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Management Summary 
This Master’s thesis is built on two research areas that previously lacked depth and detail when they 

met. Organizational Learning, more specifically Learning Curve Theory, and Engineering Change 

Management could benefit from studies in which the areas are brought together. Our research tries to 

uncover the conditions under which ECs contributes to learning, by researching the effects of 

increasing the opportunities to learn during the generation and implementation of such an EC.  

 
We set an academic goal that is two-fold. First of all, there is a need to better understand the 

conditions under which ECs contribute to learning (Adler & Clark, 1991). By stepping away from the 

aggregate forms of measurement (Argote, 2013), we can uncover the black box that Engineering 

Change learning currently is.  Second of all, it becomes clear from literature that claims made on how 

to cope with changes, largely build on the use of case study research, could benefit from the use of 

longitudinal data studies.  

 
ASML is constantly striving for the introduction of new platforms capable of producing chips that are 

faster, smaller and greener. In order to achieve these goals the company makes every effort to achieve 

reductions in wavelength of light. In recent years this has led to a technology which makes use of 

Extreme Ultra Violet light (EUV). This new product program is characterized by high complexity, low 

maturity, and therefore long and unstable cycle times. Combined with the highly capital intensiveness 

of this technology, the current level of work in progress (WIP), leads to liquidity issues. ASML is trying 

to achieve reductions in the cycle times of their projects, it is necessary to reach this goal with an eye 

on the future, by balancing speed and learning effects. We set the goal to deliver drivers of the 

learning curve, while simultaneously researching related effects of EC-learning.  

 
The research is based on a combination of quantitative and qualitative research. Our focus lies on 

building a model that explains how and why learning occurs within the Engineering Change context at 

ASML. Thus, we validate EC principles gathered from literature and empirical research with the use of 

a statistical model. Research is of course an iterative process, we took steps to gain understanding 

both research areas by reading up on existing literature. Simultaneously we tried to understand the 

empirical setting by setting up explorative interviews with relevant employees of ASML. We combined 

our obtained understanding of the context with documents on the EC process, IT tools, visits to the 

factory floor, and we attended meetings relevant to the forthbringing of an EC. This process led to a 

conceptual model incorporating different paths for EC learning, while testing the effect of increased 

opportunities to learn with the help of moderators. All in all to answer the research question; What 

role do Engineering Changes play in the relationship between experience and project cycle time (i.e. the 

learning curve)?   
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Theoretical background 

As organizations gain experience in the execution of their processes, the outcome parameters typically 

decrease at a decreasing rate (Argote, 2013). This phenomenon has been described extensively in 

literature and is called the learning curve. Learning curves are characterized in terms of a progress 

rate, with each doubling of cumulative output the outcome parameter reduces with a certain 

percentage. The use of moderators on a learning curve model is a good method to find conditions that 

drive cycle time learning and performance (Wiersma, 2007). Main effects of the moderators tell us if 

the number of ECs is influenced, while the interaction variable makes us conclude on the effect on the 

learning rate. 

Learning curves have been shown to vary in their learning rates (Dutton and Thomas, 1984). More 

recent research focused on finding factors that explain the observed variation in these rates. The 

aggregate form of measurement of factors that contribute to learning possibly masks that 

organizational phenomena are implemented very differently in different contexts (Argote, 2013). 

Research on the effect of ECs on learning lack detail, from the exact definition on page 11 we can 

characterize ECs based on 1) their impact, 2) time taken, and 3) the number of people involved. The 

engineering change process is there to remedy mistakes, integrate new parts or tweak the product 

towards perfection due to overlapping development processes. Based on research of Argote et al. 

(2003), in combination with various papers on how to reduce the negative effects of ECs (see table 2), 

we propose that increasing the opportunities to learn during generation and implementation of ECs 

leads to higher levels of learning. Lastly, we conclude our theoretical background with a summation 

of the identified gaps. 

Hypotheses 

Based on said gaps we build up our model step by step. More specifically, we first test whether 

project cycle time is a function of experience. Moreover, we expect that ECs partially explains the 

progression of a learning curve with outcome measure project cycle time. Thus, we expect that ECs act 

as mediator of the relationship experience and project cycle time. We fill one of the gaps by proposing 

a decomposition of ECs, we expect that increased opportunities to learn during implementation of an 

EC (i.e. operationalized by a split in expected impact) leads to higher levels of learning. Lastly, we 

expect that higher of levels of Attention and Team Diversity (i.e. increased opportunities to learn 

during generation) contribute to learning, while simultaneously leading to more ECs (i.e. main effects).  

Results 

Data was gathered from relevant IT tools, a total of more than 30.000 individual ECs were assigned to 

the more than 900 machine projects. Results were calculated with the use of the estimation approach 

of Hayes (2013). We translated our conceptual model (see fig. 5) into a statistical model, which led to a 
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set of inferential tests to test the hypotheses. Noteworthy is the use of a bootstrapping method to test 

the conditional effects at various values of the moderator based on a spotlight analysis (Spiller et al., 

2013). We started our statistical quest with a stepwise build up of the model (see appendix E section 

4), revealing no immediate problems with the incorporation of variables. Thus, allowing us to test our 

hypotheses in our proposed complete model (table 8). 

A general overview of the hypotheses and results is presented in table 14. Firstly, our results show that 

both learning paths through low impact as well as through high impact ECs significantly contribute to 

learning. Thereby we can express our hunch that learning takes place at separate environments, 

organizations learn due to deliberate engineering and via more autonomous processes. Secondly, 

contrary to our expectations not high impact ECs but low impact ECs contribute significantly more to 

the progression of the learning curve. This result is explained by the high influx of low impact ECs, 

which overpower high impact ECs with a ratio of 8:1. Thirdly, higher levels of Attention do not lead to 

more ECs, moreover they are detrimental to learning shown by the positive significant interaction 

effects. Overall we expect that high levels of Attention (measured by the cycle times of ECs) could lead 

to capacity problems and or codified knowledge becoming obsolete. On the other hand, and lastly, 

Team Diversity does lead to higher learning. When ECs are handled by a growing number of business 

functions the curve will progress more quickly. Moreover do they lead to a higher number of 

Engineering Changes.  

Conclusion 

Thus, we can conclude that ECs do contribute to learning, part of the progression of the curve is 

explained by their presence. Moreover, we have shown that although their beneficial effects are 

dominant, ECs have a direct delaying effect on project cycle times. Furthermore, we demonstrated 

that increasing the opportunities to learn during generation of an EC is beneficial to learning when 

measured in Team Diversity. Higher levels of Attention are detrimental to learning, therefore we 

advise to follow strategies proposed by Terwiesch and Loch (1999) to decrease EC cycle times and 

Thomke and Fujimoto (2000) to strive for faster cycles of problem solving. We have added to the 

literature by providing ways to test the effect of fine-grained characteristics of ECs on the learning 

curve. Our model with several paths has shown that moderators have contrasting effects, expected 

due to learning taking place in separate environments. Furthermore did we validate previously 

untested strategies on how to cope with ECs, with the use of longitudinal data. Lastly, we have shown 

that increasing the opportunities to learn is not always contributing to learning. The effects are not so 

simple and more delicate than that, additional research is needed to understand the conditions under 

which increasing the opportunities to learn leads to learning.  
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1. Introduction 

ASML, a market leading company which provides lithography systems for the semiconductor industry, 

is putting effort in developing systems that make it possible to continue Moore’s Law. Advances in 

lithography technology are measured based on the resolution of a system. In order to reach the goal of 

an ever higher resolution, ASML incorporates technologies that produce wavelengths which are 

measured in the nanometer scale. Their newest platforms make use of extreme ultraviolet (EUV) light, 

a radical new technology, resulting in tough new challenges in design and production. 

The introduction of such a new platform comes not only with increased complexity. The technologies 

used in the machines are significantly more capital intensive. A direct result of the increased 

complexity and capital is the inflated work in progress. In order to reduce the WIP it is necessary to 

push machines through the factory faster, effectively reducing the cycle time. However, it is necessary 

to reach this goal with an eye on the future, by balancing speed and learning effects. Therefore, we 

incorporate Learning Curve theory, a concept which describes the relationship between cumulative 

experience and a certain outcome parameter (e.g. unit costs), to identify characteristics that drive 

learning. 

As a result of the combination of the increased complexity and the low maturity of the technology, a 

high number of Engineering Changes (ECs) is initiated. ECs introduce functional characteristics to the 

product with the goal to increase quality, while simultaneously negatively affecting the cycle time. 

ASML is in search of methods to balance the new product development speed and their learning 

effects, striving for both a reduction in project cycle times and an increase of product quality. By 

uncovering the factors that accelerate the learning curve, it is possible to conclude on managerial 

implications helping to achieve faster project cycle times. 

Current research on the effect of ECs on cycle times lacks longitudinal evidence. Moreover, they 

measure ECs at an aggregate level. In this study we will try to incorporate EC principles obtained via 

qualitative research, into a quantitative application of learning curve theory. We will study the effect 

of increasing the opportunities to learn, one of the causal mechanisms that facilitates learning, on the 

number of engineering changes and on the learning rate of the project cycle time. We build up our 

model and hypotheses based on the gaps as found and reported on in the literature section. By 

incorporating moderators we can assess the effect on the engineering changes based on the main 

effect of said moderator, while the effects on learning are assessed by testing the effect of an 

interaction variable (i.e. setting the moderator as a function of the antecedent variable).   
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This leads to the following problem statement:  

 

What role do Engineering Changes play in the  relationship between  

experience and project cycle time (i.e. the learning curve)?   

 

This problem statement is accompanied by the following research questions:  

 

1) In what way do Engineering Changes contribute to the progression of the learning curve at ASML? 

2) Which characteristics and parameters of Engineering Changes can be identified? 

3) Which of those characteristics and parameters increase the opportunity to learn? 

4) What is the effect of increasing opportunities to learn on the number of  Engineering Changes?  

5) What is the effect of increasing opportunities to learn on the learning rate (i.e. in total and measured 

for each different path)?  

 

The rest of the thesis follows the build-up that is characteristic for research papers. This chapter 

introduced the subject and set the research questions. We will follow up with a review of the available 

literature, assembled via desk research on search terms such as: learning curve, learning rate, learning 

curve factors, organizational learning, knowledge transfer, experience, productivity, new product 

development speed, engineering change, engineering change process, engineering change 

management, design iterations, impact, consequences of design change, handling of engineering 

change, characteristics of engineering change etc. Papers were selected based on the impact-factor of 

the journal and the number of citations, a snowballing method was performed on several papers to 

uncover relevant older and newer publications. Subsequently, a chapter introducing the hypotheses is 

presented, followed by the empirical setting. After the empirical methodology chapter, we will present 

the results, which is followed by a chapter that concludes on and discusses these results.  
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2. Literature review 

The first objective of this literature review is to provide a wide range of research findings on the 

Learning Curve literature; a concept which describes the relationship between cumulative experience 

and a certain outcome parameter (e.g. unit costs). Additionally, interest goes out to the fields of 

application, the range of outcomes and the explanation of the observed variation in organizational 

learning rates. What follows is a paragraph on factors that in all probability facilitate learning and thus, 

drive the curve. The second objective is to provide an extensive review on the concept of EC 

Management, responsible for the process of implementation of changes to a system. In this literature 

review there is a need to identify several general characteristics of the EC-process and strategies to 

improve the management of ECs. The third objective is to identify the boundary crossing studies. We 

will identify the gaps in research, which in turn will serve as a stepping stone for the build-up of the 

conceptual model. The research gap will be identified based on the current overlap, and lack thereof, 

of the research areas that focus on Learning Curve and/or EC Management.  

2.1. Learning curve theory 
In the following section first the concept is introduced, followed by a mathematical representation of 

the curve. Thereafter, the general components of a learning curve will be discussed. Next up, we will 

show that organization differ in their learning rates, subsequently we will present sources of these 

variations. In order to break through the boundaries of understanding the conditions under which 

factors contribute to steeper curves, we need to understand the complex process underlying learning. 

We will end this section with three causal mechanisms can explain variation in learning rates (Argote 

et al., 2003). 

Typically, the repetition of a specific task increases the dexterity of the execution of said task. This is 

not only true for individuals, organizations also show signs of learning. This pattern of learning over 

time is found in many companies and is generally depicted by a curved line. As the cumulative output 

of organizations increases, outcome parameters (e.g. unit costs or labor hours) typically decrease at a 

decreasing rate (Argote, 2013). This phenomenon has been described extensively in literature and is 

called the learning curve. Early studies document that individuals require less time to fulfill tasks with 

increased experience (Thurstone, 1919). Wright’s (1936) work on the number of labor hours required 

for the production of aircrafts was the first to find empirical evidence for the existence of the learning 

curve on the organizational level.  
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2.1.1. Learning rate – formula 

Figure 1 illustrates the statement that performance improves with increased experience, with the rate 

of improvement gradually declining over time (Argote, 2013). This classic form of the learning curve is 

expressed mathematically by the following equation (1.1):  

      
  

Where:  y = the number of labor hours per unit 

  a = the number of labor hours required to produce the first unit 

  x =   the cumulative number of units produced through time period i 

  b =  the learning rate 

  i =  a time subscript 
 

Learning curves are characterized in terms of a progress rate (p). Equation (1.1) describes that with 

each doubling of cumulative output the unit cost reduces with a certain percentage (p). The 

parameter, b, in equation 1.1 is related to the progress ratio, p, by the following expression (1.2): 

     

For estimation purposes, equation (1.1) can be written in logarithmic form (1.3): 

              

The classic curved learning curve pattern that results out of the power function of equation 1.1 

becomes a straight line when the equation is converted to a logarithmic scale. This log-linear model is 

by far the most widely used model. Figure (2) plots the same data shown in figure (1) using a 

logarithmic scale for both experience and output (Epple, Argote and Murphy, 1996).  
 

 

 

 

 

 

 

 

 

 

We can only conclude that learning has occurred, ceteris paribus, if the outcome variable (e.g. 

assembly hours per aircraft) changes as a function of the cumulative number of units produced 

(Argote, 2013).  

Eq. 1.1 

Eq. 1.2 

Eq. 1.3 

Fig. 1: the 
relationship 
between 
labor hours 
and 
cumulative 
output 

Fig. 2: the 
relationship 
between 
logarithm of 
labor hours 
and logarithm 
of cumulative 
output 

Source: Epple, 

Argote, and 

Murphy 

(1996) 

Source: Epple, 

Argote, and 

Murphy 

(1996) 
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2.1.2. Components of the curve 

By scanning the graphical representation of the curve it immediately shows that the classic learning-

curve figure consists of two components and its relationship; 1) organizational experience (i.e. 

cumulative number of machines) on the x-axis, 2) the outcome measure of performance on the y-axis. 

The relationship between x and y is displayed as a curved line.  

x-axis 

Multiple studies have been conducted and indicate that cumulative output is a better predictor of the 

measure of outcome than calendar time is (e.g. Lieberman, 1987). Some studies show that calendar 

time was not significant (Lieberman, 1984; Rapping, 1965), while another study showed a significance 

of both variables included in the productivity study (Argote, Epple, Rao, & Murphy, 1997). 

Nevertheless, the results of the study showed that while both variables were significant, the 

cumulative output variable had a greater effect than the variable that operationalized time.   

y-axis 

The y-axis describes both what measure is used as well as in which organizational context this study 

was conducted (e.g. the assembly hours per aircraft). Since the 1990s a broader set of organizational 

contexts, with an expanded set of outcome measures, have been shown to follow a learning curve 

pattern (Argote, 2013). Several decades of work have been focusing on finding evidence in a variety of 

industries (Argote, 2013). Research on the differences between machine-intensive and labor-intensive 

industries found that as experience increased, the learning rates in assembly work were significantly 

higher (Hirsch, 1952). In addition, Baloff (1966, 1971) showed that the learning curves of labor-

intensive industries are less inclined to level-off. Later on the general and misguided believe that 

learning is solely due to labor learning was disproved by Dutton et al. (1984) on the basis of research in 

the 1960’s. Hirschmann (1964) found evidence for the existence of learning curves in the continuous 

process industries. In these contexts learning does not occur due to repetition of tasks by individuals, 

instead learning curves follow their pattern due to explicit managerial measures to change the 

organization of processes or the technologies in use (Hirschmann, 1964; Baloff, 1966). 

Over time research stepped away from using the dominant outcome measures of performance (i.e. 

direct labor hours or unit costs), resulting in an expanded set of outcomes for learning curve theory. 

Examples include the use of quality parameters (Argote, 1993), the outcome of organizational survival 

(Baum & Ingram, 1998), and service timeliness in the production of pizzas (Argote & Darr, 2000). To 

date, no research has been published which included the cycle time of a project as a function of 

experience. Therefore, we have identified our first gap, research on learning curve theory lacks the use 

of cycle time as an outcome measure. 
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The relationship: the curve 

Wiersma (2007) dissects the pattern of the classic learning curve by proposing three properties that 

characterize the shape. First, the curve shows evidence of downward concavity. Exceptions on this 

finding are present in literature (Adler & Clark, 1991), in general however, curves are concave.  Second, 

after this initial stage, the angle of the curve gradually becomes flat steep and it might reach a plateau. 

This property of a learning curve was first observed by Conway and Schultz (1959) and later explored 

by Baloff (1971). According to Yelle (1979) this steady-state phase of the learning curve corresponds to 

the point at which learning is brought to a halt. Finally, in some cases the curve is characterized by 

abrupt reductions in labor hours (Wiersma, 2007). A source of these types of mutations can be found 

in contextual influences or managerial actions such as; encountered deficiencies of essential 

components, radical new requirements on product characteristics, or the implementation of new 

technologies. 

2.1.3. Organizations vary in learning rates 

Some organizations are more productive than others and are able to keep improving over time. 

Research conducted by Dutton and Thomas (1984) exemplifies the dissimilarity of learning rates over 

different organizational contexts. Argote (2013) mentions that generally the assumption is made that 

the average progress rate is 80%, based on the results of Dutton & Thomas (1984). One of their 

extreme cases showed effects of de-learning, each doubling of experience leads to an increased 

outcome parameter. Remarkably enough, organizations producing identical products on several 

production lines have shown greater diversity in their progress rates than organizations fabricating 

dissimilar types of goods (Hayes and Clark, 1986; Chew et al., 1990; Argote and Epple, 1990; Adler and 

Clark, 1991). Thus, the aggregate form of measurement of factors that contribute to productivity 

gains, possibly masks that organizational phenomena are implemented very differently in different 

contexts (Argote, 2013). We identify a second gap, to understand when a variable contributes to 

learning, aggregate studies need to be complemented with more fine-grained studies (Argote, 2013). 

Sources of variation 

The myriad of factors found in research (e.g., Yelle, 1979; Dutton & Thomas, 1984; Lieberman, 1984; 

Hayes & Clark, 1986; Adler and Clark, 1991; Bahk & Gort, 1993), shows the necessity of a clear 

categorization. Argote (1993) proposed the following classification: 1) increased proficiency of 

individuals, 2) improvements in technology, 3) improvements in structure, routines and methods of 

coordination. Moreover, in order to be capable of identifying specific factors contributing to steeper 

learning curves, there is a need to better understand the complex process underlying learning. Both 

Dutton & Thomas (1982) and Adler & Clark (1991) noticed the lack of a behavioral model of the 

learning process, possibly explaining the stagnation in explaining the variability of learning curves. 
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2.2. Organizational learning 
Learning is considered to be the effect of experience on knowledge. Within organizations this implies 

that as more products are produced, knowledge is affected in some way. A change in behavior is not 

necessary for learning to occur, knowledge is also knowing what not to do. Therefore, a change in 

possible actions is considered to be organizational learning (Huber, 1991). Pentland (1992) adds to 

that by stating that organizational knowledge expresses itself in the organization’s ability to act 

effectively. Thus, organizational learning can be summarized as the process of experience creating 

knowledge and using this knowledge to do better. Argote (2013) classifies two groups of knowledge; 

declarative knowledge known as facts, and procedural knowledge known as skills and routines. Since 

knowledge is hard to quantify, the measurement of knowledge makes use of proxies. How to measure 

it is dependent on both the research goal and the environment under research (Argote, 2013). 

2.2.1. Learning models 

A great number of models explaining how organizational learning occurs have been proposed by many 

researchers. Muth (1986) made a comprehensive overview of studies that tried to tackle the question 

how learning curves can be explained. Early studies (Crossman, 1959) proposed that individuals tried 

different sequences of activities at random, completely disregarding rationality. This behavioral 

concept was later taken into account by Roberts (1983). According to him, when processes are 

executed certain actions that are anticipated to not provide desirable outcomes are disregarded 

(Roberts, 1983). On an organizational level it is believed that production experience creates 

knowledge that improves productivity (Arrow, 1962). Anzai and Simon (1979) go a step further and 

explain that the mechanism underlying the learning curve lies within the ability of the organization to 

acquire knowledge about the effectiveness of its choices of moves and use that knowledge to modify 

itself. Consequently, learning occurs over time and is expected to follow the learning curve pattern. 

A classification of two learning types is adopted from Dutton and Thomas (1984), these two types of 

processes explain the transformation of experience to productivity. They propose, in line with Levy 

(1965), that progress may be due to induced or autonomous learning. Autonomous is learning-by-

doing (Adler & Clark, 1991), which builds up knowledge by workers performing the primary tasks of an 

organization in repetition. The second type, induced learning, is stimulated by explicit managerial 

actions. Adler and Clark (1991) use the term double-loop learning and identify learning to be induced 

when managerial actions have an effect on technology, equipment, processes or human capital. 

Examples of this type of learning are training of employees, and changes in procedures and design (i.e. 

engineering changes). 
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2.2.2. What, how, and why 

In previous sections we saw that organizations vary in the rates at which they learn, moreover 

research focused on uncovering factors that influence learning rates. Argote (1993) proposed a 

classification for the myriad of factors contributing to organizational learning based on what factors 

influences knowledge management outcomes. Subsequently, a section on theories that explain 

learning curves showed how experience affects knowledge and consequently productivity. But how 

this outcome is influenced and by what factor, is different from why the outcome occurs.  

The ability, motivation, and opportunity to learn  

Argote et al. (2003) classified mechanisms which can explain variation in learning rates. The ability, 

motivation, and opportunity to learn are three causal mechanisms that explain why certain contextual 

factors lead to individual or organizational learning. The outcome of a learning process is dependent 

on these three mechanisms. More specifically, the success of transforming experience into knowledge 

(i.e. learning) is determined by the ability, motivation, and opportunity to learn within the 

organizational context.  

The ability to learn represents the proficiency of individuals to create, retain, or transfer knowledge. 

Factors that increase the ability to learn are for example increased training hours (Nadler et al., 2003) 

and the degree of temporary employees (Wiersma, 2007). The motivation to learn is affected by 

rewards and incentives, which influences people’s willingness to participate in the knowledge 

management process (Argote et al., 2003). Providing opportunities to individuals to create, retain, and 

transfer knowledge will result in effective knowledge management, and thus learning. Organizations 

will benefit from providing employees the opportunity to learn from each other. By reducing the 

amount of distance between individuals (either physically or psychologically), organizations promote 

the creation, retention, and transfer of knowledge (Argote et al., 2003). Additionally, a more diverse 

experience appears to be more beneficial to learning (Schilling et al., 2003). Summarizing, 

organizations will benefit from providing employees with (diverse) interpersonal ties, which they 

typically acquire via their day to day work.  

Within ASML, design iterations and their related process, commonly known as the engineering change 

process, facilitate learning and serve as a way to manage and communicate explicit knowledge (Alblas 

& Langerak, 2014). Each emergent possible change provides employees with new possibilities to learn. 

According to Miner et al. (2001) design iterations can be regarded as a specific source of learning. Their 

existence provides the opportunity to consciously search for alternative design choices which can 

contribute to generic design knowledge (Miner et al., 2001).   
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Our second gap, as stated, is adopted from Argote (2013). She identifies opportunities for research as 

according to her conditions under which variables have a specific effect are not yet uncovered due to 

the aggregate measurement of organizational phenomena. Adler & Clark (1991) specifically 

mentioned the EC research area, thereby leading to yet another found gap. According to them 

managerial actions such as engineering changes have not yet been exhausted in their analysis and 

therefore, opportunities for future research exist. Decomposing ECs can complement the current 

studies by researching properties of ECs and their effect on learning. We will follow-up with a 

paragraph that explores engineering change including sections on its process, characteristics, impact, 

and strategies to reduce its negative effects. From there on we will match Engineering Change with 

the Learning Curve theory via a gap based model build-up. 

 

2.3. Engineering Change Management  
ASML is continuously racing to introduce lithography systems to the market that perform at the 

present state of Moore’s law. As a product leader it is desirable to cut down the time to market. In 

order to do so new product development activities are designed with a certain overlap. In product 

engineering design decisions are made early before all information is distilled. Concurrent engineering 

(fig. 3) is adopted in many firms to achieve the strategic first to market goal. This process relies on 

parallelism and thus the dissemination of 

preliminary information. As a consequence, an 

iterative process, generally known as the 

engineering change process, is necessary to 

remedy mistakes, integrate new parts or tweak 

the product towards perfection (Smith & 

Eppinger, 1997; Loch & Terwiesch, 1998; 

Terwiesch et al., 2002). 

 

Each and every iterative step, known as an engineering change, takes the product closer to the final 

goal of delivering a product of high quality, low costs and low cycle times. Unfortunately, no 

engineering change can solve all problems, engineering changes have a propagative nature, where one 

change ripples through to other parts of the design. Fueling the need to solve problems previously 

unforeseen.  

2.3.1. Overview of Engineering Change 

Engineering change and its related terms and concepts all belong to the greater Engineering Change 

Management; a viewpoint on how to organize and control the iterative process of change to products. 

In the literature three main perspectives on ECs are present. Although often intertwined, both the tool 

  Fig. 3:  Concurrent engineering – Source: Terwiesch et al. (2002)  
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and product perspective lie outside of our scope, these perspectives are concerned with tangible 

aspects of ECs. The tool perspective is concerned with methods that provide support to the 

engineering change process, such as computer tools that manage the work flow or documentation and 

models that provide decision support such as FMEA (i.e. Failure Mode and Effect Analysis). The 

product perspective is solely concerned with the physical product and its characteristics. Our focus lies 

on the nature and management of the engineering change process.  

The most used terms in Engineering Change Management can be categorized in the management of 

engineering change, the process of engineering change, the instruction to make a change, and the 

change itself, which will be studied first. Several concepts are often used interchangeably in literature, 

however authors address the same phenomenon (i.e. engineering change). Terms as EC, EC-process, 

EC-order, changes to product or design are defined by many of the authors without providing clear 

definitions. For example, terms such as engineering design change (Leech and Turner, 1985), product 

change (Inness, 1994), product design change (Huang and Johnstone, 1995), and design change 

(Ollinger and Stahovich, 2001) are used.  Moreover, no consensus on the scope of change is reached. 

Jarratt et al. (2011) reviewed the coverage of a selection of definitions. Wright (1997) ignores the 

changes that can be made during design and prototype testing. Huang and Mak (1999) incorporate the 

span of a change, but forget to include the timing of change. Terwiesch and Loch (1999) introduce the 

notion that change is a revision of design believed to be completed. Ultimately, Jarratt et al. (2011, p. 

105) proposed a more complete definition based on Terwiesch and Loch (1999):  

 

“An engineering change is an alteration made to parts, drawings or software that has already 

been released during the product design process. The change can be of any size, span or type; the 

change can involve any number of people; take any length of time and can be initiated 

throughout the product life cycle by any source.”  

 

2.3.2. The engineering change process 

Diverse EC processes have been put forward in literature. The process models disagree on the number 

of elements and their attention to detail regarding sub-processes. From a macro-perspective, Dale 

(1982) suggested two distinct stages. Maull et al. (1992) proposed a total of five steps, whereas Huang 

and Mak (1999) propose four process stages; identifying, evaluating, implementing, and auditing ECs. 

Later Jarratt et al. (2004a) proposed an all-inclusive process consisting of six steps, which included 

generic elements proposed by many authors (Huang and Mak, 1999; DiPrima, 1982; Reidelbach, 1991; 

Wright, 1997; Terwiesch and Loch, 1999). The proposed six-step process by Jarratt et al. (2004) which 

is triggered by a need for change (see table 1):  
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Process step: Requirements: 
1)  Request for change Generally, a standardized form is filled out with the reason for change, its type, its 

priority, the presumably affected components, etc. 

2)  Identification of 
potential solutions 

Engineers need to systematically search for possible solutions to the problem. Due 

to various constraints (e.g. time pressure, there being only one logical solution, or 

costs perspectives) this step many times results in only one solution. 

3)  Assessment of 
impact 

The consideration of various factors: impact on design and production, how the 

change affects the firms ties with suppliers, impact on budget. 

4)  Selection and 

approval of a 

solution 

The approval is commonly reviewed by an Engineering Change Board, consisting of 

staff from different levels and functions. They are responsible for weighing the costs 

and benefits and approving the implementation and its timing.  

5)  Implementation of 
a solution 

Depending on the decision of the Board a change could be implemented right away 

or is planned for later stages (determined by the urgency of a change). 

6)  Review of the 

particular change 

process 

To assess if the change achieved its intended goal the change should be reviewed. 

This could result in lessons learned on materials, designs, supporting processes and 

the EC-process itself.  

 

The EC-process incorporates break points between process steps in which a go or kill decision is made 

by inter-functional committees, consisting of delegates from all organizational levels. The motive 

being that communication reduces the negative effect of rework at the expense of communication 

time (Loch & Terwiesch, 1998). Moreover, the process allows for iterations of a single change by 

sending changes a step back. After analyzing the EC process in three different manufacturing 

companies in Sweden, Pikosz and Malmqvist (1998) concluded that the EC process and its 

characteristics is affected by company specific factors. Depending on the environment of the 

organization, the product it produces and the organization of their processes, the generic engineering 

change process is altered so that it serves the company specific goal. For example, when a company 

strives for cost leadership, the focus would lie primarily on costs. 

 

2.3.3. Key characteristics of engineering change and its process 

Decomposing ECs can complement the current studies by distinguishing properties of ECs and their 

effect on learning. The following enumeration of characteristics, based on the before mentioned 

definition by (Jarratt et al., 2011), is in no way comprehensive. The context under study is expected to 

reveal distinct company-specific characteristics of the EC-process (Pikosz and Malmqvist, 1998). 

Volume and cycle times 

The amount or volume of ECs within a development project varies considerably. Huang and Mak 

(2003) propose three measures to assess the volume of ECs. The first and most obvious measure being 

the number of active ECs. Their survey revealed numbers between 5 and quantities that were unable 

to estimate. The second, the number of days between initiation and implementation. The number of 

Table 1: the six-step Engineering Change process  – Source: Jarratt et al. (2004) 

Source: Jarratt et al. (2004) 
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days spent on a change ranged from 2 days to the complete duration of the development project. The 

third and last measure counts the engineering hours spent from initiation to sign-off of the change. 

The number of engineering hours for a change varied from two hours to 36 days.  Terwiesch and Loch 

(1999) dedicated work to identifying the impact of engineering change volumes. They mentioned 

mental set up times to be detrimental to an even workflow. Furthermore, a clogged process results in 

changes that lose their value at implementation as the project evolves (Eckert et al. 2004), and result 

in a high percentage of non-value added time.  

Impact of a change 

Engineering changes have a propagative nature, where one change ripples through to other parts of 

the design. Therefore, the change itself with all its associated characteristics has an impact over time. 

The impact of is not limited to the initial affected components, changes overflow component borders 

to entirely different parts of the product (Jarratt et al., 2011). Furthermore, a design change and its 

expected impact will be highly specific to the organization under study (Pikosz and Malmqvist, 1998). 

Consequently, change and impact should not be seen independently from each other. The ambiguity 

and complexity of the engineering change process results in entangled consequences of a change. If 

time is impacted, so will be costs or quality. 

 

The consequence, effect, or impact of an engineering change is extremely hard to express in 

quantitative values (Huang and Mak, 1999). From an operations perspective, engineering changes do 

not only affect the product itself, both the EC support process as well as the supply and manufacturing 

processes are affected. As a result the productivity of a firm is hampered (Hayes and Clark, 1986). 

Various internal functions and external stakeholders have to adjust their activities in order to deal with 

ECs and their impacts (Huang and Mak, 2003). Depending on the context under study (Pikosz and 

Malmqvist, 1998), it could be wise to differentiate between changes based on the disturbance of cost, 

quality or time (e.g. development time). ASML is on the forefront of technology and is, as the market 

leader, always pressuring for innovation. Therefore, the discovery of new knowledge in the form of 

engineering changes is desirable. 

 

The impact of a change is composed out of four variables; the magnitude, its timing, and the number 

of components and tools affected by the change (Terwiesch and Loch, 1999). Jarratt et al. (2011) take a 

product perspective and mention three factors that determine impact; product complexity, product 

configuration and product innovativeness. All in all, large changes are detrimental to development 

time and result in high costs. Terwiesch and Loch (1999) argue that mainly the implementation time of 

a variable affects costs negatively. Thomke and Fujimoto (2000) add to that by stating that costs and 
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time are particularly affected by late change. A practical indication of the effect of implementation 

time on costs is the so-called rule-of-10, costs increase with a factor of 10 after each stage of 

development (Clark & Fujimoto, 1991; Anderson, 1997; Fricke et al., 2000). Besides the apparent 

effects on costs, changes affect business functions and therefore people, especially when introduced 

late in the development process. Similarly to costs, the number of people affected grows at each 

subsequent development step, both inside (e.g. engineers of other fields) and outside (e.g. suppliers, 

customers, service teams) of the own organization (Jarratt et al., 2011).   

In one study, over 50% of the investigated companies regarded engineering changes as an extensive 

source of problems (Acar et al., 1998). Failures in the organization of the engineering change process 

can result in high costs, low product quality, long lead times, unclear product configurations, and low 

profitability (Huang and Mak, 2003). Therefore, successful management of engineering changes is 

necessary. Acar et al.’s survey results (1998) show that 60% indicated that a well-managed Engineering 

Change process could deliver great opportunities (Acar et al., 1998). Nonetheless, Engineering 

Changes are not to be seen as solely harmful to the project. Engineering changes are key to product 

innovation as they can bring new functions to the product, result in improved quality and cost savings 

(Terwiesch & Loch, 1999). Eradicating all engineering changes is both not realistic and unwanted (Clark 

& Fujimoto, 1991). Huang and Mak (2003) underline the necessity of engineering changes, they should 

be respected as a prospect to competitiveness.  

2.3.4. Strategies to reduce its negative effects  

Several authors have proposed strategies to improve the handling of engineering change (Terwiesch 

and Loch, 1999; Clark & Fujimoto, 1991; Thomke & Fujimoto, 2000; Fricke et al., 2000). Most proposed 

strategies, methods, and/or principles have overlap with propositions of other authors. To avoid a 

cluttered section on how to manage the Engineering change process an overview of literature and 

their recommendation is presented in table 2. However, in general we can identify the following 

strategies; reducing the impact (e.g. timing and magnitude); increasing the value added time for ECs; 

frontloading; multi-disciplinary communication and reflection. 

 

Author Type of recommendation 
Clark and Fujimoto (1991) Avoid unnecessary changes by spending more time on first release 

Loch and Terwiesch (1999) Use software for early detection 

Loch and Terwiesch (1998) Use software for early detection 

Pikosz & Malmqvist (1998) Multi-disciplinary communication 

Wheelwright and Clark (1992) Design it right the first time 

Terwiesch et al. (2002) Early communication with multi-disciplinary teams 

Table 2:  overview on recommendations for the management of EC with the goal to reduce the negative effects  
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Thomke and Fujimoto (2000) Frontloading is the goal 
Use software for early detection 
Communication between subsequent functions 
Communication should be face to face  
- Horizontal and vertical 
Use of software 
Knowledge transfer 
Strive for faster cycles of problem solving 

Terwiesch and Loch (1999) Reduce the negative impacts of an EC 
- Decrease the magnitude of change 
- Timing: late changes have high impacts 
- Decrease the number of affected components 
- Decrease the number of affected tools 
Avoid unnecessary changes 
- Stop fine-tuning 
Detect ECs early 
- Multi-disciplinary communication 
- Frontloading 
Speed up the process 
- Increase value added time 
- Decrease engineering change cycle times 
- Decrease complexity of process 
- Manage capacity and congestion 
- Setups and batching 

Fricke et al. (2000) Reduce emergent changes 
Frontloading 
Meaningful vs. meaningless 
Efficiency 
Learning and reviewing 

 

 

2.4. Gaps in literature 
To date, as stated before, no research has been published which included cycle time as a function of 

experience. Over time research did step away from using the dominant outcome measures of 

performance (i.e. direct labor hours or unit costs), however not resulting in the use of cycle time as a 

function of accumulated experience.  

 

We identify a second gap, as Argote (2013) states that to understand when a variable contributes 

positively or negatively to learning, aggregate studies need to be complemented with more fine-

grained studies (Argote, 2013). She based her statement on earlier research (Hayes and Clark, 1986; 

Chew et al., 1990; Argote and Epple, 1990; Adler and Clark, 1991), which showed organizations 

producing identical products on several production lines have shown greater diversity in their progress 

rates than organizations fabricating dissimilar types of goods. Thus, the aggregate form of 

measurement of factors that contribute to productivity gains, possibly masks that organizational 

phenomena are implemented very differently in different contexts (Argote, 2013). Moreover, Pikosz 
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and Malmqvist (1998) mention that the organization of the development process and consequently 

the impact of engineering changes is highly conditional on the product and the organizations strategic 

goal. Thereby giving additional incentives to make use of more fine-grained studies.  

More specifically, Adler & Clark (1991) mentioned the EC research area as lacking detail in research 

models. They regarded engineering changes as a form of induced learning, where learning is 

stimulated by explicit managerial actions. Their results showed contrasting effects for two 

departments, productivity was impaired at one department, while at the other department 

engineering changes facilitated learning. It was suggested these differences could be explained by 

their reason for change. They expected that decomposing ECs (gap 2a) can complement the current 

studies that tend to hypothesize on the effects of ECs on an aggregate form.  

Examples of such studies are the early study of Griffin (1993), she examined the effect of the number 

of design iterations on NPD speed. Similarly, Eisenhardt and Tabrizi (1995) hypothesized that more 

design iterations are associated with shorter development times. Chen (2010) found that the number 

and frequency of design iterations are antecedents of NPD speed. A meta-study by Cankurtaran et al. 

(2013) provided a holistic view of NPD speed and its antecedents, providing no salient effects for 

design iterations. Hayes and Clark (1986) researched the effects of engineering change on productivity 

and found the work-in-process stock, the number of rejections, and the cumulative amount of ECs to 

be detrimental to productivity. Therefore, based on the mixed results, we conclude that current 

research lacks knowledge under which conditions the EC process has a positive impact on learning. 

Decomposing ECs, and their process, can complement the current studies by researching properties of 

ECs. One way that comes to mind is a classification based on  their expected impact (e.g. on the 

product, on costs, on propagative effects, on time, etc).  

Another way to research specific conditions of the EC process is by incorporating opportunities to 

learn, which serve as a causal mechanism that facilitates learning (Argote et al., 2003). Wiersma 

(2007) has shown that incorporating factors classified as increasing the opportunity to learn in a 

learning curve model is a an effective technique for identifying the conditions that drive cycle time 

learning and performance (Wiersma, 2007). Within ASML, design iterations and their related process, 

commonly known as the EC process, facilitate learning and serve as a way to manage and 

communicate explicit knowledge. Each emergent possible change provides employees with new 

opportunities to learn. We will base factors which increase the opportunities to learn on 

characteristics of this EC process as described by both literature and case study documentation (gap 

2b). 
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Moreover, Wiersma (2007) states that a source of abrupt reductions in the curve (i.e. learning) can be 

found in deliberate managerial actions (e.g. engineering changes). We incorporate engineering 

changes in the learning curve as a mediating variable, by doing so we assess the contributing effects of 

various properties of engineering changes and open up the black box that covers the function which 

describes the relationship between experience and the outcome measure (Argote, 2013).  

 

Furthermore, gap 3 addresses the lack of longitudinal data, as asked for by Adler and Clark (1991). 

Their research did not analyze the long term benefits of engineering change and training. They argue 

that longer data series would add value to the field. According to Langerak and Alblas (2014), just a 

handful of research has been conducted on the longitudinal effects of original project activity on 

consecutive projects.  

Lastly, engineering change management research area could benefit from the validation of their 

proposed principles, which are mainly gathered with the help of case-studies, interviews and surveys 

(see table 2). By conducting variability studies which incorporate characteristics of the engineering 

change process, we can assess under which conditions they contribute to learning.  

To summarize, the found gaps in literature are 1) the lack of using cycle times as an outcome measure 

of learning curve theory. The second gap consists of the more general conception that 2) research 

could benefit from more fine-grained studies, which uncover conditions under which organizational 

phenomenon result in learning. More specifically, research can benefit from 2a) a decomposition of 

engineering changes, and 2b) incorporating opportunities to learn. Furthermore, we identified 3) the 

lack of longitudinal data series in research on the effect of engineering changes on cycle times. Lastly, 

research could benefit 4) from statistical support of proposed empirical principles as for example 

shown in table 2. The following chapter will build up the model based on these gaps. 

In the upcoming chapter we build our model (figure 4) with the use of the gaps as stepping stones. 

With each subsequent step the model is increased in its complexity. Note however that all 

hypotheses will be tested in a complete model, with the incorporation of all variables. None of the 

hypotheses will be tested in isolation. Therefore, the complete model should be regarded as a 

combination of all four parts of the figure, as if transparent and placed on top of each other. We will 

discuss each part of figure 4 (i.e. a, b, c, d) and related hypotheses in the coming section.  
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3. Hypotheses 

The buildup of the model, based on the identified gaps of previous chapter, is shown in figure 4. 

In the upcoming section, we address the gaps with relevant hypotheses, while referring to the 

corresponding part of figure 4 (i.e. a, b, c, d). Since the model consists of two specific mediating 

paths, all relevant hypotheses (i.e. all except    and   ) will be tested for low impact ECs (i.e.  ) 

and high impact ECs (i.e.  ). 

 

 
 
 
 

Figure 4a: the direct effect of experience on project cycle time (gap 1) 

 
 
 
 
 

 
 

 
 
 

 
 

Figure 4b: ECs (decomposed based on impact) contribute to learning (gap 2a, 3 and 4) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4c: the main effects of increased opportunities to learn (gap 2b, 3 and 4) 
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Figure 4d: the moderation effects of increased opportunities to learn (gap 2b, 3 and 4) 

 

 

Gap 1: the direct effect 

As we know, experience negatively impacts the classical measurement outcomes such as the average 

unit costs or the direct labor hours (Argote, 2013). We identified in our gap section  that to date cycle 

time has not been shown to be a function of experience (i.e. gap 1). However, we assume that learning 

contributes to and results in cycle time reduction. Therefore, our first hypothesis will tests the 

relationship between cumulative experience and cycle time. Thus (see figure 4a): 

  : Experience leads to significantly lower project cycle time 

Gap 2a, 3 and 4: engineering change contributes to learning 

Our next step, which incorporates ECs as a mediating variable, opens up the black box that covers the 

function which describes the relationship between experience and the outcome measure (Argote, 

2013). At the same time, we address the concerns of Adler & Clark (1991), by decomposing ECs. Thus, 

we research properties of ECs and their effect on learning, thereby addressing gap 2a. Moreover, we 

address the lack of longitudinal data series in research on the effect of engineering changes on cycle 

times (i.e. gap 3). The fourth gap is addressed by testing the effects of impact in a longitudinal setting.  

Nevertheless, first we need to take a more general look at the effect of engineering change on 

learning. Research on the effect of design iteration on cycle time has been conducted with diverse 

terms describing the same concept, while maintaining support for positive effects of design iterations 

on NPD-speed (Griffin, 1993; Eisenhardt & Tabrizi, 1995; Chen et al. 2010). Contrastingly, Adler and 

Clark (1991) researched the mediating effects of ECs in two departments, in one department ECs 

impaired learning, while at the other department it contributed to a steeper learning curve. A meta-

  

  

  

  

  

  

   

   

EXP CT 

LOW IMPACT ECs 
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Attention 

Team 
Diversity 

Figure 4: Conceptual model with hypotheses 
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study by Cankurtaran et al. (2013) on antecedents of NPD speed provided no significant effects for 

design iterations.  Thus, results on the effect of engineering change on learning  vary. 

Engineering changes do act as a way to learn, design iterations (i.e. ECs) can be seen as a specific 

source of learning, as stated by Miner et al. (2001). Their existence provides the opportunity to 

consciously search for alternative design choices which can contribute to generic design knowledge 

(Miner et al., 2001).  Moreover, in line with Alblas and Langerak (2014), we state that engineering 

changes and their process are empirically a way to manage and communicate the explicitly knowledge 

about changes to the product.  

 

Due to the nature of the EC process, where design decisions are made based on preliminary 

information, all engineering changes have contrasting effects. Although ECs are responsible for 

improving quality and serve as a source of learning (Miner et al., 2001), ECs also bring about negative 

effects. The costs of ECs lie within the need to not only implement the change, but also to get 

accustomed to processes, tools, business functions and therefore people affected by a change in the 

design. Hayes and Clark (1986) found that for improving productivity in factories, it was advisable to 

decrease the number of ECs. Therefore, in line with Alblas and Langerak (2014), we state that the 

direct effect of ECs on project cycle time (i.e. path b)  is positive: the more ECs, the more work needed 

solving the problems, resulting in more cycle time needed to finish the project. Thus, on the short term 

more ECs lead to more work, having an adverse effect on the time needed to finish the project. 

Contrastingly however, design iterations (i.e. ECs) follow an improvement pattern similar to a learning 

curve. The more machines are built the more experienced engineering teams get. ECs frequently 

originate from unforeseen problems and progressive insight (Alblas and Langerak, 2014). We expect 

that as experience grows, more ECs are solved, the higher the quality of machines, the fewer problems 

in the base-line design, resulting in a negative effect on the number of future ECs (i.e. path a).  

In line with Alblas and Langerak (2014) we claim that the long term effect of engineering change is 

dominant: on the long term, the more changes, the less problems in the base-line design, the less 

hours needed in future design work, resulting in a reduction of project cycle time. On basis of previous 

arguments we hypothesize that ECs contribute to cycle time performance (see figure 4b):  

   :  The relationship between experience and project cycle time is partially mediated by the 

number of low impact engineering changes  

   :  The relationship between experience and project cycle time is partially mediated by the 

number of high impact engineering changes  
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3.1. Increasing the opportunities to learn 
Argote, McEvily, & Reagans (2003) proposed a causal mechanism as to why experience affects 

knowledge management outcomes. Providing greater opportunities to learn will result in better 

learning (i.e. the extent to which you benefit from accumulated experience). Within ASML, design 

iterations and their related process, commonly known as the engineering change process, facilitate 

learning and serve as a way to manage and communicate explicit knowledge. Each emergent possible 

change provides employees with new opportunities to learn. Wiersma (2007) states that a source of 

abrupt reductions in the curve (i.e. learning) can be found in deliberate managerial actions (e.g. 

engineering changes). Therefore, we will hypothesize that learning benefits from ECs that are 

characterized by greater opportunities to learn, thereby addressing gaps 2a, 2b and 4. 

The underlying process, learning, is expected to be affected by three causal mechanisms that facilitate 

individual or organizational learning (Argote et al., 2003). In this thesis I will explore EC factors which 

increase the opportunities to learn, while ignoring factors that increase the ability and motivation to 

learn. In line with Argote et al. (2003), I propose that increasing opportunities to learn contributes to 

learning. More specifically, opportunities to learn can be provided at two separate areas of the 

Engineering Change Process at ASML. Firstly, during the implementation of Engineering Changes. 

Secondly, Engineering Changes provide opportunities to learn during generation of the EC.  

Gap 2b, 3  and 4: opportunities to learn during implementation of an EC 

The next section describes our expectations on the effect of increasing the opportunities to learn 

during the implementation of an EC. We address gap 2a and 2b by a decomposition of engineering 

changes and including opportunities to learn, gap 3 is addressed as we make use of longitudinal data, 

gap 4 is addressed by incorporating empirical principles previously untested in a longitudinal learning 

curve setting.  

The implementation of an EC can bring several advantages to the project; it delivers for example new 

functions to a project, it reduces costs and/or production times, or it improves quality. In contrast, the 

management of ECs is considered to be a burden by many firms and can seriously affect productivity 

(Hayes and Clark, 1986; Huang & Mak, 2003). ECs do not only affect the product itself, both the EC 

support process as well as the supply and manufacturing processes are impacted. Various internal 

functions and external stakeholders have to adjust their activities in order to deal with ECs and their 

consequences (Huang and Mak, 2003). However, not every change results in disturbances that 

negatively affect development time (Pikosz & Malmqvist, 1998). As an example, minor changes to the 

design or changes low in urgency (e.g. a design change for a simple screw) only affect up-stream supply 

chain activities and therefore have a low perceived impact.  
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By proposing two specific indirect effects based on the classification of EC impact, we can identify 

differences in their learning effects. The impact classification for a change is based on the stage at 

which its implementation is set. We differentiate between low and high impact ECs. Whereas low 

impact ECs affect cycle time indirectly, via changes in the supply chain and stock, the high impact 

changes affect cycle time directly. These changes require down-time for their implementation (within 

WIP and FAT stages of development) and thus affect project cycle time directly. ASML focuses 

primarily on the cycle time as a performance indicator in the production department. Therefore the 

urgency for ECs that result in down time (i.e. high impact changes) is believed to be higher. In 

combination with the greater amount of affected upstream activities (e.g. processes, people, tools 

etc), there is a clear distinction between two paths, whereas the high impact mediating path is 

believed to be providing greater opportunities to learn. Therefore we hypothesize that (see figure 4b):  

 

  :  The learning rate of the path through high impact engineering changes is greater than 

the learning rate of the path through low impact engineering changes  

 

Gap 2b, 3 and 4: opportunities to learn during generation of an EC  

Argote (2013) argued that the learning effects are dependent on contingencies, and by using more 

fine-grained studies we can uncover these conditions. Therefore, we search for additional 

opportunities to learn, thereby addressing gap 2a. In the previous section we treated opportunities to 

learn during implementation of an Engineering Change (i.e. impact). The next section treats 

opportunities to learn during the generation of an Engineering Change, thereby also addressing gap 2a 

and 2b, since we test the hypotheses in a longitudinal learning curve model, gap 3 is also addressed. 

Gap 4 is addressed by incorporating empirical principles previously untested in a longitudinal learning 

curve setting.   

More specifically, we will measure opportunities to learn by the amount of Attention spend on 

changes, as well as Team Diversity. Moreover, we will test the effect of increased opportunities to 

learn with the use of longitudinal data (i.e. gap 3), via its main effects (i.e. the effect on the number of 

ECs), while also testing its effect on the learning rate with the use of moderators. As according to 

Wiersma (2007) the use of moderators on a learning curve model is a good method to find conditions 

that drive cycle time learning and performance.  

Attention spend on changes  

Research on attention has been around for a long time, Weick (1979) observed that attention is central 

in organizational behavior. Similarly, March (1988) researched attention as an antecedent to 

organizational decision making. Recently, effort was made to accumulate the disparate findings in a 

meta study (Ocasio, 2011).  
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One of the distinguished forms of attention in organizations is attentional engagement, defined as the 

process allocation of cognitive resources to guide problem solving, planning, sense making, and 

decision making (Ocasio, 2011). Levinthal and Rerup (2006) argue that attentional engagement is 

similar to the concept of mindful information processing, which leads to knowledge and learning. 

Furthermore, attentional engagement generates sense making activities (Nigam and Ocasio, 2010). In 

line with cognitive neuroscience, Ocasio (2011) argues that all relevant activities to organizational 

effectiveness (e.g. problem solving, sense making, decision making, etc.) rely on alternating shifts of                           

attention. The combination of previous observations retrieved from memory, with current thought 

processes caused by attentional engagement result in desirable outcomes. The organizational capacity 

to engage attention involves the application of time, energy, and effort to operational processes 

(Ocasio, 2007). Therefore we argue that increasing the opportunities to learn by spending more 

attention on ECs, is favorable to learning (see figure 4c and 4d): 

   :  More attention spend on engineering change has a positive impact on the number of low 

impact engineering changes (i.e. main effect)  

   :  More attention spend on engineering change has a positive impact on the number of 

high impact engineering changes (i.e. main effect)  

   :  More attention spend on engineering change has a positive impact on the learning rate 

via low impact engineering changes (i.e. moderated mediation) 

   : More attention spend on engineering change has a positive impact on the learning rate 

via high impact engineering changes (i.e. moderated mediation) 

   : More attention spend on engineering change has a positive impact on the learning rate 

of  the direct effect (i.e. moderation) 

 

Team diversity 

ASML manufactures high-tech industrial machinery, the firm delivers lithography systems for the 

semiconductor industry and is market leader. Such a setting is characterized by technological 

turbulence and an innovative firm climate. Furthermore, their engineering work is causally ambiguous 

as the relationship between cause and effect during production of ECs is unclear (Argote, 2013). In 

such an environment, it is necessary to interpret accumulated experience via the use of creativity. 

These types of organizations benefit from heterogeneity. According to Jackson, May, & Whitney 

(1995) organizations performing creative tasks are more likely to benefit from heterogeneity. In a 

similar vein, Moorman & Miner (1997) argue that organizations characterized by turbulent 

environments are more likely to benefit from heterogeneity. 
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Diversity (i.e. heterogeneity) fosters creativity (Jackson et al., 1995). Therefore diversity fosters the 

development of new knowledge. When comparing groups with diverse members to groups of similar 

members, the latter were better able to generating new or emergent knowledge and developed more 

sophisticated solutions (Argote, 2013). This can be explained by work of Stasser and Titus (1987); 

suggesting that members possess different information are more likely to share their unshared 

information.  

Jackson et al. (1995) found that more diverse groups performed better at decision making and were 

more creative and innovative. Additionally, Williams and O’Reilly (1998) emphasized that functional 

diversity had a positive effect on group performance. Furthermore, diversity is most likely to be 

beneficial in the phases of development, design, and initial launching (Argote, 2013). Together, these 

arguments lead to the following hypotheses (see figure 4c and 4d):  

   :  A higher degree of team diversity has a positive impact on the number of low impact 

engineering changes (i.e. main effect)  

   :  A higher degree of team diversity has a positive impact on the number of high impact 

engineering changes (i.e. main effect) 

   :  A higher degree of team diversity has a positive impact on the learning rate via low 

impact engineering changes (i.e. moderated mediation) 

   : A higher degree of team diversity has a positive impact on the learning rate via high 

impact engineering changes (i.e. moderated mediation) 

   : A higher degree of team diversity has a positive impact on the learning rate of  the direct 

effect (i.e. moderation) 
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4. Empirical setting 

4.1. ASML in general 
ASML puts focus on the design, development and production of advanced lithography systems. The 

company offers an integrated portfolio for manufacturing complex integrated circuits, commonly 

known as chips. Since the foundation of the company, ASML strived for the introduction of new 

platforms capable of producing chips that are faster, smaller and greener. In order to achieve these 

goals the company needs to make every effort to achieve reductions in wavelength of light. In recent 

years this resulted in the so-called EUV-technology, where extreme ultra violet light is used to transfer 

a pattern on the light-sensitive wafers. This technology is disruptive, as it discontinued the use of 

lenses and switched to the use of capital intensive plasma-technology in vacuum chambers. 

The organization is structured in such a way that there is focus on both exploration of new 

technologies and the exploitation of standardized systems. The TWINSCAN Factory (TF) is responsible 

for the development and production of standardized lithography systems, characterized by their low 

cycle times and high volume. In contrast, the machines produced with the EUV technology are 

characterized by unpredictable disturbances on the factory floor due to high complexity and low 

maturity, leading to long and unstable cycle times. A direct result is the inflated work in progress, more 

expensive machines are staying longer on the factory floor. In order to reduce the WIP it is necessary 

to push machines through the factory faster, effectively reducing the cycle time. 

Of special interest for the problem is the manufacturing (MF) department of the EUV factory (EF). This 

department receives input from the different projects in the form of ECs, changes that drive the 

technology to greater heights in both costs, quality and time. Consequently, the implemented EC 

impacts the operation processes in the manufacturing department. As a result, the cycle time of the 

affected machine will increase. However, due to repetition of the iterative processes the organization 

in its whole will learn on how to cope with these changes. In the end cycle times will decrease over 

time as experience is gained.  

4.2. The Engineering Change Process at ASML 
Disturbances on the factory floor arise in the form of engineering changes (ECs) due to the nature of 

ASML’s forth bringing of their systems. These systems are upgraded while being produced and 

assembled on the factory floor. ECs are the embodiment of ASML’s goal to continuously improve the 

machine’s quality. These artifacts are the starting ground for the process steps that implement new 

technologies in the final product. These steps combine work of all sorts of business functions. 
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The following description of the EC-process resulted from our case study at ASML, which incorporated 

documentation as well as interviews. The Engineering Change Process serves as mechanism to handle 

change requests (IP) for changes on part and introduction of new parts in the product configuration. 

The EC process brings forth an Engineering Change (EC), which is defined as the proposed introduction 

of a new or a modified part, on a Part Number (12NC) level. An Engineering Change (EC) is described in 

a formal document to register and communicate to all parties involved. An EC will be accepted or 

rejected during a Change Control Board meeting, after acceptation the Board will decide on the 

implementation range (see section 4.2.1). Thereafter, the EC follows separate paths based on their 

implementation range. Ultimately an EC will desirably result in successful implementation of a change 

on the factory floor.  

Several IT solutions are used to keep track of all engineering changes. ASML-Q is such a solution (see 

appendix C), giving overview on the engineering change and allowing for comprehensive outputs in 

the MS Excel format. This IT-tool keeps track of information such as the type of EC, the modules 

affected, the days passed since initiation, the people involved, the steps taken in design, and so on. 

From a high level view the EC-process consists of a total of four phases (table 3): the validation and 

prioritization phase, the investigation and approval phase, the realization and sign-off phase and the 

implementation phase. The different phases have the following goals: (1) to validate any engineering 

request (IP) on potential benefits and to prioritize within the operational sector and program, (2) to 

investigate the effort required to execute and implement the IP, (3) to realize the EC and seek approval 

for implementation and the last goal (4) being the successful implementation of the EC. Below 

APPENDIX the four phases of the Engineering Change process will be discussed shortly (table 3). All 

these phases contribute to a successful implementation in the factory or at the customer site.  

 

Phase of the 
EC process 

 
Discussion of characteristics and goals 

Validation and 
prioritization 

Starting point of Problem IPs 
To create an improvement proposal (IP)  
To validate any engineering request (IP) on potential benefits  
To assign and prioritize an IP to a project leader (PL) 

Investigation 
and approval 

Project based under lead of PL 
To investigate the effort required to execute and implement the IP 
- Design and implementation 
To validate the impact of design change on building blocks 
To accept or reject the IP 

  

Table 3: Phases of the engineering change process 
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Realization and 
sign-off  

To create an EC out of an approved IP 
To develop the EC  
- Design/Implementation/Cost estimates 
To complete the EC by ways of a sign-off procedure  
- Agree upon proposed plan with all parties involved 

Implementation 
 

To have the EC implemented 
Ensuring that complete implementation data is delivered by the EC project team (EC locked) 
Approving the implementation range chosen by the EC project team (EC closed) 
Making material demand visible for all necessary EC implementation actions 
Matching the available upgrade time to the requested EC implementations 
Documenting the configuration changes due to EC implementations for all affected hardware 

 

 

Unfortunately, case study research (see table 16 in appendix B) showed that ASML lacks a process step 

for reflection on each implementation. Neither the documentation nor the interviews showed 

evidence for the existence of such a step. Literature (Jarratt et al., 2011) already mentioned that this 

step is not always carried out properly. Fricke et al. (2000) concluded that learning from the EC-process 

by reviewing the implemented ECs contributes to the reduction of the negative effects. Moreover, 

Thomke and Fujimoto (2000) argue that knowledge transfer helps to accelerate the curve. 

4.2.1. Implementation range 

As stated before, the steps taken to implement an EC are dependent on the chosen range. The 

implementation range of the EC is chosen based on factors such as its perceived urgency, the expected 

effects on time and costs, and the expected propagative effects of the change. The  range is approved 

by a team consisting of multiple members out of different business functions (i.e. CCB). A total of four 

options (vertical) exist for the implementation range choice: supply chain, stock, WIP1, and FAT2. Each 

choice affects part of the supply chain (horizontal) of ASML, while each subsequent choice also carries 

the characteristics of all previous ranges (see figure 5).  

 

Engineering change - implementation range 

 Supply Chain Stock WIP FAT 

Options      

Supply Chain   

Stock   

WIP   

FAT  

 

 
 

  

                                                             
1
 WIP: Work in Progress - 

2
 FAT: Factory Acceptance Test - 

3 FASY: Final Assembly 
 

Source: Engineering Change Process documentation [case study] 

 

 

 

Figure 5: Implementation range choices 
Source: Engineering Change Implementation Process documentation [case study] 
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Figure 6 depicts the complete supply chain of ASML’s factories, both the external and internal steps 

are displayed. The possible implementation options are displayed in light blue; supply chain, stock, 

WIP, and FAT. Supply chain ECs are changes that have effect on the design within SAP; the BoM is 

changed due to the change. Stock ECs make the current stock obsolete, re-orders for new parts are 

necessary. Until this point disturbances are minimal, the costs of change are low and development 

time is hardly affected. Therefore, these two implementation range choices are expected to be of low 

impact.  
 

 

 

 

In contrast, ECs with implementation range WIP and FAT are expected to have a high impact. Basically 

there are two moments during manufacturing (see orange blocks in fig. 6) where upgrades have the 

opportunity to land: during FASY and during FAT. WIP changes affect all machines on the work floor 

and needs a swap of modules. Contrary to the previous range, the upgrade-slot for FAT is only usable 

in case of must-have ECs. An engineering change that is implemented during FAT (i.e. the latest stage 

before shipment, the factory acceptance test) results in large dissembling work and commonly a 

change in specs and thus, a change in test procedures.  

 

Both the supply chain and the stock implementation range choices have no direct disturbance effects 

on cycle time. In contrast, the WIP and FAT implementation range choices do affect the progress of the 

machines. In both cases components have to be mounted which are new to manufacturing employees, 

depending at the progress of the machine disassembly of the machine is necessary. We will classify 

each engineering change on impact and assign them to low impact (i.e. supply chain and stock) and 

high impact (i.e. WIP and FAT). 

  

3 

supply 

chain 

Figure 6: Supply chain of ASML’s factories 

Source: Engineering Change Implementation Process documentation [case study] 

 

supply 

chain 
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5. Empirical methodology 

In order to achieve an operationalisation of a set of factors that play a role in the relationship between 

experience and cycle time we took a split approach. On the one hand we took steps to  get to 

understand the company under study by doing field research (i.e. case study). Initially, explorative 

interviews (see appendix B: table 16) were held with employees working with the Engineering change 

process. This resulted in an overview of the complete process and the ability to  understand the 

organizational structure. Thereafter, their knowledge was supplemented with documents that 

describe the engineering change procedures, containing matrices on responsibility assignment (RACI-

matrix). On the other hand, the general theoretical concepts of managing an engineering change 

process and the learning curve were consulted in existent literature. To validate and control the 

statements of employees as well as the statements of literature the research steps taken were 

iterative. Thus, after reading up on the literature, proposed factors were validated by organizing semi-

structured meetings with key players working with the EC-process. These meetings were held to 

discuss the theoretical concepts related to engineering changes, learning curve, and cycle time 

management. Furthermore, observations were made by being a passive participant in all relevant 

meetings that deal with engineering change and their approval process. 

 

To satisfy the aim of the study to test the longitudinal effects of NPD-decisions on cycle time, two 

business lines (i.e. TWINSCAN’s XT and NXT) were chosen which have been running long enough to 

document during stages of both low and high maturity. Unfortunately the most recent business line 

(i.e. EUV) is still in its infancy resulting in irregular and low production capabilities and therefore lacks 

the desired data richness.  

 

Subsequently, data lines from internal reporting systems were collected that describe the properties 

of the design iterations over time. The data on these alterations to process or technology are 

documented on the engineering change level, containing information on dates, affected subsystems, 

expected costs and benefits, source of change, implementation range and so on. In addition, cycle 

time data of machines belonging to the two mentioned business lines (i.e. XT and NXT) were obtained. 

As a follow-up the data was examined on reliability by interviewing personnel committed to reporting 

on cycle time improvements. As a result several projects of machines were excluded as the 

measurements of the two primary methods of documenting cycle times differed abnormally. During 

the transformation of the data, semi-structured interviews followed the explorative ones to 

anecdotally test which proxies would be relevant (see appendix E for the interview guide).  
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The engineering change data was aggregated to the machine level. A total of more than 30.000 

individual ECs were assigned to the more than 900 machine projects. The data contains projects of the 

business lines XT and NXT, brought to market as early as 2005 to October 2014. In order for an 

engineering change to be assigned to a specific project it needed to satisfy two rules. The first being 

that business lines matched (i.e. XT or NXT), the second being that the completion date of an 

engineering change lies between the start and end dates of machine production.  

5.1. Operationalisation of variables 
The standard learning curve model is the basis of the analysis, as this is an effective way of identifying 

conditions that shape the learning curve (Wiersma, 2007). A log transformation is issued to explore the 

learning rates of this research setting. In the following table the several theoretical concept and their 

operationalisation are presented. All of the those are operationalized on machine-level with the use of 

MS Excel, meaning that each concept counts the characteristic of an EC between the start of machine 

development (i.e. start FASY) and the delivery to the customer (i.e. GSD). Advanced MS Excel skills 

were applied such as VBA programming, vlookups, if/then/else, pivot tables and so on. For an 

overview of concepts and their operationalisation see table 4. An overview of all possible and relevant 

concepts and proxies created during our stay at ASML is provided in appendix D in table 17.   

 

Concept Operationalisation Variable 

Experience Natural log of the number of machines that have been  

shipped at time t-1, satisfying matching platform and roman numeral 

  

Cycle time Natural log of the number of days between start of machine  

development (i.e. start FASY) until the delivery to the customer (i.e. GSD) 

  

Attention The average number of days that an EC was ‘in process’, based  

on ECs that were closed during the cycle time of the corresponding machine 

  

Team diversity The average number of functional departments assigned to the ECs,  

based on ECs that were closed during the cycle time of the corresponding machine  

  

Low Impact Accumulation of all ECs satisfying Supply chain or Stock implementation closed 

during development  

   

High Impact Accumulation of all ECs satisfying WIP or FAT implementation closed during 

development  

   

 

To operationalise the outcome variable cycle time (lnCTt), the input variable experience (lnExp+1t-1), 

the mediator engineering changes (ECt), and the moderators Team Diversity (TDt), and Attention (ATt) 

several computational alterations were made to the obtained data. For all the following calculations 

engineering change data was assigned to a specific machine. Engineering changes were assigned to a 

specific machine if they matched both business line and generation number (e.g. XT-III) and if 

engineering change close date fell within the production dates of the specific machine.  

Table 4: Operationalisation of concepts 
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The dependent variable, cycle time (lnCTt), is the natural log of the cabin cycle time, and thus is 

measured based on machine project data. The cabin cycle time is calculated by counting the days 

between the start of assembly (start FASY) and the shipment date (GSD). A more detailed subdivision 

was used internally, where the number of days were tallied per process step. In some cases a 

comparison between these two methods resulted in a discrepancy. If these differences exceeded 

more than 10 percent the cases were deleted. The independent variable, cumulative experience 

(lnExp+1t-1), is the natural log of the number of completed and shipped machines within their specific 

business line and generation number (e.g. NXT-II) at time t-1, plus 1 to prevent ln(0)= undefined.  

 

The mediating variable of engineering changes (ECt) is measured by counting the engineering changes 

that were closed (e.g. approved, closed, rejected) during time period t belonging to their specific 

business line and generation number (e.g. XT-IV). Note that all ECs are considered to bring knowledge 

to the table, even engineering changes that are not approved and thus will not be implemented result 

in knowledge on process and machine. As a result these changes will be taken into account in this 

research. Based on the allocated implementation range of an EC, we either assigned them to be of HI 

or LO impact. HI impact engineering changes are those that are assigned to implementation range WIP 

or FAT. While LO impact engineering changes are engineering changes that are implemented in the 

supply chain or stock range.  

 

The indicator used to measure the moderating variable Team Diversity (TDt) is the average number of 

functional departments involved in engineering work at time period t. Per machine the number of 

people working on engineering changes were accumulated and averaged by the number of 

engineering changes closed during the machine’s cycle time. The average attention spend on an 

engineering change from initiation to closing (ATt), is calculated from the engineering change data. 

Counting the days between the start (i.e. date_improcess) and closing of the engineering change (i.e. 

date_closed or date_rejected), excluding  the days the engineering change was put on hold (i.e. 

date_onhold to date_resumed), yields the amount of attention it took to finish the engineering change 

measured in days. The following step was to accumulate the attention spend on ECs per machine and 

average these by the number of engineering changes closed during the machine’s cycle time.  

5.2.1. Control variable 

Part of the learning curve might be attributed to general technological improvements in the external 

environment (Solow, 1957). Argote (2013) adds to this by stating that including the passage of time as 

a control variable determines if learning can be attributed to improvements in the external 

environment or to the experience of the own organization. In line with Argote et al. (1997) we expect 
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the passage of time to have a significant effect on cycle time, nevertheless we expect the magnitude of 

experience to be greater. To operationalise the passage of time (Timet-t0), we counted the days from 

start of assembly (i.e. FASY) to each of the machines FASY-start-date.  

5.2. Estimation approach 
To test the proposed hypotheses we have built a conceptual model based on the classic learning curve 

model with specific paths for learning via low and high impact engineering changes. Our moderators, 

testing whether Attention or Team Diversity provides greater opportunities to learn, affect the 

relationship between the antecedent- and the consequent-variables. In a parallel multiple moderated 

mediation model, antecedent variable   (i.e. experience) influences consequent variable   (i.e. 

project cycle time) directly as well as indirectly through multiple parallel mediators (Hayes, 2013). This 

model assumes causal independency of the parallel mediators, no mediator is modeled as influencing 

another mediator in the model. Although our parallel mediators are highly correlated (table 5), this 

does not imply causation. Analysis on multicollinearity did not indicate any problems (i.e. VIF-factors 

are under 5).  Table 6 reports descriptive statistics of all variables.  

 

 CT EXP 
Low 

impact ECs 

High 

Impact 

ECs 
Attention 

average 

Team 

diversity 

average 
CT        

EXP               

Low impact ECs                     

High impact ECs                           

Attention average                                 

Team diversity average                                      

**. Correlation (Pearson) is significant at the 0.01 level (2-tailed). 
 
 
 

 

 Mean Median sd Minimum Maximum Skewness 

ln(CT) 4.76 4.76 .58 3.43 6.97 .66 

ln(EXP+1) 3.53 4.04 1.82 0.00 5.91 -.72 

Low impact ECs 145.57 75.00 167.63 2.00 1431.00 2.62 

High impact ECs 24.90 12.00 37.00 0.00 416.00 4.50 

Attention average 162.91 137.76 101.59 51.43 870.81 3.30 

Team diversity average 10.06 10.36 1.12 4.83 12.67 -.45 

Passage of time 1584.42 1618.50 653.09 0.00 2760.00 -.330 

 

  

Table 6: Descriptive statistics   

Table 5: Correlations  
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In conditional effects, a coefficient estimates the difference in the consequent variable between two 

cases that differ by one unit, when moderators are 0. If 0 is not a meaningful value for the moderator, 

the coefficient and its test of significance is meaningless and have no substantive interpretation 

(Hayes, 2013). Therefore, we follow the recommendation of Aiken and West (1991), by mean-

centering the antecedent variable   and the moderator variables   and   we will get coefficients that 

are always meaningful and interpretable.  

5.2.1. Inferential tests 

We will follow the estimation procedure of Hayes (2013) as shown in appendix F, which first translates 

the conceptual model into a statistical model. Every consequent variable is then converted to an 

equation, from there algebra can be used to determine combinations of coefficients that test certain 

hypotheses. Hayes´ PROCESS-tool, a plug-in for SPSS, is used for the statistical analyses. Our model is 

based on Model Templates for PROCESS for SPSS and SAS number 10 (obtained via 

www.afhayes.com),  with the use of two mediators. 

 

On the basis of inferential tests we conclude whether a hypothesis is significant. Table 7 gives an 

overview of all hypotheses, their description, their corresponding inferential approach, as well as the 

statistical artifacts from the use of the PROCESS-tool.  

 

Hypothesis: Description: Inferential approach: 
     Direct effect Makes use of  -values for testing the null-hypothesis. 

       Mediating effect  Estimation of the conditional indirect effects for average values of the 

moderators alongside a bootstrapping method 
 Path a Makes use of  -values for variables      and    , which should be 

interpreted as the effect of   on    or    when W and V are average (0 

since we mean-centered). 

 Path b Makes use of  -values for estimates     and    , which predict the 

effect of the mediators on the  -variable 

     Effect size 

comparison 
Pairwise comparisons between specific indirect effects for multiple 

mediator models with moderators are not possible using the PROCESS-
tool. Therefore, a bootstrapping confidence interval without use of the 

moderators will determine significance. 
        

+       

Main effect 
 

Makes use of  -values for testing the null-hypothesis.  

        

+       

Conditional indirect 

effect (i.e. a formal 
test of moderated 
mediation) 

Through a syntax-option, a new data file containing 10000 bootstrap 

estimates of every regression coefficient in the model is created. We 

determine significance based on a percentile-based 95% bootstrap 

confidence interval for the difference of any two values of the 

moderator.  
      

+     
Conditional direct 

effect  
Makes use of  -values for testing the null-hypothesis at values of the 

moderators based on spotlight analysis (i.e. percentiles). 

 

Table 7: Inferential tests  
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Spotlight and floodlight analysis 

Conditional effects are dependent on various values of the moderators and therefore it is necessary to 

determine their significance at different levels of the moderators. In research two methods are 

prevalent; floodlight analysis, and spotlight analysis (Spiller et al., 2013). When moderators do not 

have specific focal values, which is the case in our data, it is recommended to use floodlight analysis 

(i.e. Johnson-Neyman tests). Unfortunately, Hayes’ PROCESS-tool does not allow for the use of this 

option with our model (i.e. 10) due to model complexity. The spotlight analysis uses arbitrary levels for 

low, medium and high values of the moderator (i.e. the mean       ), resulting in three main 

problems (Spiller et al., 2013). First, it hinders generalization over studies. Secondly, if moderators are 

skewed the levels may lie outside the minimum or maximum. Lastly, when the moderator uses a 

coarse scale the mean        might represent an impossible value. Based on the descriptive statistics 

of the moderators (see table 6) both the second and the third problem are no immediate drawbacks. 

However, due to skewness of the moderator Attention (3.30) a classification of low, medium, and high 

does not represent the full scale of the moderator. We opt for the use of percentiles at levels 10, 25, 

50, 75, and 90, which can be interpreted as very low, low, moderate, high, and very high levels of the 

moderator (Hayes, 2013). 

Bootstrapping 

We adopt the bootstrapping confidence interval (BCI) approach as proposed by Hayes (2013). The 

rationale being that BCI is the better approach when the original data can be used for analysis since no 

assumptions about the shape of the sampling distribution are necessary (Hayes, 2013). BCI generates 

its own representative sampling distribution, unlike for instance the Sobel-test. We do not use this test 

due two flaws. One, normality cannot easily be assumed (Hayes, 2013). Second, its confidence 

intervals are likely to be less accurate (MacKinnon et al., 2004). Moreover, BCI is likely to be more 

powerful than alternative methods (i.e. normal theory) (Preacher et al., 2007).  

 

  



34 
 

6. Results 
 

A stepwise build up of the model, as well as a description of tests and results, is shown in Appendix F. 

The found significant effects of the indirect paths of experience on project cycle time through both low 

and high impact ECs, in combination with the significant effects of the proposed moderators Attention 

and Team Diversity, lead to a model which incorporates all variables mentioned. Thus, all hypothesis 

will be tested and reported on, based on the results of this complete model (table 8).  

6.1. Complete model 
Hypothesis 1: the effect of experience on cycle time 

We start with hypothesis 1, which tests whether Experience leads to a decrease in project cycle time. 

From table 8 we see that the direct effect of lnExp on lnCT is statistically significant, as indicated by the 

result of coefficient     at –.0809                    . Thereby, we can accept   . As 

experience grows, the cycle time decreases with a decreasing rate. The direct learning rate is 94,547% 

(i.e.         . 

Hypothesis 2: the mediating effect of engineering change 

Next up is hypothesis 2, stating that the relationship between experience and project cycle time is 

mediated by the number of ECs. The significant negative effects  in model 2 and 3 (appendix F: section 

4) showed that this hypothesis is supported when tested in isolation. A mediating effect is determined 

by the effects of two paths, the first path predicts that experience leads to a significantly lower number 

of ECs, the second path predicts that the amount of ECs is positively related to project cycle time. Since 

our complete model (table 8) incorporates several mediators as well as moderators, we now speak of 

specific conditional indirect effects.  

 

The first path can be interpreted as the effect of   on    or    when   and   are 0, therefore 

variables      and     represent the effect of experience on both low and high impact ECs at average 

values of the moderator. Coefficient     at                             , indicates that as 

experience grows the number of low impact ECs decreases. Since     is negative            

                , the effect is similar for experience on high impact ECs. The second path, with    

estimates, indicates whether the amount of ECs is positively related to project cycle time. Low impact 

ECs have a positive effect on project cycle time, indicated by a     of                         . 

The result of coefficient      at                         , shows that high impact ECs positively 

relate to project cycle time. These significant positive results are consistent with prior results of 

stepwise-model 2 and 3 (see appendix F: section 4). 
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Table 8:  Results of complete model 

      Consequent    

      (impactLO)      (impactHI)     (lnCT) 

Antecedent   Coeff.        Coeff.        Coeff.      
  (lnEXP)      –38.5630 4.0623 .0000      –3.8960 .9576 .0001      –.0809 .0138 .0000 

   (impactLO)   — — —   — — —      .0014 .0002 .0000 
   (impactHI)   — — —   — — —      .0044 .0008 .0000 
  (ecATavg)      –.3600 .1039 .0006      –.1163 .0245 .0000      .0016 .0003 .0000 
   (int_1)      .2116 .0459 .0000      .0633 .0108 .0000      –.0005 .0001 .0003 
  (ecTDavg)      41.6592 8.6517 .0000      9.3562 2.0395 .0000      .0075 .0278 .7883 
   (int_2)      –6.4401 2.3560 .0064      .7576 .5554 .1734      –.0333 .0076 .0000 

Time (daysFASY)  –.0768 .0158 .0000   –.0208 .0037 .0000   .0001 .0001 .2808 
Constant     

 255.9180 26.2453 .0000     
 52.4513 6.1868 .0000     4.4295 .0879 .0000 

                

 

 
  

          

              
  

          

              
  

          

              

                       001                                                 001 
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From table 8 we can calculate the specific mediating effects of experience on project cycle time via ECs 

at average values of the moderators by taking the product of the first and second path. For low impact 

ECs          the conditional indirect effect is        , while the conditional indirect effect via high 

impact ECs          is        . The BCI of 95% at average values of the moderators do not straddle 

zero for both the low impact (table 10: -0,0801 to -0,0365), as well as the high impact ECs (table 11: -

0,0336 to -,0071). This provides evidence for the claim that the relationship between experience and 

project cycle time (i.e. lnCT) is indeed mediated by the number of ECs, thereby we  

can accept hypothesis    and hypothesis   . 

Hypothesis 3: increasing opportunities to learn during implementation of an EC 

Hypothesis 3 predicts that the opportunities to learn during the implementation of an EC are higher 

when ECs have an higher impact. Technically, this means we expect that the specific indirect path 

through high impact ECs          contributes more to learning than the specific indirect path going 

through low impact ECs         . Thus, the learning rate of the path through high impact ECs is 

expected to be greater.  

Unfortunately, the PROCESS-tool provides no pairwise comparisons between specific indirect effects 

for multiple mediator models with moderators (Hayes, 2013). Therefore, hypothesis 2 will be tested 

without the moderators Attention and Team Diversity in play. The comparison is found in table 9 in 

row C1, along with a corresponding bootstrapping confidence interval. The point estimate of the 

difference between specific indirect effects is                        , the 95% BCI does not 

straddle zero         to        . Therefore, we can say with 95% confidence that these indirect 

effects are statistically different from each other. Since the specific indirect effect of impactLO is 

higher in magnitude, the hypothesis is rejected. Contrary to our expectations, not high impact ECs, but 

low impact ECs contribute more to the learning effect.  

Table 9: Comparing specific indirect effects 

 Indirect effect of X on Y 
 Effect Boot SE BootLLCI BootULCI 
TOTAL                            
impactLO                            
impactHI                            
 (C1)   0581  0189               
* Specific indirect effect contrast definitions: (C1) = impactLO minus impactHI 
** Without the use of moderators 
 

Increasing opportunities to learn during generation of an EC 

We predicted that increasing the opportunities to learn during the generation of ECs leads to an 

increase of the number of ECs, as well as having a positive impact on the learning rate. Thus, we expect 

that the number of ECs rises, tested by its main effects. Contrastingly, we expect the learning curve to 

become steeper as the values of the moderator increase. 
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Hypothesis 4 and 6: the main effect  

Hypothesis 4 and hypothesis 6 predict that Attention and Team diversity have a positive direct impact 

on the number of ECs. The main effects   and   show if at increased levels of Attention and Team 

Diversity the number of ECs is impacted directly. The values of   and   can be seen in table 8, for both 

their effect on low impact ECs as well as for their effect on high impact ECs.  

 

    predicts that Attention leads to a higher number of ECs, we should reject this hypothesis, 

indicated by a significant and negative      of                          . For Attention on 

high impact ECs we have a negative significant value of     at                           . 

Indicating that higher levels of Attention lead to less ECs, thus rejecting    . Higher levels of Attention 

do not contribute to an increase of the number of engineering changes.  

 

The same procedure is repeated for the moderator Team Diversity. For low impact ECs,    , Team 

Diversity has a positive effect on the number of ECs, indicated by the effect     at 41.6592     

               . The result of     at       ,                   , indicates a positive and 

significant effect. These results lead us to accepting both hypothesis     and    , higher levels of 

Team Diversity lead to an increase of the number of engineering changes.  

Hypothesis 5 and 7: the conditional indirect effects 

Hypothesis 5 and hypothesis 7 predict that Attention and Team diversity moderate the relationship 

between experience and the project cycle time. With increased opportunities to learn the learning 

rate is expected to greater. These expectations are tested for both indirect effects, as well as for the 

direct effect. For indirect effects, which we will treat first, we need to look at the interaction effects of 

path  , and at the effects of ECs on project cycle time (i.e. path  ).  

The interaction terms    and    shows if  ’s effect on ECs depends on values of the moderators 

(table 8). Attention positively affects the relationship between experience and the number of low 

impact ECs, indicated by a significant      of                        . For high impact ECs we 

have a positive significant value of     at                         . Indicating that Attention 

moderates the effect of experience on ECs in such a way that the learning curve of ECs becomes less 

steep. Team Diversity has a negative effect on the relationship between experience and engineering 

change, indicated by the interaction effect     at                              . The result of 

    at      ,                 , indicates a positive but insignificant effect. These results lead us to 

concluding that at higher levels of Team Diversity the learning curve of low impact ECs becomes 

steeper. Contrastingly, higher levels of Team Diversity does not significantly affect the learning curve 

of high impact ECs.  
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Learning, measured by the effect of higher Attention and Team Diversity on the number of ECs, does 

also have a cost. Engineering changes have a direct and positive effect on the project cycle time as 

indicated by the significant  -coefficients (i.e.    = .0014 and    = .0044). Therefore, the more 

Engineering Changes, the longer project cycle times. By taking the product of path   and path  , we 

can test the learning effect of increased opportunities to learn at various values of Attention and Team 

Diversity (i.e. percentiles). The resulting effects are called the conditional indirect effects (see table 10 

and 11).  

 

Table 10: Conditional indirect effects of lnEXP on lnCT via impactLO at values of the moderators 

Attention ( ) Team Diversity ( )  Effect Boot SE BootLLCI BootULCI 

94,80 

8,50  -0,0602 0,0141 -0,0936 -0,0368 
8,95  -0,0642 0,0137 -0,0958 -0,0411 

10,36  -0,0770 0,0141 -0,1072 -0,0520 
11,04  -0,0831 0,0153 -0,1158 -0,0567 
11,33  -0,0857 0,0159 -0,1219 -0,0591 

109,64 

8,50  -0,0558 0,0133 -0,0914 -0,0345 
8,95  -0,0598 0,0128 -0,0897 -0,0380 

10,36  -0,0726 0,0131 -0,1010 -0,0492 
11,04  -0,0787 0,0142 -0,1110 -0,0544 
11,33  -0,0813 0,0148 -0,1143 -0,0565 

137,75 

8,50  -0,0474 0,0123 -0,0795 -0,0280 
8,95  -0,0515 0,0116 -0,0807 -0,0327 

10,36  -0,0642 0,0115 -0,0917 -0,0443 
11,04  -0,0703 0,0126 -0,1007 -0,0494 
11,33  -0,0730 0,0132 -0,1030 -0,0503 

169,47 

8,50  -0,0380 0,0122 -0,0672 -0,0176 
8,95  -0,0421 0,0114 -0,0702 -0,0235 

10,36  -0,0548 0,0107 -0,0813 -0,0368 
11,04  -0,0609 0,0116 -0,0901 -0,0425 
11,33  -0,0636 0,0122 -0,0945 -0,0442 

238,92 

8,50  -0,0174 0,0155 -0,0445 0,0156 
8,95  -0,0215 0,0145 -0,0484 0,0091 

10,36  -0,0342 0,0131 -0,0627 -0,0103 
11,04  -0,0403 0,0134 -0,0697 -0,0173 
11,33  -0,0429 0,0137 -0,0752 -0,0209 

Mean:   162,91 Mean:   10,06  -0,0541 0,0106 -0,0801 -0,0365 
*moderator values represent real values, no need to correct for mean-centering 
*values for moderators are 10

th
, 25

th
, 50

th
, 75

th
, and 90

th
 percentiles.  

 

A bootstrapping method is used for determining significance (shown in bold). A close examination of 

the effects of the specific indirect path via low impact ECs (i.e. table 10) makes us conclude that the 

conditional indirect effect increases when Attention is relatively higher (i.e. the effect becomes less 

negative). On the other hand, when Team Diversity is relatively higher the conditional indirect effect 

decreases. Based on a 95% BCI, the conditional indirect effect is not statistically significant from zero 

for only ECs characterized by very high Attention in combination with very low/low Team Diversity. 

Note however that the conditional indirect effect is consistently negative, learning is taking place at all 

values of the moderators. 
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Table 11: Conditional indirect effects of lnEXP on lnCT via impactHI at values of the moderators 

Attention ( ) Team Diversity ( ) Effect Boot SE BootLLCI BootULCI 

94,80 

8,50 -0,0414 0,0100 -0,0634 -0,0237 
8,95 -0,0399 0,0096 -0,0606 -0,0228 

10,36 -0,0352 0,0093 -0,0544 -0,0181 
11,04 -0,0329 0,0097 -0,0535 -0,0160 
11,33 -0,0320 0,0100 -0,0536 -0,0154 

109,64 

8,50 -0,0373 0,0093 -0,0591 -0,0215 
8,95 -0,0358 0,0089 -0,0555 -0,0205 

10,36 -0,0311 0,0085 -0,0500 -0,0166 
11,04 -0,0288 0,0089 -0,0486 -0,0139 
11,33 -0,0278 0,0092 -0,0480 -0,0130 

137,75 

8,50 -0,0294 0,0084 -0,0504 -0,0154 
8,95 -0,0279 0,0079 -0,0473 -0,0149 

10,36 -0,0232 0,0073 -0,0409 -0,0119 
11,04 -0,0210 0,0077 -0,0398 -0,0094 
11,33 -0,0200 0,0080 -0,0393 -0,0082 

169,47 

8,50 -0,0206 0,0080 -0,0402 -0,0067 
8,95 -0,0191 0,0074 -0,0387 -0,0075 

10,36 -0,0144 0,0066 -0,0316 -0,0047 
11,04 -0,0121 0,0070 -0,0305 -0,0022 
11,33 -0,0111 0,0073 -0,0303 -0,0008 

238,92 

8,50 -0,0012 0,0098 -0,0184 0,0212 
8,95 0,0003 0,0092 -0,0158 0,0214 

10,36 0,0050 0,0082 -0,0106 0,0230 
11,04 0,0073 0,0083 -0,0090 0,0246 
11,33 0,0083 0,0085 -0,0088 0,0256 

Mean:   162,91 Mean:   10,06 -0,0172 0,0066 -0,0336 -0,0071 
*moderator values represent real values, no need to correct for mean-centering 
*values for moderators are 10th, 25th, 50th, 75th, and 90th percentiles.  
 

The conditional indirect effects of experience on project cycle time through    (i.e. high impact ECs) 

are shown in table 11. By eye-balling the table we see that at increasing levels of Attention and Team 

Diversity the conditional indirect effect increases. The effect stays negative for all values of Team 

Diversity, except in combination with very high attention. Similarly, based on a 95% bootstrap 

confidence interval, the conditional indirect effect is not statistically different from zero amongst ECs 

very high in Attention. 

Hypothesis 5a/b and 7a/b: a formal test of moderated mediation 

To formally answer the question if increased opportunities to learn are indeed detrimental to learning 

via the indirect paths, we need to ask ourselves the question whether the conditional indirect effect at 

one value of the moderator is statistically different, compared to some other value of the moderator. 

So, does the indirect effect of experience on project cycle time through ECs differ between teams low 

versus high in Attention (or Team Diversity)? 
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Therefore, we estimate the difference between the conditional indirect effect at two values of the 

moderator of interest. Once the difference is estimated, we need to undertake a bootstrapping 

inferential test to test whether the difference is equal to zero. By applying algebra on equation 10 (see 

appendix F: 1.3.) we obtain regression coefficients for low impact changes differing on 

Attention,               . The same method results in               for Team Diversity. 

Similarly for high impact changes, applying algebra results in equations for Attention           

   , and in               for Team Diversity.  

 

The PROCESS-tool of Hayes (2013) makes it possible to construct a bootstrap confidence interval 

through a syntax-option. PROCESS creates a new data file containing 10,000 bootstrap estimates of 

every regression coefficient in the model. A subsequent step in the analysis constructs a percentile-

based 95% bootstrap confidence interval for the difference. Notice that         is a constant for all 

values of W and therefore the outcome of the test does not rely on values of W (or V). Consequently, a 

95% confidence interval for          that does not contain zero means that any two conditional 

indirect effects are significantly different from each other. The tests for this and other combinations of 

moderator and mediator can be found in table 12. 
 

Table 12: Formal test of moderated mediation 

 Mediator x 

moderator 
Test Column Table 8 

values 
Point 

estimate 
Lower 

bound 
Upper 

bound 

    
Attention via 
low impact 

         COL4*COL16 
      

        
          ,0001 ,0006 

    
Attention via 
high impact 

         COL11*COL17 
      

  .0044 
          ,0001 ,0005 

    
Team diversity via 
low impact 

         COL6*COL16 
       
        

           -,0186 -,0010 

    
Team diversity via 
high impact 

         COL13*COL17 
      

  .0044 
          -,0018 ,0089 

 

Increasing attention via low impact has an effect of         on project cycle time, with bounds 

between       and      . Similarly increasing attention via high impact has an effect of         

with bounds between       and      . Thereby we can conclude that more Attention spend on 

engineering change does not have a favorable impact on the learning via both low and high impact 

ECs, thereby rejecting     and    . For Team diversity we have a result of       on project cycle time 

via low impact ECs, with bootstrapping bounds that do not straddle zero (       to       ). 

Therefore, we can accept    , since we can conclude that increased levels of Team Diversity are 

beneficial to learning via low impact ECs. The bootstrapping bounds of Team Diversity through high 

impact ECs however does straddle zero (       to      ), and thus we reject     based on 

insignificance.  
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Hypothesis 5c and 7c: the conditional direct effect 

Hypothesis    and hypothesis    state that increased opportunities to learn are beneficial to learning 

via the direct effect of experience on project cycle time. Once again, this effect is moderated and thus 

conditional. Due to mean-centering, conditional effects should be interpreted as the effect of   on   

when moderators are 0. Therefore, direct effect   
  can be interpreted as the effect of   on   when W 

and V are average (0). The direct effect of experience on project cycle time (i.e. lnCT) is, consistent with 

the results of stepwise models 1, 2 and 3, negative as indicated by the significant     of             

                 . Experience impacts the cycle time, as it grows the cycle time decreases with a 

decreasing rate. The direct learning rate is 94,547% (i.e.        . 

 

From model 8, we see that moderator Attention has a favorable impact on the learning rate of 

experience on project cycle time. The empirical results show that higher Attention is associated with a 

higher learning rate, indicated by the significant     of                              . In a similar 

vein, higher Team Diversity leads to a steeper curve. The results show that a more diverse team is 

beneficial to learning, indicated by the significant     of                              .  

 

Table 13: Conditional direct effect of Experience ( ) on Cycle time ( ) at values of the moderators  

Attention ( ) Team Diversity ( ) Effect  -values  -values 

94,80 

8,50 0,0074 0,4403 0,6598 
8,95 -0,0075 -0,5126 0,6084 

10,36 -0,0545 -4,3903 0,0000 
11,04 -0,0770 -5,3395 0,0000 
11,33 -0,0867 -5,5097 0,0000 

109,64 

8,50 -0,0005 -0,0312 0,9751 
8,95 -0,0154 -1,0716 0,2842 

10,36 -0,0624 -5,1621 0,0000 
11,04 -0,0849 -6,0080 0,0000 
11,33 -0,0946 -6,1160 0,0000 

137,75 

8,50 -0,0155 -0,9141 0,3609 
8,95 -0,0304 -2,0517 0,0405 

10,36 -0,0773 -6,1638 0,0000 
11,04 -0,0998 -6,8824 0,0000 
11,33 -0,1096 -6,9313 0,0000 

169,47 

8,50 -0,0324 -1,7470 0,0810 
8,95 -0,0472 -2,8495 0,0045 

10,36 -0,0942 -6,4710 0,0000 
11,04 -0,1167 -7,1787 0,0000 
11,33 -0,1265 -7,2580 0,0000 

238,92 

8,50 -0,0693 -2,7825 0,0055 
8,95 -0,0842 -3,5855 0,0004 

10,36 -0,1312 -5,9520 0,0000 
11,04 -0,1537 -6,6337 0,0000 
11,33 -0,1634 -6,8133 0,0000 

Mean:   162,91 Mean:   11,19 -0,0809 -5,8515 0,0000 
*moderator values represent real values, no need to correct for mean-centering 
*values for moderators are 10th, 25th, 50th, 75th, and 90th percentiles.  
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The conditional direct effect of experience on project cycle time at various values of the moderators is 

shown in table 13. By eye-balling the table we see that at increasing levels of Attention and Team 

Diversity the conditional direct effect decreases, thus having a beneficial effect on the learning rate. 

Based on significance values ( ), the conditional direct effect is not statistically different from zero 

amongst ECs with combinations of very low Team Diversity with very low/low/moderate/high 

Attention levels. Similarly, the conditional direct effect is not significantly different from zero for 

combinations of low Team Diversity and very low/low Attention.  

Various tests: netto effects and controlling for passage of time 

Netto effects of increased moderator values 

Thus, increased opportunities to learn during the generation of ECs have an indirect effect via low and 

high impact ECs. While on the other hand, increased opportunities to learn also influence the direct 

effect. Simple addition of the moderator effects on indirect and direct effects determines the netto 

effect of increased moderator values. Since both effects are using the same parameters/variables, this 

simple addition method is justified. Increasing attention has a total effect on the learning rate via both 

indirect paths of .00057116, a simple addition of both point estimates from table 12. On the direct 

path it has an effect of        (   ). This leads us to conclude that increased attention is slightly more 

detrimental to learning, .0006 – .0005 = .0001. Which corresponds to a progress rate of 

              . 

Increasing Team diversity has an effect on the learning rate via the indirect paths of            + 

                 = –,0056827 (table 12). On the direct path it has an effect of        (   ). 

Increasing opportunities to learn by higher Team Diversity thus leads to a steeper curve. Without the 

insignificant moderator, increased team diversity leads to a progress rate of                        = 

            =                

Comparing direct and indirect effects 

A comparison of the total effects with the indirect effects reveals almost similar effects for direct and 

the combined indirect paths. The conditional direct effect at average moderator values is        (see 

table 13),  with confidence intervals unequal to zero (       to       ). Whereas the total indirect 

effect is       , consisting of a summation of the indirect effect of low impact ECs at        with 

confidence intervals (table 10:        to       ) and the indirect effect of high impact ECs at        

with confidence intervals (table 11:        to       ). The total learning effect is       , 

corresponding to a progress rate of       .  
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Control variables 

Part of the learning curve might be attributed to external effects, controlled for by the addition of the 

passage of time. Table 8 shows two significant negative coefficients of Time, for low impact ECs 

                          and for high impact ECs                           . This 

means that the number of ECs for both types decreases not only as a result of the production of 

machines (i.e. experience), based on Argote (2013) we state that external factors are also responsible 

for the initiation of ECs. The effect of Time on the project cycle time is however positive and not 

significant                       . Therefore we can conclude that the learning rates of project 

cycle time can be attributed to the experience of the own organization (Argote, 2013). 

Table 14: Overview of hypotheses and their results  

Hypotheses Expected  Result Table Accepted? 

    –   0.0809 * 8 Accepted 
 

    LO –   0.0541* 10 Accepted 

    HI _   0.0172* 11 Accepted 
 

   HI > LO 

LO**=  

HI**=  

HI – LO**=  

 .0824* 

 .0242* 

 .0581* 

9 Rejected 

 

    LO + Main effect  .3600* 8 Rejected 

    HI + Main effect  .1163* 8 Rejected 
 

    LO –   .000293* 12 Rejected 

     HI –  .000279* 12 Rejected 

     Direct –   .0005* 8 & 13 Accepted 
 

    LO + Main effect 41.6592* 8 Accepted 

    HI + Main effect 9.3562* 8 Accepted 
 

    LO –    .00902* 12 Accepted 

    HI –  .00333 12 Rejected 

    Direct –        * 8 & 13 Accepted 

* significant on the bases of p-values (<0,05) or on the basis of 95% bootstrapping confidence intervals 

** tested without moderators 
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7. Discussion & Conclusion 

This chapter will discuss the overall conclusions of the thesis project, it will start with a section in which 

we will answer the research questions. In the following sections we will first discuss the redesign and 

the related managerial implications, next up we discuss the implications for the theory. Lastly, we will 

discuss the limitations of this thesis and set possible directions for future research.  

7.1. Discussion 
We started this Master’s thesis with a practical goal, ASML is in need of shorter cycle times in order to 

reduce its inflated WIP. In order to bring relevant knowledge to the table, we set a few research 

questions that guided us in our quest. Engineering changes were known to bring the product closer to 

its end state step by step, while at the same time prolonging the time a machine is assembled. ASML is 

in search of methods to balance the speed of their development processes and their learning effects, 

striving for both a reduction in project cycle times and an increase of product quality. By uncovering 

the factors that accelerate the learning curve, it is possible to conclude on managerial implications 

which contribute to a more steep learning curve. We set the following research question: 

What role do Engineering Changes play in the  relationship between experience and  

project cycle time (i.e. the learning curve)?   

Our results show that learning takes place via different paths, we found significant results for indirect 

and direct paths. Moreover, stepping away from the aggregate form of measurement of ECs allowed 

us to study the effects of several types and characteristics of ECs. With the help of Argote et al. (2003) 

we gained understanding on why learning occurs, they showed that by providing opportunities to 

learn, knowledge could grow. Research by Miner et al. (2001) stated that ECs can be seen as a specific 

source of learning, our results underline these findings. We saw the possibility to test detailed 

characteristics of ECs by focusing on identifying opportunities to learn during the process of an EC. 

More specifically, we identified two separate parts of this EC process; the generation and the 

implementation. Engineering changes are implemented at the end, based on their expected impact an 

implementation range is assigned to the change. We saw that distinct paths have distinct effects on 

learning. Moreover, by setting different paths for low and high impact engineering changes in the 

conceptual model, we were able to differentiate between effects of increasing opportunities to learn 

during generation of an EC. As a result, our complete model can answer questions on the effect of 

increased attention and team diversity on the number of engineering changes and the learning effects 

for both high and low impact engineering changes. Thus, we are able to compare paths in the ways 

they contribute to the steepness of the learning curve. Furthermore, we saw that ECs bring about 

costs of learning, as shown by the positive path b effects.  
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To date the effect of engineering change on new product development speed has been reported with 

mixed results. Early research by Adler and Clark (1991) showed contrasting effects for two 

departments, they suggested that these differences could possibly be explained by the aggregate form 

of measurements. Chen (2010) found that the number and frequency of design iterations are 

antecedents of NPD speed. Whereas, a meta-study by Cankurtaran et al. (2013) provided no salient 

effects for design iterations. Research lacks both in detail of measurement and longitudinal evidence 

of effects.  

Our findings suggest that ECs have both direct effects and longitudinal effects on cycle time. On the 

one hand do ECs require extra project cycle time, on the other hand ECs contribute to learning. The 

longitudinal effects however are dominant, although ECs have a direct prolonging effect on project 

cycle time, in the long run they significantly contribute to a steeper curve. These findings are in line 

with the hypotheses and results of Alblas and Langerak (2014), who state that the positive effects of 

design iterations prevail over the negative effects.  

Moreover, by splitting ECs in two groups and still remaining significant results we have shown that 

learning follows different paths. This provides evidence for the statement of Miner et al. (2001) that 

design iterations (i.e. ECs) can be seen as a specific source of learning. Our hunch is that the paths 

describe specific environment in which learning takes place, in which we identify EC learning for the 

indirect paths, possibly related to induced or second-order learning, whereas the direct path describes 

a more autonomous form of learning. 

An EC brings about changes to both product and process, thereby disturbing current operations. For 

low impact ECs this results in new to order parts and obsolete stocks, thereby delaying progress of the 

machines. High impact ECs are charged with the before mentioned drawbacks of change and 

moreover, have direct delaying effects on the machines that are already in production. High impact 

changes are must-haves, and unfortunately this leads to large dissembling work, and a change of specs 

and thus, test procedures. Their magnitude is therefore, as expected based on research by Terwiesch 

and Loch (1999) and Thomke and Fujimoto (2000), greater. Contrastingly to our expectations, not high 

impact ECs but low impact ECs are shown to be contributing more to a steeper curve. This effect is 

explained by the large influx of low impact ECs, they outnumber the high impact ECs with a ratio of 8:1, 

in combination with the less severe direct effect on project cycle time. 

Furthermore, the study sought to identify characteristics of Engineering Change that allow for 

opportunities to learn. As said, we adopted Argote et al.’s (2003) research, we expected that providing 

opportunities to learn facilitates learning. Let us take a more in depth look at the effect of Attention 

and Team Diversity.  
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7.1.1. Attention 

Remarkably, in contrast to the expectations based on Ocasio’s meta-study (2011) on the effects of 

attention, we did not find Attention to be contributing to the number of ECs, nor did we find evidence 

that Attention contributes to learning. Our results suggest that increasing Attention does impact the 

number of ECs and it also impacts learning, however it does so at the complete opposite of our 

expectations. Increasing attention leads to de-learning and lowers the number of ECs. One of the 

explanations to these finding might be that at increased levels of Attention, measured by the number 

of hours spent on the EC, the EC process gets congested. Terwiesch and Loch (1999) argued that 

managing congestion and capacity benefits the EC process. Another explanation could be that due to 

the long time spent on ECs (i.e. Attention), the solution might become obsolete. Thomke and Fujimoto 

(2000) argue that striving for faster cycles of problem solving reduces the negative effects of ECs. Our 

results might have proven their claims with the use of longitudinal data.  

Contrastingly,  the effect of increased Attention on the direct effect is significant and negative. More 

time spent on engineering change (i.e. increased Attention) leads to lower project cycle times. One of 

the possible explanations for the significant negative effect of increased Attention on the factory 

learning (i.e. direct) effect is the thoroughness of the engineering change. As the knowledge of 

engineers is codified in the change and its related documents, the interpretability for the factory 

worker benefits from increased time spent (i.e. Attention) on the change. Additionally, we like to 

argue that a meticulous change will most likely lead to less adverse propagative effects.  

7.1.2. Team diversity 

The effects of Team Diversity are different from Attention. In the upcoming paragraph we will walk 

through the results of increased levels of Team Diversity on the number of ECs and the direct effect. 

The result that higher Team Diversity leads to a higher number of engineering changes (i.e. main 

effect) could suggest that cooperation with diverse business functions results in better opportunities 

to learn (Argote et al., 2013). We expect that the addition of engineers to a change reduces the 

amount of structural holes (Burt, 1992) and therefore opens up new synergetic possibilities. The 

results suggest that, in line with Jackson et al. (1995) and Argote (2013), a more diverse group is better 

able to combine different types of knowledge, is more creative and innovative, resulting in more ideas 

and better decision making, leading to additional engineering changes. Moreover, the moderating 

effect of Team Diversity on engineering changes is negative and significant (for only the low impact 

ECs) suggesting that Team Diversity contributes to learning via the low impact ECs. Thus, Team 

Diversity also leads to learning, at higher levels of the moderator the learning curve going via ECs will 

get steeper. Team diversity also impacts the direct effect, it significantly contributes to a more 

negative learning rate shown by the significant negative effect on the direct path. In line with the 
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previous moderator Attention, our hunch is that learning takes place in two separate environments. 

Higher levels of Team Diversity lead to a more thorough and meticulous change, increasing the 

interpretability for the factory worker and thus making his work easier. Moreover, we expect that a 

more thoughtful engineering process involving other business functions will lead to less adverse 

propagative effects. 

7.2. Theoretical implications 

The upcoming section will answer how the gaps, as summarized in the last paragraph of the 

literature section, are filled. For clarity, the gaps are 1) the lack of using cycle times as an outcome 

measure of learning curve theory. 2) current studies lack conditions under which organizational 

phenomenon result in learning, more specifically we miss a decomposition of ECs based on increased 

opportunities to learn. 3) current research on the effect of ECs lacks longitudinal data. 4) empirical 

principles need statistical support.  

Classic learning curve literature makes use of two dominant outcome measures, unit costs or number 

of labor hours. Our study showed evidence that project cycle time is a function of Experience, adding 

another outcome variable that have been found to follow a learning curve. Moreover, our research is 

one of the first studies that links ECs to cycle time with longitudinal evidence. Adler and Clark (1998) 

found evidence for this relationship, but their research lacked longitudinal evidence. Our results add to 

the literature by showing that ECs have both direct and longitudinal effects. Thus, ECs affect both the 

cycle time as well as the learning curve.  

Furthermore, we add to the literature by stepping away from the aggregate form of measurement 

(Argote, 2013) and proposing an EC classification based on impact. High impact ECs have greater 

delaying effects on the project cycle time. Contrary to our expectations, low impact ECs contribute 

more to learning than do high impact ECs. Research should try to answer the question whether this is 

due the large difference in number of implemented changes.  

Our research is the first that searched for opportunities to learn (Argote et al., 2003) which increase 

the number of future ECs. We found Team Diversity to contribute to more changes. Our results for 

Attention, which did not contribute to learning, suggest that just providing the opportunity to learn in 

its own does not always lead to learning. Other factors are in play which affect the process of learning. 

By testing the effect of opportunities to learn on separate paths we opened a black box. We saw 

contradicting effects of increased opportunities to learn, on the one hand it was disadvantageous to 

learning via the mediated path, on the other hand the direct effect benefits from increased values. 

Future research should set goals to try and understand why these differences exist.  
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The application of quantitative research validated research that gave suggestions on how to cope with 

the  process of Engineering Change Management. Most literature is based on case study research, and 

thus lacks quantitative evidence. With the use of longitudinal data, we showed that the following 

claims on reducing the negative effects of ECs are true; decreasing the impact of a change (Terwiesch 

& Loch, 1999), speeding up the process by decreasing EC cycle times (Terwiesch & Loch, 1999), 

communicate between functions both horizontal and vertical (Thomke and Fujimoto, 2000), strive for 

faster cycles of problem solving (Thomke and Fujimoto, 2000), and communication with multi-

disciplinary teams (Terwiesch et al., 2002).  

7.3. Managerial implications 

Our results provides ASML with knowledge on the delaying effects of ECs (i.e. the cost of learning) in 

which we can differentiate between low and high impact ECs. Moreover, our results show that 

increasing the diversity of teams lead to learning in the EC process, the number of ECs increases and 

the learning curve gets steeper. Contrary to our expectations, increased levels of attention lead to de-

learning. In the previous section we suggested that this might be due to knowledge becoming obsolete 

and the process becoming congested. Therefore, we advise to strive for faster cycles of problem 

solving.  

Employees of ASML told us that especially the large influx of low impact engineering changes was 

killing for project cycle times and did not contribute as much to learning as the high impact engineering 

changes. Our results tell us otherwise, the low impact engineering changes contribute significantly 

more to the learning curve. As expected, the delaying effect for high impact engineering changes was 

greater than those engineering changes labeled as low impact. Although the large amount of low 

impact changes show clear negative effects on project cycle time, the learning effect is significantly 

improving their learning curve.  

7.3.1. Redesign 

Based on our research, that combined qualitative and quantitative research, we see a couple of 

opportunities to increase the effectiveness of the EC-process. Literature on learning curve theory and 

engineering change management provides us with general knowledge on how to handle engineering 

change processes and how to reduce their negative consequences. This knowledge is shown in table 

15, combined with the results of the quantitative research and lastly complemented with the 

qualitative research in the form of the interviews (see appendix B, table 16). Based on table 15 we 

would like to propose several improvement points.  
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Our research project has, under lead of dr. Alex Alblas, been approached rather academically. One of 

the major research objectives was to search for drivers of the learning curve within the process of 

developing machines. Parts of this process consist of improvement proposals (IPs), engineering 

changes (ECs), and design notifications (DNs). The EC-process is a company-wide processes that 

stretches from departments such as development, manufacturing, logistics and multiple support 

subdivisions. After a year of doing research one of the major achievements of this study and its 

research group is the awareness we created. We feel that although this achievement is not tangible, it 

should be considered as part of the redesign. Engineering changes carry a lot of knowledge and ASML 

is beginning to delve the undiscovered opportunities that lie within these changes and their related 

processes.  

 

Quotes  
(see Appendix B) 

 
Literature 

Quantitative 

research 

Process 

understan
ding 

 

B 6 
F 1 
H 1 
Q 2 
R 3 
T 1 
U 2 
U 3 

Visit of 
CCB 

Decrease complexity of process (Terwiesch & Loch, 1999) 
Efficiency (Fricke et al., 2000) 

Thoroughness of 
an EC could lead 

to better 

processing times 

at the 

manufacturing 

departments. 

Let 

engineers 

work 

together 

B 4 
B 6 

 

Multi-disciplinary communication (Terwiesch & Loch, 1999) 
Communication between both subsequent functions as well as 

face to face communication between different layers and 

between direct colleagues (Thomke & Fujimoto, 2000)  
Knowledge transfer (Thomke & Fujimoto, 2000) 
Multi-disciplinary communication (Pikosz & Malmqvist, 1998) 

Increasing team 

diversity leads to 

more future 

engineering 

changes and 

contributes to 

learning. 

Cycle 

times of 
ECs 

 – 

s 
Increase value added time while reducing engineering change 

cycle times (i.e. Attention) (Terwiesch & Loch, 1999) 
Faster cycles of problem solving (Thomke & Fujimoto, 2000) 

Increasing 

Attention leads to 

more ECs and is 

detrimental to 

learning. 

Feedback 
 

F 2 
L 1-5 

Learning and reviewing (Fricke et al., 2000) – 

Early 

detection 

of ECs 
 

A 2 
B 3+5 

K 4 
M 4 
S 4 
U 4 

Frontloading (Terwiesch & Loch, 1999) 
Avoid unnecessary changes by spending more time on first 

release (Clark & Fujimoto, 1991) 
Frontloading is the goal (Thomke & Fujimoto , 2000) 
Design it right the first time (Wheelwright & Clark, 1992) 
Frontloading (Fricke et al., 2000) 

– 

 

Table 15: overview redesign 
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Process understanding 

During my visits of several meetings concerning a go/no-go decision for individual ECs, it came to my 

attention that owners of the ECs (i.e. developers/engineers) lacked process understanding. Although 

information on what to prepare before visiting a meeting such a CCB or CIB is available, employees 

presented ECs that lack essential elements, thereby unwillingly postponing their GO-decision with half 

a week. We would like to argue that employees who are sufficiently educated on the need of a 

delivering a meticulous engineering change with all its vital elements are more aware of the common 

pitfalls and therefore will less likely be shown back to the drawing board to complement an EC. This 

will lead to higher value added times, less postponed ECs, faster cycles of problem solving, and makes 

capacity and congestion better manageable. Even more so, a highly meticulous EC will probably result 

in higher interpretability for the manufacturing employees, leading to faster cycle times. Additionally, 

we like to argue that a meticulous change will most likely lead to less adverse propagative effects. 

Let engineers work together 

All types of evidence (e.g. literature, data, and interviews) show us that a more diverse team leads to 

an increase of engineering change. Multi-disciplinary teams are already put in action, therefore we 

would like to propose to underline the need for knowledge-asking and –sharing in the engineering 

change process. It clearly leads to better, and more ideas. The current descriptions of the EC-process 

and related processes are highly technical process-wise, they could benefit from recalling the need for 

multi-disciplinary knowledge-asking and –sharing. 

Cycle times of ECs 

Based on literature of Terwiesch and Loch (1999) we see improvements for efficiency of the EC-

process. They argue that the process benefits from bringing it to higher speeds, this can be achieved by 

increasing value added times, decreasing engineering change cycle times, decreasing the complexity 

of the process, by managing capacity and congestion, and by performing setups and batching. In 

recent years plans have been initiated to increase the efficiency of the process. Many times these 

plans were proven to be too ambitious, partly since the change of the EC-process will have 

companywide implications, partly since there is no time left to make major changes to the process. 

Therefore, we keep our recommendations as modest as possible. Employees need to be educated on 

all process steps of an EC, this process is the backbone of ASML, responsible for bringing new functions 

to the product, reducing costs, and improving quality. Small improvements, that reduce the amount of 

iterations necessary for each EC due to lack of process understanding, will lead to increased value 

added times, lower EC cycle times, and lower complexity by better understanding of the process. 
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Feedback 

ASML’s engineering change process does a lot of things right, what the current process clearly lacks is a 

moment for feedback. The interviews revealed that due to time and capacity constraints engineers are 

constantly in a hurry to achieve their next goals, and therefore are not able to reflect on their work. 

Literature shows however that feedback and reflection could result in better learning, leading to a 

steeper curve. Even more remarkable are the problems that are caused by the separation of 

responsibility for changes on machines on the floor, and at the field (i.e. the customer). The current 

division of implementation range options leads to changes that are postponed since their effects 

would seriously disturb the project cycle time goals and thereby the assessment rating of development 

and manufacturing. As a result, expense and time consuming FCOs (i.e. ECs for the field) are executed. 

Furthermore, major upgrades, which could lead to lots of learning, are postponed based on cycle time 

priority. We would like to address that a restructuring of the implementation range could solve this 

issue. 

Early detection of ECs 

This concept is already embraced by ASML, at early stages of product maturity (i.e. proto-phase) the 

one and only goal is to detect mistakes in the design and initiate lots of ECs to tackle problems and 

introduce new product functionalities. In a later stage (i.e. pilot and volume-phases) manufacturing 

takes over the responsibility for the machines from D&E and strives for controllable lower cycle times. 

Many interviewees warned that a too early shift of responsibility could lead to a seesaw-effect, 

whereas cycle times in later stages go up instead of down. The holy grail is considered to be 

frontloading, a concept whereby the majority of ECs is executed in the early stages of product 

development. The frontloading values is calculated by taking the percentage of ECs implemented in 

each sub-period of the total cycle time. By averaging out the sub-period percentages we get a value 

that represents the frontloading-value, where this figure can be graphically represented by a curve 

which can be more concave (i.e. low average frontloading) and more convex (i.e. high average 

frontloading). Unfortunately we were not able to test at what values of frontloading the learning curve 

contributes since current research methods did not provide enough opportunities to include this 

platform-wide values.  

Data 

This leads us to speak out our concerns on data and how to deploy this data to create knowledge. First 

of all, we noticed that in the current EUV-factory exact cycle times are not sufficiently logged. The 

common reason given is that since cycle times are not important in these stages of development, as 

well as cycle times are highly flexible and uncertain so the ambiguity leads to unmanageable 

processes. We feel that ASML could benefit from a system that links current ECs to past ECs in order to 
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get to understand their propagative effects. By studying these effects and their antecedents the 

process could be fine-tuned and unnecessary or unwanted changes could be identified. Future 

research at ASML, as conducted by dr. Alex Alblas, could benefit from operationalisations of concepts 

that I choose to set aside. These concepts can be found in appendix D, in table 17.  

7.4. Limitations and future research 

These results are based on data obtained from the XT and NXT programs. Although these programs 

and the NXE program share similarities in the forth bringing processes of engineering change 

differences in technology and ambiguity could result in unexpected consequences of our managerial 

implications. Future research should try to control for the increased ambiguity and the incorporation 

of overseas business functions. The NXE-program is still very much in the early stages of development 

and production is already invited to take part in development. Several employees told us that data on 

NXE is not sufficiently logged, could have large errors and has too few data entries to study 

longitudinal. We would urge the program to start logging all engineering changes in detail, while also 

entering precise dates for the production of machines. Since the NXE program tries to benefit from our 

insight future research should incorporate controls for the stage of development. We foresee 

differences in the effects of moderators at various stages in development.  

We would like to underline that the used variables are all proxies in that they approach certain 

concepts but do not precisely describe them. Attention is measured by the number of hours that an 

engineering change was in process. However, the degree of Attention may differ in various stages of 

advancing the engineering change. To more accurately describe the amount of attention spend on a 

change we would like research to look at more precise ways to measure this concept. For example, the 

amount of slack (i.e. excess capacity) determines if an engineering change is rushed or is given the 

proper amount of attention it needs. Higher values of slack could result in more experimentation, 

resulting in innovative insights and thorough knowledge search actions. 

Team Diversity is also a proxy, we would like to see future research that tries to see which types of 

business functions contribute to the engineering change and how much they bring to the table. Our 

data made it only possible to see what functions cooperated, not how many hours they put into the 

engineering change. Moreover, research could focus on which combinations of business functions  

contribute to learning effects. These limitations and/or reservations on/off our data show that 

although we definitely dived deeper into the aggregate form of measuring engineering changes there 

is still room for improvement. We could expand the characteristics in both width and depth.  



53 
 

Another point of interest is the classification of engineering changes, more changes does not 

automatically mean better changes. First of all with the data currently available it is impossible to 

classify the propagative effects of engineering changes. Future research should answer the question 

what types of engineering changes lead to optimal learning. Our research focused on the energy that is 

put into a change, not on the quality of the change. We cannot diversify between changes, we need to 

further understand the characteristics that make one change a foolish undertaking and the other the 

predecessor of innovative insights. Without further going into this discussion, we like to underline that 

all engineering changes increase knowledge, even when it tells engineers on what not to do. 

Our conceptual model which uses moderators shows us at what levels of the moderator it has a 

certain effect on the consequent variables. Although we were not able to perform the desired 

floodlight analysis, we specifically chose for the most generalizable method for spotlight analysis. By 

using a percentiles approach we have a broad scale of Attention and Team Diversity. It is important to 

interpret the very low, low, moderator, high, and very high levels of the moderators as relative to the 

context under study.  

Attention and Team Diversity, classified as opportunities to learn were adopted from Argote et al. 

(2003). Besides opportunities to learn, they suggested that learning benefits from increased capability 

and motivation of employees. Especially the combination of said contributors to learning was an 

effective way to stimulate learning. Therefore, we would like to see the question answered if 

interactions of the causal mechanisms are even more effective to  learning.  

 

Furthermore, we found several characteristics of engineering change that we assume affect the 

relationship between experience and project cycle time. Unfortunately, we were not always able to 

incorporate these effects due to the statistical model and its limitations. We would like to see research 

that is able to incorporate characteristics ECs at a higher hierarchical level such as a frontloading ratio, 

which tells us how many of the changes were executed early in the life of a program. Another example 

is the pace of engineering changes over time, ranging from a steady flow to a highly fluctuating influx. 

Other characteristics that were found (see appendix D, table 17) but not tested are for instance; the 

skewness and kurtosis of changes on modules, the number of iterations before a engineering change is 

approved, the reason for change, and the source of the change.  

 

Future research can also look into reducing the negative consequences of engineering change by 

studying characteristics of the changes and testing their moderating effects. In that way management 

could oversee both the benefits of learning (i.e. more knowledge in the form of ECs) as well as the 

costs of learning (i.e. the delaying effects of ECs), and consider the right balance for beneficial learning.  
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Appendix B: Overview of quotes 
In the following table (table 16) the most interesting quotes obtained during multiple interview 

sessions are presented. Both quotes made during explorative interviews, as well as during the 

conduction of the semi-structured interviews, are shown in the second column. The first column 

shows the name and function of the interviewee. 

Table 16: overview of interview quotes 

Person Quotes 

A 1. The LC is different for several modules, for instance the scanner module is faster in its 

maturity than the source module.  
 
2. During the proto phase of development the main priority is to detect errors in the design. 
 
3. There are several reasons to implement an EC, such as CoG (cost of goods), RAMS 

(reliability, availability, manufacturability, serviceability), Safety (for a more comprehensive 

overview see ASML-Q in appendix C). 
 
An EC that is developed with good delta management in mind results in less negative 

propagative effects. 

B 
 

1. The effects of ECs on the factory floor (i.e. production) are influenced by the priority and 

planning of the EC.  
 
2. CIB (change implementation board) and the CCB (change control board) are the 

institutions that control and deliver the ECs to the factory floor. The implementation range 

is determined, at later stages of implementation the downtime and costs will be higher.  
 
3. Priorities per phase 
Proto: due to ambiguous effects of ECs the goal is to find as much errors by implementing a 

lot of ECs without much implementation control. Almost all ECs are accepted. 
Pilot: these machines will go to the customer. The organization changes from matrix to a 

line-organization. 
 
4. In order to make the most out of ECs it’s important to let developers work together, 
together they will come to greater results. 

 
5. The early detection of issues is essential since D&E is still involved and responsible for the 

machines. In later phases (pilot/volume) manufacturing is responsible for machines and 

their goal is low cycle times.  
 
6. We have a daily meeting with the guys from development, we tell them as the guys from 

production what we have encountered, what we tackled and what still are issues. These 

short lines, in combination with the broad knowledge of all functionalities, make it easier to 

appoint responsibility. This is especially done for the NPI-phase. 

C 1. ECs solve issues but also create new DNs and ECs, therefore, we could say they have 

propagative effects.  
 
2. Unfortunately, solving problems at ASML (i.e. DNs and ECs) are guided by the wrong 

priorities. Low hanging fruit is done first, later on there is not enough time to solve the hard 

ones (of which we could learn the most), leading to the abortion of these changes.  
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Person Quotes 

D 1. The initiation of ECs could be due to the implementation of another EC.  

E 1. After asking the question how knowledge flows from D&E to manufacturing he argues 

that it’s hard to balance learning and cycle time due to pressure for delivery. Leads to lack of 
knowledge for FLS. 
 
2. Even more so, some changes are seen only a couple of times in the total lifetime of a 

product. Therefore this knowledge is difficult to disseminate.  

F 1. His team takes part in the CRB (change release/review board) where they approve the EC 

together with the developer, which takes place after the CIB. A visit of the researcher at this 

meeting resulted in a detection of inefficient processes, developers did not comply to the 

process requirements of ECs. Thereby delaying the delivery of their EC to the next meeting.  
 
2. After implementation there is no feedback, learning after doing is not taking place. 
Learning is unfortunately not the first priority, although it should be, due to capacity 

constraints we focus on short term advancements and timing goals. We need to reflect to 

learn. 

G 1. At the C-team we bring together functional reviewers of ECs.  

H 1. At different modules there are different cultures, for instance at the source there is a 

cowboy culture. Due to the fact that many employees are new, they are preoccupied with 

learning their own processes than contributing to the process. 

I 1. NPL (new product logistics) and ME (manufacturing engineering) are responsible for 

making the implementation plan of an EC.  

J 1. The WIP/FAT data tells you about the implementation range of an EC and is a good 

indicator for the impact of a change.  
 
2. Generic EC processes are used for NXE/NXT. Not much has changed for the storage of 
data in the ASML-Q application, nothing radical at least.  

K 1. The CCB looks at the expected impact of an EC and makes the go/no-go decision.  
 
2. Over the different phases the basic process does not change. The types of problems on 

the other hand does change.  
 
3. The encountered issues keep coming, that’s a given. Whenever stability is reached, you 

could go on with accepting changes that are nice to have.  
 
4. D&E does not care about cycle time, it’s of low priority to them. The amount of issues 

that needs to be solved is so big, therefore it is of no importance to prioritize cycle time.  
 
5. Prioritizing is mainly based on RAMS classification.  
 
6. The EUV processes are different compared to the old NXT processes in that ASML needs 

to vertically integrate processes with more suppliers and new business units from overseas. 
This is outside the normal scope of ASML. 
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Person Quotes 

L 1. The current implementation range leads to changes that are postponed since their 

effects would seriously disturb the project cycle time goals and thereby the assessment 

rating of development and manufacturing. 
 
2. The break in responsibility between machines on the floor, and at the customer (the 

field), results in unnecessary FCO changes (field change orders). 
 
3. Major upgrades, which could lead to lots of learning, are postponed based on cycle time 

priority.  
 
4. A restructuring of the implementation range could solve this issue.  

M 1. ASML sells their machines at a certain configuration before these requirements are met. 
We have to work towards these goals, there are huge time constraints and priorities. More 

specifically, clients order at proto-stage for pilot machines.  
 
2. We stepped away from the method of NXT where we put a design freeze. We do want to 

work towards this process again in the future.  
 
3. There is a difference in maturity for different modules or building blocks. Priorities 

change as maturity is greater, we reduce the mandatory ECs (due to getting to the base-
line) and increase the nice to haves. We also expect the downtime to drop in later stages.  
 
4. During proto-phase we are not only guided by ECs, we also try to gain knowledge by trial 
and error. We change and improvise, not based on configuration.  

N 1. The number of changes increases exponentially with every new platform.  
 
2. Approving of ECs does not take a lot of time in the CIB, all relevant information is present. 
And moreover, based on time constraints and delivery times of suppliers we need to have 

the relevant materials as early as possible. 
 
3. The propagative effects are planned to be at a minimum, in an ideal situation we would 

test a change on a test bench, after qualification of the EC. Unfortunately, due to time 

constraints, we approve ECs and they sometimes have unplanned negative consequences 

leading to more ECs. 

O 1. There is a rule at ASML which is used as a loophole for getting your change noticed. By 

filing an IP twice it is seen as structural, thereby resulting in higher priority. 
 

P 1. Many times material is ordered and purchased even before an EC is accepted, just to 

make sure that material need is secure. This is purely done to met the time goals. A supply 

risk analysis for all ECs is done with D&E. 
 
2. What is different for NXT compared to NXE is that complexity of the product is much 

higher. This is caused by the growth of the number of components, the greater concern of 
cleanliness, the outsourcing of products, the greater number of suppliers, the use of plants 

such as (ACE and VDL), she agrees that this could be seen as vertical integration. 

Q 1. What are the goals of the CCB? They do not engage the choice of what type of EC gets 

approved. That step is made at the IP stage of the EC-process. (We do need to work on that 

stage). The CCB does a check of all consequences of a change are clear to all parties 

involved. All ECs that are approved will be added to the baseline configuration. 
 
2. Jeroen Zuurhout admitted that during the CCB sometimes engineers have to postpone 

the GO-decision of their EC due to failure to meet the requirements. 
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Person Quotes 

R 1. There is not such a need to change the way we implement changes based on the different 

phases of development (i.e. proto, pilot, and volume). There is however a much greater 

need for treating changes based on their expected implementation range.  
 
2. What we see is a great number of low impact engineering changes that results in a 

constant flow of change, which makes it difficult to keep track of current configuration. 
 
3. We noticed that for  some developers of D&E the knowledge of procedures is not 
sufficient. 

S 1. The stream of ECs of low impact is enormous and really is taking much of our capacity. 
The question is, are they really necessary?  
 
2. The balancing act of learning and meeting cycle time planning is complex and ambiguous. 
 
3. Engineering changes are grouped together to keep the down-time as low as possible. This 

is called B-time, whereas A-time are the normal production hours, C-time on the other hand 

is the unplanned down-time of the machine.   
 
4. We clearly see that we see negative effects of ct-management if we push for meeting the 

parameters too soon. This is sort of a wipwap-effect. 
 
5. Strangely we saw that after a period of long down-time that the CT was dropped when 

we restarted production. Maybe we need time to knowledge to settle, a constant flow of 
ECs could be more disruptive than working with a wave strategy. 

T  1. Unfortunately due to the complexity of the machines and the lack of relevant experience 

of workers it happens that the planned B-time is exceeded. 

U 1. One aspect that contributes to the cycle time is of course determined by the skills and 

capabilities of the workers, the amount of training and their knowledge level. 
 
2. Additionally we see things such as procedures that are not followed strictly. It should be 

in order, but unfortunately it is often times not.  
 
3. It could help if we review all procedures, we should put update changes based on 

commentary of others, and all systems should be up to date.  
 
4. At low maturity it is priority to get a stable design, you do not need to worry about cycle 

time in this stage. That is of later care. If you pressure to much on cycle time you get a 

wipwap-effect, later on the cycle time will rise since problems are not really solved.  
 
5. Based on ambiguity and complexity we cannot go for a standard LC of 0.84 for every 

module of building block. For source we are happy with 0.95. Maybe we should treat the 

CT/LC management based on a module. So, not generic. 
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Appendix C: ASML-Q 

 
Figure 7: ASML-Q  

Appendix D: Available data and transformations  

Table 17: overview of data and transformations 

Proxy ECs Proxy ECs specific Proxy ECs description 

# of ECs In period Number of ECs rejected and accepted between start FASY – 

GSD 

In platform Number of ECs rejected and accepted between start FASY – 

GSD + matching platform (i.e. XTIV) 

In aggregated 

type 

Number of ECs rejected and accepted between start FASY – 

GSD + matching aggregated type (i.e. XTIV:19XX) 

In specific type Number of ECs rejected and accepted between start FASY – 

GSD + matching specific type (i.e. XTIV:1950Hi) 

Batching Sum For every EC all the directly assigned IPs are summed 

(between FASY and GSD) 

Average For every EC all the directly assigned IPs are averaged 

(between FASY and GSD) 

IP type For every EC all the directly assigned IPs are summed and 

averaged based on a specific IP-type (between FASY and GSD) 

Cycle time of EC Sum The accumulated number of days that  ECs were in process  

Average The average number of days that  ECs were in process 

Pace  The relative standard deviation (i.e. average/st.dev) was 

calculated based on the number of ECs per week for the total 
cycle time of each machine. 
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Proxy ECs Proxy ECs specific Proxy ECs description 

Ambiguity  The number of steps that each EC took before being approved 

or rejected is a proxy for the ambiguity of the change. We 

based this parameter on by counting all steps in the tables of 
history, conclusions, remarks, and problem. 

Team diversity  The number of people working on a change is a proxy for the 

amount of knowledge consulted. Based on the directly 

assigned employees to functional engineers. 

Failure rate of ECs  Percentage of the number of ECs between FASY – GSD 

satisfying a rejected state divided by the total number of ECs. 

Direct ECs  The number of ECs accumulated that have been assigned 

directly to machines, satisfying platform and between FASY – 

GSD 

Skewness & Kurtosis  The values of the skewness and kurtosis over FCs and/or 

subsystems 

Reason for change  The count of all ECs satisfying a specific RFC (i.e. old ECR; 
RAMS+C; new part; admin; must; functional/spec; red. cost 

price) 

Implementation 

range 

 The count of all ECs satisfying a specific implementation range 

(i.e. supply chain; stock; WIP;FAT) 

HI & LO The count of ECs based on an aggregation of ECs satisfying no 

direct influence on cycle time (i.e. LO-ECs: supply chain and 

stock) and ECs satisfying direct influence on cycle time (i.e. HI-
ECs: WIP; FAT). 

Source of EC  The count of all ECs satisfying a specific implementation range 

(e.g. ME; NPI; EE) 

Frontloading  Based on the first and last machine of a platform we 

determined all the ECs and their specific implementation time 

in this complete period. By calculating the percentage of ECs 

implemented in each sub-period relative to the total amount 
of ECs we can calculate an average percentage. This figure is 

graphically represented by a curve which can be more 

concave (i.e. low average frontloading) and convex (i.e. high 

average frontloading) 

 

Proxy machines Proxy machines 

specific 
Proxy machines description 

Days Total days The number of days between FASY – GSD 

 Natural log of 
total days 

The natural log of days between FASY – GSD 

Experience Total experience The number of shipped machines before begin of FASY 

 Ln of total 
experience +1 

The natural log of the number of shipped machines before 

begin of FASY. (+1 since ln(0)=error). 

Phases  Based on the experience we could assign a maturity level to 

the machines. (i.e. <10 proto; 10-25 pilot; >25 volume) 
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Appendix E: Interview guide  
INTERVIEW GUIDE: learning Curve @ ASML                                        ETC=5min 

 
This document serves as guideline specifying the types of questions we would like to address in the 

benchmarking project. The total time for this interview is 60 minutes. On the right side of each topic 

the ETC (estimated time for completion) is given. The information we seek includes:  

 a brief description of your methods practices and operating challenges with regards to cycle 

time management,  

 an overview of key practices and drivers of the learning curve and cycle time,  

 and details regarding how cycle time and performance improvement related decisions are 

managed.  
 
Name/title:       
Position in the organization:  
Project/product:  
Responsibilities and their relationships to learning curve management:  

 
Our definition of the learning curve:  
The learning curve describes the performance 

improvement in terms of cycle time in relation 

to the cumulative output of machines. In 

organizations and people learn from 

repetition, learning by doing, archiving and 

transferring knowledge, etc.   
 
 

 
 

Our definition of NPD cycle time:  
“NPD cycle time” represents the time it takes that a product moves from feasibility, system design, 
detailed design, proto, pilot, and volume phases. This is equal to the PGP process cycle time 
 
Our definition of CABIN cycle time:  
“CABIN cycle time” represents the time it takes that a product moves from start FASY to shipment. 

 

I. General Questions Regarding CABIN Cycle Time    ETC=10min 
1. What are key drivers/contributors for CABIN cycle time? 
2. Describe how CABIN cycle time influences your department? 
3. How does your department influence CABIN cycle time? 
4. What are bottlenecks for the CABIN CT?  
5. What metrics are used to manage CABIN CT? 
 
III. General Questions Drivers of the Learning Curve   ETC=15 min 
6. We currently have these main drivers of the LC. Are there important drivers missing? 
7. What is the importance of each of these drivers?  
8. Is there a fundamental difference between phases?  (Proto, pilot, and volume phase) 
9. What is the influence of your department on these drivers? What are typical trade-offs?  
10. What is the influence of the interaction between your department and the manufacturing/D&E 

department on these drivers? What are typical trade-offs? 
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Appendix F: Quantitative appendix 
 

1. Conditional Process Analysis - models (Hayes, 2013) 
 

1.1. Conceptual model 

The analysis starts with the conceptual model in which the theoretical concepts are substituted by the 

variables   (Experience),    (Low impact ECs),    (High impact ECs),   (Cycle time),   (Attention), 
and   (Team Diversity).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.2. Statistical model 

The conceptual model with variables is translated into a statistical model (which includes statistical 
artifacts resulting from the use of the PROCESS-tool for a moderated mediation model): 
 
 
 
 
 
 
 
 
 

  

Figure 8: Conceptual model 

Figure 9: Statistical model 
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1.3. Relationship interpretation table 

What follows is a description of all the relationships shown in red in the statistical model. Each 

relationship is represented by a path, the following table (18) presents how to interpret the 

coefficients of each path. 
 

Table 18: relationship interpretation table 
Path Antecedent - consequent How to interpret 
   

a-path 

             Effect of X on M1  
when W and V are 0  

           Conditional effect of W on M1 
when X is 0  
and V is constant 

            How much of the conditional effect of X on M1 changes  
as W changes with one unit  
holding V  constant 

          Conditional effect of W on M1 
when X is 0  
and W is constant 

           How much of the conditional effect of X on M1 changes  
as V changes with one unit  
holding W  constant 

   

             Effect of X on M2 
when W and V are 0 

          Conditional effect of W on M1 
when X is 0  
and V is constant 

           How much of the conditional effect of X on M2 changes  
as W changes with one unit  
holding V constant 

          Conditional effect of W on M1 
when X is 0  
and V is constant 

           How much of the conditional effect of X on M2 changes  
as V changes with one unit  
holding W constant 

 

b-path 

          Two cases that differ by one unit on M1 
but that are equal on X  
and equal on M2 
are estimated to differ by b units on Y 

          Two cases that differ by one unit on M2 
but that are equal on X  
and equal on M1 
are estimated to differ by b units on Y 

 

c-path 

         Two cases that differ by one unit on X differ on Y  
holding M1, M2 constant. 

          How much of the conditional direct effect of X on Y changes  
as W changes with one unit, holding V constant 

          How much of the conditional direct effect of X on Y changes  
as V changes with one unit, holding W constant 
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2. Conditional Process Analysis - equations (Hayes, 2013) 

2.1. Three main equations 

All consequent variables are translated in an equation which contains regression coefficients for the 

intercept, an array of predictors variables, and the errors. For the statistical model as shown in 

appendix F: section 1, the equations are as follows:  

        
                                 

 (1) 

        
                                 

 (2) 

           
     

     
      

     
           

          

(3) 

 

Substituting the generic symbols of           in equation (1), (2), and (3) for the 

operationalizations of the variables (exp, EC_lo, EC_hi, ct, ATavg, TDavg) results in the following 

equations: 

 

                                                              

                                         

(4) 

                                                              

                                         

(5) 

                                
           

                  
        

                                                 

 

(6) 

2.2. Conditional effects 

By grouping terms in equations (1), (2), and (3) involving   and by subsequently factoring out  , it 

becomes clear that the effect of   depends on   and   and therefore is conditional (see equation 

(7.1, 8.1, and 9.1).  

        
                                

 (7.1) 

        
                                 

 (8.1) 

           
    

     
       

     
   

                 

(9.1) 
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2.2.1. Conditional direct effect 

When a direct effect is a function of both W and V it is considered to be a conditional direct effect, and 

in this case it is defined as equation 9.2. We mean-centered the data using the PROCESS-tool (Hayes, 

2013), since a zero is no meaningful value for the moderator, the coefficient and its test of significance 

is meaningless and has no substantive interpretation (Hayes, 2013). Therefore, we follow the 

recommendation of Aiken and West (1991) to mean-center. The PROCESS-tool mean-centers all the 

variables which are part of interaction effects, therefore lnEXP, ecATavg, and ecTDavg are mean 

centered. The mean of each variable is subtracted from every value of the variable in the data, 

resulting in a mean of 0 and unchanged standard deviation. Conditional (in)direct effects should 

always be interpreted as the effect of   on   when moderators are 0. Therefore, with mean-centered 

variables,   
  can be interpreted as the effect of   on   when W and V are average (0).  

         
    

     
    

 
(9.2) 

2.2.2. Conditional indirect effect  

Path a 

To determine that the amount of engineering changes mediates the relationship between experience 

and project cycle time (  ) we need to calculate the specific indirect effects. Specific indirect effects 

are determined by multiplying coefficients of single paths. The first components of the specific indirect 

effects of   on   through    and    are: 

 

      
                (7.2) 

      
                (8.2) 

 

Path a   path b  

To determine the indirect effect of   on   through    (i.e. impactLO) and    (i.e. impactHI) we need 

to multiply the first component (equation (7.2) and (8.2)) with the second component. The second 

component is the effect of     and    on   controlling for  . Since this effect is not modeled to be 

moderated, the effect can be represented with a single estimate   (see equation (10) and (11)).  

 

      
                         (10) 

      
                         (11) 
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Substituted values of the moderators 

The total conditional indirect effect of   on   through the number of engineering changes can be 

calculated by taking equation (10) and (11) and filling in all values and substituting 0 for both 

moderators (since moderators are mean-centered). Subsequently both specific indirect effects need 

to be summed: 

      
                                            

     
              

(10.1) 

      
                                        (10.2) 

      
                

 

3. Conditional process analysis – moderated mediation (Hayes, 2013) 
To formally answer the question if the learning rate benefits from a certain value of the moderator 

(i.e.      ) we need to first ask ourselves the question whether the conditional indirect effect at one 

value of the moderator is statistically different from the conditional indirect effect at some different 

value of the moderator. So, does the indirect effect of experience on project cycle time through 

engineering changes differ between teams low versus high in Attention (or Team Diversity). 

 

3.1. A formal test of moderated mediation 

We must estimate the difference between the conditional indirect effect at two values of the 

moderator of interest. Once the difference is estimated, we need to undertake a bootstrapping 

inferential test to test whether the difference is equal to zero. The conditional indirect effect for low 

impact engineering changes is given in equation 10, whereas the conditional indirect effect for high 

impact engineering changes is given in equation 11. Thus, the difference between the conditional 

indirect effect of   on   through    when the moderator Attention is at values of      versus 

     is  

 

                                           

                                                     

                     

                 

 

This can also be done for equation 10 when assessing the difference for different values of V, resulting 

in              . Similarly for high impact changes this results in the following equation for 

Attention              , and in               for Team Diversity. 
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3.2. Constructing bootstrap estimates with syntax 

The SPSS syntax below saves a new data file after performing 10,000 bootstrap estimates. 

 

PROCESS vars=lnCT lnEXP impactLO impactHI nrdayFSY ecATavg ecTDavg  
/y=lnCT/x=lnEXP/m=impactLO impactHI/w=ecATavg/z=ecTDavg 
/model =10/boot=10000/center=1/save=1. 

 

A new data-file is constructed saved as ‘save conditional indirect effect at values of the 

moderators.sav’. Each column corresponds to a regression coefficient (see table 19). 

 

 

Table 19: Columns corresponding to regression coefficients 
 

 Column 1    
  Column 8    

  Column 15    

 Column 2      Column 9      Column 16     
 Column 3      Column 10      Column 17     
 Column 4      Column 11      Column 18     
 Column 5      Column 12      Column 19     
 Column 6      Column 13      Column 20     
 Column 7 cov  Column 14 cov  Column 21     
       Column 22     
       Column 23 cov 

 

 
For a bias-corrected bootstrap confidence interval, we use the BCCI command built into PROCESS, 
appending it to the end of the code above. In SPSS, the command would be: 
 
compute diff= colX*colX. 
frequencies variables=diff/percentiles=2.5 97.5/format=notable 
/bcci var=diff/point=X/conf=95. 

 

 

Table 20: Formal test of moderated mediation - specific syntax for the hypotheses 

 Effect Col   Col Coeff   Coeff SPSS-syntax 

    

Attention 
via 

low impact 
                      

compute diff= col4*col16. 
frequencies variables=diff/percentiles=2.5 
97.5/format=notable 
/bcci var=diff/point=.00029624/conf=95. 

    

Attention 
via 

high impact 
               .0044 

compute diff= col11*col17. 
frequencies variables=diff/percentiles=2.5 
97.5/format=notable 
/bcci var=diff/point=.00027852/conf=95. 

    

Team diversity 

via 
low impact 

                       

compute diff= col6*col16. 
frequencies variables=diff/percentiles=2.5 
97.5/format=notable 
/bcci var=diff/point=-.00901614/conf=95. 

    

Team diversity 

via 
high impact 

               .0044 

compute diff= col13*col17. 
frequencies variables=diff/percentiles=2.5 
97.5/format=notable 
/bcci var=diff/point=.00333344/conf=95. 
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4. Stepwise build up of the model 
A simple learning curve model (model 1 of table 21) shows that experience negatively influences 

project cycle time (i.e. lnCT) with a learning rate of                           , corresponding 

to a progress rate of       . To test whether the relationship between experience and project cycle 

time is mediated by the number of engineering changes we add the variable ECtotal as a mediating 

variable (model 2). As experience grows the number of engineering changes decreases, as shown by 

the significant negative variable lnEXP,                          . On the other hand, 

engineering changes have a significant positive impact on lnCT shown by an effect of           

             , indicating increased project cycle time when changes are implemented. Since both 

variables are significant we find supportive evidence that engineering changes mediate the 

relationship between experience and project cycle time. 

 

To better understand the conditions under which engineering changes are beneficial or detrimental to 

learning we need to step away from the aggregate measurement of organizational phenomena 

(Argote, 2013). Therefore, earlier on in the hypotheses section, we proposed a decomposition of 

engineering changes based on their expected impact. To test their contribution to learning, we assess 

their effects simultaneously (model 3). Experience has a significant negative effect on low impact 

engineering changes                          , as well as a significant negative effect on high 

impact engineering changes                         .  The negative consequence of 

engineering changes is shown by positive effects on lnCT  for both  low impact engineering changes 

                      , and for high impact engineering changes                       . 

To further specify their effects we can distinguish between direct and indirect effects. By decomposing 

engineering changes in changes with low and high impact we see that the direct effect of X on Y is 

                 , whereas the total indirect effect is a significant effect of       , indicated by 

their bootstrap confidence intervals. 

 

Besides the decomposition of engineering changes based on impact, we strive for other ways to 

uncover conditions under which variables have a specific learning effect. Argote (2013) argued that 

the learning effects are dependent on contingencies, by using more fine-grained studies we can 

uncover these conditions. Our proposed moderators, that test whether Attention (i.e. ecATavg) or 

Team Diversity (i.e. ecTDavg) provide greater opportunities to learn, affect the relationship between 

the antecedent x-variable and the consequent-variables. The interaction of experience with average 

Attention (0 since we mean-centered the data) spent on low impact engineering changes (model 4) 

has a positive effect of                          , indicating that when more Attention is spent on 

low impact engineering changes more possibilities for change are discovered. Higher Team Diversity 
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(model 5) does not significantly influence the number of low impact engineering changes, indicated by 

the interaction effect of                          . The results for high impact engineering 

changes are somewhat different. Similar to low impact engineering changes, the effect of average 

Attention spent on changes (model 6) is positive,                        , indicating that when 

more Attention is spent on high impact engineering changes more possibilities for change are 

discovered. In contrast to the low impact engineering changes, the high impact engineering changes 

(model 7) significantly benefit from higher Team Diversity,                         .  
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4.1. Coefficients table 

 

 

Table 21: Stepwise build-up of model  

 Consequent  

 
Model 

1 
Model  

2 
 Model  

3 
  Model  

4 
Model  

5 
Model  

6 
Model  

7 
Complete 

model 
            

Antecedent 
 

lnCT 
 

ECtotal 
 

lnCT impactLO 
 

impactHI 
 

lnCT impactLO 
 

impactLO 
 

impactHI 
 

impactHI 
 

See  
table 8 
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       .166 .304 .441 .312 .196 .440 .335 .322 .235 .205  

*, **  significance at 0.05 or 0.01, respectively. 
(…)   -values 

 
  


