ λt (2.134)

We continue with the objective function using the equivalences mentioned above and our newly
defined variable ατ .

κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
t=1

t−1∑
τ=1

cqτt dτ +

T∑
t=1

t∑
τ=1

yτt dτ (2.135)

⇔ κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
τ=1

T∑
t=τ+1

cqτt dτ +

T∑
τ=1

T∑
t=τ

yτt dτ (2.136)

⇔ κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
τ=1

( T∑
t=τ+1

cqτt +

T∑
t=τ

yτt

)
dτ (2.137)

(2.138)
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⇔ κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
τ=1

ατdτ (2.139)

⇔ κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
τ=1

ατ d̄τ +

T∑
τ=1

|ατ |d̂τ (2.140)

⇔ κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
τ=1

ατ d̄τ +

T∑
τ=1

λτ d̂τ (2.141)

with −λτ ≤ ατ ≤ λτ . In a similar fashion we continue by rewriting the constraint related to the
inventory balance equation, starting with the part related to the inventory holding costs.

yt ≥ h

(
I0 +

t∑
s=1

(qs − ds)

)
(2.142)

⇔ yt ≥ hI0 + h

t∑
s=1

qs − h
t∑

s=1

ds (2.143)

⇔ y0t +

t∑
τ=1

yτt dτ ≥ hI0 + h

t∑
s=1

(q0s +

s−1∑
τ=1

qτs dτ )− h
t∑

s=1

ds (2.144)

⇔ y0t +

t∑
τ=1

yτt dτ ≥ hI0 + h

t∑
s=1

q0s + h

t∑
s=1

s−1∑
τ=1

qτs dτ − h
t∑

s=1

ds (2.145)

⇔ y0t +

t∑
τ=1

yτt dτ ≥ hI0 + h

t∑
s=1

q0s + h

t−1∑
τ=1

t∑
s=τ+1

qτs dτ − h
t∑

τ=1

dτ (2.146)

⇔ − hI0 ≥ h
t∑

s=1

q0s − y0t −
t∑

τ=1

yτt dτ + h

t−1∑
τ=1

t∑
s=τ+1

qτs dτ − h
t∑

τ=1

dτ (2.147)

Again, remark that in case τ = t, then the summation
∑t
s=τ+1 q

τ
s evaluates to the zero sum.

Therefore, we can extend the range of the summation in a similar way as before. Furthermore, we
define additional variable γτt ,

γτt ≡ yτt − h
t∑

s=τ+1

qτs + h (2.148)

and use this to obtain,

∀t, − hI0 ≥ h
t∑

s=1

q0s − y0t −
t∑

τ=1

(
(yτt − h

t∑
s=τ+1

qτs + h)dτ
)

(2.149)

⇔ − hI0 ≥ h
t∑

s=1

q0s − y0t −
t∑

τ=1

γτt dτ (2.150)

⇔ − hI0 ≥ h
t∑

s=1

q0s − y0t −
t∑

τ=1

γτt d̄τ +

t∑
τ=1

|γτt |d̂τ (2.151)

⇔ − hI0 ≥ h
t∑

s=1

q0s − y0t −
t∑

τ=1

γτt d̄τ +

t∑
τ=1

πτt d̂τ (2.152)

with −πτt ≤ γτt ≤ πτt . Analogous to the constraint related to the inventory holding costs we rewrite
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the part related to the back-order costs.

∀t, yt ≥ −b

(
I0 +

t∑
s=1

(qs − ds)

)
(2.153)

⇔ yt ≥ −bI0 − b
t∑

s=1

qs + b

t∑
s=1

ds (2.154)

⇔ y0t +

t∑
τ=1

yτt dτ ≥ −bI0 − b
t∑

s=1

(q0s +

s−1∑
τ=1

qτs dτ ) + b

t∑
s=1

ds (2.155)

⇔ y0t +

t∑
τ=1

yτt dτ ≥ −bI0 − b
t∑

s=1

q0s − b
t∑

s=1

s−1∑
τ=1

qτs dτ + b

t∑
s=1

ds (2.156)

⇔ y0t +

t∑
τ=1

yτt dτ ≥ −bI0 − b
t∑

s=1

q0s − b
t−1∑
τ=1

t∑
s=τ+1

qτs dτ + b

t∑
τ=1

dτ (2.157)

⇔ bI0 ≥ −b
t∑

s=1

q0s − y0t −
t∑

τ=1

yτt dτ − b
t−1∑
τ=1

t∑
s=τ+1

qτs dτ + b

t∑
τ=1

dτ (2.158)

We define additional variable ωτt ,

ωτt ≡ yτt + b

t∑
s=τ+1

qτs − b (2.159)

and use this to obtain,

∀t, bI0 ≥ −b
t∑

s=1

q0s − y0t −
t∑

τ=1

(
(yτt + b

t∑
s=τ+1

qτs − b)dτ
)

(2.160)

⇔ bI0 ≥ −b
t∑

s=1

q0s − y0t −
t∑

τ=1

ωτt dτ (2.161)

⇔ bI0 ≥ −b
t∑

s=1

q0s − y0t −
t∑

τ=1

ωτt d̄τ +

t∑
τ=1

|ωτt |d̂τ (2.162)

⇔ bI0 ≥ −b
t∑

s=1

q0s − y0t −
t∑

τ=1

ωτt d̄τ +

t∑
τ=1

φτt d̂τ (2.163)

with −φτt ≤ ωτt ≤ φτt . Next is the capacity related constraint, it readily follows from using the
equivalences that,

qt ≤ Ct (2.164)

⇔ q0t +

t−1∑
τ=1

qτt dτ ≤ Ct (2.165)

⇔ q0t +

t−1∑
τ=1

qτt d̄τ +

t−1∑
τ=1

|qτt |d̂τ ≤ Ct (2.166)

⇔ q0t +

t−1∑
τ=1

qτt d̄τ +

t−1∑
τ=1

ψτt d̂τ ≤ Ct (2.167)
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with, −ψτt ≤ qτt ≤ ψτt . Likewise for the lower bound on qt,

∀t, qt ≥ 0 (2.168)

⇔ q0t +

t−1∑
τ=1

qτt dτ ≥ 0 (2.169)

⇔ q0t +

t−1∑
τ=1

qτt d̄τ +

t−1∑
τ=1

|qτt |d̂τ ≥ 0 (2.170)

⇔ q0t +

t−1∑
τ=1

qτt d̄τ +

t−1∑
τ=1

ψτt d̂τ ≥ 0 (2.171)

with, −ψτt ≤ qτt ≤ ψτt . Finally, we are able to combine each of the constraints that we have
rewritten, to obtain the the AARC of the Semi-Infinite Optimization that we started with.

Problem 2.9 (Affinely Adjustable Robust Counterpart for U∞).

min κ (2.172)

s.t. κ ≥
T∑
t=1

(cq0t + y0t ) +

T∑
τ=1

ατ d̄τ +

T∑
τ=1

λτ d̂τ (2.173)

ατ =

T∑
t=τ+1

(cqτt ) +

T∑
t=τ

(yτt ) τ = 1 . . . T (2.174)

− λτ ≤ ατ ≤ λτ τ = 1 . . . T (2.175)

− hI0 ≥ h
t∑

s=1

q0s − y0t −
t∑

τ=1

γτt d̄τ +

t∑
τ=1

πτt d̂τ t = 1 . . . T (2.176)

bI0 ≥ −b
t∑

s=1

q0s − y0t −
t∑

τ=1

ωτt d̄τ +

t∑
τ=1

φτt d̂τ t = 1 . . . T (2.177)

γτt = yτt − h
t∑

s=τ+1

qτs + h τ = 1 . . . T, t = 1 . . . T (2.178)

ωτt = yτt + b

t∑
s=τ+1

qτs − b τ = 1 . . . T, t = 1 . . . T (2.179)

− πτt ≤ γτt ≤ πτt τ = 1 . . . T, t = 1 . . . T (2.180)

− φτt ≤ ωτt ≤ φτt τ = 1 . . . T, t = 1 . . . T (2.181)

q0t +

t−1∑
τ=1

qτt d̄τ +

t−1∑
τ=1

ψτt d̂τ ≤ Ct t = 1 . . . T (2.182)

q0t +

t−1∑
τ=1

qτt d̄τ +

t−1∑
τ=1

ψτt d̂τ ≥ 0 t = 1 . . . T (2.183)

− ψτt ≤ qτt ≤ ψτt t = 1 . . . T, τ < t (2.184)

where κ, {qτt }, {yτt }, {ατ}, {λτ}, {γτt }, {πτt }, {ωτt }, {φτt } and {ψτt } are the decision variables that
together make up the decision vector.

2.6.2 Adjustable Robust Mixed-Integer Optimization

So far we have discussed the techniques and methodologies of RO based on a basic production planning
problem. These techniques and methodologies form the state of the art. Though, as in most fields,
things will continue to evolve and this will lead to new opportunities. This is also the case for Adjustable
RO in case of integer (or binary) decision variables. It must be mentioned that the AARC will not work
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in case of integer (or binary) decision variables, because this would mean that the integer (or binary)
decision variable has be expressed as a Linear Decision Rule and this is clearly not possible. This makes
it impossible to use this technique in the next chapter, because we will work with a binary decision
variable there to decide on production setups.

However, it is worth mentioning that work has been done to deal with integer (or binary) decision
variables in Adjustable RO, but according to Bertsimas and Georghiou (2015) the results are far from
optimal. Though, at the time of writing two articles came into being that seem to be promising in
solving this issue, but they emerged to late to incorporate in this work. Nevertheless, the interested
reader is recommended to look at the work of Bertsimas and Georghiou (2015) or Postek and den
Hertog (2015)).

2.7 Distributionally Robust Optimization

We concluded the last section with some kind of a future outlook with regards to Adjustable RO.
Besides that development, there is another one worth mentioning, namely Distributionally RO (DRO).

We started in this chapter with a generic representation of multi-stage decision problems. This led
to our nominal production planning problem and eventually, we introduced uncertainty in it. We did
so in a more or less geometrical way, so to say, because we extended the normal polyhedron to which
a optimal solution should belong, e.g. by using interval uncertainty. However, there is a significant
part of research that deals with uncertainty by means of a probability distribution, i.e. the techniques
around Stochastic Programming. So traditionally, there are two ways to deal with uncertainty, i.e. in
a geometrical way as RO does or in a stochastic way as in Stochastic Programming.

However, quite recently, DRO gained widespread attention and can be regarded as a third method.
This method appears to be closing the gap between the two fields, because it borrows the probabilistic
notion of uncertainty from the stochastic world and combines it with the ability to come up with tractable
results from RO. The latter is something Stochastic Programming suffers from for large instances and
this issue is known as the curse of dimensionality.

We have discussed before that in case of RO we want our constraints to hold for each possible
realization of the parameters z belonging to uncertainty set U ,

sup
z∈U

f(x, z) ≤ 0 (2.185)

Though, in case of Stochastic Programming, parameter z would be a random variable belonging to
a known probability distribution and we start solving the problem from there. However, it is not strictly
the case that this probability distribution is known, or known with certainty. DRO takes a different
approach in this. It still assumes parameter z to be a random variable, but the probability distribution is
unknown. The only information known are the first few moments, e.g. the mean, variance and perhaps
skewness. The random parameter z has a distribution Pz and belongs to the so called ambiguity set P.
In this setting there are two constraints one can distinct: the worst-case expected feasibility constraint,

sup
Pz∈P

EPz
[f(x, z)] ≤ 0 (2.186)

and chance constraints,

sup
Pz∈P

P [f(x, z)] ≤ ε (2.187)

The literature of this type of problem started with the work of Scarf et al. (1958), but meanwhile it
gained more and more attention and quite recently a paper by Postek et al. (2015) puts it back on the
map. With most work still being of aimed at developing methodologies, the techniques of DRO are in
its infancy, but they are worth to keep an eye on in the future.

2.8 Conclusion

In this chapter we started with a generic multi-stage decision problem and showed that a simple produc-
tion planning problem can be represented as such. This problem took the form of a Linear Optimization
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problem. We have introduced demand uncertainty herein in a geometrical way. For various types of
uncertainty sets we have shown how to come up with its Robust Counterpart. We have even seen one,
the one with cardinality constraint uncertainty, where the uncertainty can be controlled per period by
means of a parameter. Thereafter, we made the extension to the Affinely Adjustable Robust Counter-
part. This enabled us to take into consideration the pervious realizations of demand if we are planning
for the next period. Furthermore, we have discussed some interesting properties with regards of the
optimality and we concluded this chapter with a future outlook on RO. The outlook is mend to be
more of a reminder of the potential of RO. With the knowledge gained in this chapter, we will be able
to apply its techniques and methodologies to a more complicated production planning problem which
forms the core of this thesis: the CLSP. For sure, we can answer confirmative to the first of our research
questions: yes, we can apply the methodologies of RO to production planning problems.



Chapter 3

The Capacitated Lot-Sizing Problem
under Demand Uncertainty

3.1 Introduction

In this chapter we study the CLSP in case of deterministic demand and in case of uncertain demand.
We start in the next section with formulating the problem as a Mixed Integer LO problem in case
of dynamic and time-varying demand. Despite the computational challenges that come with such a
formulation, we do stick with it as it provides nice grounds for introducing a stochastic as well as a
robust counterpart. In the next chapter we discuss the simulation study in which these models will be
subject to thorough testing and analysis.

3.2 The Deterministic Capacitated Lot Sizing Problems

3.2.1 The Problem

The CLSP discussed in this chapter is a finite-horizon, periodic review, multi-item, single location
production planning problem. Basically, we extend the single item production planning situation of the
previous chapter, into one where we have to plan production for multiple items on one machine with
limited capacity, while incurring setup and holding costs. The presence of inventory holding costs and
setup costs leads to the trade-off between holding more inventory or switching between producing a
certain item more often. Of course, all while taking into account the per period capacity restrictions.
The capacity restriction in case of deterministic demand makes the CLSP an extension of the well-known
dynamic lot sizing problem by Wagner and Whitin (1958).

In our case it is allowed to produce different types of products in one period. Hence, the CLSP is of
a “big bucket” type of problem (Helber et al. (2013)). Contrary to “small-bucket” problems where the
periods are set smaller and we have to decide how much periods to produce a certain product before
switching to producing another product in a later period.

Capacity is expressed as the amount of time units available for production and setting up production.
Capacity is then only consumed by the time required to setup the machine before production can
commence and capacity is consumed by the time needed to produce the items of that time period.

As has been mentioned before, we first assume demand to be deterministic and that the available
capacity is sufficiently large to satisfy demand. However, when capacity becomes a scares resource and
when demand becomes stochastic, we might run into trouble. The reason for this is that we might
need more capacity than available due to an extreme realization of demand to satisfy our service level
constraint. Therefore, we relax the model in order to overcome this problem and to ensure that we
still end up with a feasible production plan. We do so by introducing overtime, which evidently comes
at a certain cost. The price of overtime is set in such a way that it is undesirable to use it, because
this would result in the most fair way to study the trade of between holding inventory and setting up
production. Note, that the aim is to come up with a feasible production plan, not really to have extra
capacity.

35
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3.2.2 A Mixed Integer Programming Formulation

Based on the problem description that we gave in the previous subsection and based on the work of
Helber et al. (2013), we can describe the CLSP as the Mixed Integer LO problem found in Problem 3.1
below. Note, this is the same nominal model as introduced in Chapter 1, but its repeated for the sake
of completeness.

Problem 3.1 (Nominal Capacitated Lot Sizing Problem).

min
T∑
t=1

∑
k∈K

(sckγkt + ykt) +

T∑
t=1

ocot (3.1)

s.t. hck

(
Ik0 +

t∑
τ=1

(qkτ − dkτ )
)
≤ ykt k ∈ K, t ∈ T (3.2)

− bck
(
Ik0 +

t∑
τ=1

(qkτ − dkτ )
)
≤ ykt k ∈ K, t ∈ T (3.3)

qkt ≤Mγkt k ∈ K, t ∈ T (3.4)∑
k∈K

(tpkqkt + tskγkt) ≤ Ct + ot t ∈ T (3.5)

γkt ∈ {0, 1} k ∈ K, t ∈ T (3.6)

qkt, ot ≥ 0 k ∈ K, t ∈ T (3.7)

In Problem 3.1 we have for each product k setup cost sck, inventory holding cost hck, back-order cost
bck and related per unit processing time tpk and setup time tsk. For each time period t we have limited
capacity Ct and possibly some overcapacity ot at cost oc. We have decision variables qkt, Ikt, γkt and
ot, respectively, representing the production quantity, the inventory level, the binary setup decision for
item k in period t and the amount of overtime required. We have set a lower bound on the inventory
level for each product k to ensure production over the finite planning horizon, because otherwise the
model would put everything on back-order, for which no costs are incurred in this model, to avoid
setups and holding inventory.

Constraint 3.6 represents the binary decision variable which can only becomes one if we produce
something. This is ensured by Constraint 3.4, in which M � Ct + ot, because γkt will only be one if
qkt > 0. Constraints 3.2 and 3.3 represent the inventory balance equation as they relate the previous
periods inventory level, the amount produced in time period t and the demand in the same time period
with the inventory level at the beginning of the next time period. Note, the initial inventory levels
for each product are parameters to the model. Constraint 3.5 limits the time spend on setups and
production to the available capacity and this includes the overtime.

It is noteworthy to mention that this formulation of the CLSP allows for dynamic and time-varying
demand contrary to a large body of formulations that assume stationary demand. In the latter case,
demands for the various products arrive according to mutually independent and stationary stochastic
processes. This assumption is studied widely and known as the Stochastic Economic Lot Sizing Problem.
The work of Sox et al. (1999) and Winands et al. (2011) provide an extensive review of the existing
literature. The models discussed herein are out of scope, because they only focus on stationary demand.

3.2.3 Heuristics for the Deterministic Capacitated Lot-Sizing Problem

Solving the CLSP by means of a Mixed Integer LO has its drawbacks, because the problem is known
to be non-deterministic polynomial-time complete (NP-complete) (Maes et al. (1991)), which means
that a candidate solution to the CLSP can be verified in polynomial time and that every problem in NP
can be reduced to the CLSP. Consequently, it is unlikely that we will ever find an algorithm to solve
the problem in polynomial time. A vast body of literature exists for improving the computational time
of the CLSP with most solutions relying on heuristics.

Next we will discuss some of the most interesting heuristics and the first of them is the ABC-heuristic
proposed by Maes and van Wassenhove (1986). Their heuristic takes three steps common to lot sizing
problems: the lot sizing step, a feasibility routine and an improvement step. In their lot sizing step
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they determine whether or not to include a certain time period its demand in the current lot based on
certain criterion. One of them is the well known Silver-Meal criterion. Using a lookahead mechanism
they build up inventory in earlier periods to avoid shortages in case of insufficient capacity later on.
The improvement step looks if there are pairs of lots that can be combined while not avoiding the
capacity constraint nor increasing costs. The ABC-heuristic proves to be a great improvement over
existing methods at that time, like Manne (1958) or Dzielinksi et al. (1963), because it is very fast and
very simple.

Tempelmeier and Herpers (2010) alter the ABC-heuristic in such a way that it is able to deal with
stochastic demand. This new heuristic is known as the ABCβ-heuristic. They introduce a β-service level
to account for demand uncertainty. The lot sizes are then set such that the service level is satisfied.
The cost criteria are altered as well, because we now have to deal with expected costs. However,
the underlying idea behind these criteria still remains. Another interesting aspect of this work is the
fact that it uses the “static uncertainty” strategy of Bookbinder and Tan (1988). This means that
production is planned for T time periods and that this planning is implemented for each period t ≤ T ,
which is in contrast to the “static-dynamic uncertainty” strategy or “dynamic uncertainty” strategy.
The static-dynamic uncertainty strategy is one where the periods of production are fixed, but their sizes
depend on previous demand realization. The dynamic uncertainty strategy shows a close resemblance
to the Affinely Adjustable Robust Counterpart that we have seen before as both tend to “wait-and-see”
the actual realizations of demand dτ , τ < t before a decision has to be made for period t, meaning if
there will be a setup and if so, the lot size.

Helber and Sahling (2010) propose an optimization-based solution approach that solves a series
of Mixed Integer LO problems using a “fix-and-optimize” algorithm. The general structure of the
fix-and-optimize algorithm can be found in Algorithm 1 below.

Algorithm 1: Fix-and-Optimize-Heuristic(K, T , SCLSP,L)

Input: set of product indices K, set of time indices T , lot sizing algorithm SCLSP , maximum
of iterations L

Output: Lot sizes per period
begin1

for (k, t) ∈ K × T do2

Fix(γkt = 1)3

Solve(SCLSP(KT fix0 )) and obtain Z? and γ0kt ∀(k, t)4

γkt ← γ0kt ∀(k, t) ∈ K × T5

repeat6

l←− l + 17

foreach s ∈ S do8

Define KT fixs9

for (k, t) ∈ KT fixs do10

Fix(γkt = γkt)11

for (k, t) ∈ KT opts do12

Unfix(γkt)13

Solve(SCLSP(KT fixs )) and obtain Zs and γskt ∀(k, t)14

if Zs ≤ Z? then15

Z? ←− Zs16

γkt ←− γskt ∀(k, t) ∈ KT17

until l = L or no improvement has been achieved for the last S subproblems18

end19

The algorithm decomposes the problem into subproblems of more practical dimensions, for example
by using product-oriented decomposition. In this case, each subproblem s corresponds to a product k.
In each of these subproblems the whole planning horizon is considered and lot sizes are determined for
it. Computation time is reduced in each subproblem, because most of the binary decision variables are
fixed. We can fix each binary variable, because we can exploit the fact that overtime is allowed.
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For the remainder of this chapter as well as for the remainder of this thesis, we will leave the
heuristics mentioned above out of consideration. We will only focus on comparing methods purely
based on mathematical optimization, because these are the ones that lend themselves very well for a
Robust Optimization approach. Nevertheless, it should be mentioned that in future research, some of
these heuristics, like the fix-and-optimize algorithm, might be used to improve the computation time.

3.3 The Stochastic Capacitated Lot Sizing Problem

3.3.1 The Introduction of Demand Uncertainty

In the previous section we looked at methods to solve the CLSP when the per period demand was
known at the beginning of the planning horizon. In this section we only consider the case where
demand is uncertain. More specifically, first we let the per period demands be random variables of a
known probability distribution, the Normal distribution. From the work of Helber et al. (2013), Rossi
et al. (2015) and Tempelmeier and Hilger (2015) it becomes clear that literature is dominated by the
use of the Normal distribution. That is why we will use this distribution in our model too. However,
it must be noted that the methods and techniques found in this section can be made specific to other
probability distributions as well. After considering stochastic models that deal with demand uncertainty,
we continue with a Robust Optimization approach to the problem.

With the introduction of uncertainty by means of random variables, we arrive at the stochastic
counterpart of the CLSP. For each product k the per period demands are independently and identically
distributed with dkt ∼ Normal(µdk , σdk). For each product k in each time period t we have, probability
density function fdkt

, cumulative density function Fdkt
, forecasted expected value E[dkt] = µdk and

variance V ar[dkt] = σ2
dkt

. From now on we no longer talk about demand, back-orders or inventory
level, but we have to work with their expected values. Therefore, we have to rewrite the nominal CLSP
found in Problem 3.1 to account for the stochastic nature of the per period demand.

First, we take a look at the inventory level Ikt variable that occurs in the objective function and
the inventory balance equation. The expected inventory level for product k is determined based on
the cumulative demand Dkt and cumulative production quantity Qkt up to period t. The cumulative
demand Dkt equals the sum of t independent and identically normally distributed random variables.

Hence, cumulative demand is Normal, Dkt ∼ Normal(µDk
=
∑t
τ=1 µdk , σDk

=
√∑t

τ=1 σ
2
dk

) with

fDkt
and FDkt

, respectively, being the probability density function and cumulative density function
(Ross, 2010, pp. 67-68). Using these cumulative measures we can express the expected inventory level
as follows,

E[Ikt] = E[max{0, Qkt −Dkt}] =

∫ Qkt

0

(Qkt − x)fDkt
(x)dx k ∈ K, t ∈ T (3.8)

Working with the cumulative measures combined with the fact that the inventory balance equation
can be written in a closed form, results in the following expression for the inventory level,

Ikt = Ik,t−1 + qkt − dkt k ∈ K, t ∈ T (3.9)

= Ik0 +

t∑
τ=1

qkτ − dkτ k ∈ K, t ∈ T (3.10)

= Ik0 +Qkt −Dkt k ∈ K, t ∈ T (3.11)

This expression can be substituted in the objective function of the nominal CLSP such that we can
eliminate the inventory balance equation. For now, we assume that the initial inventory level Ik0 equals
zero. Later on, we will extend the model to work with an arbitrary initial inventory level unequal to
zero.

Second, in the Stochastic CLSP we do allow back-orders and we have control over them by means of
the β-service level constraint. This means that the back-order cost become obsolete. The use of a service
level constraint is rather important in general, because it enables us to control the production quantity
with respect to demand. We have an infinitely large tail of probable demand realizations, because
demand is normally distributed. This means that if we want to be able to satisfy all possible realizations
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of demand, we would need to produce an infinite amount of items for each product. Evidently, this
is impossible due to physical as well as financial reasons. Hence, the need for a service level becomes
clear, because it allows us to specify the fraction of demand we want to satisfy.

Analogous to the expected inventory level, we can express the expected backlog, also known as the
first order loss function, as follows,

L1
Dkt

(Qkt) = E[Blkt] k ∈ T , t ∈ T (3.12)

= E[max{0, Dkt −Qkt}] k ∈ T , t ∈ T (3.13)

=

∫ ∞
Qkt

(x−Qkt)fDkt
(x)dx k ∈ T , t ∈ T (3.14)

Note the difference between backlog and back-orders. Back-orders are determined periodically,
whereas backlog is a measure for the the cumulative amount of back-orders. So, period t its expected
back-orders equals,

E[Bkt] = L1
Dkt

(Qkt)− L1
Dk,t−1

(Qkt) (3.15)

The most common service level constraints are the α- and β-service level. They are, respectively,
expressed as the probability of no stock-out or the percentage of demand directly satisfied from stock.
For this reason the latter is also known as the fill-rate constraints. Besides that, both service levels are
also known in literature as the P1 service level and the P2 service level (see Silver et al. (1998)). The
interested reader might consult the work of Helber and Sahling (2010) to get to known more about
other service levels.

When combining all of the above and using an arbitrary service level constraint, we can formulate
the Stochastic CLSP found in Problem 3.2.

Problem 3.2 (Stochastic Capacitated Lot Sizing Problem).

min
T∑
t=1

∑
k∈K

(sckγkt + hckE[Ikt]) +

T∑
t=1

ocot (3.16)

s.t. qkt ≤Mγkt k ∈ K, t ∈ T (3.17)∑
k∈K

tpkqkt + tskγkt ≤ Ct + ot t ∈ T (3.18)

service level constraint, to be specified (3.19)

γkt ∈ {0, 1} k ∈ K, t ∈ T (3.20)

qkt, ot ≥ 0 k ∈ K, t ∈ T (3.21)

In the remainder of this work we will stick to the β-service level for two reasons. First, according to
Tempelmeier and Hilger (2015) this is the one most used in practice and second, it is the one most widely
used in mathematical programming formulations for the SCLSP (see Tempelmeier (2007), Tempelmeier
and Herpers (2010), Tempelmeier (2011) and Tempelmeier and Hilger (2015)). We mentioned before
that the β-service level is the percentage of demand that should be directly satisfied from inventory.
An exact definition is as follows,

1−
∑T
t=1E[Bkt]∑T
t=1 dkt

≥ β k ∈ K (3.22)

If we want to work with the β-service level in the SCLSP found in Problem 3.2, then we replace
Constraint 3.19 with Equation 3.22.

Tempelmeier and Hilger (2015) however, define another service level constraint as well, i.e. the
βc-service level. This service level ensures that the service level is achieved per cycle, because it relates
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back-orders and demand during the cycle. They define it as follows,∑t
i=1E[Bki]∑t
i=1E[dki]

≥ 1− βc − (1− γk,t+1) k ∈ K, t ∈ T (3.23)∑t
i=1E[Bki]∑t
i=1E[dki]

≤ 1− βc + (1− γk,t+1) k ∈ K, t ∈ T (3.24)

γk,T+1 = 1 k ∈ K (3.25)

A careful reader might already have noticed that the use of the expected inventory level and expected
backlog make the problem no longer a Linear Optimization problem, because their respective functions
are non-linear in the cumulative production quantity. We will continue in the next section with an
explicit derivation for both the expected inventory level and the expected backlog. These explicit
derivations will be used to linearize both functions. Using the linearized versions of these function we
will be able to formulate the problem again as a Linear Optimization problem.

3.3.2 An Explicit Derivation for the Expected Backlog and Inventory Level

We start out with an explicit derivation for the expected backlog function. The backlog for product k
depends on the cumulative demand Dkt and cumulative quantity produced Qkt up to period t to fulfil
demand. The backlog for product k in period k can be defined as follows,

Blkt(Qkt) =

{
0 if Dkt ≤ Qkt
Dkt −Qkt if Dkt > Qkt

(3.26)

Using the definition above we can start our derivation, for any product k ∈ K and period t ∈ T ,

L1
Dkt

(Qkt) = E[Blkt(Qkt)] (3.27)

= E[max{0, Dkt −Qkt}] (3.28)

=

∫ ∞
−∞

max{0, x−Qkt}fDkt
(x)dx (3.29)

=

∫ ∞
Qkt

(x−Qkt)fDkt
(x)dx (3.30)

The next step in the derivation relies on the fact that the PDF f(.) of the Normal distribution can be

written in terms of the standard Normal PDF, f(x) = 1
σφ(x−µσ ). Furthermore, we define z =

Qkt−µDk

σDk
.

L1
Dkt

(Qkt) =

∫ ∞
Qkt

(Dkt −Qkt)
1

σDk

φ
(x− µDk

σx

)
dx (3.31)

= σDk

∫ ∞
Qkt

((x− µDk

σDk

)
− z
) 1

σDk

φ
(x− µDk

σDk

)
dx (3.32)

In the next steps we, respectively, use the substitution rule for integration as expressed in Equation
B.6 and integration by parts which is expressed in Equation B.7. Both rules for integration can be
found in Appendix B.

{Using Equation B.6, substitution rule for integration }

L1
Dkt

(Qkt) = σDk

∫ ∞
z

(t− z)φ(t)dt (3.33)

= σDk

(∫ ∞
z

tφ(t)dt−
∫ ∞
z

zφ(t)dt
)

(3.34)

{Using Equation B.7, integration by parts }

= σDk

([
tΦ(t)−

∫ ∞
z

Φ(t)dt]
]∣∣∣∞
t=z
− z(1− Φ(z))

)
(3.35)
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The best way to understand the step made in going from Equation 3.32 to Equation 3.33, is to look
at it the other way around. Then think of (t− z)φ(t) as being the function f(x) in the integration by
substitution rule of Equation B.6. Besides that, remark that the first derivative of z is as follows,

d

dQkt
z =

d

dQkt

(Qkt − µDk

σDk

)
=

1

σDk

(3.36)

To rewrite the integrand in the last equation we use the fact that the antiderivative of the standard
Normal CDF equals,

∫
Φ(t)dt = tΦ(t) + φ(t).

L1
kt(Qkt) = σDk

([
tΦ(t)−

[
tΦ(t) + φ(t)

]]∣∣∣∞
t=z
− z(1− Φ(z))

)
(3.37)

= σDk

([
− φ(t)

]∣∣∣∞
t=z
− z(1− Φ(z))

)
(3.38)

= σDk

(
(−φ(∞) + φ(z)

)
− z(1− Φ(z))

)
(3.39)

= σDk

(
φ(z)− z(1− Φ(z))

)
(3.40)

This concludes our explicit derivation for the expected backlog. In an analogous fashion we can
derive the expected inventory level for any t ∈ T and k ∈ K. This results in,

E[Ikt(Qkt)] = Qkt −Dkt + L1
Dkt

(Qkt) (3.41)

= σDk

(
φ(z) + z(1− Φ(−z))

)
z =

Qkt − µDk

σDk

(3.42)

Clearly, the functions for the expected backlog and the expected inventory level are non-linear and
we have to linearize both to work with them in the Problem 3.2. Therefore, we will continue in the
next section with a piecewise linear approximation of both functions.

3.3.3 Linearizing the Expected Backlog and Expected Inventory Level Func-
tions

In this section we describe how to linearize the functions for the expected inventory level and the expected
backlog. We can approximate both functions over the range [0, uLkt] with an arbitrary precision using a
sufficient number of L line segments (see Helber et al. (2013), Rossi et al. (2014), Tempelmeier and
Hilger (2015) and Rossi et al. (2015)). An illustration of how such linearized functions would look like
for L = 12, uLkt = 200, E[Dkt] = 100 and V ar[Dkt] = 30 is shown in Figure 3.1. The figure shows
that the expected backlog drops as we produce more, while the expected inventory increases. Since,
we only allow a certain number of expected back-orders, we have to produce to ensure the expected
backlog is in line with our service level constraint. This directly relates to an increase in the expected
inventory level. This increase is not only influenced by the service level constraint, but also by the
trade-off between holding inventory and setting up more frequently. Therefore, choosing the optimal
cumulative production quantity Qkt depends on achieving the required service level at minimum cost
while respecting the capacity constraint.

We can approximate the expected backlog and inventory level as follows. First, we have to define
the relevant region and divide this range into L closed intervals with endpoints ulkt. Endpoint u0kt
equals zero, because is is not necessarily the case that we have to produce and because of that, we
should allow for zero production. Of course, this is still under the assumption of zero initial inventory.
Furthermore, endpoint uLkt should be sufficiently large to account for the extra production required by
the service level constraint and the trade-off between holding inventory and setting up production. In
general it should account for the following: the cumulative production in the past Qk,t−1 =

∑t−1
τ=1 dkτ ,

the current periods demand dkt and the minimum of the available capacity and the optimal amount to
produce in advance.

We should include future demand dkτ , τ > t, into the current production lot qkt, if some cost
criterion tells us that the costs are lower if we include it, then if we were not to include it. For example,
we could take the cost criterion of Wagner and Whitin (1958) and define the following cost function,

Kww(t, x) = (sk + hk

x∑
τ=t

(τ − t)dkτ )/(x− t) (3.43)
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Figure 3.1: Approximation of the expected backlog and inventory level, t=1.

We then would include dkτ , τ > t, in the current period lot qkt if and only if Kww(t, τ) ≤
Kww(t, τ − 1). This criterion can be used in a Boolean function ft : [t+ 1, T ] 7→ B, with B = {0, 1},

ft(x) =

{
1 if Kww(t, x) ≤ Kww(t, x− 1)

0 if Kww(t, x) > Kww(t, x− 1)
(3.44)

We can now define the last endpoint uLkt as follows,

uLkt = Qk,t−1 + dkt + min
{
Ct,

t?∑
τ=t+1

dkτ

}
t? = arg max

x
ft(x) (3.45)

However, this upper bound doesn’t take stochastic nature of the demand into account. Therefore,
we have to make sure that it is sufficiently large such that it satisfies the service level constraint and
so, we multiply the upper bound with a factor g ∈ R.

Accordingly, we can now define the slopes on each interval [ul−1kt , u
l
kt], 0 < l ≤ L. We know from

the previous section that the expected inventory level with cumulative production Qkt, is as follows,

E[Ikt] = E[max{0, Dkt −Qkt}] (3.46)

= Qkt − E[Dkt] + L1
Dkt

(Qkt) (3.47)

We can use this to determine the slope ∆l
Ikt

for line segment l of the linearized expected inventory
level function,

∆l
Ikt

=
((
ulkt − E[Dkt] + L1

Dkt
(ulkt)

)
−
(
ulkt − E[Dkt] + L1

Dkt
(ul−1kt )

)) 1

ulkt − u
l−1
kt

(3.48)

=
((
ulkt + L1

Dkt
(ulkt)

)
−
(
ulkt + L1

Dkt
(ulkt)

)) 1

ulkt − u
l−1
kt


k ∈ K;

t ∈ T ;

l = 1, 2, . . . L

(3.49)

We continue with the slopes for the expected back-orders function. We know from the previous
section that the expected backlog is as follows,

L1
kt(Qkt) = E[Blkt(Qkt)] (3.50)

= E[max{0, Dkt −Qkt}] (3.51)

= σDk

(
φ(z)− z(1− Φ(z))

)
z =

Qkt − µDk

σDk

(3.52)
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Furthermore, we know that the expected back-orders for period t equal L1
Dkt

(Qkt)−L1
Dk,t−1

(Qkt).
Hence, the expected back-orders function can be approximated on the same region whereby the slopes
are,

∆l
Bkt

=

((
L1
Dkt

(ulkt)− L1
Dk,t−1

(ulkt)
)
−
(
L1
Dkt

(ul−1kt )− L1
Dk,t−1

(ul−1kt )
))

ulkt − u
l−1
kt


k ∈ K
t ∈ T
l = 1, 2, . . . L

(3.53)

In the next section we will use these linearized versions of the expected backlog and expected
inventory level functions in Linear Optimization formulation for the Approximated Stochastic CLSP.

3.3.4 The Approximated Stochastic Capacitated Lot Sizing Problem

In the previous section we linearized both the expected backlog as well as the expected inventory level
function. In this section we continue to integrate this knowledge into the Stochastic CLSP found in
Problem 3.2 to arrive at an approximation or what we will call its Stochastic Counterpart.

We introduce a new decision variable wlkt representing the production quantity for product k in
period t associated with interval l. We want wlkt to be set to their maximum capacity for l = 1, . . . , l?

and set to zero for l = l? + 1, . . . , L. This can be represented with the following equations,

wlkt = ulkt − ul−1kt l = 1, 2, . . . , l? − 1 (3.54)

wlkt =

t∑
τ=1

qkτ − ul−1kt l = l? (3.55)

wlkt = 0 l = l? + 1, l? + 2 . . . , L (3.56)

For all t and k, these equations translate into the following constraints,

wlkt ≤Wλlkt l = 2, 2, . . . , L (3.57)

wl−1kt = (ulkt − ul−1kt )λlkt l = 2, 3, . . . , L (3.58)

λlkt ∈ {0, 1} l = 2, 3, . . . , L (3.59)

If a wlkt gets larger than zero, it activates the binary decision variable λlkt. This decision variable
then ensures that wl−1kt is filled to the maximum, which is ulkt − u

l−1
kt .

We can now use the new decision variables wlkt in combination with the slopes found in the previous
section to obtain the piecewise linear approximation to the expected back-order and inventory level
functions. This results in the following approximation for the expected inventory level function,

E[Ikt] = ∆0
Ikt

+

L∑
l=1

∆l
Ikt
wlkt k ∈ K, t ∈ T (3.60)

and in the following approximation for the expected backlog function,

E[Bkt] = ∆0
Bkt

+

L∑
l=1

∆l
Bkt

wlkt k ∈ K, t ∈ T (3.61)

where ∆0
Ikt

and ∆0
Bkt

represent the functions their value at u0kt. Until now we have assume that we
have not initial inventory. However, from a practical point of view, this is rarely the case. Introducing
an initial inventory Ik0 would correspond to a translation for both the expected backlog and inventory
level function. The direction would depend upon the sign of Ik0. That is, if Ik0 < 0 then we have to
translate both functions to the right and if Ik0 > 0 we need to do the opposite. Consequently, if there
is a negative initial inventory position Qkt would increase, and it would decrease otherwise.

Moreover, we can now express the cumulative production quantity as the sum of these new decision
variables, Qkt =

∑L
l=1 w

l
kt, and this can be used to express the per period production quantity qkt as
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follows,

L∑
l=1

wlkt −
L∑
l=1

wlk,t−1 = qkt (3.62)

Besides that, we can use the summation to introduce the inequality stating that the cumulative
production quantity of the previous period cannot exceed that of the current one,

L∑
l=1

wlk,t−1 ≤
L∑
l=1

wlkt (3.63)

We can combine all of these equations, inequalities and approximations and substitute them into
the Stochastic CLSP found in Problem 3.2 to arrive at the approximated version that can be found
below.

Problem 3.3 (Approximated Stochastic Capacitated Lot Sizing Problem).

min
T∑
t=1

∑
k∈K

(sckγkt + hck[∆0
Ikt

+

L∑
l=1

∆l
Ikt
wlkt]) +

T∑
t=1

ocot (3.64)

s.t. wlkt ≤Wλlkt


k ∈ K
t ∈ T
l = 1, 2, . . . , L

(3.65)

wl−1kt = (ulkt − ul−1kt )λlkt


k ∈ K
t ∈ T
l = 2, 3, . . . , L

(3.66)

L∑
l=1

wlk,t−1 ≤
L∑
l=1

wlkt k ∈ K, t ∈ T (3.67)

L∑
l=1

wlk,t −
L∑
l=1

wlk,t−1 = qkt k ∈ K, t ∈ T (3.68)

qkt ≤Mγkt k ∈ K, t ∈ T (3.69)∑
k∈K

tpkqkt + tskγkt ≤ Ct + ot t ∈ T (3.70)

∑t
i=1E[Bki]∑t
i=1E[dki]

≥ 1− βc − (1− γk,t+1) k ∈ K, t ∈ T (3.71)∑t
i=1E[Bki]∑t
i=1E[dki]

≤ 1− βc + (1− γk,t+1) k ∈ K, t ∈ T (3.72)

γk,T+1 = 1 k ∈ K (3.73)

γkt, λkt ∈ {0, 1}


k ∈ K
t ∈ T
l = 1, 2, . . . , L

(3.74)

λkt ∈ {0, 1}


k ∈ K
t ∈ T
l = 2, 3, . . . , L

(3.75)

wkt ≥ 0


k ∈ K
t ∈ T
l = 1, 2, . . . , L

(3.76)
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This brings us at the end of our journey to obtain a Linear Optimization formulation where the
expected backlog and inventory level function are piecewise linearly approximated. Remarkably, there is
a slight and very important difference from work of Tempelmeier and Hilger (2015) even though they
had the same goal. We will touch upon this subject in the next subsection.

3.3.5 Corrigendum to the Work of Tempelmeier and Hilger (2015)

We have mentioned before that we are after a comparison between the nominal CLSP and its related
counterparts that take uncertainty into account. We noted that there are two ways to deal with
uncertainty, in a stochastic way and a more geometrical way. We took the work of Tempelmeier and
Hilger (2015) as a starting point, because they did some work on the Stochastic Counterpart. Though,
in order not to blindly copy their model and to ensure its correctness, we came up with the derivation
ourselves as has been meticulously explained in the previous subsections. However, surprisingly there is
a striking difference between the models.

Contrary to Tempelmeier and Hilger (2015), in our derivation we explicitly enforce Equations 3.57,
3.58 and 3.59 to hold by using some constraints. These constraints ensure the correct filling of the
decision variables wkkt. By introducing binary decision variable λlkt, we make sure that the values wlkt
are filled to maximum capacity before filling any wjkt, j > l. Moreover, if wl+1

kt has to be filled, but

wl+1
kt < ulkt − ulkt (its not to be filled to its maximum), then wjkt = 0, for all j > l + 1. When this is

not strictly enforced, like in the work of Tempelmeier and Hilger (2015), we obtain the wrong results.
We will explain the consequences of this to the best of our abilities and as means to an end, we will
make use of Figure 3.2 below.
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Figure 3.2: Approximation of the expected backlog and inventory level, t=2.

Figure 3.2 and Figure 3.1 look different, but both figures show a close resemblance. The difference
is in the time period they consider, which is time period t = 1 and t = 2 for, respectively, Figure 3.1
and Figure 3.2. Only when we drew Figure 3.2 we obtained a better understanding of the consequence
of omitting the the aforementioned constraints. Let us explain why.

In the objective function we have the linear approximation for the expected inventory level and in
the βc-service level constraints we have the linear approximation for the expected backlog. In these
approximations we have slopes ∆l

Ikt
and ∆l

Bkt
. Maximum effect can be achieved when setting wlkt > 0

for those slopes l where ∆l
Ikt

(or ∆l
Bkt

) is greater (or less) than others. Then we would not have to set

any wlkt greater to zero where only little can be achieved. This can be illustrated by using Figure 3.2.
For example, consider the case where we want to reduce the expected backlog from 100 to 90. One

way this can be achieved is by filling wlkt, l ≤ 4, to their maximum value and fill w5
kt > 0 to account for

the remainder. However, when we consider slope ∆7
kt we note that the slope is large enough to cover
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the desired 10 units decrease in the expected backlog right away. Hence, if we only fill w7
kt we would

still achieve the 10 units decrease, but produce significantly less. This is an interesting insight, because
apparently we can reduce the expected backlog by “producing” less and this is of interest, because we
incur setup costs if we want to produce and inventory holding costs for excessive amounts of products
produced. Please, note that this way of hacking the model does not violate any of the constraints.

Now we know that we do not necessarily have to “produce” a lot to significantly reduce the expected
backlog function, we just have to choose the intervals that correspond to steep slopes. From the
definition of the βc-service level constraint we know that a reduction in the expected backlog function
corresponds to a better service level. This is a desirable effect and the insight obtained above would
imply that we can do so by producing less. Of course, is should be duly noted that this is abuse of
terms in some sense, because setting wlkt larger than zero does not necessarily corresponds to producing
products. The result is interesting, to say the least, but its consequence became fully clear during an
extensive investigation of this problem by means of a simulation study.

The simulation study confirmed the idea that the Tempelmeier and Hilger (2015) selectively fills wlkt,
i.e. they are not filled to their maximum for increasing numbers in l. Moreover, it does so while satisfying
each of the constraints, also the service level constraint. First of all, it fills those wlkt that reduces the

expected backlog the most, but second it manages to let the constraint
∑L
l=1 w

l
k,t−

∑L
l=1 w

l
k,t−1 = qkt,

result in zero production for 2 ≤ t. This is because for t = 1 the constraint would read
∑L
l=1 w

l
k,t = qkt

and we have some products k produced. However, since we are able to freely chose wlkt, it is possible

to let
∑L
l=1 w

l
k,t −

∑L
l=1 w

l
k,t−1 = qkt = 0. Consequently, we do not have any setup costs in periods

2 ≤ t, because qkt = 0 in those periods. We can conclude that the model of Tempelmeier and Hilger
(2015) has its flaws, because it does not strictly enforce the wlkt to be filled in the correct way. Clearly,
the constraints mentioned above are of utmost importance and should be incorporated in a stochastic
approximation to the CLSP for things to work out correctly.

3.4 A Robust Counterpart of the Capacitated Lot Sizing Prob-
lem under Interval Uncertainty

Deriving the robust counterpart of the nominal CLSP introduced in Problem 3.1 is rather straight
forward based on the knowledge we obtained in the previous chapter. In a similar fashion as has been
done in case of the single item production planning problem, can derive the Robust Counterpart.

We start from the nominal CLSP found in Problem 3.1. In typical formulations of the CLSP the
incentive to produce comes from the fact that negative inventory is not allowed. However, as we have
explained before, negative inventory, or back-orders, are unavoidable in the case of demand uncertainty.
If demand for each product is identically and independently normally distributed and we want to have
zero expected back-orders each period, then we should have an infinite amount of inventory. In case of
stochastic uncertainty we have introduced the βc-service level as an incentive to produce. In case of
the robust approach we will rely on the back-order cost parameter.

In the nominal CLSP problem we can introduce uncertainty by means of uncertainty sets. In our case
we will only restrict ourselves to the most conservative Robust Counterpart, i.e. taking the l∞-norm on
the demand which is otherwise known as interval uncertainty. This means that the per period demand
ranges with a certain interval, dt ∈ [d̄t − d̂t, d̄t − d̂t]. More formally, like before, the demand vector is
parameterized in an affine fashion by the perturbation vectors,

d(ζ) = d0 +

T∑
t=1

dtζt ‖ζ‖∞ ≤ 1 (3.77)

In a similar way as before, we have the following uncertainty set U∞,

U∞ =

{
d = d0 +

T∑
t=1

ζtd
t : ζ ∈ Z = {ζ ∈ RT : ‖ζ‖∞ ≤ 1} ⊂ RT

}
(3.78)

We can substitute this uncertainty set in Problem 3.1 to arrive at,
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Problem 3.4 (Uncertain Capacitated Lot Sizing Problem).

min
T∑
t=1

∑
k∈K

(sckγkt + ykt) +

T∑
t=1

ocot (3.79)

s.t. hck

(
Ik0 +

t∑
s=1

qks −
t∑

s=1

dks

)
≤ ykt ∀d ∈ U∞, k ∈ K, t ∈ T (3.80)

− bck
(
Ik0 +

t∑
s=1

qks −
t∑

s=1

dks

)
≤ ykt ∀d ∈ U∞, k ∈ K, t ∈ T (3.81)

qkt ≤Mγkt k ∈ K, t ∈ T (3.82)∑
k∈K

(tpkqkt + tskγkt) ≤ Ct + ot t ∈ T (3.83)

γkt ∈ {0, 1} k ∈ K, t ∈ T (3.84)

qkt, ot ≥ 0 k ∈ K, t ∈ T (3.85)

We have uncertainty in exactly the same constraints as we had in the previous chapter. The only
difference is that we have k of such constraints, for each product one. Since the other constraints are
not affected by the uncertainty, we can leave them out of consideration with regards to determining the
Robust Counterpart of the problem above. This means that we can borrow heavily from the derivation
in the previous chapter to come up with the Robust Counterpart found in Problem 3.5 below,

Problem 3.5 (Robust Counterpart Capacitated Lot Sizing Problem with an l∞-norm).

min
T∑
t=1

∑
k∈K

(sckγkt + ykt) +

T∑
t=1

ocot (3.86)

s.t. hck

(
Ik0 +

t∑
s=1

qks −
t∑

s=1

d̄kszks +

t∑
s=1

ωks

)
≤ ykt k ∈ K, t ∈ T (3.87)

− bck
(
Ik0 +

t∑
s=1

qks −
t∑

s=1

d̄kszks −
t∑

s=1

ωks

)
≤ ykt k ∈ K, t ∈ T (3.88)

− ωkt ≤ d̂ktzkt ≤ ωkt k ∈ K, t ∈ T (3.89)

qkt ≤Mγkt k ∈ K, t ∈ T (3.90)∑
k∈K

(tpkqkt + tskγkt) ≤ Ct + ot t ∈ T (3.91)

γkt ∈ {0, 1} k ∈ K, t ∈ T (3.92)

zt = 1 k ∈ K, t ∈ T (3.93)

qkt, ot ≥ 0 k ∈ K, t ∈ T (3.94)

3.5 Conclusion

In this chapter we discussed models for the CLSP in case of deterministic demand and uncertain
demand. We started by discussing the case where demand is known in advance and this has led to the
nominal problem. We have seen that for computational reasons various heuristics have been developed.
Nevertheless, we stayed with mathematical programming formulations and basically, we extended the
production planning problem of the pervious chapter by considering multiple items, setup costs and
possibly, setup times.

We introduced demand uncertainty in the nominal problem in two ways. First, we took a stochastic
approach and second, we took a Robust Optimization approach. The introduction of demand uncer-
tainty gave rise to a challenge, because if demand would realize in such a way that we can’t satisfy it,
we would end up in having back-orders. However, only a certain amount of back-orders is allowed and
this may mean that the βc-service level could be violated if there is not enough capacity. Therefore, we
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relaxed the problem by introducing overtime. We meticulously described the derivation of the stochastic
counterpart as well as flaws that were discovered in existing approaches.

At last, we took a Robust Optimization approach to the problem and introduced interval demand
uncertainty. The derivation of the robust Counterpart was merely a straight forward execution of the
same steps taken in the previous chapter, because most of the complexities were already discussed that
chapter.

So, we have been able to formulate the a Stochastic and Robust Counterpart of the nominal CLSP.
This means that we can confirm two more of our research questions. In the next chapter we will compare
the models introduced in this chapter to assess their performance in case of demand uncertainty during
a simulation study in a rolling horizon setting.



Chapter 4

Simulation Study

4.1 Introduction

This chapter deals with a comparison between the models that we have introduced in the previous
chapter for solving the Capacitated Lot Sizing Problem. Our primary goal is to achieve a certain β-
service level for a product when demand is uncertain and secondary to that we will try to minimize
the costs involved. Hence, we are interested in the model that achieves the required service level at
minimum cost. Since we investigate how these models perform under demand uncertainty, we expect the
Stochastic and Robust Counterpart of the nominal problem to perform better under demand uncertainty
than the nominal problem, because both have mechanisms to deal with uncertainty.

In order to establish statistically significant results, we conducted a simulation study. In this study
we run the various production planning models in a rolling horizon setting. We start this chapter with
discussing the methodology behind this simulation study. We will explain the type of simulation study
conducted, convince you as reader about the validity of the implementation of the models, explain the
simulation framework we have build and the statistics we will measure. Thereafter, we continue with
experimental design and the results we have obtained.

4.2 Methodology

4.2.1 A Discrete-Event Simulation in a Rolling Horizon Setting

By definition of Law (2015, pp. 5-6), we conduct a dynamic, stochastic, discrete-event simulation which
in our case concerns the modeling of a production system as it evolves over time. State variables such
as the inventory level change instantaneously and at only a countable number of points in time, i.e. our
review period. The stochastic component stems from the fact that demand is uncertain and randomly
distributed. We will assume demand to be identically and independently normally distributed. However,
the distribution is truncated such that no demand will be realized lower than zero, i.e. negative demand
is not allowed.

We will employ our lot sizing models in a rolling horizon setting. The reason for this is becuase
previous research by Drexl and Kimms (1997) and Helber et al. (2013) suggest that research should be
done on how lot sizing models perform in a rolling horizon setting. Furthermore, lot sizing models are
inherently employed in practice in a rolling horizon setting. Therefore, in order to asses the whether or
not our models are suitable for practice we have to simulate them in a rolling horizon setting.

In essence, a rolling horizon settings means the following. At t = 1, we have a finite planning
horizon [t, t+T −1] for which we want to determine the lot sizes. We employ our models and receive a
production plan. Of the resulting production plan we have to commit the first Tc periods. With commit
we mean that we have to implement production for these periods and even as time increases and new
information comes available, we are not allowed to alter the production quantities set for those specific
periods. Hence, after we have planned production, we observe the next Tc periods before planning
production again. This means that we have rolled Tc periods forward. We continue to roll forward as
long as t+T ≤ H. Note, it goes without saying that all models will be subject to the same realizations
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of demand for the sake of comparison.
For the sake of clarity, we will define some relevant terms that we will use throughout this chapter.

Replication In a replication we plan production for a finite horizon H in a rolling horizon setting.

Run A run consists of multiple replications. In some cases we need to have multiple replications to state
something about statistics that are measured over the full horizon considered in one replication,
e.g. the service level. Different runs are conducted in which one specific property is varied. For
example, in different runs we look at various values for the coefficient of variation for the demand.

Simulation A simulation is the all encompassing entity holding various runs and the replications related
to each run.

Law (2015) makes some excellent suggestions on how to compare the behaviour of different models
in the same system. One of the most important aspects is whether or not the goal of a simulation study
the statistical analysis for steady state behavior. This behavior only becomes clear if the simulation runs
for rather large number of time periods and under various initial conditions (Law, 2015, pp. 491-492).
However, the question then rises, does it make sense to run our models for an large number of periods?
The answer to this lies in characteristics of our system. We do think that for various reasons the
characteristics of our system will change over time, which is in line with statements of Law (2015): “in
a manufacturing system the production-scheduling rules and the facility layout may change from time
to time”. Therefore, we will conduct a terminating simulation in which the natural event to terminate
is a specific future time period H. This time period H should be chosen to mimic real life production
planning. For example, assume that we have found some state of the art production planning problem,
that time periods are measured in weeks and that we have to commit production on a monthly basis
(Tc = 4). In this case it would be a reasonable assumption that after four years, H = 208, our system
changes, for example, because of a change in the product-mix or the availability of a new production
planning model.

4.2.2 Simulation Framework

Structure

For this simulation study we have written our own simulation framework. This way we were able
avoid the overhead that comes with more general simulation software and obtain a dedicated program.
Because of this we were also able to design the structure of the code in the way we wanted it. Figure
4.1 shows the full structure of the code.

At the core of the framework resides the the Simulaton class. This class is responsible for loading
the parameters under which the system will be simulated. Furthermore, it runs the actual simulation
and when finished it writes the data and statistics to a file and a SQLite 3 database. It relies heavily
on mathematical support functions that are found in the package Mathematical Support. For example,
this package contains the Statistics class that can be used for various calculations such as calculating
the mean of a list of numbers, or determining confidence intervals.

The simulation is started by invoking the run-function on the Simulaton class. This happens
from the Graphical User Interface (GUI) we have made. Because we have chosen for C++ as our
programming language, we were able to work with the Qt 5.4 library1. This is a sophisticated library
that allowed us to develop our GUI in a quick and easy way.

A production planning model will be run based on the settings that have been loaded into the
Simulaton class. The models are children of the abstract AbstractProductionPlanningModel

class. This class dictates the structure of the AbstractProductionPlanninModel.plan-function to
its children. The children have to implement this function according to its specifications. This is really
useful as the code in the Simulaton class only have to invoke the abstract production planning class,
but at run-time, this class will be instantiated to one of the models specified in the input parameters.
The big advantage is that nothing to the actual code related to the simulation have to change if
we want to add another model. For example, if we come up at a later stage with another model,
then we only have to subclass the AbstractProductionPlanningModel class and implement the
AbstractProductionPlanningModel.plan-function. Then we specify in our input parameters this

1Website of Qt: http://www.qt.io/.
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AbstractProductionPlanningModel

-name: QString
-cleanName: QString

«virtual»+plan(): double
+setName(name: QString)
+getName(): QString
+setCleanName(cleanName: QString)
+getCleanName(): QString

NominalCLSP

+plan(): double

RobustCLSP

+plan(): double

SCLotSizingTH15

+plan(): double

Simulaton

+run(): void
-loadData(): void
-writeDataAndStatistics(): void

MainWindow

Mathematical Support

Model::Main

Figure 4.1: Program structure of our simulation framework as a UML diagram.

new model and get it run at run-time. The only limit there is, are the parameters passed on to the
AbstractProductionPlanninModel.plan-function. However, for now the is a pretty extensive list,
being: holding cost hck, back-order cost bck, production cost pck, setup cost sck, overtime cost oc, capacity
Ct, initial inventory Ik0, processing times tpk, setup times tsk, demand means µdk , demand standard

deviations σdk , demand half widths d̂k, and required service level β. As a result, the function returns
the per period the amount to produce qkt, i.e the lot sizes.

Optimization Engine

Our simulation framework uses Gurobi Optimizer 6.52. We chose this optimizer, because of its ease
of use in our C++ programming environment. The C++ interface allowed us to integrate the Gurobi
libraries very easily into our project. Gurobi allows for the definition of a mathematical optimization
problem in terms of C++ variables and statements. Therefore, we were able to obtain results signifi-
cantly faster than when using more general software packages, e.g. AIMMS or Matlab. By programming
ourself we were able to reduce the overhead these packages typically come with.

Input File

A simulation is run based on the inputs in the simulation initialization file. This file contains different
types of parameters. It contains the static parameters that describe how much times replications to
do, which models to run as well as the different parameters. These parameters will not change during
various runs. On the other hand, we have so called variates. These are the parameters that take a
different value in each run. Table 4.1 shows the different variates we have.

Based on the specified variates different permutations are determined and each permutation is
associated with a run. For example we could have run (4, 0.1−0.1, 0.1−0.1, 0.80, 20−20, 4000) ∈ Rn
as a permutation and this would mean that Tc = 4, we have two products that each have a forecasted
and realized coefficient of variation 0.1, we want to achieve a service level of 80% and this corresponds
to a demand half width of 20.

2Website of Gurobi: http://www.gurobi.com/.
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Table 4.1: Variates in the simulation initialization file.

Variable Description Type Input Example

commit
Number of periods to

commit from the
production plan

Integer Comma seperated 1, 4, 12

cvarf
Forecasted coefficient of

variation
Real Bar and comma seperated 0.1-0.1, 0.5-0.5

cvard
Actual coefficient of

variation
Real Bar and comma seperated 0.1-0.1, 0.5-0.5

beta
Desired βc-service level in

Stochastic CLSP
Real Comma seperated 0.80, 0.98

halfie
Demand half-width to be

used in Robust CLSP
Integer Bar and comma seperated 20-20, 40-40

capacity
Available capacity for
production and setups

Integer Single value 4000

Model Credibility and Validity

We will continue with describing what we have done to increase the credibility of the models we
implemented and discuss their validity. For sure, the code was written in a neat and tidy way to avoid
“spaghetti”-code and since we used C++ as our programming language we were able to use the benefits
of an Object Oriented Programming language. However, employing sound testing methods is of essence
as mistakes are made pretty easily. Mistakes made in the syntaxis of the programming used are quickly
noticed at compile time and various run time errors such as an index out of bounds is discovered pretty
easily as well. The real challenge lies in the conceptual errors made during programming. An example
could be the calculation of the normalized random variable z, if we were to type, z = (Qkt−σDkt

)/σDkt

nothing would go wrong. However, this is conceptually wrong and to avoid those errors we employed
various techniques.

To ensure the correctness of our code we used boundary value testing in combination with special
value testing. This means that we checked the results of various function for a number of input values.
For example, the first-order loss function was tested for various production quantities. Especially, for
values less than zero, zero and greater than zero. The results were checked against a manual calculation
of the function. By using boundary value testing we were able to validate our functions.

Moreover, with some functions relying on multiple other function, we had to do some kind of
integration testing. For example, the piece-wise linear approximation function relies on normalizing the
random variables, calculating the expected inventory level and backlog, etc. To verify the correctness
we again checked its output for various input values. Moreover, we plotted the results for various time
periods. We have seen the usefulness of these plots in the previous chapter where the came in handy
to explain the structure of the functions.

Finally, we have ran the models for various parameters and analyzed their outcome. This way we
were able to check their correctness, or not. If we would not have done such an elaborate testing, most
likely, we would not have found the mistakes made in the model of Tempelmeier and Hilger (2015) as
well as other insights that we will discuss below.

Statistics

During the simulation study we have to store data which is needed for the derivation of the relevant
statistics. There are various statistics of interest at different levels. For each replication, we store
the relevant information related to each product and the information related to the system as whole.
For example, at product level we store its associated setup costs, while at system level we store the
aggregated setup costs over all products. Then based on the information gathered during a replication,
we are able to derive more general statistics. For example, we calculate the mean, standard deviation
and confidence intervals of the β-service level for each run based on the service level obtained in the
associated replications. This way we will be able to obtain statistically justified results as long as the
number of replications and periods to plan for are set correctly.
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4.3 Experimental Design

In the first two experiments we will only consider one item and we assume sufficient capacity. This way
we are able to get some useful insights before diving into the more challenging problem of planning
production for multiple items. Later on we will look at more items and decrease capacity. This way
we are able to see how the system behaves for the different models under high utilization. Note, that
as long as we have sufficient capacity for producing a certain number of items, each product behaves
independently of each other. Only as capacity decreases the production of the different items starts to
interact.

The first question we will answer is, what would happen if we employ the nominal model for various
settings? Our aim is to achieve a certain service level and to see which model delivers this at minimum
cost. Therefore, we will continue experimenting to find our under which settings the Stochastic and
Robust counterpart achieve a this service level. Thereafter, we can make a comparison on which model
achieves a this service level in the best way, cost-wise and planning-wise.

Unless otherwise stated, we will plan production over a 4 year interval and the relevant time period
is one week. We will replicate 30 times. The inventory holding cost is normalized and hence, hck = 1.
Other costs are set, bck = 20, sck = 5000, oc = 10000, and relevant times are tpk = 1 and tsk = 0.
Demand is assumed to be normally distributed with a mean of µdk = 1000 and we don’t have any
seasonality.

4.4 Experimental Results

4.4.1 Experiment 1: Setting the Stage

Our first experiment is aimed at setting the stage. We are interested in what would happen if we employ
the nominal model in case demand is uncertain and if we vary different parameters. Since there is no
explicit parameter to control the required service level, we expect the model to perform worse when
demand uncertainty is high and for increasing values of the number of periods to commit.

Table 4.2 shows the parameters that we vary in this experiment. We will look at how the nominal
model performs under low demand uncertainty (cvar = 0.25) and high demand uncertainty (cvar = 1).
Besides that, we will vary the number of periods to commit between one week, one month and three
months.

Table 4.2: Parameters for experiment 1.

Parameter Symbol Experimental values
Coefficient of variation of demand cvar {0.25, 1}
Number of products N {1}
Periods to commit Tc {1, 4, 12}
Capacity C {6000}

The results for this first experiment can be found in Table 4.3. We have 6 different runs in this
simulation for which we reported the input parameters and the 95 percent confidence interval for the
mean of the realized β-service level (calculated according to Law (2015, pp. 234-235))

Table 4.3: Results experiment 1.

Input Output (95% CI)
Run cvar N Tc C β-service level
1 0.25 1 1 6000 [98.63, 98.93]
2 1 1 1 6000 [90.01, 91.11]
3 0.25 1 4 6000 [96.14, 96.84]
4 1 1 4 6000 [72.48, 75.22]
5 0.25 1 12 6000 [90.13, 91.93]
6 1 1 12 6000 [39.23, 44.75]



54 CHAPTER 4. SIMULATION STUDY

The results confirm the expectation that the service level drops when demand uncertainty increases
or when we have to commit more periods. The reason for this to happen has to do with the trade-off
between setup costs and inventory holding costs by the lot sizing decision. Typically, setup costs lead
to producing in advance for future demand. However, one should note that the same is achieved within
production planning models that do not take setup costs into account, but that deal with fixed ordering
costs. This brings us back to the definition of the (s, S)-policy we gave in Chapter 2. Whenever there is
a fixed ordering cost, we have a (s, S)-policy. Hence, our lot size effectively behaves as a safety stock.
Thus, with the lot size taking on the role of safety stock, we can deal with demand uncertainty up to a
certain level. We see that for low demand uncertainty and various Tc, the service level stays surprisingly
high and only when the demand uncertainty is high the service level starts to drop dramatically for
increasing values of Tc. This is a very interesting result and we will refer to it as the “base-stock”
effect.

4.4.2 Experiment 2: Influencing the Service Level

Lot Sizing using the Stochastic Counterpart

In the previous experiment we obtained some very interesting results regarding the nominal problem.
We came to understand how the problem behaves for various parameters and that the resulting service
level is merely depending on the situation. However, if we want to obtain a specific service level, the
model proves to be inadequate because it doesn’t have a parameter to control it. In the previous chapter
though, we introduced the Stochastic Counterpart based on the work of Tempelmeier and Hilger (2015)
that does have a control parameter. We can specify the βc-service level that we require. In the following
we will investigate if a certain required service level corresponds to a realized service level. We more or
less took the same input parameters for the variates as we did in the previous experiment. Though, in
addition, we specified the βc-service level we require: βc = 0.90.

When we use a required 90% βc-service level into the Stochastic Counterpart and run the simulation,
then we obtain the results found in Table 4.4.

Table 4.4: Results for a required 90% β-service level.

Input Output (95% CI)
Run cvar N Tc C βreq β-service level
1 0.25 1 1 6000 0.90 [100.00, 100.00]
2 1 1 1 6000 0.90 [100.00, 100.00]
3 0.25 1 4 6000 0.90 [93.48, 94.46]
4 1 1 4 6000 0.90 [89.21, 90.99]
5 0.25 1 12 6000 0.90 [91.99, 93.26]
6 1 1 12 6000 0.90 [79.65, 82.10]

From these results it becomes clear that we have better control over the realized β-service level
than in case we use the nominal model. However, these results aren’t completely satisfying. The results
for Tc = 1 do not come as a surprise, because we get the “base-stock”-effect as we have found in the
previous experiment. In this case, we get even better results, because this model produces a bit more
just to be on the safe side regarding satisfying the service level. But, if we look at the case were Tc = 12
and demand uncertainty is high, than we have a significant drop in the realized service level. Detailed
examination of the associated production quantities give rise to think that the extra amount produced
with regards to satisfying the service level are nothing in comparison to the demand uncertainty. Which
makes sense, because we can’t protect ourself against all possible realizations of demand, especially the
extreme ones.

Keep in mind the primary goal of our system, we want to achieve a certain service level. Since, the
required service levels do not correspond directly to the realized ones, we have investigated for which
input values we obtain the desired realization. After extensive testing were we iteratively looked at
various levels we came up with the ones found in Table 4.5.

Two important things were found during the experiment in this subsection. First, we can confirm
that it is possible to influence the realized service level by means of our input parameter and second,
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Table 4.5: Results for fitting a realized 90% β-service level (Stochastic Counterpart).

Input Output (95% CI)
Run cvar N Tc C βreq β-service level
1 0.25 1 4 6000 0.865 [89.38, 90.52]
2 1 1 4 6000 0.90 [89.21, 90.99]
3 0.25 1 12 6000 0.875 [89.03, 90.77]
4 1 1 12 6000 0.945 [88.70, 91.064]

we found out for which input parameters a required service level realizes. It goes without saying that
this can be repeated in case we have other required service levels.

Lot Sizing using the Robust Counterpart

In this subsection we will look at the Robust Counterpart. This model does not have such an intuitive
parameter to set the required β-service level as the Stochastic Counterpart does. Instead, we have to
set the demand half-width to influence the realized β-service level. Hence, we iteratively look at various
demand half-widths in order to find the one that corresponds to the service level we interested in. As
before, we are want to obtain a 90% β-service level. The results of this process are listed in Table 4.6

Table 4.6: Results for fitting a realized 90% β-service level (Robust Counterpart).

Input Output (95% CI)

Run cvar N Tc C d̂kt β-service level
1 0.25 1 1 6000 0 [98.65, 98.91]
2 1 1 1 6000 0 [90.88, 91.86]
3 0.25 1 4 6000 0 [96.92, 97.52]
x 1 1 4 6000 485 [88.71, 90.85]
5 0.25 1 12 6000 0 [90.40, 92.70]
6 1 1 12 6000 555 [88.33, 91.49]

4.4.3 Experiment 3: Relative Performance under Low and High Ratios of
Demand to Capacity

We have mentioned before that we can consider each product individually if there is enough capacity.
The products are independent of each other in this case, because they do not influence each other,
i.e. they have access to sufficient capacity to produce whenever and whatever they decide to produce.
However, things change if capacity becomes tighter. Then the ratio between demand and capacity goes
up and consequently, the utilization rate of the system increases. In this experiment we deliberately
tighten the capacity such that we can investigate how the models react under various settings for the
system. In this experiment we will consider the different combinations of the variates listed in Table
4.7.

Table 4.7: Parameters for experiment 3.

Parameter Symbol Experimental values
Coefficient of variation of demand cvar {0.25, 1}
Number of products N {3}
Periods to commit Tc {4, 12}
Capacity C {4000, 5000, 10000}

In this experiment we strive to achieve a realized β-service level of 90 percent. Therefore, we will
use the fitted parameters for the Stochastic and Robust Counterpart that were found in the previous
experiment. We repeat them for the sake of completeness in Table 4.8.
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Table 4.8: Fitted parameters for a 90 percent β service level.

Setting Fitter parameters
Required β-service level

Tc cvar β d̂kt
0.90 4 0.25 0 0.865
0.90 4 1 485 0.90
0.90 12 0.25 0 0.875
0.90 12 1 555 0.945

This experiment was set up in exactly the same way as before, e.g the number of replications stays
the same as well as the horizon. The only difference is in the combination of variates in each run and
we have increased the number of products to three. To give a first glance of the results, we provide the
obtained service levels before going into detail. The results for Tc = 12 are given in Table 4.9 and for
Tc = 4 they are given in 4.10. Note, for traceability reasons these tables also show the actual identifier
for each run.

Table 4.9: Resulting service levels experiment 3 (Tc = 12)

Input Output (means)

Run cvar N Tc C β d̂kt Model β-service level ρd/c ρu
803 0.25 3 12 10000 0.875 0-0-0 RC 92, 91, 92 30 30
803 0.25 3 12 10000 0.875 0-0-0 SC 91, 90, 91 30 30
804 0.25 3 12 5000 0.875 0-0-0 RC 91, 91, 90 59 60
804 0.25 3 12 5000 0.875 0-0-0 SC 91, 91, 89 59 60
805 0.25 3 12 4000 0.875 0-0-0 RC 89, 90, 89 74 75
805 0.25 3 12 4000 0.875 0-0-0 SC 91, 92, 87 74 75
800 1 3 12 10000 0.945 555-555-555 RC 92, 92, 92 39 39
800 1 3 12 10000 0.945 555-555-555 SC 88, 87, 79 39 39
801 1 3 12 5000 0.945 555-555-555 RC 92, 92, 93 77 75
801 1 3 12 5000 0.945 555-555-555 SC 87, 71, 34 77 78
802 1 3 12 4000 0.945 555-555-555 RC 80, 78, 78 96 97
802 1 3 12 4000 0.945 555-555-555 SC 86, 42, 17 96 92

From the table above it becomes clear that if the demand to capacity ratio ρd/c increases (capacity
decreases) and the demand uncertainty increases, then the Stochastic Counterpart will yield lower β-
service levels for the products. Important in this case is to notice that the Robust Counterpart yields
more stable service levels when this happens. Nevertheless, under certain circumstances, both yield
sufficiently large service levels or even larger service levels than required. When demand uncertainty is
low and Tc = 12, both models yield more or less the same service level and satisfies the required 90
percent β-service level. But when Tc = 4 the Robust Counterpart will yield high service levels. The
reason for this is, because the Robust Counterpart then behaves like the nominal model whereas the
Stochastic Counterpart purposely goes for back-orders to approach the 90 percent service level.

We are very much interested in the reason why the Robust Counterpart performs better with regards
to the service levels reported above and therefore, we analysed all kinds of statistics. We used paired-t
confidence intervals to make a valid comparison between the two models employed. This technique is
based on the work of (Law, 2015, pp. 560-569) and they explain that it is a better method than using
hypothesis testing. This is because in hypothesis testing there is no more information than a hypothesis
being accepted or rejected, while using paired-t confidence intervals we get information about how
much better or worse one model performs over the other if there is a significant difference.

We will consider run 808 as an example. We start by looking at the paired-t confidence interval for
the inventory holding cost hk and we explain how to come up with these. First we create a new statistic
based on subtracting the mean inventory holding cost for the Robust Counterpart from the one for the
Stochastic Counterpart. This is done for each replication. We then determine the 95 percent interval
for this new statistic. If this interval contains zero, then we know that there is no significant difference
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Table 4.10: Resulting service levels for experiment 3 (Tc = 4)

Input Output (means)

Run cvar N Tc C β d̂kt Model β-service level ρd/c ρu
809 0.25 3 4 10000 0.865 0-0-0 RC 97, 96, 96 30 31
809 0.25 3 4 10000 0.865 0-0-0 SC 91, 90, 91 30 31
810 0.25 3 4 5000 0.865 0-0-0 RC 96, 96, 95 60 62
810 0.25 3 4 5000 0.865 0-0-0 SC 92, 92, 92 60 62
811 0.25 3 4 4000 0.865 0-0-0 RC 95, 95, 96 74 76
811 0.25 3 4 4000 0.865 0-0-0 SC 92, 92, 92 74 76
806 1 3 4 10000 0.9 485-485-485 RC 92, 92, 92 39 41
806 1 3 4 10000 0.9 485-485-485 SC 91, 90, 91 39 41
807 1 3 4 5000 0.9 485-485-485 RC 90, 91, 91 74 77
807 1 3 4 5000 0.9 485-485-485 SC 89, 88, 98 74 78
808 1 3 4 4000 0.9 485-485-485 RC 75, 76, 74 99 98
808 1 3 4 4000 0.9 485-485-485 SC 89, 69, 11 99 97

for the two means, but if there is, then we know which of the two models performs better. In this case
the interval turns out to be: [141924, 318800] and this means that the inventory holding costs for the
Robust Counterpart are between 141924 and 318800 units higher than for the Stochastic Counterpart.

The paired-t confidence interval is determined for the setup cost as well. In this case there is no
significant difference, because the interval is [−59491, 47158]. We have repeated this for the back-order
costs and the total cost. It is not surprising that the back-order cost are about 46.2 and 65 million
higher for the Stochastic Counterpart seen the realized service level. This results higher total cost for
the Stochastic Counterpart.

We looked at the various paired-t confidence intervals for each individual run. We reported which
of the two models had the highest cost based on the paired-t confidence interval in Table 4.11 and
4.11. To no surprise, the Stochastic Counterpart incurs more back-orders costs and thereby more total
cost in general. If the service level drops as the number back-orders grows, then more cost are incurred.
Furthermore, we looked at the average inventory level over all products in these runs. Clearly we can
see a relation between the holding cost and the average inventory level (Ik). In general we may say
that the Robust Counterpart has more inventory when needed, i.e. if the demand uncertainty is high
and capacity scares, then we have higher inventory holding cost, because we have need more inventory
on average to keep the service level high.

Table 4.11: Resulting cost and average inventory level for experiment 3 (Tc = 12)

Input Highest cost Mean Ik
Run cvar N Tc C hc sc bc tc RC SC
800 1 3 12 10000 RC RC SC SC 2830 2198
801 1 3 12 5000 RC SC SC SC 2791 -786
802 1 3 12 4000 RC RC SC SC 1512 -4525
803 0.25 3 12 10000 SC RC SC SC 1032 1372
804 0.25 3 12 5000 SC RC SC SC 904 1201
805 0.25 3 12 4000 SC RC 0 0 808 994

So, our primary aim was to achieve a certain service level and secondary to that to keep costs
low. We may conclude that the Robust Counterpart yields more steady results, because its keeps
the service level among the products reasonably stable and it does not drop as dramatically as the
Stochastic Counterpart when capacity tightens and demand uncertainty increases. This is purely an
observation, but now we are interested in the reason behind it. Recall that the Stochastic Counterpart
works with a service level in one of its constraints. In order to make things work we had to relax the
problem, otherwise we would not obtain a feasible production plan. However, as the system gets under
pressure, it has a strong desire in at least satisfying the service level of one product. All capacity is
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Table 4.12: Resulting cost and average inventory level for experiment 3 (Tc = 4)

Input Highest cost Mean Ik
Run cvar N Tc C hc sc bc tc RC SC
806 1 3 12 10000 SC SC SC SC 1978 2156
807 1 3 12 5000 RC SC SC SC 1826 1490
808 1 3 12 4000 RC 0 SC SC 843 -4387
809 0.25 3 12 10000 SC RC SC SC 1186 1270
810 0.25 3 12 5000 SC SC SC SC 1012 1190
811 0.25 3 12 4000 RC SC SC SC 1019 933

allocated to this product. Hence, more back-orders are incurred for the other products. Clearly, this
method does not incorporate the knowledge of back-orders and their associated costs into the model
as the Robust Counterpart does. Because it specifically incorporate these costs, it tries to minimize the
back-orders, while ensuring a sufficiently large average inventory level to deal with demand uncertainty.
Hence, besides having a trade-off between inventory holding costs and setup costs, there is a triangular
trade-off with the back-orders costs.

4.5 Conclusion

In this chapter we conducted a thorough simulation study on our models. First, we look at the situation
where the nominal model was employed in a stochastic setting. We discovered that things go wrong as
demand uncertainty or the periods to commit increase. We then looked at the Stochastic and Robust
Counterpart and tried to determine for which input parameters we would obtain a certain required
service level. Using this information we were able to shift up gears and look at the multi-item situation.
From this last experiment it became clear that the Robust Counterpart results in better service levels
in general at less cost.



Chapter 5

Conclusions and Future Research

5.1 Introduction

In this chapter we will go over the main research findings and make suggestions for future research.
First, we will go over the main research question and the related sub questions that we posed in the
first chapter. In the last three chapters we have been able to answer them. Closely related to these
answers are the research findings, or implications, that we will discuss in this chapter. We conclude this
chapter by discussing possible future research.

For the sake of completeness, we will repeat the main research questions and the related sub
questions below,

� What is the relative performance advantage of taking a RO approach to the CLSP over using the
nominal model and its Stochastic Counterpart, which is based on the work of Tempelmeier and
Hilger (2015), in a rolling horizon setting where demand is identically and independently normally
distributed?

and the sub questions,

1. How can we apply the methodologies of RO to production planning problems?

2. How can we derive a Stochastic Counterpart in case we take a stochastic perspective on demand
uncertainty?

3. Can we formulate a Robust Counterpart for the nominal CLSP if demand is known to range in a
specified interval?

4. How should we setup an experimental framework and measure the relative performance of the
models?

5. We know that we can influence the realized β-service level in the Stochastic Counterpart by means
of a parameter. However, is the required service level equal to the realized one? If not, how can
we fit the right input to the desired output?

6. How can we influence the realized β-service level in the Robust Counterpart?

7. How much does either of the two models, the Stochastic and Robust Counterpart, perform better
than the other under different circumstances?

5.2 Main Research Findings

5.2.1 Using Robust Optimization in Production Planning Models

We started our research by explaining the methodologies behind Robust Optimization in 2. Based
on a basic production planning problem we have been able to discuss how this approach deals with
uncertainty. Moreover, we have been able to discuss some of the implications of using this method.

59
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Based on results from the work of Bertsimas and Thiele (2006) we have been able to show that the
optimal robust policy for this basic problem in case of interval uncertainty is a base-stock policy. More
on the implications of this result later. From this chapter it became clear that we could answer the
first of our sub research questions, Question 1, because we can apply the methodologies of Robust
Optimization to production planning models.

In Chapter 3 we again took a Robust Optimization approach, but this time for the Capacitated Lot
Sizing Problem. We started from the nominal problem and showed that it is possible to come up with a
Robust Counterpart. So, again we were able to apply the methodologies of Robust Optimization. This
strengthens the answer to the Question 1 and answers Question 3.

5.2.2 Deriving a Stochastic Counterpart

So, we derived a Robust and Stochastic Counterpart. The differences between the two is in the
way the look at demand uncertainty. The Robust Counterpart looks at uncertainty in a more or less
geometrical way, because it extends the polyhedron in which it looks for solutions. Contrary, the
Stochastic Counterpart deals with uncertainty in a stochastic way. This means that it assumes demand
to be randomly distributed. In this case, it assumes demand to be identically and independently normally
distributed. However, we saw that it is not straightforward to incorporate this notion of uncertainty
in the nominal CLSP. We had to approximate the functions for the expected inventory level and back-
orders.

We started the approximation of the functions for the expected inventory level and back-orders by
defining them in terms of cumulative production quantities. Then we derived an explicit formulation for
both and these formulations allowed us to linearize both. Finally, we were able to come up with the Ap-
proximated Stochastic Capacitated Lot Sizing Problem in which these linearizations were incorporated.
Hence, we ended up with the Stochastic Counterpart to the nominal problem. This answers Question
2, yes we can derive a Stochastic Counterpart for the nominal Capacitated Lot Sizing Problem.

An interesting result followed from preliminary research on this model in our simulation framework.
Our model is based predominantly on the work of Tempelmeier and Hilger (2015). But when we
implemented this model we encountered some counter-intuitive behavior. To give a small recapitulation
on what goes wrong, the initial model does not properly fill the intervals that are associated with
the parts of the linearized functions. This allows the model to select only those that yield more
favorable values for the expected inventory level and back-order function. It still satisfies the service
level constraint, but it no longer results in a sensible production plan. Hence, we showed that the model
of Tempelmeier and Hilger (2015) has its flaws and explained how this could be improved. Of course,
our model incorporated these improvements.

5.2.3 Influencing the Realized β-Service Level

Two of our sub research questions, Question 6 and 5 we aimed at investigating if we could influence the
realized β-service level. Before we started researching this question in the simulation study, we already
knew that the Stochastic Counterpart had a parameter for the required β-service level. We filled in
some values to check whether the required service levels correspond to the realized service levels. We
found a relation between input and output. This enabled us to fit the desired output with the required
input. We repeated this for the Robust Counterpart as well and we discovered a relation between the
outputs and the required demand half-widths as inputs. So, yes, we can influence the realized β-service
level the way we want it to be.

5.2.4 Relative Performance under Low and High Ratios of Demand to Ca-
pacity

We looked at how the models perform if we have three products in our system and if we were to
tighten capacity. From the last experiment in the previous chapter it became clear that the Robust
Counterpart is superior to the Stochastic Counterpart. It makes sense that the service levels drop as
capacity tightens, but clearly, they dropped more in case of the Stochastic Counterpart. As reason for
this phenomenon we gave the strong desire of the Stochastic Counterpart to satisfy the service level
constraint. This model doesn’t have the trade-off with back-order costs as the Robust Counterpart has.
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This gives reason to think that the Robust Counterpart aims at minimizing back-orders costs, inventory
holding cost and setup costs, while the Stochastic Counterpart wants to minimize inventory holding
costs and setup costs, while satisfying the service levels. However, when the models end up in the
position of significant back-orders the Robust Counterpart acknowledges the importance of reducing
the back-orders for all products, while the Stochastic Counterpart only focusses on achieving the service
levels (most of the times at cost of the other products).

5.2.5 General Conclusion

In general we may conclude that a Robust Optimization lends itself for the use in production planning
models, e.g. our single-item problem and the CLSP. Furthermore, we showed how to derive a Stochastic
Counterpart. By doing so we found out that the model of Tempelmeier and Hilger (2015) has it flaw.
Hence, we suggested how to improve this. Furthermore, it is safe to say that the Robust Optimization
approach leads to a better β-service level at less cost than the Stochastic Counterpart.

We conclude this section by repeating the contributions we made to the field. We showed how to
take a Robust Optimization approach to the Capacitated Lot Sizing Problem, we corrected an existing
stochastic model and came up with our own Stochastic Counterpart, we simulated our models in a
rolling horizon setting and gave insight in how to take a Robust Optimization approach.

5.3 Future Research

In this final section of this final chapter we will make recommendations for future research regarding
production planning and more specific to the Capacitated Lot Sizing Problem. First, we want to say
something about further use of Robust Optimization. Then we state something about the use of a
rolling horizon setting in a simulation study. Then we recommend where to go next with regards to
studying a Robust Optimization approach to lot sizing problems.

We touched slightly upon the new developments around Distributionally Robust Optimization in
Chapter 2 and argued that this might become a third paradigm besides looking at uncertainty from a
Stochastic or Robust Optimization approach. Though, the word paradigm might be an overstatement as
all three methods are closely related. It seems that DRO combines the best of both worlds. It borrows
from the notion of probability distributions from the stochastic side, i.e. uncertainty is specified by
moments and other deviation measures. Based on this information a formulation is made using the
Robust Optimization methodologies. Although these developments are in its infancy, they are worth
keeping an eye on, because in practice it is hard (and costly) to obtain information about the demand
distribution. Though, the first moments are generally easy to obtain. Hence, DRO sounds promising
with this respect.

Then with regards to the rolling horizon setting that we took in our simulation study. Previous
research already suggested to do so, but it is seldom, if not non-existing, encountered in works on the
Capacitated Lot Sizing Problem. This is quite remarkable seen the fact that most models employed in
practice run in a rolling horizon. Therefore, in our opinion, performing a simulation study in a rolling
horizon is of utmost importance and intrinsically bound together with proper research. If one doesn’t
know how a model performs in a rolling horizon it is to be expected that nothing can be said about
its relevance for practice. Hence, we highly recommend future research to run simulations in a rolling
horizon setting.

In our simulation study we have looked at low and high ratios of demand to capacity. While most
works do not consider high ratios, we explicitly did, because it is important for practice to do so. The
work of Fransoo et al. (1995) pointed out the importance of stable cycle lengths at high ratios of
demand to capacity. To illustrate this take a look at Figure 5.1. In this figure we have plotted the
inventory levels for three products. Clearly, this system is under high pressure, because each setup is
followed by the respective production of the product. And as production ends, the setup of the next
product immediately commences.

In this system it is interesting to see if demand becomes uncertain and we have a higher realization
of demand for a certain product. This situation is illustrated in Figure 5.2. We see an increase in the
demand rate which depletes the inventory for this product much faster. Hence, a setup is required to
produce new products. However, to do so, we have to make a shorter production run for the third
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product. Which depletes faster in this way as well and hence, requires a setup earlier than expected.
If this effect cascades through the system, we will end up with shorter cycle lengths for the products,
less time is spend on production and more on setups. Thus, the utilization rate of the system drops.
To restore this longer cycles have to be made to build up inventory again. Though, this problem could
have been avoided in the first place by not setting up production right a way, but to maintain a “stable
cycle length”. With the importance of stable cycle lengths being clear, we could imagine that it is of
interest to study our models again under high ratios of demand to capacity to determine if the Robust
Optimization approach naturally guarantees stable cycle lengths.
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Figure 5.1: Stable cycle length, constant demand.

A final recommendation for future research is about extending the problem. In this we could go in
two directions. First, we could make the models more of a sequencing type by dealing with sequence
dependent setups. Or we could go more towards multi-level models. In the latter multiple locations
are considered. Examples of Multi-Level Capacitated Lot Sizing can be found in Stadtler (1996) as
well as Stadtler (2003). Spitter (2005) noted that these models represent the Supply Chain Operations
Planning problem studied by de Kok and Fransoo (2003). de Kok and Fransoo (2003) define the
objective of Supply Chain Operations Planning as “to coordinate the release of materials and resources
in the supply network under consideration such that customer service constraints are met at minimal
cost”. In the models of de Kok and Fransoo (2003) the order release function is explicitly modeled.
Hence, if a multi-level multi-item Capacitated Lot Sizing formulation is used for the Supply Chain
Operations Planning problem, the it is assumed that material release decisions are not decoupled from
resource consumption. Nevertheless, a link can be discovered from the CLSP to SCOP and as Spitter
(2005) notes, mathematical programming formulations can be made to work well for the Supply Chain
Operations Problem. This gives reason to think that a Robust Optimization approach lends itself well
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in this case too.
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Figure 5.2: Effect of increasing demand rate.
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Summary

In this thesis the Capacitated Lot Sizing Problem under demand uncertainty is considered. This problem
deals with determining a production plan for one machine over a finite horizon for a fixed number of
products while being constraint by per period capacity restrictions. Costs are incurred for setting up
production, holding inventory and incurring back-orders. First a general introduction is given to the
thesis. In this introduction we see that the the problem can very well be formulated as a Mixed Integer
Linear Optimization problem. Besides that we gave a motivation for this research. The most important
motivations for this research are the fact that a thorough study on how lot sizing models behave in a
rolling horizon is not found in literature and not many models that uncertainty into account. Hence,
various researchers have suggested to conduct such a study (see Karimi et al. (2003), Allahverdi et al.
(1999) and Jans and Degraeve (2008)). Both are of importance for practice as well, because most
demand in practice is inherently uncertain and models are most likely to be employed in a rolling
horizon setting.

Two different methods have been taken to deal with uncertainty, i.e. a Robust Optimization
approach and a Stochastic approach. The methodologies regarding the former originates from the work
of Ben-Tal and Nemirovski (1998) and recently gained widespread attention. The reason for this is
that a Robust Optimization doesn’t suffer from the curse of dimensionality as Stochastic Programming
does for example, because it deals with uncertainty in a geometrical way. What this means is that the
polyhedron with possible solutions to a mathematical problem is extended. A solution is said to be
robust if it resides in this new polyhedron. Another big advantage of this method is that a problem
can be formulated as (Mixed Integer) Linear Optimization problem and stays as such when the Robust
Counterpart is derived in most cases.

When dealing with the Stochastic approach we have to take into account that we can no longer
talk about inventory level, demand or back-orders. We have to express those in their expected values.
However, we can’t deal with these straight away in a Mixed Integer Linear Optimization problem.
Therefore, we have determined the Piece-Wise Linear Approximations of the functions for these expected
values. These approximations have then be substituted back into the problem to obtain again a linear
problem. Interestingly, while deriving our own model we compared it to the one of Tempelmeier and
Hilger (2015). We found that their model does not correctly fills the intervals corresponding to the
different slopes in the approximation. Their model can be hacked in such a way that only those intervals
are chosen that have the largest slope. This way we can still achieve the requirements of the service
level constraint in this model, while incurring less cost. We have tackled this problem and came up
with the so called Stochastic Counterpart.

All models have been compared in an simulated environment in a rolling horizon setting where
demand is randomly generated from the Normal distribution. First, the nominal problem is investigated
and some interesting property came to light. The results confirm the expectation that the service level
drops when demand uncertainty increases or when we have to commit more periods. The reason for this
to happen has to do with the trade-off between setup costs and inventory holding costs by the lot sizing
decision. As a consequence of this trade-off the lot size will be larger than the required demand for
one period. Hence, our lot size effectively behaves as a safety stock. So, under various circumstances
we have seen reasonable service levels. Though, a decrease in the realized service level is observed as
demand uncertainty increases or we have to commit more periods.

The realized service level when using the Stochastic Counterpart can be influenced by means of a
β-service level constraint whereas for the Robust Counterpart we can set the back-order cost and the
size of the demand interval. Therefore, we continued with fitting the right parameters to a realized
service level. This enabled us to asses how these models perform under various circumstances. We
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observed that the Robust Counterpart delivers more stable service levels at lower cost when capacity
decreases and demand uncertainty gets higher. By careful investigation of the results in this experiment
we found out the reason for this, which we will explain next.

Our primary aim was to achieve a certain service level and secondary to that to keep costs low.
The Robust Counterpart yields more steady results, because its keeps the service level among the
products reasonably stable and it does not drop as dramatically as the Stochastic Counterpart when
capacity tightens and demand uncertainty increases. To understand the reason behind it, recall that
the Stochastic Counterpart works with a service level in one of its constraints. Then as the system gets
under pressure, it has a strong desire in at least satisfying the service level of one product. All capacity
is allocated to this product. Hence, more back-orders are incurred for the other products. Since it
doesn’t take back-order cost into account it has no incentive to reduce the back-orders. Contrary,
the Robust Counterpart does take the knowledge of the back-orders and their associated cost into
account. Because it specifically incorporates this cost, it tries to minimize the back-orders, while it
ensures a sufficiently large average inventory level to deal with demand uncertainty. Therefore, besides
having a trade-off between inventory holding costs and setup costs, it has a triangular trade-off with
the back-orders costs.

In short, we can summarize our contributions as follows. We have taken two approaches to deal
with demand uncertainty and this has led to the Robust and Stochastic Counterpart. The former is
based on the methodologies from Robust Optimization, and such an approach have not yet been taken,
while the latter is inspired by the work of, Tempelmeier and Hilger (2015). We have shown that the
model introduced in Tempelmeier and Hilger (2015) does not work correctly. Hence, we have improved
this model. Thus we contribute two new models to deal with demand uncertainty for the Capacitated
Lot Sizing Problem. Furthermore, we have studied how the nominal model, the Robust and Stochastic
Counterpart perform in a rolling horizon setting under demand uncertainty. Surprisingly, the nominal
model performs reasonably well in certain circumstances as its lot size effectively behaves like safety
stock. In another experiment we have shown that the realized β-service level can be influenced for both
counterparts. This made them suitable for a comparison under various circumstances. It was found
that the Robust Counterpart is more stable and results in less cost. Therefore, we have shown that a
Robust Optimization approach is not only possible, but leads to better results in general.
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Appendix A

Notation and Abbreviations

Notation

The notation used in this thesis is summarized below:

T Index set for the time periods (t ∈ {1, 2, . . . , T})
K Index set for the products (k ∈ {1, 2, . . . ,K})
Ct machine capacity in period t.

vk processing time for item k.

hk inventory holding cost for item k.

bk back-order cost for item k.

sk setup costs for item k.

dkt demand for item k in period t.

Dkt cumulative demand for item k up to period t.

Ikt inventory level for item k at the end of period t.

qkt decision variable for the production quantity of item k in period t.

Qkt cumulative production quantity of item k up to period t.

γkt binary decision variable to produce item k in period t.

Remark, in the remainder of this thesis index i might be omitted in the case of a single item
production planning problem.

Abbreviations

The abbreviations used in this thesis are summarized below:

ARC Adjustable Robust Counterpart

AARC Affinely Adjustable Robust Counterpart

CLSP Capacitated Lot Sizing Problem

DRO Distributionally Robust Optimization

LO Linear Optimization

RO Robust Optimization

RC Robust Counterpart

SC Stochastic Counterpart

SCLSP Stochastic Capacitated Lot Sizing Problem

SP Stochastic Programming
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Appendix B

Mathematical Preliminaries

B.1 From Mathematical Optimization to Linear Optimization

In this section we start with a general form for mathematical optimization problems and gradually
work towards the subclass of linear optimization problems. Conform Boyd and Vandenberghe (2004),
a mathematical optimization (MO) problem has the following form,

MO : min
x
{f0(x) : fi(x) ≤ bi,∀i = 1, . . . ,m} (B.1)

where x is the vector of optimization variables, f0 : Rn → R is the objective function, fi : Rn → R
are the constraint functions and the constants bi are the upper bounds on these constraint functions.

We can distinguish classes of optimization problems if we look at the particular forms of the functions
f0, . . . fm. An interesting class of optimization problems are the so called convex optimization (CO)
problems, i.e. the functions adhere to the definition of convexity.

Definition B.1 (Convex and Concave Functions). A function f : Rn → R is called convex if for
every x, y ∈ Rn, and every α ∈ [0, 1], we have,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Contrary, a function f : Rn → R is called concave if for every x, y ∈ Rn, and every α ∈ [0, 1], we
have,

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y).

It is worth noticing that functions of the form f(x) = a0 +
∑n
i=1 aixi, where a is a vector of scalars,

are called affine functions and that these affine functions are both convex and concave.

In this paper we are particulary interested in a subclass of these convex optimization problems,
namely, linear optimization (LO) problems. We call mathematical optimization problems linear opti-
mization problems if the functions f0, . . . , fm adhere to the definition of linearity.

Definition B.2 (Linear Functions). A function f : Rn → R is linear if for every x, y ∈ Rn, and every
α, β ∈ R, we have,

f(αx+ βy) = αf(x) + βf(y).

We can write these linear optimization problems in their canonical form as follows,

LO : min
x
{c>x+ d : Ax ≤ b} (B.2)

where x ∈ Rn is the vector of decisions variables, c, d ∈ Rn are parameters in the cost function,
A ∈ Rm×n is the constraint matrix and b ∈ Rm is the right hand side. In matrix A, aij , i ∈ [1, n] and
j ∈ [1,m], indicates an element of the matrix at row i and column j. Together, inequalities a>i x ≤ bi
constrain the possible values for x and hence, they influence the value of the objective function.

75



76 APPENDIX B. MATHEMATICAL PRELIMINARIES

B.2 Norms

Definition B.3 (Norms). For p ∈ [1,∞], we define the p-norm ‖.‖p on Rn by the relation,

‖x‖p =

{
(
∑
i |xi|p)1/p, 1 ≤ p <∞

limp→∞ ‖x‖p = maxi{xi}, p =∞.
(B.3)

When p, q ∈ [1,∞] and 1
p + 1

q = 1, then the norms ‖.‖p and ‖.‖q are conjugates of each other,

‖x‖p = max
y:‖y‖q≤1

|〈x, y〉| (B.4)

In particular, Hölder inequality is true, which means that,

|〈x, y〉| ≤ ‖x‖p‖y‖q (B.5)

B.3 Integration

Integration by substitution∫ ψ(b)

ψ(a)

f(x)dx =

∫ b

a

f(ψ(d))ψ′(d)dd (B.6)

Integration by parts∫
u(x)v′(x)dx = u(x)v(x)−

∫
v(x)u′(x)dx (B.7)



Appendix C

Proofs of Theorems

This chapter of the appendix contains proofs for various theorems.

Theorem C.1 (Robust Counterpart Cardinally Constraint Uncertainty, cf. Bertsimas and Sim (2004)).
The uncertain linear optimization problem,

{
min
x
{c>x : Ax ≤ b}

}
A∈A

(C.1)

has the following robust linear counterpart,

min c>x (C.2)

s.t.
∑
j

āijxj + qiΓ +
∑

j:(i,j)∈J

rij ≤ bi ∀i (C.3)

qi + rij ≥ âijyj ∀(i, j) ∈ J (C.4)

− y ≤ x ≤ y (C.5)

l ≤ x ≤ u (C.6)

qi ≥ 0, rij ≥ 0, y ≥ 0 ∀i, j (C.7)

Proof. We can write the ith constraint of the uncertain linear problem as,

maxA∈A
∑
j

aijxj ≤ bi (C.8)

Using the fact that aij can be written as ā+zij âij with zij ∈ [−1, 1], we come up with the following
auxiliary linear optimization problem that need to be solved for every ith constraint,

max
∑
j

(ā+ zij âij)xj (C.9)

s.t.
∑

(i,j)∈J

|zij | ≤ Γ (C.10)

|zij | ≤ 1 ∀(i, j) ∈ J (C.11)

|zij | ≥ 0 ∀(i, j) ∈ J (C.12)

We rewrite the auxiliary linear optimization problem, use vector notation and remove the absolute
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values using |zij | = z+ij + z−ij (Bertsimas and Tsitsiklis, 1997, pg. 18),

max
(
âi1x1 −âi1x1 · · · âijxj −âijxj

)

z+i1
z−i1
...
z+ij
z−ij



s.t.


1 1 1 1 · · · 1 1
1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . . 0 0

0 0 0 0 · · · 1 1




z+i1
z−i1
...
z+ij
z−ij

 ≤


Γ
1
1
...
1


z+ij , z

−
ij ≥ 0

The feasible set is non-empty and bounded (z = 0 is a solution), and hence, we can apply strong
duality to arrive at the following,

min
(
Γ 1 1 · · · 1

)

qi
ri1
ri2
...
rij



s.t.



1 1 0 · · · 0
1 1 0 · · · 0
1 0 1 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1
1 0 0 · · · 1




qi
ri1
ri2
...
rij

 ≥

âi1x1
−âi1x1

...
âijxj
−âijxj


qi ≥ 0, rij ≥ 0

We can introduce the absolute values again, because qi + rij ≥ âi1x1 and qi + rij ≥ −âi1x1
(Bertsimas and Tsitsiklis, 1997, pg. 18) and this results in,

min
(
Γ 1 1 · · · 1

)

qi
ri1
ri2
...
rij



s.t.


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1



qi
ri1
ri2
...
rij

 ≥

âi1|x1|
âi2|x1|

...
âij |xj |


qi ≥ 0, rij ≥ 0

We can rewrite the this into the following problem without vector notation,

min qiΓ +
∑

j:(i,j)∈J

rij

s.t. qi + rij ≥ âij |xj | ∀j : (i, j) ∈ J
qi ≥ 0, rij ≥ 0 ∀j : (i, j) ∈ J



79

This is dual linear optimization program to the primal one we started with and we can substitute
this in the original uncertain linear optimization problem to arrive at its robust counterpart,

min c>x (C.13)

s.t.
∑
j

āijxj + qiΓ +
∑

j:(i,j)∈J

rij ≤ bi ∀i (C.14)

qi + rij ≥ âijyj ∀(i, j) ∈ J (C.15)

− y ≤ x ≤ y (C.16)

l ≤ x ≤ u (C.17)

qi ≥ 0, rij ≥ 0, y ≥ 0 ∀i, j (C.18)


