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Abstract

This Msc project is concerned with the numerical approximation of multi-dimensional mo-
ment systems and is an extention of the work of M.R.A. Abdel Malik [19]. The classical fluid
descriptions such as the Euler equations and Navier-Stokes equations lose their validity in
rarefied regimes. Those regimes are characterized by Knudsen numbers (Kn) between 0.01 .
Kn . 10. A kinetic model for which the validity extends into the rarefied regime is the
Boltzmann equation (BE). This model also recovers the Euler-equations and Navier-Stokes
equations when Kn → 0. Constructing numerical approximations to the BE is a daunting
challenge because of its high dimensional setting.
The method of moments [14,18] is a promising alternative which tries to simplify the kinetic
model. It creates a hierarchy of approximations to the BE, such that each member of the
hierarchy corresponds to a hyperbolic system of partial differential equations. These equa-
tions generate balance laws for velocity moments of a kinetic density. The system retain
structural features of the BE such as the celebrated Boltzmann’s H-Theorem, i.e. solutions
to the moment system are entropy dissipative.
Using the method of moments leads to the moment closure problem which will use entropy-
based moment closure techniques. Problems pertaining to the analytical formulation and
computational implementation of the moment closure system were investigated in [19]. The
author considered a new class of moment closure approximation for the BE in 1 spatial
dimension. In this class, the velocity moments of exponentials, containing velocity polynomi-
als, can numerically be approximated. He also showed that the system of partial differential
equations using this new class still retains the fundamental properties of the BE.
The current work will consider the extension of this new class to multiple dimensions. In
addition, a Discontinuous Galerkin (DG) finite element method is developed to approximate
the moment systems in the velocity dependence. Particular consideration is given to the
numerical flux in the DG method.
This report presents both the theoretically analysis of the moment system and the DG method
as well as numerical simulations.

Keywords: Boltzmann equation; Discontinuous Galerkin method; Numerical-flux; Moment
closure; Multi-dimensional; Hyperbolic systems; Kinetic theory; BGK-operator
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ñ Number of mole of gas

e Internal energy per unit mass

f Velocity distribution function

9



CONTENTS

k Boltzmann’s constant, = 1.3806488× 1023JK−1

Kn Knudsen number, = λ/L

L Characteristic length of the flow field

M Molecular weight, kg/mol

m Molecular mass, g

n Number density

P Isotropic pressure

pij Anisotropic pressure tensor

Pr Prandtl number

qi Heat flux

R Gas constant 8.314462175JK−1mol−1

T Temperature

t Time

u Bulk velocity of the gas, mean molecular velocity

10



Chapter 1

Introduction

The modeling of gases can be considered either from a macroscopic or microscopic scale.
Observing it from a macroscopic scale, the gas will be treated as a continuous medium and
the desciption is modeled by the fluid variables; mass density, fluid velocity and temperature.
The evolution of these variables are governed by the (compressible) Euler or Navier-Stokes-
Fourier equations. However, the choice of considering it from a macroscopic or microscopic
scale depends on the dimensionless Knudsen number, defined as the ratio of the mean free
path λ to a typically macroscopic length scale L. The mean free path is the averaged distance
a particle travels between collisions. The Knudsen number can be used to define several flow
regimes which are,

• Kn . 0.01: The hydrodynamic regime, which can be wel described by the Euler and
Navier-Stokes equations

• 0.01 . Kn . 10: Transition regime, both the Euler and Navier-Stokes fail. The gas
needs to be describe by e.g. Boltzmann equation or by extended macroscopic models

• Kn & 10: Free molecular flow, the amount of collisions between particles is lower than
the collisions between particles and wall. Therefore, the latter dominates which makes
particle models like the Direct Simulation Monte Carlo (DSMC) method more suitable.

For modeling gases in the transition regime, called rarefied gases, none of the continuum
models are valid. The gas needs to be considered from a microscopic scale in which the
evolution will be describe with the Boltzmann equation. Since the Boltzmann equation can
also be used for Knudsen numbers which are lower than 0.01 or greater than 10, the modeling
of gases from a microscopic scale seems to be a more fruitful way. However, the Euler and
Navier-Stokes equations will be recovered from the Boltzmann equations as Kn→ 0. At the
microscopic scale, the gas will be treated as a collection of particles characterized by their
velocity and position.

For small Knudsen numbers i.e. Kn� 1, the velocity distribution of the particles will ap-
proach a local equilibrium. These can be parametrized by the aforementioned macroscopic
fluid variables which are, mass density, fluid velocity and temperature. As mentioned, the
evolution of these variables are governed by the (compressible) Euler equations, which ap-
proximate the velocity distribution by a local equilibrium or by the Navier-Stokes-Fourier
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CHAPTER 1. INTRODUCTION

equations, which acount for small deviations of the velocity distribution from a local equilib-
rium. As the Knudsen number increases, the basic assumption of the fluid dynamics (which
is λ << L) breaks down and microscale effects or effects of gas rarefaction become important
to desscribe the gas flow. Processes in which this occurs are [27] for instance,

• High altitude flight, where gas pressure and density are very low. The mean free path
becomes so large that the Knudsen number cannot be considered to be small even for
the macroscopic dimensions of the body of a space craft

• Micro channel flow or flow in porous media, the relevant macroscopic length scale L
becomes comparable to the mean free path. The Knudsen number becomes significant

1.1 Content and structure of this thesis

Since this thesis is primarily devoted to obtaining numerical results for the Boltzmann equa-
tion in one and two spatial dimensions, the theory of the Boltzmann equation presented in
this thesis is a recapitulation of the theory which can be found in Levermore [18] and Abdel
Malik [19].

Chapter 2 is a review of the concept of kinetic theory of gases. It introduces the veloc-
ity distribution function f for which the evolution is given by the Boltzmann equation. In
general, the macroscopic properties are the most interested. Therefore, the relation of the
distribution function and the macroscopic properties will also be given.

Chapter 3 presents the Boltzmann equation. The first section presents the Boltzmann equa-
tion itself as well as its three fundamental properties. Next, the notion of the method of
moment is introduced which is then applied to the Boltzmann equation. With the moment
closure problem presented, section 3 considers the closure procedure. This section is a sum-
mary of the chapter 2 and partially chapter 3 of Abdel Malik [19].

Chapter 4 considers the right hand side of the Boltzmann equation which is the collision
integral. Because of its complicated structure, the evaluation and approximation is a difficult
task. The well-known BGK collision model will be introduced which makes the numerical
approximation of the collision intergal tractable. Since every collision model needs to retain
the three fundamental properties of the Boltzmann equation, it will be shown that this is the
case for the BGK model.

Chapter 5 treats the numerical scheme which is the Discontinuous Galerkin finite element
method. Starting with the strong formulation of the closed moment system in order to obtain
the weak formulation after this. Because of the DG method, a numerical flux needs to be
considered which will be derived. In the last two sections, different boundary conditions are
presented and the velocity space integrations needed for the numerical inplementation are
shown.

Finally, chapter 6 contains the numerical simulations of the Boltzmann equation. This con-
tains the results for different number of moment systems as well as convergence tests using
mesh refinements.
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Chapter 2

Concept of Kinetic Theory

This chapter is concerned with a short introduction of the kinetic theory of gases. After
the introduction, the concept of the velocity distribution function f will be treated. Herein,
relations to the number of particles or number density will be given. The last section describe
the relation between this distribution function and the macroscopic properties. To be more
precise, the velocity moments of the distribution function corresponds to different macroscopic
properties. For more detailed introductions on kinetic theory and the Boltzmann equation
see [7, 9, 10,31].

2.1 Introduction

In kinetic theory, gas is considered from a microscopic level of individual molecules which
are in constant motion. The motion of the molecules will be regarded as chaotic and are
continuously colliding with each other or with any present surface. This is where the gas
differs with more ordered states like liquid or solid. Assuming that the laws of interaction
between molecules are known and that the molecules obeying the laws of classical mechanics,
it would in principle be possible to follow each molecule in time given some initial condition
which are not known of course. However, only for very ”small” number of molecules this would
be calculable. Given the fact that there are about 2.7× 1019 molecules in a cubic centimeter
of a gas at atmospheric pressure and a temperature of 0 ◦C, this would be a difficult task
to complete. Fortunately, there is no need for all the detailed information. Knowing the
velocity and position of all the single particles does not give any usable information. The
only useful information are the macroscopic quantities such as pressure, temperature, stress
and density. Furthermore, only the change in those quantitites can be observed [8].
Another thing to notice is the behavior of the particles for different initial conditions: A
slightly different initial condition will give different velocities and positions of the particles.
The point is, one should consider the evolution not of one system but of a sequence of
identical systems in which the initial data differs from each other within a prescribed error.
Thus considering only the behavior of many systems will give a reliable and useful result,
therefore a recourse to statistic should be made.
Since we are talking about probabilities, the particles will not have a definite position and
velocity but different probabilities of having different positions and velocities. Probability
density functions for the gas, F (t,x, ξ), are defined in phase space and specify the probability

13



CHAPTER 2. CONCEPT OF KINETIC THEORY

of finding particles at a given location xi and time t, having a particular gas velocity, ξi. The
phase space is a multi-dimensional space formed by the combination of the physical space and
the velocity space. Macroscopic quantities of the gas are then obtained by taking appropriate
velocity moments of F (t,x, ξ).

2.2 The velocity distribution function

As mentioned earlier, a gas would be completely described if its position, velocity and internal
state of each particle would be known. However, because of the large number of particles, this
would be an unthinkable task. Therefore, the statistical description in terms of probability
distribution are needed. To avoid confusion with different terminologies, a general review
about the distributions will be given.

Consider a gas that is homogeneous in physical space and contains N identical particles. A
particle will have a velocity ξ with components ξ1, ξ2 and ξ3. Similar to the physical space,
these components will define a velocity space in which each particle can be represented. For
simplicity, consider the one dimensional velocity space (which is a line) with component ξ.
If all the velocities of the particles at a certain time instant t and point x are known, then
each velocity could be plotted on this line as a point. This will create a distribution of the
velocities on the one-dimensional velocity space. This distribution is called the probability
distribution function. Because the variable ξ is continuous, −∞ ≤ ξ ≤ ∞, it is also called
the probability density function or the velocity distribution function since it is a distribution
in velocity space. However, given some distribution function, it defines the probability of
having particles with velocity in the range ξ+ dξ. Thus it is defined for a velocity range and
not for a particular velocity.

The velocity distribution function solely depends on ξ and is normalized, which implies,∫
ξ∈RD

f̃(ξ)dξ = 1

Since we assumed that the particles are identical, f(ξ) is called the single-particle velocity
distribution function or just single-particle distribution function. The number of particles
which possess a velocity in the range dξ is,

dN = Nf̃(ξ)dξ

Dividing both side by the total volume V gives the number of particles with velocity in the
range dξ per unit volume,

dn = nf̃(ξ)dξ

with n the number density. Clearly, if the distribution of the particles through space and
time is non-uniform then n := n(t,x). To conclude, the number of particle in the physical
range dx with velocities in the range dξ is,

dN = n(t,x)f̃(ξ)dξdx

We define F(t,x, ξ) = n(t,x)f̃(t,x, ξ) as the single-particle distribution function which is
nonnegative and defined over a single-particle space Ω× RD.

14



CHAPTER 2. CONCEPT OF KINETIC THEORY

2.3 The macrosopic variables

In the previous section, the concept of the velocity distribution function f̃ has been in-
troduced. If the velocity distribution function of the gas is known, then all the macroscopic
properties of the gas are known. Those macroscopic quantities are obtained by finding the mo-
ments of f̃ . The moments are defined as multiplying f̃ by an appropriate velocity-dependent
function and integrating over the entire velocity space.

According to the definition of F(t,x, ξ) in the previous section, F(t,x, ξ)dξdx is the number
of particles at time t in the physical space element dx near x with velocities in the velocity
space dξ near ξ. Integrating F over the entire velocity space ξ, one obtains the total number
of particles per unit volume which is the number density of the particles.
Before introducing the macroscopic properties, let m be the molecular mass. By multiplying
F with the mass m, define f(t,x, ξ) = mF(t,x, ξ) as the one-particle marginal distribution
function which will be called the (phase-space) density. The reason for doing this will become
obvious by the next definitions.

The macroscopic properties will be defined by using components, i.e. the subscript i, j with
i, j = 1, 2, 3 will denote the corresponding variable in x, y, z spatial directions. The density
ρ(t,x) and the mass flow ρu(t,x) in the physical space are,

ρ =

∫
ξ∈RD

fdξ, ρuj =

∫
ξ∈RD

ξjfdξ

The momentum flow and energy per unit volume are,

ρuiuj + pij =

∫
ξ∈RD

ξiξjfdξ,
1

2
ρ|u|2 + ρe =

∫
ξ∈RD

1

2
|ξ|2dξ (2.1)

and the energy flow is,

1

2
ρ|u|2ui + ρeui +

3∑
j=1

ujpij + qi =
1

2

∫
ξ∈RD

|ξ|2ξidξ (2.2)

with qi the heat flux and ”e” is the internal energy per unit mass which are defined as,

qi =
1

2

∫
ξ∈RD

|ξ − u|2(ξj − uj)fdξ, ρe =
1

2

∫
ξ∈RD

|ξ − u|2fdξ

The pressure tensor pij , which plays the role of the stress tensor, is defined by,

pij =

∫
ξ∈RD

(ξi − ui)(ξj − uj)fdξ

It is related to the deviatoric stress tensor τij via pij = δijP−τij , with P = pii/D the isotropic
pressure. Observe that ρe is equal to 1

2 times the trace of the matrix pij . Furthermore,
the diagonal components τii of the symmetric stress tensor are zero for a monatomic gas.
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CHAPTER 2. CONCEPT OF KINETIC THEORY

Using the ideal gas law PV = ñRT , the pressure P can be written as, P = ñRT/V =
(ñM/V )× (RT/M) = ρΘ. The equations in (2.1) can be rewritten as,

ρuiuj + δijρΘ− τij =

∫
ξ∈RD

ξiξjfdξ,
1

2
ρ|u|2 +

D

2
ρΘ =

∫
ξ∈RD

1

2
|ξ|2dξ

Also the energy flow (2.2) can be rewritten as,

1

2
ρ|u|2ui +

D + 2

2
ρΘui −

3∑
j=1

τijuj + qi =
1

2

∫
ξ∈RD

|ξ|2ξidξ

with D the spatial dimension.

In general, moments of arbitrarily high order can be taken. Since the macroscopic prop-
erties can be found at relatively low order of moments, the physical meaning of the higher
order moments become less obvious.
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Chapter 3

The Boltzmann Equation

3.1 Introduction

In the previous chapter, the concept of the velocity distribution function has been introduced
as well as some macroscopic quantities. Those quantities have been expressed through the
velocity distribution function by taking their moments with respect to the velocity ξ. This
function give a statistical description of the gas on the molecular level. The question is, how
to find this velocity distribution function. The answer is given by the Boltzmann equation
which describes the time evolution of the velocity distribution of the gas. The complete
Boltzmann equation is given by,

∂f

∂t
+ ξ · ∂f

∂x
+ a · ∂f

∂ξ
= C (f) (3.1)

Here, a is the particle acceleration due to external forces like gravity and is taken to be
zero in this thesis and ξ is the velocity of the molecule. The term on the right hand side
represents the collision term which describes the effect of the collisions between molecules on
the distribution function.

The phase-space density f(t,x, ξ) is nonnegative and its evolution is described over a single
particle phase space Ω×RD. The collision operator f → C (f) acts only on the ξ dependence
of f locally at each (t,x). A fixed domain Ω ⊂ RD will be considered in which the gas is
composed of a single species of identical particles (a monatomic gas).

Introducing the following notation, the integral of any scalar or vector-valued measurable
function over the D-dimensional Lebesgue measure dDξ will be denoted by,

〈
f
〉

=

∫
ξ
f(ξ)dDξ

It will be assumed that all functions considered within this thesis are Lebesgue measurable
in all variables.

More information about the derivations of the Boltzmann equation and the collision term
can be found in e.g. Shen [11], Cercignani [7, 8] and Bird [4].
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CHAPTER 3. THE BOLTZMANN EQUATION

3.1.1 Properties of the collision operator

The Boltzmann collision operator C has three fundamental properties. It is assumed that the
operator is defined over the domain D(C ) that is contained within the cone of nonnegative
functions of ξ. Its properties are [18,19]:

1. Conservation of Mass, Momentum and Energy
The operator C is assumed to have γ ∈ {1, ξ1, ξ2, ξ3, |ξ|2} as locally conserved quantities:
i.e. 〈

γC (f)
〉

= 0 ∀f ∈ D(C ) (3.2)

The above relations represent the laws of mass, momentum and energy conservation
during collision. It is assumed that there are no further conservation laws and that
every locally conserved quantity is a linear combination of the above relations, so that
for any g = g(v) the following statements are equivalent:

(i)
〈
gC (f)

〉
= 0 ∀f ∈ D(C ) (3.3)

(ii) g ∈ E ≡ span{1, ξ1, ξ2, ..., ξd, |ξ|2} (3.4)

2. Dissipation of entropy: H-theorem
The operator C is assumed to satisfy the local dissipation relation,〈

lnfC (f)
〉
≤ 0 ∀f ∈ D(C ) (3.5)

The local equilibria of C are assumed to be characterized by the vanishing of the local
entropy dissipation rate and to be given by the class of Maxwellian densities which have
the form,

f =M(ρ,u,Θ) =
ρ

(2πΘ)D/2
exp
(
− |ξ − u|2

2Θ

)
(3.6)

for some (ρ,u,Θ) ∈ R+ × RD × R+. More precisely, for every f ∈ D(C ) the following
statements are assumed to be equivalent,

(i)
〈

lnfC (f)
〉

= 0 (3.7)

(ii) C (f) = 0 (3.8)

(iii) f is a Maxwellian density given by 3.6 (3.9)

3. Galilean invariance
The operator C is assumed to commute with translational and orthogonal transfor-
mations. Specifically, given f = f(ξ), then for every vector u ∈ RD and for every
orthogonal matrix O ∈ RD×D define transformed functions Tuf and Tof by,

(i) Tuf = Tuf(ξ) ≡ f(u− ξ) (3.10)

(ii) Tof = Tof(ξ) ≡ f(OT ξ) (3.11)

The kinetic equation 3.1 formally retains Galilean invariance, i.e. whenever f(t,x, ξ)
satisfy 3.1 so do the actions of the Galilean group on f . This implies the Galilean
invariance of the microscopic collisional dynamics.

18



CHAPTER 3. THE BOLTZMANN EQUATION

3.2 Moment system

At first sight, solving the Boltzmann equation (3.1) to obtain the phase-space density f(t,x, ξ)
would be the best choice. However, the amount of information obtained from the phase-space
density f is maybe not so usefull. In most practicle applications, the quantities that are mea-
surable and interesting are the macroscopic quantities such as the density ρ, velocity u and
rescaled temperature Θ. As we have seen in the previous chapter, those quantities are ob-
tained through the multiplication of the velocity distribution function f by either {1, ξ, |ξ|2}
and integration over the velocity space. These averages are referred to as the moments of
the velocity distribution function f . So rather than solving equation (3.1), it is more con-
venient to resolve moments of the Boltzmann equation. Those moments of the Boltzmann
equation govern the evolution of a finite set of velocity moments of f . This approach reduces
the complexity of (3.1) since it replaces the velocity dependence of f by a finite number of
parameters [15,19,21].

The derivation of the monent equations begins with the choice of a linear subspace M of
functions of ξ, usually polynomials of ξ. Denote by θ the dimension of this space and
{mi = mi(ξ)}θi=1 a basis. Also denote the column θ - vector of these basis elements by
m = m(ξ) such that every m ∈M has a unique representation in the form m(ξ) = αTm(ξ)
for some α ∈ Rθ. Consider the space of phase-space density distributions given by,

F := {f ∈ L1(RD) : f  0 and (mif) ∈ L1(RD) ∀i ∈ {1, 2, ..., θ}}

Next taking the moments of the kinetic equation (3.1) over the vector m(ξ),

∂t
〈
mf
〉

+ ∂xj
〈
ξjmf

〉
=
〈
mC (f)

〉
(3.12)

Hence, the moment equations (3.12) is a system of partial differential equations. It should
be mentioned that it is not known whether the quantities appearing in this equation are
well defined for every solution f . However, recent work has shown that this is the case for
space-homogeneous solutions [12]. At this point, it will be assumed that the quantities are
well defined.

It is clear that the moment system (3.12) does not represent a closed system: There are
more unknowns that equations. The flux term

〈
ξjmf

〉
includes moments of one order higher

in ξj than the density
〈
mf
〉
. Thus the time evolution of every moment is dependent on a

moment of one order higher in ξj . In order to obtain a closed system of moment equations,
the flux terms

〈
ξ
j
mf
〉

and the collision terms
〈
mC (f)

〉
needs to be expressed in terms of

the density
〈
mf
〉
. This can be achieved by finding a relation between the moments and the

distribution function. This process is called the moment closure problem.
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CHAPTER 3. THE BOLTZMANN EQUATION

3.2.1 Moment closure

To obtain a closed system of the moment equations, a constitutive relation is needed which
expresses the densities

〈
mf
〉
, fluxes

〈
ξjmf

〉
and collisions terms

〈
mC (f)

〉
as a function

with θ degrees of freedom. This can be done if there exists a function such that f(t,x, ξ) =
F (〈mf〉, ξ). With this function, the fluxes and collisions terms can also be expressed in
terms of the densities. Hence, the number of moments are equal to the degrees of freedom
(unknowns). The closed system has the form,

∂t
〈
mF

〉
+ ∂xj

〈
ξjmF

〉
=
〈
mC (F )

〉
(3.13)

Note that f is an element of an infinite dimensional vector space and cannot be expressed by
a finite number of components. Therefore, any closure will require the approximation of f .
The goal is to find an approximation that, in addition to providing well-posedness of (3.13),
maintains the key properties of (3.1). That is, every closure approximation should yield a
system such that [19],

1. Each member of the hierarchy is hyperbolic and should satisfy some local dissipation
relation.

2. Collisional terms are approximated such that each member of the hierarchy beyond the
second recover the correct Navier-Stokes behavior

To attain these properties, some requirements needs to be imposed on the space M,

I) E ≡ span{1, ξ, |ξ|2} ⊂M:
The span denotes all the linear combination of their components. The spaceM contains
the collection of collision invariants E. Any moment closure will include the conservation
of mass, momentum and energy which is need if any fluid dynamical approximation is
to be recovered.

II) M is invariant under the actions of Tu and To:
The space should be Galilean invariant, which means that M does no change when
ξ → ξ − u and ξ → OT ξ for all ξ ∈ RD and orthogonal matrices O ∈ RD×D

III) The set Mc ≡ {m ∈M : 〈F (t,x,m(ξ))〉 <∞} has a nonempty interior in M:
This requirement implies that M contains suitable functions to ensure integrability.
Thus the subspace Mc of M consists of polynomials m(ξ) for which F (t,x,m(ξ))→ 0
as |ξ| → ∞.

Subspaces that satisfy the aformentioned properties are called admissible and all the other
space inadmissible. Examples of admissible subspaces with maximal degree two and four are,

Maximal degree = 2: M = span{1, ξ, |ξ|2} ≡ E
M = span{1, ξ, ξ ⊗ ξ}

Maximal degree = 4: M = span{1, ξ, ξ ⊗ ξ, |ξ|2ξ, |ξ|4}
M = span{1, ξ, ξ ⊗ ξ, ξ ⊗ ξ ⊗ ξ, |ξ|4}

In two spatial dimensions (considered in this thesis), the admissible subspaces have dimen-
sions 4, 6, 9 and 11 respectively.
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CHAPTER 3. THE BOLTZMANN EQUATION

3.3 Closure procedure

In the previous section the function F (〈mf〉, ξ) was introduced in order to give the closed
system of moment equations (3.13). Now this function needs to be made known for which
an entropy minimization principle will be used. Entropy can be understood to represent
the number of possible arrangements of gaseous particles in phase space corresponding to
a given velocity distribution function. If all the particle arrangements occur with the same
frequency, the velocity distribution functions with the lowest entropy will be the most likely.
Thus if the distribution function of a gas is needed, the best choice is the one which has the
minimum entropy and satisfy the known properties of the gas. It should be mentioned that
some authors prefer to talk about maximum entropy which is equivalent to the minimum
entropy but multiplied with a minus sign [21].
Following the results of [18, 19], Boltzmann’s celebrated H-Theorem will be used to obtain
the minimum entropy. The entropy is denoted by H = H(f) := 〈f lnf − f〉, the flux by
φj = φj(f) := 〈ξjf lnf−ξjf〉 and its production term by σ = σ(f) := 〈lnfC (f)〉. The second
directional derivative of H(f) is,

d2

dε2
H(f + εψ)

∣∣∣
ε=0

=
〈ψ2

f

〉
> 0 (3.14)

for all functions ψ. This implies that H(f) is a strictly convex functional. Relation (3.5)
implies that solutions to the Boltzmann equation formally satisfy the local dissipation law
and thus corresponding to,

∂tH+ ∂xjφj = σ ≤ 0 (3.15)

The minimum entropy distribution function F (〈mf〉, ξ) is defined as the minimizer for the
entropy H(f) subject to the constraint that it yields a given finite set of velocity moments.
The entropy minimization problem is therefore,

argmin
g∈F
{H(g) : 〈mg〉 = ρ} (3.16)

with ρ := 〈mf〉 the velocity moments of f corresponding to the macroscopic properties. If
the minimum entropy distribution F exist then it satisfies (3.15) [18]. The closure obtained
by entropy minimization is called a entropy-based closure. The minimization problem can
be solved by using the technique of Lagrange multipliers. Introducing a vector of Langrange
multipliers λ, the problem becomes a search of finding the stationairy points of the function
Λ(g,λ), having the form,

Λ(g,λ) = H(g) + λ · (ρ− 〈mg〉) (3.17)

At a critical point, the directional derivative is zero, thus

dΛ

dg
= ln g − λ ·m = 0 (3.18)

This implies that the minimizer F is given by,

F (ρ, ξ) = g = exp(λ(ρ) ·m(ξ)) (3.19)
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Recalling requirement (III) from the previous section, exp(λ ·m) is integrable if λ ·m lies in
Mc. The closed moment system can be written as,

∂t
〈
m(ξ)F (ρ, ξ)

〉
+ ∂xj

〈
ξjm(ξ)F (ρ, ξ)

〉
=
〈
m(ξ)C (F (ρ, ξ))

〉
(3.20)

with F ∈ Fm ⊂ F given by,

Fm := {g ∈ F : 〈mg〉 = ρ} (3.21)

The problem with the entropy-based closure given above is that for useful choices of the basis
vector m(ξ) such that {mi}θi=1 span some admissible space, the set defined by densities cor-
responding to physically realizable values of ρ for which the minimizer (3.16) does not exist
is non-empty [19]. The set of densities for which this holds are called degenerate densities.
Hence, this implies that for those densities the exponential closure can not be obtained as
the solution of the entropy minimization problem (3.16).

An important aspect in finding a closed form of the moment system is that any resulting
moment closure system should be well-posed and that it retains the fundamental properties
of the Boltzmann equation. This implies that,

1. The moment closure system (3.20) is a symmetric hyperbolic system

2. Solutions to the moment closure system (3.20) satisfy the dissipation relation (3.15)

3. Equality in the dissipation relation (3.15) is attained if and only if F is a Maxwellian
density given by (3.6)

4. The moment closure system (3.20) retains conservation of mass, momentum and energy
as well as Galilean invariance

In circumstances that the entropy minimization problem (3.16) admits a solution, the closed
moment system (3.20) satisfy all these requirements for which the proofs can be found [18]
and [19, chapter 2].

As mentioned, the assumption that there exist a minimum entropy distribution for the min-
imization problem (3.16) does not always holds. There are realizable values ρ for which no
Langrange multipliers λ can be found such that ρ = 〈m exp(λ ·m)〉. To be more precise,
for any moment system that include super-quadratic polynomial moments, the set contain-
ing all degenerate densities is non-empty. However, moment systems with super-quadratic
polynomials moments are needed in order to obtain the heat flux or the stress tensor.

To circumvent the problem with degenerate densities, one can consider two possibilities.
The first one is to ensures that the values corresponding to degenerate densities will never
be attained in the moment system generated by the entropy closure. The second one is a
relaxation of the entropy minimization problem (3.16). The details for the second case can
also be found in [19, chapter 2].

Another problem associated with minimal-entropy closure, pertains to computability of mo-
ments. Consider a moment system containing super-quadratic polynomials moments and
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CHAPTER 3. THE BOLTZMANN EQUATION

for which there exists a solution to the minimization problem (3.16) given some realizable
values ρ. Suppose that this minimizer is given by F = exp(λ0 + λ1ξ + λ2ξ

2 + λ3ξ
3 + λ4ξ

4).
To obtain the macroscopic properties, one needs to calculate its moments which includes
integration over the velocity domain. However, this is a notoriously difficult problem since
the distribution function F contains a super-quadratic velocity polynomial. This problem
has been investigated in [19] in which the author proposed a new class of moment closure
approximation which makes the moment system more tractable. An entropic projection E of
the same exponential form can be factorized such that the entropy minimization distribution
can be written as,

F = E(λ0) exp((λ− λ0) ·m) (3.22)

with E corresponding to a global or local equilibrium distribution for which λ0 is known.
Using the limit definition of the exponential function gives,

F = E(λ0) lim
n→∞

(
1 +

(λ− λ0) ·m
n

)n
(3.23)

Truncation of the limit at some N will give the approximated distribution F̃ ,

F̃ = E(λ0)
(

1 +
λ1 ·m
N

)N
(3.24)

with λ1 the unkown Langrange multipliers. Applying this approximation to the closed mo-
ment system (3.20) yields an approximation of the closed moment system,

∂t

〈
m(ξ)E(λ0)

(
1 +

λ1 ·m
N

)N〉
+ ∂xj

〈
ξjm(ξ)E(λ0)

(
1 +

λ1 ·m
N

)N〉
=
〈
m(ξ)C (E(λ0)

(
1 +

λ1 ·m
N

)N〉
(3.25)

The author has shown that the above system still satisfies the properties of the Boltzmann
equation namely, dissipation of a modified entropy and hyperbolicity. These proofs will not
be shown here but can be found in [19, chapter 3].

Within this work, the equilibrium distribution E will correspond to a Maxwellian distri-
bution M such that the entropy minimization distribution is given by,

F̃ =M(λ0)
(

1 +
λ1 ·m
N

)N
(3.26)

23



Chapter 4

Collision integral

One of the main difficulties to deal with the Boltzmann equation is the expression of the
collision term, which is given by [8],

C (f) =

∫
R3

∫
B−
{f ′f ′∗ − ff∗}B(Θ, V )dξ∗dΘdε (4.1)

Its dependence on two different density functions f and f ′ and the quadratic nonlinearity
of the density functions makes it a complicated structure. Therefore, the evaluation of this
collision term in order to find solutions of the Boltzmann equation, is quite a challeging
proposition. As a consequence, different kind of models have been developed over the years
which replace the collision term by a collision model. Those models seek to maintain the
fundamental properties but try to make direct evaluation simpler.
The most widely studied and well-known collision model is the BGK model, named after
those who proposed it Bhatnagar, Gross and Krook [25]. The BGK model is given by,

C̃ (f) = ν(M− f) (4.2)

with ν a positive collision frequency which is independent of ξ but depends on the density ρ
and the temperature T . M is the Maxwellian distribution function (3.6) constructed from
the first three moments of f . This implies that the density ρ, velocity u and temperature T
of M and f are the same.
Note that the nonlinearity of the BGK model is worse than the nonlinearity of the collision
integral C (f). C (f) is only quadratic in f whereas in the BGK model, f appears in the
numerator and in the denominator of the Maxwellian M. Although this disadvantage, the
BGK model is still considerably more tractable than the original collision integral and the
evaluation will be no harder than the fluxes. One of the major disadvantage is that the
BGK model predicts a Prandtl number (Pr = cpµ/κ with cp the specific heat at constant
temperature) of one rather than a value close to 2/3 appropriated for monatonic gases [18].
This implies that the model can not match the viscosity µ and the thermal conductivity κ of
a real gas the same time.

Other models have been developed to recover the correct Prandtl number. One of those
models is describe by Holway [8], which proposed the so-called ellipsoidal statistical BGK
model (ES-BGK). In this model, the Maxwellian distribution M in (4.2) is replaced by an
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anisotropic Gaussian distribution G given by,

G(ρ,u,T ) =
ρ√

det(2πT )
exp

(
−(ξ − u) · T −1(ξ − u)

2

)
with T given by,

T =
RT

MPr
I − (1− Pr)p

ρPr

Note that if Pr = 1, then one will recover the BGK model. Two other models which recover
the proper Prandtl number are given by Lebowitz, Frisch and Helfand called the integro-
differential model and by Struchtrup called the BGK model with velocity-dependent collision
frequency [8,26]. Numerical comparison between the BGK model, ES-BGK model and some
other models can be found in [1, 24].
A new approach is given by Levermore which introduces in [18] a generalization of the BGK
model. This model adds different relaxation terms towards ”generalized” Maxwellians corre-
sponding to different collision frequencies νi.
Although all these models improve the approximation of the Prandtl number w.r.t. the BGK
model, the work in this thesis does not require accurate estimation of the Prandtl number.
Therefore, the focus will be on the original BGK model.

4.1 Properties of the BGK model

The collision operator C (f) satisfy three fundamental properties which were treated in section
3.1.1. Any approximation of the collision operator needs to satisfy these properties and thus
it remains to check whether this is the case for the BGK operator (4.2).

1. Conservation of Mass, Momentum and Energy
It can be observed that the BGK operator C̃ (f) has γ ∈ {1, ξ, |ξ|2} as locally conserved
quantities and thus satisfying,〈

γC (f)
〉

= 0 ∀f ∈ D(C )

Using the result below, equation (4.3), the only way that the integral can vanish is
when f = M since ν > 0. Thus the only locally conserved quantities are those in
E = {1, ξ, |ξ|2}, thereby showing the equivalence between statements (3.3) and (3.4).

2. Dissipation of entropy: H-theorem
It needs to be verified that if C̃ (f) multiplied by lnf and integrate over the whole
velocity domain, the results is smaller or equal to zero for all f ∈ D(C ). Let g ∈ E ≡
span{1, ξ, |ξ|2}, since the first three moments ofM and f are the same it follows that,〈
(M−f)g

〉
= 0. Note that, lnM∈ E and thus

〈
(M−f)lnM

〉
= 0. Using this relation,〈

C̃ (f)lnf

〉
=

〈
ν(M− f)lnf

〉
=

〈
ν(M− f)ln

f

M

〉
≤ 0 (4.3)

where the inequality is obtained by using ∀x, y ∈ R, (y − x)lnxy ≤ 0.
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3. Galilean invariance
The BGK operator C̃ (f) commute with the translational and rotational tranformation
since E is an admissible space, implying that E is Galilean invariant.

The collision frequency ν in equation (4.2) is sometimes written as 1/τ with τ the re-
laxation time. Following Levermore [18], the frequency is given by ν = ρΘ/µ(ρ,Θ), with
µ the dynamic viscosity. Using this frequency, the correct Navier-Stokes equations can be
recovered as a first-order correction to the Euler equations by using a Chapman-Enskog ex-
pansion. Thus if the Navier-Stokes viscosity is known, the collision term can be computed
very easily. But the viscosity can only be otained by solving the Navier-Stokes equations
which makes solving the Boltzmann equation needless. Moreover, for simulations within the
rarefied regime, the viscosity is not known since the Navier-Stokes is not applicable anymore.

The most usefull solution would be a relation between the Knudsen number Kn and the
frequency ν. This result is included in Bird [3] and Chen [11]. Herein, the viscosity ob-
tained from the transport theory of Chapman-Enskog, is given for the hard sphere model.
This model assumes that the particles are spherical, moving along straight lines and collide
elastically, like billiard balls. The viscosity is given by,

µ =
5

16

√
πmkT

1

πd2

with m the molecular mass, k the Boltzmann constant and T the temperature. To eliminated
the cross section πd2, the following definition of the mean free path λ will be used [31],

λ =
1√

2πd2n
(4.4)

with n=N/V denotes the number of molecules per unit volume and ”d” the diameter of the
molecule. Using this relation and kT = Θm we obtain,

λ =
16µ

5

√
1

2πρ2Θ

where ρ = nm is the gas density. Replacing the viscosity by µ = ρΘ/ν = ρΘτ to obtain,

λ =
16τ

5

√
ρ2Θ2

2πρ2Θ
=

16τ

5

√
Θ

2π
=

16τ

5

√
P

2πρ

with P = ρΘ. The relaxation time can now be related to the Knudsen number,

τ =
5KnL

16

√
2πρ

P
(4.5)

Here, L is the typical length scale which will be equal to one for all the simulations. The
same result is obtained in the paper of McDonald [20]. The relaxation time for a similation
is fixed in time and the values for the pressure P and density ρ are determined locally during
the computation; See chapter 2.
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Chapter 5

Numerical scheme

In this section, we present a numerical scheme for finding solutions of the closed moment
system (3.25). Since this thesis is devoted to obtaining solutions for higher spatial dimension,
we consider the spatial domain Ω ⊂ Rd with d = 1, 2. Although the one-dimensional case has
been investigated in different papers, see for example [23], [22] and [5], the moment closure
approach in this work is different and is therefore included as well.

5.1 Discontinuous Galerkin

The system of partial differential equations we are dealing with belongs to the class of hy-
perbolic equations. In general, the solutions to these class of equations can be discontinuous.
The Discontinuous Galerkin method (DG) will therefore be the most suitable method. Like
in the classical Finite Element Methods (FEM), the unknowns are represented by piece-
wise polynomial functions. Whereas in the FEM, the polynomials are continuous across the
element interface, for the DG method the polynomials are discontinous at the interfaces.
Therefore, the solution itself is discontinuous (double-valued) at the element boundaries as
well as the fluxes. Since the flux is not allowed to be double-valued, in order to uniquely
define the boundary integral of the flux, a numerical flux will be defined.

Let Ω be the spatial domain subdivided into finite-size elements κi and denote by T =
{κ1, κ2, ...} the element set. Assume that the elements κi are stationary, and non-overlapping
[2], [19]:

• Ω ≡
⋃
κi∈τ

κi

• κi ∩ κj = ∅, i 6= j

The discretized domain is denoted by Ωh. For the geometries considered in this thesis, the
domain Ω is identical to Ωh. However, for more complex geometries the discretized domain Ωh

will be an approximation for the physical domain Ω. Let Pk(Q) denote the set of polynomials
of degree at most k ≥ 0 in a domain Q ⊂ Rd. Using the DG method, the following finite
element space will be used,

Vkh = {w : ∀κ ∈ τ,w|k ∈ (Pk)θ} (5.1)
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with θ the dimension of the vector m(v). Note that Vkh contains piecewise discontinuous
polynomials.

5.1.1 Strong formulation

First introduce the following shorthand notations,

U(λ) =
〈
mF̃

〉
J j(U(λ)) =

〈
ξjmF̃

〉
Q(U(λ)) =

〈
mC (F̃ )

〉
with F̃ given by (3.24). The closed moment system (3.25) can be rewritten as,

∂tU + ∂xjJ j(U) = Q(U) (5.2)

Complementing it with an initial condition to set up Cauchy’s initial value problem,

P
{
∂tU + ∂xjJ j(U) = Q(U), Ω× [t0, tN ]
U(λ(x, t0)) = U0(x)

(5.3)

Supplemented with the convex entropy extension of the form given in (3.15). As discussed
in the previous chapter, the collision operator, C (F ) will be replaced by the BGK operator
C̃ (F ) such that the collision term Q(U) is given by,

Q =
〈
mC̃ (F̃ )

〉
= −1

τ

(
〈mF̃

〉
−
〈
mM

〉)
(5.4)

with τ the relaxation time given in (4.5) and M a Maxwellian distribution.

5.1.2 Weak formulation

To obtain the weak formulation for the DG finite-element method from the strong form (5.2),
the following consecutive steps needs to be performed,

Step 1: multiplying with a test function φ(x) ∈ Vkh and integrate over Ω∫
Ω
φ · ∂tU(λ) dx+

∫
Ω
φ · ∂xjJ j(λ) dx =

∫
Ω
φ ·Q(λ) dx (5.5)

Step 2: replace integral over space with summation over the elements κ∑
κ

∫
κ
φ · ∂tU(λ) dx+

∑
κ

∫
κ
φ · ∂xjJ j(λ) dx =

∑
κ

∫
κ
φ ·Q(λ) dx (5.6)

Step 3: applying the product rule∑
κ

∫
κ
φ · ∂tU(λ) dx +

∑
κ

∫
κ
∂xj

(
φ ·J j(λ)

)
dx−

∑
κ

∫
κ
J j(λ) · ∂xjφ dx

=
∑
κ

∫
κ
φ ·Q(λ) dx (5.7)
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Step 4: applying the Gauss divergence theorem and replace the flux J j within the integral

over the element boundary ∂κ with the numerical flux J̃ j∑
κ

∫
κ
φ · ∂tU(λ) dx +

∑
κ

∫
∂κ
φ · J̃ j(λ(x−),λ(x+);n) ds−

∑
κ

∫
κ
J j(λ) · ∂xjφ dx

−
∑
κ

∫
κ
φ ·Q(λ) dx = 0 (5.8)

with ∂κ the boundaries of element κ. Here, x−/+ denotes the left and right interface states.
Denote the left hand side of (5.8) by B(λ,φ) then the problem statements is as follows,

Find λ(x, t) ∈ Vkh such that B(λ,φ) = 0, ∀φ ∈ Vkh (5.9)

Note that the summation of the boundary integral ∂κ can also be rewritten as,∑
κ

∫
∂κ
φ · J̃ j(λ(x−),λ(x+);n) ds =

∑
i

∫
Σi

(
φ− · J̃ j(λ−,λ+;n−) + φ+ · J̃ j(λ−,λ+;n+)

)
dσ

+
∑
b

∫
Γb

φ ·J j(λ
∗) dσ (5.10)

with λ−/+ = λ(x−/+), n−/+ the unit normal vector pointing to the exterior of element κ−/+.
The summation over Σi denotes the internal element boundaries and Γb the boundaries of
the computational domain. λ∗ is used to weakly prescibe the boundary conditions. By
considering that n−+n+ = 0 and using the conservation property of the numerical flux, see
section 5.3, equation (5.10) can be rewritten as,∑

κ

∫
∂κ
φ · J̃ j(λ(x−),λ(x+);n) ds =

∑
i

∫
Σi

(
φ− − φ+

)
· J̃ j(λ−,λ+;n−) dσ

+
∑
b

∫
Γb

φ ·J j(λ
∗) dσ (5.11)

5.2 Time derivative

For the time derivative ∂tU(λ) a forward difference approximation will be used. The forward
difference approximation, also called the explicit (or forward) Euler method, is used to ap-
proximate the first derivative to either time t or spatial variable x. Let the step size in time
be ∆t, then the one-step scheme for the ODE du/dt = f(u, t) is,

1

∆t

(
un+1 − un

)
= f(un, tn)

with un the approximation of the solution u at time tn. The solution at the new time
instant un+1 is defined by the solution at the current time un. Using this forward difference
approximation, the weak formulation (5.8) can be written as,∫

Ω
φ · U(λn+1)−U(λn)

∆t
dx +

∑
κ

∫
∂κ
φ · J̃ j(λ

n(x−),λn(x+);n) ds−
∑
κ

∫
κ
J j(λ

n) · ∂xjφ dx

=
∑
κ

∫
κ
φ ·Q(λn) dx (5.12)

29



CHAPTER 5. NUMERICAL SCHEME

5.3 Numerical flux

The DG method requires no continuity across inter-element boundaries. Thus, let ∂κ = κj∩κi
with i 6= j be an inter-element boundary then the solution from the left element U j and right
element U i at the boundary are not the same. The same is true for the fluxes from both ele-
ments J j and J i. So the discontinuities at the inter-element boundaries and the boundaries
of the computational domain can be conceived as a local Riemann problem. The solution
of the local Riemann problem is the best option to determine the numerical fluxes, but can
be complicated or numerical expensive. Moreover, there is no need to get the exact solution
since the discretization of the domain or other approximations will give to numerical errors.
An approximation of the exact solution of the Riemann problem will be almost as good as
the exact solution.
Several approximate Riemann solvers have been developed during the last decades, e.g.
Rosanov flux (also called Local Lax Friendrichs flux), Roe flux, Harten-Lax-van-Leer and
Osher-Solomon, see [30]. The selected numerical flux should satisfy certain conditions: (1)
satisfy the correct jump condition for the existing shocks, (2) satisfy an entropy condition in
order to find only physically correct shocks and (3) be stable [16]. A numerical flux which
satisfy all these conditions is the Osher-Solomon flux. An additional attractive feature is that
this flux is very robust.

To uniquely defined the integration over the inter-element boundary and to prescibe the
boundary date in a weak sense, a numerical flux needs to be introduced. This is a vector-
valued function J̃ (λ(x−),λ(x+); n) : Rθ × Rθ × RD → Rθ which is single-valued on the
element boundaries. Furthermore, it needs to satisfy the following properties [19],

• Consistency: consistency is obtained if the numerical flux reduces to the physical flux
if identical state arguments are used for the numerical flux

J̃ (λ(x),λ(x); n) = J (λ) · n

• Discrete cell conservation: This property ensures that the fluxes from adjacent cells
sharing a mutual interface cancel when summed. This can be written as,

J̃ (λ(x−),λ(x+); n) = −J̃ (λ(x−),λ(x+);−n)

Since the Osher-Solomon flux possess nice properties, it has been used as the numerical
flux within this thesis. First let’s introduce appropriate notation. A complete review can be
found in [13]. The Jacobian matrix of the flux vector J is given by,

A(U) =
∂J (U)

∂U

which can be diagonalized because of the hyperbolicity of the moment system,

A(U) = R(U)Λ(U)R−1(U)

with R(U) the matrix containing the right eigenvectors of A(U), R−1(U) its inverse and
Λ(U) a diagonal matrix whose diagonal entries are the real eigenvalues λi. Also introduce
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the following notations,

A+(U) = R(U)Λ+(U)R−1(U)

A−(U) = R(U)Λ−(U)R−1(U)

|A(U)| = R(U)|Λ(U)|R−1(U)

here Λ±(U) is a diagonal matrix containing only the positive(+) or negative(−) eigenvalues
and |Λ(U)| contains the absolute value of the eigenvalues |λi|. The classical Osher-Solomon
numerical flux is defined as,

J̃ (Uj ,Uj+1) = J+(Uj) + J−(Uj+1) (5.13)

with corresponding Jacobians

A+(U) =
∂J+(U)

∂U
, A−(U) =

∂J−(U)

∂U
(5.14)

Functions with satisfy (5.13) and (5.14) are in general difficult or impossible to find. However,
combining (5.13) and (5.14), the numerical Osher-Solomon flux can be rewritten as,

J̃ (Uj ,Uj+1) =
1

2

(
J (Uj) + J (Uj+1)

)
− 1

2

∫ Uj+1

Uj

∣∣A(U)
∣∣dU (5.15)

In order to use the above numerical flux, the integral in phase-space needs to be evalu-
ated. Note that the integration depends on the chosen path. To make this integration more
tractable and to keep is nice properties, Dumbser and Toro [13] choose to connect the two
states by a linear path Ψ(s) = Uj + s

(
Uj+1−Uj

)
with 0 ≤ s ≤ 1. This function is Lipschitz

continuous and satisfies Ψ(0) = Uj and Ψ(1) = Uj+1. With this straight line path Ψ(s),
the numerical flux is defined by,

J̃ (Uj ,Uj+1) =
1

2

(
J (Uj) + J (Uj+1)

)
− 1

2

(∫ 1

0

∣∣A(Ψ(s))
∣∣ds)(Uj+1 −Uj) (5.16)

To avoid analytical integration, the integral will be evaluated numerically with a Gauss-
Legendre quadrature rule. Let sj be the integration points and wj its weights in the interval
I = [0, 1], the generalized numerical Osher-Solomon flux can be expressd as,

J̃ (Uj ,Uj+1) =
1

2

(
J (Uj) + J (Uj+1)

)
− 1

2

( G∑
j=1

wj
∣∣A(Ψ(sj))

∣∣)(Uj+1 −Uj) (5.17)

with G as the total number of integration points. It can be observed that the complete eigen-
structure of the system at the integration points are needed to compute the flux. Although
in this thesis it was not difficult to compute these numerically there can be systems for which
this is difficult. For those situations, Castro et. al. [6] proposed a way in which the absolute
value of the Jacobian matrix is approximated.
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5.4 Boundary conditions

For simulation of gas flows in a bounded domain or around bodies, the Boltzmann equation
must be accompanied with boundary conditions to obtain accurate solutions. The boundary
conditions describe the interaction of the gas with the a surface, in this case a solid wall.
However, to write down the correct boundary conditions is a difficult task. It needs the
knownledge of the structure of surface layers of the solid walls. If a particle impinges upon
a surface, it is absorbed and may form chemical bonds, become ionized or displace surface
particles. The smoothness and temperature of the surface also influence the interaction as
well as heating the surface. So all those dependencies makes it a physical complex problem
for both theoritical and experimental research. Therefore, the gas-surface interaction is an
area of research by itself [8, 11].

As mentioned in the previous section, a numerical flux needs to be introduced because of
the DG method. The inter-element boundaries containing a flux J from the left and right
element. Something similar happens at the boundaries, but only the outgoing flux J is given.
This is the flux from the element within the domain. The incoming flux needs to be imposed.
So defined the outgoing and incoming half fluxes as,

J +/− =

∫
ξ·n≥0/ξ·n≤0

m(ξ)⊗ ξFdξ

with n the outward unit normal vector. The incoming flux is defined by specifing the incoming
distribution F . In Le Tallec et. al. [28], [29], three different types of incoming distributions
are defined, which are simple and usefull for practical applications. All these types will
be discussed below. Furthermore, let f+ = f(x, ξ, t)|ξ·n≥0 and f− = f(x, ξ, t)|ξ·n≤0 the
distribution of the incident particles and the reflected particles.

• Specular reflection
This model assumes that the surface is perfectly smooth and that the particles reflect
off of the wall are elastic spheres, which implies that the normal to the surface reverses
its direction. Thus the angle of the reflected particle is similar to the angle of incidence
and the magnitude of the velocity is the same but its direction is reversed. The velocity
of the reflected particle is, ξ′ = Rξ = ξ− 2(ξ ·n)n, with ξ the velocity of incidence. In
terms of the distribution function f , this becomes,

f(x, ξ′, t) = f(x,Rξ, t), ∀ξ′ with ξ′ · n ≤ 0

• Reflection with full accommodation
Once the particles are absorbed by the surface, they will be re-emitted with a Maxwellian
distribution.

f−(ξ) =M[ρ,uW ,ΘW ](ξ) =
ρ

(2πΘW )D/2
exp
(−|ξ − uW |2

2ΘW

)
with ΘW and uW the rescaled temperature and velocity imposed at the wall. Assuming
that the wall does not collect particles, the ”density of the wall” is given by,∫

ξ∈RD

ξ · n(f− + f+)(x, ξ)dξ = 0 (5.18)
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• Maxwell accommodation
This type of condition is a linear combination of the first two and is parametrized by
k(x) ∈ (0, 1) such that

f−(x, ξ) = k(x)f+(x,Rξ) + (1− k(x))M(ρ,u,Θ)

together with condition (5.18).

To get the macroscopic flux J +/− from the above formula, it is assumed that these
conditions hold true in average if the solution of the Boltzmann equation f is replaced by
the approximated distribution function F̃ (3.24). This implies,∫

ξ·n≤0
m(ξ)⊗ ξ

[
(F̃−(x, ξ)− k(x)F̃+(x,Rξ)− (1− k(x))M(ρ,u,Θ)

]
dξ = 0

and for the ”wall density” (5.18),∫
ξ∈RD

ξ · n(F̃+ + F̃−)(x, ξ)dξ = 0

Hence, the incoming flux imposed at the boundary is,

J − =

∫
ξ·n≤0

m(ξ)⊗ ξ
[
k(x)F̃+(x,Rξ) + (1− k(x))M(ρ,u,Θ)

]
dξ

With the incoming flux defined, the numerical flux at the boundary can be evaluated with
the Osher-Solomon numerical flux. Remember that also the solution U(λ−) corresponding
to the flux J − is needed which can be obtained by,

U(λ−) =

∫
ξ·n≤0

m(ξ)
[
k(x)F̃+(x,Rξ) + (1− k(x))M(ρ,u,Θ)

]
dξ (5.19)

The integrations over the half velocity space, which is either from 0 to ∞ or −∞ to 0 are
evaluated by applying the following rule,∫ 0

−∞
e−v

2
vkdv =

1

2
Γ
(1 + k

2

)
(−1)k,

∫ ∞
0

e−v
2
vkdv =

1

2
Γ
(1 + k

2

)
The function Γ : R+ → R is called the complete gamma function which is defined by [17],

Γ(x) =

∫ ∞
0

tx−1e−tdt

5.5 Velocity space integration

The calculations of the integrals over the velocity space ξ will be performed numerically by
using the Gauss-Hermite quadrature rule. This rule is related to the Gaussian quadrature
rule and yield an exact solution for polynomials of degree 2n− 1 or less with n the number
of integration points. It is defined by,∫ +∞

−∞
e−x

2
f(x)dx ≈

n∑
i=1

wif(xi) (5.20)
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with xi the integration points and wi the corresponding weights. In the case when F =

M(ρ,u,Θ) is a Maxwellian density or F =M ·
(
1 + ζ·m(ξ)

N

)N
, with M a local Equilibrium,

the integration of
〈
ξkm(ξ)F

〉
are similar. However, the implementation for the latter can be

difficult, especially for the two-dimensional case. Because only R1 and R2 spatial dimension
are considered, the integration over the velocity space in the next example will be over R2.
The integration over the one-dimensional velocity space will be similar but simpler. Suppose
the following integration,

〈
M ξβ1

k ξβ2
l

〉
=

∫ +∞

−∞

∫ +∞

−∞

ρ

2πΘ
exp
(−‖ξ − u‖22

2Θ

)
ξβ1
k ξβ2

l dξk dξl (5.21)

with β1, β2 ≥ 0. In order to be able to apply the Gauss-Hermite rule (5.20), a change of
variable needs to be done,

z2
1 + z2

2 = |z|2 =
|ξ − u|2

2Θ
=

(ξk − uk)2

2Θ
+

(ξl − ul)2

2Θ

z1 =
ξk − uk√

2Θ
, z2 =

ξl − ul√
2Θ

ξk =
√

2Θz1 + uk, ξl =
√

2Θz2 + ul (5.22)

Substitute (5.22) into (5.21) to obtain,〈
M ξβ1

k ξβ2
l

〉
=

ρ

2πΘ

∫ +∞

−∞

∫ +∞

−∞
exp(−z2

1)exp(−z2
2) (
√

2Θz1 + uk)
β1 (
√

2Θz2 + ul)
β2 (
√

2Θ)dz1

√
2Θdz2

=
ρ

π

∫ +∞

−∞
exp(−z2

1)(
√

2Θz1 + uk)
β1dz1

∫ +∞

−∞
exp(−z2

2)(
√

2Θz2 + ul)
β2 dz2 (5.23)

Now, (5.23) has the right form to apply the Gauss-Hermite rule,

〈
M ξβ1

k ξβ2
l

〉
≈ ρ

π

n∑
j=1

wj(
√

2Θzj + uk)
β1

n∑
i=1

wi(
√

2Θzi + ul)
β2 (5.24)
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Numerical simulations

This section considers the results of the numerical simulations. First, the solutions for the
Euler equations versus the higher order moment systems with small Knudsen number will
be presented. After that, the simulation of a rarefied gas is considered for which different
order moment systems are used. Finally, a mesh convergence study will be presented. All
the results are obtained for the 1 and 2 spatial dimension. The order of the basis functions
are p = 0 for both spatial dimensions.

6.1 One-dimensional

The numerical results for the density are presented by considering the normalized density ρ0

which is defined as,

ρ0 =
ρ− ρD
ρU − ρD

where the subscribe U denotes the upstream and D the downstream states. For the simua-
tions in which the number of moments is higher than 3 (Euler equations), the approximated
distribution function F̃ uses a Maxwellian prefactor M. This prefactor corresponds to the
solution of the 3 moment systems at the final time which is in most cases T = 0.1.

The results presented in the sections below are obtained by the following problem setting:

• The domain of computation is Ω = [0, 1]

• The initial condition consist of a Riemann problem with a left state (L) and a right
state (R). The states are separated by a single discontinuity at x = 0.5. The values for
the left and right state can be found in tables.

• Dirichlet boundary conditions are used for which the values at the left and right bound-
ary are given by their initial conditions.

6.1.1 Euler versus higher order moment systems

As the 3 order moment system is equivalent to the Euler equations, the solutions should be
identical. Also the solutions to the higher order moment systems should be similar to the
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Table 6.1: Simulation properties

ρL uL PL ρR uR PR Kn ∆t ∆x Time

1.0 0.0 1.0 0.5 0.0 0.4 0.0001 0.05×∆x 1/512 0.1
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Figure 6.1: The comparison of the normalized density ρ0 and the heat flux q between the
Euler solutions and the moment systems with Kn = 0.0001

Euler solution when using a small Knudsen number. The results of the normalized density
and heat flux are shown in figure 6.1.

Figure 6.1 depictes the solutions of the Euler equations and the moment systems. The
structure of the solution of the Riemann problem for the Euler equations consists of a rar-
efaction wave, contact discontinuity and a shock wave [30]. The rarefaction wave consists of
a continuous density, velocity and energy between the two states. For a contact discontinuity,
the velocity and pressure are continuous but the density and energy discontinuous. In the
case of a shock wave, all the quantities are discontinuous across the shock front. It can be
observed that the solutions to the moment systems are in close agreement with the Euler
equations and containing the three waves of the solution of the Riemann problem, i.e. a
rarefaction wave for 0.3 < x < 0.4, contact discontinuity in the vicinity of x = 0.5 and a
shock wave near x = 0.7. Although the wave near x = 0.7 looks like a rarefaction wave,
the velocity and energy near x = 0.7 are also discontinuous and thus a shock wave. Because
of the small Knudsen number, the solutions of the moment systems should converge to the
Euler solutions once Kn→ 0. Furthermore, the heat flux can not be predicted by the Euler
equations and will therefore be zero. This result is also obtained by the moment systems in
which the order of the predicted heat flux is 10−3 and thus relatively small. Observed that
the region in which the moment system is not in local equilibrium is small compared to the
domain of interest.
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6.1.2 Transition regime

Figure 6.2 depicts the numerical results for the transition regime, lying between the continuum
and free-molecular regime. The simulation properties for the Maxwellian prefactor M and
the moment systems are the same and given in table 6.2.

Table 6.2: Simulation properties

ρL uL PL ρR uR PR Kn ∆t ∆x Time

1.0 0.0 1.0 0.5 0.0 0.4 0.01 0.05×∆x 1/512 0.1
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Figure 6.2: The normalized density ρ0 and the heat flux q for a rarefied gas corresponding
to Kn = 0.01

In the transition regime, the 3 moment system gives an identical result as the one obtained
in figure 6.1 since it can only captured flows in thermodynamic equilibrium. Due to the
cancellation of the collision term, there is no dependence on the Knudsen number. The
solutions corresponding to the higher order moment systems are quite similar to each other
but distinct from the 3 moment system. For the non-equilibrium solutions, the discontinuities
appearing in the density of the 3 moment system can still be identified but are more diffuse.
Therefore, the transition between the left and right initial states are smoother.

6.1.3 Modified Maxwellian prefactor

The simulations for the transition regime could only be performed with a maximum number
of moments equal to 6. For higher order of moments, the Newton method used to obtain the
vector of closure coefficients λ did not converge. After investigating the problem, it turns out
that at the point x∗ and time t∗ where the Newton iteration did not converge, the condition
number of the tangent matrix increases to the order of 107. Hence an error of the order 10−8

could not be obtained anymore.
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A way to circumvent this problem is by decreasing the pressure P of the Maxwelllian
prefactor M. The condition number becomes small enough such that a numerical solution
can be obtained. Figure 6.4(a) shows the Maxwellian distribution function corresponding to
the different pressure values P . Figure 6.4(b) shows the condition number at the point x∗

and time t∗ at which the Newton method does not converge for P = 1.0 and does converge
for P = 0.7. Figure 6.3 depicts the results of the normalized density and heat flux if the
pressure has been change to P = 0.7.

By decreasing the pressure, numerical simulations including the 9 moment system can be
performed. In addition, the results do look similar to the results obtained in figure 6.2 for the
3,4 and 5 moments. By even further decreasing the pressure, simulations with 9 moments
and higher can be performed. This seems to be a promising step forwards. However, in order
to use this result there needs to be a relation between the pressure P and for example the
number of moments. This has not been found yet.

Table 6.3: Simulation properties for the Maxwellian prefactor M

ρL uL PL ρR uR PR Kn ∆t ∆x Time

1.0 0.0 0.7 0.5 0.0 0.7/2.5 0.01 0.05×∆x 1/512 0.1

Table 6.4: Simulation properties for the higher order moment system

ρL uL PL ρR uR PR Kn ∆t ∆x Time

1.0 0.0 1.0 0.5 0.0 0.4 0.01 0.05×∆x 1/512 0.1
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Figure 6.3: The normalized density ρ0 and the heat flux q for a modified Maxwellian prefactor
M
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Figure 6.4: The Maxwellian distribution function corresponding to P = 1.0 and P = 0.7;
The condition number at the point x∗ and time t∗ at which the Newton method does not
converge if P = 1.0 and does converge for P = 0.7

6.1.4 Mesh convergence

In order to investigate the accuracy of the numerical solutions under mesh refinements, a
convergence study has been carried out. Let u ∈ RD and uj its elements with j = 1, .., D.
Then the error ε is defined as,

ε =

(
D∑
j=1

‖uhj − u
ref
j ‖

2
L2(Ω)

)1/2

(6.1)

where uref is an approximation to the exact solution which is obtained with a very dense
mesh. Furthermore, the solution uj corresponds to the solution at the final time T = 0.05.
For the simulations, the timestep is fixed at ∆t = 6.25× 10−5, independent of the number of
elements.

Table 6.5: Simulation properties

ρL uL PL ρR uR PR Kn ∆t Time

1.0 0.0 1.0 0.5 0.0 0.4 0.01 6.25×10−5 0.05

Continuous initial condition
The optimal convergence rate for the L2 error is equal to r = p + 1 with p the order of

the basis functions which is equal to zero for all the simulations. Hence the optimal rate is
equal to r = 1. It can be observed in figure 6.5 that this is the case if a continuous initial
condition is used. Even for higher order of moments, the same convergence rate is achieved.
For the case of a discontinuous initial condition depicted in figure 6.6, the optimal rate is not
achieved. In this case, the convergence rate tends to converge to 1/2 for every moment system.
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Figure 6.5: The continuous initial condition of the normalized density ρ0 and the error ε
versus the degrees of freedom 1/h

The reason why optimal convergence can not be achieved in the case of discontinuous
initial condition can be considered as follows. Although it is more intuitive than a math-
ematically proof. The solutions corresponding to figure 6.5 are smooth implying that no
discontinuities arise as time progresses. Thus a refinement of the mesh will make the solu-
tion even more ”smooth”. For the case of the discontinuous initial condition, figure 6.6, the
solutions are depicted in figure 6.1. Remember that the final time in figure 6.1 is T = 0.1
and for the convergence test is T = 0.05. This implies that the solutions for the moment
system 4,5 and 6 are not as smooth as depicted in figure 6.1. Because of the discontinuities
they contain in their solutions, the optimal convergence rate can not be achieved.

Another observation from figure 6.6 is that the rate of convergence of the 4 and 5 moment
system seems to be higher than the 3 moment system. This results from the fact that the
solutions of the 4 moment system and higher produce smoother solutions as time progresses.
Hence, the discontinuities will disappear and the convergence rate will converge to 1. Note
that this is only the case if the error ε contains the solutions at the final time. If the error
includes the solutions at every timestep, the convergence rate will remain suboptimal.
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Figure 6.6: The discontinuous initial condition of the normalized density ρ0 and the error ε
versus the degrees of freedom 1/h
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6.2 Two-dimensional

The problem setting for the 2d numerical simulations is as follows:

• The domain of computation is Ω = [0, 1]× [0, 1]

• The initial condition is composed of two constant states in two complementary regions
of the domain. The inner part I is located between 0.4 < x < 0.6 and 0.4 < y < 0.6,
the outer part O contains the rest of the domain. Their values are given in the tables.

• Dirichlet boundary conditions are used for which the values at the boundaries are given
by their initial conditions

The velocity weight vectors m(ξ) used in the simulations are,

m(ξ) = {1, ξ, |ξ|2}, m(ξ) = {1, ξ, ξ ⊗ ξ}
m(ξ) = {1, ξ, ξ ⊗ ξ, ξ ⊗ ξ ⊗ ξ}, m(ξ) = {1, ξ, ξ ⊗ ξ, ξ ⊗ ξ ⊗ ξ, ξ ⊗ ξ ⊗ ξ ⊗ ξ}

6.2.1 The 4 and 6 moment systems

(a) Density ρ (b) Velocity ux

Figure 6.7: The density ρ and the velocity ux with m = {1, ξ, |ξ|2}

Table 6.6: Simulation properties

ρI uI PI ρO uO PO Kn ∆t ∆x = ∆y Time

1.0 0.0 1.0 0.5 0.0 0.4 0.01 0.005×∆x 1/100 0.15

Figure 6.7 depicts the results for the velocity weight vector m(ξ) which corresponds to
the Euler solutions in 2d. In figure 6.8, the results for the velocity weight vector m(ξ) =
{1, ξ, ξ⊗ξ} are presented. The latter moment system is an extension to the Euler system. It
improves upon the 4 moment system by having a non zero stress tensor. However, the heat
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(a) Density ρ (b) Velocity ux

Figure 6.8: The density ρ and the velocity ux with m = {1, ξ, ξ ⊗ ξ}
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(a) Normalized density ρ0 at y = 0.5
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Figure 6.9: The normalized density ρ0 and the velocity ux at y = 0.5 for m = {1, ξ, |ξ|2} and
m = {1, ξ, ξ ⊗ ξ}

flux will still be zero. The results for the density and velocity do have similar shapes and
magnitudes. Figure 6.9 shows the normalized density ρ0 and velocity ux at y = 0.5. Also
here, it can be observed that the distinction between the moment systems is small. Although,
one needs to refine the mesh in order to see how similar the results are.
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6.2.2 The 10 and 15 moment systems

Table 6.7: Simulation properties

ρI uI PI ρO uO PO Kn ∆t ∆x = ∆y Time

1.0 0.0 1.0 0.5 0.0 0.4 0.01 0.0005 ×∆x 1/100 0.15
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Figure 6.10: The normalized density ρ0 and the heat flux qx at y = 0.5 for the 4,6,10 and 15
moment system

Figure 6.10(a) presents the normalized density for the 4,6,10 and 15 moment systems at
y = 0.5. A quite distinction can be observed between the higher order moment systems.
Especially, the density for the 10 and 15 moment systems are not comparable. This could be
an indication that higher order of moments are needed to see a convergence of the density.
Furthermore, a mesh refinement needs to be considered as well such that potential disconti-
nuities can be captured.

In figure 6.12, the density ρ, velocity ux and the heat flux q are shown for the 10 and 15
moment system in a 2d plot. Also here, the distinction in the densities is observable whereas
the shape of the velocity and heat fluxes are similar. Note that the magnitudes between the
moment systems are also similar.
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6.2.3 Mesh-convergence

The mesh convergence has been studied for the 2D 3 moment system. The error ε is defined
in (6.1).

Table 6.8: Simulation properties

ρI uI PI ρO uO PO ∆t Time

1.0 0.0 1.0 0.5 0.0 0.4 3.125×10−5 0.01

10
1

10
2

10
3

10
−2

10
−1

10
0

h
−1/2

ε

 

 

3 Moment

Figure 6.11: The error ε versus the degrees of freedom 1/
√
h

The prediction of the convergence rate is rather difficult because of the small amount
of refinements. As for the one-dimensional case, the optimal convergence rate will probably
not be obtained due to the discontinuous initial condition. As h → 0, the most relevant
convergent rate will be similar to the one dimensional case which is 1/2.
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(a) Density ρ for m = {1, ξ, ξ ⊗ ξ, ξ ⊗ ξ ⊗ ξ} (b) Density ρ for m = {1, ξ, ξ⊗ ξ, ξ⊗ ξ⊗ ξ, ξ⊗
ξ ⊗ ξ ⊗ ξ}

(c) Velocity ux for m = {1, ξ, ξ ⊗ ξ, ξ ⊗ ξ ⊗ ξ} (d) Velocity ux for m = {1, ξ, ξ⊗ξ, ξ⊗ξ⊗ξ, ξ⊗
ξ ⊗ ξ ⊗ ξ}

(e) Heat flux qx for m = {1, ξ, ξ ⊗ ξ, ξ ⊗ ξ ⊗ ξ} (f) Heat flux qx for m = {1, ξ, ξ⊗ξ, ξ⊗ξ⊗ξ, ξ⊗
ξ ⊗ ξ ⊗ ξ}

Figure 6.12: The heat flux qx for different velocity weight vectors m(ξ)
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Chapter 7

Conclusion and Outlook

7.1 Summary

This work is concerned with the applicability of the new class of moment closure approxima-
tions [19] into a Discontinuous Galerkin finite element method. The author in [19] has shown
that the closed moment system with the new approximate entropy minimization distribution
F̃ still remains the fundamental properties of the Bolztmann equation. Which implies that
the closed moment system is a symmetric hyperbolic system implying well-posedness, a so-
lution to the moment system satisfy the dissipation relation (3.15) and the system retains
conservation of mass, momentum and energy as well as Galilean invariance.

The original collision integral contains a complicated structure which makes the evalua-
tion and numerical implementation difficult. Therefore, a collision model has been introduced
in order to simplify the evaluation and implementation. The selected model in this work has
been the BGK model. It has been shown that this model satisfies the three fundamental prop-
erties of the the original collision integral C (f) given in 3.1.1. Furthermore, the derivation
of a relaxation time τ which depends on the Knudsen number Kn, pressure P and density ρ
has been included.

The numerical approximation of the closed moment system has been considered by using a
Discontinuous Galerkin finite element method. In particular, the introduction and derivation
of a numerical flux needed to uniquely define integrals over the element interfaces. As well
as the treatment of different boundary conditions. They are imposed by adapting the distri-
bution function at the boundary such that one has either specular reflection, reflection with
full accommodation or a combination of these two called the Maxwellian accommodation.

Finally, the results of the numerical simulations for the closed moment system in 1 and
2 spatial dimensions are presented. Results for different number of moments in both spatial
dimensions are obtained. The numerical results indicate that the numerical approximations
converge under moment refinement, i.e. by increasing the number of moments. The modifi-
cation of the Maxwellian prefactorM shows the ability of obtaining numerical solutions with
the number of moments higher than 6. However, there is no relation between the number of
moments and the way of modifying the prefactor. Therefore, those results should be inter-
preted with care. The choice of the initial conditions shows an influence on the convergence
rate. Continuous and ”smooth” initial conditions shows an alsmost optimal convergence rate
of 1 in the L2 norm whereas for a discontinuous initial condition this optimal rate can not
be achieved. It seeks to have a convergence rate of at most 1/2.
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7.2 Outlook

This work has extended the new class of moment closure approximation given in [19] into
a Discontinuous Galerkin finite element method. It has shown the numerical solutions for
different number of moments. To be more presice, numerical solutions to the 3,4,5, and 6
moment systems were obtained in the 1d case as well as the solutions to the 4,6,10 and 15
moment systems for the 2d case. Although some promising numerical results have been ob-
tained in 1d and 2d, there still remain other issues to investigate.

The first one is the convergence of the solution for an increasing number of moments.
The more moments are included the better the distribution function will be approximated.
However, one seeks to use the minimum number of moments such that the solution has been
converged within a certain error. An accuracy estimate of the solution on the number of
moments would therefore be very usefull.

The second one is the modification of the Maxwellian prefactor. It has been showed that
modifying the pressure, numerical solutions for the 9 moment system could be obtained.
However, the value for the pressure needs to be prescibed. This could be done by finding a
relation with the number of moments for example. A maybe more important point is the
influence of adapting the pressure on the accuracy of the solutions.

Another issue is the mesh sensitivity of the 2d numerical simulations. The results pre-
sented in the previous chapter where obtained with a relatively coarse mesh of 100 × 100
elements. Because the accuracy of the solutions increases if more elements are used, a study
on how mesh sensitivity is related to solvability of the problem would be very usefull.

In the context of gas flows in transition regimes, an increase of the Knudsen number
should be considered. Also here, the solvability of the problem is related to the Knudsen
number. A further investigation on this sensitivity will be necessary. One could considered
a different collision model instead of the BGK model.

Finally, incorporating the boundary conditions will improve the applicability of the nu-
merical simulations. Especially, rarefied gas flow interaction with the wall can be considered.

48



Bibliography

[1] Pierre Andries, Jean-François Bourgat, Patrick Le Tallec, and Benôıt Perthame. Numer-
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