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Abstract

The purpose of this thesis is to develop a robust, efficient and accurate numerical method for the
five-equation two-phase flow model. Among the various formulations of the five-equation models
that exist, we identify two possible candidates: (i) The original formulation of Kapila et al. and (ii)
a new, more physical, formulation proposed by Kreeft and Koren. To compare both models, HLLC-
type solvers based on the integral formulation of the problem and Osher-type solvers based on the
splitting of the flux and the integration path, are used. An HLLC-type solver for Kapila’s model and
an Osher-type solver for Kreeft and Koren’s formulation already exist. For the comparison the new
schemes are developed: An HLLC-type solver for Kreeft and Koren’s model and an Osher-type solver
for Kapila’s model.

Furthermore, a novel Lagrange-projection like scheme for the five-equation two-phase flow
model (Kapila’s formulation) is developed. This method decouples the acoustic and transport phe-
nomena leading to two submodels. For the acoustic part an HLLC-type solver and for the transport
part an upwind scheme is used. Both submodels are solved without the use of Riemann invariants.
The new numerical method lends itself perfectly for an analysis in the low Mach regime. An im-
provement of the scheme in the low Mach regime can be made and implemented easily.

A comparison (with first order spatial and temporal accuracy) of the various models and schemes
on several shock tube test cases is made. This reveals that Kapila’s model with the HLLC-type
scheme is the best combination based on accuracy and computational efficiency. The new Lagrange-
projection like scheme, which is designed for low Mach regime, also performs well for the shock
tube test cases. It should be tested for the low Mach regime in a further research.

To use the model for water hammer computations, a new mass and heat flux extension of the
model is derived. The formulation of the model of Kreeft and Koren is required here.
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Nomenclature

Greek symbols

Γ bulk Grüneisen coefficient
Π surrogate pressure
Ω finite volume cell

α volume fraction
β mass fraction
γ adiabatic index = ratio of specific heats
δ correction parameter lagrangian method
θ relaxation parameter heat flux
λ eigenvalue
ν relaxation parameter mass flux
π pressure variable
ρ density
ρI interfacial density
τ specific volume
ϕ flux limiter
φ parameter volume fraction equation
φ numerical flux

Operators

∂y · partial derivative with respect variable y
D · /Dt material derivative
∇ · · divergence operator
∇ · gradient operator
a⊗ b dyadic product vectors a and b
a · b inner product vectors a and b
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Roman symbols

A Jacobian matrix
C CFL number
E total energy
F flux
M Mach number
Q heat flux
Q vector of conservative variables
QLAG vector of lagrangian variables
QLAG
s vector of lagrangian variables in relaxed system
S signal speed
T temperature
W vector of primitive variables
Ẇ total rate-of-work term
ẆM mechanical rate-of-work term
ẆT thermodynamical rate-of-work term

a parameter in relaxed system
c speed of sound
e bulk specific internal energy
eI interfacial internal energy
g gibbs free energy
h enthalpy
l left eigenvector
ṁ mass flux
n normal vector
p pressure
q characteristic variable equation of state
r slope flux limiter
r right eigenvector
s entropy
t time
u velocity vector
u, v velocity components in x, y direction
x, y Cartesian coordinates
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1
Introduction

In this introductory Chapter we introduce two-fluid flow modeling and its industrial relevance. Also
we describe what has been done already, as well as our research objectives and our new contributions.
Finally, we give an overview of this thesis.

1.1 Background

Multiphase flow modeling, the science of how fluids interact, is a research topic that has been
studied extensively for the last few decades. The industry started to study this topic in the 1960s
[15]. Before this time, the knowledge about this topic was limited to the observations of the en-
gineers. Nowadays, multiphase flow modeling is used a lot in industry, examples include (this list
is by far not complete) the conversion of crude oil to high-value petroleum products in a refinery,
pollution control, fluidized beds, plasma spray coating, fire suppression and control, transport of
fluids and many more. Apart from the industrial applications, it is scientifically very interesting and
challenging.

In this thesis we focus on two-phase flow models, which is the most basic case of multiphase flow
modeling. It is used in power industry, petroleum industry and aeronautic industry. In particular, it
is used for the simulation of flows of fluids (water and gas, gas and gas, oil and gas, etc.) through
pipelines. The application we focus on is the modeling of the water hammer flow phenomenon,
which we introduce in the next Section.

1.2 The water hammer phenomenon

The water hammer phenomenon is a concussion or the sound of a concussion of a moving fluid
(mostly water) against the side(s) of the containing pipe or vessel. A (high) pressure wave is caused
by a rapid change of the fluid velocity. There are different causes for water hammer phenomena to
happen. We briefly discuss two of them: (i) the classical water hammer phenomenon and (ii) the
condensation induced water hammer phenomenon.
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2 Chapter 1. Introduction

Classical water hammer

For the classical water hammer phenomenon we consider a pipe filled with (one) fluid, see Figure
1.1 part 1. When the valve on the right side of the pipe is opened, the fluid starts moving to
the right, as we visualize in part 2. As the fluid flows, it has a positive momentum. When the

Figure 1.1: Classical Water Hammer

Figure 1.2: Condensation induced Water Hammer

valve on the right side closes rapidly (see part
3), a high pressure wave is generated as a re-
sult of the rapid change of the momentum. This
pressure wave propagates (possibly in both di-
rections) in the pipe.

Condensation induced water hammer

This description is based on Kirsner [19]. The
condensation induced water hammer is physi-
cally more difficult. As the name suggests, the
water hammer phenomenon is caused by the
rapid condensation of steam. Here, the pipe is
filled with two fluids: water and steam. The
steam has entered when water is drained from
the formerly full pipe by opening a valve. The
water has a (much) lower temperature than the
steam as it cools due to the heat loss through
the pipe wall. The steam in the line condenses
due to the contact with both the water as well
as the pipe walls, see Figure 1.2 part 1. This
causes a pressure drop in the steam phase. As
the steam condenses, it induces more steam to
flow into the low pressure void. This flow of
steam draws up waves (this is known as Kelvin
Helmholtz instability). Since the rate of the
heat transfer is rapid, the inflow of steam can
draw up a wave that plugs the pipe, see part
2. We now have a pocket of steam which is
isolated from the inflowing steam (slugflow).
The pressure in this isolated pocket of steam de-
creases rapidly due to the continuation of the
condensation. The pressure difference of the
steam pocket and the inflowing steam causes
the slug wave to rush into the void, see part
3. When the water slaps into itself, the sud-
den change in momentum is converted to over-
pressure waves: a water hammer phenomenon
is caused. These high pressure waves travel in
both directions of the pipe.
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1.3 Industrial context

Water hammer is a phenomenon that causes a lot of troubles. The collapsing overpressure waves
can be sufficient to blow out several pipe elements or gaskets. Additionally, it is dangerous for
people and can even result in death. One of the biggest accidents caused by the water hammer
phenomenon happened at Russia’s biggest hydroelectric power stations (Sayano-Shushenskaya) at
August 17, 2009:

‘The Sayano-Shushenskaya hydro-electricity plant in Russia experienced large and rapid fluctuations
in load and later a load rejection causing a catastrophic failure resulting in 75 fatalities, injuries, se-
rious disruption to production at local industries, more than $1 billion damage to plant/equipment,
expensive compensations, adverse environmental impact, and a 17% reduction in the company’s share
price.’[2].

Figure 1.3: Schematic power plant

Water hammers also happen in the cooling sys-
tems of the nuclear power plants of Électricité
de France (EDF). The cooling liquid gets in con-
tact with steam causing a condensation induced
water hammer. This is roughly visualized in Fig-
ure 1.3. The power plants of EDF are on aver-
age 30 to 50 days per year not available due to
water hammer accidents which happen, on av-
erage, once or twice a year. Apart from the dan-
ger for the employees, the closing of a power
plant costs around 1 million euro per day.

1.4 State of the art

For the modeling of two-phase flows two classes
of models can be considered: (i) The most gen-
eral two-fluid flow models and (ii) the smaller
so-called homogeneous models. These homogeneous models are derived from the two-fluid flow
models and form an alternative. In this thesis we focus on the five-equation model, which consists of
five equations, from the homogeneous model class. There are two important five-equation models:

• The original five-equation model of Kapila et al. (2001) [18] derived from the two-fluid flow
model of Baer and Nunziato (1986) [3].

• A new formulation of the model of Kapila et al. presented by Kreeft and Koren (2010) [22] in
which the fifth equation, the topological equation, is replaced by an energy equation.

For the model of Kapila et al. an HLLC-type solver has been proposed by Daude et al. [11]. On the
other hand, an Osher-type solver has been proposed by Kreeft and Koren [22] for their model.
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1.5 Research objectives

The models of Kapila et al. and Kreeft and Koren have not been compared yet. This raises the ques-
tion of which model to use in practice. This choice also depends on the corresponding numerical
solver. In this thesis we would like to use the ‘better’ model, i.e. the model which performs the best
at the test cases. It is difficult to compare the two different models (Kapila et al. and Kreeft and
Koren) with different numerical methods (HLLC-type and Osher-type). Therefore one of our goals
is to develop (i) an Osher-type solver for Kapila’s model and (ii) an HLLC-type solver for the model
of Kreeft and Koren. With these solvers at hand, we can compare the two different models (Kapila
et al. and Kreeft and Koren) with different numerical methods (HLLC-type and Osher-type).

It is known that many Riemann solvers behave badly in the low Mach regime. In this regime
water hammer phenomena can occur. Therefore, we are interested in a numerical scheme which
behaves well in this regime. We choose to develop a Lagrange-Projection like scheme (for Kapila’s
model) for accessing the low Mach regime. It is not the goal of this scheme to behave better than
HLLC-type and/or Osher-type schemes for the shock tube test cases: It is purpose is to behave well
in the low Mach regime.

We will only consider (one-dimensional) shock tube test cases. This is the first step towards the
simulation of water hammer phenomena with the five-equation model.

Furthermore, for the modeling of water hammer phenomena phase transition should be possi-
ble. The model of Kreeft and Koren does not have this possibility yet and has to be extended. On
the other hand, in the model of Kapila et al. phase transitions terms can be taken into account.

1.6 Our contribution

Our new contributions in this thesis can be summarized as follows:

• Development of an Osher-type solver for Kapila’s model,

• Development of an HLLC-type solver for the model of Kreeft and Koren,

• Development of a Lagrange-Projection like scheme for Kapila’s model for accessing the low
Mach regime,

• Comparison of the various models and schemes,

• A new extension of the five-equation model with mass and heat transfer.

1.7 Outline of this thesis

This thesis is divided into 2 main parts. In the first and largest part of the thesis, Convective part, we
focus on the convective part of the five-equation model. This means that no source terms are taken
into account here. This part consists of an introductory and modeling Chapter, three Chapters on
various numerical methods (Osher-type scheme, HLLC-type scheme and a Lagrange-Projection like
scheme) and a Chapter on the numerical results. Next, in part two, Source terms, we present our
extension of phase transition of the five-equation model. In more detail:

In Chapter 2 we present the five-equation two-phase flow model, which is the central model in
this thesis. We present both formulations: (i) the original one of Kapila et al. [18] and the one of
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Kreeft and Koren [22]. Additionally, we discuss the mathematical properties of the model, give an
introduction to Riemann problems and present the Finite Volume (FV) approximation of the model.

In Chapter 3 we present the first numerical method: An Osher-type solver. We derive an Osher-
type solver for Kapila’s model by applying the approach of Kreeft and Koren [22] for their model to
the model of Kapila et al. [18].

In Chapter 4 we present the HLLC-type schemes of both models: (i) the original one of Kapila
et al. [18] and the Kreeft and Koren [22] model. The aim of this Chapter is twofold: (i) It derives a
new HLLC-type scheme for the model of Kreeft and Koren [22] and (ii) it serves as an introductory
Chapter for the next Chapter: Chapter 5.

In Chapter 5 we propose a new all regime Lagrange-Projection like scheme. This is the main
novelty of the thesis. We apply the idea of Chalons et al. [9] to split the Euler equations of gas
dynamics into submodels (an acoustic and a transport part) to the five-equation model. For the
acoustic system we propose an approximate HLLC-type scheme of a relaxed system and we use an
upwind scheme for the transport system. A low Mach number correction is introduced to access the
low Mach regime.

In Chapter 6 we compare the numerical schemes of the previous Chapters on five different shock
tube test cases.

Chapter 7 is where we present our extension of the five-equation models with phase transition.
This extension is partly based on Zein [37].

Finally, in Chapter 8 we draw the conclusions and summarize our work. Furthermore, we discuss
the further work and open questions.

This thesis contains three appendices which access: (i) the implementation issues (ii) some
derivations and (iii) some background on the derivation of the relaxed system which is used in
Chapter 5.

1.8 Roadmap through the chapters

If the reader is familiar with the five-equation model and Riemann Problems, Chapter 2 can be
skipped. If not, it is useful to read it first, since it is used in the Chapters 3 and 4-7. The Chapters
3 and 4 are not related, i.e. each one can be read separately. Next, we advice to read Chapter 4
before starting with Chapter 5 unless the reader is familiar with HLLC-type solvers.
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2
The five-equation model

In this Chapter we present the five-equation two-phase flow model. The five-equation model is the cen-
tral model in this thesis. The original five-equation model of Kapila et al. (2001) [18] is derived from
the two-fluid flow model of Baer and Nunziato (1986) [3]. The five-equation model models inviscid,
non-heat-conducting, compressible two-fluid flow. It allows a mixture of the two fluids. Currently,
there exist many different formulations of the same five-equation model. We consider the following two
important five-equation models:

• The original five-equation model of Kapila et al., referred to as Kapila’s model

• A new formulation of the model of Kapila et al. presented by Kreeft and Koren (2010) [22] in
which the fifth equation, the topological equation, is replaced by an energy equation. We refer to
this model as the model of Kreeft & Koren1.

Furthermore, we present the mathematical properties of the model (which hold of course for both
formulations). These properties are used in the development of the various numerical schemes.
The Chapter is organised as follows. We start off by presenting the original five-equation model of
Kapila et al. [18] in Section 2.1. Next, in Section 2.2, we give the derivation of the model of Kreeft
and Koren [22]. The mathematical properties of the model are discussed in Section 2.3. We present
a brief introduction to Riemann problems in Section 2.4. Finally, we give the Finite volume (FV)
approximation in Section 2.5.

2.1 Kapila’s five-equation model

Kapila’s model is derived from the general Baer Nunziato model by assuming both a single velocity
and a single pressure at the two-fluid interface:

p1 = p2 ≡ p,
u1 = u2 ≡ u,

(2.1.1a)

(2.1.1b)

1Keep in mind that this is actually the same model as the one of Kapila et al. in a new formulation
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10 Chapter 2. The five-equation model

where p denotes pressure, u the velocity, and the superscripts refer to the two fluids. The complete
derivation, presented in [18], is quite long and involved, which we will omit therefore here. The
first three equations of the model are the Euler equations of gas dynamics, these read as:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (ρEu) +∇ · (pu) = 0.

(2.1.2a)

(2.1.2b)

(2.1.2c)

Here, t denotes the time parameter, ρ denotes the bulk density and E the bulk energy density2. As
there is no mass transfer in the model, the masses of the single fluids are conserved; the model
consists of an equation describing the mass conservation of a single fluid (here fluid 1)3:

∂t(α1ρ1) +∇ · (α1ρ1u) = 0. (2.1.3)

The variables αk and ρk denote the volume fraction and the density of fluid k respectively, (k = 1, 2).
The volume fraction αk is defined as αk = Vk/V , where V is a control volume and Vk is volume of
fluid k in V . The model allows a mixture of the two fluids, but no phase transition between the two
fluids. In terms of single fluid variables, the bulk density and energy are given by

ρ = α1ρ1 + α2ρ2,

ρE = α1ρ1E1 + α2ρ2E2,

(2.1.4a)

(2.1.4b)

where the energy densities of the fluids are

E1 = e1 +
1

2
u · u,

E2 = e2 +
1

2
u · u,

(2.1.5a)

(2.1.5b)

with e1, e2 the internal energy densities of the fluids 1 and 2, respectively. The bulk internal energy
density is given by

ρe = α1ρ1e1 + α2ρ2e2, (2.1.6)

and hence,

E = e+
1

2
u · u. (2.1.7)

Furthermore, we mention that the saturation constraint should be fulfilled:

α1 + α2 = 1. (2.1.8)

The fifth equation of the model is an equation for the volume fraction of fluid 1:

∂tα1 + u ·∇α1 + φ∇ · u = 0, (2.1.9)

2In this thesis sometimes we refer to this quantity with ‘energy’ where strictly speaking it is an ‘energy density’.
3By substracting Eq. (2.1.3) from Eq. (2.1.2a) the mass conservation of fluid 2 is obtained.
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where it can be shown that [22]

φ = α1α2
z2 − z1

z
. (2.1.10)

The parameters z and z1, z2 are the (bulk) isentropic compressibilities of both fluids:

z = α1z1 + α2z2,

z1 =
1

ρ1c2
1

,

z2 =
1

ρ2c2
2

,

(2.1.11a)

(2.1.11b)

(2.1.11c)

with c1 =
(
∂p
∂ρ1

)
s1
, c2 =

(
∂p
∂ρ2

)
s2

and s1, s2 the speed of sound and the entropy of both fluids,

respectively. This fifth equation is a non-conservative equation. If the compressibilities of both
fluids are equal, we obtain a transport equation for the volume fraction:

∂tα1 + u ·∇α1 = 0. (2.1.12)

Summarizing, Eq. (2.1.2a)-(2.1.2c), Eq. (2.1.3) and Eq. (2.1.9) form the five-equation model of
Kapila et al. The model is completed with an equation of state. An equation of state describes a
relation between some thermodynamical quantities, e.g. e = e(p, ρ), see Appendix A.

2.2 Kreeft and Koren’s five-equation model

A new formulation of Kapila’s five-equation model has been derived by Kreeft and Koren in [22],
which we will present briefly in this Section. The first four equations are the same as in Kapila’s five-
equation model. However the fifth equation of the model, replacing Eq. (2.1.9), which describes
the energy of one of the two fluids, is new. The fifth equation of the model is a non-conservative
equation which contains a term on the right-hand side which represents the energy exchange be-
tween two fluids due to work. The derivation is done from scratch, hence it is not based on Kapila’s
model or the model of Baer Nunziato. It is assumed that two fluids are mass conservative. Particles
of the two fluids exert force on each other causing momentum exchange between two fluids. This
results in an energy exchange. This exchange is due to the velocity and pressure relaxation.

Conservation laws

The conservation laws of mass, momentum and energy are given by

∂

∂t

∫
V
ρdV +

∮
S
ρu · ndS = 0,

∂

∂t

∫
V
ρudV +

∮
S
ρu⊗ u · ndS +

∮
S
pndS = 0,

∂

∂t

∫
V
ρEdV +

∮
S
ρEu · ndS +

∮
S
pu · ndS = 0,

(2.2.1a)

(2.2.1b)

(2.2.1c)
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12 Chapter 2. The five-equation model

where V is a control volume, with boundary S, fixed in time and space. Here, ρ denotes the bulk
density and E the bulk energy. There can be two fluids in one control volume. One can write down
the conservation laws of each single fluid. Following Kreeft and Koren [22], the conservation laws
of mass and momentum for fluid 1 read:

∂t

∫
V1(t)

ρ1dV1 +

∮
S1(t)

ρ1 (u− uS1) · ndS1 = 0,

∂t

∫
V1(t)

ρ1udV1 +

∮
S1(t)

ρ1u⊗ (u− uS1) · ndS1 +

∮
S1(t)

pndS1 =

∫
V

FdV,

(2.2.2a)

(2.2.2b)

where the volume V1(t) and surface S1(t) may now vary in time due to the motion of the interface
with velocity uS1 . The integration of F is done over the total volume V since it is a result of both
fluids. Note that the momentum of fluid 1 is not conserved; the force F represents the net force per
unit of volume exerted on fluid 1. Furthermore, F contributes to the energy equation of fluid 1 in
the form of rate of mechanical work performed per unit of volume: ẆM = F · u. Apart from the
mechanical work, the energy equation of fluid 1 is affected by the thermodynamical rate-of-work
term ẆT . The equation reads

∂t

∫
V1(t)

ρ1E1dV1 +

∮
S1(t)

ρ1E1 ⊗
(
u− uS1(t)

)
· ndS1 +

∮
S1(t)

pu · ndS1

=

∫
V
ẆM + ẆTdV.

(2.2.3)

To eliminate the unknown surface S1(t) one can use the divergence theorem. Next, to eliminate the
volume V1(t) we use the volume fraction of fluid 1: α1 = V1/V . When changing from a moving
domain to a fixed domain gives uS1 = 0. This simplifies the equations (2.2.2a) and (2.2.3) to

∂t

∫
V
α1ρ1dV +

∫
V
∇ · α1ρ1udV = 0,

∂t

∫
V
α1ρ1E1dV +

∫
V
∇ · α1ρ1E1udV +

∫
V
∇ · α1pudV

=

∫
V

(
ẆM + ẆT

)
dV.

(2.2.4a)

(2.2.4b)

The system in differential form reads:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (ρEu) +∇(pu) = 0,

∂t(α1ρ1) +∇ · (α1ρ1u) = 0,

∂t(α1ρ1E1) +∇ · (α1ρ1E1u) +∇ · (α1pu) = ẆM + ẆT .

(2.2.5a)

(2.2.5b)

(2.2.5c)

(2.2.5d)

(2.2.5e)
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Rate-of-work terms

An expression for the so-called rate-of-work terms ẆM , ẆT in terms of the existing variables can be
derived by making use of primitive equations4. We do not show the derivation here, but it can be
found in [22]. It yields that the total rate of energy exchange per unit volume between fluid 2 and
fluid 1 is

Ẇ = ẆM + ẆT ,

ẆM = pu ·∇α1 + (α1 − β1)u ·∇p,

ẆT = pα1α2
z2 − z1

z
∇ · u.

(2.2.6a)

(2.2.6b)

(2.2.6c)

Here β1 = α1ρ1/ρ is the mass fraction of fluid 1.

2.3 Mathematical properties

In this Section we will discuss some properties of the five-equation model 5. We will only consider
the one-dimensional case here.

Structure

The model can be formulated as a set of primitive equations. The derivation is straightforward and
we will omit it here. A set of primitive equations reads:

Dρ

Dt
+ ρ

∂u

∂x
= 0,

Du

Dt
+

1

ρ

∂p

∂x
= 0,

Dp

Dt
+ ρc2∂u

∂x
= 0,

Dβ1

Dt
= 0,

Dα1

Dt
+ φ

∂u

∂x
= 0,

(2.3.1a)

(2.3.1b)

(2.3.1c)

(2.3.1d)

(2.3.1e)

where the differential operator

D

Dt
:= ∂t + u∂x (2.3.2)

denotes the material derivative operator (also known as total derivative) along the characteristic
curve x′(t) = u. The mixture speed of sound (the speed of sound in the mixture), c, obeys the Wood
formula [35]

1

ρc2
=

α1

ρ1c2
1

+
α2

ρ2c2
2

. (2.3.3)

4A primitive equation is a differential equation, used in most atmospheric models, of the form Da/Dt = . . . . where a
is a primitive variable (e.g. velocity, density, pressure).

5Note that since both five-equation models are only different formulations, all properties of the model hold for both
formulations.
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The term ρc2, known as the acoustic impedance6 of the mixture, is the harmonic mean of the acoustic
impedances of the single fluids. Hence, the speed of sound of the mixture can be less than the speed
of sound of the single phases.

The primitive equations (2.3.1) can be cast into the form

∂tW + B(W)∂xW = 0, (2.3.4)

with

W =



ρ

u

p

β

α


, B(W) =



u ρ 0 0 0

0 u 1/ρ 0 0

0 ρc2 u 0 0

0 0 0 u 0

0 φ 0 0 u


. (2.3.5)

The vector W contains the primitive variables. The wave speeds of the system (2.3.4)-(2.3.5), i.e.
the (real) eigenvalues of B(W), are:

λ1 = u− c, λ2,3,4 = u, λ5 = u+ c, (2.3.6)

with corresponding right eigenvectors

r1 =



ρ

−c

ρc2

0

φ


, r2 =



0

0

0

0

1


, r3 =



0

0

0

1

0


, r4 =



1

0

0

0

0


, r5 =



ρ

c

ρc2

0

φ


. (2.3.7)

Hyperbolic system

We now give the definition of a hyperbolic system (i.e. not specific for the five-equation model)
which is taken from [32].

Definition 2.3.1. A system

∂tU + A1∂xU + A2 = 0, (2.3.8)

with U = U(x, t) ∈ Rm, A1 = A1(U) and A2 = A2(U) is classified as hyperbolic at a point (x0, t0)
if A1 has m real eigenvalues λ1, ..., λm and a corresponding set of m linearly independent right
eigenvectors r1, ..., rm. System (2.3.8) is classified as strictly hyperbolic if the eigenvalues λ1, ..., λm
are all distinct.

As a result, the five-equation model, i.e. system (2.3.4)-(2.3.5), is hyperbolic.
6In literature the term ρc is also referred to as acoustic impedance.
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Characteristic Fields

Consider a system of the form

∂tU + A(U)∂xU = 0, (2.3.9)

with eigenvalues λi and corresponding right eigenvectors ri. The wave speed λi is said to be a
characteristic field λi = λi(U).

Definition 2.3.2. A field associated with eigenvalue λ (and corresponding eigenvector r) is said to
be linearly degenerate (LD) if

∇λ (U) · r(U) = 0, for all U ∈ Rm, (2.3.10)

Definition 2.3.3. A field associated with eigenvalue λ (and corresponding eigenvector r) is said to
be genuinely nonlinear (GNL) if

∇λ (U) · r(U) 6= 0, for all U ∈ Rm. (2.3.11)

We now turn back to the five-equation model. Fields associated with λ2,3,4 (defined in Eq.
(2.3.6)) are linearly degenerate and the fields associated with λ1, λ5 are genuinely nonlinear. For a
proof we refer to [27]. Furthermore, a direct calculation reveals

(∇W u) · rk (W) = 0,

(∇W p) · rk (W) = 0,

(2.3.12a)

(2.3.12b)

for k = 2, 3, 4, which means that both the velocity as well as the pressure are constant across the
middle wave, i.e the wave associated with λ2,3,4. This is an important result which will be used in
the approximate Riemann solvers in the Chapter 3,4 and 5.

Riemann Invariants

The five-equation model is a hyperbolic set of PDEs. This means that the PDEs describe quantities
which propagate in some direction, while remaining the same strength [21]. These quantities are
referred to as Riemann invariants. We denote the Riemann invariants with φk, for k = 1, ..., 5. The
characteristic equations which describe the propagation of the Riemann invariants read:

∂tφk + λk∂xφk = 0, (2.3.13)

for k = 1, ..., 5. The wave speed λk is also referred to as a characteristic speed. The characteristic
equations can be written as

Dkφk
Dt

= 0, for k = 1, ..., 5, (2.3.14)

where the differential operator

Di

Dt
:= ∂t + λi∂x (2.3.15)
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denotes the material derivative operator along the characteristic curve x′(t) = λi. In other words,
the Riemann invariants are constant along the characteristic curves. This is the reason for using the
word ‘invariant’. We are interested in obtaining the Riemann invariants of the model. The Riemann
invariants are used in the Chapters 3 and 4.

We now introduce the Riemann invariants. Our introduction is based on [34]. Let us again
consider a system of the form (2.3.9). The matrix L(U) is a nonsingular matrix with the left
eigenvectors of A as its rows: L = [lk]. Premultiplication by L in Eq. (2.3.9) gives

L∂tU + LA∂xU = 0. (2.3.16)

This can be written as

L∂tU + ΛL∂xU = 0, (2.3.17)

where Λ = diag (λk). System (2.3.17) reads componentwise:∑
k

lik(Uk)∂tUk + λi(U)
∑
k

lik(Uk)∂xUk = 0, (2.3.18)

for lij = (L)ij and i = 1, ...,m.

Definition 2.3.4. If there is an integrating factor µi such that

µi(U)
∑
k

likdUk = dφi(U) (2.3.19)

then φi is called a Riemann Invariant. The Riemann invariant is constant along the curve x′(t) =
λi(U).

We now turn back to the five-equation model. The left eigenvectors of B(W) are

l1 =
[
0,−ρc, 1, 0, 0

]
, l2 =

[
−φ, 0, 0, 0, ρ

]
, l3 =

[
0, 0, 0, 1, 0

]
,

l4 =
[
−c2, 0, 1, 0, 0

]
, l5 =

[
0, ρc, 1, 0, 0

]
.

(2.3.20)

Next, we define a matrix L by choosing the left eigenvectors as its rows:

L =


l1
l2
l3
l4
l5

 =


0 −ρc 1 0 0
−φ 0 0 0 ρ
0 0 0 1 0
−c2 0 1 0 0

0 ρc 1 0 0

 . (2.3.21)

Using Jordan decomposition, i.e. we write B = L−1ΛL with Λ = diag(λk), we obtain:

L∂tW + ΛL∂xW = 0. (2.3.22)
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2.3. Mathematical properties 17

This yields(
∂u

∂t
− 1

ρc

∂p

∂t

)
+ (u− c)

(
∂u

∂x
− 1

ρc

∂p

∂x

)
= 0,(

ρ
∂α

∂t
− φ∂ρ

∂t

)
+ u

(
ρ
∂α

∂x
− φ∂ρ

∂x

)
= 0,(

∂β

∂t

)
+ u

(
∂β

∂x

)
= 0,(

∂p

∂t
− c2∂ρ

∂t

)
+ u

(
∂p

∂x
− c2 ∂ρ

∂x

)
= 0,(

∂u

∂t
+

1

ρc

∂p

∂t

)
+ (u+ c)

(
∂u

∂x
+

1

ρc

∂p

∂x

)
= 0,

(2.3.23a)

(2.3.23b)

(2.3.23c)

(2.3.23d)

(2.3.23e)

which can be written as

∂tφk + λk∂xφk = 0. (2.3.24)

for k = 1, ..., 5. The Riemann invariants φk are conserved along the curves and we can write

dφ1 = du− dp

ρc
= 0 along the curve x′(t) = λ1 = u− c,

dφ2 = ρdα− φdρ = 0 along the curve x′(t) = λ2 = u,

dφ3 = dβ = 0 along the curve x′(t) = λ3 = u,

dφ4 = dp− c2dρ = 0 along the curve x′(t) = λ4 = u,

dφ5 = du+
dp

ρc
= 0 along the curve x′(t) = λ5 = u− c.

(2.3.25)

This result is also obtained in [21].
Alternatively, to obtain the Riemann invariants one can also proceed as follows. The Generalized

Riemann invariants (GRIs) applied to the i-th characteristic field are written as7

dw(1)

ri(1)
=
dw(2)

ri(2)
= ... =

dw(n)

ri(n)
, (2.3.26)

where ri(k) is the k-th component of ri and w(k) is the k-th component of W. The GRIs should be
interpreted as a set of ordinary differential equations. The GRIs relate the changes of the primitive
variables dw(g) to the corresponding right eigenvector ri(g). By taking a pair of these ODEs, we
obtain a Riemann invariant:

dw(k)

ri(k)
=
dw(l)

ri(l)
, 1 ≤ k, l ≤ n,

ri(l)dw(k)− ri(k)dw(l) = 0,

(2.3.27)

7Let us remark that this is only a formal matter of notation. For a detailed, more precise discussion we refer to the
book of Jeffery [?].
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18 Chapter 2. The five-equation model

which is constant inside the wave∫
ri(l)dw(k)−

∫
ri(k)dw(l) = constant. (2.3.28)

We now apply the GRIs to the different characteristic fields of the five-equation model, i.e. we have
n = 5. First, for the linearly degenerate fields we write:

λ2 :
dρ

0
=
du

0
=
dp

0
=
dβ

0
=
dα

1
,

λ3 :
dρ

0
=
du

0
=
dp

0
=
dβ

1
=
dα

0
,

λ4 :
dρ

1
=
du

0
=
dp

0
=
dβ

0
=
dα

0
.

(2.3.29a)

(2.3.29b)

(2.3.29c)

This means that across λ2,3,4 all variables but α, ρ, β respectively, i.e. p, u, are constant. Next, for
the linearly degenerate field λ1(W) = u− c we obtain

dρ

ρ
=
du

−c
=

dp

ρc2
=
dβ

0
=
dα

φ
, (2.3.30)

with corresponding Riemann invariants

dφ2 = ρdα− φdρ, dφ3 = dβ, dφ4 = dp− c2dρ, dφ5 = du+
dp

ρc
. (2.3.31)

Similarly, for λ5(W) = u+ c we obtain the Riemann invariants

dφ1 = du− dp

ρc
, dφ2 = ρdα− φdρ, dφ3 = dβ, dφ4 = dp− c2dρ. (2.3.32)

And again we have obtained all Riemann invariants.

2.4 Riemann problem

In this thesis we deal with computing solutions containing discontinuities, such as shock waves. In
particular, we deal with Riemann problems. In these problems, the PDE is combined with initial
conditions consisting of a single discontinuity at position x = x0:

W(x, 0) =

{
WL x < x0,
WR x ≥ x0.

(2.4.1)

We give a short introduction to Riemann Problems for (i) the linear advection equation and (ii) a
general non-linear hyperbolic system. For both parts we follow [32].
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2.4. Riemann problem 19

2.4.1 The linear advection equation

The one-dimensional linear advection equation can be written as

∂tu+ a∂xu = 0, (2.4.2)

with u = u(x, t) the unknown quantity and a the given constant advection speed. For the initial
condition we take

u(x, 0) = u0(x) =

{
uL x < 0,
uR x ≥ 0,

(2.4.3)

where ul, uR are constant values, see Figure 2.1.

Figure 2.1: Initial condition Riemann Problem consisting of two constant states (taken from [32]).

The PDE (2.4.2) combined with the initial condition (2.4.3) is called a Riemann Problem. The wave
solution is given by

u(x, t) = u0(x− at). (2.4.4)

The initial profile will simply be translated with velocity a by the PDE. The shape remains un-
changed. So the solution can be written as

u(x, t) = u0(x− at) =

{
uL x/t < a,
uR x/t ≥ a. (2.4.5)

We can represent the solution of the Riemann Problem in the x− t-plane, see Figure 2.2.

2.4.2 A general non-linear hyperbolic system

Consider the Riemann problem for a general m×m non-linear hyperbolic system

∂tU + ∂xG(U) = 0,

U(x, 0) =

 UL x < 0,

UR x ≥ 0.

(2.4.6)
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20 Chapter 2. The five-equation model

Figure 2.2: The solution of the Riemann Problem in the x− t-plane (taken from [32]).

Figure 2.3: Structure of the solution of the Riemann problem (taken from [32]).

The solution consists of m + 1 states which are separated by m waves, see Figure 2.3. There is a
wave family for each eigenvalue λk.
The waves of the Riemann problem can be classified as

• contact discontinuity,

• rarefaction wave (also called expansion wave or wave fan),

• shock wave.

The characteristics of the problem (i) run into each other at a shock wave (ii) are parallel at a
contact discontinuity and (iii) diverge from the discontinuity at a rarefaction wave, see Figure 2.4.
The speed of the shock wave and the contact discontinuity is denoted with Si. For a shock wave the
entropy condition applies

λk(UL) > Si > λk(UR). (2.4.7)
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2.5. Finite volume approximation 21

Figure 2.4: The possible wave solutions of the Riemann problem: (i) shock wave, (ii) contact
discontinuity and (iii) rarefaction wave (taken from [32]).

This means that the speed at the left side of the shock is higher than at the right side. For a contact
wave speeds are equal:

λk(UL) = Si = λk(UR). (2.4.8)

And finally, for a rarefaction wave the characteristics diverge

λk(UL) < λk(UR). (2.4.9)

The characteristic field associated with a contact discontinuity is linearly degenerate, the character-
istic fields associated with a shock wave or a rarefaction wave are genuinely nonlinear. Many more
details can be found in [32].
We turn back to the five-equation model. The wave associated with the λ2,3,4 (W) characteristic
field is the so-called contact discontinuity (since the associated field is classified as LD) and those
associated with λ1 (W) , λ5 (W) are either an expansion wave or a shock wave (since the associated
fields are classified as GNL).

2.5 Finite volume approximation

Let us first consider a conservative PDE, i.e.

∂tQ(x, t) + ∂xF(Q) = 0. (2.5.1)

While dealing with Riemann Problems the choice of the formulation of the model is important.
Using other than conservative variables will cause problems at the discontinuities, see e.g. [32].
Therefore, conservative methods have to be used. The Finite volume (FV) method is the conserva-
tive method which we will use in this thesis. In the FV method we cover the domain with finite cells
(also called finite volumes or control volumes). The discrete values of the domain are given by the
averages over the cells. The fluxes are located at the edges of the finite volumes, see Figure 2.5.
More precisely, we define cell i as

Ωi =
(
xi−1/2, xi+1/2

)
, (2.5.2)
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22 Chapter 2. The five-equation model

Figure 2.5: The finite volume mesh consisting of the control volumes. We show the cells as boxes
here (like it is two-dimensional).

and approximate the conservative variables at this cell at time n by

Qn
i
.
=

1

∆xi

∫
Ωi

Q(x, tn)dx, (2.5.3)

with ∆xi = |Ωi|. The conservation law (2.5.1) can be written in integral form as

d

dt

∫ x2

x1

Q(x, t)dx = F1(t)−F2(t), (2.5.4)

where F1(t) = F(x1, t) and −F2(t) = −F(x2, t) represent fluxes into the section. Integration gives

1

∆xi

∫
Ωi

Q (x, tn+1) dx =
1

∆xi

∫
Ωi

Q (x, tn) dx

− 1

∆xi

[∫ tn+1

tn

F
(
xi+1/2, t

)
dt−

∫ tn+1

tn

F
(
xi−1/2, t

)
dt

]
.

(2.5.5)

By approximating the first two integrals as in (2.5.3) the form of the numerical method is obtained

Qn+1
i = Qn

i −
∆t

∆xi

(
φni+1/2 − φ

n
i−1/2

)
, (2.5.6)

with ∆t = tn+1 − tn and φni+1/2 an approximation of the average flux at the cell face i + 1/2.
We choose to use explicit time integration to take into account the propagation of pressure waves
(shock or rarefaction waves). Furthermore, explicit time integration is the easiest and it is used
for the solvers: HLLC-type solver [11] and the Osher-type solver [22]. Since higher order time
integration methods may lead to oscillations, a first order time integration method is used (see also
Chapter 6).

The five-equation model is not a conservative model, it is of the form

∂tQ + ∂xF(Q) +R(Q, ∂xQ) = 0, (2.5.7)

where R denote the non-conservative terms. We take a non-moving equidistant grid: ∆x = ∆xi for
all i. The numerical approximation 8 reads

Qn+1
i = Qn

i −
∆t

∆x

(
φni+1/2 − φ

n
i−1/2

)
− ∆t

∆x
Rni , (2.5.8)

where Rni is an approximation of the non-conservative terms at x = xi, t = n.
8This approximation is used in the numerical methods presented in Chapter 3 and 4. The approximation in Chapter 5

is different, since in this Chapter the model is split into submodels covering the different physical phenomena.
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2.5. Finite volume approximation 23

2.5.1 Spatial accuracy

The spatial accuracy of the numerical method is determined by the spatial reconstruction of the
variables at the cell boundaries. The simplest way for this reconstruction, leading to first order
spatial accuracy, is to take

Wi−1/2 = Wi,

Wi+1/2 = Wi+1.
(2.5.9)

Positive, higher order accuracy can be obtained by using the concept of flux limiters. The idea is
to limit the spatial derivatives to physically realizable values. The flux limiters only operate when
dealing with sharp wave fronts. For each boundary cell we introduce a left and a right state, see
Figure 2.6.

Figure 2.6: The left and right states on a finite volume mesh consisting of the control volumes.

The spatial reconstruction when using flux limiters is given by:

wRi−1/2 = wi +
1

2
ϕ
(
rRi
)

(wi − wi+1) , rRi =
wi − wi−1

wi+1 − wi
,

wLi+1/2 = wi +
1

2
ϕ
(
rLi
)

(wi − wi−1) , rLi =
wi+1 − wi
wi − wi−1

,

(2.5.10)

for all components w of the primitive variables W. The value ri is an approximation for the slope;
it is the ratio of successive gradients on the solution mesh. In this thesis we use the flux limiter of
Koren [20]:

ϕ(r) = max

(
0,min

(
2r,

1

3
+

2

3
r, 2

))
. (2.5.11)

This limiter is not differentiable. When ϕ(r) = 1/3 + 2r/3 it provides third order accuracy [20].

2.5.2 Stability

When using explicit schemes, one has to consider the numerical stability of the scheme. A numerical
method is said to be stable if the total variation of the numerical solution at a fixed time remains
bounded as the time step size goes towards zero. Here, the numerical stability is determined by the
Courant-Friedrichs-Lewy (CFL) number. The CFL number is defined as

C =
∆t

∆x
max (|u|+ c) . (2.5.12)
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24 Chapter 2. The five-equation model

The CFL number describes the ratio of the distance covered in time step ∆t and the grid size.
Without limiter the stability condition reads

C < 1, (2.5.13)

i.e. a grid cell can not be skipped. When dealing with two successive Riemann problems at the
same cell, the stricter CFL restriction holds [9]:

C < 1/2, (2.5.14)

see Chapter 5. In the problems we have encountered, we use the limit (2.5.13). When using a
flux limiter in the spatial reconstruction, the requirement on the time step is stricter; the positivity
requirement for forward Euler is (2.5.14).

2.5.3 Boundary conditions

All the test cases that are considered are so-called shock tube problems. See Chapter 6 for more
details on shock tube problems. In the simulations we consider a finite length shock tube and
take at the boundaries the values of the neighbouring cells. However, this is not important since
the test cases are selected such that the waves do not reach the boundary of the computational
domain during the computation. Therefore, at the boundaries nothing should happen during the
calculations.
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3
An Osher-type solver for the five-equation model

In this Chapter we present an Osher-type solver for Kapila’s model. This Osher-type solver is very similar
to the one of Kreeft and Koren [22]. However, applying this approach to the model of Kapila et al. [18]
is new. This is the first new work of this Thesis. For the treatment of the non-conservative terms we
also use the approach presented in [22]. The motivation for this Chapter is as follows: As Kapila’s
model only contains a single non-conservative product, the integration of the non-conservative part is
less involved than for the model of Kreeft and Koren.
This Chapter is organised as follows. First, we derive the Riemann Solver of Osher in Section 3.1. Next,
we present the results of applying this solver to the conservative part of Kapila’s model in Section 3.2.
Finally, the integration of the non-conservative term is presented in Section 3.3.

3.1 Derivation Riemann solver of Osher

In this Section we present the main ideas and derivation of the approximate Riemann solver of
Osher [28]. This derivation is partly based on the book of Toro [32].
Let us consider the system of m conservation laws:

∂tQ + ∂xF(Q) = 0 (3.1.1)

with conservative scheme (see also the previous Chapter)

Qn+1
i = Qn

i −
∆t

∆x

[
φni+1/2 − φ

n
i−1/2

]
. (3.1.2)

The objective is to determine an expression for the numerical flux vector φni+1/2. The system of
conservation laws (3.1.1) is assumed to be strictly hyperbolic with eigenvalues

λ1 (Q) < λ2 (Q) < · · · < λm (Q) , (3.1.3)

and corresponding eigenvectors

r1 (Q) , . . . , rm (Q) . (3.1.4)
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26 Chapter 3. An Osher-type solver for the five-equation model

The Jacobian matrix

A(Q) = ∂F/∂Q, (3.1.5)

can be diagonalized as

A(Q) = R(Q)Λ(Q)R−1(Q), (3.1.6)

where the matrix R(Q) is a non-singular matrix with the right eigenvectors as its columns

R(Q) = [r1 (Q) , . . . rm (Q)] (3.1.7)

and Λ(Q) = diag (λ1 (Q) , . . . , λm (Q)).

Splitting of the flux

The idea of Osher is to split the flux into two parts: (i) A part corresponding to the positive eigen-
values and (ii) a part corresponding to the negative eigenvalues. This is done as follows. Introduce
the notation for the positive and negative part of the eigenvalues:

λ+
i (Q) = max (λi (Q) , 0) , λ−i (Q) = min (λi (Q) , 0) , (3.1.8)

with corresponding diagonal matrices Λ+(Q) and Λ−(Q):

Λ(Q) = Λ+(Q) + Λ−(Q). (3.1.9)

Using the notation

A+(Q) = R(Q)Λ+(Q)R−1(Q),

A−(Q) = R(Q)Λ−(Q)R−1(Q).

(3.1.10a)

(3.1.10b)

the Jacobian matrix can be split as:

A(Q) = A+(Q) + A−(Q), (3.1.11)

where A+(Q) has nonnegative eigenvalues and A−(Q) has nonpositive eigenvalues. Osher now
assumes that the matrices A+ and A− are also Jacobian matrices, i.e. there exist flux vectors F+

and F− such that

F(Q) = F+(Q) + F−(Q),

A+(Q) = ∂F+/∂Q,

A−(Q) = ∂F−/∂Q.

(3.1.12a)

(3.1.12b)

(3.1.12c)
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3.1. Derivation Riemann solver of Osher 27

Osher’s numerical flux

Using the initial data of the Riemann problem for the conservation laws (3.1.1) denoted by

Q0 ≡ QL = Qn
i ,

Q1 ≡ QR = Qn
i+1,

(3.1.13a)

(3.1.13b)

and a single wave (see Chapter 2), the numerical flux can be written as

φi+1/2 = F+(Q0) + F−(Q1). (3.1.14)

For a derivation of (3.1.14) we refer to [33, 28]. By using (3.1.10)-(3.1.14) the numerical flux can
be cast into three different forms

φi+1/2 = F(Q0) +

∫ Q1

Q0

A−(Q)d(Q),

φi+1/2 = F(Q1)−
∫ Q1

Q0

A+(Q)d(Q),

φi+1/2 =
1

2
(F(Q0) + F(Q1))− 1

2

∫ Q1

Q0

|A(Q)|d(Q).

(3.1.15a)

(3.1.15b)

(3.1.15c)

These fluxes are very similar to the Godunov flux for linear systems and the Roe fluxes [32]. In
Godunov’s method for linear systems the Godunov flux reads

φGodu
i+1/2 =

1

2
(F(Q0) + F(Q1))− 1

2
|A| (Q1 −Q0) , (3.1.16)

where F(Q) = AQ. In Roe’s approach the Jacobian matrix is replaced by a constant Jacobian
matrix depending on QL,QR:

Ã = Ã (QL,QR) . (3.1.17)

Also the Roe’s numerical flux can be expressed into three different forms:

φ̃i+1/2 = F(Q0) +
∑
λ̃i≥0

α̃iλ̃ir̃i,

φ̃i+1/2 = F(Q1)−
∑
λ̃i≤0

α̃iλ̃ir̃i,

φ̃i+1/2 =
1

2
(F(Q0) + F(Q1))− 1

2

m∑
i=1

α̃i|λ̃i |̃ri,

(3.1.18a)

(3.1.18b)

(3.1.18c)

where the same notation as above with a ∼ is used to distinguish between Osher and Roe. Fur-
thermore the variables α̃i = α̃i (QL,QR) are called the wave strengths, which we do not specify
here.

In general, the evaluation of the integrals in (3.1.15) depends on the integration path chosen.
Osher’s approach is to select integration paths which make the integration tractable.

M.Sc thesis M.F.P. ten Eikelder



28 Chapter 3. An Osher-type solver for the five-equation model

Suppose the states QL and QR are connected by m waves, see Chapter 2. We choose a set of
partial integration paths {Ik (Q)} , k = 1, . . .m such that Ik is tangential to rk (Q) and each two
successive paths Ik and Ik+1 intersect at a single point

Qk/m = Ik ∩ Ik+1. (3.1.19)

The initial data of the Riemann problem can be interpreted as

Q0 ≡ Q(k−1)/m, Q1 ≡ Qk/m. (3.1.20)

The total integration path is found by taking the union of all partial integration paths, i.e.

I (Q) =

m⋃
k=1

Ik. (3.1.21)

Suppose the partial integration paths are parameterized by Q(ξ), then we have

dQ(ξ)

dξ
= rk (Q(ξ)) for ξk ≤ ξ ≤ ξk+1. (3.1.22)

To order the integration paths, two different possibilities have been proposed. These are (i) the
original Osher ordering, in short O-ordering and (ii) the physical ordering, or in short P-ordering.
The first one was originally introduced by Osher [28], while the second one was proposed by
Hemker and Spekreijse [14]. In the P-ordering the ordering of the integration paths is according to
increasing eigenvalues, while the O-ordering is inverted.

We choose to evaluate the first integral (3.1.15a). By performing a change of variables, we have∫
Ik

A−(Q)d(Q) =

∫ ξk+1

ξk

A− (Q(ξ))
dQ(ξ)

dξ
dξ

=

∫ ξk+1

ξk

A− (Q(ξ)) rk (Q(ξ)) dξ

=

∫ ξk+1

ξk

λ−k rk (Q(ξ)) dξ.

(3.1.23)

Note that for positive eigenvalues the integral in (3.1.23) vanishes. Therefore, we now distinguish
several cases regarding the eigenvalues. Suppose that the eigenvalues are either linearly degenerate
or genuinely nonlinear, for the definitions see Chapter 2. Let us first consider the linearly degenerate
case. A rewriting as

dλk
dξ

(Q(ξ)) = ∇λk (Q) · dQ(ξ)

dξ
= ∇λk (Q) · rk(Q) = 0, (3.1.24)

reveals that λk is constant along Ik for the linearly degenerate case. As for positive λk the integral
in (3.1.23) vanishes, consider now λk < 0. This means that∫

Ik

A−(Q)d(Q) =

∫ ξk+1

ξk

dF
dQ

dQ

dξ
dξ = F(Q(ξk+1))−F(Q(ξk)). (3.1.25)
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The numerical flux of path Ik can now be written as, by substituting the integral into (3.1.15a)):

(φi+1/2)Ik =

{
F(Qk) if λk ≥ 0,
F(Qk+1) if λk < 0.

(3.1.26)

where Qk = Q(ξk). When λk is genuinely nonlinear (3.1.24) reveals that λk is strictly monotonic
along Ik, i.e. it changes sign at most once. If λk appears not to change sign, we are back in the
linearly degenerate case. Suppose λk changes sign at ξ = ξs. We can now consider two different
cases, either λk turns from positive to negative at ξ = ξs or vice versa. In both cases in the evaluation
of the integral the integration path should be split. A computation of the integrals and collecting all
the results leads to the Osher’s Numerical flux:

(φi+1/2)Ik =



F(Qk) if λk ≥ 0,
F(Qk+1) if λk ≤ 0,
F(Qk) + F(Qk+1)−F(Qs) if λk(Qk) ≥ 0, λk(Qs) = 0,

λk(Qk+1) ≤ 0,
F(Qs) if λk(Qk) ≤ 0, λk(Qs) = 0,

λk(Qk+1) ≥ 0,

(3.1.27)

where Qs = Q(ξs) is called a sonic point.

3.2 Osher’s fluxes for the five-equation two-phase flow model

Here we discuss the Osher’s fluxes for the five-equation model. This has already been done for
Kreeft and Koren’s model but is new for Kapila’s model. The actual flux for the two different five
equation models differs in the last component, since the first four equations are the same. However,
the approach of determining Osher’s numerical flux is for both five-equation models the same.
For the fifth equation of Kapila’s model, we take formulation

∂tα1 + ∂x(α1u) = (α1 − φ)∂xu, (3.2.1)

with the non-conservative term (α1 − φ)∂xu. The integration path for the five-equation model
consists of three subpaths corresponding to the wave speeds λ1, λ2,3,4 and λ5. The wave speed
λ1 = λ1 (ξ) changes sign at λ1 ((ξs)L) = 0 and λ5 = λ5 (ξ) at λ5 ((ξs)R) = 0. The corresponding two
sonic points are denoted as (Qs)L and (Qs)R respectively. Furthermore, we denote Fk = F(Qk)
with k = 1, ..., 5 and FQK

= F ((Qs)K) with K = L,R. We show the integration path for the
five-equation model in Figure 3.1.
To obtain the numerical flux of Osher one has to examine the sign of the wave speeds at the different
subpaths. The wave speeds at the different points are u1 − c, u2 − c, u2,3,4, u4 + c, u5 + c, where
the subscript refers to the number of the point. This leads to 25 = 32 different cases. A closer
examination reveals that fortunately only 16 cases are actually possible. For instance, the case in
which u2,3,4 ≤ 0 and u2 − c ≥ 0 is a contradictory case. The realisable cases are shown in Table
3.1. Here we introduce the notation µ1 = u1 − c, µ5 = u5 − c to reduce the size of the Table. The
question now remains how to determine the intersection and sonic points (at which the sign of the
eigenvalue changes). To do so, Generalized Riemann Invariants are used. Since this is the same as
for the new formulation of the five-equation model, we refer to [21] for details.
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Figure 3.1: Integration path

µ1 ≥ 0, µ5 ≥ 0 µ1 ≥ 0, µ5 ≤ 0 µ1 ≤ 0, µ5 ≥ 0 µ1 ≤ 0, µ5 ≤ 0

u2,3,4 ≥ 0, u2 − c ≥ 0 F1 F1 −FQR
+ F5 FQL

FQL
−FQR

+ F5

u2,3,4 ≥ 0, u2 − c ≤ 0 F1 −FQL
+ F2 F1 + FQL

+ F2 F2 F2 −FQR
+ F5

−FQR
+ F5

u2,3,4 ≤ 0, u4 + c ≥ 0 F1 −FQL
+ F4 F1 −FQL

+ F4 F5 F4 −FQR
+ F5

−FQR
+ F5

u2,3,4 ≤ 0, u4 + c ≤ 0 F1 −FQL
+ FR F1 −FQL

+ F5 FQR
F5

Table 3.1: Numerical flux Osher table.

3.3 Integration of the non-conservative term Kapila’s of model

In this Section we discuss the treatment of the non-conservative part∫
Ω

(α1 − φ)∂xudx (3.3.1)

of the equation, which is new for Kapila’s model. We choose to apply the approach of Kreeft and
Koren to our non-conservative term. We will only present the key ideas and main results, for more
details on this approach we refer to the paper of Kreeft and Koren.

The integration of non-conservative part (3.3.1) over a finite volume consists of two parts: (i)
a part linked to continuous solution in the cell interior and (ii) a part linked to the discontinuous
solution over the cell faces. This is illustrated in Figure 3.2. We split the integration at the cell faces
from the integration in the cell interior. Since the non-conservative term is not Riemann integrable
at the cell faces, this integration is done in the solution space. The partitioning of (3.3.1) results in
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Figure 3.2: Distribution of a solution in and around finite volume Ωi.

(with an abuse of notation for the first and third integral following Kreeft and Koren [22]):

∫
Ωi

(α1 − φ)∂xudx =

∫ QR
i−1/2

QF
i−1/2

(α1 − φ)dQ +

∫ xi+1/2

xi−1/2

(α1 − φ)∂xudx+

∫ QF
i+1/2

QL
i+1/2

(α1 − φ)dQ.

(3.3.2)

Integration in cell interior

To evaluate the second integral in (3.3.2) a finite volume approximation has to be used. When
using a first order approximation the integral would vanish. We choose to use a second order
approximation in which the functions are assumed to be piecewise linear, as is visualized in Figure
3.3.
This means that the functions u, α, φ are of the form (for the right side of the cell, the left side is
similar):

f(x) = f(xi) + (f(xi+1/2)− f(xi))
x− xi

xi+1/2 − x
. (3.3.3)

The integration results in∫ xi+1/2

xi−1/2

(α1 − φ)∂xudx =

∫ xi

xi−1/2

(α1 − φ)∂xudx+

∫ xi+1/2

xi

(α1 − φ)∂xudx

.
= 1

2

[
(α1)i−1/2 − φi−1/2 + (α1)i − φi

]
(ui − ui−1/2)

+1
2

[
(α1)i − φi + (α1)i+1/2 − φi+1/2

]
(ui+1/2 − ui).

(3.3.4)
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32 Chapter 3. An Osher-type solver for the five-equation model

Figure 3.3: Piecewise linear solution in cell interior.

Integration at cell faces

In correspondence to the Osher solver for the conservative part, we use a P-variant ordering of the
wave paths. The wave paths are the same as in [22], see Figure 3.4, however one has to keep in
mind that the solution space Q is different from the solution space in [22]. The intermediate states
at the intersection points of the wave paths are denoted by QLM , QRM , see Figure 3.4.

(a) (b)

Figure 3.4: Cell faces (a) i− 1/2 and (b) i+ 1/2

For the integration parameter we choose to take the velocity u. For this choice we have the following
reasons:

1. It is in correspondence with Kreeft & Koren [22].

2. The integrand simplifies.

3. No Riemann Invariants have to be used in the integrand. This is in contrast to the model of
Kreeft & Koren.
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The first and third integral in (3.3.2) can be written as∫ uR
i−1/2

uF
i−1/2

(α1 − φ)du,

∫ uF
i+1/2

uL
i+1/2

(α1 − φ)du,

(3.3.5a)

(3.3.5b)

respectively. Next, we split the first integral again, according to the wave configuration, into∫ uR
i−1/2

uF
i−1/2

(α1 − φ)du =

∫ uRM
i−1/2

uF
i−1/2

(α1 − φ)du+

∫ uR
i−1/2

uRM
i−1/2

(α1 − φ)du. (3.3.6)

Note that the first integral in (3.3.6) vanishes since the velocity is constant across the middle sub-
path. The corresponding integral in the model of Kreeft and Koren does not entirely vanish. This is
due to the fact that the term dα1/du appears in that integral and the volume fraction is not constant
across the middle wave. We are left with the integrals∫ uR

i−1/2

uRM
i−1/2

(α1 − φ)du,

∫ uF
i+1/2

uL
i+1/2

(α1 − φ)du,

(3.3.7a)

(3.3.7b)

for which Simpson’s 3/8 rule is used in the calculation.
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4
An HLLC-type solver for the five-equation model

In this Chapter we present an HLLC-type solver for the two-phase flow model. The original HLLC
scheme, developed by E. F. Toro et al. [33], is an extension of the HLL (referring to the developers)
scheme proposed by Harten, Lax and van Leer [13]. In both schemes an approximation for the intercell
numerical flux is obtained directly. This leads to relatively simple and fast approximate Riemann
solvers. The main idea of the schemes is to assume a wave configuration of the solution and to use
integral relations of the Riemann Problem.
An HLLC-type solver for the conservative terms of the models is derived. It is important to note that
the HLLC-type scheme for Kapila’s model is not new; it has been developed by F. Daude et al. in [11].
However, as the derivation of the scheme for the model of Kreeft and Koren, which is new, uses the
HLLC-type scheme for Kapila’s model, we have chosen to present both here. The non-conservative part
is treated differently for the two models. On the one hand we use an HLLC-type approach in Kapila’s
model, while on the other hand we use an Osher-type approach for the Kreeft and Koren model.
This Chapter is organized as follows. First, in Section 4.1 we present the derivation of the HLLC scheme,
based on [33]. Next, in Section 4.2 we apply the HLLC-scheme to both five-equation models. Finally,
in Section 4.3 we present the treatment of the non-conservative terms. We postpone the numerical
simulations to Chapter 6.

4.1 Derivation HLLC approximate Riemann Solver

In this Section we briefly present the derivation of the HLLC-type scheme1. The HLLC scheme
proposed by Toro as an extension of the HLL scheme is a method to compute an approximation
to the flux directly. In the HLLC scheme the missing contact wave is restored. The ‘C’ of HLLC
stands for Contact, referring to the extra contact wave. Therefore, in contrast to the approximate
Riemann solver of Osher, no Riemann Invariants have to be used. In the HLLC approximate Riemann

1This derivation assumes that the considered model consists of three different waves, which holds for both the Euler
equations of gas dynamics and the five-equation model. This approach can easily be generalized for models consisting of
more waves, for e.g. the seven equation model.
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solver we assume that the solution consists of different states separated according to the wave
configuration of the equations. The states are separated by the signal waves S. The slowest and
fastest signal waves, present in both the HLL scheme as well as in the HLLC scheme, are denoted
with SL and SR respectively. The additional middle wave of the HLLC scheme is denoted by SM .
We specify the choice of these signal waves later. The three waves separate the solution into four
states. More precisely, the HLLC approximate Riemann Solver proposed by Toro [33] is given by 2

Q̃(x, t) =



QL if x/t ≤ SL,

Q∗L if SL ≤ x/t < SM ,

Q∗R if SM ≤ x/t < SR,

QR if SR ≤ x/t,

(4.1.1)

see Figure 4.1. The middle two states are referred to as the star region.

Figure 4.1: HLLC Riemann Solver

Let us consider a control volume [xL, xR]× [0, T ] as in Figure 4.2 in which the entire wave structure
of the Riemann problem is shown. Here, T > 0 is a fixed time. The integral form of the conservation
law (2.5.1) in the control volume reads∫ xR

xL

Q(x, T )dx =

∫ xR

xL

Q(x, 0)dx+

∫ T

0
F(Q(xL, t))dt−

∫ T

0
F(Q(xR, t))dt, (4.1.2)

which is evaluated as∫ xR

xL

Q(x, T )dx
.
= xRQR − xLQL + T (FL −FR), (4.1.3)

2In the original HLL scheme the middle wave SM is not present. In the star region the approximate HLL Riemann
solver is given by QHLL.
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Figure 4.2: Control volume

with FK = F(QK),K = L,R. On the other hand, splitting of the integration domain (into
[xL, TSL], [TSL, TSR] and [TSR, xR]) leads to∫ xR

xL

Q(x, T )dx = (TSL − xL)QL +

∫ TSR

TSL
Q(x, T )dx+ (xR − TSR)QR. (4.1.4)

Combining of (4.1.3) and (4.1.4) we obtain the expression

1

T (SR − SL)

∫ TSR

TSL
Q(x, T )dx =

SRQR − SLQL + FL −FR
SR − SL

≡ QHLL. (4.1.5)

Splitting the integration in the integral in Eq. (4.1.5) gives

SM − SL
SR − SL

Q∗,L +
SR − SM
SR − SL

Q∗,R = QHLL, (4.1.6)

with

Q∗,L =
1

T (SM − SL)

∫ TSM

TSL
Q(x, T )dx,

Q∗,R =
1

T (SR − SM )

∫ TSR

TSM
Q(x, T )dx

(4.1.7a)

(4.1.7b)

which is referred to as the Consistency condition. To determine the HLLC numerical flux vector, we
consider the same four states as in the HLLC approximate Riemann solver (4.1.1), i.e. the flux
reads:

φHLLC =



FL if 0 ≤ SL,

F∗L if SL ≤ 0 < SM ,

F∗R if SM ≤ 0 < SR,

FR if SR ≤ 0.

(4.1.8)
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38 Chapter 4. An HLLC-type solver for the five-equation model

In contrast to the left and right state (FK = F(QK),K = L,R), we do not take for F∗K the flux
at Q∗K . The fluxes in the star region are obtained in a similar way as in the derivation of the
Consistency condition. By integrating over the control volumes C1, C2, C3 respectively, we obtain,
after some rewriting, the relations 3

F∗L = FL + SL (Q∗L −QL) , C1 = [xL, TSM ]× [0, T ],

F∗R = F∗L + SM (Q∗R −Q∗L) , C2 = [TSL, TSR]× [0, T ],

F∗R = FR + SR (Q∗R −QR) , C3 = [TSM , xR]× [0, T ].

(4.1.10a)

(4.1.10b)

(4.1.10c)

Together with estimates SL,SR,SM for the wave speeds, this concludes the derivation of the HLLC
scheme.

4.2 Application to the five-equation model

In this Section we apply the HLLC scheme to the five-equation model (both formulations). We
consider only the conservative part of the model, the non-conservative part of the model is treated
in the next Section.
As mentioned in the previous Section, the HLLC scheme is directly applicable to the five-equation
model since the model consists of three different waves (λ1 = u − c, λ2,3,4 = u, λ1 = u + c),
see Chapter 2. The star states are now given by Q∗K = (ρ∗K , (ρu)∗K , (ρE)∗K , (α1ρ1)∗K , (Q5)∗K), with
Q5 = α1, for Kapila’s model and Q5 = α1ρ1E1 for the model of Kreeft and Koren. The velocity
and pressure are both constant along the middle wave, see Chapter 2. Therefore, we impose the
conditions

u∗L = u∗R ≡ u∗

p∗L = p∗R ≡ p∗.
(4.2.1a)

(4.2.1b)

As the middle wave speed SM is associated with the eigenvalue λ2,3,4 we take, in correspondence
with Toro [32], SM = u∗ . The speeds SL and SR corresponding to the fastest waves at each side of
the interface can be estimated in several ways. We choose (see next page for explanation) to take
the one proposed by Batten et al. [5]:

SL = min
(
uL − cL, u− cRoe

)
,

SR = max
(
uR + cR, u+ cRoe

)
,

(4.2.2)

where the Roe average of a quantity g is given by

gRoe :=

√
ρLgL +

√
ρRgR√

ρL +
√
ρR

. (4.2.3)

3In the original HLL scheme these relations are replaced by

FHLL = FL + SL
(
QHLL −QL

)
,

FHLL = FR + SR
(
QHLL −QR

)
,

and are obtained after integrating over [xL, 0] × [0, T ] and [0, xR] × [0, T ] respectively. Alternatively, the relations are
obtained by applying the so-called Rankine-Hugoniot condition across each of the waves.
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The reason for this choice is the following. In the case of the Euler equations of gas dynamics, the
wave speed of a shock wave is given by either u − ĉ (left running) or u + cRoe (right running). On
the other hand, for an expansion fan the slowest wave speed is uL−cL (left running) and the fastest
wave speed is uR + cR (right running). The estimate of Batten et al. takes both effects into account.
We now determine the components of Q∗K by using (4.2.1) in the relations (4.1.10). For the bulk
mass component of Eq. (4.1.10), this leads to

ρ∗K = ρK
SK − uK
SK − SM

, (4.2.4)

with again K = L,R. Next, we find an expression for the pressure values p∗K by using the momen-
tum component of Eq. (4.1.10) and subsequently a substitution of (4.2.4). This gives

p∗K = pK + ρK(SK − uK)(SM − uK). (4.2.5)

After using the condition p∗L = p∗R, the middle wave speeds SM is found to be

SM =
pL − pR + ρRuR (SR − uR)− ρLuL (SL − uL)

ρR (SR − uR)− ρL (SL − uL)
. (4.2.6)

For the bulk energy component of Eq. (4.1.10) we obtain, after substitution of (4.2.5),

ρ∗KE
∗
K = ρK

SK − uK
SK − SM

[
EK + (SM − uK)

(
SM +

pK
ρK (SK − uK)

)]
. (4.2.7)

These results have already been found by Toro [33]. In a similar fashion, we obtain the remaining
fluxes of the single fluid. We get from Eq. (4.1.10) for component of the mass of phase 1:

(α∗1ρ
∗
1)K = (α1ρ1)K

SK − uK
SK − SM

. (4.2.8)

What remains is to determine the fluxes for the fifth equation of the model. For Kapila’s model we
follow the approach of Daude et al. [11]. Write the equation for volume fraction α1 in the form

∂tα1 + ∂x(α1u) = (α1 − φ)∂xu, (4.2.9)

where the second term on the left-hand side is a conservative flux. As we treat the non-conservative
part of the model differently, we do not take it into account here. Applying the form (4.1.10) to
(4.2.9), we obtain:

(α∗1)K = (α1)K
SK − uK
SK − SM

. (4.2.10)

Next, we consider the fifth equation of the model of Kreeft and Koren. Applying Eq. (4.1.10) gives
the new equation

(α1ρ1E1u)∗K + (α1pu)∗K = (α1ρ1E1)KuK + (α1pu)K

+SK ((α1ρ1E1)∗K − (α1ρ1E1)K) .
(4.2.11)
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Substituting the estimate (4.2.10) into (4.2.11) and a lot a rewriting eventually gives

(α1ρ1E1)∗K = (α1)KρKSM

[
SK − uK
SK − SM

]2

(SM − uK)

+(α1ρ1E1)K
SK − uK
SK − SM

+(α1)KpKSK
SM − uK

(SK − SM )2
.

(4.2.12)

By collecting all the results the solution vectors can be formed:

(Q∗K)M =
1

SK − SM



ρK (SK − uK)

ρKSM (SK − uK)

ρK (SK − uK)
[
EK + (SM − uK)

(
SM + pK

ρK(SK−uK)

)]
(α1ρ1)K (SK − uK)

(Q∗K)M
5


(4.2.13)

for K = L,R and M=KP for Kapila’s model and M=KK for the model of Kreeft and Koren. The fifth
term is given by:

(Q∗K)KP
5 =(α1)K (SK − uK) ,

(Q∗K)KK
5 =(α1)KρKSM (SK − uK)

SK − uK
SK − SM

(SM − uK) + (α1ρ1E1)K(SK − uK)

+ (α1)KpKSK
SM − uK
SK − SM

.

(4.2.14a)

(4.2.14b)

Substitution of the solution vectors into relation (4.1.10) gives the fluxes:

(F∗K)M =
1

SK − SM



ρK (SK − uK)SM

ρKuK (SK − uK)SM + pMSK − pKSM

ρKEK (SK − uK)SM + pMSKSM − pKSMuK

(α1ρ1)K (SK − uK)SM

(F∗K)M
5


. (4.2.15)

with

(F∗K)KP
5 =(α1)K (SK − uK)SM ,

(F∗K)KK
5 =SK(α1)KρKSM (SK − uK)

SK − uK
SK − SM

(SM − uK)

+ (α1ρ1E1)KSM (SK − uK)

+ SK(α1)KpKSK
SM − uK
SK − SM

.

(4.2.16a)

(4.2.16b)
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4.3 Estimating the non-conservative terms

The non-conservative terms require a different treatment than the conservative ones. In the follow-
ing we discuss the treatment of the non-conservative term(s) of the two five-equation models.

4.3.1 Kapila’s model

To estimate the non-conservative product in Kapila’s model, we follow Daude et al. [11], and
therefore use results of the conservative terms (previous Subsection). The non-conservative term
reads

R(Q, ∂xQ) = B (Q) ∂xu, (4.3.1)

with B (Q) = (0, 0, 0, 0, α1 − φ)T . In the Finite volume approximation, we approximate the term B
at first order, similar to [11], which leads to∫

Ci

B (Qi) ∂xu dCi
.
= B (Qi)

∫
Ci

∂xu dCi, (4.3.2)

where Ci denotes cell i. In the (volume) integral we use Gauss’ integral theorem resulting in∫
Ci

∂xudCi
.
= ui+1/2 (QL,QR)− ui−1/2 (QL,QR) . (4.3.3)

In an HLLC-type way the velocity ‘jumps’ from one state to another. To take this into account, we
use the HLLC-type estimate proposed in [17]:

ul (QL,QR) =



uL if 0 ≤ SL,

(uE)L if SL ≤ 0 < SM ,

(uE)R if SM ≤ 0 < SR,

uR if SR ≤ 0,

(4.3.4)

where l = i+ 1/2, i− 1/2. For the velocity in the star region we take

(uE)K = SM
SK − uK
SK − SM

. (4.3.5)

This estimate is linked to the conservative form of the advection equation as follows. Write the
advection equation (Dq/Dt = 0) of a quantity q in the following conservative form (i.e. make use
of the conservation of bulk mass)

∂t(ρq) +∇ · (ρqu) = 0. (4.3.6)

The estimate (uE)K , used in the star region, appears in the advective part of Eq. (4.3.6) as follows

ρ∗Kq
∗
KSM = ρKSM

SK − uK
SK − SM

qK = ρK(uE)KqK . (4.3.7)

M.Sc thesis M.F.P. ten Eikelder



42 Chapter 4. An HLLC-type solver for the five-equation model

Alternatively, this estimate is is linked to the advective part of the flux. Let us split the flux into
two parts: (i) One advection part, denoted with a, and (ii) one part consisting of pressure terms,
denoted with p, i.e.:

F∗K = (F∗a )K +
(
F∗p
)
K
, (4.3.8)

where

(F∗a )M
K =



ρu

ρu2

ρEu

α1ρ1u

FM
5,a



∗

K

,
(
F∗p
)M
K

=



0

p

pu

0

FM
5,p



∗

K

, (4.3.9)

with

FKP
5,a = α1u,

FKP
5,p = 0,

FKK
5,a = α1ρ1uE1,

FKK
5,p = α1pu,

(4.3.10a)

(4.3.10b)

(4.3.10c)

(4.3.10d)

and M=KP, KK the fluxes for Kapila’s model and the model of Kreeft and Koren, respectively. The
superscript ∗ and the subscript K should be taken componentwise. Using the expressions of the
previous Section, we find

(F∗a )M
K = SM

SK − uK
SK − SM

QK = (uE)KQK ,

(
F∗p
)M
K

=
1

SK − SM



0

p∗SK − pKSM

SM (p∗SK − pKuK)

0(
F∗p
)M
K,5


.

(4.3.11a)

(4.3.11b)

with (
F∗p
)KP
K,5

=0,(
F∗p
)KK
K,5

=SK(α1)KpKSK
SM − uK
SK − SM

+ SK(α1)KρKSM (SK − uK)
SK − uK
SK − SM

(SM − uK).

(4.3.12a)

(4.3.12b)

The splitting of the flux reveals that the velocity estimate (4.3.5) is linked to the advective part of
the flux (4.3.11a).
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4.3.2 Kreeft and Koren’s model

For the model of Kreeft and Koren we use the Osher-type treatment for the non-conservative terms
4,5. This has been discussed in Section 3.3.

4One might argue as follows. Why not use an HLLC-type approach for the treatment of the non-conservative terms,
as in Section 4.3.1? The term pφ∂xu can indeed be treated in an HLLC-type way. For the other terms this is not trivial.
Several estimates (based on a splitting of the flux) have been tested with, unfortunately, bad results.

5Note that for this model the Riemann Invariants are used here.
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5
An all-regime Lagrange-Projection like scheme for

Kapila’s model

In this Chapter we propose a new all regime Lagrange-Projection like numerical scheme for the five-
equation two-phase flow model. In the five equation model we encounter fast acoustic waves as well
as slow material waves. The key idea is to decouple these two different physical phenomenon. This is
proposed by Chalons et al. [9] for the Euler equations of gas dynamics. In this Chapter we extend a
kind of this approach to the five-equation model.
For the acoustic part of the model we use a relaxation approach to deal with a larger but simpler
system. We propose to use an HLLC-type solver for the conservative part of the relaxed system. The non-
conservative term, which is included in the acoustic system, is approximated with a finite difference-type
approach. For the transport part a classical upwind scheme is used. As the acoustic part of the scheme
does not behave well in the low Mach regime, the correction of Chalons et al. is used to solve this.
This Chapter is organised as follows. First, in Section 5.1 we discuss the splitting of the five-equation
two-phase flow model into an acoustic and a transport part. We start with considering the acoustic
system. In Section 5.2 we present an approximate HLLC-type scheme of a relaxed system. Next, in
Section 5.3 we give the upwind scheme for the transport system. The behaviour of the scheme (both
the acoustic as well as the transport part) with respect to the low Mach regime is given in Section 5.4.
The modified acoustic scheme with a correction for the low Mach regime is presented in Section 5.5.
We conclude this Chapter with a short note on the modified scheme. The numerical simulations are
postponed to Chapter 6.

5.1 Splitting of the different physical phenomena

In this Section we discuss the strategy of splitting the two different physical phenomena. In the
model we have the two physical phenomena: An acoustic part describing the pressure wave propa-
gation and a transport part describing the movement of the waves according to the material velocity.
The corresponding typical velocities are the material velocity and the speed of sound, respectively,
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46 Chapter 5. An all-regime Lagrange-Projection like scheme for Kapila’s model

see Section 2.3. The proposed splitting decouples the two physical phenomena.
Let us repeat the five-equation two-phase flow model of Kapila et al. for convenience, see Chap-

ter 2:

∂tρ +∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u)+∇p = 0,

∂t(ρE) +∇ · (ρEu) +∇ · (pu)= 0,

∂t(α1ρ1)+∇ · (α1ρ1u) = 0,

∂tα1 +(u ·∇)α1 +φ∇ · u = 0.

(5.1.1a)

(5.1.1b)

(5.1.1c)

(5.1.1d)

(5.1.1e)

By using chain rule arguments the five-equation model can be written as

∂tρ +ρ∇ · u + (u ·∇) ρ = 0,

∂t(ρu) +ρu∇ · u +∇p + (u ·∇) (ρu) = 0,

∂t(ρE) +ρE∇ · u +∇ · (pu)+ (u ·∇) (ρE) = 0,

∂t(α1ρ1)+α1ρ1∇ · u + (u ·∇) (α1ρ1)= 0,

∂tα1 +φ∇ · u + (u ·∇)α1 = 0.

(5.1.2a)

(5.1.2b)

(5.1.2c)

(5.1.2d)

(5.1.2e)

In the splitting the transport terms are separated from the other terms. The two submodels are (i)
the acoustic system:

∂tρ +ρ∇ · u = 0,

∂t(ρu) +ρu∇ · u +∇p = 0,

∂t(ρE) +ρE∇ · u +∇ · (pu)= 0,

∂t(α1ρ1)+α1ρ1∇ · u = 0,

∂tα1 +φ∇ · u = 0,

(5.1.3a)

(5.1.3b)

(5.1.3c)

(5.1.3d)

(5.1.3e)

and (ii) the transport system, which reads as:

∂tρ + (u ·∇) ρ = 0,

∂t(ρu) + (u ·∇) (ρu) = 0,

∂t(ρE) + (u ·∇) (ρE) = 0,

∂t(α1ρ1)+ (u ·∇) (α1ρ1)= 0,

∂tα1 + (u ·∇)α1 = 0.

(5.1.4a)

(5.1.4b)

(5.1.4c)

(5.1.4d)

(5.1.4e)

We discretize (5.1.1) by successively approximating the solution of the acoustic system and the
transport system. This splitting approach is first order accurate in time. Note that the acoustic sys-
tem contains all the pressure terms. Furthermore, we have chosen to include the non-conservative
term of the model in the acoustic system since it is a fast phenomenon (it includes the speed of
sound). As we will only consider one-dimensional problems1 in the numerical simulations of Chap-
ter 6, we restrict ourselves from now on to those. A casting of the original system, system (5.1.1),

1The extension to multiple dimensions is added to the list of further improvements in Chapter 8.
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into the form2

∂tW + A(W)∇ · W = 0. (5.1.5)

where

W =



ρ

u

p

β1

α1


, A(W) = B(W) + T(W), T(W) = uId, (5.1.6)

and

B(W) =



0 ρ 0 0 0

0 0 1/ρ 0 0

0 ρc2 0 0 0

0 0 0 0 0

0 φ 0 0 0


, (5.1.7)

reveals that the corresponding matrix A splits nicely into an acoustic part B and a transport part T
3. The eigenvalues split into an acoustic part (a) and a transport part (t) as follows

λ1 = λa1 + λt1, λ2,3,4 = λa2,3,4 + λt2,3,4, λ5 = λa5 + λt5,

λa1 = −c, λa2,3,4 = 0, λa5 = c,

λt1 = u, λt2,3,4 = u, λt5 = u.

(5.1.8)

The corresponding eigenvectors for the acoustic system, denoted as ra1,2,3,4,5, remain the same as for
the complete five-equation model: ra1,2,3,4,5 = r1,2,3,4,5, respectively. The eigenvectors r1,2,3,4,5 are
given in Eq. (2.3.7).

Proposition 5.1.1. Assume the stiffened gas (SG) equation of state (EOS). The characteristic fields
associated with the wave λa2,3,4 = 0 are linearly degenerate. For the other two waves, associated with
λa1 = −c, λa5 = c, the type is neither linearly degenerate nor genuinely nonlinear.

Proof. It is trivial that characteristic fields associated with the wave λa2,3,4 = 0 are linearly
degenerate. The second part of the proposition is more complicated. Since the current set of
variables appears to be an inconvenient choice, we switch the set of variables. This does not change
the mathematical structure of the model. We take a set of entropic variables denoted as We. In this

2The derivation of the primitive equations of the acoustic scheme is straightforward and can be found in Appendix
B.1.

3Formally, one might argue that the splitting turns out to be the following. In the primitive equations the transport
part of the material derivative operator is put into the transport system and the remainder is put into the acoustic system.
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set the variables s1, s2 are the specific entropies of the single phases. The acoustic system can be
written as, see Appendix B.1 for the derivation,

∂tWe + Ae(We)∂xWe = 0, (5.1.9)

where

We =



s1

s2

u

p

β1


, Ae =



0 0 0 0 0

0 0 0 0 0

0 0 0 1/ρ 0

0 0 ρc2 0 0

0 0 0 0 0


. (5.1.10)

The (right) eigenvectors of (5.1.9)-(5.1.10) can be chosen as

(ra1)e =


0
0
c
−ρc2

0

 , (ra2)e =


1
0
0
0
0

 , (ra3)e =


0
1
0
0
0

 , (ra4)e =


0
0
0
0
1

 , (ra5)e =


0
0
c
ρc2

0

 . (5.1.11)

The speed of sound does not depend on the material velocity, for details we refer to Appendix A.
Using that ∂c/∂u = 0, one can deduce

(∇Weλ
a
1(We)) · (ra1)e = (∇Weλ

a
5(We)) · (ra5)e = ρc2 ∂c

∂p
. (5.1.12)

The difficulty lies in calculating the derivative in (5.1.12). This derivative can be written by using
elementary calculus as, see [27],

∂c

∂p
= −c

[
(ρc)2

2

∂

∂p

(
1

(ρc)2

)
− ρ ∂

∂p

(
1

ρ

)]
. (5.1.13)

Substitution of the mixture speed of sound, defined in (2.3.3), leads to

∂c

∂p
= −c

[
(ρc)2

2

(
β1

∂

∂p

(
1

(ρ1c1)2

)
+ β2

∂

∂p

(
1

(ρ2c2)2

))
− ρ

(
β1

∂

∂p

(
1

ρ1

)
+ β2

∂

∂p

(
1

ρ2

))]
.

(5.1.14)

Using the SG EOS one can deduce

∂

∂p

(
1

ρk

)
=− 1

ρ2
kc

2
k

,

∂

∂p

(
1

(ρkck)2

)
=− 2γk

ρ3
kc

4
k

.

(5.1.15a)

(5.1.15b)
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Substitution gives after simplification

∂c

∂p
= −c

[
α1

ρ1c2
1

(
1− ρc2γ1

ρ1c2
1

)
+

α2

ρ2c2
2

(
1− ρc2γ2

ρ2c2
2

)]
. (5.1.16)

In theory, this expression can equal zero, when e.g. both terms in the inner brackets vanish. There-
fore, the characteristic fields associated with λa1 = −c, λa5 = c are neither linearly degenerate nor
genuinely nonlinear. However, in general this will not happen. In general the waves the character-
istic fields associated with λa1 = −c, λa5 = c are genuinely nonlinear. An alternative approach is as
follows. When ∂c/∂p equals zero, the speed of sound does not depend on the pressure. This is in
general not the case.

Let us denote the fluid state at time n by Qn
j ≡ (ρ, ρu, ρE, α1ρ1, α1)nj , and an intermediate time

level with n + 1−. In the algorithm we alternate approximating the solutions of the two systems,
i.e. one time step reads

1. Update Qn
j to Qn+1−

j using the acoustic system (5.1.3);

2. Update Qn+1−
j to Qn+1

j using the transport system (5.1.4).

5.2 Acoustic system

In this Section we consider the acoustic system. By taking {τ, u, E, β1, α1} as set of independent
variables, the acoustic system can be cast into the form

∂tτ −τ∂xu = 0,

∂tu +τ∂xp = 0,

∂tE +τ∂x(pu)= 0,

∂tβ1 = 0,

∂tα1+ρφτ∂xu= 0.

(5.2.1a)

(5.2.1b)

(5.2.1c)

(5.2.1d)

(5.2.1e)

Here τ = 1/ρ is the specific volume. The first three equations, Eq. (5.2.1a)-(5.2.1c), correspond
to the gas dynamics equations, and the latter two contain the fraction variables which are specific
for the five-equation two-phase flow model. In this formulation one notes the same form of each
of the first three equations: The second term (flux-like term) here consists of a flux of velocity,
pressure and momentum, respectively, multiplied by the specific volume. The latter two equations
are formulated such that the flux-like term vanishes.

Note that the second term of each equation (except the fourth equation) contains the operator
τ∂x. The idea is to replace this operator. For t ∈ [tn, tn + ∆t] the operator τ(x, t)∂x is approximated
by τ(x, tn)∂x. Hence, the acoustic system of time step n is approximated by

∂tτ −τ(x, tn)∂xu = 0,

∂tu +τ(x, tn)∂xp = 0,

∂tE +τ(x, tn)∂x(pu)= 0,

∂tβ1 = 0,

∂tα1+ρφτ(x, tn)∂xu= 0.

(5.2.2a)

(5.2.2b)

(5.2.2c)

(5.2.2d)

(5.2.2e)
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We introduce the mass variable m defined by

m(x) =

∫ x

0
ρ(x̆, tn)dx̆. (5.2.3)

Formally, we can write dm = ρ(x, tn)dx. The change of variables: τ(x, ·) = τ̄(m, ·), u(x, ·) = ū(m, ·),
E(x, ·) = Ē(m, ·), β1(x, ·) = β̄1(m, ·), α1(x, ·) = ᾱ1(m, ·), ρ(x, ·) = ρ̄(m, ·), φ(x, ·) = φ̄(m, ·), is
performed. This leads to the system:

∂tτ̄ −∂mū = 0,

∂tū +∂mp̄ = 0,

∂tĒ +∂m(p̄ū)= 0,

∂tβ̄1 = 0,

∂tᾱ1+ρ̄φ̄∂mū= 0.

(5.2.4a)

(5.2.4b)

(5.2.4c)

(5.2.4d)

(5.2.4e)

The ‘-’ symbols are now neglected and we arrive at the system:

∂tτ −∂mu = 0,

∂tu +∂mp = 0,

∂tE +∂m(pu)= 0,

∂tβ1 = 0,

∂tα1+ρφ∂mu= 0.

(5.2.5a)

(5.2.5b)

(5.2.5c)

(5.2.5d)

(5.2.5e)

which can be written as

∂tQ
LAG + ∂mF LAG(QLAG) +RLAG(QLAG, ∂mQLAG) = 0, (5.2.6)

where

QLAG = (τ, u, E, β1, α1)T

F LAG(QLAG) = (−u, p, pu, 0, 0)T ,

R(QLAG, ∂mQLAG) = (0, 0, 0, 0, ρφ∂mu)T .

(5.2.7a)

(5.2.7b)

(5.2.7c)

The superscript LAG refers to Lagrangian variables.

5.2.1 Relaxed system

Due to nonlinearities of the pressure, the Riemann problem associated with (5.2.6)-(5.2.7) is diffi-
cult to solve. This problem can be dealt with by using a relaxation strategy. The idea of this strategy
is to deal with a larger but simpler system. The problems are caused by the pressure. The design
principle is to consider the pressure as a new unknown, a so-called surrogate pressure which we de-
note as Π. We have chosen to use an HLLC-type solver for the relaxed system, where Chalons et al.
use Godunov’s method for their relaxed system. Godunov’s method, developed by S. K. Godunov,
is a conservative numerical scheme for solving PDEs. It is a finite-volume method which solves
exact or approximate Riemann problems. The combination of using a relaxation approach and a
Godunov solver on the relaxed system is common and known as a Suliciu-type approximation[31].
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A Godunov method does not seem to be a natural choice for our relaxed system because in general
no exact solution exists (due to the non-conservative term).

To proceed we first derive the relaxed system and its structure. In the next Subsection we present
an HLLC-type solver for the relaxed system.

We refer to Appendix C for some background on obtaining the relaxed system. We introduce a
surrogate pressure Π, which satisfies4

∂tΠ + τa2∂xu = y (p−Π) , (5.2.8)

where a approximates the term ρc and y is a relaxation parameter. The parameter a is constant.
The exact choices will be specified later. The relaxed system is given by

∂tτ −∂mu = 0,

∂tu +∂mΠ = 0,

∂tE +∂m(Πu) = 0,

∂tβ1 = 0,

∂tα1+ρφ∂mu = 0,

∂tΠ +a2∂mu = y (p−Π) .

(5.2.9a)

(5.2.9b)

(5.2.9c)

(5.2.9d)

(5.2.9e)

(5.2.9f)

Note that we now have six equations. The numerical method is a two step approach:

• Evolution step: y = 0;

• Source step: y→ +∞.

We alternate between the evolution and the source step with the parameter y. In the evolution step,
i.e. y = 0, we obtain

∂tQ
LAG
s + ∂mF LAG

s (QLAG
s ) +RLAG

s (QLAG
s , ∂mQLAG

s ) = 0, (5.2.10)

where the different terms are defined as:

QLAG
s = (τ, u, E, β1, α1,Π)T

F LAG
s (QLAG

s ) = (−u,Π,Πu, 0, 0, a2u)T ,

R(QLAG
s , ∂mQLAG

s ) = (0, 0, 0, 0, ρφ∂mu, 0)T .

(5.2.11a)

(5.2.11b)

(5.2.11c)

The subscript s refers to the relaxed system. After solving the evolution system from time level n to
n+ 1− we solve the source system, i.e. we let y→ +∞ which enforces

Π = pEOS(τ, u, E, β1, α1). (5.2.12)

In order to determine the structure of the relaxed system, we use the following alternative form of
the fifth equation

∂tα1 + ρφ∂mu = 0. (5.2.13)

4This approximation is based on the primitive equation of the pressure, see Appendix B.1.
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We write the full relaxed acoustic system as

∂tQ
LAG
s + ALAG

s (QLAG
s )∂mQLAG

s = 0. (5.2.14)

with

QLAG
s =



τ

u

E

β1

α1

Π


ALAG
s (Q̂LAG

s ) =



0 −1 0 0 0 0

0 0 0 0 0 1

0 Π 0 0 0 u

0 0 0 0 0 0

0 ρφ 0 0 0 0

0 a2 0 0 0 0


. (5.2.15)

Hence, the system is hyperbolic with wave speeds

λLAG
1 = −a, λLAG

2,3,4,5 = 0, λLAG
6 = a, (5.2.16)

with corresponding (right) eigenvectors

rLAG
1 =



1
a

au−Π
0
−ρφ
−a2

 , rLAG
2 =



1
0
0
0
0
0

 , rLAG
3 =



0
0
1
0
0
0

 ,

rLAG
4 =



0
0
0
1
0
0

 , rLAG
5 =



0
0
0
0
1
0

 , rLAG
6 =



1
−a

−au−Π
0
−ρφ
−a2

 .
(5.2.17)

Proposition 5.2.1. The characteristic fields associated with the waves λLAG
1 , ...λLAG

6 are linearly degen-
erate.

Proof. Since the waves speeds are all constant (the parameter a is constant), the computation is
trivial

∇QLAG
s
λLAG
k · rk = 0 · rk = 0. (5.2.18)

5.2.2 HLLC-type solver

In the Finite-volume approximation of the relaxed system (5.2.10)-(5.2.11) on cell Ci reads

∂t(
(
QLAG
s

)
i
) +

1

∆m

((
φLAG
s

)HLLC
i+1/2

−
(
φLAG
s

)HLLC
i−1/2

)
+

∫
Ci

Bs
((

QLAG
s

)
i

)
∂mu dCi, (5.2.19)
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where the numerical flux approximates F LAG
s ((QLAG

s )) and

RLAG
s (QLAG

s , ∂mQLAG
s ) = Bs

(
QLAG
s

)
∂mu. (5.2.20)

with Bs (QLAG
s ) = (0, 0, 0, 0, ρφ, 0)T . Note that a first order time integration method is used. Because

the splitting approach is first order accurate in time, the overall scheme is at maximum first order in
time. The objective is to obtain an approximation for the conservative contributions, i.e. the fluxes
φ and for the non-conservative term which the rightmost term in Eq. (5.2.19).

Conservative terms

We use an HLLC-type solver to obtain approximation for the conservative part (acoustic system
evolution step). For the following the reader is assumed to be familiar with HLLC-type schemes. If
the reader is not familiar with this concept, we suggest to study Chapter 4 before proceeding with
this Chapter. For a good introduction to HLLC-type schemes we also refer to the book of Toro [32].
In the HLLC solver we have four states separated by three waves. The HLLC approximate Riemann
Solver, which has a very similar shape as the HLLC approximate Riemann Solver of the previous
Chapter, is given by

Q̃LAG
s (m, t) =



(QLAG
s )L if m/t ≤ (S LAG

s )L,

(QLAG
s )∗L if (S LAG

s )L ≤ m/t < (S LAG
s )M ,

(QLAG
s )∗R if (S LAG

s )M ≤ m/t < (S LAG
s )R,

(QLAG
s )R if (S LAG

s )R ≤ m/t.

(5.2.21)

This notation of the different states is:

(QLAG
s )L = (τL, uL, EL, (β1)L, (α1)L,ΠL)T ,

(QLAG
s )∗L = (τ∗L, u

∗
L, E

∗
L, (β1)∗L, (α1)∗L,Π

∗
L)T ,

(QLAG
s )∗R = (τ∗R, u

∗
R, E

∗
R, (β1)∗R, (α1)∗R,Π

∗
R)T ,

(QLAG
s )R = (τR, uR, ER, (β1)R, (α1)R,ΠR)T .

(5.2.22)

Here, (S LAG
s )L, (S LAG

s )R, corresponding to the wave speeds λLAG
1 = −a and λLAG

6 = a, denote the
slowest and fastest mass signal speed 5 respectively. The middle wave speed/mass signal speed
(S LAG
s )M corresponds to the multiple eigenvalue λ2,3,4,5 = 0. To determine the middle states (QLAG

s )∗K
we again use the jump relations, similar as the previous Chapter:(

φLAG
s

)∗
K

=
(
φLAG
s

)
K

+ (Ss)K
((

QLAG
s

)∗
K
− (QLAG

s )K
)
, (5.2.23)

with
(
φLAG
s

)
K

= F LAG
s ((QLAG

s )K) and K = L,R. As(
∇QLAG

s
u
)
· rLAG

2,3,4,5 = 0,(
∇QLAG

s
Π
)
· rLAG

2,3,4,5 = 0,

(5.2.24a)

(5.2.24b)

5The unit of these speeds-like quantities is [S LAG
s ] = [ρ][c]
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the velocity and pressure remain constant over the middle (contact) wave:

u∗L = u∗R ≡ u∗,
Π∗L = Π∗R ≡ Π∗.

(5.2.25a)

(5.2.25b)

To determine the components of (Qs)
∗
K we use Eq. (5.2.23). This is similar as in Chapter 4. A

straightforward evaluation reveals that the states (Qs)
∗
K are given by

u∗ =
(S LAG
s )LuL − (S LAG

s )RuR + ΠR −ΠL

(S LAG
s )L − (S LAG

s )R
,

Π∗ =
ΠR(S LAG

s )L −ΠL(S LAG
s )R + (S LAG

s )L(S LAG
s )R(uL − uR)

(S LAG
s )L − (S LAG

s )R
,

τ∗K = τK +
uK − u∗

(S LAG
s )K

,

E∗K = EK +
Π∗u∗ −ΠKuK

(S LAG
s )K

,

(β1)∗K = (β1)K ,

(α1)∗K = (α1)K ,

(5.2.26a)

(5.2.26b)

(5.2.26c)

(5.2.26d)

(5.2.26e)

(5.2.26f)

for K = L,R. Note that the mass fraction is constant across the left and right wave, i.e. (β1)∗K =
(β1)K . This is also obtained using the Riemann Invariants, see Section 2.3. Additionally, we obtain
(S LAG
s )2

K = a2, for K = L,R. Since (S LAG
s )L, (Ss)LAG

R and (Ss)LAG
R correspond to λLAG

1 = −a, λLAG
6 = a

and λLAG
2,3,4,5 = 0 respectively, we take the natural choice of

(S LAG
s )L = −a,

(S LAG
s )M = 0,

(S LAG
s )R = a.

(5.2.27a)

(5.2.27b)

(5.2.27c)

Then the expressions for u∗,Π∗ reduce to

u∗ =
uL + uR

2
+

ΠL −ΠR

2a
,

Π∗ =
ΠL + ΠR

2
+
a

2
(uL − uR).

(5.2.28a)

(5.2.28b)

This result is also found by Chalons et al. [9] using the Godunov method. We approximate the left
and right states at first order by uL = ui, uR = ui+1,ΠL = Πi,ΠR = Πi+1. Note that the sign of
the mass signal speeds is fixed. Since m/t > 0 and a > 0 the left ((QLAG

s )L) and right ((QLAG
s )R)

states can never be reached. Furthermore, in the fluxes of the middle states only velocity and
pressure terms appear. Since the velocity and pressure terms are constant across the middle wave
(u∗L = u∗R = u∗,Π∗L = Π∗R = Π∗) connecting the middle states, the flux of both states,

(
φLAG
s

)∗
K

, is
the same. Therefore, the corresponding HLLC flux vector consists of a single state:(

φLAG
s

)HLLC
i+1/2

=
(
−u∗,Π∗,Π∗u∗, 0, 0, a2u∗

)
i+1/2

. (5.2.29)

M.F.P. ten Eikelder M.Sc thesis



5.2. Acoustic system 55

What remains is to specify the choice of the parameter a. We take the choice of Chalons et al.6:

aM = H max(ρLcL, ρRcR). (5.2.30)

Here L,R denote the left and right interface of the corresponding cell, M the middle of the cell and
H > 1. We take H = 1.1, this choice is arbitrary and we have not tested any other choice.

Non-conservative term

We now turn to the non-conservative part. This reads:

RLAG
s (QLAG

s , ∂mQLAG
s ) = Bs

(
QLAG
s

)
∂mu, (5.2.31)

with Bs (QLAG
s ) = (0, 0, 0, 0, ρφ, 0)T . In the Finite volume approximation, we approximate the term

Bs at first order, which leads to∫
Ci

Bs
((

QLAG
s

)
i

)
∂mu dCi

.
= Bs

((
QLAG
s

)
i

) ∫
Ci

∂mu dCi, (5.2.32)

where Ci denotes cell i. We propose to approximate the (volume) integral by∫
Ci

∂mudCi =

∫
Ci

τ∂xudCi
.
= τi

(
u∗i+1/2 − u

∗
i−1/2

)
. (5.2.33)

Update formulae

Summarizing, the update formula for the discretized acoustic system (evolution step) reads:

Qn+1−
i = Qn

i −
∆t

(ρ)ni ∆x

(
φni+1/2 − φ

n
i−1/2

)
− (φ)ni

∆t

∆x

(
Hni+1/2 −H

n
i−1/2

)
. (5.2.34)

where

(Qi)
T = (τ, u, E, β1, α1,Π)i,(

φni+1/2

)T
= (−u∗,Π∗,Π∗u∗, 0, 0, a2u∗)ni+1/2,(

Hni+1/2

)T
= (0, 0, 0, 0, u∗, 0)ni+1/2.

(5.2.35a)

(5.2.35b)

(5.2.35c)

with

u∗i+1/2 =
ui + ui+1

2
+

Πi −Πi+1

2a
,

Π∗i+1/2 =
Πi + Πi+1

2
+
a

2
(ui − ui+1),

(5.2.36a)

(5.2.36b)

6The primitive equation of the pressure is given by

∂tp+ ρc2∂xu = ∂tp+ τ(ρc)2∂xu = ∂tp+ (ρc)2∂mu = 0.

Hence, a approximates ρc.
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5.2.3 Properties acoustic system

The update formulae for the discretized acoustic system in terms of conservative variables are given
by (it follows from (5.2.34) and (5.1.3))

ρn+1−
j = Kjρ

n
j ,

(ρu)n+1−
j = Kj (ρu)nj −

∆t

∆x

(
Π∗j+1/2 −Π∗j−1/2

)
,

(ρE)n+1−
j = Kj (ρE)nj −

∆t

∆x

(
Π∗j+1/2u

∗
j+1/2 −Π∗j−1/2u

∗
j−1/2

)
,

(α1ρ1)n+1−
j = Kj (α1ρ1)nj ,

(α1)n+1−
j = (α1)nj − (φ)nj

∆t

∆x

(
u∗j+1/2 − u

∗
j−1/2

)
,

(5.2.37a)

(5.2.37b)

(5.2.37c)

(5.2.37d)

(5.2.37e)

where Kj is given by

Kj = 1− ∆t

∆x

(
u∗j+1/2 − u

∗
j−1/2

)
. (5.2.38)

For the acoustic scheme, i.e. (5.2.10)-(5.2.11), the stability requirement reads

∆t

∆x
max
j

(
max(τnj , τ

n
j+1)aj+1/2

)
≤ 1. (5.2.39)

This condition is the same as for the Euler equations and can be understood as follows. As we solve
the system in lagrangian formulation, the CFL number for the acoustic system (5.2.10)-(5.2.11) is
defined by

Ca =
∆t

∆m
max
j

(
|λLAG
j |
)
, (5.2.40)

with ∆m = ρ(x, tn)∆x. By noting that the (maximum) wave speed is aj+1/2, we obtain the stability
requirement (5.2.41). When dealing with two successive Riemann problems at the same cell, the
stricter CFL restriction holds [9]:

∆t

∆x
max
j

(
max(τnj , τ

n
j+1)aj+1/2

)
≤ 1/2. (5.2.41)

This CFL restriction is linked to the non-juxtaposition. This means that the waves of the two Riemann
problems may not interfere. This can be observed for severe cases. In the problems we have
encountered, we use the limit (5.2.41).

5.3 Transport system

In this Section we present the solver for the transport system, which can be written as

∂tW + T(W)∂xW = 0, (5.3.1)
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with

T(W) = uId. (5.3.2)

Each single equation can be written in the form

∂tυ = −∂x(υu) + υ∂xu, (5.3.3)

where υ ∈ {ρ, ρu, ρE, α1ρ1, α1}. This form is used in the Finite volume approximation. We approx-
imate the velocity uj+1/2 by actual velocity of the shock wave u∗j+1/2 as defined in Eq. (5.2.28a).
Furthermore, we use the upwind value to approximate the interface value υj+1/2:

υn+1−
j+1/2 =

 υn+1−
j , if u∗j+1/2 ≥ 0,

υn+1−
j+1 , if u∗j+1/2 < 0.

(5.3.4)

The Finite volume approximation reads:

υn+1
j = υn+1−

j −∆t

∆x

(
u∗j+1/2υ

n+1−
j+1/2 − u

∗
j−1/2υ

n+1−
j−1/2

)
+

∆t

∆x
υn+1−
j

(
u∗j+1/2 − u

∗
j−1/2

)
.

(5.3.5)

Stability requirement

The wave speed of the transport system is u∗j+1/2. Let us first assume that u∗j−1/2 and u∗j+1/2 have
the same sign. In this case the CFL number is given by

Ct =
∆t

∆x
max
j
|u∗j+1/2|, (5.3.6)

and the stability requirement reads

Ct < 1. (5.3.7)

In general, the stability requirement reads

∆t

∆x
max
j

((
u∗j−1/2

)+
−
(
u∗j+1/2

)−)
< 1, (5.3.8)

where b± = (b ± |b|)/2. Note that we now have two stability requirements: One for the acoustic
part and one for the transport part. We take the most severe of the two.

5.4 Behavior with respect to the Mach regime

In this Section we explore the behavior of the scheme consisting of both the acoustic and transport
part as described in Sections 5.2, 5.3 respectively. In this analysis both the conservative part and
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the non-conservative part are taken into account.
Let us introduce the non-dimensional quantities:

x̃ = x
L , t̃ = t

T , ũ = u
u0
, ρ̃ = ρ

ρ0
, p̃ = p

p0
, ẽ = e

e0
,

c̃ = c
c0
, ρ̃1 = ρ1

(ρ1)0
.

(5.4.1)

The parameters L, T denote the characteristic length and time and u0, ρ0, p0, e0 and c0 are the
characteristic velocity, density, pressure, internal energy and speed of sound for the bulk quantities.
The parameters (ρ1)0 is the characteristic density. Note that a scaling of the volume fraction is
useless. Furthermore, we set

u0 =
L

T
, e0 =

p0

ρ0
, c2

0 =
p0

ρ0
. (5.4.2)

The (bulk) Mach number is given by

M =
u0

c0
. (5.4.3)

Furthermore, we introduce the scaled total internal energy

Ẽ = ẽ+
1

2
M2ũ2. (5.4.4)

Rescaling the one-dimensional version of model (5.1.1) using the non dimensional quantities (5.4.1)
leads to

∂t̃ρ̃ +∂x̃(ρ̃ũ) = 0,

∂t̃(ρ̃ũ) +∂x̃(ρ̃ũ2) +
1

M2
∂x̃p̃= 0,

∂t̃(ρ̃Ẽ) +∂x̃(ρ̃Ẽũ) +∂x̃(p̃ũ) = 0,

∂t̃(α1ρ̃1)+∂x̃(α1ρ̃1ũ) = 0,

∂t̃(α1) +∂x̃(α1ũ) = 0.

(5.4.5a)

(5.4.5b)

(5.4.5c)

(5.4.5d)

(5.4.5e)

From now on, we consider the low Mach regime. We are in the low Mach regime if

• ∂x̃p̃ = O(M2),

• M << 1.

The first condition means that all tilde variables remain of order 1. Let us denote with Π̃ the
surrogate pressure corresponding to system (5.4.5), and with β̃1 = α̃1ρ̃1/ρ̃. In terms of rescaled
variables Eq. (5.2.23) reads

−Mũ∗ = −MũK ∓ ã(τ̃∗K − τ̃K),

Π̃∗ = Π̃K ∓ ãM(ũ∗ − ũK),

MΠ̃∗K ũ
∗
K = M(Π̃ũ)K ∓ ã(Ẽ∗K − ẼK)

0 = (β̃1)∗K − (β̃1)K ,

0 = (α̃1)∗K − (α̃1)K ,

Mã2ũ∗ = Mã2ũK ∓ ã(Π̃∗ − Π̃K),

(5.4.6a)

(5.4.6b)

(5.4.6c)

(5.4.6d)

(5.4.6e)

(5.4.6f)
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where the − sign is taken for K = L and the + sign for K = R. The expressions for ũ∗ and Π̃∗

reduce to

ũ∗ =
ũL + ũR

2
+

Π̃L − Π̃R

2ãM
,

Π̃∗ =
Π̃L + Π̃R

2
+
ãM

2
(ũL − ũR).

(5.4.7a)

(5.4.7b)

To study the behavior of the rescaled numerical scheme in the low Mach regime, we extend the
approach of Chalons et al. [9] to our model. We consider smooth solutions of the rescaled system
(5.4.5) and are interested in how the truncation error depends on the Mach number M .
By taking the left state L = j, right state R = j + 1 and the middle state j + 1/2, we get the
expressions

ũ∗j+1/2 =
ũj + ũj+1

2
+

Π̃j − Π̃j+1

2(ã)j+1/2M
,

Π̃∗j+1/2 =
Π̃j + Π̃j+1

2
+

(ã)j+1/2M

2
(ũj − ũj+1).

(5.4.8a)

(5.4.8b)

The update formulae for the acoustic system in terms of rescaled variables are given by

ρ̃n+1−
j = K̃j ρ̃

n
j ,

(ρ̃ũ)n+1−
j = K̃j (ρ̃ũ)nj −

∆t̃

M2∆x̃

(
Π̃∗j+1/2 − Π̃∗j−1/2

)
,(

ρ̃Ẽ
)n+1−

j
= K̃j

(
ρ̃Ẽ
)n
j
− ∆t̃

∆x̃

(
Π̃∗j+1/2ũ

∗
j+1/2 − Π̃∗j−1/2ũ

∗
j−1/2

)
,

(α1ρ̃1)n+1−
j = K̃j (α1ρ̃1)nj ,

(α1)n+1−
j = (α1)nj − (φ)nj

∆t

∆x̃

(
ũ∗j+1/2 − ũ

∗
j−1/2

)
,

K̃j = 1− ∆t̃

∆x̃

(
ũ∗j+1/2 − ũ

∗
j−1/2

)
.

(5.4.9a)

(5.4.9b)

(5.4.9c)

(5.4.9d)

(5.4.9e)

(5.4.9f)

Using Taylor series in Eq. (5.4.8) one finds that there exist smooth function fk, k = 1, 2 of magnitude
1 with respect to M such that

ũ∗j+1/2 =
ũj + ũj+1

2
+M∆x̃f1(xj+1/2, t

n) +O
(
M∆x̃2

)
,

Π̃∗j+1/2 =
Π̃j + Π̃j+1

2
+M∆x̃f2(xj+1/2, t

n) +O
(
M∆x̃2

)
.

(5.4.10a)

(5.4.10b)

From (5.4.10) it can easily be deduced that there exists a smooth function f3 of magnitude 1 with
respect to M such that

ũ∗j+1/2Π̃∗j+1/2 =
ũj + ũj+1

2

Π̃j + Π̃j+1

2
+M∆x̃f3(xj+1/2, t

n) +O
(
M∆x̃2

)
. (5.4.11)
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Substitution of (5.4.10), (5.4.11) into (5.4.9) gives

ρ̃n+1−
j = K̃j ρ̃

n
j ,

(ρ̃ũ)n+1−
j = K̃j (ρ̃ũ)nj −

∆t̃

M2

Π̃j+1 − Π̃j−1

2∆x̃
+O

(
∆x̃∆t̃

M

)
,(

ρ̃Ẽ
)n+1−

j
= K̃j

(
ρ̃Ẽ
)n
j

− ∆t̃

∆x̃

(
ũj + ũj+1

2

Π̃j + Π̃j+1

2
− ũj−1 + ũj

2

Π̃j−1 + Π̃j

2

)
+O

(
∆x̃∆t̃M

)
,

(α1ρ̃1)n+1−
j = K̃j (α1ρ̃1)nj ,

(α1)n+1−
j = (α1)nj − (φ)nj ∆t̃

ũj+1 − ũj−1

2∆x̃
+O

(
M∆x̃∆t̃

)
,

K̃j = 1−∆t̃
ũj+1 − ũj−1

2∆x̃
+O

(
M∆x̃∆t̃

)
,

(5.4.12a)

(5.4.12b)

(5.4.12c)

(5.4.12d)

(5.4.12e)

(5.4.12f)

yielding 7

ρ̃n+1−
j = K̃j ρ̃

n
j ,

(ρ̃ũ)n+1−
j = K̃j (ρ̃ũ)nj −

∆t̃

M2
∂x̃p̃+O

(
∆x̃∆t̃

M

)
+O

(
∆x̃2∆t̃

)
,(

ρ̃Ẽ
)n+1−

j
= K̃j

(
ρ̃Ẽ
)n
j
−∆t̃∂x̃(p̃ũ) +O

(
∆x̃∆t̃M

)
,

(α1ρ̃1)n+1−
j = K̃j (α1ρ̃1)nj ,

(α1)n+1−
j = (α1)nj − φ∆t̃∂x̃(ũ) +O

(
M∆x̃∆t̃

)
+O

(
∆x̃2∆t̃

)
,

K̃j = 1−∆t̃∂x̃ũ+O
(
M∆x̃∆t̃

)
+O

(
∆x̃2∆t̃

)
.

(5.4.13a)

(5.4.13b)

(5.4.13c)

(5.4.13d)

(5.4.13e)

(5.4.13f)

This is consistent with

∂t̃τ̃ − τ̃ ∂x̃ũ = O
(
∆t̃
)

+O (M∆x̃) ,

∂t̃u+ τ̃ ∂x̃p̃ = O
(
∆t̃
)

+O
(

∆x̃

M

)
,

∂t̃E + τ̃ ∂x̃(p̃ũ) = O
(
∆t̃
)

+O (M∆x̃) ,

∂t̃β̃1 = O
(
∆t̃
)
,

∂t̃(α̃1) + φ∂x̃(ũ) = O
(
∆t̃
)

+O (M∆x̃) +O
(
∆x̃2

)
.

(5.4.14a)

(5.4.14b)

(5.4.14c)

(5.4.14d)

(5.4.14e)

We are interested in the behavior of the entire system with respect to the Mach regime, i.e. the
transport system has to be solved now. The rescaled transport system reads

1

∆t̃
(υ̃n+1
j − L̃j υ̃n+1−

j ) +
1

∆x̃

(
υ̃n+1−
j+1/2

ũj+ũj+1

2 − υ̃n+1−
j−1/2

ũj−1+ũj
2

)
= O (∆x̃) +O (M∆x̃) ,

(5.4.15)

7Following [9], the term O
(
∆x̃2∆t̃

)
is obtained by using ∂x̃x̃p̃ = O(M2), which holds for the low Mach regime.
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with

L̃j = 1 +
∆t̃

∆x̃

(
ũ∗j+1/2 − ũ

∗
j−1/2

)
. (5.4.16)

Here we have used Π̃n
j+1 = Π̃n

j +O
(
M2∆x̃

)
. This reduces to, by recognizing the second term as a

derivative:

1

∆t̃
(υ̃n+1
j − L̃j υ̃n+1−

j ) + ∂x̃(υ̃ũ) = O (∆x̃) +O (M∆x̃) . (5.4.17)

Hence, the behavior of the transport system with respect to the Mach regime is given by

∂t̃υ̃ + ũ∂x̃υ̃ = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) . (5.4.18)

To find the behavior of the entire system (i.e. acoustic and transport part) with respect to the Mach
regime we substitute (5.4.13) into (5.4.17) and obtain

∂t̃ρ̃+ ∂x̃(ρ̃ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) ,

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ2) +
1

M2
∂x̃p̃ = O

(
∆t̃
)

+O (∆x̃) +O (M∆x̃) +O
(

∆x̃

M

)
,

∂t̃(ρ̃Ẽ) + ∂x̃(ρ̃Ẽũ) + ∂x̃(p̃ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) ,

∂t̃(α1ρ̃1) + ∂x̃(α1ρ̃1ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) ,

∂t̃(α̃1) + ũ∂t̃α1 + φ∂x̃(ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) .

(5.4.19a)

(5.4.19b)

(5.4.19c)

(5.4.19d)

(5.4.19e)

5.5 The low Mach regime correction

The term O(∆x̃/M) causes trouble in the low Mach regime. To deal with this, we modify the
scheme slightly. Therefore, we use a correction factor [9]. Introduce a parameter δ and replace Π∗

by

Π∗,δ =
ΠL + ΠR

2
+ δ

a

2
(uL − uR), (5.5.1)

or in terms of scaled quantities

Π̃∗,δ =
Π̃L + Π̃R

2
+ δ

ãM

2
(ũL − ũR). (5.5.2)

The other parameters do not change. Considering the equations for the rescaled variables, Eq.
(5.4.6b) (or Eq. (5.4.6f)) changes to

Π̃∗,δ = Π̃K ∓ ã
(
ũ∗ ∓ 1

2
(δ − 1)(ũL − ũR)− ũK

)
= Π̃K ∓ ã

(
ũ∗,δK − ũK

)
. (5.5.3)

where

ũ∗,δK = ũ∗ ∓ 1

2
(δ − 1)(ũL − ũR). (5.5.4)
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Again the − sign is taken for K = L and the + sign for K = R. The equations for the rescaled
variables change to

−Mũ∗ = −MũK ∓ ã(τ̃∗,δK − τ̃K),

Π̃∗,δ = ΠK ∓ ãM(ũ∗,δK − ũK),

MΠ̃∗,δũ∗ = M(Π̃u)K ∓ ã(Ẽ∗,δK − ẼK)

0 = (β̃1)∗,δK − (β̃1)K ,

0 = (α1)∗,δK − (α1)K ,

Mã2ũ∗K = Mã2ũK ∓ ã(Π̃∗,δ − Π̃K),

(5.5.5a)

(5.5.5b)

(5.5.5c)

(5.5.5d)

(5.5.5e)

(5.5.5f)

Again, we take the left state L = j, right state R = j + 1 and the middle state j + 1/2, and get

ũ∗j+1/2 =
ũj + ũj+1

2
+

Π̃j − Π̃j+1

2ãj+1/2M
,

Π̃∗,δj+1/2 =
Π̃j + Π̃j+1

2
+ δj+1/2

ãj+1/2M

2
(ũj − ũj+1).

(5.5.6a)

(5.5.6b)

The update formulae for the acoustic system are now given by, compare with (5.4.9):

ρ̃n+1−
j = K̃j ρ̃

n+1−
j ,

(ρ̃ũ)n+1−
j = K̃j (ρ̃ũ)n+1−

j − ∆t̃

M2∆x̃

(
Π̃∗,δj+1/2 − Π̃∗,δj−1/2

)
,(

ρ̃Ẽ
)n+1−

j
= K̃j

(
ρ̃Ẽ
)n+1−

j
− ∆t̃

∆x̃

(
Π̃∗,δj+1/2ũ

∗
j+1/2 − Π̃∗,δj−1/2ũ

∗
j−1/2

)
,

(α1ρ̃1)n+1−
j = K̃j (α1ρ̃1)n+1−

j ,

(α1)n+1−
j = (α1)n+1−

j − (φ)nj
∆t

∆x

(
ũ∗j+1/2 − ũ

∗
j−1/2

)
,

K̃j = 1− ∆t̃

∆x̃

(
ũ∗j+1/2 − ũ

∗
j−1/2

)
.

(5.5.7a)

(5.5.7b)

(5.5.7c)

(5.5.7d)

(5.5.7e)

(5.5.7f)

Analogously, using Taylor series one finds that there exist smooth functions f δk , k = 1, 2 of magnitude
1 with respect to M such that

ũ∗j+1/2 =
ũj + ũj+1

2
+M∆x̃f δ1 (xj+1/2, t

n) +O
(
M∆x̃2

)
,

Π̃∗,δj+1/2 =
Π̃j + Π̃j+1

2
+ δj+1/2M∆x̃f δ2 (xj+1/2, t

n) +O
(
M∆x̃2

)
.

(5.5.8a)

(5.5.8b)

From (5.5.8) it can easily be deduced that there exist smooth functions fk, k = 3, 4 of magnitude 1
with respect to M such that

ũ∗j+1/2Π̃∗j+1/2 =
ũj + ũj+1

2

Π̃j + Π̃j+1

2
+M∆x̃f δ4 (xj+1/2, t

n)

+ δj+1/2M∆x̃f δ5 (xj+1/2, t
n) +O

(
M∆x̃2

)
. (5.5.9a)
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Substitution of (5.5.8), (5.5.9) into (5.5.7) gives

ρ̃n+1−
j = K̃j ρ̃

n+1−
j ,

(ρ̃ũ)n+1−
j = K̃j (ρ̃ũ)n+1−

j − ∆t̃

M2

Π̃j+1 − Π̃j−1

2∆x̃
+O

(
δ∆x̃∆t̃

M

)
,(

ρ̃Ẽ
)n+1−

j
= K̃j

(
ρ̃Ẽ
)n+1−

j

−∆t̃

(
ũj + ũj+1

2

Π̃j + Π̃j+1

2
− ũj−1 + ũj

2

Π̃j−1 + Π̃j

2

)
+O

(
M∆x̃∆t̃

)
+O

(
Mδ∆x̃∆t̃

)
,

(α1ρ̃1)n+1−
j = K̃j (α1ρ̃1)n+1−

j ,

(α1)n+1−
j = K̃j (α1)n+1−

j − (φ)nj ∆t̃
ũj+1 − ũj−1

2∆x̃
+O

(
M∆x̃∆t̃

)
,

K̃j = 1−∆t̃
ũj+1 − ũj−1

2∆x̃
+O

(
M∆x̃∆t̃

)
,

(5.5.10a)

(5.5.10b)

(5.5.10c)

(5.5.10d)

(5.5.10e)

(5.5.10f)

yielding

ρ̃n+1−
j = K̃j ρ̃

n+1−
j ,

(ρ̃ũ)n+1−
j = K̃j (ρ̃ũ)n+1−

j − ∆t̃

M2
∂x̃p̃+O

(
δ∆x̃∆t̃

M

)
+O

(
∆x̃2∆t̃

)
,(

ρ̃Ẽ
)n+1−

j
= K̃j

(
ρ̃Ẽ
)n+1−

j
−∆t̃∂x̃(p̃ũ) +O

(
∆x̃2∆t̃

)
+O

(
M∆x̃∆t̃

)
+O

(
Mδ∆x̃∆t̃

)
,

(α1ρ̃1)n+1−
j = K̃j (α1ρ̃1)n+1−

j ,

(α1)n+1−
j = K̃j (α1)n+1−

j − φ∆t̃∂x̃(ũ) +O
(
M∆x̃∆t̃

)
+O

(
∆x̃2∆t̃

)
,

K̃j = 1−∆t̃∂x̃ũ+O
(
M∆x̃∆t̃

)
+O

(
∆x̃2∆t̃

)
.

(5.5.11a)

(5.5.11b)

(5.5.11c)

(5.5.11d)

(5.5.11e)

(5.5.11f)

Note the additional δ in comparison with (5.4.13). This reveals the effect of the correction factor δ:
The term O (δ∆x̃/M) can be tuned by an appropriate choice of the parameter δ. The latter system
is consistent with

∂t̃τ̃ − τ̃ ∂x̃ũ = O
(
∆t̃
)

+O (M∆x̃) ,

∂t̃u+ τ̃ ∂x̃p̃ = O
(
∆t̃
)

+O
(
δ∆x̃

M

)
,

∂t̃E + τ̃ ∂x̃(p̃ũ) = O
(
∆t̃
)

+O (M∆x̃) +O (δM∆x̃) ,

∂t̃β̃1 = O
(
∆t̃
)
,

∂t̃(α̃1) + φ∂x̃(ũ) = O
(
∆t̃
)

+O (M∆x̃) +O
(
∆x̃2

)
.

(5.5.12a)

(5.5.12b)

(5.5.12c)

(5.5.12d)

(5.5.12e)
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The transport system does not change. We substitute (5.5.11) into (5.4.17) to obtain the behavior
with respect to the Mach regime. This yields:

∂t̃ρ̃+ ∂x̃(ρ̃ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) ,

∂t̃(ρ̃ũ) + ∂x̃(ρ̃ũ2) +
1

M2
∂x̃p̃ = O

(
∆t̃
)

+O (∆x̃) +O (M∆x̃) +O
(
δ∆x̃

M

)
,

∂t̃(ρ̃Ẽ) + ∂x̃(ρ̃Ẽũ) + ∂x̃(p̃ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) +O (Mδ∆x̃) ,

∂t̃(α1ρ̃1) + ∂x̃(α1ρ̃1ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) ,

∂t̃(α1) + ∂x̃(α1ũ) = O
(
∆t̃
)

+O (∆x̃) +O (M∆x̃) .

(5.5.13a)

(5.5.13b)

(5.5.13c)

(5.5.13d)

(5.5.13e)

By choosing the correction factor δ = O (M) the term O (δ∆x̃/M) vanishes. We conclude that the
analysis of Chalons et al. [9] can be extended to the five-equation model of Kapila et al.

5.6 Modified scheme

The new scheme taking the low Mach number correction into account is referred to as the modified
scheme. The modification in comparison with the scheme of Sections 5.1-5.3 is very small.

Acoustic scheme conservative part

The HLLC flux vector (again consisting of a single state) of the modified scheme reads:(
φLAG,δ
s

)HLLC
=
(
−u∗,Π∗,δ,Π∗,δu∗, 0, 0, a2u∗

)
. (5.6.1)

Acoustic scheme non-conservative part

This remains unchanged.

Transport scheme

This remains unchanged.
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6
Shock tube problems & Numerical results

In this Chapter we test the numerical schemes of the previous Chapters on several shock tube problems.
In these problems a horizontally placed shock tube is divided into a left part and a right part. These
parts are separated by a membrane. To model the interaction of the fluids, the membrane is removed
at time t = 0. The situation is visualized in Figure 6.1. All tests are performed in one dimension, with
first order accuracy in space (unless stated differently) and time. A high CFL number is used to show
the robustness of the schemes. To reduce the temporal errors, higher order time integration methods
can be used. These methods may lead to oscillations. A higher order time integration method can not
be used for the scheme of Chapter 5 (due to the first order temporal accuracy of the splitting method).
For a good comparison of the schemes first order temporal accuracy is used for all schemes. Positive
higher order spatial accuracy can be obtained by using flux limiters, see Chapter 2. These flux limiters
are not used for the comparison of the different schemes. In a further research, see Chapter 8, higher
order methods can be used.

Figure 6.1: A schematic view of a shock tube composed with two fluids.

In this Chapter we first perform the tests with the PG EOS: Sod’s shock tube, a pressure jump problem
and a difficult test case: the no-reflection problem. Next, we perform two SG EOS test cases: A strong
pressure jump problem and a water-air mixture problem. In this last problem both of the states are
composed with a mixture of the fluids.
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6.1 Sod’s shock Tube

The first test we perform is the well-known Sod’s shock tube. This test is often used for testing the
accuracy of computational fluid codes and is investigated by and named after G.A. Sod [30]. This
test consists of a shock tube filled with one gas at rest. Both the density and the pressure in the left
state are higher than in the right state.
The initial values are given in Table 6.1. As this test is developed for the Euler equations of gas

ρ u p β1 α1

Left state 1.0 0.0 1.0 0.0 0.0

Right state 0.125 0.0 0.1 0.0 0.0

Table 6.1: Initial values Sod’s shock tube.

dynamics, the last two equations of the five-equation model add no new information (β1 = 0, α1 =
0). We perform this test as a preliminary test for the gas dynamic equations. The thermodynamic
constants for the SG gas EOS (which is here PG EOS) are given in Table 6.2. Numerical results are
performed for the five schemes: (i) The Osher-type scheme for Kapila’s model (ii) The Osher-type
scheme for Kreeft and Koren’s model (iii) The HLLC-type scheme for Kapila’s model (iv) The HLLC-
type scheme for Kreeft and Koren’s model (v) The Lagrange-Projection like scheme for Kapila’s
model without correction [a] with correction [b]. The results are obtained at time t = 0.2 with
N = 400 cells. Furthermore, the CFL number is taken to be 0.95 for all schemes (i)-(v). The results
are visualized in Figure 6.2.

adiabatic index SG-pressure SG-internal energy
γ1 = 1.6 Π1 = 0.0 q1 = 0.0

γ2 = 1.4 Π2 = 0.0 q2 = 0.0

Table 6.2: Thermodynamic constants for the SG EOS for Sod’s shock tube.

We see that all schemes accurately capture the different waves. Both the mass fraction as well as
the volume fraction remain at height zero for all schemes, as they should be. The schemes (i)-(iv)
result in almost exactly the same profiles and the pairs (i) and (iii) (Kapila’s model) and (ii) and
(iv) (Kreeft and Koren’s model) seem to be at the exact same location. The only scheme that results
in slightly different profiles is the Lagrange-Project like scheme (v). The location of the rightmost
shock wave is for Lagrange-Project like scheme the a little bit of. We have not tested whether this
error vanishes on a finer grid. On the other hand, the rarefaction wave on the left is captured best
with the scheme (v) [b]. We show a zoom of the density and pressure profile in these zones in
Figure 6.3.
Here we see that the shock wave is captured by three cells only for schemes (i)-(iv), and five cells
for scheme (v). Furthermore, we note that, for all the schemes, there are no oscillations visible and
there is no overshoot visible.
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Figure 6.2: Numerical results of Sod’s shock tube at time t = 0.2, number of grid cells N = 400 and
CFL= 0.95 for (i)-(v). The various schemes are visualized by the symbols (i): ×, (ii): �, (iii): ◦,
(iv): �, (v) [a]: ∗ (v) [b]: ∗. The black line displays the exact solution.

6.2 Pressure jump problem

In this test case, proposed by Barberon al. [4] and used by e.g. [11], a shock tube is filled with
two gases with different density. The pressures of both sides are slightly different. The interface is
located at x = 0.5. Due to the pressure difference, a pressure shock will propagate rightwards.
The initial values are given Table 6.3. The thermodynamic constants for the SG EOS (which is here

ρ u p β1 α1

Left state 10 50.0 1.1× 105 1.0 1.0

Right state 1.0 50.0 1.0× 105 0.0 0.0

Table 6.3: Initial values pressure jump problem.

PG EOS) are given in Table 6.4. Numerical results are obtained for the schemes: (i), (ii), (iii), (v)
[a], (v) [b]. The HLLC-type scheme for Kreeft and Koren’s model, scheme (iv), can not deal with
the pressure jump. Apparently, the treatment of the conservative part is not robust enough. The
results are obtained at time t = 1.0 × 10−3 with N = 400 cells. Furthermore, the CFL number is
taken to be 0.95 for every scheme. The results are visualized in Figure 6.4.
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Figure 6.3: Numerical results of Sod’s shock tube at time t = 0.2, number of grid cells N = 400 and
CFL= 0.95 for (i)-(v). The various schemes are visualized by the symbols (i): ×, (ii): �, (iii): ◦,
(iv): �, (v) [a]: ∗ (v) [b]: ∗. The black line displays the exact solution. This Figure shows a zoom
for the density and pressure profiles of (a) the rarefaction wave left (b) the rightmost shock wave.

adiabatic index SG-pressure SG-internal energy
γ1 = 1.4 Π1 = 0.0 q1 = 0.0

γ2 = 7.0 Π2 = 3.0× 109 q2 = 0.0

Table 6.4: Thermodynamic constants for the SG EOS for pressure jump problem.

We see that all schemes capture the several waves accurately. The schemes almost give the same
profiles. The height of the velocity and the pressure profile is for scheme (ii) a little off. This
test case shows that all the schemes, except for (iv), can simulate flows with high pressure jumps.
Furthermore, we note that, for all the schemes, there are no oscillations visible and there is no
overshoot visible.
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Figure 6.4: Numerical results of the strong pressure jump problem at time t = 1.5 × 10−4, number
of grid cells N = 400 and CFL= 0.95 for (i): ×, (ii): �, (iii): ◦, (v) [a]: ∗ (v) [b]: ∗. The black line
displays the exact solution.
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6.3 No-reflection problem

The third PG EOS test we perform is the so-called no-reflection problem. This problem has been
studied in [22]. In this test case, consisting of a shock tube filled with two fluids, the right state
is initially at rest and the left state moves towards the right state. The density and especially the
pressure of the left state are high compared to the right state. This will cause the two-fluid interface
and the shockwave to move rightwards. The initial conditions are chosen such that no reflection
wave occurs.
The initial values are given Table 6.5. The thermodynamic constants for the SG EOS (which is here

ρ u p β1 α1

Left state 3.1748 9.4350 100 1.0 1.0

Right state 1.0 0.0 1.0 0.0 0.0

Table 6.5: Initial values no-reflection problem.

PG EOS) are given in Table 6.6.

adiabatic index SG-pressure SG-internal energy
γ1 = 1.6667 Π1 = 0.0 q1 = 0.0

γ2 = 1.2 Π2 = 0.0 q2 = 0.0

Table 6.6: Thermodynamic constants for the SG EOS for the no-reflection problem.

Numerical results are performed for all five schemes (i)-(v). The results are obtained at time
t = 0.02 with N = 400 cells. Furthermore, the CFL number is taken to be 0.95 for all schemes
(i)-(v). The results are visualized in Figure 6.5. There appear to be some differences at both the
contact discontinuity (located at around [0.05]) and the shock wave (located at around [0.2]). We
show a zoom of these zones in Figures 6.6 and 6.7. In Figure 6.6 we see that the schemes (ii) and
(iv) do not capture the shock waves accurately. The position of shock in the velocity and pressure
profile is wrong. Furthermore, in the density profile both its height and its position is wrong. In
Figure 6.7 we see a small ‘bump’ in the profiles which is not in the exact solution. The bumps are
for the two different models in the opposite direction. The ‘width’ of the bumps is larger for the
schemes (ii) and (iv). Furthermore, the ‘height’ of the bumps is of the same order. It is not tested
whether the results improve for a finer grid. For all the schemes, there are no oscillations visible
and there is no overshoot visible.
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Figure 6.5: Numerical results of the no-reflection problem at time t = 0.2, number of grid cells
N = 400 and CFL= 0.95 for (i)-(v). The various schemes are visualized by the symbols (i): × (ii):
� (iii): ◦ (iv): � (v) [a]: ∗ (v) [b]: ∗. The black line displays the exact solution.
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Figure 6.6: Numerical results of the no-reflection problem at time t = 0.2, number of grid cells
N = 400 and CFL= 0.95 for (i)-(v). The various schemes are visualized by the symbols (i): × (ii):
� (iii): ◦ (iv): � (v) [a]: ∗ (v) [b]: ∗. The black line displays the exact solution.

Figure 6.7: Numerical results of the no-reflection problem at time t = 0.2, number of grid cells
N = 400 and CFL= 0.95 for (i)-(v). The various schemes are visualized by the symbols (i): ×, (ii):
�, (iii): ◦, (iv): �, (v) [a]: ∗ (v) [b]: ∗. The black line displays the exact solution. This Figure
shows a zoom of the rightmost shock wave for the density and pressure profiles.
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This test case is apparently the hardest test case so far. None of the schemes is able to capture
the shock wave in the density profile accurately. We now show the power of using a limiter for the
higher order spatial accuracy. We have equipped the schemes (i) and (iii) with the Koren limiter.
The spatial reconstruction is done for the primitive variables. We show the results in Figure 6.8.

Figure 6.8: Numerical results of the no-reflection problem at time t = 0.2, number of grid cells
N = 400 and CFL= 0.45 for (ii), (iii). The Koren limiter is used. The various schemes are visualized
by the symbols (ii): �, (iii): ◦. The black line displays the exact solution.

Both of the schemes capture the waves very accurately. The cost of this is that the CFL number
has to be reduced to 0.45 to obtain stability and some oscillations appear. These oscillations for
the density and pressure profile are shown in Figure 6.9. We see that scheme (iii) shows a lot of
oscillations compared to scheme (ii). We have not tested whether this difference also appears for
other shock tube problems.
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Figure 6.9: Numerical results of the no-reflection problem at time t = 0.2, number of grid cells
N = 400 and CFL= 0.45 for (ii), (iii). The Koren limiter is used. The various schemes are visualized
by the symbols (ii): �, (iii): ◦. The black line displays the exact solution.

6.4 Strong pressure jump problem

In this test case, proposed by Luo et al. [24] and used in e.g. [11], a shock tube of length 100
is filled with a high-pressure gas on the left side and a low-pressure liquid on the right side. The
densities of both sides are similar. The interface is located at x = 50. Due to the pressure difference,
a strong pressure shock will propagate rightwards.

ρ u p β1 α1

Left state 1.271 0.0 9.119252× 109 1.0 1.0

Right state 0.9999 0.0 1.01325× 106 0.0 0.0

Table 6.7: Initial values strong pressure jump problem.

The initial values are given in Table 6.7. The thermodynamic constants for the SG EOS are given in
Table 6.8. Numerical results are performed for the schemes: (i) The HLLC-type scheme for Kapila’s
model (v) The Lagrange-Projection like scheme for Kapila’s model [a] without correction [b] with
low Mach correction. We have chosen for these schemes because these are the best candidates for
the PG EOS test cases. The results are obtained at time t = 1.5× 10−4 with N = 400 cells. Further-
more, the CFL number is taken to be 0.95 for (iii), (v) [a] and (v) [b]. The results are visualized in
Figure 6.101.

1The exact solution of the velocity profile is not shown here since it was unfortunately not available.
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adiabatic index SG-pressure SG-internal energy
γ1 = 1.4 Π1 = 0.0 q1 = 0.0

γ2 = 7.0 Π2 = 3.0× 109 q2 = 0.0

Table 6.8: Thermodynamic constants for the SG EOS for the strong pressure jump problem.

Figure 6.10: Numerical results of the strong pressure jump problem at time t = 1.5× 10−4, number
of grid cells N = 400 and CFL= 0.95, for (iii), (v) [a] and (v) [b]. The various schemes are
visualized by the symbols (iii): ◦, (v) [a]: ∗, (v) [b]: ∗. The black line displays the exact solution.

We see that all schemes capture the several waves accurately. The schemes almost give the same
profiles. The scheme (v) [b] shows some overshooting at the right shock wave, for which we do not
have an explanation. This vanishes completely when the CFL number is reduced. No oscillations
are visible. This test case shows that the schemes (iii), (v) [a], and (v) [b] can deal with the SG
EOS and can simulate flows with high pressure jumps.
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6.5 Water-air mixture problem

In this shock tube test we consider a water-air mixture problem. This test case have been consid-
ered by Murrone and Guillard [27] (2005) and by Kreeft and Koren [22] (2010). In contrast to all
previous test cases, the shock tube is now filled with a mixture of water and air (0 < β,α < 1). Both
mixture states are initially at rest. The pressure of left state is 104 times as high as it is in the right
state. The initial values are given Table in 6.9. The thermodynamic constants for the stiffened gas

ρ u p β1 α1

Fluid 1 525 0.0 109 0.0476 0.5

Fluid 2 525 0.0 105 0.9524 0.5

Table 6.9: Initial values water-air mixture problem.

EOS are given in Table 6.10. Numerical results are performed for the schemes: (i) The HLLC-type
scheme for Kapila’s model (v) The Lagrange-Projection like scheme for Kapila’s model [a] without
correction [b] with low Mach correction. The results are obtained at time t = 2.0 × 10−4 with
N = 400 cells. Furthermore, the CFL number is taken to be 0.95 for (iii), (v) [a] and (v) [b]. The
results are visualized in Figure 6.11

adiabatic index SG-pressure SG-internal energy
γ1 = 1.4 Π1 = 0.0 q1 = 0.0

γ2 = 4.4 Π2 = 6.0× 108 q2 = 0.0

Table 6.10: Thermodynamic constants for the SG EOS for the water-air mixture problem.

We see that all schemes result in almost the same profiles. The shock waves are captured very
accurately as only three cells are required here. These results are in agreement with Murrone and
Guillard [27] and Kreeft and Koren [22]. They also need just three cells to capture the waves.
Murrone and Guillard have used a so-called VFRoe-ncv scheme (1000 cells) [7]. This scheme is
an alternative (Finite Volume) Roe scheme, where ‘ncv’ refers to non-conservative variables. Kreeft
and Koren have used, as discussed, the Osher-type scheme (also 400 cells). However, they make
use of a second order (limiter) approximation. In contrast our results are obtained at first order.
Furthermore, for all the schemes there are no oscillations visible and there is no overshoot visible.
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Figure 6.11: Numerical results of the water-air mixture problem at time t = 2.0× 10−4, number of
grid cells N = 400 and CFL= 0.95, for (iii), (v) [a] and (v) [b]. The various schemes are visualized
by the symbols (iii): ◦, (v) [a]: ∗, (v) [b]: ∗.

By taking a closer look at the results, some small differences between the schemes (iii), (v)
[a] and (v) [b] can be found. First, we see a difference in the volume fraction profile at around
[0.65, 0, 78]. Secondly, there are some small differences at the rarefaction wave on the left at around
[0, 0.1]. We show a zoom of the pressure and volume fraction profile in the zone of the rightmost
shock wave in Figure 6.12. Interestingly, (iii) and (v) [a] show almost the exact same profile for the
pressure here. Scheme (v) [b] shows a little sharper profile here, this is in better agreement with
[27] and [22], see Figure 6.13. For the considered zone of the volume fraction, the profiles of (v)
[a] and (v) [b] are a little higher than the profile of scheme (iii). The slightly lower profile is in
better agreement with [27] and [22].

6.6 Summary and Conclusions

We have performed the PG EOS test cases for all schemes. For Sod’s shock tube no major differ-
ences are found for the schemes (i)-(iv). Schemes (v)[a], (v)[b] however, shows some slightly
different results. The position of the shockwave is a little bit off. On the other hand, scheme (v)[b]
(Lagrange-Projection like scheme with low Mach number correction) captures the rarefaction wave
on the left the best. For the pressure jump problem scheme (iv) fails, for the other schemes no
visible differences are obtained. The no-reflection problem appears to be the hardest test case. The
schemes for the model of Kreeft and Koren, i.e. (ii) and (iv), do not perform well here. Again the
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position of the shockwave is a little bit off for schemes (v)[a] and (v)[b]. The ’bump’ in the profiles
is the smallest for the schemes (v)[a] and (v)[b].

Next, we have tested the schemes (iii), (v)[a], (v)[b] for two SG EOS test cases, since these
schemes performed the best for the PG EOS test cases. For the strong pressure jump problem no
visible differences are observed. For the water-air mixture problem the only visible difference is for
the volume fraction profile, for which scheme (iii) is in better agreement with [27] and [22].

Based on these shock tube tests, we would advice to use scheme (iii). Keep in mind that schemes
(v)[a] and (v)[b] are not developed for shock tube tests, but for the low Mach regime. This has to
be tested still, see Chapter 8.

Figure 6.12: Numerical results of the water-air mixture problem at time t = 2.0× 10−4, number of
grid cells N = 400 and CFL= 0.95, for (iii), (v) [a] and (v) [b]. The various schemes are visualized
by the symbols (iii): ◦, (v) [a]: ∗, (v) [b]: ∗. This Figure shows a zoom of the rightmost shock wave
for the density and pressure profiles.
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80 Chapter 6. Shock tube problems & Numerical results

Figure 6.13: Numerical results of the water-air mixture problem by Murrone et al. On the left
side the results of the five-equation model are visualized and on the right side the results of the
seven-equation model are visualized. The solutions are computed with 1000 cells.
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Part II

SOURCE TERMS

This part describes the mass and heat transfer modeling: So-called source terms are added to
the model.
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7
Mass and Heat flux extension of the model

The goal of this Chapter is to derive a new five-equation model by adding mass and heat transfer to
the model. There exist a few different five-equation models taking mass and heat transfer into account,
e.g. [11, 29]. The convective part of these models is equal to the convective part of Kapila’s model, i.e.
the only difference consists of the source terms. Unlike these existing models, mass and heat transfer
between the two fluids is not taken into account in the model of Kreeft and Koren.
We divide our extension into two parts (i) an isentropic mass flux extension and (ii) a non-isentropic
mass and heat flux extension. The first part should be considered as a first step towards the eventual
extension. In this part use is made of simple isentropic compressibility relations and no heat transfer
is considered. In part (ii) this simplification is not used. The more complete non-isentropic extension
should be used for numerical experiments. Furthermore, we show that our extension satisfies the second
law of thermodynamics.
This Chapter is organised as follows. First, in Section 7.1 we derive the isentropic mass transfer. Next,
in Section 7.2 we derive the non-isentropic mass and heat flux extension and show that the second law
of thermodynamics for the non-isentropic extension is satisfied.

7.1 Isentropic mass flux extension

Let us repeat the five-equation model for convenience. The first four equations read:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (ρEu) +∇ · (pu) = 0,

∂t(α1ρ1) +∇ · (α1ρ1u) = 0,

(7.1.1a)

(7.1.1b)

(7.1.1c)

(7.1.1d)

and for the fifth equation we have one of the following:

∂tα1 + u ·∇α1 + φ∇ · u = 0,

∂t(α1ρ1E1) +∇ · (α1ρ1E1u) +∇ · (α1pu) = pu ·∇α1 + (α1 − β)u ·∇p+ pφ∇ · u.

(7.1.2a)

(7.1.2b)
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84 Chapter 7. Mass and Heat flux extension of the model

We assume there to be a mass flux ṁ from fluid 2 to fluid 1 (and of course we also have the mass
flux −ṁ from fluid 1 to fluid 2). The equations for mass change to 1

∂t(α1ρ1) +∇ · (α1ρ1u) = ṁ,

∂t(α2ρ2) +∇ · (α2ρ2u) = −ṁ,
∂tρ+∇ · (ρu) = 0.

(7.1.3a)

(7.1.3b)

(7.1.3c)

The equation for the mass of fluid 2, Eq. (7.1.3b), is written to show that no mass is lost, i.e. the
mass leaving fluid 2 indeed enters fluid 1. Of course, this equation can be neglected since it is
obtained by subtracting (7.1.3a) from (7.1.3c).

We proceed by deriving new expressions for the mechanical rate-of-work ˜̇WM and thermody-
namical rate-of-work ˜̇WT from Eq. 7.1.2b.

7.1.1 Mechanical work

The mechanical rate-of-work term is derived by combining equations for mass and momentum. The
momentum equation of fluid 1 reads:

∂t(α1ρ1u) +∇ · (α1ρ1u⊗ u) +∇(α1p) = F. (7.1.4)

Our goal is now to derive a new expression for the force F. By subsequently taking the inner product
of F with u we get the mechanical rate-of-work term. We start off by rewriting Eq. (7.1.4):

α1ρ1∂tu + u [∂t(α1ρ1) +∇ · (α1ρ1u)] + α1ρ1u∇ · u +∇(α1p) = F. (7.1.5)

By substituting the Eq. for mass of fluid 1 (7.1.3a) we arrive at

α1ρ1
Du

Dt
+ ṁu +∇(α1p) = F. (7.1.6)

Next, we repeat the primitive equation of the velocity (given in Section 2.3)

Du

Dt
+

1

ρ
∇p = 0. (7.1.7)

Eliminating Du
Dt from (7.1.6) and (7.1.7), we obtain

F = p∇α1 + (α1 − β)∇p+ ṁu, (7.1.8)

An interpretation of the first two terms is given in [22]. The additional term ṁu can be interpreted
easily: The change of momentum due to the mass flux is the amount of mass that flows to fluid 1
at speed u. The rate of energy exchange due to mechanical work changes to

˜̇WM = F · u = pu ·∇α1 + (α1 − β)u ·∇p+ ṁu · u = ẆM + ṁu · u. (7.1.9)

Note that the additional term in the mechanical rate-of-work term is a change in the kinetic energy.
1For a formal derivation one could follow the derivation of Section 2.2 with a slight modification.
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7.1.2 Thermodynamical work

Primitive equations

Next, we derive some primitive equations, similar to [22]. The primitive equation for the bulk
energy,

De

Dt
+
p

ρ
∇ · u = 0, (7.1.10)

is still valid since its derivation only includes bulk density, bulk energy, and Eq. (7.1.7), in which
the phase transfer terms do not appear. For the densities ρ1 and ρ2, the primitive equations change
to

Dρ1

Dt
+
ρ1

α1

Dα1

Dt
+ ρ1∇ · u =

ṁ

α1
,

Dρ2

Dt
− ρ2

α2

Dα1

Dt
+ ρ2∇ · u = − ṁ

α2
.

(7.1.11a)

(7.1.11b)

The change of the density of fluid k is the scaled amount of mass that enters into fluid k. The
primitive equation for the mass fraction β changes to:

Dβ

Dt
=

1

ρ
[∂t(α1ρ1) +∇ · (α1ρ1u)]− β

ρ
[∂tρ+∇ · (ρu)] =

ṁ

ρ
. (7.1.12)

The primitive equation of the internal energy e1 can be found by combining Eq. (7.1.2b), (7.1.11a)
and (7.1.7), this results in

De1

Dt
+

p

ρ1
∇ · u +

ṁ

α1ρ1
(e1 −

1

2
u · u) =

˜̇WT

α1ρ1
. (7.1.13)

Similarly, for fluid 2 we find:

De2

Dt
+

p

ρ2
∇ · u− ṁ

α2ρ2
(e2 −

1

2
u · u) = −

˜̇WT

α2ρ2
. (7.1.14)

As a consistency check of the new primitive equations, one can express the material derivative of ρe
by using the obtained primitive equations (7.1.11), (7.1.13) and (7.1.14) into bulk variables again,
i.e. one should obtain:

D(ρe)

Dt
= ρ

De

Dt
+ e

Dρ

Dt
. (7.1.15)

By using isentropic compressibility relations, one can derive primitive equations for the volume
fraction and the pressure. We only consider mass transfer. No heat is added to the flow and there
is no viscosity or heat conduction. Furthermore, assume the mass transfer process is isentropic.
Hence, there are no non-adiabatic processes and therefore the entropies of both fluids are constant:

Ds1

Dt
= 0,

Ds2

Dt
= 0.

(7.1.16a)

(7.1.16b)
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Using these isentropic compressibility relations, we can express, for both fluids, the material deriva-
tive of the pressure into thermodynamical variables as:

Dp

Dt
=

(
∂p

∂ρ1

)
s1

Dρ1

Dt
+

(
∂p

∂s1

)
ρ1

Ds1

Dt
= c2

1

Dρ1

Dt
,

Dp

Dt
=

(
∂p

∂ρ2

)
s2

Dρ2

Dt
+

(
∂p

∂s2

)
ρ2

Ds2

Dt
= c2

2

Dρ2

Dt
,

(7.1.17a)

(7.1.17b)

where c1, c2 denote the speeds of sound of the fluids. By substituting the primitive equations for the
densities (7.1.11), Eq. (7.1.17) can be written as:

Dp

Dt
+ ρ1c

2
1

(
1

α1

Dα1

Dt
+∇ · u

)
− c2

1

ṁ

α1
= 0,

Dp

Dt
+ ρ2c

2
2

(
− 1

α2

Dα1

Dt
+∇ · u

)
+ c2

2

ṁ

α2
= 0.

(7.1.18a)

(7.1.18b)

Eliminating the material derivative of the pressure from Eq. (7.1.18) yields an equation for the
volume fraction

Dα1

Dt
+ φ∇ · u =

ṁ

ρI
, φ = α1α2

1
ρ2c22
− 1

ρ1c21
α1

ρ1c21
+ α2

ρ2c22

, ρI =

ρ1c21
α1

+
ρ2c22
α2

c21
α +

c22
α2

. (7.1.19)

Here ρI can be seen as an interfacial density; it is a weighted average of the densities ρ1, ρ2. It
is interesting to see that this result has also been obtained by Saurel et al. [29]. Although their
derivation is different, they have also assumed an isentropic mass transfer process. Note that for
equal densities of the fluids the interfacial density reduces to the bulk density, which one expects
initially. If we also have equal speed of sound of the both phases, the part of divergence of the
velocity vanishes (φ = 0), i.e. the equation for the volume fraction reduces to

Dα1

Dt
=
ṁ

ρ
, (7.1.20)

which is a simple advection equation. The primitive equation of the pressure follows by eliminating
the volume fraction from Eq. (7.1.18):

Dp

Dt
+

1

τ

(
∇ · u +

ṁ

ρ2
− ṁ

ρ1

)
=

Dp

Dt
+ ρc2

(
∇ · u +

ṁ

ρ2
− ṁ

ρ1

)
= 0. (7.1.21)

Here, the bulk isentropic compressibility τ is defined as

τ = ατ1 + α2τ2, τ1 =
1

ρ1c2
1

, τ2 =
1

ρ2c2
2

, (7.1.22)

with τ1, τ2 the isentropic compressibilities of both fluids. Apparently, the primitive equation of the
pressure is not influenced by the mass flux if the densities ρ1, ρ2 are equal.
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7.1.3 Thermodynamic work relations

We derive the thermal rate-of-work term ˜̇WT . Let us express the pressure in terms of density and
internal energy of both fluids: p = p(e1, ρ1), p = p(e2, ρ2). By taking the material derivative of the
pressure, we get:

Dp

Dt
(e1, ρ1) =

Dp

Dt
(e2, ρ2). (7.1.23)

By expanding the derivatives into thermodynamical variables, one finds(
∂p

∂e1

)
ρ1

De1

Dt
+

(
∂p

∂ρ1

)
e1

Dρ1

Dt
=

(
∂p

∂e2

)
ρ2

De2

Dt
+

(
∂p

∂ρ2

)
e2

Dρ2

Dt
. (7.1.24)

Substitution of (7.1.11), (7.1.13) and (7.1.14) into (7.1.24) gives

˜̇WT

[
1

α1ρ1

(
∂p

∂e1

)
ρ1

+
1

α2ρ2

(
∂p

∂e2

)
ρ2

]
=

Dα1

Dt

[
ρ1

α1

(
∂p

∂ρ1

)
e1

+
ρ2

α2

(
∂p

∂ρ2

)
e2

]

+

[
ρ1

(
∂p

∂ρ1

)
e1

+
p

ρ1

(
∂p

∂e1

)
ρ1

−ρ2

(
∂p

∂ρ2

)
e2

− p

ρ2

(
∂p

∂e2

)
ρ2

]
∇ · u

+
ṁ

α1ρ1
(e1 − 1

2u · u)

(
∂p

∂e1

)
ρ1

+
ṁ

α2ρ2
(e2 − 1

2u · u)

(
∂p

∂e2

)
ρ2

− ṁ
α1

(
∂p

∂ρ1

)
e1

− ṁ
α2

(
∂p

∂ρ2

)
e2

.

(7.1.25)

Next, we make use of the speed of sound of the fluids written in thermodynamical variables:

c2
1 =

(
∂p

∂ρ1

)
s1

=

(
∂p

∂ρ1

)
e1

+
p

ρ2
1

(
∂p

∂e1

)
ρ1

,

c2
2 =

(
∂p

∂ρ2

)
s2

=

(
∂p

∂ρ2

)
e2

+
p

ρ2
2

(
∂p

∂e2

)
ρ2

.
(7.1.26)

Substituting (7.1.19) and (7.1.26) gives an expression for the thermodynamical rate-of-work term
ẆT :

˜̇WT

[
1

α1ρ1

(
∂p

∂e1

)
ρ1

+
1

α2ρ2

(
∂p

∂e2

)
ρ2

]
=(

−φ∇ · u +
ṁ

ρI

)[
ρ1

α1

(
∂p

∂ρ1

)
e1

+
ρ2

α2

(
∂p

∂ρ2

)
e2

]
+
(
ρ1c

2
1 − ρ2c

2
2

)
∇ · u

+
ṁ

α1ρ1
(e1 − 1

2u · u)

(
∂p

∂e1

)
ρ1

+
ṁ

α2ρ2
(e2 − 1

2u · u)

(
∂p

∂e2

)
ρ2

− ṁ
α1

(
∂p

∂ρ1

)
e1

− ṁ
α2

(
∂p

∂ρ2

)
e2

.

(7.1.27)
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The thermodynamical work rate ˜̇WT is the superposition of a part for the divergence of the velocity,
denoted as ˜̇WT,D, and the mass transfer part, denoted as ˜̇WT,m:

˜̇WT = ˜̇WT,D + ˜̇WT,m. (7.1.28)

In the following derivations we will need the Grüneisen coefficient, denoted as Γk with k the number
of each phase, given by

Γk =
1

ρk

(
∂p

∂ek

)
ρk

. (7.1.29)

Let us introduce some notation for simplicity. The bulk Grüneisen coefficient Γ is defined as

Γ =
Γ1

α1
+

Γ2

α2
. (7.1.30)

Furthermore, we denote

σ =
ρ1c

2
1

α1
+
ρ2c

2
2

α2
,

ς =
c2

1

α1
+
c2

2

α2
,

(7.1.31)

hence ρI = σ/ς. Consider the terms of the divergence of the velocity. Rewriting the term in the
third line of (7.1.27) yields

ρ1c
2
1 − ρ2c

2
2 = φσ. (7.1.32)

By again using (7.1.26) for the first term in the right-hand side of (7.1.27), we can write

−φ

[
ρ1

α1

(
∂p

∂ρ1

)
e1

+
ρ2

α2

(
∂p

∂ρ2

)
e2

]
− ρ1c

2
1 − ρ2c

2
2

= −φ (σ − pΓ) + φσ

= pφΓ.

(7.1.33)

This means that we get for the contribution of the divergence of the velocity part to the thermody-
namic rate-of-work:

˜̇WT,D = pφ∇ · u. (7.1.34)

Next, we consider the contribution of the mass transfer part. The speed of sound (7.1.26) is also
used to simplify the following terms:

1

ρI

[
ρ1

α1

(
∂p

∂ρ1

)
e1

+
ρ2

α2

(
∂p

∂ρ2

)
e2

]
− 1

α1

(
∂p

∂ρ1

)
e1

− 1

α2

(
∂p

∂ρ2

)
e2

=
1

ρI
[σ − pΓ] +

p

α1ρ2
1

(
∂p

∂e1

)
ρ1

+
p

α2ρ2
2

(
∂p

∂e2

)
ρ2

− ς

= p

[
1

α1ρ2
1

(
∂p

∂e1

)
ρ1

+
1

α2ρ2
2

(
∂p

∂e2

)
ρ2

]
− pΓ

ρI
.

(7.1.35)
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Combining (7.1.27) and (7.1.35) gives the contribution of the mass transfer part:

˜̇WT,ṁ = − p

ρI
ṁ+

ṁ

Γ

[
Γ1

α1

(
(e1 −

1

2
u · u) +

p

ρ1

)
+

Γ2

α2

(
(e2 −

1

2
u · u) +

p

ρ2

)]
. (7.1.36)

7.1.4 Isentropic mass flux extension model

The equations (7.1.9), (7.1.28), (7.1.34) and (7.1.36) give us the total rate of energy exchange per
unit volume between fluid 2 and fluid 1:

˜̇W = pu ·∇α1 + (α1 − β)u ·∇p+ pφ∇ · u

+ṁ1
2u · u− ṁ p

ρI
+
ṁ

Γ

[
Γ1

α1

(
e1 +

p

ρ1

)
+

Γ2

α2

(
e2 +

p

ρ2

)]
.

(7.1.37)

The term ṁ1
2u ·u represents the change in kinetic energy. An interpretation of the term −pDα1/Dt

is given in [22]. The latter two terms represent the mass rate in interfacial energy ṁeI , where the
interfacial energy is given by

eI =
1

Γ

[
Γ1

α1

(
e1 +

p

ρ1

)
+

Γ2

α2

(
e2 +

p

ρ2

)]
− p

ρI
. (7.1.38)

The isentropic model with mass transfer reads:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (ρEu) +∇(pu) = 0,

∂t(α1ρ1) +∇ · (α1ρ1u) = ṁ,

(7.1.39a)

(7.1.39b)

(7.1.39c)

(7.1.39d)

with for the fifth equation one of the following:

∂t(α1ρ1E1) +∇ · (α1ρ1E1u) +∇ · (α1pu) = Ẇ + ṁ

(
eI +

1

2
u · u

)
∂tα1 + u ·∇α1 + φ∇ · u =

ṁ

ρI
,

(7.1.40a)

(7.1.40b)

with Ẇ defined in Chapter 2.

7.2 Non-isentropic mass and heat flux extension

In this Section we extend the model further by modelling both mass and heat transfer. An important
aspect here, in contrast to the previous Section, is that we do not assume an isentropic process. As
a result, the derivations are more involved.
The heat transfer term, denoted as Q, appears in the energy equations of the single fluids. Consider
the model equations in Section 7.1.4. The equations for mass, Eq. (7.2.28a) and Eq. (7.2.28d),
momentum, Eq. (7.2.28b) and bulk energy, Eq. (7.2.28c), do not change. The fifth equation, Eq.
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(7.1.40), however, has to be updated. We assume that the equation of the volume fraction can be
written as:

Dα1

Dt
+ φ∇ · u =

ṁ

ρ̃I
+
Q

χ
, (7.2.1)

where ρ̃I and χ have to be determined. Hence, we assume that the mass and heat transfer terms
have no influence on the convective part of the model. Furthermore, we have assumed that the
mass and heat transfer terms are modelled separately. This means that it is possible to have only
mass transfer or only heat transfer. The form of the equation is in agreement with [11, 29].
By a straightforward derivation, given in Appendix B.3, an expression for the thermodynamical
rate-of-work term (in terms of the material derivative of the volume fraction) can be found:

Dα1

Dt
(σ − pΓ) = ∇ · uφσ + ṁς + ˜̇WTΓ

−ṁ
(
e1 −

1

2
u · u +

p

ρ1

)
Γ1

α1

−ṁ
(
e2 −

1

2
u · u +

p

ρ2

)
Γ2

α2
.

(7.2.2)

Substitution of (7.2.1) into this relation, Eq. (7.2.2), the expression for the thermodynamical rate-
of-work term is obtained

˜̇WTΓ = pΓ∇ · u+

ṁ(e1 − 1
2u · u +

p

ρ1
)
Γ1

α1
+ ṁ(e2 − 1

2u · u +
p

ρ2
)
Γ2

α2

+ṁ

(
σ − pΓ
ρ̃I

− ς
)

+Q
σ − pΓ
χ

(7.2.3)

The equations (7.1.9) and (7.2.3) give us the total rate of energy exchange per unit volume between
fluid 2 and fluid 1:

˜̇W = Ẇ

+
ṁ

Γ

[
(e1 +

p

ρ1
)
Γ1

α1
+ ṁ(e2 +

p

ρ2
)
Γ2

α2

]
− ṁ p

ρ̃I
+ ṁ1

2u · u +
ṁσ

Γ

(
1

ρ̃I
− ς

σ

)
+
Q

χ

(σ
Γ
− p
)
.

(7.2.4)

The first line of Eq. (7.2.4) consists of the convective part, the second line of the mass transfer
part and the third line of the heat transfer part. Consider the heat flux term. Starting at the volume
fraction, Eq. (7.2.1), the heat transfer term is multiplied with σ/Γ−p. Since Q is the heat flux in the
equation of the internal energy, we require χ = σ/Γ− p. Consider the mass transfer terms. Except
for the additional term ṁσ

Γ

(
1
ρ̃I
− ς

σ

)
the mass transfer is the same as for the isentropic model. For

ρ̃I = σ/ς = ρI this additional term vanishes.
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7.2.1 Determination ρ̃I

In this Subsection we determine the term ρ̃I . The derivation is similar to [36], however they
consider a seven-equation model where we consider a five-equation model. Let us consider the
equations concerning mechanical relaxation for fluid 1:

∂tα1 = ṁ/ρ̃I ,

∂tα1ρ1 = ṁ,

∂t(ρu) = 0,

∂t(α1ρ1E1) =

(
ẽI +

1

2
u · u

)
ṁ,

(7.2.5a)

(7.2.5b)

(7.2.5c)

(7.2.5d)

where ẽI = ẽI(ρ̃I) defined in (7.1.38) in which ρI is replaced by ρ̃I . From Eq. (7.2.5b) and (7.2.5d)
it follows:

α1ρ1∂t(e1) = ṁ (ẽI − e1) . (7.2.6)

The internal energy of fluid 1, e1, can be expressed in terms of pressure p and density of fluid 1 ρ1:
e1 = e1(p, ρ1) [33]. Differentiate (7.2.21) with respect to t to find

α1ρ1

(
∂e1

∂p

)
ρ1

∂p

∂t
+ α1ρ1

(
∂e1

∂ρ1

)
p

∂ρ1

∂t
= ρ̃I (ẽI − e1) ∂tα1. (7.2.7)

From (7.2.5a), (7.2.5b) we get

α1∂tρ1 = (ρ̃I − ρ1) ∂tα1 (7.2.8)

By substituting (7.2.8) into (7.2.7) we obtain

α1ρ1

(
∂e1

∂p

)
ρ1

∂p

∂t
+ ρ1(ρ̃I − ρ1)

(
∂e1

∂ρ1

)
p

∂α1

∂t
= ρ̃I (ẽI − e1) ∂tα1. (7.2.9)

We can now express the pressure in terms of variables of fluid 1:

∂p

∂t
=

Γ1

α1

(
−ρ1(ρ̃I − ρ1)

(
∂e1

∂ρ1

)
p

+ ρ̃I (ẽI − e1)

)
∂tα1. (7.2.10)

Similarly, by using the equations of fluid 2 we obtain

∂p

∂t
= −Γ2

α2

(
−ρ2(ρ̃I − ρ2)

(
∂e2

∂ρ2

)
p

+ ρ̃I (ẽI − e2)

)
∂tα1. (7.2.11)

Combining (7.1.38), (7.2.10) and (7.2.11) we arrive at

Γ1

α1

(
−ρ1(ρ̃I − ρ1)

(
∂e1

∂ρ1

)
p

+ ρ̃I

((
1

Γ

[
Γ1

α1

(
e1 +

p

ρ1

)
+

Γ2

α2

(
e2 +

p

ρ2

)]
− p

ρ̃I

)
− e1

))

= −Γ2

α2

(
−ρ2(ρ̃I − ρ2)

(
∂e2

∂ρ2

)
p

+ ρ̃I

((
1

Γ

[
Γ1

α1

(
e1 +

p

ρ1

)
+

Γ2

α2

(
e2 +

p

ρ2

)]
− p

ρ̃I

)
− e2

))
,
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(7.2.12)

which can be simplified to

ρ̃I

[
Γ1

α1

(
−ρ1

(
∂e1

∂ρ1

)
p

+
p

ρ1

)
+

Γ2

α2

(
−ρ2

(
∂e2

∂ρ2

)
p

+
p

ρ2

)]
=

−Γ1

α1
ρ2

1

(
∂e1

∂ρ1

)
p

− Γ2

α2
ρ2

2

(
∂e2

∂ρ2

)
p

+ pΓ.

(7.2.13)

Since our goal is to find an expression for the interfacial density. This means that we only need to
simplify (7.2.13). The speed of sound is given by

ρkc
2
k =

(
p

ρ2
k

−
(
∂ek
∂ρk

)
p

)(
∂ek
∂p

)−1

ρk

. (7.2.14)

From this we can deduce:(
∂ek
∂ρk

)
p

=
p

ρ2
k

− c2
k

(
∂ek
∂p

)
ρk

=
p

ρ2
k

−
c2
k

Γkρk
. (7.2.15)

Substituting gives

ρ̃I

[
Γ1

α1

(
−ρ1

(
p

ρ2
1

− c2
1

Γ1ρ1

)
+

p

ρ1

)
+

Γ2

α2

(
−ρ2

(
p

ρ2
2

− c2
2

Γ2ρ2

)
+

p

ρ2

)]
=

−Γ1

α1
ρ2

1

(
p

ρ2
1

− c2
1

Γ1ρ1

)
− Γ2

α2
ρ2

2

(
p

ρ2
2

− c2
2

Γ2ρ2

)
+ pΓ,

(7.2.16)

which simplifies to

ρ̃I =

ρ1c21
α1

+
ρ2c22
α2

c21
α +

c22
α2

=
σ

ς
= ρI . (7.2.17)

This is an interesting result; apparently the contribution of the mass flow to the rate-of-work term
is the same for isentropic and non-isentropic flow.

7.2.2 Determination χ

In this Subsection we derive the parameter χ. Again, the derivation is similar to [36], Let us consider
the equations concerning temperature relaxation for fluid 1:

∂tα1 = Q/χ,

∂tα1ρ1 = 0,

∂t(ρu) = 0,

∂t(α1ρ1E1) = Q.

(7.2.18a)

(7.2.18b)

(7.2.18c)

(7.2.18d)
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From Eq. (7.2.18a) and (7.2.18d) it follows:

∂t(α1ρ1E1) = χ∂tα1. (7.2.19)

Next, we can write

∂t(α1ρ1E1) = E1∂t(α1ρ1) + α1ρ1∂te1 + u [∂t(α1ρ1u)− u∂t(α1ρ1)] . (7.2.20)

By using (7.2.18b), (7.2.19), (7.2.18c) we obtain

∂t(α1ρ1E1) = α1ρ1∂te1 = χ∂tα1. (7.2.21)

The internal energy of fluid 1, e1, can be expressed in terms of pressure p and density of fluid 1 ρ1:
e1 = e1(p, ρ1) [33]. Differentiate (7.2.21) with respect to t to find

α1ρ1

(
∂e1

∂p

)
ρ1

∂p

∂t
+ α1ρ1

(
∂e1

∂ρ1

)
p

∂ρ1

∂t
= χ∂tα1. (7.2.22)

Substitute (7.2.18b) into (7.2.22), this yields

α1ρ1

(
∂e1

∂p

)
ρ1

∂p

∂t
− ρ2

1

(
∂e1

∂ρ1

)
p

∂α1

∂t
= χ∂tα1. (7.2.23)

We can now express the pressure in terms of variables of fluid 1:

∂tp =

χ+ ρ2
1

(
∂e1

∂ρ1

)
p

α1ρ1

(
∂e1

∂p

)
ρ1

∂tα1. (7.2.24)

Similarly, by using the equations of fluid 2 we obtain

∂p

∂t
= −

χ+ ρ2
2

(
∂e2

∂ρ2

)
p

α2ρ2

(
∂e2

∂p

)
ρ2

∂tα1. (7.2.25)

Combining (7.2.24) and (7.2.25) we arrive at the expression of χ

χ =

ρ1c21
α1

+
ρ2c22
α2

Γ1
α1

+ Γ2
α2

− p =
σ

Γ
− p. (7.2.26)

7.2.3 Non-isentropic mass and heat flux extension model

By using the expression for χ, ρ̃I as obtained in the Sections (7.2.1) and (7.2.2), the total rate of
energy exchange per unit volume between fluid 2 and fluid 1 is:

˜̇W = Ẇ + ṁ

(
eI +

1

2
u · u

)
+Q. (7.2.27)
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The non-isentropic model with mass and heat flux extensions reads:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (ρEu) +∇ · (pu) = 0,

∂t(α1ρ1) +∇ · (α1ρ1u) = ṁ.

(7.2.28a)

(7.2.28b)

(7.2.28c)

(7.2.28d)

For the fifth equation we have one of the following:

∂tα1 + u ·∇α1 + φ∇ · u =
ṁ

ρI
+
Q

χ
,

∂t(α1ρ1E1) +∇ · (α1ρ1E1u) +∇ · (α1pu) = Ẇ + ṁ

(
eI +

1

2
u · u

)
+Q.

(7.2.29a)

(7.2.29b)

7.2.4 Derivation mixture entropy

The goal of this Subsection is to derive an equation for the mixture entropy. We start off by substi-
tuting (7.2.29a) and (7.2.3) into the entropy equations of both fluids (B.2.4):

α1ρ1T1
Ds1

Dt
= ṁ

Γ

[
Γ1
α1

[
e1 + p

ρ1

]
+ Γ2

α2

[
e2 + p

ρ2

]]
−ṁ

[
e1 + p

ρ1

]
+Q

(
p
χ + 1

)
,

(7.2.30)

where the kinetic energy terms cancel. And similarly, for fluid 2 we get:

α2ρ2T2
Ds2

Dt
= − ṁ

Γ

[
Γ1
α1

[
e1 + p

ρ1

]
+ Γ2

α2

[
e2 + p

ρ2

]]
+ṁ

[
e2 + p

ρ2

]
−Q

(
p
χ + 1

) (7.2.31)

Combining (7.2.30) and (7.2.31) gives

∂t(ρs) +∇ · (ρsu) = Q

(
T2 − T1

T1T2

)(
p

χ
+ 1

)
+
ṁ

Γ

(
T2 − T1

T1T2

)(
eI + p

ρI

)
+ ṁ

(
g2

T2
− g1

T1

)
.

(7.2.32)

where the Gibbs free quantities are given by

gk = ek +
p

ρk
− Tksk, (7.2.33)

and the mixture entropy is defined by

ρs = α1ρ1s1 + α2ρ2s2. (7.2.34)

We model mass and heat transfer terms as

ṁ = ν(g2 − g1),

Q = θ(T2 − T1).
(7.2.35)
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with ν, θ relaxation parameters. The ODE system of the source terms is first solved for the temper-
ature relaxation and then for the Gibbs free energy relaxation, similar to [36]. We assume that the
temperature remains in equilibrium during the Gibbs free energy relaxation.
Let us consider the heat transfer part first. Eq. (7.2.32) reduces to

∂t(ρs) +∇ · (ρsu) = θ

(
(T2 − T1)2

T1T2

)(
p

χ
+ 1

)
≥ 0. (7.2.36)

Hence, for the heat transfer part the mixture entropy satisfies the second law of thermodynamics.
Next, we consider the mass transfer part. Eq. (7.2.32) reduces to

∂t(ρs) +∇ · (ρsu) =
ν

Teq
(g2 − g1)2 ≥ 0, (7.2.37)

with Teq = T1 = T2 the equilibrium temperature, and again the second law of thermodynamics is
satisfied.
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8
Wrapping up

8.1 Conclusions and recommendations

For the five-equation model various formulations exist. We have decided to compare two possible
candidates: (i) The original formulation of Kapila et al. and (ii) a new formulation proposed by
Kreeft and Koren. For the model of Kapila et al. an HLLC-type solver has been proposed by Daude et
al. [11]. On the other hand, an Osher-type solver has been proposed by Kreeft and Koren [22] for
their model. To be able to have a good comparison, we have developed a new Osher-type scheme
for Kapila’s model and a new HLLC-type scheme for Kreeft and Koren’s model.

The main contribution of this thesis is the development of a new Lagrange-projection like scheme
for the five-equation two-phase flow model. The key idea here was to split the different physical
effects into two submodels and to develop different numerical schemes for the submodels. This
approach lends itself perfectly for a low Mach number analysis. An improvement of the scheme in
the low Mach regime, similar to Chalons et al. [9], can be made and implemented easily.

We have made a comparison of the different models and schemes on several shock tube test
cases. In this comparison we have used first order spatial and temporal accuracy as higher order
methods may cause problems related to robustness. This revealed that Kapila’s model is the better
model to use. The main reason therefore lies in the computation of the non-conservative terms.
This is more complicated for the formulation of Kreeft and Koren. One has to make use of Riemann
invariants which slows the computation down. For the numerical method we would recommend
to use the HLLC-type scheme. The Osher-type scheme for Kapila’s model performs equally well,
in terms of accuracy. However, the Osher-type scheme is more costly due to the computation of
the Riemann invariants. The new developed Lagrange-projection like scheme also performs well in
the test cases. For the two test cases (No-reflection problem, Sod’s shock tube), the position of the
shock wave is a little bit off. The low Mach number correction shows some first improvements for
the water-air mixture problem. The actual low Mach problems have to be tested for this method.

On top of this, we have derived a mass and heat flux extension of the model. The formulation
of the model of Kreeft and Koren brings results here. To determine the heat transfer terms this
formulation is required.
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8.2 Further work

Of course, there are many things to do still. We give a list of further improvements below.

Comparison of the different schemes

• Obviously, more (shock tube) problems should be tested to draw more evidence for our con-
clusions. We have equipped only the best schemes on the perfect gas test cases with the
stiffened gas equation of state. This can be done for the other schemes also, to have a better
comparison.

• Convergence of the numerical schemes (to the exact solutions when available) has to be
tested.

• Explore more about using a limiter for obtaining higher order accuracy for the different
schemes. How about the oscillations?

Lagrange-projection like scheme

• The main objective here, is to further test the low Mach regime extension of the scheme.
We have now only considered problems in one-dimension. To our knowledge, the low Mach
number problems are not common when considering one dimensional problems. It is however
possible by taking the area of the pipe into account, see e.g. [25].

• An extension of the scheme for multi dimensional problems (2 or 3 dimensions) has to be
made. This is done for the Euler equations of gas dynamics by Chalons et al. [9].

• In this thesis we did not test the scheme with a limiter for the spatial reconstruction and a
higher order time integration method (e.g. a Runge-Kutta method) for the temporal accuracy.
This can be done in some further work.

• An extension to moving grids can be made for fluid structure interaction.

Mass and Heat flux extension of the model

• The main challenge here lies in the development of a robust treatment of the source terms.
The approach of Zein [36] for the treatment of the source terms has been applied by Daude
et al. [11] for different source terms. This approach appeared not to be robust for the five-
equation model, since the CFL number had to be reduced, for the stability, to C = 0.1. We
expect that this problem does not simply disappear when using other source terms. This has
not been tested.

• For the source terms both temperature and mechanical relaxation are used. In most, if not
all, two-phase flow models, to our knowledge, these relaxation processes are instantaneous.
A new and more physical approach, is to consider a non-instantaneous relaxation, see (for the
seven equation model) [10].

M.F.P. ten Eikelder M.Sc thesis



Bibliography

[1] Anderson J.D., Fundamentals of Aerodynamics, McGraw-Hill, (1991).

[2] Bunn A.R., Carson P.A., Explosion at the Sayono-Shushenskaya hydro-electricity power sta-
tion, in IChemE, Loss Prevention Bulletin 228, 4-8 (2012).

[3] Baer M.R., Nunziato J.W., A two-phase mixture theory for the deflagration-todetonation tran-
sition (ddt) in reactive granular materials. Int J Multiphase Flow 12, 861–89 (1986).

[4] Barberon T., Helluy P., Rouy S.. Practical computation of axisymmetrical multifluid flows. Int
J Finite Volumes 1, 1–36 (2004).

[5] Batten P., Clarke N., Lambert C., Causon D.M., On the choice of wavespeeds for the HLLC
Riemann Solver. Shock Waves 4, 25-34 (1994).

[6] Box G.E.P., Science and Statistics, Journal of the American Statistical Association 71, 791–799
(1976).

[7] Buffard T., Gallouët T., Hérrard J.M., A sequel to a rough Godunov scheme: application to
real gases, Comput Fluids 29, 813-847, (2000).

[8] Castro E.C., High Order ADER FV/DG Numerical Methods for Hyperbolic Equations, Mono-
graphs of the School of Doctoral Studies in Environmental Engineering, Università Degli Studi
Di Trento (2007).

[9] Chalons C., Girardin M., Kokh S., An all-regime Lagrange-Projection like scheme for the gas
dynamics equations on unstructured meshes, Hal 01007622v2 (2014).

[10] Crouzet F., Daude F., Galon P., Hérard J.M., Hurisse O., Liu Y., Validation of a two-fluid model
on unsteady liquid–vapor water flows, Comput Fluids 119, 131-142, (2015).

[11] Daude F., Galon P., Gao Z., Blaud E. Numerical experiments using a HLLC-type scheme with
ALE formulation for compressible two-phase flows five-equation models with phase transition,
Comput Fluids 94, 112-138, (2014).

[12] Davis S.F., Simplified Second-Order Godunov-Type Methods. SIAM J. Sci Stat Comput 9, 445-
473 (1982).

[13] Harten A., Lax P.D., Van Leer B., On Upstream Differencing and Godunov-Type Schemes for
Hyperbolic Conservation Laws. SIAM Review 25, 35-61 (1983).

[14] Hemker P.W., Spekreijse S.P., Multiple grid and Osher’s scheme for the efficient solution of
the steady Euler equations. Appl Num Math 2, 475-493 (1986).

M.Sc thesis M.F.P. ten Eikelder



100 Bibliography

[15] Jacobs T., The New Pathways of Multiphase Flow Modeling, Journal of Petroleum Technology
February 2015, 62-67 (2015).

[16] Jeffrey A., Quasilinear Hyperbolic Systems and Waves, Pitman (1976).

[17] Johnson E., Colonius T., Implementation of WENO schemes in compressible multicomponent
flow problems. J Comput Phys 219, 715-32 (2006).

[18] Kapila A.K., Menikoff R., BDzil J.B., Son S.F., Stewart DS. Two-phase modeling of
deflagration-to-detonation transition in granular materials: reduced equations. Phys Fluids,
13, 3002-25 (2001).

[19] Kirsner, W., Condensation induced water hammer. Heating/Piping/Air Conditioning Magazine
(1999). Available from www.kirsner.org/kce/media/pdfs/KirsnerHammer.pdf [last viewed 29
July 2015]

[20] Koren, B. A robust upwind discretization method for advection, diffusion and source terms.
In C.B. Vreugdenhil & B. Koren (Eds.), Numerical Methods for Advection-Diffusion Problems,
117-138 (1993), Braunschweig/Wiesbaden: Vieweg.

[21] Kreeft J.J., Unsteady compressible two-fluid flow model for interface capturing. On the dy-
namics of a shock-bubble interaction, MSc thesis, Centrum voor Wiskunde en Informatica
(2007).

[22] Kreeft J.J., Koren B., A new formulation of Kapila’s five-equation model for compressible two-
fluid flow, and its numerical treatment, J Comput Phys, 229, 6220-6242 (2010).

[23] Liu T.P., Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108, 153-75
(1987).

[24] Luo H., Baum J.D., Lohner R., On the computation of multi-material flows using ALE formu-
lation. J Comput Phys, 194, 206-27 (2004).

[25] LeMartelot S., Nkonga B., Saurel R., Liquid and liquid-gas flows at all speed. J. Comput. Phys.
255, 53–82 (2013).

[26] Le Métayer O., Massoni J., Saurel R.. Elaborating equations of state of a liquid and its vapor
for two-phase flow models. Int J Thermal Sci, 43, 265-276 (2004).

[27] Murrone A., Guillard H., A five equation reduced model for compressible two phase flow
problems, J Comput Phys 202, 664-698 (2005).

[28] Osher S., Solomon F., Upwind difference schemes for hyperbolic systems of conservation laws.
Math of Comput 38, 339–374 (1982).

[29] Saurel R., Petitpas F., Abgrall R., Modelling phase transition in metastable liquids: application
to cavitating and flashing flows. J Fluid Mech, 607, 313-50 (2008).

[30] Sod G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws. J Comput Phys 27, 1–31 (1978).

M.F.P. ten Eikelder M.Sc thesis



Bibliography 101

[31] Suliciu I., On modelling phase transition by means of rate-type constitutive equations, shock
wave structure, Int. J. Ing. Sci. 28, 827-841 (1990).

[32] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduc-
tion - 3rd edition, Springer (2009).

[33] Toro E.F., Spruce M., Speares W., Restoration of the contact surface in the HLL-Riemann
solver. Shock Waves 4, 25-34 (1994).

[34] Whitham G.B., Linear and Nonlinear Waves, Wiley, New York (1974).

[35] Wood, A.B., A textbook of Sound, London: G. Bell and Sons Ltd (1930).

[36] Zein A., Hantke M., Warnecke G., Modeling phase transition for compressible two-phase flows
applied to metastable liquids. J Comput Phys 229, 2964-2998 (2010).

[37] Zein A., Numerical methods for multiphase mixture conservation laws with phase transition.
PhD thesis Fakultät für Mathematik der Otto-von-Guericke-Universität Magdeburg (2010).

M.Sc thesis M.F.P. ten Eikelder



102 Bibliography

M.F.P. ten Eikelder M.Sc thesis



APPENDICES

M.Sc thesis M.F.P. ten Eikelder





A
Implementation issues

In this Appendix we discuss the implementation issues. For the implementation of the various solvers a
MATLAB-code has been written by the author.

A.1 Equation of State

To complete the model an additional equation relating the state variables is required: An Equation
of State (EOS). For both fluids we use the generalized stiffened gas (SG) EOS which reads:

p = ρk(ek − qk)(γk − 1)− γkπk, (A.1.1)

where γk, πk and qk are characteristic constants of the thermodynamic behaviour of the fluid, k =
1, 2. Since we have not implemented mass and heat transfer, the terms qk are zero. The speed of
sound for the SG EOS is given by

c2
k =

[
p

ρ2
k

− ∂ρkek
]

(∂pek)
−1 = γk

p+ πk
ρk

. (A.1.2)

The bulk internal energy satisfies

ρe = p

(
α1

γ1 − 1
+

α2

γ2 − 1

)
+ α1ρ1q1 + α2ρ2q2 + α1

γ1

γ1 − 1
π1 + α2

γ2

γ2 − 1
π2. (A.1.3)

A.2 Switch various variable sets

To switch from one set of variables to another, the EOS has to be used. We only use the Lagrangian
variables (in the relaxed system) for Kapila’s model, therefore we do not give the switches for the
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Lagrangian variables for the model of Kreeft and Koren. The vectors of conservative, primitive and
Lagrangian variables (in the relaxed system) are respectively:

Q =



ρ

ρu

ρE

α1ρ1

Q5


, W =



ρ

u

p

β

α1


, QLAG

s =



τ

u

E

β1

α1

Π


(A.2.1)

with Q5 = α1, α1ρ1E1 for Kapila’s model and Kreeft and Koren’s model respectively.

A.2.1 Primitive to Conservative variables

The switch from primitive to conservative variables turns out to be:

Q =



ρ

ρu

ρE

α1ρ1

Q5


=



W1

W1W2

W4
W3+γ1π1
γ1−1 +W1W5q1 + (1−W4)W3+γ2π2

γ2−1 +W1(1−W5)q2 + 1
2W1W

2
2

W1W4

W4
W3+γ1π1
γ1−1 +W1W5q1 + 1

2W1W
2
2


,

(A.2.2)

with Q5(W) = W5,W4
W3+γ1π1
γ1−1 + W1W5q1 + 1

2W1W
2
2 for Kapila’s model and Kreeft and Koren’s

model respectively.
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A.2.2 Conservative to Primitive variables

For Kapila’s model the switch is given by:

W =



ρ

u

p

β

α1


=



Q1

Q2/Q1

pKP (Q)

Q4/Q1

Q5


, (A.2.3)

with

pKP (Q) =
[
Q3 −Q2

2/(2Q1)−Q4q1 − (Q1 −Q4)q2 −Q5
γ1π1
γ1−1 − (Q1 −Q5) γ2π2γ2−1

]
×
[
Q5

γ1−1 + 1−Q5

γ2−1

]−1
.

(A.2.4)

The switch from conservative variables to primitive variables for the Kreeft and Koren model is a
little bit more involved. Finding an expression for the variables p and α in terms of Q is done as
follows. We use the EOS for both fluids to obtain

p = α1 (ρ1(e1 − q1)(γ1 − 1)− γ1π1) + α2 (ρ2(e2 − q2)(γ2 − 1)− γ2π2) , (A.2.5)

and write the EOS for fluid 1 as

α1 = [p+ γ1π1]−1 [α1ρ1e1(γ1 − 1)− α1ρ1q1(γ1 − 1)] . (A.2.6)

Substitution of (A.2.6) into (A.2.5) yields

p2 +D1p+D2 = 0 (A.2.7)

with

D1 = γ1π1 − α1ρ1e1(γ1 − 1) + α1ρ1q1(γ1 − 1)

+γ2π2 − α2ρ2e2(γ2 − 1) + α2ρ2q2(γ2 − 1),

D2 = (γ1π1 − γ2π2) [α1ρ1e1(γ1 − 1)− α1ρ1q1(γ1 − 1)]

−γ1π1 [α1ρ1e1(γ1 − 1)− α1ρ1q1(γ1 − 1)

+α2ρ2e2(γ2 − 1)− α2ρ2q2(γ2 − 1)− γ2π2] .

(A.2.8)

or in terms of Q:

D1 = γ1π1 −
(
Q5 −Q4

Q2
2

Q2
1

)
(γ1 − 1) +Q4q1(γ1 − 1)

+γ2π2 −
(
Q3 −Q5 −Q4

Q2
2

Q2
1

)
(γ2 − 1) + (Q1 −Q4)q2(γ2 − 1),

D2 = (γ1π1 − γ2π2)
[(
Q5 −Q4

Q2
2

Q2
1

)
(γ1 − 1)−Q4q1(γ1 − 1)

]
−γ1π1

[(
Q5 −Q4

Q2
2

Q2
1

)
(γ1 − 1)−Q4q1(γ1 − 1)

+
(
Q3 −Q5 −Q4

Q2
2

Q2
1

)
(γ2 − 1)− (Q1 −Q4)q2(γ2 − 1)− γ2π2

]
.

(A.2.9)
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The switch from conservative to primitive variables turns out to be:

W =



ρ

u

p

β

α1


=



Q1

Q2/Q1

pKK

Q4/Q1

[pKK + γ1π1]−1
[(
Q5 −Q4

Q2
2

Q2
1

)
(γ1 − 1)−Q4q1(γ1 − 1)

]


, (A.2.10)

where pKK = pKK(Q) is the solution of (A.2.7).

A.2.3 Conservative to Lagrangian variables

The switch from conservative to Lagrangian variables is given by:

QLAG
s =



τ

u

E

β1

α1

Π


=



1/Q1

Q2/Q1

Q3/Q1

Q4/Q1

Q5

p


. (A.2.11)

As this switch is applied in the first step we can take the pressure p = W3 from the primitive
variables.

A.2.4 Lagrangian to Conservative variables

The switch from Lagrangian to conservative variables is given by:

Q =



ρ

ρu

ρE

α1ρ1

Q5


=



1/QL1

QL2 /Q
L
1

QL3 /Q
L
1

QL4 /Q
L
1

QL5


, (A.2.12)

with QLAG
s = (QLj ), j = 1, ..., 6.
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B
Some derivations

In this Appendix we give some derivations which are not shown in the first two parts of this thesis.

B.1 Primitive equations acoustic scheme

The derivation of the primitive equations for the acoustic scheme (5.1.3) is presented here. Basi-
cally, the derivation is the same as for the complete five-equation model, see e.g. [22], but one has
to replace the material derivative by single time derivatives.
Substituting (5.1.3a) into (5.1.3b) gives

∂tu+
1

ρ
∂xp = 0. (B.1.1)

Combining (5.1.3d) and (5.1.3a) reveals that the mass fraction is constant in time:

∂tβ = 0. (B.1.2)

The equations

∂tρ1 +
ρ1

α1
∂tα1 + ρ1∂xu = 0,

∂tρ2 −
ρ2

α2
∂tα1 + ρ2∂xu = 0,

(B.1.3a)

(B.1.3b)

are directly obtained from (5.1.3d). Next, we write

∂tp =

(
∂p

∂ρ1

)
s1

∂tρ1 = c2
1∂tρ1,

∂tp =

(
∂p

∂ρ2

)
s2

∂tρ2 = c2
2∂tρ2,

(B.1.4a)

(B.1.4b)
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and subsequently a substitution of (B.1.5) gives

∂tp = −ρ1c
2
1

(
1

α1
∂tα1 + ∂xu

)
,

∂tp = −ρ2c
2
2

(
− 1

α2
∂tα1 + ∂xu

)
.

(B.1.5a)

(B.1.5b)

The primitive equations for the volume fraction and the pressure follow directly

∂tp+ ρc2∂xu = 0,

∂tα1 + φ∂xu = 0,

(B.1.6a)

(B.1.6b)

where the mixture speed of sound obeys the Wood formula [35]:

1

ρc2
=

α1

ρ1c2
1

+
α2

ρ2c2
2

. (B.1.7)

Next, we derive the primitive equations of the entropies of the single phases, denoted as sk, k = 1, 2.
The EOS can be written in terms of the entropy as sk(p, ρ) see [1]. Furthermore, we state without
proof (see [1] for the proof) the expression for the speed of sound c2 = −∂ρsk/∂psk. Expanding the
time derivative in thermodynamical variables gives

∂tsk = ∂psk∂tp+ ∂ρsk∂tρ. (B.1.8)

Substitution of the primitive equations for the density and the pressure gives

∂tsk = −ρ∂xu
(
c2∂psk + ∂ρsk

)
= 0. (B.1.9)

B.2 Some thermodynamical relations

Here we derive some thermodynamical relations which are used in Section 7.2.
To find an equation for the entropy we use the Gibbs relation, which reads

Tkdsk = dek −
p

ρ2
k

dρk, (B.2.1)

where Tk is the temperature of fluid k. Take the material derivative, k = 1, and multiply by α1ρ1 to
find

α1ρ1T1
Ds1

Dt
= α1ρ1

De1

Dt
− α1p

ρ1

Dρ1

Dt
. (B.2.2)

Similarly, for fluid 2 we get

α2ρ2T2
Ds2

Dt
= α2ρ2

De2

Dt
− α2p

ρ2

Dρ2

Dt
. (B.2.3)
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Substitution of (7.1.11), (7.1.13) and (7.1.14) gives the entropy equations

α1ρ1T1
Ds1

Dt
= ˜̇WT + p

Dα1

Dt
− ṁ

[
e1 −

1

2
u · u +

p

ρ1

]
α2ρ2T2

Ds2

Dt
= − ˜̇WT − p

Dα1

Dt
+ ṁ

[
e2 −

1

2
u · u +

p

ρ2

] (B.2.4a)

(B.2.4b)

Furthermore, we derive an alternative expression for the Grüneisen coefficient. Using Gibbs relation
(B.2.1), we can deduce

Tk =

(
∂ek
∂sk

)
ρk

, k = 1, 2. (B.2.5)

Hence, we have(
∂p

∂sk

)
ρk

=

(
∂p

∂ek

)
ρk

(
∂ek
∂sk

)
ρk

=

(
∂p

∂ek

)
ρk

Tk, k = 1, 2. (B.2.6)

The Grüneisen coefficient can be written as

Γk =
1

ρkTk

(
∂p

∂sk

)
ρk

, k = 1, 2. (B.2.7)

B.3 Equation thermodynamical rate-of-work term

In this Section we provide the derivation of Eq. (7.2.2). The pressure can be expressed as a function
of two independent thermodynamical variables (EOS). For this we consider two options. The first
one is to use entropy and density for the independent variables and to make use of the entropy
equations derived in Section B.2. This means we use the EOS for both fluids as: p = p(s1, ρ1), p =
p(s2, ρ2). Take the total derivative of the pressure to find

Dp

Dt
=

(
∂p

∂ρ1

)
s1

Dρ1

Dt
+

(
∂p

∂s1

)
ρ1

Ds1

Dt

Dp

Dt
=

(
∂p

∂ρ2

)
s2

Dρ2

Dt
+

(
∂p

∂s2

)
ρ2

Ds2

Dt
.

(B.3.1a)

(B.3.1b)

Substitution of (7.1.11), (7.1.26), (B.2.4) into (B.3.1a) gives

Dp

Dt
= c2

1

[
− ρ1

α1

Dα1

Dt
− ρ1∇ · u +

ṁ

α1

]
+

(
∂p

∂s1

)
ρ1

1

α1ρ1T1

[
˜̇WT + p

Dα1

Dt
− ṁ

(
e1 − 1

2u · u +
p

ρ1

)] (B.3.2)

Similarly, the substitution of (7.1.11), (7.1.26), (B.2.4) into (B.3.1b) yields

Dp

Dt
= c2

2

[
ρ2

α2

Dα1

Dt
− ρ2∇ · u− ṁ

α2

]
+

(
∂p

∂s2

)
ρ2

1

α2ρ2T2

[
− ˜̇WT − p

Dα1

Dt
+ ṁ

(
e2 −

1

2
u · u +

p

ρ2

)]
.

(B.3.3)
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By subtracting (B.3.3) from (B.3.2) we obtain an equation for the volume fraction α

Dα

Dt

[
ρ1c

2
1

α1
+
ρ2c

2
2

α2
− p

(
1

α1ρ1T1

(
∂p

∂s1

)
ρ1

+
1

α2ρ2T2

(
∂p

∂s2

)
ρ2

)]

=

[
∇ · u

(
−ρ1c

2
1 + ρ2c

2
2

)
+ ṁ

(
c2

1

α1
+
c2

2

α2

)
+ ˜̇WT

(
1

α1ρ1T1

(
∂p

∂s1

)
ρ1

+
1

α2ρ2T2

(
∂p

∂s2

)
ρ2

)

−ṁ
(
e1 −

1

2
u · u +

p

ρ1

)
1

α1ρ1T1

(
∂p

∂s1

)
ρ1

−ṁ
(
e2 −

1

2
u · u +

p

ρ2

)
1

α2ρ2T2

(
∂p

∂s2

)
ρ2

]
.

(B.3.4)

By using (7.1.30), (7.1.32), (7.1.31) and (B.2.7), Eq. (B.3.4) simplifies to

Dα

Dt
(σ − pΓ) = ∇ · uφσ + ṁς + ˜̇WTΓ

−ṁ
(
e1 −

1

2
u · u +

p

ρ1

)
Γ1

α1

−ṁ
(
e2 −

1

2
u · u +

p

ρ2

)
Γ2

α2
,

(B.3.5)

with σ, ς,Γk defined in Chapter 7. Hence, we have obtained a relation between Dα
Dt and ˜̇WT .

Alternatively, the same relation can be found by expressing the pressure in terms of density and
internal energy of both fluids, i.e. p = p(e1, ρ1), p = p(e2, ρ2). Taking total derivatives and subse-
quently expanding into thermodynamical variables gives:(

∂p

∂e1

)
ρ1

De1

Dt
+

(
∂p

∂ρ1

)
e1

Dρ1

Dt
=

(
∂p

∂e2

)
ρ2

De2

Dt
+

(
∂p

∂ρ2

)
e2

Dρ2

Dt
. (B.3.6)

Substituting of the primitive equations gives:

˜̇WT

[
1

α1ρ1

(
∂p

∂e1

)
ρ1

+
1

α2ρ2

(
∂p

∂e2

)
ρ2

]
=

Dα

Dt

[
ρ1

α1

(
∂p

∂ρ1

)
e1

+
ρ2

α2

(
∂p

∂ρ2

)
e2

]
+
(
ρ1c

2
1 − ρ2c

2
2

)
∇ · u

+
ṁ

α1ρ1
(e1 − 1

2u · u)

(
∂p

∂e1

)
ρ1

+
ṁ

α2ρ2
(e2 − 1

2u · u)

(
∂p

∂e2

)
ρ2

− ṁ
α1

(
∂p

∂ρ1

)
e1

− ṁ
α2

(
∂p

∂ρ2

)
e2

.

(B.3.7)

By substituting (7.1.30), (7.1.29), (7.1.32) and (7.1.31) into (B.3.7), we arrive at Eq. (B.3.5).
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C
Relaxation approach

In this Appendix we briefly discuss the idea of the obtaining a relaxed system [31].

C.1 Relaxed system

Consider the one-dimensional partial differential equation

∂tu+ ∂xf(u) = 0, (C.1.1)

where f = f(u) is a complicated nonlinear function. This nonlinear function makes the equation
possibly difficult to solve. The idea is now to consider a larger but simpler system of equations.
Therefore a so-called surrogate parameter v approximating the function f is introduced. This is the
relaxation approach:

• Deal with larger but simpler system,

• Introduce new surrogate variable.

Let us determine the equation satisfied by the surrogate parameter v. We compute the derivatives:

∂t (f(u)) = ∂uf∂tu = −∂uf∂x (f(u)) = − (∂uf)2 ∂xu, (C.1.2)

which can be written as:

∂t (f(u)) + (∂uf)2 ∂xu = 0. (C.1.3)

The Suliciu approximation of (C.1.1) reads{
∂tu+ ∂xv = 0
∂tv + a2∂xu = y (f(u)− v) .

(C.1.4)
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The first equation in (C.1.4) is in the same form as the original PDE (C.1.1) with v = f(u), where the
second equation corresponds to (C.1.3). The parameter y will be specified later. Here the parameter
a approximates ∂uf . A theoretical analysis reveals that a must satisfy the so-called subcharacteristic
condition

a > ∂uf (C.1.5)

to have the necessary stability requirements. For more details we refer to [34, 23]. In practice [9],
a value aLR for each interface at time level n is chosen as

aLR = H max ((∂uf)nL, (∂uf)nR) , (C.1.6)

where L = j, LR = j + 1/2, R = j + 1 and H ≥ 1.

C.2 Numerical method

The numerical method is a two step approach consisting of the following steps:

• evolution step,

• source step.

In the evolution step we take y = 0, i.e.:{
∂tu+ ∂xv = 0
∂tv + a2∂xu = 0,

(C.2.1)

and solve the functions un, vn = f(un) at time level n to intermediate time level n+ 1−. Note that
this system is a linear PDE and therefore easy to solve. Next, in the source step we take y → +∞
and solve{

∂tu = 0
∂tv = y (f − v) ,

(C.2.2)

from intermediate time level n+ 1− to time level n: un+1 = un+1−, vn+1 = f(un+1−).
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