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Abstract

This thesis concerns the simulation of so called water hammers. Water hammers are pressure
waves propagating through pipes filled with water. These pressure waves are created when the
flow of water in a pipe is suddenly stopped, and can cause severe damage on the structure.

Électricité de France (EDF) is a French electricity company. In the power plants of EDF wa-
ter hammers occur. Due to safety regulations, if such a water hammer occurs the system has to
be shut down.

The water hammers are simulated to get a better understanding of the phenomenon. This will be
used to reduce the downtime of the system and eventually prevent water hammers from occurring.
For the simulation a two-fluid model is used. In this research project a new calibration of the
equation of state coefficients is proposed. These coefficients are used in the calculations of the
model. The model with the new calibration of the coefficients is assessed by comparing results of
the model to experimental data and numerical results of other models.

The results on the experiments of the seven-equation model are similar to the results of other
numerical models. When comparing them to the experimental data some errors are visible. To
improve the results the movement of the structure should be included in the model.
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Chapter 1

Introduction

This thesis is the result of a master graduation project carried out by the Eindhoven University
of Technology in collaboration with Électricité de France (EDF).

1.1 Électricité de France

EDF is the largest European electricity company that produces electricity primarily from nuclear
power. It is a private company with the French government as the largest shareholder (85%).
EDF is situated over different countries in Europe, America, Asia and Africa with its headquarter
in Paris.

This research project has been conducted in the department of Analysis, Mechanics and Acoustics
(Analyses, Mécaniques et Acoustique, AMA) in Paris. The department develops modelling tools
and carries out numerical and physical experiments. The topics that they work on are acoustics,
mechanical vibration and the mechanical behaviour of structures.

1.2 Project description

Water hammers are pressure waves propagating through pipes. These are caused by a sudden stop
of the water flow or when vapour suddenly condensates. In the power plants of EDF about one
or two times a year a water hammer incident occurs, specifically in the pipes of the system where
the steam condensates to water. When such a water hammer occurs, the system needs to be shut
down for safety reasons, to check whether the structure is still intact. This causes the system to
be shut down for 30 to 60 days per year, which costs about one million euros per day.

Many models exist to simulate the dynamics of fluids. A distinction can be made between single-
phase flow models, two-phase homogeneous models and two-fluid models. The single-phase flow
models can only be used for the flow of one phase. In the case of the modelling of water hammers
it simulates the flow of water in liquid phase only. The two-phase homogeneous models are used
for the flow of two phases of a material as a mixture and models the mixture as a single-phase
flow. In the modelling of water hammers, the two-phase homogeneous model simulates the flow
of a liquid-vapour mixture. The most complex models are the two-fluid models. In this model the
flow of the two different phases, liquid and vapour, are simulated separately. In this research the
focus lies on a two-fluid model.

A two-fluid model is constructed, the seven-equation Baer-Nunziato model [1], to simulate wa-
ter hammers. It is used to get a better understanding of the physics that are involved, and to
eventually prevent water hammers from occurring in the EDF facilities. And when such a water
hammer occurs the model can locate the highest pressure peak, such that a smaller part of the
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system needs to be checked, which will reduce the downtime.

In the current systems of the power plants the water hammers cannot be measured. There-
fore the seven-equation model is assessed using experiments that have been simulated or executed
before. The results of the model are compared with experimental data and results of other verified
models. The seven-equation model is implemented in Europlexus, a simulation software for fast
transient dynamics including fluid-structure interaction, to produce the numerical predictions of
the experiments. The goal is to validate different parts of the model.

1.3 Thesis outline

The next chapter, Chapter 2, will give a general explanation of water hammers. This is done with
the derivation of the Joukowsky formula which is then applied to the Simpson experiment. The
Simpson experiment is chosen because of its simple geometry.

In Chapter 3 the two-phase models are discussed with the two different types of models, namely
the homogeneous ones and the two-fluid ones. And more in-depth information is given about the
seven-equation model including the relaxation terms belonging to this model.

In Chapter 4 the required equation of state is presented. For the coefficients of the equation
of state a new calibration is proposed.

Chapter 5 gives the numerical approximation of the seven-equation model which is implemen-
ted and used within Europlexus.

In Chapter 6 the seven-equation model, its relaxation terms and the new calibration of the equa-
tion of state coefficients are assessed using Europlexus. To verify the seven-equation model some
experiments are simulated with the model and the results are compared with the results of physical
experiments and results of other models.

Finally in Chapter 7 the conclusions of the project are drawn and some recommendations for
further research on this topic are given.

2 Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients



Chapter 2

Water hammer phenomenon

A classical water hammer is a pressure wave propagating through a pipe filled with liquid. This
can be generated when the liquid flowing through a pipe is suddenly stopped. The kinetic energy
of the flowing fluid is then converted into a pressure wave. This can occur when a valve is suddenly
closed or opened, or when a pump is turned off or on.

Another more complex type of water hammer is the condensation induced water hammer. This
type of water hammer occurs when a pipe is filled with water and vapour. When the pressure
in the vapour part suddenly increases, for instance by a pressure wave, and when it reaches the
saturation pressure, the vapour part suddenly condensates and collapses into liquid water. This
collapse causes a pressure wave. Another cause of such a condensation induced water hammer is
when a pipe is filled with cold liquid water and hot vapour. Due to the temperature difference
the vapour starts to condensate. This causes some instability in the flow and when a hot vapour
bubble is surrounded by cold liquid, the bubble collapses into liquid. Again this collapse causes a
pressure wave, or a so called water hammer.

In many industries, such as the production of energy, fluid dynamics plays an important role.
In these systems water hammers can cause severe damage on pipes. Therefore many research
has been done on the water hammer phenomenon. Some well known research in this field has
been performed by N. Joukowsky [2]; he formulated the Joukowsky formula that represents the
influence of the change in velocity of the liquid on the pressure change, and L. Allievi [3, 4] who
found the Allievi equations to model a single-phase flow.

One example (of many) of a catastrophic water hammer accident is presented by Sinha et al.
[5]. In this accident a steam main in downtown New York was ruptured and created a cavity of 10
m × 10 m and 5 m deep, as a result of a condensation induced water hammer. That day, due to
heavy rainfall and defects in the sewer and catch basin facilities, the steam main was surrounded
by more water then usually. The contact of the water with the pipe wall cooled the steam inside
the pipe, this caused the steam to condensate rapidly. The condensate in the pipe blocked the
flow of the steam and a steam bubble surrounded by condensate appeared. When the bubble
collapsed it caused a water hammer that ruptured the pipe and created the cavity. The effects of
the accident are shown in Figure 2.1.

Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients 3
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Figure 2.1: Results of the water hammer accident in New York, 2007. Left the cavity that was
formed by the explosion and right the ruptured pipe.

2.1 Water hammer theory

To get a global understanding on how water hammers occur, the Joukowsky formula [2] is derived
from a simple, two-equation water hammer model, which describes inviscid, single-phase, liquid
flows. This model uses one equation for the mass conservation and one equation for the balance
of momentum: {

∂tρ+ ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + p) = 0

. (2.1)

The equation of state is p = p(ρ), where dp
dρ = K

ρ = c2 = constant > 0, where K is the bulk
modulus of the liquid, ρ the density and c the speed of sound. Furthermore u << c.

If smooth solutions are considered the equations can be rewritten in terms of the primitive vari-
ables, velocity u and pressure p, as follows:{

∂tρ+ ρ∂xu+ u∂xρ = 0
u [∂tρ+ ∂x(ρu)] + ρ∂tu+ ρu∂xu+ ∂xp = 0

. (2.2)

Using the first equation of (2.1) the part between the square brackets can be eliminated,{
∂tρ+ ρ∂xu+ u∂xρ = 0
ρ∂tu+ ρu∂xu+ ∂xp = 0

. (2.3)

Using the equation of state ∂tρ = dρ
dp∂tp = 1

c2 ∂tp the model becomes{
1
c2 ∂tp+ ρ∂xu+ u∂xρ = 0
ρ∂tu+ ρu∂xu+ ∂xp = 0

. (2.4)

Because u << c the terms u∂xρ and ρu∂xu are not significant compared to the other terms.
Therefore they can be removed from the equation,{

1
c2 ∂tp+ ρ∂xu = 0
ρ∂tu+ ∂xp = 0

, (2.5)

and this is rewritten to {
∂tp+ ρc2∂xu = 0
∂tu+ 1

ρ∂xp = 0
. (2.6)

4 Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients
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These equations are the water hammer equations or also called the Allievi equations [3, 4] without
friction between the walls and the fluid. Now the model can be written in the matrix-form

∂tW +B∂xW = 0, (2.7)

where

W =

(
p
u

)
and B =

(
0 ρc2

1/ρ 0

)
.

The eigenvalues of matrix B are the velocities of the waves present in the system, in this case −c
and c.

Note that in the liquid single-phase system the wave speed c and the density ρ are constant.
So to find the Joukowsky equation from Equation (2.7), it can be rewritten as

∂tW +B∂xW = 0

⇔ ∂tW + ∂xBW = 0

⇔ ∂tW + ∂tBW
dt

dx
= 0.

(2.8)

Now the jump over time of value ξ is denoted as ∆ξ, and using the fact that dt
dx = ± 1

c the above
equation gives

∆ (BW ) = ±c∆W

∆

(
ρc2u
p/ρ

)
= ±c∆

(
p
u

)
(
ρc2∆u

1
ρ∆p

)
= ±c

(
∆p
∆u

)
.

Thus the Joukowsky formula is obtained;

∆p = ±ρc∆u, (2.9)

where ± depends on the direction of the pressure wave. With this simple equation the pressure
magnitude of a water hammer can be calculated.

2.2 Influence of the pipe elasticity

The water hammer model can be extended to include the elasticity of the pipe wall. For this
purpose the cross section of the pipe A(x, t) is introduced. This is added to the water hammer
model as follows: {

∂t(ρA) + ∂x(ρuA) = 0
∂t(ρuA) + ∂x(ρu2A+ pA) = p∂xA

, (2.10)

where in this case ρ, u and p are the average values of the density, velocity and the pressure over
the cross section of the pipe; A. Again p = p(ρ) such that dp

dρ = c2 = constant > 0 and A = A(p)
due to the hoop elasticity. When the material and geometrical properties of the pipe are included,
the equation dA

dp = AD
Ed is retrieved, where D is the inner diameter of the pipe, d the thickness

of the wall of the pipe and E the Young’s modulus of the material of the pipe. See for these
equations also the article on water hammer theory by Ghidaoui et al. [6].

If smooth solutions are considered the first equation of (2.10) can be rewritten in terms of the
primitive variables u and p. The first equation is

A∂tρ+ ρ∂tA+ ρu∂xA+Au∂xρ+Aρ∂xu = 0. (2.11)

Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients 5
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Because u << c the terms ρu∂xA and Au∂xρ are not significant compared to the other terms and
are therefore eliminated,

A∂tρ+ ρ∂tA+Aρ∂xu = 0. (2.12)

Substitute A∂tρ = Adρ
dp∂tp and ρ∂tA = ρdA

dp ∂tp and divide by A,(
dρ

dp
+
ρ

A

dA

dp

)
∂tp+ ρ∂xu = 0(

1

c2
+
ρ

A

AD

Ed

)
∂tp+ ρ∂xu = 0

1

c̃2
∂tp+ ρ∂xu = 0,

(2.13)

where Korteweg’s formula [7] for the adjusted celerity is

1

c̃2
=

1

c2
+
ρD

Ed
=

1 + ρc2 D
Ed

c2

c̃2 =
c2

1 + ρc2 D
Ed

= constant > 0. (2.14)

The values ρ, c2, D, d and E are all positive, so it follows that c̃2 < c2 and thus the speed of the
wave is lower when the hoop flexibility of the pipe is considered.

The second equation of (2.10) can be rewritten for smooth solutions into

u∂t(ρA) + ρA∂tu+ u∂x(ρuA) + ρuA∂xu+ p∂xA+A∂xp = p∂xA

u∂t(ρA) + ρA∂tu+ u∂x(ρuA) + ρuA∂xu+A∂xp = 0.
(2.15)

Because u << c and the deformation of the pipe is assumed to be very small, the terms u∂t(ρA),
u∂x(ρuA) and ρuA∂xu are ignored. Then the whole equation is divided by ρA and becomes

∂tu+
1

ρ
∂xp = 0. (2.16)

So the system is reduced to {
∂tp+ ρc̃2∂xu = 0
∂tu+ 1

ρ∂xp = 0
. (2.17)

This is equivalent to the system of the rigid pipe, but now with the adjusted squared celerity
c̃2 < c2. Also for this case the Joukowsky equation can be derived as

∆p = ±ρc̃∆u, (2.18)

for c̃ = c√
1+ρc2 D

Ed

= c√
1+K D

Ed

, where K is the bulk modulus of the single-phase liquid. Note that

c̃ < c, so that the jump of pressure will be smaller in the case where the flexibility of the pipe is
taken into account.

So again the simple Joukowsky formula is retrieved with an adjusted lower wave speed to represent
the elasticity of the pipe.

2.3 Application to the Simpson experiment

To get a better understanding of a water hammer propagating through a pipe, the Joukowsky
formula is used for the computation of the pressure history in the Simpson experiment [8, 9].

6 Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients
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Figure 2.2: The model of the Simpson experiment.

The Simpson experiment is an experiment with a simple geometry, see Figure 2.2; it concerns
a straight pipe filled with water in liquid phase. One end of the pipe is attached to a tank filled
with water under a constant pressure p0 = 3.419 bar. The water flows from the tank with a con-
stant velocity u0 through the pipe. At time t = 0 a valve, at a distance L = 36 m from the tank, is
rapidly closed. This creates a water hammer where the pressure wave propagates in the direction
opposite of the initial velocity. The height of the pressure jump in the system is calculated using
the Joukowsky formula at point A, which is at the valve, and the velocity is calculated at point
B, which is at the tank.

The Simpson experiment has been carried out with different initial velocities and this resulted
in two entirely different outcomes. The first case is when the initial velocity is u0 = 0.239 m/s;
in this case the velocity is not high enough to cause cavitation. This is called the single-phase
experiment. And the second case is when the initial velocity is u0 = 0.401 m/s which is high
enough to cause cavitation. This case is called the two-phase experiment.

In the single-phase experiment, cavitation does not appear, so the wave will travel undisturbed
from the valve to the tank and back to the valve. This process continues until it dies out because
of friction (this is not included here). The result of the computation of the pressure at point A
using the Joukowsky formula is shown in Figure 2.3.

Figure 2.3: Left, the results of the pressure at point A and right the results of the velocity at point
B, computed with the Joukowsky formula in the single-phase experiment.

In the two-phase experiment at time 2L/c the pressure wave front is located at the valve and
will propagate back to the tank. At this moment at point A, the pressure drops. This time the
pressure drops to the vapour pressure and cavitation occurs, so a bubble of vapour appears at the
valve. Later on, when the pressure in the bubble remains constant at vapour pressure (≈ 0 bar);
a second and even stronger water hammer occurs when the liquid hits the closed end; the vapour

Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients 7



CHAPTER 2. WATER HAMMER PHENOMENON

bubble collapses.

This two-phase experiment, where a vapour bubble appears at the valve, is again computed using
the Joukowsky equation, ∆p = ±ρc∆u. The velocity of the wave is computed at point B and the
pressure profile is computed at point A. The pressure at the tank is kept constant and equal to p0,
and at the closed valve the velocity is constant and equal to zero when there is no vapour bubble.
In the calculations ε is used for the time it takes for the vapour bubble to collapse. The value of
ε is taken from the experiment, as is ∆p2. The calculations are given in appendix A. Figure 2.4
left shows the evolution of the pressure at point A and right shows the evolution of the velocity
in point B. Clearly the propagation of the water hammer is visible.

Figure 2.4: Left, the results of the pressure at point A and right the results of the velocity at point
B, computed with the Joukowsky formula in the two-phase case.

The measured results of the pressure in the single-phase and two-phase Simpson experiment are
shown in Figure 2.5. Here a similar pressure profile can be seen as the profile in Figures 2.3 and
2.4, which were calculated using the Joukowsky formula.
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Figure 2.5: Pressure measured at point A of the Simpson experiment. Left the single-phase
experiment, right the two-phase experiment.

2.4 Limitations of the single-phase models

The computation of the water hammers using the Joukowsky formula gives good results with some
simple assumptions. The main disadvantage of this single-phase model is the assumption of just
one phase. When in the model a second phase appears and disappears, for instance by cavitation
and condensation, this is not simulated and the model can yield results which do not match the

8 Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients
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physics. With some additional input parameters such as the time, ε, it takes for the vapour
bubble to collapse when the water front returns to the closed end and the height of the second
pressure peak psat+∆p2, the pressure history in the Simpson experiment can be obtained. But to
compute the behaviour of the liquid and the vapour in a water hammer where two different phases
of water appear, a more complex model is needed. For the modelling of two-phase water hammers
a two-phase flow model is required. Relatively simple models exist for isothermal water hammers
with cavitation, more information on these models is given in the article of Bergant et al. [10]. In
Chapter 3 more advanced models are introduced, which are adequate for steam condensation.

Assessment of the Baer-Nunziato Seven-Equation Model Applied to Steam-Water Transients 9





Chapter 3

Two-phase flow models

Substance occurs in three different phases, solid, liquid and gas. A flow where two different phases
of a substance occur is called two-phase flow.

To simulate a water hammer, where vapour appears in the pipes, a two-phase flow model is needed.
This is a model that simulates a two-phase flow where the phases in this case are liquid and vapour.

The two-phase flow models can be divided into two different types. One type is the homogeneous
type, where the liquid and vapour mixture is considered as a single flow. Some equilibria between
the two phases are assumed. The other type is called the two-fluid model. In these models the
two different phases are modelled separately. One example of a two-fluid model is the well-known
seven-equation model; in the sequel the focus lies on this model.

3.1 Seven-equation model

In this research project the two-fluid, seven-equation model [11] is examined. This model is chosen
because it is a general and hyperbolic set of equations. It is a two-fluid model where an equilibrium
between the two different phases is not assumed. This seven-equation model is an Euler-type model
and is given in 1D by (k = 1, 2):

∂tαk + uI∂xαk = Φk
∂t(αkρk) + ∂x(αkρkuk) = Γk
∂t(αkρkuk) + ∂x(αkρku

2
k + αkpk)− pI∂xαk = Λk

∂t(αkρkek) + ∂x(αkρkekuk + αkpkuk)− pIuI∂xαk = Ψk

. (3.1)

Although this appears to be eight equations, it will be shown, since there is some dependence,
that only seven equations remain. This explains the name of the model. The governing variables
are the density ρk, the velocity uk, the pressure pk, the total specific energy ek and the volume
fraction αk for k = 1, 2, indicating the different phases. Where in the sequel of this research, phase
1 represents the vapour and phase 2 the liquid. The total energy and the specific internal energy
of phase k are given respectively by

ek = εk +
1

2
u2
k (3.2)

εk = εk(ρk, pk). (3.3)

The Equation Of State (EOS) is defined by the specific internal energy. Furthermore, the homo-
geneous part of the model is hyperbolic in the case that |uk − uI | 6= ck. The eigenvalues of the
hyperbolic seven-equation model are; uk, uI , uk − ck and uk + ck for k = 1 and k = 2. These
eigenvalues correspond to the velocities of the waves occurring in the system. The eigenvalues uk
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are associated to a linear degenerate field, which means that the waves are contact discontinuities.
The eigenvalues uk ± ck are associated to a genuinely nonlinear field, which means the waves are
rarefaction or shock waves.

The inter-facial quantities are chosen in a way such that the non-conservative terms are not
active across the shock waves, as explained in the article by Coquel et al. [12] and the article
by Gallouët et al. [13]. In other words, the field associated to the eigenvalue uI should be linear
degenerate. For that purpose they have found three different possible choices for uI , namely: u1,
u2 and α1ρ1u1+α2ρ2u2

α1ρ1+α2ρ2
. With this choice, pI is defined by the existence of the entropy for the model.

In research done by Lochon et al. [11] the three different choices are compared with each-other
on the Canon experiment. The results show that, when only focusing on the convective part,
the numerical results are different (the number of waves present in the system differs per choice).
However, when the relaxation terms are included, the numerical results are similar.

In this research project the focus lies on the Baer-Nunziato [14] closure law, and thus the inter-
facial quantities are chosen as

(uI , pI) = (u2, p1). (3.4)

For the volume fraction of the two phases it holds that

α1 + α2 = 1, (3.5)

therefore for k = 1 and k = 2 the first equations are dependent, so that one can be eliminated and
seven equations remain. The seven-equation model can be written as

∂tU + ∂xF (U) +H(U)∂xαk = S(U), (3.6)

where

U =



α1

α1ρ1

α1ρ1u1

α1ρ1e1

(1− α1)ρ2

(1− α1)ρ2u2

(1− α1)ρ2e2


, F (U) =



0
α1ρ1u1

α1ρ1u
2
1 + α1p1

α1ρ1e1u1 + α1p1u1

(1− α1)ρ2u2

(1− α1)ρ2u
2
2 + (1− α1)p2

(1− α1)ρ2e2u2 + (1− α1)p2u2


,

H(U) =



u2

0
−p1

−p1u2

0
−p1

−p1u2


, S(U) =



Φ1

Γ1

Λ1

Ψ1

Γ2

Λ2

Ψ2


.

(3.7)

The speed of sound ck in phase k is defined by

ρkc
2
k = (∂pkεk)−1

(
pk
ρk
− ρk(∂ρkεk)

)
. (3.8)

3.2 Relaxation terms

In the seven-equation model (3.1) the terms on the right hand side are called the source terms.
The source terms are relaxation terms, which provide the ”relaxation” on four different quantities;
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u, p, g and T . Where g stands for the Gibbs-free enthalpy and the relaxation on g models the mass
transfer between the liquid and the vapour. T represents the temperature and the relaxation on
T models the heat transfer between the phases. The relaxation on u and p model the transfer of
drag and pressure between the two different phases.

Φk
Γk
Λk = Dk + UΓk
Ψk = Qk + UDk +HΓk − pIΦk

, (3.9)

with U = u1+u2

2 , H = u1u2

2 and again pI = p1. The different relaxation terms are [15]:

pressure term:

Φk =
1

τppref
αkαj(pk − pj), (3.10)

mass transfer:

Γk =
1

τµµref

mkmj

mk +mj
(µj − µk), (3.11)

drag term:

Dk =
1

τu

mkmj

mk +mj
(uj − uk), (3.12)

heat transfer:

Qk =
1

τT

mkCv,kmjCv,j
mkCv,k +mjCv,j

(Tj − Tk), (3.13)

with j = 3 − k, µk = gk
Tk

the chemical potential, gk = εk + pk
ρk
− Tksk the Gibbs enthalpy, sk the

entropy, Cv,k the specific heat capacity, mk = αkρk and pref = |p1|+ |p2| and µref = |µ1|+ |µ2|.
Note that for the four relaxation terms it holds that Φk = −Φj , Γk = −Γj , Dk = −Dj and
Qk = −Qj .

In the relaxation terms, time scales τξ are present for the relaxation of the four different quant-
ities: pressure, mass, temperature and the velocity between the two phases. The time scales are
constant and define the rate in which the relaxation is applied.
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Chapter 4

Equation of state

For the computation with the seven-equation model an equation of state is needed. The equation
of state defines the relation between the internal energy, the density and the pressure. The one
adopted herein is the stiffened gas equation of state, which is used for both phases.

4.1 Stiffened gas equation of state

The stiffened gas Equation Of State (EOS) [16, 17], which is given by the specific internal energy

εk =
pk + γkπk
(γk − 1)ρk

+ qk, (4.1)

requires five constant parameters; the specific isochoric heat capacity Cv,k, the specific heat ra-
tio γk, the reference pressure πk, the reference energy qk and the reference entropy q′k for both
phases. To get the ten constants, or so-called thermodynamic quantities; also the definitions for
the temperature and the specific entropy are needed:

Tk =
pk + πk

Cvk(γk − 1)ρk
(4.2)

sk = Cvk ln

(
pk + πk

(Cvk(γk − 1)ρk)γk

)
+ q′k. (4.3)

When the coefficients are chosen as; πk = qk = q′k = 0, the perfect gas EOS is retrieved. The
International Association for the Properties of Water and Steam (IAPWS) [18] is an international
non-profit association that provides internationally accepted properties of water and steam. In the
official water and steam tables of the IAPWS the thermodynamic properties of water and steam
are presented. To get all ten parameters for experiments these tables and the equations for the
thermodynamic quantities are used.

4.2 Estimation of the coefficients

The stiffened gas EOS gives an estimation of the ten thermodynamic coefficients, which are mater-
ial properties. The values can be estimated from the water and steam tables. Around the reference
temperature Tref , which is chosen according to the initial temperature in the experiment, the ap-
proximation of the coefficients should lead to values for εk, Tk and sk close to these from the tables.

In the technical report of E. Blaud et al. [17], based on Le Métayer et al. [16], the calcula-
tions to generate the thermodynamic coefficients (Cv,k, γk, πk, qk and q′k) from the values of the
water and steam tables are given. For the calculation of the specific heat capacity Cp,k for phase
k, a temperature interval [T1, T2] is chosen to linearly approximate the slope of the enthalpy over
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the temperature derived from hk(T ) = Cp,kT + qk(Tref ), here qk(Tref ) is the value of reference
energy of the stiffened gas EOS at reference temperature Tref , which are retrieved from the steam
and water tables. And thus the specific heat capacity is calculated as

Cp,k =
hk(T2)− hk(T1)

T2 − T1
. (4.4)

In Figure 4.1 it can be seen that for high temperatures the slope of the enthalpy-temperature
curve of vapour is negative, which means that a negative value for Cp,v, the specific heat capa-
city is obtained and this is physically not feasible. This means that for this temperature range
the estimation of Cp,k in (4.4) retrieves no useful. So in case of a high reference temperatures a
temperature interval is chosen which does not contain the reference temperature Tref .

300 350 400 450 500 550 600 650
T[K]

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

h_
v[
kJ
/k
g]

Figure 4.1: Curve of the enthalpy of water vapour over the temperature at the saturation pressure,
retrieved from the water and steam tables.

To avoid the choice of the temperature interval and the negative value for the specific heat ca-
pacity, it is proposed to use the value for Cp,k from the water and steam tables at the chosen
reference temperature. The constants can then be calculated using the stiffened gas equation of
state (4.1), the equations for the temperature (4.2), the specific entropy (4.3) and the equation
for the celerity. For the stiffened gas EOS, the equation for the celerity is given by

c2k = γk
pk + πk
ρk

= γkCv,k(γk − 1)Tk.

(4.5)
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Now the constants are calculated using the following procedure:

Cv,k =
TrefCp,k

2

ck2 + Cp,kTref
(4.6)

γk =
Cp,k
Cv,k

(4.7)

πk = ρk(γk − 1)Cv,kTref − psat (4.8)

qk = hk − Cp,kTref (4.9)

gk = hk − Trefsk (4.10)

q′k = γkCv,k −
gk
Tref

− Cv,k ln

(
T γkref

(psat + πk)γk−1

)
+

qk
Tref

. (4.11)

Here the green coloured values ξ are retrieved from the water and steam tables, at the reference
temperature Tref and the associated saturation pressure psat(Tref ).

This new estimation, based on the chosen reference temperature Tref , of the stiffened gas equation
of state coefficients is implemented in a python code that uses the IAPWS (1997) official tables
with the properties of water and steam, to easily get the values for the coefficients for all experi-
ments.

This new approximation gives the required thermodynamic coefficients for the experiments simu-
lated in Chapter 6.

4.3 Comparison with the IAPWS water and steam tables

For the validation of the new ”calibration” of the stiffened gas EOS coefficients the results of the
approximation are compared with the values in the IAPWS tables. To retrieve good results in
simulations where cavitation or condensation occurs, an important requirement is that the ap-
proximation of the saturation curve is close to the one from the table. Furthermore the results on
the celerity and the specific enthalpy are compared with the values from the tables.

To find the saturation curve from the ”calibrated” coefficients the equation for the Gibbs free
energy is used;

gk = (γkCv,k − q′k)T − Cv,kT ln

(
T γk

(pk + πk)γk−1

)
+ qk. (4.12)

At the saturation curve the Gibbs free energy of the liquid is equal to the Gibbs free energy of the
vapour, therefore the bisection method is used to find psat(T ), such that

g1(psat(T ), T ) = g2(psat(T ), T ). (4.13)

The saturation curve calculated with the new calibration at Tref = 300 K, Tref = 355 K and
Tref = 515 K are shown in Figure 4.2. These temperatures are the initial temperatures in the
experiments in Chapter 6. With the new calibration a similar saturation curve is retrieved, for all
reference temperatures. At the reference temperature the value of the approximated saturation
pressure is exactly equal to the value from the table and around this temperature a small error is
visible.

To retrieve the curve of the enthalpy using the coefficients, the equation

hk(T ) = γkCv,kT + qk (4.14)
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is used. And to approximate the curve of the speed of sound,

ck(T ) =
√
γkCv,k(γk − 1)T (4.15)

is used where γk, Cv,k and qk are the new calibrated coefficients. The enthalpy curves and the
speed of sound curves using reference temperatures Tref = 300 K, Tref = 355 K and Tref = 515
K are compared with the values from the water and steam tables and shown in Figures 4.3 - 4.5.

In the figures it can be seen that at the reference temperature the approximation is exactly
equal to the value from the table for the entropy and the speed of sound. For the values around
the reference temperature some deviations can be observed. For a low reference temperature the
curves lie close to the curves from the table.

To further validate the new approximation of the coefficients they are used in the simulations
of the seven-equation model in this report.
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Figure 4.2: Boiling temperatures as function of pressure, retrieved from the water and steam
tables (blue line) and the new calibration of the coefficients (red line). Left is approximated with
reference temperature Tref = 300 K, right for Tref = 355 K and below for Tref = 515 K.
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Figure 4.3: Results using Tref = 300 K. Above the curves of the enthalpy are shown, left for the
liquid phase right for the vapour phase. Below the curves for the speed of sound are shown, left
for the liquid phase right for the vapour phase.
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Figure 4.4: Results using Tref = 355 K. Above the curves of the enthalpy are shown, left for the
liquid phase right for the vapour phase. Below the curves for the speed of sound are shown, left
for the liquid phase right for the vapour phase.
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Figure 4.5: Results using Tref = 515 K. Above the curves of the enthalpy are shown, left for the
liquid phase right for the vapour phase. Below the curves for the speed of sound are shown, left
for the liquid phase right for the vapour phase.
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4.4 Adjustments to simulate pipe wall elasticity

Further on in the calculations done with the seven-equation model the thermodynamic coefficients
are adjusted to account for the elasticity of the pipe. This is done approximating the coefficients
using a lowered speed of sound in the liquid cl. In the new calibration of the coefficients the
adjustment can be made easily by choosing a fixed value for the celerity cl instead of retrieving
the value from the water and steam tables.

Results using this adjusted celerity are presented in Chapter 6.3, in the cold water hammer test
facility experiment.
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Chapter 5

Numerical methods

For the computation of the seven-equation model, the fractional step method [15] is used. This
method consists of two steps to retrieve the values of ρk, pk, uk and αk in the system. The first step
of this method is the convection step, where the homogeneous system, which is the seven-equation
model (3.6) without the source terms,

∂tU + ∂xF (U) +H(U)∂xαK = 0, (5.1)

is solved numerically. The numerical approximation is done using a finite volume method to get
the discretized form. After the convection step the relaxation step, ∂tU = S(U), is applied. Note
that the terms of S(U) are constructed by different relaxation terms given in Equation (3.10) -
(3.13). Therefore the relaxation step is split into four substeps, one for the relaxation of each
quantity. So using the convection step on the initial values ϕn the updated value ϕ̃ is retrieved.
After this step the different relaxation steps are applied and from ϕ̃ the updated value ϕn+1 is
retrieved.

ϕn
convection step−−−−−−−−−→ ϕ̃

relaxation step−−−−−−−−−→ ϕn+1

←−−−−−−−−−−−−−−−−−−−−−− .

5.1 Convection step

A finite volume method is used for the convection part of the system (5.1); therefore the computa-
tional domain is split into intervals, [xi−1/2, xi+1/2] with width ∆xi and the time steps are chosen
[tn, tn+1] with a length of ∆tn. The size of the time step is retrieved from the Courant-Friedrichs-
Lewy (CFL) condition. The CFL condition is necessary for the stability of the system, it is given
by C = λ∆t

∆x , where λ is the highest wave speed and C the Courant number which lies between 0
and 1. The integral form of the homogeneous part of the model is given by

0 =

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(
∂tU + ∂xF (U) +H(U)∂xαk

)
dxdt

=

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂tU dxdt+

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂xF (U) dxdt

+

∫ tn+1

tn

∫ xi+1/2

xi−1/2

H(U)∂xαk dxdt.

(5.2)

Now the integrals are numerically approximated, this gives the equation

0 ≈ ∆xi
[
Un+1
i − Uni

]
+ ∆tn

[
Fi+1/2 − Fi−1/2

]
+ ∆tn

[
H−i+1/2 −H

+
i−1/2

]
, (5.3)
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for

Uni ≈
1

∆xi

∫ xi+1/2

xi−1/2

U(x, tn)dx (5.4)

Fi+1/2 ≈
1

∆tn

∫ tn+1

tn
F (U(xi+1/2, t))dt (5.5)

H−i+1/2 −H
+
i−1/2 ≈

1

∆tn

∫ tn+1

tn

∫ xi+1/2

xi−1/2

H(U(x, t))∂xαk dxdt. (5.6)

For the numerical approximation of the integrals several numerical schemes can be used. The ones
that are implemented in the Europlexus code for the seven-equation model [19] are the Rusanov,
the HLL and the HLLC [20, 21] schemes. For the validation of the seven-equation model the
Rusanov and the HLLC schemes are used.

5.1.1 Rusanov scheme

The non-conservative first-order Rusanov scheme is given for the seven-equation model by

FRusi+1/2(Uni , U
n
i+1) =

1

2

[
F (Uni ) + F (Uni+1)− ri+1/2(Uni+1 − Uni )

]
, (5.7)

with ri+1/2 the maximum of the spectral radius of the convection matrix.

ri+1/2 = max (|(u1)nm|+ (c1)nm, |(u2)nm|+ (c2)nm) , for m = i, i+ 1. (5.8)

And

H−i+1/2 −H
+
i−1/2 = H(Uni )

[
(αk)i+1/2 − (αk)i−1/2

]
, (5.9)

where the numerical value (αk)i+1/2 is given by

(αk)i+1/2 =
1

2
[(αk)i + (αk)i+1] . (5.10)

5.1.2 HLLC scheme

The HLLC scheme proposed by S.A. Tokareva and E.F. Toro [20] for the seven-equation Baer-
Nunziato model is more complex than the Rusanov scheme, but more accurate. The HLLC scheme
is a complete approximate Riemann solver as all the characteristic fields present in the exact solu-
tion of the Riemann problem are taken into account in the construction of the numerical fluxes.
So all six different wave speeds, uk − ck, uk, uk + ck, for k equal to 1 or 2, are incorporated in the
approximation of the flux. In Figure 5.1 all the waves are shown with the different characteristic
fields for (S2)M < (S1)M , where (Sk)L represents the wave with speed uk − ck, (Sk)M the wave
with speed uk and (Sk)R the wave with wave speed uk + ck.

The numerical treatment of the genuinely nonlinear waves (Sk)K with k = 1, 2 and K = L,R, as
there is no jump of the volume fraction, is based on averaged Rankine-Hugoniot type relations.
This is done classically with the HLLC scheme for the Euler equations. Then, the preservation of
the Riemann invariants is used for the linear degenerate waves (Sk)M with k = 1, 2. Finally, this
leads to a nonlinear system of four equations connecting the unknowns to the initial conditions
left and right of the interface, which is solved using an iterative Newton-Raphson approach. By
the Baer-Nunziato choice of uI = u2, the integrals of the non-conservative terms are only active
across the contact of phase 2, and is estimated using the thin-layer approximation proposed by
Schwendeman et al. [22]. This approximation is based on the regularization of the solution across
(S2)M , which is replaced by a thin-layer. More information on this can be found in [20, 21].
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So in the case where (S2)M < (S1)M , the values of the first-order HLLC flux are given for phase
1 by

FHLLCi+1/2 =


F1,L = F (U1,L) if 0 < (S1)L
F ∗1,L = F1,L + (S1)L

(
U∗1,L − U1,L

)
if (S1)L ≤ 0 < (S2)M

F ∗1,M = F ∗1,R + (S1)M
(
U∗1,M − U∗1,R

)
if (S2)M ≤ 0 < (S1)M

F ∗1,R = F1,R + (S1)R
(
U∗1,R − U1,R

)
if (S1)M ≤ 0 < (S1)R

F1,R = F (U1,R) if (S1)R ≤ 0

, (5.11)

and for phase 2 by

FHLLCi+1/2 =


F2,L = F (U2,L) if 0 < (S2)L
F ∗2,L = F2,L + (S2)L

(
U∗2,L − U2,L

)
if (S2)L ≤ 0 < (S2)M

F ∗2,R = F2,R + (S2)R
(
U∗2,R − U2,R

)
if (S2)M ≤ 0 < (S2)R

F2,R = F (U2,R) if (S2)R ≤ 0

. (5.12)

The values for H−i+1/2 and H+
i−1/2 are calculated using the thin-layer approximation.

Figure 5.1: Waves present in the seven-equation model in the x, t plane.

So in the convection step at time interval [tn, tn+1], with the given initial value ϕn, the ap-
proximate solution is computed, ϕ̃. Then this solution ϕ̃ is provided as the initial values for the
relaxation step.
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Figure 5.2: States for the different characteristic fields for phase 1.

Figure 5.3: States for the different characteristic fields for phase 2.

5.2 Relaxation step

The relaxation step is divided into four substeps, one substep for the relaxation of each quantity;
p, u, T and g, see also (3.10) - (3.13). In the relaxation steps the notation ϕ0 is used for the value
of ϕ retrieved at the end of the previous substep. The notation ϕ∗ is used as the value of ϕ at
the end of the relaxation substep. Furthermore mk = αkρk, is the partial mass of phase k and the
length of the time step ∆t is used. Recall from Section 3.2 that the relaxation therms are

Φk =
1

τppref
αkαj(pk − pj) (5.13)

Dk =
1

τu

mkmj

mk +mj
(uj − uk) (5.14)

Qk =
1

τT

mkCv,kmjCv,j
mkCv,k +mjCv,j

(Tj − Tk) (5.15)

Γk =
1

τµµref

mkmj

mk +mj
(µj − µk), (5.16)

with j = 3− k.
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5.2.1 Pressure relaxation

The system that is approximated for the pressure relaxation for the two different phases is
∂tαk = Φk
∂t(αkρk) = 0
∂t(αkρkuk) = 0
∂t(αkρkek) = −pIΦk

. (5.17)

The values for mk and uk are taken constant over time, so m∗k = m0
k and u∗k = u0

k. The following
implicit scheme is used to update the value αk :

α∗k − α0
k

∆t
=

1

τppref
α∗kα

∗
j (p
∗
k − p∗j ). (5.18)

An iterative procedure is used to compute α∗k and the pressure p∗k from the results of the previous
step. Then ek is obtained using:

m∗ke
∗
k −m0

ke
0
k

∆t
= −p∗I

α∗k − α0
k

∆t
. (5.19)

5.2.2 Velocity relaxation

The system that is approximated for the velocity relaxation for the two different phases is
∂tαk = 0
∂t(αkρk) = 0
∂t(αkρkuk) = Dk

∂t(αkρkek) = UDk

. (5.20)

The values for αk and mk are assumed not to change over time, so α∗k = α0
k and m∗k = m0

k.
Furthermore from the second and third equation of (5.20),

Dk = ∂t(mkuk) = mk∂tuk (5.21)

so that

∂t(uk − uj) =
Dk

mk
− Dj

mj

=
1

τu

mj

mk +mj
(uj − uk)− 1

τu

mk

mk +mj
(uk − uj)

= − 1

τu
(uk − uj).

(5.22)

Now introduce ud = (u1 − u2), with ∂tud = − 1
τu
ud, where u1 is the velocity of phase 1 and u2 is

the velocity of phase 2. This means that ud is of the form ud = Ce−t/τu , where C is a constant
with respect to time. Note that Dk = −Dj , then

u1 =
m1u1 +m2u2 +m2ud

m1 +m2

=
m1u1 +m2u2

m1 +m2
+

m2

m1 +m2
ud

∂tu1 =
1

m1 +m2
∂t(m1u1 +m2u2) +

m2

m1 +m2
∂tud

=
1

m1 +m2
(D1 +D2) +

m2

m1 +m2
∂tud

=
m2

m1 +m2
∂tud.

(5.23)
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In a discretized form this is;

u∗1 − u0
1

∆t
=

m0
2

m0
1 +m0

2

u∗d − u0
d

∆t

=
m0

2

m0
1 +m0

2

u0
d(e
−∆t/τu − 1)

∆t
,

(5.24)

and thus the updated values are given by

u∗1 = u0
1 +

m0
2

m0
1 +m0

2

(
e−∆t/τu − 1

)
(u0

1 − u0
2). (5.25)

The same calculations and discretization can be done for u2, hence

u∗2 = u0
2 +

m0
1

m0
1 +m0

2

(
e−∆t/τu − 1

)
(u0

2 − u0
1). (5.26)

For the specific internal energy the same derivation can be done. Note that the total specific
energy is ek = εk + 1

2u
2
k, so that

∂t(mkek) = mk∂tek

= mk∂εk +mkuk∂tuk

=
uj + uk

2
Dk

∂tεk = −uk∂tuk +
1

mk

uj + uk
2

Dk

= −uk∂tuk +
uj + uk

2
∂tuk

=
uj − uk

2
∂tuk.

(5.27)

Now use the calculations (5.23) and discretization (5.24) and find

∂tε1 =
u2 − u1

2
∂tu1

= −ud
2

m2

m1 +m2
∂tud

= −1

2

m2

m1 +m2
∂t(

1

2
u2
d),

(5.28)

with discretized form

ε∗1 − ε0
1

∆t
= −1

4

m0
2

m0
1 +m0

2

(u∗d)
2 − (u0

d)
2

∆t

= −1

4

m0
2

m0
1 +m0

2

(u0
d)

2(e−2∆t/τt − 1)

∆t
,

(5.29)

and thus the updated values are retrieved by

ε∗1 = ε0
1 +

1

4

m0
2

m0
1 +m0

2

(
1− e−2∆t/τu

)
(u0

2 − u0
1)2. (5.30)

Again the same can be done for ε2, leading to

ε∗2 = ε0
2 +

1

4

m0
1

m0
1 +m0

2

(
1− e−2∆t/τu

)
(u0

1 − u0
2)2. (5.31)
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5.2.3 Temperature relaxation

For the relaxation of the temperature the following system is approximated for the two different
phases 

∂tαk = 0
∂t(αkρk) = 0
∂t(αkρkuk) = 0
∂t(αkρkek) = Qk

. (5.32)

The values for αk, mk and uk are not allowed to change within the duration ∆t of the time interval,
so α∗k = α0

k, m∗k = m0
k and u∗k = u0

k. Furthermore, note that εk = Cv,kTk + qk, where qk and Cv,k
are constants, so that ek = Cv,kTk + qk + 1

2u
2
k. Now derive

Qk = ∂t(mkek) = mk∂tek, (5.33)

so that for the temperature T1 of phase 1 and the temperature T2 of phase 2

∂t(T1 − T2) =
1

Cv,1
∂te1 −

1

Cv,2
∂te2

=
Q1

m1Cv,1
− Q2

m2Cv,2

=
1

τT

m2Cv,2
m1Cv,1 +m2Cv,2

(T2 − T1)− 1

τT

m1Cv,1
m1Cv,1 +m2Cv,2

(T1 − T2)

= − 1

τT
(T1 − T2).

(5.34)

The value Td = (T1 − T2) is introduced, with ∂tTd = − 1
τT
Td. This means that Td is of the form

Td = Ce−t/τT , where C is a constant with respect to time. Note that Qk = −Qj , so then similar
calculations as in (5.23) are done to arrive at

T1 =
m1Cv,1T1 +m2Cv,2T2 +m2Cv,2Td

m1Cv,1 +m2Cv,2

=
m1Cv,1T1 +m2Cv,2T2

m1Cv,1 +m2Cv,2
+

m2Cv,2
m1Cv,1 +m2Cv,2

Td

∂tT1 =
m1∂t(Cv,1T1) +m2∂t(Cv,2T2)

m1Cv,1 +m2Cv,2
+

m2Cv,2
m1Cv,1 +m2Cv,2

∂tTd

=
Q1 +Q2

m1Cv,1 +m2Cv,2
+

m2Cv,2
m1Cv,1 +m2Cv,2

∂tTd

=
m2Cv,2

m1Cv,1 +m2Cv,2
∂tTd.

(5.35)

In discretized form this gives

T ∗1 − T 0
1

∆t
=

m0
2C

0
v,2

m0
1C

0
v,1 +m0

2C
0
v,2

T ∗d − T 0
d

∆t

=
m0

2C
0
v,2

m0
1C

0
v,1 +m0

2C
0
v,2

T 0
d (e−∆t/τT − 1)

∆t
,

(5.36)

and thus the updated value for the temperature is

T ∗1 = T 0
1 +

m0
2C

0
v,2

m0
1C

0
v,1 +m0

2C
0
v,2

(
e−∆t/τT − 1

)
(T 0

1 − T 0
2 ). (5.37)

The same derivation can be done for T2, hence

T ∗2 = T 0
2 +

m0
1C

0
v,1

m0
1C

0
v,1 +m0

2C
0
v,2

(
e−∆t/τT − 1

)
(T 0

2 − T 0
1 ). (5.38)
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5.2.4 Chemical potential relaxation

For the chemical potential relaxation, or so called mass transfer, the following system is approx-
imated for the two different phases 

∂tαk = 0
∂t(αkρk) = Γk
∂t(αkρkuk) = UΓk
∂t(αkρkek) = HΓk

. (5.39)

To simplify the calculations the system can be rewritten as
∂tαk = 0
∂t(mk) = Γk
∂t(mkuk) = UΓk
∂t(mkεk) = 0

. (5.40)

The values for αk and mkεk are assumed not to change over time, so α∗k = α0
k and m∗kε

∗
k = m0

kε
0
k.

The following implicit scheme is used to approximate the value mk:

m∗k −m0
k

∆t
=

1

τµµref

m∗km
∗
j

m∗k +m∗j
(µ∗k − µ∗j ). (5.41)

Just as for the pressure relaxation an iterative procedure is used to approximate m∗k. And for
mkuk,

m∗ku
∗
k −m0

ku
0
k

∆t
=
u∗k + u∗j

2

m∗k −m0
k

∆t
, (5.42)

again an iterative procedure is used to approximate m∗ku
∗
k.

Finally with the initial value ϕn, the value ϕn+1 is determined by applying first the convection
step and then the four relaxation steps.
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Chapter 6

Assessment of the seven-equation
model

The goal of the model is to simulate two-phase flows, such that EDF can use it to investigate the
water hammers that occur in the EDF facilities. These facilities already exist, but there are no
sensors to measure the location and the force of the water hammers. So the simulations done with
the seven-equation model in Europlexus cannot be tested on measurements in the actual system.
Therefore the seven-equation model, its relaxation terms and the new calibration of the coefficients
of the stiffened gas equation of state are verified using some already known experiments. The
results of the calculations done in Europlexus with the seven-equation model are compared with
results from physical experiments and results from other verified models. Three different situations
are modelled: the water cavitation tube problem, the Edwards pipe experiment and the cold water
hammer test facility. The experiments and the results are detailed in the next paragraphs. For
most calculations with the seven-equation model the Rusanov scheme is used instead of the less
diffusive HLLC scheme. This has been done because in more complex simulations the HLLC
scheme was not robust enough for the computations.

6.1 Water cavitation tube problem

To examine the effects of the different relaxation terms in the seven-equation, Baer-Nunziato model
[11, 14] in Europlexus, the water cavitation tube problem, initially proposed in [23], is considered.
The HLLC scheme is used for the discretization of the homogeneous part of the seven-equation
model, i.e. the part without source terms. The Europlexus results are compared with the results
of the simulations done by M. Pelanti and K.-M. Shyue [24]. They used a two-fluid, six-equation
model and assume that the two phases have the same velocity u.

The water cavitation tube problem is a one-dimensional tube model containing liquid water; the
model is shown in Figure 6.1. The tube is 1 m long and split into two parts of equal length, a left
and right part. At t = 0 the velocity in the left part is uL = −2 m/s and in the right part uR = 2
m/s, the initial temperature is T = 354.7 K and the initial pressure is 1 bar absolute. In the
continuation of this report the pressure will be denoted in absolute pressure. When the numerical
test starts two rarefaction waves appear, travelling in opposite directions from the middle of the
pipe, due to opposite signs of the initial velocities. Because of the rarefaction waves the pressure
drops to saturation pressure and the liquid starts to cavitate and more vapour appears.

The initial conditions and the thermodynamic coefficients for the simulation are shown in Table
6.1 and Table 6.2. The pipe is split into 5000 cells, and for the calculations the Courant number
C = 0.5 is used. Furthermore the stiffened gas equation of state is used for both states, the liquid
and the vapour.
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Figure 6.1: The 1D model of the water cavitation tube problem.

Phase α p[Pa] ρ[kg/m3]

liquid 0.99 105 1150
vapour 0.01 105 0.63

Table 6.1: Initial conditions for the water cavitation tube problem, based on the numerical exper-
iment done by Pelanti and Shyue.

Phase γ π[Pa] q[J/kg] q′[J/kg/K] Cv[J/kg/K]

liquid 2.35 109 −1167× 103 0 1816
vapour 1.43 0 2030× 103 −23.4× 103 1040

Table 6.2: Thermodynamic coefficients for the water cavitation tube problem, based on the nu-
merical experiment done by Pelanti and Shyue.

In the six-equation model of Pelanti and Shyue an equilibrium of the velocity is assumed, so
there is only one mixture velocity u, whereas in the seven-equation model there is a velocity of
the vapour uv and a velocity of the liquid ul. To compensate this in the seven-equation model,
a strong relaxation of the velocity is applied in all simulations. The results are compared for
the mechanical relaxation, i.e. p relaxation, the mechanical and thermal relaxation, i.e. p, T
relaxation and for mechanical and thermodynamical relaxation, i.e. p, T, g relaxation, where g
stands for Gibbs free energy and the relaxation of g represents the mass transfer between the two
phases. In the simulations of Pelanti and Shyue, instantaneous relaxation is implemented. So for
the seven-equation simulation the timescales are chosen small for the different relaxation terms,
to retrieve almost instantaneous relaxation in the model. τu = 10−12 s, τp = 10−12 s, τT = 10−12

s and τg = 10−7 s.

At t = 3.2 ms the vapour fraction αv, the mean pressure p and mean velocity u, which are
given by

p = αvpv + αlpl (6.1)

u =
αvρvuv + αlρlul
αvρv + αlρl

, (6.2)

obtained with the Baer-Nunziato model are shown in the figures below and compared with the
results of Pelanti and Shyue.

For the generation of vapour in the cavitation of liquid water, that is the transfer from liquid
water to water in vapour phase, the mass transfer plays a major role. When looking at the results
for the vapour fraction in Figure 6.2, it is clear that when only the relaxation of p and p, T is
applied the peak that represents the volume fraction of the vapour reaches a value just below 0.15.
When the relaxation of g is added the volume fraction reaches almost the value of 0.3. In the
simulation of Pelanti and Shyue the same difference is seen.
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Figure 6.2: Results of the vapour volume fraction at t = 3.2 ms, left using the Baer-Nunziato
model with three different relaxation terms, right the results of Pelanti and Shyue.
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Figure 6.3: Results of the pressure at t = 3.2 ms: left using the Baer-Nunziato model with three
different relaxation options, right the results of Pelanti and Shyue.

In the results of the pressure, Figure 6.3, a difference is visible. In the Baer-Nunziato model
with p, T, g relaxation a difference can be observed at the ends of the pipe. This is probably
caused by an additional condition that is used by M. Pelanti and K.-M. Shyue, namely that the
g relaxation will only be applied in the case that ε1 ≤ αl ≤ 1 − ε1 and Tv < Tsat(peq), with
ε1 = 10−4, which they call the liquid-vapour interface location. The results generated with the
Baer-Nunziato model show that in the entire pipe ε1 ≤ αl ≤ 1 − ε1 holds. So the g relaxation
will only be applied in the case that Tv < Tsat(peq). The temperature at time t = 3.2 ms is
given in Figure 6.4. In the simulation of Pelanti and Shyue the value of Tsat(peq) is most likely
close to the initial temperature, 354.7 K. In this case the condition Tv < Tsat(peq) = 354.7 K
holds between about x = 0.4 m and x = 0.6 m. This means that the g relaxation is only ap-
plied in this area for the six-equation model, whereas in the seven-equation simulation it is applied
over the whole pipe. This would explain the difference between the results at the ends of the pipe.

This difference is also visible in Figure 6.5 where the velocity is shown. Here at the part where
the pressure in the six-equation model is constant there is a difference between the six- and seven-
equation results.

Although differences can be observed due to different implementations of the g relaxation, the
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Figure 6.4: Temperature of the liquid and vapour in the pipe at t = 3.2 ms, using p, T, g relaxation.
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Figure 6.5: Results of the velocity at t = 3.2 ms: left using the Baer-Nunziato model with three
different relaxation terms, right the results of Pelanti and Shyue.

current relaxation terms have similar influence on the pressure, velocity and mass fraction of the
vapour as the relaxation terms used in the six-equation model of Pelanti and Shyue.

6.2 Edwards pipe experiment

The Edwards pipe experiment [25] is a fast depressurization of hot water in liquid phase gener-
ating much vapour. It is an important experiment for models that are used for the simulation of
a Loss Of Coolant Accident (LOCA) in nuclear power plants. A LOCA is a hypothetical safety
accident where (a part of) the cooling system stops working. This can cause damage in the core
of the reactor. The Edwards pipe experiment includes a simple geometry. A horizontal pipe is
considered of length L = 4.097 m and constant diameter D = 0.07315 m, which is closed at both
ends. The initial temperature in the pipe is 515 K and the pressure is 70 bar, so that the pipe
contains only water in liquid phase. The outside pressure is equal to the atmospheric pressure of 1
bar. At time t = 0 the pipe breaks at one end, and the cross section of the break is 12.5% smaller
than the cross section of the pipe. When the pipe breaks, the depressurization causes the water
to vaporise, such that at the end of the experiment the pipe contains vapour only. The 1D model
is represented in Figure 6.6.
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Figure 6.6: The 1D model of the Edwards pipe experiment.

During the experiment the average pressure p = αvpv + αlvl in the pipe is measured at the
break (this is point GS1) and near to the closed end of the pipe (location GS7). At 1.5 m from
the closed end, at GS5, the vapour fraction αv and the temperature T in the pipe are measured.

This experiment is simulated with Europlexus using a homogeneous four-equation model, called
water model in Europlexus, and the seven-equation Baer-Nunziato model [11, 14] with the Rusanov
scheme. For the seven-equation model, the new calibration of the thermodynamic coefficients is
used. To validate the coefficients the results of the seven-equation model are compared with the
water model, which uses the steam and water tables directly in the calculations. The results are
also compared with the results of the WAHA code [26] and with the experimental results.

The WAHA code has been developed in a European project called WAHALoads [27] and is able
to simulate two-phase water hammers. It uses a six-equation model thereby assuming a pressure
equilibrium between the two phases.

The domain is split into two parts, the one-dimensional pipe and an outlet section, which is
modelled as a tank in which a constant pressure equal to the atmospheric pressure of 1 bar is
assumed. In the model a full area break is considered. The initial conditions are given in Table
6.3 and the thermodynamic coefficients of the problem are given in Table 6.4. The initial tem-
perature is 515 K in both the pipe and the tank. For the seven-equation model the relaxation
of the velocity, the mechanical relaxation and the thermodynamical relaxation are used, with the
timescales τT = 10−12 s and τg = 5× 10−5 s. The timescales τu and τp are chosen automatically
in the Europlexus simulation.

Phase α p[Pa] ρ[kg/m3]

Pipe liquid 1− 10−3 70× 105 814.7195
vapour 10−3 70× 105 33.1146

Tank liquid 10−3 105 806.9759
vapour 1− 10−3 105 2.3297

Table 6.3: Initial conditions of the Edwards pipe experiment.

Phase γ π[Pa] q[J/kg] q′[J/kg/K] Cv[J/kg/K]

Pipe liquid 1.5666 718960904 -1417310 8140.75 3053.63
vapour 1.1294 422172 846047 -10993.18 3364.39

Tank liquid 1.5666 718960904 -1417310 8140.75 3053.63
vapour 1.1294 422172 846047 -10993.18 3364.39

Table 6.4: Thermodynamic coefficients for the Edwards pipe experiment.
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For the simulation using the water model the Courant number of C = 0.7 is the highest value
for which the simulation is stable. For the seven-equation model an adaptive Courant number is
used. In the first time step the Courant number is C = 0.01, then each time step the size of the
time step is doubled, until the Courant number of C = 0.8 is reached. From that moment on a
constant time step is used which corresponds to C = 0.8.
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Figure 6.7: Results of the pressure over time using the water model and the Baer-Nunziato model
with the Rusanov scheme at GS7. Left the Europlexus results, right the WAHA code results.

In the results of the pressure measured at the closed end of the pipe, at GS7, and given by
Figure 6.7, the same plateau is visible for the seven-equation model and the water model. This
means that with the new calibration of the thermodynamic coefficients the same saturation curve
is retrieved as the curve based on the steam and water tables used in the water model. Further-
more the seven-equation model gives similar results as the six-equation model of the WAHA code.
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Figure 6.8: Results of the pressure over time using the water model and the Baer-Nunziato model
with the Rusanov scheme at GS1. Left the Europlexus results, right the WAHA code results.

The difference between the model used in Europlexus and the model used in the WAHA code
is the simplification of the partial break, 87.5%, to a full break (100%). Because the influence
of the break is larger close to the break than at the closed end of the pipe, the results of the
pressure at the break, see Figure 6.8, are very different, whereas the results at the closed end, see
Figure 6.7, are very similar. To retrieve better results for the pressure the partial break should be
included in the 1D simulation.
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Figure 6.9: Results of the volume fraction of the vapour using the water model and the Baer-
Nunziato model with the Rusanov scheme at GS5. Left the Europlexus results, right the WAHA
code results.

In Figure 6.9 and Figure 6.10 again similar results are found with the seven-equation model
and with the WAHA code. But the transition from full liquid to full vapour happens faster than
in the physical experiment; indeed the volume fraction of the vapour increases faster and the
temperature drops faster. One of the reasons for these differences could be caused by the delay in
the measurement equipment.
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Figure 6.10: Results of the temperature using the water model and the Baer-Nunziato model with
the Rusanov scheme at GS5. Left the Europlexus results, right the WAHA code results.

6.3 Cold water hammer test facility

The cold water hammer test facility [28] consists of a tank connected to a pipe with two 90◦ bends.
The end of the pipe is blocked by a lid. Initially the pipe is split into two parts by a valve. In the
left part, which is connected to the tank, the pressure is 1 bar. On the right side the pressure is
decreased to the saturation pressure of 2.9× 103 Pa at a temperature of 296.5 K. The fluid in the
right part is in liquid phase for the main part, but the last 0.3 m below the lid is in vapour phase.
This is reached by evacuating the air from the pipe, using a vacuum pump and decreasing the
pressure to the saturation level at the initial temperature. The setup of the experiment is shown
in Figure 6.11. The experiment has been built and carried out during the WAHALoads project
[29].
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Figure 6.11: Setup of the cold water hammer test facility experiment.

In the experiment the valve is opened almost instantaneously at t = 0 which creates a pres-
sure wave travelling through the pipe. When the pressure wave reaches the vapour, the pressure
in the vapour increases, exceeding the saturation pressure and the vapour collapses into liquid.
This creates a pressure peak, the wave reflects and travels back into the direction of the tank,
where it reflects again; this process continues.

With this experiment the thermal hydraulic part, i.e. the transition by sudden condensation
of vapour to liquid, of the seven-equation model is assessed. To simulate the experiment the
model is simplified to a 1D case where a straight rigid pipe attached to a tank is considered and
the lid is modelled as a closed fixed end. So the fluid-structure interaction is neglected in this
model. At 0.1 m from the closed end the mean pressure p = αvpv + αlpl is measured; this point
is called MP1. The 1D model is shown in Figure 6.12.

Figure 6.12: 1D model of the cold water hammer test facility.

The simulation with the seven-equation Baer-Nunziato model with the Rusanov scheme using
the new calibration of the thermodynamic coefficients is compared with the simulation of the
four-equation water model and the experimental values. In previous results [30] on a more com-
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plex model, where the elbows in the pipe, the elasticity of the pipe and some fixation points of the
structure are considered, the water model gave results which are very close to the experimental
data. So here in the water model the elbows, support points of the structure and the elasticity
of the pipe are added to the model. With this more detailed simulation the results of the pres-
sure are measured at MP1 are retrieved. As can be seen in Figure 6.13, the results are close to
the experimental data. Now for the simple 1D test case, where the elbows, support points and
the elasticity of the pipe are neglected, the water model is used as a reference model. To test
the calibration of the thermodynamic coefficients the values of the thermodynamic coefficients are
adjusted to simulate the influence of the elasticity of the pipe on the celerity of the pressure waves.
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Figure 6.13: Pressure at MP1 using the 1D model including the elbows, support points and the
elasticity of the pipe.

For the seven-equation model the thermodynamic coefficients for a rigid pipe that are used in the
calculations are shown in Table 6.6. The timescales used for the relaxation terms are τg = 10−3

s, τu and τp are chosen automatically by the Europlexus simulation and there is no relaxation of
the temperature.

Phase γ π[Pa] q[J/kg] q′[J/kg/K] Cv[J/kg/K]

liquid 2.7981 79.4822× 107 -1142335 31622.2 1494.98
vapour 1.3198 11.4901 1977373 1408.92 1446.89

Table 6.5: Thermodynamic coefficients in the pipe.

In Figure 6.13, the pressure profile is shown in the vapour part of the pipe, at MP1. It is clear
that in the experiment the first pressure peak is much higher than the others; this means that it
may cause the most damage to the structure. Therefore this first peak is the most important to
examine, so the focus of the next images is on the first peak.

The first pressure peak is shown in Figure 6.14 for the simulation with the seven-equation model,
the seven-equation model with adjusted thermodynamic coefficients to simulate the hoop elasticity
of the pipe, the water model and the experimental data. Large differences in the arrival time and
the height of the peak can be observed. The pressure peak of the simulation where the pressure
wave speed of a rigid pipe is used, arrives earlier than in the experiment. When this speed is
adjusted to mimic a flexible pipe the peak is closer to the experimental values. The arrival time
is later, the peak is lower and the peak is wider. But still the experimental values are not exactly
retrieved, because fluid-structure interaction is ignored. Therefore the simulation with the water
model is used. In a 1D model including the elasticity and the elbow movements of the pipe,
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Figure 6.14: Results of the first pressure peak at MP1 over time.

the water model retrieves results very close to the experimental data, as shown in Figure 6.13.
Because the pipe is considered rigid and straight in the simulation, the results are different from
the experimental results.

Phase γ π[Pa] η[J/kg] η′[J/kg/K] Cv[J/kg/K]

liquid 2.2449 68.6011× 107 -1142327 23731.8 1863.31
vapour 1.3198 11.5408 1977350 1408.58 1446.94

Table 6.6: Thermodynamic coefficients with an adjustment on the celerity of the pressure wave.

Furthermore a difference in the speed of the wave can be observed between the different refine-
ments of the grid when using the seven-equation model with the Rusanov scheme. The Rusanov
scheme is a diffusive scheme which means that the interface between the water and the vapour is
diffused, which results in a smaller full vapour part. This diffusion is shown in Figure 6.15, where
the volume fraction of vapour is represented at the interface between the liquid and the vapour for
different grid sizes. This is computed at t = 1 ms, so the pressure wave front did not yet reach the
interface and the interface diffusion is only caused by the numerical scheme. So when the grid is
refined, the diffusion of the interface becomes smaller, and thus the full vapour part is larger. The
speed of the wave in vapour is zero, because the mixture will stay at vapour pressure (only the
volume vapour fraction changes), therefore if the vapour part is smaller the pressure wave reaches
MP1 faster. These results of the seven-equation model can be seen in Figure 6.16.
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Figure 6.15: The volume fraction of the vapour at the interface between the liquid and the vapour
at t = 1 ms, using the Rusanov scheme.
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Figure 6.16: Pressure at MP1 for different refinements of the grid using the seven-equation model
with the Rusanov scheme.





Chapter 7

Conclusions and recommendations

7.1 Conclusions

The seven-equation Baer-Nunziato model has been developed to simulate two-phase flows. It is a
two-fluid model and uses seven equations with no equilibrium assumed between the two different
phases that occur in the flow. A new calibration was proposed to approximate the coefficients of
the stiffened gas equation of state, which are used in this model. In this thesis the goal was to
assess the different parts of the seven-equation model and the new calibration of the stiffened gas
coefficients. For this the model is assessed by simulating three different experiments. The water
cavitation tube problem has been used to assess the relaxation terms in the seven-equation model,
for the relaxation of pressure, temperature and chemical potential. The Edwards pipe experiment
has been simulated to examine the new calibration of the equation of state coefficients and the
seven-equation model. And finally the cold water hammer test facility was used to examine the
influence of the elbows, fixed points and the fluid-structure interaction.

Overall the seven-equation model simulates the physical phenomena reasonably well. The propaga-
tion of the pressure waves, the cavitation due to pressure drop and the collapse of vapour cavities
is well visible in the results of the different experiments. The HLLC scheme was in most cases not
robust enough to perform the simulations; therefore the more robust, but more diffusive Rusanov
scheme was used herein.

For the water cavitation tube problem similar results have been obtained with the different relax-
ation terms as those from the two-fluid six-equation model used by M. Pelanti and K.-M. Shyue.
However, the predictions of the pressure when mass transfer between the two phases is included are
different and this is caused by the different implementations of the chemical potential relaxation,
or so called g relaxation.

In the Edwards pipe experiment the results of the seven-equation model are compared with the
results of the water model, the experimental values and the results of the WAHA code. When
comparing the results to the water model results, the same vapour saturation level is reached,
which means that the new calibration of the equation of state reaches the same saturation curve.
Furthermore, the results of the seven-equation model are similar to the results of the WAHA
code, but the volume fraction of the vapour increases faster for the seven-equation model. So the
differences between the seven-equation results and the experiment are caused by the mass transfer
and the simplifications made in the model.

In the cold water hammer test facility results it can be seen that using the new calibration for
the EOS coefficients, the celerity in the system can be easily adjusted to take into account the
hoop elasticity of the pipe. This adjustment of the celerity resulted in an improvement of the
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height, the width and the location of the pressure peak. Furthermore the results show that the
fluid-structure interaction plays an important role. When this is neglected the pressure peaks
caused by the water hammer are much higher and arrive earlier than in the physical experiment.
The Rusanov scheme that is used in the computations with the seven-equation model appears to
be very diffusive, which is visible when a refined grid is results in a better approximation.

7.2 Recommendations

For future work on the seven-equation model the focus should lie on the implementation of fluid-
structure interaction. The seven-equation model with the Baer-Nunziato assumption yields good
results when simple geometries are considered. In the case of more complex setups, the influence
of structural deformations can be large and should be modelled to obtain the right height and
location of the pressure peaks.

The mass transfer in the seven-equation model, or so called chemical potential relaxation should
be improved. For this more experiments on the relaxation terms should be carried out. The
convective scheme should also be improved, the Rusanov scheme is robust but very diffusive. Ex-
tending this to second-order accuracy will improve the results. The HLLC scheme is less diffusive,
but not robust enough to simulate all experiments. More research on this scheme should be done
to improve it, so that it can be used on more complex setups. Or research on alternative schemes
should be done to find one which is robust on complex setups and less diffusive as the Rusanov
scheme.

Furthermore the model should be assessed on more experiments to get a clearer picture on what
parts of the model have the largest influence on the results. And what parts of the model are still
missing.
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Appendix A

Calculations and results

A.1 Simpson experiment

To get an understanding of how water hammers occur the Joukowsky formula (2.18) is used to
calculate the pressure history in the two-phase Simpson experiment. The calculations are shown
in Table A.1 and the corresponding results in Table A.2.

Time Calculations

t = 0 pnew − p0 = ρ(−c)(0− u0)
pnew = p1 = p0 + ∆p, with ∆p = ρcu0

t = L/c p0 − p1 = ρc(unew − u0)

unew = −∆p
ρc = −u0

t = 2L/c pnew − p0 = ρ(−c)(0 + u0)
pnew = p0 −∆p < psat, pnew = psat

t = 3L/c p0 − psat = ∆p1 = ρc(unew − 0), ∆p > ∆p1

unew = ∆p1/ρc < u0

t = 4L/c psat − p0 = ρ(−c)(unew − u1)
unew = 2u1, left of the vapour bubble

t = 4L/c+ ε collapse of the vapour bubble
pnew = p2 = psat + ∆p2,
with ∆p2 the impact of the collapse, taken from the experiment

t = 5L/c p0 − psat = ∆p1 = ρc(unew − 2u1)
unew = 3u1

p = p0 + ∆p2, u = u1

t = 5L/c+ ε p0 − (p0 + ∆p2) = ρc(unew − u1)

unew = −∆p2
ρc + u1 = u1 − u2 < 0

t = 6L/c pnew − (p0 + ∆p2) = ρ(−c)(0− u1)
pnew = p3 = p0 + ∆p1 + ∆p2

p = p0 + ∆p1, u = −u2

t = 6L/c+ ε pnew − (p0 + ∆p1) = ρ(−c)(0 + u2)
pnew = p4 = p0 + ∆p1 −∆p2

t = 7L/c p0 − (p0 + ∆p1) = ρc(unew + u2)
unew = −u1 − u2

Table A.1: Calculations of the two-phase Simpson experiment.
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Time Point A Point B

t ≤ 0 p = p0 u = u0

0 < t < L/c p = p1 = p0 + ∆p u = u0

L/c < t < 2L/c p = p1 = p0 + ∆p u = −u0

2L/c < t < 3L/c p = psat u = −u0

3L/c < t < 4L/c+ ε p = psat u = u1

4L/c+ ε < t < 5L/c p = p2 = psat + ∆p2 u = u1

5L/c < t < 5L/c+ ε p = p2 = psat + ∆p2 u = 3u1

5L/c+ ε < t < 6L/c p = p2 = psat + ∆p2 u = u1 − u2

6L/c < t < 6L/c+ ε p = p3 = p0 + ∆p1 + ∆p2 u = u1 − u2

6L/c+ ε < t < 7L/c p = p4 = p0 + ∆p1 −∆p2 u = u1 − u2

7L/c < t < 7L/c+ ε p = p4 = p0 + ∆p1 −∆p2 u = −u1 − u2

Table A.2: Results of the two-phase Simpson experiment.
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List of symbols

A cross section of the pipe
c speed of sound
c̃ speed of sound, with adjustments to account for the elasticity of the pipe
ck speed of sound in phase k
Cp,k specific isobaric heat capacity of phase k
Cv,k specific isochoric heat capacity of phase k
d thickness of the pipe wall
D inner diameter of the pipe
Dk drag relaxation term of phase k
E Young’s modulus
ek specific total energy of phase k
gk Gibbs free energy of phase k
H u1u2

2
hk specific enthalpy
j phase, j ∈ {1, 2}, representing liquid if j = 2 or vapour when j = 1
k phase, k ∈ {1, 2}, representing liquid if k = 2 or vapour when k = 1
K bulk modulus
mk αkρk partial mass of phase k
p absolute pressure
pk pressure of phase k
psat vapour pressure
qk reference energy of the stiffened gas equation of state for phase k
q′k reference entropy of the stiffened gas equation of state for phase k
Qk heat transfer of phase k
sk specific entropy
(Sk)K wave speeds present in the Riemann problem where K ∈ {L,M,R} for phase k
Tk absolute temperature of phase k
Tref reference temperature
u velocity
U u1+u2

2
uk velocity of phase k
αk volume fraction of phase k
γk specific heat ratio
Γk mass transfer term of phase k
εk specific internal energy of phase k
Λk relaxation term consisting of the drag term and mass transfer of phase k
πk reference pressure of the stiffened gas equation of state for phase k
ρ density
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ρk density of phase k
τξ timescale of the relaxation of ξ, where ξ ∈ {p, µ, u, T}
ϕ seven variables {αk,mk, uk, ek} where α1 + α2 = 1
Φk pressure relaxation term of phase k
Ψk relaxation term consisting of the heat transfer, the drag term, the mass transfer

and the pressure term of phase k
colour values represented in the colour green are retrieved from the water and steam tables
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