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Abstract

This MSc thesis examines "transaction"-market dynamics. The situation of interest is a company
with anonymous name ACME which sells products to customers (businesses, not end users). Some
of these customers purchase more and more over time, whereas others purchase less and less. The
aim is to cluster customers which grow (in for instance purchased volume) in one cluster and
customers which for instance decrease in a different cluster.

Because customer transactions form mathematically a time-series we focus on clustering tech-
niques for time-series. The clustering itself involves the use of distance measures, which implies
the need to use distance measures whose values take into account the dynamics in the customer
transaction time-series.
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CHAPTER 1

Introduction

This thesis examines transaction data of a large company which sells products to its customers.
These customers are businesses rather than individual people. During the examination we focus
on possible mathematical tools/approaches for (1) clustering (2) time-dependent data and (3)
regularity of the transaction data:

(1) Without any specific prior knowledge on individual customers, a clustering of customers can
be formed based on transaction data. For instance two "clusters" of customers can be defined:
Small and large customers which purchase small respectively large volumes of a specific product.
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Figure 1.1: (Volume, Customer) Dots ordered on volume.

Typically there are "few" large customers (mostly detached dots in the left of Figure 1.1) which
generate large volume sales for the company, and many small customers which each contribute
much less to the company’s total volume sales. Summarized, similar customers could be defined
using the transaction data and on that basis clusters can be defined. Chapter 3 focuses on the
formation of clusters.

(2) The clustering of the customers (for instance based on large or small volume) does not reflect
the dynamics of the market: Some customers typically purchase more and more over the years
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CHAPTER 1. INTRODUCTION

and grow to be large customers (or the other way around). Thus, it is important to take the
time-related aspects such as growth into account.

To demonstrate this a company’s transaction volumes of two subsequent years is visualized:
We assume that the company sells only one specific product and that each customer c = 1, . . . , n
purchases volume vkc at times tkc , k = 1, . . . , Pc. For each customer c Figure 1.2 shows two dots at
positions

vc =
∑

k:tkc in year i
vkc for i = 1, 2,

where one specific customer is highlighted with the color red.
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Figure 1.2: Customer data division among total volume on logarithmic scales for 2 years of the
ACME transaction data set

Figure 1.2 was generated with data from company ACME (a real company whose name is kept
anonymous). The transaction data set has been obtained under the protection of a non-disclosure
agreement, which is why we later also work with a self generated data set.

The relative movement of the data over time is shown via the differences between the volume
division of the two years Figure 1.2. The red dot in the two figures represent the same customer
but in a different year. Note that the relative position of this customer indicated with a red dot
with respect to the data cloud is not static.

The red dot is used as an indication of customer movement through time of the data set, where
actually most dots move. In Figure 1.3 the movement of a sample of 100 customers is indicated
with a line, indicating some data set dynamics. Chapters 4 through 6 focus on dynamic aspects
of the transaction data.

2 Clustering Methods for Transaction Data that consider Market Dynamics.
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Figure 1.3: Customer movement along total volume for ACME data set over a year.

(3) Developing mathematics for the problems at hand (clustering and preferably taking dynamics
into account) relies on the transaction data set properties. Data sets in general contain transactions
which are irregular in time but also contain entries which are physically impossible such as selling
negative volumes of a product. During this thesis’ research many peculiarities were encountered
such as:

1. Transactions that contain no volume,

2. Transactions that occur with minimal time separation,

3. Transactions that contain a negative volume,

Most of these peculiar transactions are entered to correct incorrect transactions, at the same
time making the transaction data set irregular. The peculiarities 1 and 2 we will process because
they are likely. We are not interested in exceptions such as 3 but in the global trends and behaviors.
Such peculiarities could be preprocessed, but we did not. Chapters 4 and 6 provide more detail
on peculiarities.

1.1 Thesis outline
During a prior internship at a company whose name is kept anonymous due to a NDA, an inventory
was made of (some of) the existing clustering methods. In addition a method to cluster based
on curves generated by LPC was formulated. Also, recommendations for future research were
provided.

For this MSc thesis we, first, created a mathematical model that is used for clustering as well
as dynamics analyses. There was no off-the-shelf mathematical model, such that we had to create
one ourselves. In Chapter 2 this mathematical model representing the transaction data is given.
This chapter and Chapter 4 give methods to mold this model (with minimal effort) to data sets
that are used for clustering and dynamics analyses respectively.

Second, we have modeled existing different clustering approaches in accordance with the ap-
plication. We more elaborately present clustering techniques in Chapter 3.

Clustering Methods for Transaction Data that consider Market Dynamics. 3



CHAPTER 1. INTRODUCTION

We, third, examine possibilities to extend these approaches to time series based clustering.
Via, one, investigating which distance measure would be beneficial for clustering (of time series)
such that dynamics are considered, in Chapter 5. And, two, examining growth indexing functions
based on elementary mathematics with the focus on behavior with respect to dynamics, in Chapter
6.

Finally, in Chapter 7 we apply the modeled clustering techniques to data extended with values
computed via a growth indexing function.

Where possible we also try to understand whether our example data sets (those of the company)
are suited, i.e. approximately satisfy the theoretical conditions for the mathematical methods.

1.2 Literature review
For this Msc thesis approximately 20-30 articles have been examined. This examination started
during the prior internship and continued during the course of the first three months of the Msc
final project.

The collection of examined articles contain articles that explain the Mean Shift method, which
was already used by the internship company. The company was also interested in the use of the
R package LPCM for which related literature was found.

For this MSc thesis we were interested in clustering that considered transaction data dynamics.
We thus expanded this bibliography with articles found searching the internet with the search terms
"Time series", "Clustering", "Distances" and "Dynamics". We did however not find any articles
that related these search terms with "Transaction", "Market" or "Business" data sets.

We then decided to limit ourselves to the clustering techniques already found by the internship
company and focused on articles considering time series distance measures. These articles do
provide distance measures but only weakly or not couple these to the "regularity" of the time
series involved. Therefore we started with more elementary distance measures and examined
these for our transaction data sets. Unfortunately, related literature does not seem to exist.

Next to the literature review we also consulted scientist of the mathematics department of
the Eindhoven University of Technology, who are experts in statistics, computational science and
analyses. Two CASA multi-hour question meetings were dedicated solely to the topic of this MSc
thesis.

4 Clustering Methods for Transaction Data that consider Market Dynamics.



CHAPTER 2

Definitions and Data sets

This chapter provides global definitions, notations and functions used in this MSc thesis.
Tuples of data x = (·, ·, ·) are called datum and are typeset using the standard mathroman

font (i.e., not bold). The fields of which x consists are called entries or data entries. The sets are
denoted by capital letters. For finite sets the n distinct points can be specified,

V = {x1, x2, . . . , xn} . (2.1)

When the order is of any particular need we define the set of points via a sequence or vector

V = [x1, x2, . . . , xn] . (2.2)

The column sequence is then denoted by

V T = [x1, x2, . . . , xn]
T
, or by [x1;x2; . . . ;xn] (2.3)

We use the | · | as the indicator for the number of elements such that

|V | =
∣∣V T ∣∣ = n (2.4)

The standard norm ‖ · ‖ denotes the Euclidean norm which for points x = [a1, a2, . . . , ad] ∈ Rd
is defined by

‖x‖ =

√√√√ d∑
k=1

a2k. (2.5)

The maximum norm ‖ · ‖max for points x = [a1, a2, . . . , ad] ∈ Rd is defined by

‖x‖max = max
i=1,...,d

ai. (2.6)

The standard inner product 〈 · , · 〉 denotes the Euclidean inner product which for points x =
[a1, a2, . . . , ad] , y = [b1, b2, . . . , bd] ∈ Rd is defined by

〈x, y〉 = [a1, a2, . . . , ad] · [b1, b2, . . . , bd]T =

d∑
k=1

ak · bk. (2.7)

Clustering Methods for Transaction Data that consider Market Dynamics. 5



CHAPTER 2. DEFINITIONS AND DATA SETS

2.1 Data set overview

The problem of clustering heavily depends on the considered data set. Therefore this thesis
presents several data sets: A corporate (anonymous) data set ACME, a self generated large data
set called Contoso and various special purpose data sets S1 through S3.

To perform calculations, this thesis uses the language R (rather than for instance matlab)
because R supports access to SQL databases. The ACME and Contoso data set are SQL data
sets.

ACME data set

As described in the introduction this is a SQL data set from a real company and (therefore)
contains a lot of irregularities. Each transaction contain many more entries (than needed for our
clustering analyses). This data set is used to explain the types of problems that we encountered
during this project. The ACME data set is anonymized due non-disclosure issues: Customer
names, transactions nor units (such as currency) are given.

Contoso data set

The Contoso is manufactured to compare different methods and applications. It is created such
that it is regular. This data set contains transactions which contain precisely enough entries for
our clustering analysis. The clustering methods introduced in this thesis all work on this data
set and result in predictable solutions. The data set is chosen such that the different clustering
methods show different results.

The Contoso data set is generated via random samples from the normal and exponential
distribution with a fixed seed. We chose a normal distribution because a lot of the clustering
methods are theoretically based on this distribution. The exponential distribution is chosen to
generate times between transactions, since it is commonly used to generate arrival times.

The manufactured data sets S1, S2 and S3

The data sets S1, S2 and S3 in Chapter 6 are created for specific purposes. These are data sets used
to mathematically support an argument. They are situation specific to indicate why something
works or fails to work. These data sets contain only variables that are needed in these specific
situation. The specifics of these data sets are therefore given in Chapter 6.

2.2 Data set and transaction definition

To find similar customers, the customers have to be compared and analyzed. Since there is no
obvious way of comparing customers, data that describes customer behavior is analyzed. These
data are a set of points (i.e. transactions) x each consisting of multiple data entries describing
a variable or value. The data entries can be divided into three data entry categories; Customer
properties Ĉ, the moment at which the info was obtained T̂ , Quality data D̂, i.e. x ∈ Ĉ × T̂ × D̂.
Note that each data entry category may consist of multiple data entries.

Customer properties are data entries that describe characteristics or features of a customer.
For instance region, market, customer and or product are data entries that are covered by this
category. These data entries are mostly indexed and particularly used for grouping data before it
is analyzed.

Time of measurement is the time when a transaction x entered the database. Quality data is
directly linked to the time of measurement since they are recordings at that moment in time.

Quality data is the category that mostly consists of data entries indicated by numerical values.
These values describe for instance contract or order info such as volume. The entries in this
category vary with time and are the subjects to be clustered.

6 Clustering Methods for Transaction Data that consider Market Dynamics.



CHAPTER 2. DEFINITIONS AND DATA SETS

Let V denote the set of all transactions. Using the data entry categories a transaction x ∈ V
can be described by a triplet x = (c, t, d), such that V is defined by

V =
{

(c1, t
1
1, d

1
1), (c1, t

2
1, d

2
1), . . .

, (c2, t
1
2, d

1
2), (c2, t

2
2, d

2
2), . . .

, . . .

, (cn, t
1
n, d

1
n), (cn, t

2
n, d

2
n), . . .

}
, (2.8)

where equal sub-index i for tki , dki and ci indicates that these time and quality data are related to
the customer properties ci.

The data set V is therefore a combination of these three data categories, such that

V ⊂ X = C × T ×D ⊂ Ĉ × T̂ × D̂ = Ω,

where C ⊂ Ĉ, T ⊂ T̂ , D ⊂ D̂ and

C = {ci : xi = (ci, ti, di) ∈ V }

and T,D similarly defined. We need the finite sets C, T and D because SQL queries yield these
finite sets and we need Ĉ, T̂ and D̂ to (in principle) check mathematical conditions assumed by
the clustering techniques.

Example 1

V = {(”Anon”, 1427846400, 300.23) ,

(”Bocra”, 1352345100, 623.41) ,

(”Creat”, 1342398100, 239.12)}

whence

C = {”Anon”, ”Bocra”, ”Creat”} ⊂ Ĉ
T = {1427846400, 1352345100, 1342398100} ⊂ T̂ = N

D = {300.23, 623.41, 239.12} ⊂ D̂ = R

with Ĉ the set of all strings of finite length.

Definition 2.2.1 (Category Projection)
Define category projections as projections that project points onto a category. Let x ∈ V be
a point, the category projection onto category Ĉ is defined by

PC(x) = PC(c, t, d)

= c.

Realize that C = {PC(x) : x ∈ V }. PD and PT are similarly defined to PC as the projection
onto the data category D̂ and T̂ respectively.

Using the projections one can group, organize and mold the data set such that it can be used
for several clustering applications.

With the operation | · | (2.4) indicating the number of points in a set, note that |C| , |T | , |D| ≤
|V |. Since the amount of points (transactions) x ∈ V is finite, it also follows that |V | < ∞ and
|C| , |T | , |D| <∞.

Clustering Methods for Transaction Data that consider Market Dynamics. 7



CHAPTER 2. DEFINITIONS AND DATA SETS

Example 2 (Contoso)
Contoso, an example company, has a customer file consisting of 1000 customers. The business
is described by points (i.e. transactions) having the data entries given in Table 2.1. Next
to volume it is desirable to have a second entry, not correlated to volume, to be able to
demonstrate clustering for multidimensional data in Chapter 3. The second entry was taken
to be delta, which is assumed to be uncorrelated to volume.

Data Entry Data Category Description

Customer C The customer.
Product C The product bought.

Timestamp T The time.
Volume D The volume delivered.
Delta D The difference of volume ordered and volume delivered.

Table 2.1: Contoso data entries.

The Timestamp for Contoso data is given as the Unix time, also known as the Epoch
time. This is a method widely used in software applications that indicates the number of
seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1
January 1970, not counting leap seconds. As an example, a customer i ordered product A for
a volume of 450 and eventually bought a volume of 470 on April 1st 2015. This transaction
x ∈ V is given by the values in Table 2.2.

Data Entry Value

Customer i
Product A

Timestamp 1427846400
Volume 470
Delta 20

Table 2.2: Contoso transaction x ∈ V , entry value example.

Contoso, as an example, only sells one product: Product A. Therefore there is no need
to consider the data entry product in the customer properties category. Hence, customer is
the only data entry left in this category, such that, looking at the data as in (2.8), ci ∈ C
indicates a unique customer of Contoso.

From now on we assume that ci ∈ C indicates a single entry, even if ci contains multiple data
entries. Each customer can still have a region and market as a data entry, but a unique customer
is indicated by ci ∈ C. The number of unique customers n is equal to |C|.

The quality data di ∈ D related to ci ∈ C is the subject of clustering (Which automatically
induces a clustering of the customers ci ∈ C). Essentially, clustering is finding subsets C̃ ⊂ C
such that the data related to ci, cj ∈ C̃ is similar and related to ci ∈ C̃, cj ∈ C \ C̃ is by definition
dissimilar. The transactions of customer ci are given by

P−1C (ci) = {x ∈ V : PC(x) = ci} ⊂ V. (2.9)

The set P−1C (ci) is the result of a filter operation on V (filtering out all data related to ci). A
clustering over the subsets P−1c (ci) will therefore result in groups of similar customers with respect
to transaction data.

Example 3 (ACME)
The ACME data set is not as clean as the data set described for Contoso. In general real

8 Clustering Methods for Transaction Data that consider Market Dynamics.



CHAPTER 2. DEFINITIONS AND DATA SETS

data sets contain a lot of data entries, whether or not data entries are indeed of importance
for customer similarities is a whole different study and will not be addressed in this thesis.
We instead assume we only have independent (to some extend) data entries. The relevant
quality data entries for ACME are similar to the ones defined in Table 2.2. The exception
is the delta variable, which is not a variable in this data set.

For the data category C we also assume that other than customer, no other customer
properties are of influence on customer similarities. All transaction data seen is referring to
the same product, such that ci indicates a single customer product combination. We hereby
skip a few regularization steps, but these too are a separate study which we do not address
to in this thesis.

2.3 Static cdata
Most existing clustering methods base their clusters on the distances between points from a data
set. For a lot of these methods the distances are computed using standard distance measures in
the space Rd for d ≥ 1 ∈ N. For our transaction data sets to fit these clustering methods it has to
be of the form

V = {(c1, x1), (c2, x2), . . . , (cn, xn)} , (2.10)

i.e. a single datum xi ∈ Rd per customer ci.
We however have a different situation: For every ci we have a time series. A time series,

denoted (t, d), is a finite series of transactions ordered on time

(t, d) = (t1, d1), . . . , (tP , dP )

of finite implicit length P ∈ N. Sometimes time series are indexed with subscript "i" if it is related
to customer ci

(t, d)i
notation

:= (t1i , d
1
i ), . . . , (t

Pi
i , d

Pi
i ) (2.11)

for some Pi ∈ N. This time series (t, d)i is created from the transactions in P−1C (ci). Alternatively,
the time series (t, d)i related to customer ci could be written as

(t, d)i = (ci, t
1
i , d

1
i ), (ci, t

2
i , d

2
i ), . . . , (ci, t

Pi
i , d

Pi
i ).

More on time series and their characteristics upward of Chapter 4.
Since we have a time series (t, d)i consisting of multiple data for each customer ci our original

data set is not of the form (2.10). Therefore, before we can use any of these existing clustering
methods to find clusters of customers, we need to construct cdata where each customer is repre-
sented by a single cdatum xi ∈ Rd as in (2.10). This cdatum xi should represent characteristics
of the customer time series (t, d)i. The entries of the cdata are called cdata entries.

Since V is a set of points measured in time we have to lump data to create the cdata. Define
the cdata function g : X 7→ Rd as the function that maps time series (t, d)i onto cdata xi ∈ Rd
such that

(ci, xi) = (ci, g ((t, d)i)) , for i = 1, . . . , n,

which is conform with the desired data set form (2.10).
The cdata function g : X 7→ Rd accumulates for each customer all its transactions. This

function uses different operators such as sum, minimum, maximum and average on the data
entries and aims to represent their characteristics in the cdata. Define V̂ = {x1, x2, . . . , xn} ⊂ X̂
as the set of cdata points xi each related to the unique ci ∈ C.

Example 4 (Contoso)
For Contoso we take the cdata entries as given in Table 2.3. In the cdatum xi for customer
ci we want two cdata entries that represent the original data entries volume and delta. We

Clustering Methods for Transaction Data that consider Market Dynamics. 9



CHAPTER 2. DEFINITIONS AND DATA SETS

create these cdata entries as the sum of the individual volume and delta values inside a fixed
period.

The cdata is calculated over transactions from within a fixed time period, for instance
a year. Let dat1 < dat2 be the limiters to this fixed time period, the cdata function g for
Contoso is defined by

xi = g((t, d)i)

= g
(

(t1i , d
1
i ), (t

2
i , d

2
i ), . . . , (t

Pi
i , d

Pi
i )
)

= g
((
t1i ,Volume1i ,Delta1i

)
,
(
t2i ,Volume2i ,Delta2i

)
, . . .

)
=

(
g1((t, d)i)
g2((t, d)i)

)
(2.12)

=

(
Total volumei
Total deltai

)
, (2.13)

where the cdata entry functions g1 and g2 are defined by

g1((t, d)i) =
∑

{k:dati≤tki≤dat2}
Volumeki (2.14)

g2((t, d)i) =
∑

{k:dati≤tki≤dat2}
Deltaki . (2.15)

Note that the cdata entries total volume and total delta are a representation of, and therefore
different from, the original data entries volume and delta in (t, d)i. Also note that the time
elements tki are not playing part in these operators, other than the selection of a time frame.
In Figure 2.1 the Contoso cdata set (g1, g2) is plotted, indicating the division of customers
among this cdata.

cdata entry Original data Entry Description

Total volume Volume The total volume delivered.
Total delta Delta The difference of the total volume ordered

and the total volume delivered.

Table 2.3: Contoso cdata entries.

Example 5 (ACME)
The ACME cdata is created in the same fashion as the Contoso cdata, see (2.12). Prior to
the calculation of the cdata the regularity issues given in Example 3 are solved. Next to these
regularity issues the data set contains a lot more regularity issues with respect to time which
are later described in Chapter 4. The cdata entry functions in (2.12) are discretizations of
integral functions (which are regularizing functions) such that no further regulation steps
are necessary to manage these time irregularities for the ACME cdata set.

The ACME data set does not contain the information to extract the delta values. There-
fore the ACME cdata is (in this case) one dimensional: Only consisting of the cdata entry
total volume g1. Since the clustering methods in the next chapter can be used on multidi-
mensional cdata we do not apply them to the ACME cdata, simply because results will not
be "exciting" enough.

The division of total volume g1 is visualized in Figure 1.1 and 1.2. In these figures we
see that the ACME cdata is not as evenly distributed in comparison to the manufactured
Contoso cdata plotted in Figure 2.1, especially when considering that the ACME cdata in
Figure 1.2 is plotted on logarithmic axis.

10 Clustering Methods for Transaction Data that consider Market Dynamics.
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Figure 2.1: Total volume and total delta scatter diagram of Contoso customers.

The start of clustering without the consideration of the time elements tki , as in example 4, is
on purpose. The consideration of time elements is paired with a lot of unanswered questions (see
Chapter 4) and the effect on the application is not clear. Therefore this problem is addressed to
upward of Chapter 4.

The cdata entries that do not consider the time elements tki other than for the selection of the
period (like for instance g1 and g2 ((2.14) and (2.15))) form a category of cdata entries, from now
on referred to as static cdata entries. If the cdata contains only static cdata entries it is called
static cdata.

Note that the static cdata entry functions accumulate the time series (t, d)i to one datum
xi, such that a lot of data is lost. The choice in cdata entry functions used is therefore of
influence on the subsequent analyses. For instance, the amount of transactions and their individual
volume are not taken into account by static cdata (2.12). This choice of cdata might lead to
considering customers with totally different characteristics as similar. However incomplete, the
cdata (2.12) still indicates global and important characteristics of customers. Also, this cdata can
be implemented into a lot of existing clustering methods and is therefore easier to use for analyses.

Note that the points plotted in Figure 2.1 need not be points on a graph of a single function,
such that no functional relationship between g1 and g2 exists. Therefore clustering could be a
useful tool, where for Contoso it becomes "as easy as" finding dense clouds inside Figure 2.1. Here
the outlines of two clusters can easily be formed via logical reasoning. In practice (for instance
on the ACME data set) the clusters are not obvious and a mathematical approach is needed,
especially when multiple dimensions are considered.

Clustering Methods for Transaction Data that consider Market Dynamics. 11





CHAPTER 3

Clustering Methods

This chapter presents two different clustering methods for cdata in Rd. The related algorithms
and their qualities are discussed. These clustering methods are based on kernel density estimation
which is explained first.

3.1 Kernel density estimation

The density function f : Rd 7→ R is a function that describes the relative likelihood for a random
variable to take on a given value. Since for our sample data V̂ there is no (known) true density
function it is approximated with a technique called density estimation. A highly popular method
of density estimation is kernel density estimation which uses kernel functions.

Definition 3.1.1 (Kernel function)
A kernel function is a non-negative real-valued integrable function K : Rd 7→ R satisfying
the following three requirements:

K(u) ≥ 0 ∀u ∈ Rd (3.1)∫
R
K(u)du = 1,

K(−u) = K(u) ∀u ∈ Rd.

Note that for h > 0

u 7→ 1

hd
K
(u
h

)
is also a kernel function.

Example 6 (Gaussian kernel (normal kernel))
The Gaussian kernel is defined by the function

K(u) =
1√
2π
e−

1
2u

2
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Figure 3.1: The Gaussian kernel.

Let x1, . . . ,xn be a sample of d-variate random vectors drawn from a common distribution
described by the density function f . The kernel density estimate is defined by

f̂h(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
. (3.2)

The first requirement for a kernel (3.1) ensures that the kernel density estimate (3.2) results
in a probability density function. The expected value of the kernel density estimate is equal to
the sample mean.

We use the Gaussian kernel as a basis for our density estimation because the mathematical
theories of the presented clustering methods are all based on the normal distribution. It is also
often used to describe, at least approximately, any set of (possibly) correlated real-valued random
variables each of which clusters around a mean value, which happens to be the field of interest for
clustering methods.

Our cdata set x1, . . . , xn is not independently drawn from a density function f but is a fixed
set of values. By replacing the stochastic sample x1, . . . ,xn with this cdata set x1, . . . , xn, the
kernel density estimate (3.2) defines a fixed function estimating the cdata’s density.

3.1.1 Bandwidth optimization

The value h > 0 in (3.2) is a smoothing parameter called the bandwidth. The bandwidth is used
to scale the kernel functions appropriate to the data. The optimal value of h is depending on the
kernel function and the data set variance, intuitively one wants to choose h as small as the data
allows.

The kernel density estimate is sensitive to the choice of bandwidth h. When the bandwidth
is too small the resulting density estimation will contain spurious data artifacts. On the other
hand, when the bandwidth is too large, the resulting density estimation will be over smoothed and
will obscure too much of the underlying structure. A bandwidth h is said to be good when the
resulting kernel density estimate f̂h is close to the true density function f from which the sample
x1, . . . ,xn is drawn.

When the true density f is known an optimality criterion for the bandwidth selection is used
in the form of the expected squared L2 risk function, also termed the mean integrated squared
error

MISE(h) = E

[∫ (
f̂h(x)− f(x)

)2
dx

]
.
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This expectation indicates a measure of distance between the true density f and the density
estimate f̂h depending on h. The bandwidth h which minimizes the function MISE is considered
to be the optimal bandwidth.

Because we do not know f , we can not calculate an h which minimizes MISE(h). However, with
a sample x1, . . . ,xn drawn from f the standard normal density function with standard deviation
σ and f̂h based on the Gaussian kernel, the optimal choice for bandwidth h, Silverman (1986),
becomes

h = 5

√(
4σ5

3n

)
≈ 1.06σn−1/5. (3.3)

This approximation is termed the normal distribution approximation, Gaussian approximation or
Silverman’s rule of thumb.

Unfortunately our cdata x1, . . . , xn is neither standard normally distributed nor independently
drawn from a density function f . Nevertheless we use the bandwidth h given by (3.3) in the
remainder of this thesis.

3.2 Mean Shift Method

The Mean Shift method, as described in Comaniciu and Meer 2002, is a clustering method based
on cdata sets V̂ ⊂ X = Rd. This method uses the kernel density estimate directly. In the kernel
density estimate Mean Shift uses a radially symmetric kernel K, which have the specific property
that the set of points for which K(x) 6= 0 is assured to be a d dimensional sphere. Given a profile
k : R 7→ R and a normalization constant ck > 0 such a kernel can be written as

K(x) = ck · k
(
‖x‖2

)
,

where ‖ · ‖ is the Euclidean norm (2.5).
The normalization constant ensures that K integrates to one over R, as all kernels do. Hence,

the kernel density estimate (3.2) can be rewritten for radially symmetric kernels to

f̂h(x) =
ck
nhd

n∑
i=1

k

(∥∥∥∥x− xih

∥∥∥∥2
)
,

with h the bandwidth.
We are interested in the modes of the density f which correspond to the maxima of this density

and thus are zeros of the gradient of this density. The modes m of the density function f satisfy
the equation

∇f(m) = 0.

In practice the density f is unknown and its modes are estimated using the kernel density
estimate. The Mean Shift method uses the kernel density estimate f̂h computed from the cdata
set V̂ to link each point xi ∈ V̂ to a specific mode mi for i = 1, . . . , n. We setM = [m1, . . . ,mn] as
the sequence of modes specifically related to x1, . . . , xn. The points connected to the same mode
form a cluster, such that the cluster around xi is the set of points{

xj ∈ V̂ : mj = mi

}
. (3.4)

One possible way to link modes to the points x1, x2, . . . , xn is computing the density estimation
and analyzing it. When the computed density estimation is plotted it looks like a mountain scenery.
In this mountain scenery the modes are the peaks of the mountains and clusters are points on the
same mountain. This idea is sketched in Figure 3.2, Comaniciu and Meer 2002.
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Figure 3.2: Mountains of the kernel density estimate plotted with their modes highlighted.

Example 7
For Contoso cdata the mountain scenery is plotted in Figure 3.3. The kernel density estimate
has two mountain tops, which indicate the modes. The mountains themselves indicate two
cluster positions.
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Figure 3.3: Total volume and total delta kernel density estimate plotted as a mountain scenery
for Contoso customers.

The calculation and analysis of the kernel density estimate however takes a lot of time, espe-
cially for multi-dimensional cdata. The Mean Shift method is therefore created to link each point
xi to a mode mi for i = 1, . . . , n without computing the full kernel density estimate of the cdata
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set.
The Mean Shift method is based on the gradient of the density estimate, defined by

∇f̂h(x) =
2ck
nhd+2

n∑
i=1

(x− xi) k′
(∥∥∥∥x− xih

∥∥∥∥2
)
,

where k′ is the derivative of the kernel profile k. Define the function

p(x) = −k′(x).

Assume that this derivative of the kernel profile k exists for all x ∈ [0,∞), except for a finite set
of points. With a new normalization constant cp, use the function p as a profile for a new kernel
function

P (x) = cpp
(
‖x‖2

)
.

Note that when K is a Gaussian kernel, the kernel P has the same expression. (Comaniciu and
Meer (2002))

With the use of the function p the gradient of the density function can be rewritten.

∇f̂h(x) =
2ck
nhd+2

n∑
i=1

(xi − x) p

(∥∥∥∥x− xih

∥∥∥∥2
)
,

=
2ck
nhd+2

[
n∑
i=1

p

(∥∥∥∥x− xih

∥∥∥∥2
)]∑n

i=1 xip
(∥∥x−xi

h

∥∥2)∑n
i=1 p

(∥∥x−xi

h

∥∥2) − x
 . (3.5)

The first term of Equation (3.5) is proportional to the density estimate at x computed with kernel
P . The second term is called the Mean Shift term, denoted by

mh(x) =

∑n
i=1 xip

(∥∥x−xi

h

∥∥2)∑n
i=1 p

(∥∥x−xi

h

∥∥2) − x.
The Mean Shift term is the vector that maps x onto its local weighted mean. This vector therefore
always points in the direction of maximum increase in density. The intuitive interpretation of the
Mean Shift term mh(x) is that it shifts x toward the region in which the majority of the points
reside.

The Mean Shift algorithm exploits this property of the Mean Shift vector and computes suc-
cessive locations of the local weighted mean, defined by

µh(x) =

∑n
i=1 xip

(∥∥x−xi

h

∥∥2)∑n
i=1 p

(∥∥x−xi

h

∥∥2) .

The sequence y consisting of successive locations of the local weighted mean starting at point x is
defined by

y(0) = x,

y(i+1) = µh(y(i)).
(3.6)

The Mean Shift term has smooth trajectory properties which state that these iterative steps do not
fluctuate between multiple points. Comaniciu and Meer 2002 states that the sequence y converges
due to the smoothness together with the convexity of K and the monotonically decreasing profile
k. The Mean Shifts iterative method therefore stops when the sequence y is converged. This
convergence point m is then a mode of the kernel density estimate.
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Algorithm 1: Mean Shift algorithm process
Function [m1,m2, . . .mn] =MS ([x1, x2, . . . , xn])

for i := 1 to n step 1 do
k := 0;
y
(k)
i := xi;

while
∥∥∥y(k)i − µh

(
y
(k)
i

)∥∥∥ > ε do

k = k + 1;
y
(k)
i = µh

(
y
(k−1)
i

)
;

end

mi = y
(k)
i ;

end

Example 8 (Contoso)
The Mean Shift algorithm, Algorithm 1, applied to the Contoso cdata divides it into two
clusters. In Figure 3.4 these clusters are indicated by color and its modes are indicated by a
red dot. The division of cdata points and the modes are conform with the mountain scenery
plotted in Figure 3.3. Note that with only two cluster the cdata division is coarse.
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Figure 3.4: Clusters on Contoso cdata computed with the Mean Shift method (Each cluster
differently colored, centers indicated).

In general, the clusters computed via the Mean Shift method, tend to be coarse on dense data
sets. Because most cdata sets analyzed are dense, as for instance the ACME cdata set, the Mean
Shift method will result in little and large clusters.

3.3 Local Principal Curve Methods

In this section we examine a data representation method called local principal curves (LPC)
Einbeck et al. 2005. LPC is a method that represents data sets by a curve. The curve should be
such that it describes main characteristics of the data set.

In Einbeck et al. (2005) the history and motivation of finding curves describing points x1, x2, . . . , xn
is discussed. These curves can for instance be used for dimension reduction or simply as a descrip-
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tion or representation of the data set.
The LPC method is based on principal component analysis. Via principal component analysis

a set of observations of possibly correlated variables are converted into a set of values of linearly
uncorrelated variables through a statistical procedure called orthogonal transformation.

The principal components analyses can be extended to principal curves. Principal curves are
defined as one-dimensional smooth curves passing through the "middle" of a d-dimensional data
set. The notion of a principal curve is intuitively clear, but there is a lot flexibility in how to
define the "middle" of a data set. The first applications of principal curves uses the concept of
self-consistency, meaning that each point of the principal curve is the average over all points that
project there.

The currently existing principal curve algorithms can be divided into two families. First the
algorithms with a "top-down"- strategy. These algorithms use a line or curve as a starting point
and by modifying it the algorithms try to dwell out this line till the curve satisfactorily passes
through the middle of the data. Unfortunately the dependence on the initial line leads to technical
problems and a lack of flexibility.

The second family of algorithms are the "bottom-up" algorithms. These consider in every step
only data in a local neighborhood of the currently considered point. The first principal curve
approach which uses the "bottom-up" strategy was proposed in Delicado (2001). Based on this
strategy, Einbeck et al. (2005) proposes a relatively quick method that creates local principal
curves based on local information.

3.3.1 Principal curve of oriented points
Local principal curves are principal curves that are created using the "bottom-up" strategy. The
curves are defined in the d-dimensional space Rd. The method described in Delicado (2001)
therefore is defined for cdata V̂ ⊂ X̂ = Rd.

The method introduced by Delicado is based on local analytics on an arbitrary point x ∈ X.
The combination of x with a unit vector

b ∈ {w ∈ X : ‖w‖ = 1} (3.7)

defines a hyperplane that has normal b and support point x. Denote a orthonormal basis b2, . . . , bd
of the hyperplane such that b, b2, . . . , bd is a orthonormal basis for Rd.

The points xi ∈ V are, as in the kernel density estimate, the only reference to approximate
the data division on a hyperplane H(x, b). To approximate the data division on hyperplane
H = H(x, b) all points x1, x2, . . . , xn are projected onto the hyperplane. The projection of xi is
defined by,

xHi = xi + 〈x− xi, b〉 b,
where 〈 · , · 〉 is the Euclidean inner product (2.7). The vector xHi − x should than be an vector
laying within the hyperplane H and therefore be perpendicular to b.

xHi − x ⊥ b⇔
〈
xHi − x, b

〉
= 0〈

xHi − x, b
〉

= 〈xi + 〈x− xi, b〉 b− x, b〉
= 〈xi − x, b〉+ 〈〈x− xi, b〉 b, b〉
= 〈xi − x, b〉+ 〈x− xi, b〉 〈b, b〉
= 〈xi − x, b〉+ 〈x− xi, b〉
= 〈xi − x, b〉 − 〈xi − x, b〉
= 0

These projections xHi are weighted with a function that weighs the distance of xi to the hyperplane
H. The weight wHi of point xi is defined by

wHi = w (|〈x− xi, b〉|) = w
(∥∥xHi − xi∥∥) ,

With w a decreasing positive function, for example a kernel function.
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Example 9 (Contoso)
As an example we define a hyperplane on the Contoso cdata and visualize the projection
onto the hyperplane. We take x = (total volume = 450, total delta = 0) ∈ R2 as support
point and b = (1, 0) as the normal of the hyperplane H(x, b). Note that b2 = (0, 1) is an
orthonormal basis of hyperplane H(x, b). The projections of xi ∈ V̂ onto this hyperplane
are visualized in Figure 3.5 where the weights wHi are indicated by color.
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Figure 3.5: Projection of Contoso cdata (g1, g2) on hyperplane H((450, 0), (1, 0)) given by the red
line.

With these weighted projections the data division of hyperplane H is approximated. Statisti-
cal analyses on these projections therefore can approximate characteristics of the hyperplane H.
Let µH denote the weighted expectation such that, by definition, it belongs to H(x, b)

µ(x, b) = µH =

∑n
i=1 w

H
i x

H
i∑n

i=1 w
H
i

∈ Rd. (3.8)

For each basis vector bj for j = 2, . . . , d of hyperplane H(x, b) the directional weighted expectation
is defined by

µHbj =

∑n
i=1 w

H
i

〈
xHi , bj

〉∑n
i=1 w

H
i

.

With this expectation µHbj the directional weighted variance for each basis vector bj is defined by

varHbj =

∑n
i=1 w

H
i

(〈
xHi , bj

〉
− µHbj

)2
∑n
i=1 w

H
i

.

The total variance on this hyperplane is defined by the sum of all directional variances for the
vectors b2, . . . , bd that together define a basis for H(x, b),

φ(x, b) = φH =

d∑
j=2

varHbj ∈ R. (3.9)

The total variance can also be defined by the trace of the covariance matrix ΣH defined on the
hyperplaneH. The covariance matrix is defined by the covariances between all directions b2, . . . , bd.
The weighted covariance between two directions bj and bk is defined by

covHbj ,bk =

∑n
i=1 w

H
i

(〈
xHi , bj

〉
− µHbj

)(〈
xHi , bk

〉
− µH

bk

)
∑n
i=1 w

H
i

.
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The covariance matrix is defined by

ΣH =

cov
H
b2,b2

· · · covHb2,bd
...

. . .
...

covHbd,b2 · · · covHbd,bd

 .
Hence, the trace of ΣH is equal to the total variance (3.9).

Example 10 (Contoso)
For Contoso we represent the division of cdata on the hyperplane H given in Example 9
via a density function. The density is estimated using the kernel density estimate (3.2),
where xi is xHi , the bandwidth h is depending on the directional variance varH(0,1) and K

is the Gaussian kernel (Example 6). In Figure 3.6 this density estimate, together with the
weighted mean µH(0,1) and standard deviation

√
varH(0,1), for Contoso cdata on hyperplane H

is plotted.
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Delta

Figure 3.6: Density (blue line), mean (red line) and standard deviation (blue bar) of the weighted
projection of Contoso cdata on the hyperplane.

The method of Delicado searches for the hyperplane H(x, b) that minimizes the total variance
φH (3.9). This is done by minimizing the total variance over the unit vectors (3.7) with vector b∗
defined by

b∗ = arg minb∈{w∈Rd:‖w‖=1} φ(x, b). (3.10)

The expectation of the hyperplane H(x, b∗) passing through x with minimal total variance
defines a function µ(x, b∗) = µ∗(x). The fixed points x∗ of µ∗, x∗ ∈

{
x ∈ Rd : x = µ∗(x)

}
, are

then called principal oriented points. A curve passing through a subset of principal oriented points
is called a principal curve of oriented points, Delicado 2001.

The method of Delicado uses Algorithm 2 to compute a principal oriented point starting at
point x ∈ X. By doing so for multiple x a set of principal oriented points is described. With more
unique principal oriented points the principal curve, which has to pass through all these points, is
approximated more precise.

To systematically get different principal oriented points that are distinct Delicado proposed a
principal curve algorithm, Algorithm 3. This algorithm uses the direction b∗ to define new starting
points to compute principal oriented points. Let δ be a predefined fixed variable depending on the
variance of the data set, the new starting point is defined by

x = x∗ + δb∗.
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The vector b∗ points a direction of relatively high variance, the chances of finding new principal
oriented points in this direction is therefore high. Algorithm 3 terminates when the successive
values of x∗ remain (approximately) constant, this mostly happens when the edge of the data set
is reached.

To create a clear view of the algorithms the cdata set V̂ is omitted as input in Algorithms 2
and 3, it however is used in most calculations.

Algorithm 2: Principal Oriented Points algorithm
Function {µ} = POP (x)

k := 0;
y(k) := x;
Compute b∗ that defines the Hyperplane H

(
y(k), b∗

)
with minimal total variance;

while
∥∥y(k) − µ (y(k), b∗)∥∥ > ε do

k = k + 1;
y(k) = µ

(
y(k−1), b∗

)
= µ∗

(
y
(k)
i

)
;

Compute b∗ that defines the Hyperplane H
(
y
(k)
i , b∗

)
with minimal total variance;

end
µ = y(k);

Algorithm 3: Principal Curve of Oriented Points algorithm
Function {α1, α2, . . . , αm} = PCOP (δ)

k := 1;
Choose y(k) as a suitable starting point;
Set αk = POP

(
y(k)

)
;

while ‖αk − POP (αk + δ · b∗)‖ > ε do
k = k + 1;
αk = POP (αk−1 + δ · b∗);

end

For the theoretical situation where the data are normally distributed stochastic variables the
convergence of Algorithm 2 is proven. In this theoretical situation the iteration this Algorithm
will converge in one step, for data sets with unknown density function the convergence is assumed
but not yet proven, Delicado (2001).

3.3.2 Local Principal Curve

The local principal curve (LPC) method proposed in Einbeck et al. 2005 uses some of the main
principal given in Delicado (2001).

One of the main differences between the LPC method and Delicado’s method is that local
center of mass is used instead of principal oriented points.

Definition 3.3.1 (Local center of mass)
Let x1, . . . , xn be the cdata set V̂ and K the d-dimensional Gaussian kernel function with
bandwidth h, the local center of mass around point x ∈ X is defined by

µ(x) = µx =

∑n
i=1K(x− xi)xi∑n
i=1K(x− xi)

.
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Another difference is that the LPC method uses the first principal component of the local
covariance matrix rather than the vector b∗ (3.10).

Definition 3.3.2 (Local covariance matrix)
Let weights wi be defined by

w(x, xi) = wi =
K(x− xi)∑n
i=1K(x− xi)

,

the (j, k)-th entry (1 ≤ j, k ≤ d) of the local covariance matrix around point x, denoted by
Σx = (σxjk), is then defined by

σxjk =

n∑
i=1

wi(xij − µxj )(xik − µxk).

The matrix Σx may also be defined via matrix multiplication: Let matrix ∆ be defined by

∆ =

x11 − µ
x
1 · · · xn1 − µx1

...
. . .

...
x1d − µxd · · · xnd − µxd

 ,
then the local covariance matrix Σx is defined by

Σx = ∆ · diag (w1, w2, . . . , wn) ·∆T .

Define the first principal component γx as the first eigenvector of Σx corresponding to the
greatest (absolute) eigenvalue λx1 . Note that the greatest eigenvalue of Σx is equal to the
first singular value of Σx.

With the local center of mass and the local covariance matrix we define the LPC algorithm as
given in Algorithm 4. Notice the similarities between this algorithm and Algorithm 3.

Algorithm 4: Local Principal Curve algorithm
Function {α1, α2, . . . , αm} = LPC (δ, {x1, x2, . . . , xn})
k := 1;
Choose y(k) as a suitable starting point;
αk = µ

(
y(k)

)
;

Perform a principal component analysis locally at y(k), to obtain (λy
(k)

1 , γy
(k)

);
while

∥∥∥αk − µ(αk + δ · γy(k)
)∥∥∥ > ε do

k = k + 1;
y(k) = αk−1 + δ · γy(k−1)

;
αk = µ

(
y(k)

)
;

Perform a principal component analysis locally at y(k), to obtain (λy
(k)

1 , γy
(k)

);
end

Example 11 (Contoso)
As an example we apply Algorithm 4 to the Contoso cdata set. This creates a local principal
curve that describes the data set. The curve and the data set are both plotted in Figure 3.7.
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Figure 3.7: Local principal curve through Contoso cdata.

Coverage

In Einbeck et al. 2005 there is also a notion of coverage suggested. Coverage is a function that
depends on points Pα that describe the principal curve α and a value τ . The coverage is defined
by the percentage of points that is within a distance τ from any point p ∈ Pα,

Cm(τ) = # {x ∈ {x1, . . . , xn}|∃p ∈ Pαwith ‖x− p‖ ≤ τ} /n.

The smaller the minimum value of τ such that Cm(τ) is at a certain threshold, the better the
principal curve describes the data set.

The derivative of function Cm can also be used as an indication of the goodness of fit for a set
of points P . When the function increases fast the points Pα lie in a dense part of the data set,
therefore giving a good description of the data set.

The function Cm can thus be used to describe the characteristics of the local principal curve α.
It also can be used to describe characteristics of cluster centers. Clusters centers can for instance
be defined by centers of mass or accumulation points of clusters or may be method specific as
the modes in Mean Shift clusters. Implementing the centers as Pα into the function Cm will then
describe a goodness of fit for the clusters.

Clustering

With the use of local principal curves we have a great tool to represent data. This representation
generates insight in data that can be used to optimize analyses. However, local principal curves
do not result in clusters, which is the desired result. To this end I developed a LPC clustering
method that uses the notion of coverage to create clusters.

The LPCM package Einbeck and Evers (2013) has a build in function that approximates the
principal curve with a spline. In this function one can define a predefined number of points k that
are used to indicate this spline. We define the k-spline as the spline defined by k points.

Using the coverage function Cm the goodness of fit for the k-spline to the data set can be
indicated. Note that the coverage of the local principal curve indicates a maximum coverage
increase for a k-splines.

The clustering method searches for the minimal k such that such that the distance between
the coverage of the k-spline and the maximum coverage increase is within a certain threshold. The
k points are then used as cluster centers and each point xi ∈ V̂ is linked to the nearest cluster
center with respect to the the standard Euclidean distance measure. The points linked to the
same cluster center then form a cluster.

24 Clustering Methods for Transaction Data that consider Market Dynamics.



CHAPTER 3. CLUSTERING METHODS

Example 12 (Contoso)
We apply the method of clustering using local principal curves to the Contoso cdata set. In
Figure 3.8 the coverage Cm is plotted for different k-splines as well as for the local principal
curve.
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Figure 3.8: Coverage Cm of the Contoso cdata in percentage for different k-splines and the local
principal curve.

Using Figure 3.8 as reference conclude that the 5-spline is a good representation, in terms
of coverage, of the Contoso cdata. To create clusters the 5 points describing the 5-spline
are used as cluster centers. In Figure 3.9 these centers are indicated with a red dot, the 5
clusters they define on the Contoso cdata set are colored.
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Figure 3.9: Clusters on Contoso cdata computed with the LPC clustering method (Each cluster
differently colored, centers indicated).

3.4 Comparison

The main difference between the Mean Shift and the LPC method is their foundation. the LPC
method searches for a curve best describing the cdata set. From that curve the clusters are defined
using k-splines. The Mean Shift method on the other hand searches for modes. Each point is linked
to a mode via Mean Shift iteration.
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In Figure 3.10 the coverage Cm of the Mean Shift cluster centers is plotted against the coverage
of the k-splines and the LPC. The Mean Shift gives a better coverage than the 2-spline. However,
in comparison with k-splines with k > 2 the Mean Shift has a lower coverage increase. In terms
of coverage the LPC method is therefore better.
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Figure 3.10: Coverage Cm of the Contoso cdata in percentage for different k-splines, the local
principal curve and the Mean Shift cluster centers.

The definition of clusters defines that points from the same cluster have to be similar and
points from different clusters are to be dissimilar. The LPC method does not cope with the
second condition as well as the Mean Shift method. However, the local principal curve can consist
of multiple disconnected parts ensuring that elements of obviously different clouds are in different
clusters.

The last difference is speed. The calculation of the curve through a data set is fast and
afterwards, with little calculation time, each point xi can be linked to one of the created cluster
centers. Finding an optimal k with the use of coverage does however take more time. For the
Mean Shift method the modes are derived via an iterative process. This iterative process has to be
done for every point xi ∈ V̂ . Altogether this makes the Mean Shift method slower in comparison
to the LPC Method.

Both clustering techniques still have a lot of possible optimizations. Both use predefined
variables, for which the optimal values are unknown and differ per data set. The search or
calculation of these optima however is a different study and is not discussed in this thesis.

26 Clustering Methods for Transaction Data that consider Market Dynamics.



CHAPTER 4

Time Series

As stated in Chapter 2, a setback of the static cdata is that it does not represent dynamic behavior
of the original data entries in the time series. The amount of dynamics lost is visualized in the
figures in Figure 4.1. In each of these figures the cumulative volume over time is plotted for two
different customers. Each customer shows a different buying behavior but ends up with the same
total volume g1 at the end of the visualized period. By creating a static cdata for these customers,
as described in (2.12), their representation will be equal, such that via similarity checks and
distance measures they will be considered equal.
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Figure 4.1: 3 pairs of two customers with different characteristics but equal total volume.

For the remainder of this thesis, vki denotes the volume purchased by customer ci at time tki .
An array of volumes is denoted by v, such that

v =
[
v1, v2, . . . , vP

]
.

Definition 4.0.1 (Cumulative volume)
The array of cumulative volumes cum(v) is defined by

cum(v) =
[
v1,
∑2
l=1 v

l, . . . ,
∑P
l=1 v

l
]
. (4.1)
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In this chapter we more extensively define customer time series (t, d)i and describe a time
series visualization method. After this properties of time series in the ACME data set are stated,
focusing on data entry dynamics.

4.1 Time series

Since we want to consider the dynamics of data entries over time, the static cdata in V̂ (as
computed by g (2.12)) are not sufficient for future analyses. To get better insight in the specifics
of dynamics the original points x ∈ V themselves have to be analyzed. Therefore we analyze the
customer time series (t, d)i rather than the created static cdata.

Define
Ṽ = {(t, d)1, (t, d)2, . . . , (t, d)n} ⊂ X̃

as the set of n time series each representing a unique customer ci ∈ C.
The time series (t, d)i ∈ Ṽ are strictly increasing with respect to the time of measurement tki ,

such that
tki < tk+1

i for k = 1, . . . , Pi − 1. (4.2)

This to prevent division by zero when differentiating over time.
The time series as given in this thesis are truncated outside the time period of interest. The

period is indicated by the same period delimiters dat1 and dat2 defined in Chapter 2. The times-
tamps are then transformed to non-dimensional time(stamps) t̂ ∈ [0, 1] using the operation

t̂ =
t− dat1

dat2 − dat1
.

The notation t̂ is omitted such that t indicates the normalized time.
The quality data entries are not non-dimensionalized to keep in touch with the magnitudes

instead. Also, during the given analyzes the quality data entries will be normalized anyway such
that non-dimensionalizing would be obsolete.

Definition 4.1.1 (Time series path)
We define the function pi : [t1i , t

Pi
i ] 7→ D̂ as the piece wise linear curve constructed by linear

interpolation between the quality data points dki in time series (t, d)i. The piece wise linear
function for pi(t) : [t1i , t

Pi
i ] 7→ D̂ is defined by

pi(t) = p ((t, d)i, t) = dki +
t− tki

tk+1
i − tki

· (dk+1
i − dki ) if tki ≤ t ≤ tk+1

i for k = 1, . . . , Pi − 1.

(4.3)
We use the term "path" to refer to this piece wise linear function pi.

Example 13 (Volume)
The volume time series (t, v)i is the time series (t, d)i containing only volume data , such
that

dki = vki .

Its path, equal to (4.3), is redefined by

vpi(t) = p ((t, v)i, t) = vki +
t− tki

tk+1
i − tki

· (vk+1
i − vki ) if tki ≤ t ≤ tk+1

i for k = 1, . . . , Pi − 1.

Henceforth we call this function vpi the volume path.
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Example 14 (Cumulative volume)
The cumulative volume time series (t, cum(v))i is the time series (t, d)i containing only
cumulative volume data, such that

dki = cum(vi)
k =

k∑
l=1

vli

Its path, equal to (4.3), is redefined by

cvpi(t) = p ((t, cum(v))i, t) =

k∑
l=1

vli+
t− tki

tk+1
i − tki

·vk+1
i if tki ≤ t ≤ tk+1

i for k = 1, . . . , Pi−1.

Henceforth we call this function cvpi the cumulative volume path.

Figure 4.2 shows a pair of time series (t, d)i, i = 1, 2 for which the volume paths vpi, shown in
the right figure, are equivalent. The customer indicated by the red time series however eventually
bought more volume in the given time period, which is better indicated by the cumulative volume
paths in the right figure. From a business-point of view we think we should nevertheless distinguish
the behavior of both time sequences (we would like them to eventually be in different clusters).
We do not know how to proceed (best), but obviously one possibility is to use the cumulative
volume paths in Figure 4.2.

Note that the value of the cumulative volume path cpvi at tki is given by

cpvi(t
k
i ) =

k∑
l=1

vli for k = 1, . . . , Pi − 1.

Assuming equidistant time steps

tki = ∆t · k, k = 1, . . . , Pi,

with ∆t =
1

Pi
such that tki ∈ [0, 1] and tPi

i = 1. The integral of the volume path vpi is

∫ tki

0

vpi(t)dt ≈
k∑
l=1

vli ·∆t,

= cum(vi)
k ·∆t,

= cvpi(t
k
i ) ·∆t,

for k = 1, . . . , Pi. Hence the cumulative volume path approximates a (∆t−1)-scaled version of the
integrand of the volume path. Our ACME data is (unfortunately) such that many of its volume
time series (t, v)i are highly irregular (see below), which implies that

cvpi(t) 6= Pi ·
∫
vp(t)dt

in general.
The cumulative volume time series can be created via a simple operation on the volume data

entry, see (4.1). Therefore all its dynamics are also found in the original volume data entry. Hence,
we from now on only consider original data entries as in volume time series.

Example 15 (Contoso)
In Table 4.1 the data entries are given for points inside the time series for the Contoso data
set. The data entries are equal to the original point entries, Table 2.1. The customer and
product entries however become superfluous because the data contains only one product
such that each time series (t, d)i represents a unique customer ci.
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Figure 4.2: Volume path (left) and cumulative volume path (right) for two time series.

Data entry Data Category Description

Timestamp T The non-dimensional time.
Volume D The volume delivered.
Delta D The difference of volume ordered and volume delivered.

Table 4.1: Contoso dynamic data entries used for points in time series.

Example 16 (ACME)
The entries of the ACME data time series are similar to those described in Table 4.1, with
the exception of the delta variable which is non existing in the ACME data set.

To construct well defined time series from the ACME data set it needs to be regular-
ized. Next to the regularization steps as described in Example 3, some time series specific
regularization is needed. The combinations of ci and tki have to be unique, such that no two
transactions can occur at the same time for the same customer. To meet this conditions
(4.2) the transactions occurring at the same time from the original ACME data set had
to be accumulated. To this end we take the sum of their volumes as the volume of a new
transaction.

All together, the ACME time series give an almost exact representation of the original
data set meaning that it can be used to show and analyze its dynamics.

4.2 Dynamics of time series

In this section we examine characteristics of the time series. Since time is a new variable to be
considered the behavior of the data set with respect to time becomes essential. To this end we
study whether the data sets contain regularity issues.

Definition 4.2.1 (Regularity issues)
Regularity issues of a data set depend on the values tk+1

i − tki , d
k+1
i ± dki .

Example 17 (Contoso)
The Contoso data set is created such that it does not contain any regularity issues. At
the same time it represents some of the possible time series that occur in the ACME data
set. The exclusion of irregularities is such that future results on the ACME data set are
understandable without the explaining effects of outliers.

The Contoso time series have lengths varying between 2 and 9 transactions. The times
between transactions are computed using the exponential distribution with a normal dis-
tributed λ. The data set is split into three time series groups; One growing, one decaying
and one steady.

The volume paths vpi of all Contoso time series (t, d)i are plotted in Figure 4.3. To get
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a better view on individual volume paths the volume paths of a random customers sample
of size 100 is plotted in Figure 4.4. Note that every time series also has a delta entry, such
that the original time series path pi is a multidimensional curve.
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Figure 4.3: Volume paths for the Contoso time series.
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Figure 4.4: Volume paths for a time series sample of size 100 from the Contoso time series.

Example 18 (ACME)
The ACME data set is slightly modified to fit the mathematical time series model, see
Example 16. But even after fitting the data still has a lot of regularity issues.

In Figure 4.5 the volume path of each time series in the ACME data set is plotted. To
create a better view on individual volume paths the volume path of a random customer
sample of size 30 is plotted in Figure 4.6. Note that a lot of irregularities exist in the volume
paths of ACME customers. An in depth view on irregularities can not be obtained by looking
at Figure 4.6, therefore we summarize some of the regularity issues that are found in ACME
time series.

Example 19 (Cancelling correction)
Faulty transaction volumes in the data set are corrected by implementing a new transaction.
This new transaction then has the same volume but different sign, such that the volumes
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Figure 4.5: Volume paths for the ACME time series.
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Figure 4.6: Volume paths for a time series sample of size 30 from the ACME time series.

cancel each other out. This creates for example time series (t, v)i with volumes

vi = (1000,−1000), (4.4)

where the second transaction cancels the first. Unfortunately these corrections ensure rela-
tively large differences in transactional volumes.

In (4.4) the correcting transaction is subsequent in time to the original, this however is
not standard. This creates for example time series (t, v)i with volumes

vi = (1000, 50,−1000),

also occur, making it hard to detect what transaction was originally cancelled.

Example 20 ("Smart" cancelling corrections)
Faulty transaction volumes are also corrected in a "smarter" way, where the difference with
the correct volume is implemented as a new transaction. This creates for example time series
(t, v)i with volumes

vi = (1000,−860),

where the correct volume is 140. These "smarter" corrections do not necessarily occur
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subsequent in time, as cancellations in Example 19. Altogether these corrections are hard
to detect and correct.

Example 21 (Correction times)
Some of the wrong volumes in the transaction data set are noticed quickly, such that they
are corrected within a short amount of time. Meaning that the time period tk+1

i − tki then
becomes small with respect to [t1i , t

Pi
i ]. Also normal transactions may be entered shortly

after eachother, for instance via small back order, resulting in relatively small time periods.

Definition 4.2.2 (Irregular time series)
We define irregular time series as time series (t, v)i that contain either

• Small number of transactions Pi, for instance 1 or 2

• Small interval [t1i , t
Pi
i ] inside the time window [0, 1]

• large differences between intervals

maxk(tk+1
i − tki )

mink(tk+1
i − tki )

>> 1

• tk+1
i = tki (should not occur but does)

• vki < 0 (should also not occur but does)

An irregular data set is a data set containing irregular time series.
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Distance Measures

Most clustering methods such as those presented in Chapter 3 depend on distances d(x, y) in
R between cdata points x, y in Rd. The employed distance measure determines the "value" of
the obtained clusters because it determines whether (time-dependent) behavior is similar. From
the business perspective it seems desirable that similar customer behavior leads to about zero
distance. For instance customers that increasingly purchase more volume at every new order
should be considered (more) similar and should have distance (close to) zero. Thus, we need to
construct a distance measure which takes this business wish into account.

For the similarity check we need to construct a distance measure of the form

d ((t, d)i, (t, d)j) 7→ R.

In Liao (2005) a list of existing distance measures on time series is given. The distance measures
in this list can be divided into two categories

1. Methods which require

tki = tkj ∀i 6= j = 1, . . . , n, ∀k = 1, . . . ,min(Pi, Pj), (5.1)

which permits these methods to ignore the time (equidistance tk+1
i −tki = ∆t is not required).

2. Methods which do not require (5.1), where we take Dynamic Time Warping (DTW) as an
example.

During two multi houred CASA-question meetings with members from the CASA group it was
concluded that (from the distance measures which take transient behavior into account) there was
no obvious distance measure because for the categories specific:

1. Before using these methods a lot of regularization on the original data is needed. As seen in
the Figures 4.6 and 4.4 the data does not at all fit the requirements for this category (5.1).
To fit the data first needs to be inter- or extrapolated. The amount of data that becomes
oversimulated or neglected through these operations is unclear.

2. Computing distances with DTW is computationally expensive and it is not clear beforehand
how this method relates to distance measures from (1).

The uncertainty and unclarity of distances computed with the measurements in Liao (2005)
on our data sets together with the possible costly implementations, made us decide to analyze a
simpler set of distance measures

((t, d)i, (t, d)j) 7→ d (g((t, d)i), g((t, d)j)) ,
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where g is an indexing function, i.e. a function with as input a time-series and as output a real
number. This group of distance measures is further investigated in the next chapter.

In this chapter a short summary of some of the distance measures in Liao (2005) is given. This
to argue the transition to simpler distance measures that use indexing functions g((t, d)i).

5.1 Euclidean distance measures
The most commonly used distance measure in multiple dimensions is the Euclidean distance
measure. This is also the distance measure used in the clustering methods presented in Chapter
3. In Liao (2005) several versions and generalizations of the Euclidean distance measure are given.
The versions are defined for time series (t, d)i with one dimensional dki of fixed length P that
belong to the first category (5.1).

The ACME data set does not meet the requirements (5.1) stated for the first category, as seen
in Figure 4.6. Therefore the original time series have to be regularized and or simulated before
Euclidean based distance measures can be used. The method to be used for these regularization
and simulation steps bring up enough problems and unanswered questions to argue whether or
not this function is useful at all.

Below we argue whether the Euclidean based distance measures would fit the business model
if there exists a correct way to fit the ACME data set to the first category of distance measures.

Definition 5.1.1 (Euclidean distance)
Let (t, d)i and (t, d)j each be a time series of length P . The Euclidean distance is computed
as

dE ((t, d)i, (t, d)j) =

√√√√ P∑
k=1

(
dki − dkj

)2
.

The Euclidean distance measure computes the sum of the squared differences between the
two time series at all time stamps, without using the amount of times Pi or the actual times tki
(or differences tk+1

i − ti) themselves. Therefore different behavior in time can lead to the equal
distances as shown in Figure 5.1.

The extension of the Euclidean distance measures to fit time series of different lengths is not
trivial. One method is to exclude non existing time series elements in the distance measure.
However this would result in an unbalanced measure when comparing long with short time series.

To cope with time series of different length the distance could be averaged, resulting into the
root mean square distance.

Definition 5.1.2 (Root mean square distance)
Let (t, d)i and (t, d)j each be a time series of length P . The root mean square distance, also
known as the average geometric distance, is computed as

drms ((t, d)i, (t, d)j) =
1

P

√√√√ P∑
k=1

(
dki − dkj

)2
=
dE ((t, d)i, (t, d)j)

P
.

Note that the root mean square distance measure is a discretization of the well known L2

norm.

Because of the averaging over the amount of transactions P perhaps this distance measure
applied to an actual (ACME) data set will lead to clusters which provide more insight. However
the actual times tki (or differences t

k+1
i −ti) themselves are not considered in this distance measure,

such that it still has shortcomings.
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Figure 5.1: Different pairs of time series that all have a distance equal to
√

5.
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Definition 5.1.3 (Minkowski distance)
Let (t, d)i and (t, d)j each be a time series of length P . The Minkowski distance, a general-
ization of the Euclidean distance, is computed as

dE(q) ((t, d)i, (t, d)j) =

(
P∑
k=1

∣∣dki − dkj ∣∣q
)1/q

,

where q > 0 is a positive real number.

The Minkowski distance measure is more general than the Euclidean distance measure. With
the value q the impact of outliers and or fluctuations on the distance can be managed. To show
this concept the unit circles in two dimensions for various values of q are given in Figure 5.2. Here
each dimension represents a timestamp and it is seen that for smaller q the differences at these
timestamps have less impact on the distance.

The Minkowski distance measure, as the Euclidean distance measure, can be averaged in order
to cope with time series length differences. Note that the averaged Minkowski distance measure
is a discretization of the LQ norm.

The actual times tki (or differences tk+1
i − ti) themselves are not considered in all Euclidean

based distance measures, as illustrated in Figure 5.1. They also do not cope very well with small
time shiftings.

We consider the two time series (t, d)1 and (t, d)2 of length P , where

tk2 = tk1 + c ∀k = 1, . . . , P,

Here (t, d)2 is delayed from the time series (t, d)1 by a constant c. The value of the constant c will
have impact on the distance, such that even small c may result in a lot of distance between the
two time series. This makes the Euclidean based distance measure unstable with respect to time
shiftings.

From a business point of view, the growth, decay and or shiftings are of importance on time
series similarities. Since none of these elements are considered correctly through the Euclidean
based distance measures, we conclude that they are not sufficient to accurately indicate similarities
between customer time series.
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Figure 5.2: Unit circles of the Minkowski distance in a 2 dimensional space for different values of
q
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5.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a distance measure of the second category, it therefore can
be directly applied to our transaction time series. In DTW two time series are stretched in time
in order to find a best fit. The stretching is done via warping paths, describing links between
elements from each of the time series. The best fit is the warp path that indicates the stretched
time series with minimal distance.

DTW is applied on time series such that patterns rather than positions are compared. For
instance, walking patterns could be compared, even if one person is walking faster than the other.
Another well known application is speech recognition, where it copes with different speaking
speeds. DTW is also used in shape and signature recognition.

The DTW method, as described below, is based on time series (t, d)i with one dimensional
quality data dki . The length and the moment of measurement can vary per time series, such that
time series are of the form

(t, d)i = (t1i , d
1
i ), (t

2
i , d

2
i ), . . . , (t

Pi
i , d

Pi
i ),

for i = 1, . . . , n. Which is equal to the form of our transaction time series.

Definition 5.2.1 (Warping path)
Time warping is a method used in Dynamic time warping. This method creates a warping
path describing links between points of two time series.

Let (t, d)i and (t, d)j be two time series of lengths Pi and Pj respectively, time warping
is defined by a constructed warp path w

w = w1, w2, . . . , wH max (Pi, Pj) ≤ H < Pi + Pj ,

where H is the length of the warp path. Each element wh ∈ w describes a link between two
points, each from one of the two time series (t, d)1 and (t, d)2. When wh connects (tki , d

k
i ) to

(tlj , d
l
j) it is simply written as a tuple

wh = (k, l) ∈ N2.

The warp path is complete when it satisfies the following three constraints:

I Boundary conditions: The warp path has to start by connecting the first time series points
and end by connecting the last of the two time series,

w1 = (1, 1),

wK = (Pi, Pj).

II Continuity: Two adjacent tuples, wh and wh+1 for h = 1, . . . ,H − 1, in the warp path can
only have a maximum norm (2.6) of 1,

‖wh+1 − wh‖max ≤ 1.

III Monotonically increasing: Under the maximum norm two adjacent tuples, wh and wh+1 for
h = 1, . . . ,H − 1, from the warp path w have a minimal distance of 1,

‖wh+1 − wh‖max ≥ 1.

Concluding that two adjacent tuples have to have a maximum norm of 1. The three condi-
tions ensure that every point of each time series is connected to a point on the other via a
warp tuple and no duplicates or crossings exist in the warp path.
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Time (t)

Figure 5.3: A warping between two time series

Note that from the definition it follows that the number of possible warping paths will be
very large for reasonably sized time series. The distance of a warp path is based on distances
between time series points. Each time series (t, d)i ∈ Ṽ has one dimensional real valued quality
data (D̂ = R). The norm (2.5) over the difference between quality data then indicates an distance
between time series points. The distance of a warp path w between the time series vectors (t, d)i
and (t, d)j is the sum of such distances, defined by

Dist(w) =

H∑
h=1

∥∥∥dwh[1]
i − dwh[2]

j

∥∥∥ ,
where wh[1] and wh[2] are the first and second element of the h-th tuple of the warp path w
respectively. The optimal warp path w∗ is defined by the warp path with minimal distance.

Definition 5.2.2 (Strict Subsequence Inclusion)
Define the operation v as the strict subsequence on time series (t, d)i on (t, d)j ∈ X̃ of length
Pi ≤ Pj respectively by,

(t, d)i v (t, d)j

⇐⇒(
tki , d

k
i

)
=
(
tk+nj , dk+nj

)
for some fixed n ∈ 0, . . . , Pj − Pi ∀k ∈ 1, . . . , Pi.

Define the operation |v as the headed strict subsequence on two time series (t, d)i and
(t, d)j ∈ X̃ of length Pi and Pj respectively by,

(t, d)i |v( t, d)j

⇐⇒(
tki , d

k
i

)
=
(
tkj , d

k
j

)
∀k ∈ 1, . . . , Pi.

The headed strict subsequence is a strict subsequence of a time series that is equal to the
head of that time series. Define (t, d)ri as the headed subsequence of time series (t, d)i of
length r,

(t, d)ri = (t1i , d
1
i ), (t

2
i , d

2
i ), . . . , (t

r
i , d

r
i ) r ≤ Pi,

such that (t, d)Pi
i = (t, d)i.
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Dynamic Time Warping is a dynamic programming approach to find the optimal warp path
w∗ and its distance. The program has a recursive method which iteratively computes the warping
path with minimal distance for smaller headed strict subsequences of the time series (t, d)i and
(t, d)j . Instead of solving the entire problem at once, sub-problems are solved and used to find
solutions to larger problem.

In the dynamic programming approach, DTW constructs a 2 dimensional cost matrix D in a
"bottom-up" way. Its elements Dr,s indicate the distance of the optimal warp path for the time
series (t, d)ri and (t, d)sj . The "bottom-up" way ensures that the value of DPi,Pj is the distance of
the optimal warp path between the time series (t, d)i and (t, d)j .

The DTW method starts with the initial setting

Di,0 =∞ ∀i = 1, . . . , Pi,

D0,j =∞ ∀j = 1, . . . , Pj ,

D0,0 = 0.

This initial setting ensures that time warping paths w starts with w1 = (1, 1).
The cost matrix is filled with the iterative function

Dr,s =
∥∥dri − dsj∥∥+ min [Dr−1,s, Dr,s−1, Dr−1,s−1] . (5.2)

The values Dr−1,s, Dr,s−1 & Dr−1,s−1 represent the distance of an optimal warping path to prior
headed subsequences, prior with respect to the second and third property of a warping path. By
choosing the minimum of those elements the optimal warping path between the time series (t, d)ri
and (t, d)sj is defined. The iteration stops at the final entry DPi,Pj

, giving the distance of the
optimal warp path between (t, d)i and (t, d)j .

The optimal warp path itself can then be computed using the full cost matrix D. The warping
path w∗ is computed in reverse order starting at DPi,Pj . A greedy search is performed that
evaluates cells near the current cell. If the current cell is Dr,s the cells Dr−1,s, Dr,s−1 and Dr−1,s−1
will be evaluated. The warp tuple connected to the matrix entry with minimal value is added to
the warp path, creating the optimal warppath recursively.

In this section the one dimensional application of the DTW distance measure is given. However,
other than the Minkowski and Euclidean distance measures, this distance measure can be easily
extended to multiple dimensions. The norm used in (5.2) can be used as a multidimensional norm,
giving a DTW path for time series with multidimensional quality data.

5.2.1 Application

DTW distance measure is mostly applied to time series that include a lot of measurements, for
instance in the stock market time series. These time series are created using measurements at a
fixed time interval, such that they also fit the first category of distance measures. However, due to
small shiftings in the time axis the Euclidean distance measure gives an unbalanced results. With
the use of DTW these time shifting influences are managed.

There is a difference between DTW’s standard field of application and our situation. The
transactional data is not measured at a fixed time interval and does not occur at a high and
steady rate as for instance stock market data. The DTW method also has no time shift limit such
that we question how relevant, from a business point of view, large time shiftings will be for the
transactional data comparison. Even the results of the existing modifications that manage the
time shiftings are questionable.

Next to the business application questions there exist other issues. The distances are to be used
for clustering, meaning that all distances between each of the time series in the data set Ṽ have to
be computed. Each DTW distance measure is computationally expensive meaning that applying
the distance measure to large data sets will eventually result in unmanageable computation times.

The existing methods that improve speed of the DTW distance measure rely on improving the
measure for long time series. This however does not result in computation time improvements
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with respect to the large data sets with short time series. Meaning that these speed improvements
will have no effect on the ACME data set.

The question remains whether the DTW method solves the initial problem. We search for
a distance measure that evaluates customers that show the same dynamic behavior as similar.
Therefore growing customers should have smaller distance to other growing customers and vice
versa. However the distances computed with DTW depend mainly on the average volume value.
Managing the impact of dynamics on the similarity seems impossible. Therefore, the urge to create
a more tangible distance measure is high.
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CHAPTER 6

Dynamic cdata

A dichotomy of the problems with dynamics in the transaction data exists between the business
and mathematical applications. From the business point of view it is uncertain what dynamics
are of interest and how they are shown in time series. On the other hand, from the mathematical
application side it is not certain what mathematical formulas indicate what dynamics.

The distance measures in Chapter 5 do not surely compare dynamic properties and it is not
certain what dynamics are of influence on the distance. To get a better grasp on the influence
of dynamics on mathematical formulas we try to create simple functions that should indicate the
value of a specific dynamic property.

To this end a single value (i.e. index) is to be computed, indicating the value of a dynamic
property in a time series. This is in essence the same as creating a new cdata entry function,
g3((t, d)i) : X 7→ R, that indexes a dynamic property. In contrast to the static cdata entry func-
tions in Section 2.3, for the cdata entry function g3 indexing a dynamic property time dependent
information is used, i.e., information connected to the length Pi of a time series (t, d)i and/or the
time elements t1i , t2i , . . . , t

Pi
i themselves. We call cdata entries that use time dependent information

dynamic cdata entries. If the cdata contains dynamic cdata entries it is called dynamic cdata.
The dynamic cdata entries have several applications. For instance they can be used as a

separate distance measure, or as a dimension extension to the static cdata (2.12). The latter
creates dynamic cdata, which for instance can be used in clustering. However, for the function
g3((t, d)i) to fit the clustering methods in Chapter 3 it has to be independent from the cdata entry
functions g1 and g2. Note that for the functions g1 and g2 independence is already assumed.

The remainder of this chapter focuses on the creation of a dynamic cdata entry function that
indexes the volume growth of a time series, called volume growth indexing function. Note that
the notion of growth from a business point of view is uncertain, creating a field of play where all
indexing functions that index some sort of volume growth dynamic may be of use. What we do
know is that growth is related to differential formulas and that we need to apply these on the
volume time series to get an indication of volume growth.

For now, assume that such a dynamic cdata entry function g3 correctly indexing the volume
growth of a volume time series exists. The independence between the values of g2 and g3 is trivial,
since the volume data entry is independent of the delta data entry. The independence with g1
however is not trivial, because both cdata entry functions use the original data entry volume as
input. When g3 and g1 are dependent, for instance a large total volume is associated with a big
or small growth, the distances used in clustering will be out of balance. Meaning that one of
the original data entries will be over represented, resulting in clusters that are not balanced and
therefore less correct.
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It is arguable whether or not it is possible to create a volume growth indexing function g3
that is independent to total volume g1. A logical reasoning would be that total volume should
be independent to growth because two time series that result in the same total volume do not
necessarily mean to both be growing the same, see Figure 4.1. Concluding that, at least to some
extend, we should be able to find an average volume growth cdata entry function g3 that indexes
volume growth independently to the total volume.

6.1 Volume Growth indexing functions
In this section indexing functions g3,k : X 7→ R for k = 1, . . . , 4 are given that index volume growth
of time series. The question is whether these indexing functions fit the mathematical model and
the ACME data set. The indexing functions are applied to the volume time series of length P

(t, v) = (t1, v1), (t2, v2), . . . , (tP , vP ),

where the multidimensional data dk are replaced by one dimensional data vk indicating the volume
at time tk. Each element of the time series (t, v) indicates a transactional volume and time, totaling
into P transactions.

6.1.1 Average local growth over total volume
A function that indexes the average local growth between neighboring elements of the time series
(t, v), is given by

g3,1 ((t, v)) =

P−1∑
k=1

vk+1 − vk

tk+1 − tk

/ P∑
k=1

vk

=

P−1∑
k=1

vk+1 − vk

tk+1 − tk

/
g1((t, v)).

(6.1)

This function g3,1 gives an indication of the average volume growth. Since the growth indexing
function should be independent on g1 we normalized the vki in g3,1 through the division by g1.

To find whether the dynamic cdata entry function g3,1 fits the mathematical model correlations
between the cdata entries g1 and g3,1 are tested. In Figure 6.1 the ACME customers are plotted as
single dots of cdata (g1, g3,1). This figure shows that large g1((t, d)i) often correspond with small
|g3,1((t, d)i)|, indicating a correlation between the two cdata entry functions. One of the problems
of the correlation between g3,1 and g1 is that growing and decaying customers with large total
volume can not be told apart.

To indicate the correlation between total volume g1 and the indexing function g3,1 a set of time
series S1 is created

S1 =
{

(t, v)i : (tki , v
k
i ) = (∆t · k,∆v · k + µi), k = 1, . . . , P

}
The set S1 contains time series of equal length P that have volume paths that are parallel to each
other (∆t and ∆v are constant).

When applied to the set of time series S1 the indexing function g3,1|S1
: S1 7→ R can be

simplified to

g3,1|S1
((t, v)i) = P

∆v

∆t

/
1

2
P (P + 1)∆v + P · µi

=
∆v

∆t ·
(
1
2 (P + 1)∆v + µi

) .
In the function g3,1|S1

all variables are constant except for the value of µi, which therefore is the
only value which influences the value of the index. However, since the volume paths are parallel,
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we would expect that the value µi (indicating the parallel shift) would have no influence on the
growth index. The total volume g1 of time series (t, v)i ∈ S1 is given by

g1|S1
((t, v)i) = P · µi +

1

2
P · (P ·∆v + ∆v).

Note that g1 depends linearly on µi and therefore correlates with g3,1.
The volume paths of the 50 times series below the top 50 with respect to function g3,1 are plotted

in Figure 6.2. The top 50 is omitted because they show even more extreme behavior (oscillating)
than in Figure 6.2. Each customer drawn in Figure 6.2 is a customer with relative large positive
values for g3,1 and therefore should be growing. Figure 6.2 however does not emphatically show
that these customers are growing.
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Figure 6.1: Linear and logarithmic representation of the distribution of volume growth g3,1 versus
total volume g1 for the ACME cdata (g1, g3,1).

6.1.2 Sum of the local growths
In an attempt to lesser the correlation between g1 and g3,1 we removed the division by g1 in (6.1).
This results in a new function indexing the volume growth,

g3,2 ((t, v)) =

P−1∑
k=1

vk+1 − vk

tk+1 − tk
. (6.2)
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Figure 6.2: Volume paths of the 50 customers below the top 50 customers with respect to the
value of g3,1 for the ACME cdata (g1, g3,1).

The function g3,2 computes the sum of the relative growths. In Figure 6.3 the ACME customers
are plotted as single dots of cdata (g1, g3,2). Contrary to the distribution of the dynamic cdata
(g1, g3,1) in Figure 6.1, the dynamic cdata (g1, g3,2) in Figure 6.3 are more evenly distributed.

To indicate how g3,2 (6.2) behaves with respect to dynamics a new set of time series S2 is
created. S2 contains time series with constant and equal local growth rate, but the amounts of
transactions varies. The new time series set S2 is indicated by

S2 =

{
(t, v)i : (tki , v

k
i ) =

(
τ

Pi − 1
· (k − 1),

ν

Pi − 1
· (k − 1) + c

)
, k = 1, . . . , Pi

}
.

Here τ indicates the full time period, c the start volume and ν the difference in volume between
the first and last transaction. Note that the time series (t, v)i all have the same volume path.
The cdata entry function g3,2 applied to time series (t, v)i ∈ S2 can be simplified to the indexing
function g3,2|S2

: S2 7→ R by

g3,2|S2
((t, v)i) =

Pi−1∑
k=1

ν

Pi − 1

/
τ

Pi − 1

=

Pi−1∑
k=1

ν

τ

= (Pi − 1)
ν

τ
.

The value of g3,2|S2
((t, v)i) is linearly dependent to the value Pi, which therefore has a direct

influence on the growth indexing function g3,2. To visualize this situation two buying patterns
are indicated in Figure 4.2. The volume paths of the red and blue time series in Figure 4.2 have
the same volume path. However the growth indexed by g3,2 is different for the two time series,
namely 4 times higher for the red time series (note that Pred = 5 and Pblue = 2). The cumulative
volume paths in the right figure however do show dissimilar behavior for the two customers, such
that the growth value of g3,2 can be related to the growth of the cumulative volume paths.

The cdata entry function g1 applied to time series (t, v)i ∈ S2 can also be simplified,

g1|S2
((t, v)i) =

Pi∑
k=1

ν

Pi − 1
· (k − 1) + c

= Pi ·
(
c+

ν

2

)
.

48 Clustering Methods for Transaction Data that consider Market Dynamics.



CHAPTER 6. DYNAMIC CDATA

−250000

0

250000

500000

0 20000 40000 60000
Total volume (g1)

G
ro

w
th

 (
g 3

,2
)

20

40

60
#Transactions (Pi)

(a) linear

−250000

0

250000

500000

1 100 10000
Total volume (log(g1))

G
ro

w
th

 (
g 3

,2
)

20

40

60
#Transactions (Pi)

(b) logarithmic

Figure 6.3: Linear and logarithmic representation of the distribution of volume growth g3,2 versus
total volume g1 for the ACME cdata (g1, g3,2).

In Figure 6.4 the position (g1, g3,2) is plotted as a dot for time series (t, v)i ∈ S2 created from all
combinations of the variables

ν = {100, 200, . . . , 500} ,
τ = {0.2, 0.4, . . . , 1} ,
Pi = {1, 2, . . . , 10} .

The lines in this figure indicate a group of time series with equal ν and τ , such that within a line
only the variable Pi varies. The outer left and right dots on these lines indicate position (g1, g3,2)
of time series with Pi = 1 and Pi = 10 respectively. The value Pi increases by one for each dot
when following the line from left to right. In Figure 6.4 we see the following relations between
variables ν, τ & Pi and the position (g1, g3,2) of time series (t, v)i ∈ S2:

• When increasing the value ν both growth g3,2 and volume g1 increase

• When decreasing the value τ growth g3,2 will increase and volume g1 will remain equal

• When increasing the value Pi both growth g3,2 and volume g1 increase.
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Figure 6.4: The cdata (g1, g3,2) for time series in S2 grouped via a line for equal ν and τ .

The volume paths of the 50 times series below the top 50 with respect to growth g3,2 are
plotted in Figure 6.5. The top 50 is again omitted to exclude even more extremes. In contrast
to Figure 6.2, Figure 6.5 shows volume paths with a much larger volume g1. However the volume
paths in Figure 6.5 do not emphatically show that these customers are growing.
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Figure 6.5: Volume paths of the 50 customers below the top 50 customers with respect to the
value of g3,2 for the ACME cdata (g1, g3,2).

6.1.3 Local volume growth per transaction
Another growth index is the average local growth per transaction, the formula is given by

g3,3 ((t, v)) =

P−1∑
k=1

vk+1 − vk

tk+1 − tk

/
P. (6.3)

g3,3 computes the average growth step between subsequent transactions, which gives an indi-
cation of partial growths. In Figure 6.6 the ACME customers are plotted as single dots of cdata
(g1, g3,3). Contrary to the distribution of the dynamic cdata (g1, g3,1) in Figure 6.1, the dynamic
cdata (g1, g3,3) in Figure 6.6 are more evenly distributed.

The color scale in Figure 6.6 indicates the number of transactions P . For a relative high P
the value of g3,3 tends to zero. For a better comparison the ACME customers are plotted as
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single dots of cdata (Pi, g3,3) in Figure 6.7. Here the distribution of dynamic cdata is similar to
the distribution in Figure 6.1, indicating a dependency between the transaction count Pi and the
growth indexing function g3.3.

To see whether or not customers that purchase products more often are stable with respect to
growth, the volume paths of the customers with transaction count Pi > 100 are drawn in Figure
6.8. This figure shows oscillating volume paths and therefore does not support nor contradicts the
earlier claim of dependency between Pi and g3,3.
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Figure 6.6: Linear and logarithmic representation of the distribution of volume growth g3,3 versus
total volume g1 for the ACME cdata (g1, g3,3).

The volume paths of the 50 times series below the top 50 with respect to volume growth g3,3 are
plotted in Figure 6.9. Again the top 50 is omitted because it usually contains extremes that do not
give a relevant insight in results of g3,3. In contrast to Figure 6.2, Figure 6.9 as 6.5 show volume
paths with a higher volume g1. However (again) the volume paths shown do not emphatically
show that these customers are growing.

Figures 6.2, 6.5 and 6.9 all do not show emphatically growing customers. The volume paths
shown in these figures are instead all highly irregular. The irregularities may be the cause of
extreme growth indexes since all of the indexing functions g3,k, k = 1, 2, 3, contain the factors

1

tk+1 − tk
.

The irregularities in time and volume somehow seem to have a dominant effect on the previous
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Figure 6.7: Growth computed via the indexing function g3,3 over transaction count for the ACME
data.
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Figure 6.8: Volume paths for the time series from the ACME data set with more than 40 trans-
actions, with as color the growth index computed with function g3,3.

indexing functions g3,1, g3,2 and g3,3. To better comprehend the impact of time irregularities on
these indexing functions a new set of time series S3 is created. Let time series (t, v)i ∈ S3 be of
same odd length P and have equal internal volumes v1, . . . , vP . Let the start t1 and end tP of
these time series be constant such that S3 is defined by

S3 =

{
(t, v)i : (t2k−1i , v2k+1) = (k · τ, ν1), k = 1, . . . ,

P + 1

2
,

(t2ki , v
2k) = ((k + α) · τ, ν2), k = 1, . . . ,

P − 1

2

}
,

where τ is the time period in which exactly two transactions occur, ν1 and ν2 are two different
volumes with ν1 << ν2 and 0 < α < 1 is a shifting factor. The volume and cumulative volume
paths of two example time series from S3 are plotted in Figure 6.11.

The indexing function g3,3 applied to time series (t, v)i ∈ S3 can be simplified to the indexing
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Figure 6.9: Volume paths of the 50 customers below the top 50 customers with respect to the
value of g3,3 for the ACME cdata (g1, g3,3).

function g3,3|S3
: S3 7→ R defined by

g3,3|S3
((t, v)i) =

(P−1)/2∑
k=1

ν2 − ν1
ατ

+

(P−1)/2∑
k=1

ν1 − ν2
(1− α)τ

/P

=
(ν2 − ν1)(P − 1)

2Pτ

(
1

α
− 1

(1− α)

)
︸ ︷︷ ︸

h(α)

,

where the function
h(α) =

1− 2α

α(1− α)
, (6.4)

assuming τ > 0 and 0 < v1 << v2 are fixed. The only free variable is α such that

g3,3|S3
((t, v)i) = 0 for α = 0.5,

g3,3|S3
((t, v)i) < 0 for α > 0.5,

g3,3|S3
((t, v)i) > 0 for α < 0.5.

The function h describes the influence of α on the index g3,3((t, v)i) for time series (t, v)i ∈ S3.
The graph h with τ = 1 is plotted in Figure 6.10. This figure shows that the function h (6.4) is
not suited if the data set contains time series (t, v) with small tk+1 − tk.

The two time series in Figure 6.11 show similar paths, especially when looking at the cumulative
volume path. However, the index computed with either g3,1, g3,2 or g3,3 differs a lot for the two
time series.

The Figures 6.2, 6.5 and 6.9 show a lot of oscillating volume paths. Showing that, one, the
ACME data set contains highly oscillating volume paths and, two, that the growth indexing
functions g3,k, k = 1, 2, 3 are sensitive with respect to irregularities in data sets.

6.1.4 Average volume difference between transactions
An indexing function that does not consider the time intervals tk+1 − tk is given by

g3,4 ((t, v)) =

∑P−1
k=1 v

k+1 − vk

P
=
vP − v1

P
. (6.5)

Clustering Methods for Transaction Data that consider Market Dynamics. 53



CHAPTER 6. DYNAMIC CDATA

−100

−50

0

50

100

0.00 0.25 0.50 0.75 1.00
α

h(
α)

Figure 6.10: α impact on the growth index, indicated via the trajectory of h (6.4).
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Figure 6.11: Volume and Cumulative Volume over time for time series that give large differences
in growth computed with either (6.1), (6.2) and (6.3).

This however is a quick and dirty indexing function that ignores all internal transactions and only
depends on the first and last volume vP and v1. Therefore it does not provide reliable information
about internal dynamics.

6.2 Volume Growth indexing functions using smoothing

The inclusion of individual time intervals tk+1 − tk makes indexing functions g3,1, g3,2 and g3,3
unusable with highly irregular data sets. The exclusion on the other hand, as in the indexing
function g3,4, results in a function which does not provide reliable dynamics information. In this
section we construct an indexing function that provides dynamics information but does not use
the time intervals tk+1 − tk directly.

The indexing function analyzed divides the time frame [t1, tP ] of time series (t, v) into two
periods of equal length. The periods are defined by the divider

tmid =
t1 + tP

2
,

which is the middle of the time frame. Let r be defined such that

tr < tmid ≤ t
r+1.
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We define a smooth representation of the time series (t, v) by a new time series containing two
volumes vleft and vright as the left and right average volumes of the original time series respectively

vleft =

∑r
k=1 v

k

r

/∑P
k=1 v

k

P
,

vright =

∑P
k=r+1 v

k

P − r

/∑P
k=1 v

k

P
.

(6.6)

To create a time series (tleft, vleft), (tright, vright) these volumes are paired with timestamps

tleft =
t1 + tmid

2
=

3t1 + tP

4

tright =
tmid + tP

2
=
t1 + 3tP

4

(6.7)

Define ĝ3 applied to the smooth representation of time series (t, v) as

ĝ3

(
(tleft, vleft), (tright, vright)

)
= vright − vleft. (6.8)

An indexing function g3,5 that is defined on original time series (t, v) is thus given by

g3,5((t, v)) = ĝ3

(
(tleft, vleft), (tright, vright)

)
=

(
1

P − r

P∑
k=r+1

vk − 1

r

r∑
k=1

vk

)/
1

P

P∑
k=1

vk.

(6.9)
This function computes the relative growth of the average volume over the two time periods defined
by tmid.

In Figure 6.12 the ACME customers are plotted as single dots of cdata (g1, g3,5). Contrary
to the distribution of the cdata (g1, g3,1) in Figure 6.1, the cdata (g1, g3,5) in Figure 6.12 is more
evenly distributed.

In Figure 6.13 the volume paths of the 50 times series below the top 50 with respect to growth
g3,5 are plotted. The top 50 is omitted because it usually contains extremes that do not give a
relevant insight in results of g3,5. Figure 6.13 in contrast to Figures 6.2, 6.5 and 6.9, shows that
g3,5 attains similar positive values for growing vk. For decreasing vk also similar negative values
are attended.

Although the better result as indicated by Figure 6.13 there are obvious issues involved with
the calculation of g3,5 using the proposed smoothing.

• What to do with time series (t, v) of the form

(t, v) = (t1, v1), (t2, v2), (t3, v3),

with t2 = 1
2 (t1 + t3) and v2 >> v1 + v3.

• The normalization caused by the division by the total volume g1 in the smoothed represen-
tation volumes (6.6) could result in a correlation between the values g3,5 and g1.

Indexing function g3,5 is one of the simplest cases in a family of indexing functions that use
smoothing. Modifications applied to the function g3,5 to obtain other indexing functions are

• Using the sum of the volumes vk rather than the average volumes for the smoothed repre-
sentation volumes

ṽleft =

∑r
k=1 v

k∑P
k=1 v

k
,

ṽright =

∑P
k=r+1 v

k∑P
k=1 v

k
.
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In combination with timestamps tleft and tright as in (6.7) these two volumes create a new
time series. Using ĝ3 (6.8) it also creates a new indexing function g3,6 that is defined on the
original time series (t, v) as

g3,6((t, v)) = ĝ3

(
(tleft, ṽleft), (tright, ṽright)

)
=

(
P∑

k=r+1

vk −
r∑

k=1

vk

)/ P∑
k=1

vk. (6.10)

• Averaging by the total time intervals tP −t1 such that the value is relative to the time period
in which the growths occur.

• More intervals (not only "left" and "right") such that more dynamics may be considered.

• Using the difference in number of transactions over the periods as a frequency indication.

• Using the values tk+1 − tk as an irregularity indication.

The exact effects of these modifications to the growth index for time series (t, d)i in the ACME
data set are unknown. Given the amount of time allotted to the writing of this thesis these other
indexing functions have not been examined in detail.
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Figure 6.12: Linear and logarithmic representation of the distribution of volume growth g3,5
versus total volume g1 for the ACME cdata (g1, g3,5).
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Figure 6.13: Volume paths of the 50 customers below the top 50 customers with respect to the
value of g3,5 for the ACME cdata (g1, g3,5).

6.2.1 Smoothing data
The main difference between indexing function g3,5 and the prior indexing functions is that g3,5
smoothed the time domain for the calculation of the growth index. The latter show that using the
separate time intervals tk+1

i − tki results in an indexing function that is sensitive to irregularities
and unusable on highly irregular data sets. On the other hand via the creation a cdata set where
high volume growth index corresponds to larger growth (in general) through smoothing, a lot
of dynamics (mostly all dynamics but one) are ignored. It is therefore useful to investigate the
smoothing effects on dynamics and function values.

The smoothing of time series can be done by dividing the points inside time series into time
periods, called time smoothing periods. Over these time smoothing periods cdata is computed
that is afterwards used to create the smoothed representation of the time series. There exist a lot
of choices in creating the time smoothing periods and the cdata, where different combinations may
lead to completely different representations. Note that the original static cdata as given in Section
2.3 is a rough form of smoothing, so rough that that the research in this thesis was motivated by
its shortcomings.

In Examples 22 and 23 two families of time smoothing periods are given that both create time
periods that are of equal length. Next to these time smoothing periods a lot more periods are
possible. The best or most relevant of these time smoothing periods however remains unknown,
especially when considering that we do not know the effect of these time smoothing periods on
dynamics.

Example 22 (Total time smoothing periods)
The total time period indicated by delimiters dat1, dat2 as in Chapter 2 can be divided into

T time periods of equal length ∆t =
dat2 − dat1

T
. This creates time period delimiters for

period s = 1, . . . , T as

dats1 = dat1 + (s− 1)∆t,

dats2 = dat1 + (s)∆t.

The points in time series (t, d)i that reside in the same time period s

(tki , d
k
i ) such that dats1 < tki < dats2

are then to be accumulated using cdata functions to create a smoothed representation of the
original time series.
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Example 23 (Time series smoothing periods)
Time periods can also be created with respect to the values t1i and tPi

i of the time series
(t, d)i, as for indexing function g3,5. This makes the time smoothing periods time series
specific. The time period [t1i , t

Pi
i ] could for instance be divided into T time periods of equal

length ∆t =
tPi
i − t1i
T

. This creates time period delimiters for period s = 1, . . . , T as

dats1 = t1i + (s− 1)∆t,

dats2 = t1i + (s)∆t.

The points in time series (t, d)i are then to be accumulated using cdata functions in the same
manner as in Example 22.

Another question is what cdata is relevant to represent the data in a smoothing period. The
chosen cdata has to be relevant for the analyses of dynamics. Whether sums or averages of original
data entries should be used in the smoothed representation is unclear.

Finally note that whether or not a smoothing works is closely related to the application (the
considered data set and business target) that it is used for.
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Clustering using the dynamic cdata entry function g3,5

The volume growth indexed with indexing function g3,5 gives an impression of global volume
growths through time. The next question is whether it is usable with the clustering methods
given in Chapter 3. For the application of the clustering methods we use the dynamic cdata
points x̄i representing time series (t, d)i as

x̄i =

(
g1((t, d)i)
g3,5((t, d)i)

)

We define V̄ = {x̄1, x̄2, . . . , x̄n} as the dynamic cdata set, containing points x̄i each related to the
unique ci ∈ C.

Example 24 (Contoso)
For the Contoso dynamic cdata set we cluster using the Mean Shift and LPC clustering
methods, see Chapter 3. We apply these clustering methods on the two dimensional space
V̄ defined by the dynamic cdata entry functions volume growth g3,5 and total volume g1.
This to see the effects of divisions between cdata entries total volume and volume growth on
the clustering results. The points from the dynamic cdata set are plotted in Figure 7.1.

We omitted on purpose the examination of dynamic cdata

 g1((t, d)i)
g2((t, d)i)
g3,5((t, d)i)

 .

This because we are interested in the effects of combining total volume g1 and volume growth
g3,5 in clustering methods. Since considering g2 could blur these effects, we are omitting this
dimension that the cdata entry function g2 creates.

In Figure 7.2 the cluster centers resulting from a Mean Shift method application on V̄ are
given. The clusters seem to be mainly caused by total volume division because the volume
growth indexes are centered around zero, causing most modes to lie on values where g3,5 ≈ 0.
One cluster is created in the top left of Figure 7.2 containing only one customer because its
position is isolated from the other dots.
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Figure 7.1: Distribution of volume growth g3,5 versus total volume g1 for the Contoso dynamic
cdata (g1, g3,5).
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Figure 7.2: Mean Shift method clusters based on the Contoso dynamic cdata set V̄ (Each cluster
differently colored, centers indicated).

In Figure 7.3 the Local Principal Curve through the Contoso dynamic cdata set is plotted.
It is seen that the local principal curve is almost perpendicular to the volume growth direction
such that the curve does not describe the division of total volume with respect to volume
growth but simply the division of total volume.

Figure 7.4 gives the division of Contoso points into clusters, where the number of clus-
ters k is such that the coverage increase of the k-spline approaches the maximum coverage
increase. Note that the clusters are mainly motivated by the value of g1.
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Figure 7.3: Local principal curve through Contoso dynamic cdata set V̄ .
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Figure 7.4: Clusters on the Contoso dynamic cdata set V̄ computed with the LPC method.

Example 25 (ACME)
For the ACME dynamic cdata set we also cluster using the Mean Shift and LPC clustering
methods, see Chapter 3. We apply these clustering methods on the two dimensional space V̄
defined by the cdata entries volume growth g3,5 and total volume g1. The ACME dynamic
cdata V̄ is plotted in Figure 6.12.

In Figure 7.5 the cluster center resulting from a Mean Shift method application to V̄ is
given. There is only one cluster, because the majority of the customers have relatively low
total volumes and low volume growth index. This ensures that the two dimensional density
function only contains one density peak resulting in only one mode and thus one cluster.
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Figure 7.5: Mean Shift method clusters based on the ACME cdata set V̄ (The cluster center is
indicated).

In Figure 7.6 the Local Principal Curve through the ACME dynamic cdata set is plotted.
Contrary to the line in Figure 7.3 this line is almost perpendicular to the total volume axis.

Figure 7.7 divides the points from the ACME dynamic cdata set into clusters. The
number of clusters k in this figure is such that the coverage increase of the k-spline approaches
the maximum coverage increase. Again we see that the resulting clusters mainly depend on
one variable, in this case the value of g3,5. The question is whether this is caused by the
clustering method, the cdata set, the volume growth index or simply by the fact that we
try to cluster on a two-dimensional space with total volume and volume growth as the
dimensions.

The question remains whether there exists an indexing function (or another measure on
time series) which allows for the clusters to be more dispersed. This however is a topic for
future research.
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Figure 7.6: Local principal curve through ACME dynamic cdata set V̄ .
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Figure 7.7: Clusters on the ACME dynamic cdata set V̄ computed with the LPC method.
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Future Research
There are many questions left to be addressed by future research:

Dynamics

• What dynamics are to be taken into account by the distance measures?

• What dynamic properties can we define that are to be measured separately from other
variables?

• Is it mathematically possible to define a dynamic property as an independent variable?

• What mathematical dynamics are linked to business related behaviors?

Clustering

• How to obtain "better" clusters, improving the dynamic indexing function?

• Are the presented clustering techniques fitted for dense data clouds?

• How does clustering behave with respect to logarithmic scaling?

Distance measures

• What possible advantages and disadvantages exist for indexing dynamic properties sepa-
rately?

• Are there any other distance measures that consider dynamics for which the influence of
dynamics on similarity is controllable?

• With smoothing, can we correctly and efficiently use the presented distance measures?

Smoothing

• How does smoothing relate the the dynamics?

• How to use multi-period smoothing?

• Are there any other smoothing techniques that consider dynamics?

• Does there exist a method to smooth the highly irregular data sets and keep desired dynam-
ics?
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Implementation

The algorithms in this MSc thesis are implemented in R. For these implementations we used
several R-packages. These packages contain methods that handle:

• The database connection (RMySQL)

• The data frame manipulation (dplyr, tidyr)

• The Mean Shift method and LPC method (LPCM)

• Other statistical operations (MASS, SDMTools)

• The plots (ggplot2, plot3D, ggthemes, lattice, grid).

The functions that compute Mean Shift clusters and local principal curves are provided within
the package LPCM. The clustering technique given for local principal curves uses functions (coverage
and spline) that are also provided in this package. An example application of the Mean Shift as
well as the local principal curve method is provided as an example code chunk.

Using dplyr and tidyr we created short functions that manipulate the data in order to com-
pute the values of g3,k for k = 1, . . . , 6. These functions are provided as separate files.

This thesis itself is created in R Sweave (using knitr) such that all calculations are done in
situ while rendering the document. The raw version of this thesis, and thus all its calculations, is
available. The ACME dataset, used by the in situ R calculations is not an available product.
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