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Abstract

In the past several years, the fast growing number of vehicles on long crowded roads mo-
tivated an intense scientific research activity in the field of traffic flow modeling. In this
thesis we present and discuss some of the macroscopic models of vehicular traffic flow; the
first order LWR model and second order Aw-Rascle model are both solved analytically and
numerically. We study the Riemann problems of these models and present some numerical
similarities as well as differences between the two models. We perform several numerical
experiments in order to verify some qualitative traffic flow behaviour for various traffic pa-
rameters in our models. All numerical simulations presented in this thesis are obtained by
implementing the first order Godunov-type approximation together with the CFL condition
for the stability test of the solutions. In our numerical tests we will show that the Aw-Rascle
model predicts instabilities for very light traffic, even with few slow drivers that could not
be predicted by the LWR model.
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Chapter 1

Introduction

1.1 Motivation and Definition of the Problem

Traffic networks consisting of highways, streets, and other kinds of roadways are very impor-
tant in management of traffic situations; they provide convenient and economical conveyance
of passengers and goods. Nowadays, in my home country, the fast growing number of vehi-
cles on urban streets and roadways together with related economical and social implications,
such as, prevention of car crashes, pollution and energy control, has motivated me to go into
this research activity in the field of traffic flow modeling. In my country there are always
traffic jams but my experience in Europe, especially here in Germany, is different as far as
traffic flow is concerned. I have realised that the flow of traffic is very smooth in this area of
the world. As someone who believes in helping my nation, I know doing my research about
traffic flow models will be very beneficial to my home country in the future. This motivated
me to go into this research since it will open my understanding of traffic situations and
how to mathematically model the problem. I believe at the end of this research I will be
equipped with the needed mathematical tools to go into further studies and practise in the
field of traffic flow management.

Traffic flow can be defined as the study of the movement of individual drivers and vehicles
between two points: origin/destination, and the interactions they make with one another.
Unfortunately, studying traffic flow is difficult because driver behavior is something that can-
not be predicted with one-hundred percent certainty. Fortunately, drivers tend to behave
within a reasonably consistent range and, thus, traffic streams tend to have some reasonable
consistency and can be roughly represented mathematically. To better represent traffic flow,
relationships have been established between the three main characteristics: flow, density and
mean velocity, which are, in this thesis, represented by q, ρ, and v, respectively. Vehicular
traffic flow can be viewed as an engineering and also a challenging mathematical problem
[13]. However, both applied mathematicians and engineers are involved in this field: math-
ematicians have been able to develop suitable methods which describe the evolution in time
and space of the flow conditions, such as, car density and velocity. In addition, mathemat-
ical research also consists in solving mathematical problems generated by the application
of models to real traffic flow conditions. The output may hopefully be useful for engineers
involved in traffic flow control and optimization [14].

There have been developed three different types of models in mathematical modeling of
traffic flows: microscopic, kinetic and macroscopic models, see, e.g., [11, 12, 13, 14]. Micro-
scopic modeling corresponds to model the dynamics of each single vehicle under the action
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of the surrounding vehicles by ordinary differential equations based on Newton’s law, in
other words all vehicles are individually identified. Position and velocity of each vehicle
define the state of the system as dependent variables of the time variable. This is also called
car following models [12, 14]. On the other hand, macroscopic ones model traffic flows, such
as flow rate q, traffic density ρ and travel speed v, as a continuum [15], i.e., the state is de-
scribed by locally averaged quantities, i.e. q, ρ, v are considered as dependent variables of
time and space. The basic relationship between these variables is q = ρv. Lastly, the kinetic
modeling as well requires in principle a large number of particles in the system but, unlike
the macroscopic approach, it is based on a microscopic modeling of their mutual interactions
[11]. For example, let us measure the velocity of a car moving along a highway. The most
common way to do this is to record the velocity vi = dxi/dt of each car. With N cars there
are N different velocities, vi(t), i = 1, ·, ·, ·, N, each depending on time. This describes
the microscopic model of traffic flows. If the number of cars N is large, this model becomes
more complex since it is difficult to keep track of each car. On the other hand, instead of
measuring the velocity of each individual car, we associate to each point x in space at each
time t a velocity field, v(x, t). This would be the velocity measured at position x at time t.
This defines the macroscopic model.

Among the above three types of model, macroscopic models are more suitable for model-
ing traffic flow in complex networks since less supporting data and computation are needed.
In this thesis some of macroscopic traffic flow models are studied both analytically and nu-
merically; we propose the first-order and second-order models (here the order refers to the
number of equations that form the model). Traffic flows are classified according to traffic
conditions, roadway conditions and traffic network structure. We say that traffic flows are
in equilibrium when their travel speed is uniquely determined as a function of the traffic
density, otherwise they are in non-equilibrium. The simplest situation in traffic flow theory
is the homogeneous equilibrium traffic flow [12], that is, a uniform flow of vehicles not de-
pending on space and time variables; here the state of the traffic flow only depends on the
vehicles density. Traffic flows are considered inhomogeneous when the roadway has different
parameters at different locations.

In this thesis we focus on equilibrium traffic flows. The most elementary continuum
traffic flow model was the first order model developed by Lighthill, Whitham (1955) and
Richards (1956) [18], based on the assumption of mass density conservation, that is, the
number of vehicles between any two points if there are no entrances or exits is conserved.
This model is based on the idea that the classical Euler and Navier-Stokes equations of fluid
dynamics describing the flow of fluids could also describe the motion of cars along a road,
provided a large-scale point of view is adopted so as to consider cars as small particles and
their density as the main quantity to be looked at, see for instance [12]. The LWR model
is a first-order model in the sense it is formulated as a scalar hyperbolic conservation law,
and is often solved by finite difference methods (Daganzo, 1995; LeVeque, 1992; Lebacque,
1996). The LWR model is given by

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (1.1)

for 0 ≤ ρ ≤ ρmax, where ρmax (also called jam density) is the value at which cars are
bumper to bumper. Since the model is a scalar conservation law for ρ alone, the velocity
v in (1.1) must be a given function of ρ (this is later discussed in details). Both Lighthill,
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Whitham and Richards used the model (1.1) to demonstrate the existence of shockwaves
in traffic systems. We will solve the Riemann problem of this model analytically and also
produce some numerical solutions by implementing the first-order type Godunov approxi-
mation. This is proposed in this thesis to solve the LWR model because of the presence
of discontinuities (shocks) in the solutions (Lebacque, 1996). Moreover, discontinuous weak
solutions are not unique for hyperbolic conservation laws in general, hence entropy condi-
tions [29] must be satisfied to obtain physically valid solution that is consistent with human
behavior, such as the drivers ride impulse.

To address the limitations of this first order model, Lighthill and Whitham introduced
a second-order model [15], but unfortunately, second order models for some time were not
explored, until Payne and Whitham developed a second-order continuum model governing
traffic flow. This new model is defined by the conservation of mass density (1.1) and
the acceleration equation [2, 15] in which the average traffic speed v satisfies an evolution
equation similar to the Navier-Stokes equation. This is written in nonconservative form as

∂v

∂t
+ v

∂v

∂x
= −p

′(ρ)

ρ

∂ρ

∂x
+

1

τ

(
V (ρ)− v

)
+
µ

ρ

∂2v

∂x2
,

where τ and µ some positive constants, and a pressure law p = p(ρ) inspired from gas
dynamics. From the right side of this equation, the last term models viscosity or diffusion;
it tends to adjust one’s speed to that of the surrounding traffic, whereas the second term
of expresses the tendency of traffic at a given density ρ to relax to some natural average
speed V (ρ) [19]. This is defined in such a way that, at low densities it is determined by road
conditions and speed limits, and is only weakly dependent on ρ, whereas at high densities,
V (ρ) approaches zero, and is again weakly dependent on ρ. At intermediate densities it
drops off rapidly, largely due to the fact that higher traffic density makes it more difficult
for faster drivers to overtake slower drivers. Thus V (ρ) is chosen to be decreasing function
of the density ρ with a small derivative at low and high values of ρ, see for instance [19]. The
first term is an anticipation factor; drivers slow down at the sight of an increase in traffic
density ahead of them.

However, Daganzo [16] pointed out that traffic arriving at the end of a densely-packed
queue would result in vehicles traveling backwards in space, which is physically unreasonable.
This is due to the isotropic nature of the models, as the behavior of vehicles is influenced
by vehicles behind them due to diffusive effects [16, 22]. Thus the Payne model, like other
second-order models available in the literature, produced flawed behavior for some traffic
conditions. These models violate the following principle: a fluid particle responds to stimuli
from the front and from behind a car is an anisotropic particle that mostly responds to frontal
stimuli [2]. To improve this model, Aw and Rascle [2] were able to produce an anisotropic
second-order model which satisfies this principle, and averted the flaws noted by Dazgano
by replacing the pressure term p in the momentum equation by an anticipation factor, i.e.,
a term which is supposed to describe how an average driver would react to a variation in the
concentration of cars with respect to space. They concluded that the correct dependence of
the pressure p on the density ρ must involve the convective derivative

∂t + v∂x

of the pressure which will be still taken as an increasing function of the density

p = p(ρ).

4



Now assuming no diffusion and relaxation, the Aw-Rascle model is given as a coupled system
of two equations presented here below

∂tρ+ ∂x(ρv) = 0,

∂t

(
v + p(ρ)

)
+ v∂x

(
v + p(ρ)

)
= 0

(1.2)

with a prescribed initial data U(x, 0) := U0 := (ρ0, v0) whose components are two
bounded nonnegative functions. In this thesis we propose to consider the case where U0 is
defined by the following piecewise constant function:

U0 =

{
U`, x < 0,

Ur, x > 0.
(1.3)

Definition 1.1.1 The initial value problem for a conservative law (1.2) together with the
piecewise constant data (1.3) having a single discontinuity is called the Riemann problem.

1.2 Outline of the Thesis

The thesis is organized in five more chapters that follow this introductory chapter. Chapter 2
reviews Hyperbolic systems of conservation laws by giving some basic backgrounds, Chapter
3 discusses the first order fluid approximation of traffic flow dynamics proposed by Lighthill
and Witham and Richard: the LWR model that provides a coarse description of traffic
behavior for a single one-way road using three variables that vary in time and space: flow,
q, density, ρ, and speed, v. Chapter 4 is devoted to the Aw and Rascle (shortly Aw-Rascle)
model of traffic flow. This describes the evolution of traffic flow via a coupled system of mass
conservation and momentum balance equations. These two later chapters account mainly
for traffic models on single one-way roads. Chapter 5 reports about the comparison of the
LWR and Aw-Rascle models. Finally, chapter 6 concludes this thesis.
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Chapter 2

Hyperbolic Systems of Conservation
Laws

This chapter reviews hyperbolic systems of conservation laws. For more details we refer the
reader to [8, 9]. We discuss time-dependent systems of partial differential equations of the
general following form

∂u

∂t
+
∂f(u)

∂x
= 0, (2.1)

with u : R × R → Rm an m−dimensional vector of conserved quantities, or state
variables, such mass, momentum, and energy appearing in a problem, for instance, fluid
dynamics [9] or traffic flow problems. In the study of hyperbolic Systems of conservation
laws the main assumption is that knowing the value of u(x, t) at a given point and time
allows us to determine the rate of flow, also called as flux, of each state variable at point
(x, t). In our notations, f : Rm → Rm is called the flux function for the system of
conservation laws.

Definition 2.0.1 The system (2.1) is hyperbolic if the Jacobian matrix f ′(u) of the
flux function has the following property: for each value of u the eigenvalues of f ′(u) are
real, and the matrix is diagonalizable, i.e., there is a complete set of m linearly independent
eigenvectors.

Let ψ ∈ C10(R × R+) be a test function, with C10 the space of functions that are contin-
uously differentiable with compact support. If we multiply the system (2.1) by this test
function ψ and then integrate over space and time, we get

∫ ∞
0

∫ ∞
−∞

[
ψtu+ ψxf(u)

]
dxdt = −

∫ ∞
−∞

ψ(x, 0)u(x, 0)dx. (2.2)

Definition 2.0.2 The function u(x, t) is called a weak solution of the system (2.1) if (2.2)
holds for all functions ψ ∈ C10(R×R+).

2.0.1 Godunov Scheme for Nonlinear Conservation laws

In 1959, Godunov proposed a way to make use of the characteristic information within
the framework of a conservative method. Rather than attempting to follow characteristics
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backwards in time, Godunov suggested solving Riemann problems forward in time. This
scheme is similar to the Upwind scheme. We refer the reader to the literature, see for
instance [1, 4, 9]. Now consider the following initial value problem

∂u

∂t
+
∂f(u)

∂x
= 0, x ∈ R, t ∈ N,

u(x, 0) = u0(x), ∀x ∈ R.
(2.3)

Define

xj+ 1
2

= xj +
h

2
,

with h the mesh width. The Godunov scheme will produce approximations Un ∈ Rm to
a cell average of u(x, tn) defined by

ūnj =
1

h

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx.

• Use the given initial data u0(x) and define the initial data U0 for our numerical method
by U0

j = ū0j .

• Now use a time-marching procedure to construct the approximation U1 from U0, then
U2 from U1 and so on. In general we construct Un+1 from Un, for n ∈ N.

• Use the numerical solution Un to define a piecewise constant function ũn(x, tn) with
the value Un

j on the grid cell xj− 1
2
< x < xj+ 1

2
.

• Next, use ũn(x, tn) as initial data of the conservation law, which is solved exactly to
obtain ũn(x, t) for tn ≤ t ≤ tn+1. Here use a short time interval since the initial
data ũn(x, tn) is piecewise constant.

• Hence define a sequence of Riemann problems.

• Piece these Riemann solutions together to obtain the exact solution up to the time
when waves from neighboring Riemann problems begin to interact. Hence we obtain
the exact solution over the time interval [tn, tn+1].

• Now define the approximate solution Un+1 at time tn+1 by averaging this exact solution
at time tn+1, this yields

Un+1
j =

1

h

∫ x
j+1

2

x
j− 1

2

ũ(x, tn+1)dx. (2.4)

Use these values to define new piecewise constant data ũn+1(x, tn+1) and repeat the
process.

The cell average (2.4) can be easily computed using the integral form of the conservation
law [9]. Since ũn is assumed to be an exact weak solution, we have
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∫ x
j+1

2

x
j− 1

2

ũ(x, tn+1)dx =

∫ x
j+1

2

x
j− 1

2

ũ(x, tn)dx+

∫ tn+1

tn

f
(
ũn(xj− 1

2
, t)
)
dt

−
∫ tn+1

tn

f
(
ũn(xj+ 1

2
, t)
)
dt.

Note that ũn(x, tn) = Un over the cell (xj− 1
2
, xj+ 1

2
). Dividing (2.5) by h yield

Un+1
j = Un

j −
k

h

[
F
(
Un
j , U

n
j+1

)
− F

(
Un
j−1, U

n
j

)]
(2.5)

with F the numerical flux defined by

F
(
Un
j , U

n
j+1

)
=

1

k

∫ tn+1

tn

f
(
ũn(xj+ 1

2
, t)
)
dt. (2.6)

Remark that the solution of the Riemann problem at the point xj+ 1
2

is a similarity

solution, which is constant along each ray
(
x − xj+ 1

2

)
/t = constant. Therefore ũn is

constant at xj+ 1
2

over the time interval
(
tn, tn+1

)
, which simplifies the integral in (2.6).

Denote u∗(Un
j , U

n
j+1) the constant value of ũn along the line x = xj+ 1

2
, then the flux

defined in (2.6) becomes

F
(
Un
j , U

n
j+1

)
= f

(
u∗(Un

j , U
n
j+1)

)
. (2.7)

We simplify our notation by using

Fj+ 1
2

= F
(
Un
j , U

n
j+1

)
, and Fj− 1

2
= F

(
Un
j−1, U

n
j

)
. (2.8)

Proposition 2.1 The Godunov method can be written in conservative form

Un+1
j = Un

j −
k

h

[
Fj+ 1

2
− Fj− 1

2

]
, (2.9)

with intercell numerical flux given by (2.8), if the time step k satisfies the following
condition

k ≤ h

λnmax
, (2.10)

where λnmax denotes the maximum wave velocity at time tn. For the proof of this proposition
we refer the reader to [10].
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2.0.2 The CFL Condition

In our numerical aspects, a necessary but not sufficient condition for the stability is going
to be the CFL (Courant, Friedrichs, and Lewy) condition [9, 10]. The idea is to define a
sequence of approximate solutions via finite difference equations, prove that they converge as
the grid is refined, and then show that the limit function must satisfy the partial differential
equation, giving existence of a solution, see e.g. [1, 9, 10] for more details. The CFL
condition is given by (2.10) above.

2.0.3 Consistency of the Godunov Method

Definition 2.0.3 We call the method (2.9) consistent with the original conservation law
if the numerical flux F reduces to the true flux f for the case of constant flow, i.e.,

F (U, ..., U) = f(U) ∀U ∈ R.

Now let Un
j = Un

j+1 ≡ ū, then since u∗(Un
j , U

n
j+1) depends only on the data Un

j and
Un
j+1 we get u∗(Un

j , U
n
j+1) = ū. Hence the Godunov flux F is consistent with f [9]. Here

we require some smoothness idea, so that as the two arguments F approach some common
value ū, the value of F approaches f(ū) in a smooth maner. For consistency it is sufficient
to have F a Lipschtz continuous function of each variable. By definition, F is said to be
Lipschitz at a point ū if there exists a constant C ≥ 0 such that, for all v, w with |v − ū|
and |w − ū| sufficiently small, the following inequality holds:

|F (v, w)− f(ū)| ≤ Cmax(|v − ū|, |w − ū|)

If F is Lipschitz at every point u ∈ R, then it is a Lipschitz continuous function.

Theorem 2.0.1 (Kruscov)
The scalar initial value problem

ut + f(u)x = 0, f ∈ C1(R)

u(x, 0) = u0(x), u0 ∈ L∞(R)

has a unique entropy [9] solution u ∈ L∞(R×R). This solution has the following prop-
erties:

i) L∞ stability property: ∣∣∣∣∣∣u(�, t)
∣∣∣∣∣∣
∞
≤

∣∣∣∣∣∣u0(�)∣∣∣∣∣∣
∞

ii) Monotonicity property:

u0(�) ≥ v0(�) ⇒ u(�, t) ≥ v(�, t)

iii) The total variation (TV) is conserved. Let BV denotes the space of functions with
bounded total variation. Then the following remains true for any time t inR+:

u0(�) ∈ BV ⇒ u(�, t) ∈ BV

in other words, TV (u0) ≥ TV (u(�, t)). The total variation can neither increase nor
decrease in time.
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iv) Conservation property:

u0 ∈ L1(R) ⇒
∫
R

u(x, t)dx

=

∫
R

u0(x)dx, t ∈ R+.

For more details we refer the reader to [30, 31, 34].
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Chapter 3

The LWR Model and Its Numerical
Solutions

To describe the dynamic characteristics of traffic on a homogeneous and unidirectional high-
way, Lighthill and Whitham (1955) and Richards (1956) independently proposed a first order
fluid approximation of traffic flow dynamics, known as LWR model in the literature of traffic
flow theory. This model describes the behavior of the traffic for a single one-way road using
three variables that vary in time and space: flow, q, density, ρ, and speed, v. The LWR is a
basic linear ordinary differential equation model of traffic flow that incorporates the idea of
equilibrium flow rate. Because of its simplicity and good explanatory power to understand
the qualitative behavior of road traffic, it is still widely used for the modeling of traffic flow
even if advances have been made in many directions. The results that are obtained from
the LWR model are generally adequate for many applications such as traffic management
and control problems [17]. As we have already said in the introductory chapter, the model
does not contain any inertial effects, which implies that the vehicles adjust their speeds
instantaneously, nor does it contain any diffusive terms, which would model the ability of
drivers to look ahead and adjust to changes in traffic conditions, such as shocks, before they
arrive at the vehicle itself.

3.1 Description of the Mathematical Model

Let us consider a car moving along a highway. Let x ∈ R be the coordinate along this
highway, and t ∈ R+ a time coordinate. In our notations, q = q(x, t) stands for the flow
rate or flux, i.e., the average number of cars passing per time unit, and ρ = ρ(x, t) denotes
the density of cars, that is, the number of cars per unit length. Now consider the flow of
cars on a highway without slip-roads and exits so that the model will conserve vehicles. Let
us fix a certain section [x1, x2] on this highway and two quite close times t1 < t2. Since
we have assumed no slip-roads and exits there exists no car sources. Therefore, no cars are
created or destroyed in the interval [x1, x2], then the changes in the number of cars result
from crossings at x = x1 and x = x2 only. We deduce that the same cars entered from
the point x1 at a certain time will exit from the point x2. Thus the difference of the the
total quantity of cars in the segment between the two considered instants must be equal to
the difference of the total flux at the endpoints

∫ x2

x1

(
ρ(x, t2)− ρ(x, t1)

)
dx =

∫ t2

t1

(
q(x1, t)− q(x2, t)

)
dt. (3.1)
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Now assume that ρ and q are regular (analytic and single-valued) functions in the con-
sidered interval. Dividing the integrals (3.1) by the product (x2 − x1)(t2 − t1) and taking
the limits x2 − x1 → 0 and t2 − t1 → 0, we finally obtain the conservation law:

∂ρ(x, t)

∂t
+
∂q(x, t)

∂x
= 0, (3.2)

In our further notations we would like to use the subscript t to replace the partial derivative
with respect to time t, and subscript x to replace the partial derivative with respect to
location x. The LWR theory proposed that the relation between flow and density observed
under steady state conditions also holds when flow and density vary with x and t, i.e., for
a homogenous highway:

q = Q
(
ρ(x, t)

)
,

where Q is a differentiable positive function of the density defined such that the flow
increased with increasing vehicle density until a maximum was reached, and decreased to
zero as the density increased further. Thus Q takes the form

Q(ρ) = ρV, (3.3)

Substituting (3.3) into (3.2) gives

ρt + (ρV )x = 0, (3.4)

which is the differential form of the conservation of density ρ, also known as continuity
equation, which relates the local traffic density ρ to the local average speed v(ρ) of the cars.
In order to obtain a scalar conservation law for density ρ alone, the average speed V at any
point of the road was defined as a regular strictly decreasing function of ρ:

V = V (ρ),

which makes sense since on a highway we would optimally like to drive at some speed vmax,
the maximum speed, but in a heavy traffic we slow down with velocity decreasing to 0 as
the density ρ approaches some fixed maximal density ρmax. Lighthill and Whitham and
independently Richards proposed this type of mathematical model of traffic flow. If there
are no other cars on the highway corresponding to very low traffic densities or free flow,
then the car would travel at the maximum speed vmax,

V (0) = vmax.

The maximal speed vmax is sometimes referred to as the ”mean free speed” corresponding
to the velocity that cars would travel if they were free from interference from other cars. At
a certain density cars stop before they touch to each other. This maximum density, ρmax,
usually corresponds to what is called bumper-to-bumper traffic or jam density:
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V (ρmax) = 0.

Lighthill and Whitham proposed a simple, but qualitatively reasonable linear dependence
of V (ρ) and ρ given by the following linear relation:

V (ρ) = vmax

(
1− ρ

ρmax

)
, (3.5)

then the flux in (3.3) takes the form

q(ρ) = ρvmax

(
1− ρ

ρmax

)
.

From this we expect to drive at the maximum speed vmax when the road is empty, but as
long as ρ approaches the maximal value ρmax when the cars are bumper-to-bumper density
we slow down to zero velocity.

Substituting (3.5) into (3.4) yields

ρt +
(
ρvmax

(
1− ρ

ρmax

))
x

= 0. (3.6)

This expression is known as LWR model.
Now define the flux function

f(ρ) = ρvmax

(
1− ρ

ρmax

)
, (3.7)

then the model (3.6) takes the general form

ρt +
(
f(ρ)

)
x

= 0, x ∈ R, t ∈ R+. (3.8)

Obviously, f ′′(ρ) < 0, thus f is concave. The characteristic speeds for (4.11) with flux
(3.7) are given by

f ′(ρ) = vmax

(
1− 2ρ

ρmax

)
Note that, depending on the value of density, characteristic speeds can be either positive
(∀ρ < ρmax

2
) or negative (∀ρ > ρmax

2
). They are zero if ρ = ρmax

2
.

From (3.8) discontinuities can develop in finite time t ∈ [0, T ], even from smooth
initial data (Lax, 1972). One therefore has to expand the class of solutions of hyperbolic
PDEs such as (3.8) to include discontinuous solutions. These discontinuous solutions are
called shock waves. On either side of a shock, the solution ρ(x, t) satisfies the differential
equation (3.8) in the classical sense, i.e., derivatives appearing in this equation: ∂t and ∂x
are continuous. Along the path of the shock Xs(t), however, the discontinuous states ρ`, ρr
satisfies the so-called Rankine-Hugoniot jump condition:

s[ρ] = [f(ρ)], (3.9)

13



where

[g(ρ)] := g(ρ`)− g(ρr),

is the jump of the function g(ρ) across the discontinuity (shock) and s = Ẋs(t) is the
shock speed, ρ` and ρr are the values of the density at the location to the left and right of
the shock, respectively. Furthermore, among the possible shocks whose speed satisfies the
Rankine Hugoniot jump condition, only those that absorb characteristics from both sides of
the shock path are admissible, i.e., the admissible shocks must satisfy the so called entropy
condition

f ′(ρ`) > s > f ′(ρr) (3.10)

Moreover, s < f ′(ρ`) < v, cars therefore enter the shock from left (behind) and drop
speed abruptly after crossing the shock. On the other hand, if ρ` > ρr a smooth solution,
called a rarefaction wave can be obtained from

f ′
(
ρ(β)

)
= β, β = x/t;

or

ρ(β) =
(
f ′
)−1(

β
)
, f ′(ρ`) < β < f ′(ρr).

We summarize this in the next sections; we discuss these two types of solutions mentioned
above in details, we will also discuss numerical solutions of the LWR model on one-lane
highway in the last section.

3.2 Analytical Solution of the LWR Model

Now let us turn our discussions to the Riemann problem for the LWR model (4.11) and
present the analytical solutions of this model. As we have already said, depending on the
choice of initial data we distinguish two types of solutions of the model, in general; these are
Lax-shock wave solution as well as rarefaction wave. In this section we discuss the details
of these solutions.

3.2.1 The Riemann Problem of the LWR Model

Consider the LWR model defined in (3.8) with the following piecewise constant initial
condition:

ρ(x, 0) =

{
ρ`, x < 0,

ρr, x > 0.
(3.11)

where ρ` and ρr are the values of the density ρ on the left and right side of the dis-
continuity at the point x = 0 respectively. The behavior of the solution ρ(x, t) at some
time t > 0 depends on the relation between these two initial states ρ` and ρr. To determine
the analytical solutions of the Riemann problem of the LWR model defined by (3.8) with
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Riemann data (3.11) and flow flux function f defined by (3.3), we start by differentiating
this equation to obtain

f ′(ρ) = vmax

(
1− 2ρ

ρmax

)
. (3.12)

This expression gives the characteristic speeds for the LWR model (3.8). This equation,
together with the entropy condition (3.10) imply that ρ` < ρr, that is, the upstream traffic
density is lower. Hence in this case the solution ρ(x, t) at some given time t > 0 will be
a shock wave satisfying the Lax-entropy condition (3.10). In the opposite case, i.e., when
ρ` > ρr we will have a rarefaction wave. Hence depending on the values of the Riemann
data, we distinguish the following two types of solutions for the LWR model:

Case I: 0 < ρ` < ρr < ρmax

This is the case when the upstream traffic density is lower. In this case there is a
unique entropy shock wave solution which satisfies the entropy condition (3.10), and
is given by

ρ(x, t) =

{
ρ`, x ≤ st,

ρr, x > st.
(3.13)

where s defines the shock speed and is computed from the Rankine Hugoniot condition
(3.9). Hence

s = vmax

(
1−

(ρ` + ρr
ρmax

))
(3.14)

is the speed at which the discontinuity will propagate. The shock may either propagate
to the left if s < 0, or to the right if s > 0, depending on how the Riemann data ρ`
and ρr are chosen.

Case II: 0 < ρr < ρ` < ρmax

In this case the solution is a similarity solution, i.e., solution that is a function of x/t
alone. This is usually known as a continuous rarefaction wave solution given by

ρ(x, t) =


ρ`, x/t ≤ β1,

w(x/t), β1 < x/t < β2,

ρr, x/t ≥ β2,

(3.15)

where w is a smooth function with w(β1) = ρ` and w(β2) = ρr. The explicit function
w(x/t) in the above expression is determined in the following procedure:

Set ρ(x, t) = w(x/t), and differentiate with respect to t and x, to obtain

ρt(x, t) = − x
t2
w′(x/t),

ρx(x, t) = −1

t
w′(x/t).

(3.16)
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Substituting (3.16) into (3.8) we get

− x
t2
w′(x/t) +

1

t
f ′
(
w(x/t)

)
w′(x/t) = 0.

We multiply this equation by t and rearrange the terms to obtain

f ′
(
w(β)

)
w′(β) = βw′(β), (3.17)

from which we can determine w(β) uniquely; here β = x/t as before. The solution ρ is
constant along all rays of the form x = βt. Solving equation (3.17) gives two solutions:
one possible solution is w′(β) ≡ 0, i.e., w is constant. Any constant function satisfies
(3.8), therefore, is its similarity solution. Indeed the rarefaction wave takes this form
for β ≤ β1 and β ≥ β2. For β1 < β < β2, w is smoothly varying and w′ 6= 0. Hence
From (3.17) we see that w solves

f ′
(
w(β)

)
= β, β1 < β < β2, (3.18)

which yields, using (3.12)

vmax

(
1− 2w

ρmax

)
= β,

and finally

w(β) =
ρmax

2

(
1− β

vmax

)
.

With this, the rarefaction wave (3.16) takes the form

ρ(β) =


ρ`, β ≤ f ′(ρ`),

w(β), f ′(ρ`) < β < f ′(ρr),

ρr, β ≥ f ′(ρr).

(3.19)

3.3 Numerical Solution Method for the LWR Model

In order to solve the LWR model numerically we propose to use the Godunov method that
is discussed in this section. We know from [9], that the Godunov (1959) method is sufficient
for solving hyperbolic systems of conservation laws. For the LWR model, therefore, we use
the Godunov-type difference equations to approximate it.

For our numerical simulations, we discretize the x− t plane by choosing, for simplicity,
a uniform mesh width h = ∆x in the scaled interval [−4, 4], and a time step k = ∆t in
the scaled interval [0, 3]. Define the discrete mesh points (xi, tn) by

xi = ih, i = ...,−1, 0, 1, 2, ...

tn = nk, n = 0, 1, 2, ...
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We discretize the time derivative using the forward differencing. Define the control volumes
or cells Vj as follows:

Vj =
[
xj− 1

2
, xj+ 1

2

)
, xj+1/2 = xj +

h

2
, j = 0,±1,±2, ...

Let ρ̄(x, t) be the solution of the following Riemann problem

ρ̄t + vmax

(
ρ̄
(

1− ρ̄

ρmax

))
x

= 0, −∞ < x <∞, t > tn, (3.20)

with initial value, i.e., the density at tn

ρ̄(x, tn) =

{
ρnj , x < xj+ 1

2
,

ρnj+1, x > xj+ 1
2
.

The solution of this Riemann problem is a similarity of the form

ρ̄(x, t) = ρR

(
β; ρnj , ρ

n
j+1

)
, β =

x− xj+ 1
2

t− tn
.

Clearly, β = 0 for x = xj+ 1
2
, hence the numerical flux is defined by

F
(
ρnj , ρ

n
j+1

)
= f

(
ρR

(
0; ρnj , ρ

n
j+1

))
(3.21)

where f(ρ̄) is the flux function and can be easily obtained from (3.20)

f(ρ̄) = ρ̄vmax

(
1− ρ̄

ρmax

)
. (3.22)

We obtain the following numerical fluxes:

• For ρnj < ρnj+1, the solution is a shock wave moving with speed snj defined by

snj = vmax

[
1− 1

ρmax

(
ρnj + ρnj+1

)]
and the numerical flux reduces to

F
(
ρnj , ρ

n
j+1

)
=

{
ρnj v

n
j , 0 < snj ,

ρnj+1v
n
j+1, 0 > snj .

Here we denote V n
j for the velocity at time tn on the left side of the discontinuity:

vnj = vmax

(
1−

ρnj
ρmax

)
.
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• On the other hand, for ρnj > ρnj+1, we have a rarefaction wave and the numerical flux
is given by

F
(
ρnj , ρ

n
j+1

)
=


ρnj v

n
j , 0 < λnj ,

1
4
ρmaxvmax, λnj < 0 < λnj+1,

ρnj+1v
n
j+1, λnj+1 > 0,

with

λnj = f ′(ρnj )

= vmax

(
1− 2

ρnj
ρmax

)
.

With the above numerical flux we define the Godunov scheme for LWR model by

ρn+1
j = ρnj −

k

h

[
F
(
ρnj+1, ρ

n
j

)
− F

(
ρnj−1, ρ

n
j

)]
. (3.23)

We now need to specify the CFL (Courant Friedrichs and Lewy) condition for the stability
of our numerical solutions. This is already defined in (2.10) in the introductory chapter.
In our numerics we chose

∣∣∣∆t
∆x

f ′
(
ρnj

)∣∣∣ = 0.99,

that is,

∣∣∣∆t
∆x

vmax

(
1− 2

ρnj
ρmax

)∣∣∣ = 0.99.

for all ρnj . Note that the value vmax

(
1 − 2

ρnj
ρmax

)
is always bounded from above by vmax for

any value of ρnj . Therefore, ∆t is chosen to be

∆t = 0.99×∆x/vmax.

3.3.1 Numerical Examples

We present different choices of Riemann data that lead us to both shock and rarefaction
waves. We start with simple computations under the assumptions: ρmax = 1 and vmax = 1,
and then later we discuss a more realistic problem where the highway will be considered in
km and the maximum velocity vmax chosen in km/h.

(i) Simple Case

Now let ρmax = 1 and vmax = 1. We assume the uniform grid spacing with step size
h = 0.01, for space and ∆t for time is deduced from the CFL condition defined above.
Hence ∆t = 99× 10−4, since vmax = 1.

18



Initial condition 3.1 Consider an end of the traffic with stationary cars on the right, i.e.,
vr = 0. The corresponding initial condition is given by

ρ(x, 0) =

{
0.4, x < 0,

1, x > 0.
(3.24)

The corresponding exact solution to this Riemann problem is a shock wave moving at
speed s = −0.4 and propagates to the left. From (3.5) we have a positive speed of cars
from the left, v` = 0.6, and stationary cars on the right, i.e., vr = 0. This models the
situation in which cars moving at positive speed of 0.6 from the left unexpectedly encounter
a bumper-to-bumper traffic jam and slam on their brakes, instantaneously reducing their
velocity to 0, while the density jumps from 0.4 to 1. This discontinuity occurs at the shock,
and clearly the shock location moves to the left as more cars join the traffic jam. From the
numerical results of this problem we observe that the exact shock computed in (3.13) is
well captured by our numerical scheme with the refined mesh size, in our case ∆x = 0.01.
See the numerical results plotted in Figure 3.1.

(a) Evolution of density (b) Evolution of velocity

Figure 3.1: Solution of the LWR model with data ρ` = 0.4 and ρr = 1. Here the black
solid line is the initial state, the blue line represents the solution at t = 1, the green line
is the solution at t = 2, and the red line is the solution at t = 3. The dashed-lines are the
corresponding exact solutions.

Initial condition 3.2 Now let us consider the following initial value

ρ(x, 0) =

{
0.2, x < 0,

0.6, x > 0.
(3.25)

Since ρ` < ρr, the exact solution to this Riemann problem is again a shock wave but
moving forward with positive speed s = 0.2. The numerical results are presented in Figure
3.2.

Initial condition 3.3 We now turn to the rarefaction case where cars are more concen-
trated on the left side of the discontinuity. We start with the initial state
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(a) Evolution of density (b) Evolution of velocity

Figure 3.2: Solution of the LWR model with data ρ` = 0.2 and ρr = 0.6. Here the black
solid line is the initial state, the blue line represents the solution at t = 1, the green line
is the solution at t = 2, and the red line the solution at t = 3. The dashed-lines are the
corresponding exact solutions.

ρ(x, 0) =

{
1, x < 0,

0.5, x > 0.
(3.26)

This state model the situation in which cars start moving a light turns green. In this
situation we obtain from (3.5), the velocity v` = 0 and vr = 0.5. This means that cars
located to the left are initially stationary but can begin to accelerate once the cars in front
of them begin to move. The exact solution of this problem is a left-going rarefaction wave of
the form discussed in (3.19) and the corresponding numerical solutions are shown in Figure
3.3.

Initial condition 3.4 Consider the initial state

ρ(x, 0) =

{
0.8, x < 0,

0.2, x > 0.
(3.27)

Here we again have for the exact solution to this Riemann problem, a rarefaction wave
going to the left with speed f ′(ρ`) = −0.6 and to the right with speed f ′(ρr) = 0.6. See
Figure 3.4 for the numerical results.

Initial condition 3.5 Here the tail of a group of moving cars following an empty road in
front is studied. We set the initial data as

ρ(x, 0) =

{
0.5, x < 0,

0, x > 0.
(3.28)

The exact solution of this Riemann problem is a right-going rarefaction wave. See Figure
3.5 for both exact (dashed-lines) and numerical solutions.
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(a) Evolution of density (b) Evolution of velocity

Figure 3.3: Solution of the LWR model with data ρ` = 1 and ρr = 0.5. Here the black
solid line is the initial state, the blue line represents the solution at t = 1, the green line
is the solution at t = 2, and the red line the solution at t = 3. The dashed-lines are the
corresponding exact solutions.

(a) Evolution of density (b) Evolution of velocity

Figure 3.4: Solution of the LWR model with data ρ` = 0.8 and ρr = 0.2. Here the black
solid line is the initial state, the blue line represents the solution at t = 1, the green line
is the solution at t = 2, and the red line the solution at t = 3. The dashed-lines are the
corresponding exact solutions.

Initial condition 3.6 Finally we study the case of moving cars on the right followed by
an empty road in behind. The corresponding initial state is

ρ(x, 0) =

{
0, x < 0,

0.5, x > 0.
(3.29)

We obtain a shock wave moving to the right with speed s = 0.5. From the numerical
results, the empty road behind does not influence moving cars to the right. See Figure 3.6.

From these numerical solutions we can see the formation of shock waves and rarefaction
waves. These solutions are only an approximation of real solutions. For instance, the
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(a) Evolution of density (b) Evolution of velocity

Figure 3.5: Solution of the LWR model with data ρ` = 0.5 and ρr = 0. Here the black
solid line is the initial state, the blue line represents the solution at t = 1, the green line
is the solution at t = 2, and the red line the solution at t = 3. The dashed-lines are the
corresponding exact solutions.

(a) Evolution of density (b) Evolution of velocity

Figure 3.6: Solution of the LWR model with data ρ` = 0 and ρr = 0.5. Here the black
solid line is the initial state, the blue line represents the solution at t = 1, the green line
is the solution at t = 2, and the red line the solution at t = 3. The dashed-lines are the
corresponding exact solutions.

solutions after t = 0 are not exact jumps, while the theoretical solution to the LWR model
with initial conditions (3.11) is still a jump at any time t. However, as h → 0 and k → 0
numerical solutions converge to the exact solutions.

(ii) Realistic Problem

Now we extend the above results by considering a highway in a range of 16 × 103 meters
in spatial grig points with step size ∆x = 160 meters and velocities are measured in m/s.
In all numerical experiments performed in this sub-section the maximum density ρmax is
estimated to be ρmax = 1. We consider different situations to investigate the effects of the
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maximum velocity vmax on the behavior of the density profile. We want to simulate the
traffic flow for a considered highway within six minutes.

• Let us fix vmax = 20m/s and consider the initial densities as above, i.e., from (3.1)
to (3.4). In this case the velocities in the previous case are scaled by a factor vmax.
Numerical results are plotted in Figure 3.7.

(a) Evolution of density (b) Evolution of velocity

Figure 3.7: Solution of the LWR model with data ρ` = 0.4 and ρr = 1, and vmax = 20. Here
the black solid line is the initial state, the blue line represents the solution at 2 minutes, the
green line is the solution after 4 minutes, and the red line the solution after 6 minutes. The
dashed-lines are the corresponding exact solutions.

(a) Evolution of density (b) Evolution of velocity

Figure 3.8: Solution of the LWR model with data ρ` = 0.2 and ρr = 0.6, and vmax = 20. Here
the black solid line is the initial state, the blue line represents the solution at 2 minutes, the
green line is the solution after 4 minutes, and the red line the solution after 6 minutes. The
dashed-lines are the corresponding exact solutions.
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(a) Evolution of density (b) Evolution of velocity

Figure 3.9: Solution of the LWR model with data ρ` = 1 and ρr = 0.5, and vmax = 20. Here
the black solid line is the initial state, the blue line represents the solution at 2 minutes, the
green line is the solution after 4 minutes, and the red line the solution after 6 minutes. The
dashed-lines are the corresponding exact solutions.

(a) Evolution of density (b) Evolution of velocity

Figure 3.10: Solution of the LWR model with data ρ` = 0.8 and ρr = 0.2, and vmax = 20.
Here the black solid line is the initial state, the blue line represents the solution at 2 minutes,
the green line is the solution after 4 minutes, and the red line the solution after 6 minutes.
The dashed-lines are the corresponding exact solutions.
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(a) Evolution of density (b) Evolution of velocity

Figure 3.11: Solution of the LWR model with data ρ` = 0.5 and ρr = 0, and vmax = 20. Here
the black solid line is the initial state, the blue line represents the solution at 2 minutes, the
green line is the solution after 4 minutes, and the red line the solution after 6 minutes. The
dashed-lines are the corresponding exact solutions.

(a) Evolution of density (b) Evolution of velocity

Figure 3.12: Solution of the LWR model with data ρ` = 0 and ρr = 0.5, and vmax = 20. Here
the black solid line is the initial state, the blue line represents the solution at 2 minutes, the
green line is the solution after 4 minutes, and the red line the solution after 6 minutes. The
dashed-lines are the corresponding exact solutions.
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Chapter 4

Aw-Rascle Model of Traffic Flow

This chapter discusses the Aw and Rascle [2] (shortly Aw-Rascle) model, considered as an
extension to the LWR model, in order to incorporate second-order effects. The Aw-Rascle
model describes the traffic flow as a system of two partial differential equations describing
evolutions of traffic density and momentum. From the literature, see e.g., [20], this model
was designed to model the anisotropic traffic behavior, and incorporated the idea that the
speed of each car does not change instantaneously and that drivers could look only ahead,
determine the condition of the road in front of them and don’t care about what happens
behind.

The Aw-Rascle model is a purely nonlinear hyperbolic system of two conservation laws,
hence a second-order model, in which no relaxation term is involved. We consider a well-
posed initial value problem, which means, given the initial concentration of cars and velocity
at any point x of the space, these two functions are defined for all future time t ≥ 0 and any
x, in a unique way and depend on the initial data. This means that, a small perturbation
of the initial data produces only a small perturbation of the future solution.

4.1 Mathematical Model

The Aw-Rascle model is defined by the following system, (see [2] for more details):

∂tρ+ ∂x(ρv) = 0,

∂t

(
v + p(ρ)

)
+ v∂x

(
v + p(ρ)

)
= 0.

(4.1)

The first equation describes the conservation of mass, with ρ and v being, respectively,
the density and the velocity of the car at point x and time t, whereas the second equation
expresses the momentum equation, with a pressure law p = p(ρ) considered as an increasing
function of the density:

p = ργ, γ > 0. (4.2)

One may be interested on the behavior of this function p near the vacuum and the strict
convexity of the function ρp(ρ). All our results in this work are valid under the following
assumptions:

p ∼ ργ, near ρ = 0, γ > 0, and ∀ρ, ρp′′(ρ) + 2p′(ρ) > 0. (4.3)
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Rewriting (4.1) under the form

∂tU + A(U)∂xU = 0,

where U := (ρ, v), one can easily verify that the Jacobian matrix

A(U) =

(
v ρ
0 v − ρp′(ρ)

)
,

has real eigenvalues

λ1 = v − ρp′ ≤ λ2 = v. (4.4)

distinct except for ρ = 0 i.e., at vacuum. Therefore, the system (4.1) is strictly hyper-
bolic, except for ρ = 0, where the two eigenvalues are equal, and the matrix A(U) is no
longer diagonalizable. The corresponding eigenvectors are

R1(U) =

(
1

−p′(ρ)

)
,

which corresponds to the eigenvalue λ1(U), and

R2(U) =

(
1
0

)
,

corresponding to λ2(U). Due to the inequalities on the eigenvalues of the solution U (4.4)
we observe that no wave travels faster than the speed of the vehicles v.

Definition 4.1.1 Let λ1 < λ2 < ... < λn be n distinct real eigenvalues of the Jacobian
matrix A. Since A depends on the solution U, so do the eigenvalues λp, p = 1, 2, ..., n, and
the corresponding eigenvectors rp. Let ∇ denote the gradient with respect to U. Then an
eigenvalue λp is called genuinely nonlinear [8], if the function

∇λp(U) · rp(U) 6= 0, for all values of U,

in other words if ∇λp(U) is not orthogonal to the corresponding eigenvector rp. If on the
other hand

∇λp(U) · rp(U) ≡ 0, for all values of U,

we call the p− th characteristic field linearly degenerate.

For the system (4.1), we have

∇λ1(U) ·R1(U) = −(2p′ + ρp′′) 6= 0, by (4.3),

∇λ2(U) ·R2(U) ≡ 0, ∀ U.
(4.5)

Therefore, the eigenvalue λ1(U) is genuinely nonlinear, whereas λ2 is linearly degenerate
( in the sense of (4.1.1).) Thus, depending on the data, the waves of the first family will be
either shocks or rarefaction waves, while the waves of the second family will always be contact
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discontinuities, i.e., waves whose propagation speed is always equal to the corresponding
eigenvalue.

We know [2] that nonlinear hyperbolic systems admit discontinuous solutions that only
make sense if the system is written in a conservation law [9, 10]. Hence, multiplying the
first equation of system (4.1) by v + p(ρ) and the second one by ρ yields

(v + p(ρ))∂tρ+ (v + p(ρ))∂x(ρv) = 0,

ρ∂t

(
ρ(v + p)

)
+ ρ∂x

(
ρv(v + p)

)
= 0.

Then adding the these two equations gives

∂t

(
ρ(v + p)

)
+ ∂x

(
ρv(v + p)

)
= 0,

together with the mass equation we obtain the following conservative system:

∂tρ+ ∂x(ρv) = 0,

∂t

(
ρ(v + p)

)
+ ∂x

(
ρv(v + p)

)
= 0.

(4.6)

This is equivalent to the non-conservative system (4.1). With the choice of the pressure
function (4.2) the model satisfies the following five principles [2]:

• Principle A: the system (4.6) must be hyperbolic.

• Principle B: when solving the Riemann problem associated with (4.6) and a given
arbitrary bounded nonnegative Riemann data in a convex invariant region Ω, (will be
defined later) of the plane, the density and the velocity must remain nonnegative and
bounded from above all time.

• Principle C: in solving the same Riemann problem with arbitrary data U0 = (U`, Ur),
all waves connecting any state U = (ρ, v) behind it must have a propagation speed
(shock speed or eigenvalue) at most equal to the velocity v of the cars.

• Principle D: the solution to the Riemann problem must agree with the qualitative
properties that each driver observes every day in practice. Braking produces shock
waves, whose propagation speed can be either negative or positive, whereas accelerat-
ing produces rarefaction waves which in any case satisfy Principle C above.

• Principle E: near the vacuum, the solution to the Riemann problem must be very
sensitive to the data, i.e., there must be no continuous dependence with respect to the
initial data at ρ = 0.

4.2 The Riemann Problem of the Aw-Rasle Model

Now let us introduce a new conservative variable

y := ρv + ρp(ρ). (4.7)

With this, system (4.6) can be rewritten in the following form
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∂tρ+ ∂x(ρv) = 0,

∂ty + ∂x(yv) = 0.
(4.8)

This can be rewritten in the matrix form, by setting U := (ρ, y), as follows

Ut + f(U)x = 0,

with flux function f(U) = (ρv, yv).

We want to solve the Riemann problem [1, 9, 10] of the Aw-Rascle model associated
with the system (4.8) and with the following piecewise initial condition having a single
discontinuity around the space coordinate x = 0

U(x, 0) =

{
U`, if x < 0,

Ur, if x > 0.
(4.9)

In our notations, the initial state components are U` = (ρ`, y`), and Ur = (ρr, yr).
According to [7], the Riemann problem is solved by a combination of two families of waves:
1-waves corresponding to the first eigenvalue λ1 and 2-waves corresponding to λ2.

4.2.1 Wave Solutions of the Riemann Problem of the Aw-Rascle
Model

We now turn to the study of piecewise continuous solutions of (4.8) associated with (4.9).
Each of the 2 conservation laws must satisfy the Rankine-Hugoniot jump condition [10].
We now have

s[Uk] = [fk], k = 1, 2, (4.10)

must hold across every discontinuity, where [g] := gr−gl denote the jump of any quantity
g through the discontinuity, and s is the propagation speed of the discontinuity. In the above
late notation, index k specifies the component of U and f, and condition (4.10) must hold
for each component. Next we formulate an entropy condition for the defined Riemann
problem that requires all characteristics on either side of a discontinuity to run into the line
of discontinuity, which is the case if the characteristic speed on the left is greater, on the
right less, than s [7, 8, 10]. This gives the mathematical inequalities

λ(U`) > s > λ(Ur).

For the kth field we require that for some index k = 1, 2 in our case study,

λk(U`) > s > λk(Ur),

λk−1(U`) < s < λk+1(Ur).
(4.11)

Definition 4.2.1 Waves with wave speed λk are called k-waves. A discontinuity across
which (4.10) and (4.11) are satisfied is called a k-shock.

In the following section, we describe 1-shock waves i.e., those waves where Ur and U`
differ little; it is understood that U` is to the left of Ur, and 1-rarefaction waves as well as
2-contact discontinuity, by giving their analytical expressions.
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Elementary Wave Solutions of the Riemann Problem

In order to solve the Riemann problem, we first need to compute the Riemann invariants in
the sense of Lax [8] associated with each eigenvalue λk, k = 1, 2.

Definition 4.2.2 [8]
A scalar function w of U is called a 1-Riemann invariant in the sense of Lax if

∇w · r1 ≡ 0, (4.12)

and we call z = z(U) a 2-Riemann invariant in the sense of Lax if

∇z · r2 ≡ 0. (4.13)

Now using the expressions of r1 and r2 here we obtain

w(U) = v + p(ρ), (4.14)

z(U) = v.

According to the genuinely nonlinearity of the eigenvalue λ1(U), the Riemann problem
may have 1-shock and 1-rarefaction waves. These are called waves of the first family, in
order words, waves with speed λ1(U).

(a) 1-shock waves:

From (4.11), the 1-shock waves satisfy the following Lax entropy condition:

λ1(Ur) < s < λ1(U`), s < λ2(Ur), (4.15)

where the shock wave speed s is determined by the Rankine-Hugoniot jump condition
(4.10).

s[ρ] = [ρv],

s[y] = [yv],
(4.16)

which is a system of two equations with three unknowns: ρ, y and s. In order to solve
this system we will have to express s and y in terms of the density ρ. Solving for s
from these two equations yields

[ρv]

[ρ]
= s =

[yv]

[y]
,

equivalent to

ρrvr − ρ`vl
ρr − ρ`

=
yrvr − y`v`
yr − y`

.

This gives

y`ρrvr + yrρ`v` = yrρ`vr + y`ρrv`
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Rearranging the terms and dividing each by ρrρ` gives(y`
ρ`
− yr
ρr

)
(vr − v`) = 0.

Therefore, there are two cases to be considered:

(i) if vr − v` 6= 0, then
yr
ρr

=
y`
ρ`
,

From (4.7) this is equivalent to

vr + ργr = v` + ργ` ,

or by (4.14)

w(Ur) = w(U`).

This determines the curve of a 1-shock wave connecting the states U`, given on
the left side of the discontinuity, to the state Ur on the right side.

In general, a given state U` to the left can be connected to any other state U to
the right by a 1-shock wave if and only if

w(U) = w(U`) (4.17)

with w(U) already defined in (4.14). This is equivalent to

v + ργ = v` + ργ` . (4.18)

(ii) if vr − v` = 0, then

vr = vl. (4.19)

This case corresponds to a contact discontinuity of the second family.

(a) Rarefaction Waves

The Riemann problem of our model has the property that the solution U is constant
along all rays of the form x = βt. From this we have a new variable β = x/t. As a
consequence, the solution is a function of x/t alone, and is called a similarity solution
of the PDE. Therefore, the solution u(x, t) is only a function of β. Let us note this
using u(x, t) = w(β) which gives after substitution into the equation (give reference of
the equation here)

(
f ′(w)− β

)
w′ = 0, (4.20)

with w = w(β). One possible solution of (4.20) is w′ = 0, which gives w is constant.
Any constant function is a similarity solution of the conservation law, and indeed the
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rarefaction wave takes this form for β < β1, and β < β2, for some constants β1 and β2
being specified later. One may think of what happens in between. For β1 < β < β2,
the function w is smoothly varying and w′ 6= 0. Note that (4.20) can also be written
in an eigenvalue problem as follows:

f ′(w)w′ = βw′, (4.21)

which says that w′ is proportional to some eigenvector rp(w) of f ′(w). This implies

w′ = α(β)rp(w), (4.22)

where α(β) is a proportionality factor. Hence the values w all lie along some integral
curve of rp [9]. In particular, the states u` = w(β1) and ur = w(β2) both lie on the
same integral curve. This is a necessary condition for the existence of a rarefaction
wave connecting states u` to ur, but this is not sufficient. We also need β = x/t to
be monotonically increasing as w(β) moves from u` to ur, along the integral curve
in order to have a single-valued rarefaction wave. Form (4.21) we see that β is an
eigenvalue of f ′(w), that is,

β = λp(w). (4.23)

This implies that w is constant along the ray x = λp(w)t, and hence each constant
value of w propagates with speed λp(w). By (4.23), monotonicity of η simply implies
monotonicity of λp(w) as w moves from u` to ur. From a given state u` we can move to
another state ur along the integral curve only in the direction in which λp is increasing.
If λp has a local maximum at u`, then there is no rarefaction waves with this left state
[9]. Now let us explicitly determine the function w(β). To do this, we first need to
determine the scalar factor α(β) appearing in (4.22) by differentiating

A given state U` to the left can be connected to any state U to the right by a 1-
rarefaction wave if and only if

y

ρ
=

y`
ρ`
,

λ1(U) = β.

which is equivalent to

v + ργ = v` + ργ` ,

v − γργ = β.
(4.24)

4.2.2 Analytical Solutions and Examples

We briefly discuss the 5 general cases of the Riemann data we should consider for the Rascle
model. Note that all these cases can also be found in [2]. As a remainder, we mostly use the
notations U` = (ρ`, y`) to represent the left state, Um = (ρm, ym) is the intermediate state,
and Ur = (ρr, yr) stands for the right state. The goal of this section is to first connect the
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given left state U` to a determined middle state Um by a wave of the first family and then
connect this intermediate state Um to the right state Ur by a contact discontinuity of the
second family. Equivalently, one may also go the other way around, to start from Ur and to
arrive at U`. In any of these cases, the 1-wave is a rarefaction wave if ρm < ρ` or is a Lax
shock wave in the opposite case, except if the vacuum state (i.e. if ρ = 0 ) is involved, since
at the vacuum the two eigenvalues are equal, thus some of the inequalities in (4.15) become
equalities.

Case 1: ρ` > 0, ρr > 0, 0 ≤ vr ≤ v` :

In this case we have a unique solution U(x, t) that consists of a 1-shock wave connecting
the state U` given to the left to the intermediate state Um followed by a 2-contact
discontinuity connecting Um to the state Ur on the right. Here the 1-shock must satisfy
the shock curve defined in (4.18) and the contact discontinuity satisfies (4.19). The
goal here is to solve for the intermediate state Um which satisfies the following two
equations simultaneously:

vm + ργm = v` + ργ` ,

vm = vr,

which gives

ρm = (v` − vr + ργ` )
1/γ,

vm = vr.
(4.25)

Thus the solution U(x, t) takes the form

U(x, t) =


U`, β ≤ s,

Um, s < β ≤ vr,

Ur, β > vr,

(4.26)

with β = x/t and s the shock speed computed from the Rankine-Hugoniot condition
(4.10)

s =
ρmvm − ρ`v`
ρm − ρ`

. (4.27)

Case 2: ρ` > 0, ρr > 0, v` ≤ vr ≤ v` + ργ`

Here the solution U(x, t) consists of a 1-rarefaction wave connecting the state U` given
to the left to the intermediate state Um followed by a 2-contact discontinuity connecting
Um to the state Ur on the right, where the 1-rarefaction wave satisfies the rarefaction
curve (4.24). Therefore the solution is defined by

U(x, t) =


U`, β ≤ λ1(U`),

U∗, λ1(U`) < β ≤ λ1(Um),

Um, λ1(Um) < β ≤ vr,

Ur, β > vr,

(4.28)
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where ρm and vm are given by (4.25), and ρ∗, y∗ solves (4.24), that is,

v∗ + ρ∗γ = v` + ργ` ,

v∗ − γρ∗γ = β.
(4.29)

This gives

ρ∗ =
( 1

γ + 1
(v` + ργ` − β)

)1/γ
,

v∗ =
1

γ + 1

(
β + γ(v` + ργ` )

)
,

(4.30)

Case 3: ρ` > 0, ρr > 0, v` + ργ` < vr

In this case the intermediate state is the vacuum wave with vacuum states let us say
U1 and U2. Thus the solution U(x, t) consists of a 1-shock wave connecting the left
state U` to Um followed by a vacuum wave which connect U1 and U2, followed by a
2-contact discontinuity connecting U2 to the state Ur on the right. Again the 1-shock
must satisfy (4.18) and the contact discontinuity satisfies (4.19).

U(x, t) =


U`, x ≤ λ1(U`)t,

U∗, λ1(U`)t < x ≤ λ1(U1)t,

Um, λ1(U1)t < x ≤ λ2(U2)t,

Ur, x > λ2(U2)t,

In contrast to Case 2, here the intermediate state Um = (0, 0). The rarefaction state
U∗ = (ρ∗, y∗) is already defined in (4.30) above. The vacuum state U1 is the intersec-
tion of the curve w(U) = w(U`) with the axis ρ = 0, this gives v1 = v` + ργ` . The state
U2 is the point of coordinates ρ2 = 0, v2 = vr. In other words, U1 = (0, v` + ργ` ) and
U2 = (0, vr).

This gives

U(x, t) =


U`, x ≤ (v` − γργ` )t,
U∗, (v` − γργ` )t < x ≤ (v` + ργ` )t,

Um, (v` + ργ` )t < x ≤ vrt,

Ur, x > vrt,

(4.31)

Case 4: ρ` > 0, ρr = 0

In this case we connect the Riemann datum U` on the left to the origin Ur = (0, 0),
on the right. This case is similar to Case 3, but now there is no need to add a contact
discontinuity since the state on the right is the origin, which is on the rarefaction curve
issued from the left state. Therefore, the solution U(x, t) is only a 1-rarefaction wave
given by

U(x, t) =


U`, x ≤ (v` − γργ` )t,
U∗, (v` − γργ` )t < x ≤ (v` + ργ` )t,

Ur, x >≤ (v` + ργ` )t,

(4.32)

with Ur = (0, 0).
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Case 5: ρ` = 0, ρr > 0

Here the Riemann datum Ur on the right will be connected to the vacuum state on
the left by a 2-contact discontinuity. This case is similar to Case 1, but now the wave
of first family has disappeared.

The solution U(x, t) is given by a single contact discontinuity moving at the speed of
the leading cars and takes the following form

U(x, t) =

{
U`, x ≤ vrt,

Ur, x > vrt,
(4.33)

but U` = (0, 0), and the shock speed s = vr.

4.3 Numerical Implementation of the Godunov Method

We now discuss how to get a stable, convergent and efficient numerical method. In a linear
hyperbolic system, Godunovs method is stable and convergent if the Courant-Friedrichs-
Lewy (CFL) number is less than unity. Similarly we require the CFL number be less than
unity for Aw-Rascle model. In all our numerics we use

k

h

(
max

∣∣∣λi(Un
j )
∣∣∣) = 0.99, i = 1, 2 (4.34)

where the maximum is taken over all j = 1, ..., Nx in order to get the maximum wave
velocity throughout the domain at time tn. In the Aw-Rascle model we have

λ1(U
n
j ) = vnj − γρnj ,

λ2(U
n
j ) = vnj .

The solution to the Riemann problem is important both theoretically and computation-
ally. One can compute the numerical solutions when all Riemann problems are well-posed
and solvable at each step of the iteration. However, when the left and right states for a
Riemann problem are far from each other, the intermediate state Um for the wave solutions
may be out of the domain of validity, e.g., ρm < 0. In this case, we have a vacuum problem
and hence the numerical solutions cannot be uniquely determined. The cost of solving the
Riemann problem determines the computational efficiency of the numerical method. Like in
the LWR model, we also use the Godunov method to numerically simulate the Aw-Rascle
model.

4.3.1 The Godunov Method

In contrary to the LWR model, the Aw-Rascle model is a system of two equation and its
flux function

f(U) =

[
ρv
yv

]
(4.35)
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is a vector of two components. Hence its corresponding numerical Godunov flux is also
a vector of two components, let us say

FG(U) =

[
H(U)
G(U)

]
Here the first component H is associated with the flux of the first conservative variable

ρ, and the second component G corresponds to the second variable y. Define the control
volumes or cells Vj as follows

Vj =
[
xj− 1

2
, xj+ 1

2

)
, xj+1/2 = xj +

h

2
, j = 0,±1,±2, ...

Let Ū(x, t) be the solution of the following Riemann problem

Ūt + f(Ū)x = 0,

where f is defined by (4.35) above. Associate this problem with the following initial
value

Ū(x, tn) =

{
Un
j , x < xj+ 1

2
,

Un
j+1, x > xj+ 1

2
.

The solution of this Riemann problem is a similarity of the form

Ū(x, t) = UR

(
β;Un

j , U
n
j+1

)
, β =

x− xj+ 1
2

t− tn
.

Clearly, β = 0 for x = xj+ 1
2
, hence the numerical flux is defined by

FG

(
Un
j , U

n
j+1

)
= f

(
UR

(
0;Un

j , U
n
j+1

))
. (4.36)

Defining the numerical flux components

Hn
j = H(ρnj , ρ

n
j+1), Hn

j−1 = H(ρnj−1, ρ
n
j ),

Gn
j = G(ynj , y

n
j+1), Gn

j−1 = G(ynj−1, y
n
j )

then the Godunov scheme applied to solve the Rascle model is solving the following finite
differences equations simultaneously:

ρn+1
j = ρnj −

k

h

(
Hn
j −Hn

j−1

)
,

yn+1
j = ynj −

k

h

(
Gn
j −Gn

j−1

)
,

(4.37)

Remember that here h stands for the grid mesh size and k represents the time step size.
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4.3.2 Numerical Examples

We now present our numerical results for the Aw-Rascle model. We first consider a simple
case of the Aw-Rascle model, in which parameters ρmax and vmax are chosen to be unit.
Then after we extend our results from this simple case to a realistic case where parameters
in the model are chosen to be realistic data; here we consider the highway to be measured in
meters and velocity in m/s. In all cases we study different Riemann problems and present
the results for two different choices of γ : we propose γ = 1 and γ = 2. As an exercise we
checked the performance of the proposed numerical scheme by performing various numerical
tests with two different mesh sizes: ∆x = 0.01 and ∆x = 0.002. Note that only numerical
results for ∆x = 0.01 are presented in this thesis.

(i) Simple case

In this simple case we fix vmax = 1. We prefer to describe the legend of the plots presented
in this case as follows: the black solid line represents the initial state of the Rascle model,
the blue solid line is the density profile at t = 2, the green solid line is the density profile
at t = 4, the red solid line represents the density at t = 6, the dashed-line represents the
exact density at t = 2, the dotted-line is the exact density at t = 4, and finally the exact
density at t = 6 is manifested by the dashed-dotted line. For our study we propose different
Riemann problems presented here below.

Initial condition 4.1 Now consider the following initial state:

ρ(x, 0) =

{
0.5, x < 0,

0.8, x > 0,
v(x, 0) =

{
0.6, x < 0,

0.4, x > 0.
(4.38)

Since vr < v`, then the exact solution of this Riemann problem is a shock wave described
in (4.33) traveling with negative speed, i.e., the wave moves to the left, followed by a contact
discontinuity moving to the right with the speed of the leading cars vr = 0.4. Both numerical
and exact results are plotted at different proposed times in Figure 4.1.

From these results we observe a small change in the density profile which results in
change of velocity profile. With γ = 1 the shock moves to the left at speed s = 0.10 and
intermediate state in this case is ρm = 0.7. This slightly decreases to ρm = 0.67 for γ = 2,
and the shock speed is increased to s = 0.185, still moving to the left.

Initial condition 4.2 Consider the following Riemann data

ρ(x, 0) =

{
0.8, x < 0,

0.6, x > 0,
v(x, 0) =

{
0.6, x < 0,

1, x > 0.
(4.39)

In Figure 4.2 we present both exact and numerical solutions of this Riemann problem.
The exact solution is a rarefaction wave followed by a contact discontinuity moving to the
right with the chosen maximum speed vr = 1, and the corresponding numerical solutions
are plotted at different times. We observe from these results that the contact discontinuity
is well approximated by the Godunov scheme proposed in this thesis.
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Figure 4.1: Solution of the Rascle model with Riemann data ρ` = 0.5, v` = 0.6, ρr =
0.8, vr = 0.4. On the top from left to right, density profiles with γ = 1 and γ = 2, respectively,
are plotted and their corresponding velocity profiles at the bottom.
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Figure 4.2: Solution of the Rascle model with Riemann data ρ` = 0.8, v` = 0.6, ρr =
0.6, vr = 1. On the top from left to right, density profiles with γ = 1 and γ = 2, respectively,
are plotted and their corresponding velocity profiles at the bottom.
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Initial condition 4.3 Here the case of faster cars on the right followed by slower ones in
behind is considered. The corresponding data are

ρ(x, 0) =

{
0.4, x < 0,

0.1, x > 0,
v(x, 0) =

{
0.1, x < 0,

0.9, x > 0.
(4.40)

The exact solution of the Rascle model is now given by a rarefaction wave connected
to a vacuum state, which followed by a contact discontinuity going to the right. For this
problem our numerical scheme fails to capture the fake wave that connects the rarefaction
wave to the vacuum state. Corresponding results are plotted in Figure 4.3. From this we
can see the generation of an artificial jump and this cannot be reduced even if the mesh size
is reduced.

(a) with γ = 1 (b) with γ = 2

Figure 4.3: Density profiles of the Rascle model with Riemann data ρ` = 0.4, v` = 0.1, ρr =
0.1, vr = 0.9.

Note that in this situation, from (4.7) the velocity is not defined due to vacuum wave
that generate an artificial jump in density. For this reason we skip the velocity profiles in
Figure 4.3.

Initial condition 4.4 The situation of faster cars on the right followed by slower ones in
behind is considered. The corresponding data are

ρ(x, 0) =

{
0.5, x < 0,

0, x > 0,
v(x, 0) =

{
0.6, x < 0,

1, x > 0.
(4.41)

The exact solution in this case is a single rarefaction wave going to the right. In Figure
4.4, both exact and numerical solutions at different times are plotted.

Here we observe that the empty road on the right does not affect drivers from the left
and with γ = 2, the exact density profile is well approximated by the numerical solution.

Initial condition 4.5 We now turn to the case of moving cars on the right followed by an
empty road in behind. The corresponding data are
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(a) with γ = 1 (b) with γ = 2

Figure 4.4: Density profiles of the Rascle model with the Riemann data ρ` = 0.5, v` = 0.6,
ρr = 0, and vr = 1.

ρ(x, 0) =

{
0, x < 0,

0.5, x > 0,
v(x, 0) =

{
0.5, x < 0,

0.5, x > 0.
(4.42)

In this case we have, for the Rascle model, a single right-going contact discontinuity with
speed of the leading cars vr = 1. The corresponding results are plotted in Figure 4.5. From
these results one can see that the numerical solution at any fixed time properly approximates
the exact contact discontinuity. In this case moving cars on the right are not influenced by
the free space behind them.

(a) with γ = 1 (b) with γ = 2

Figure 4.5: Density profiles of the Rascle model with the Riemann data ρ` = 0, v` = 0.5,
ρr = 0.5, and vr = 0.5.

(ii) Realistic problem

We extend the above results by choosing vmax = 20m/s and considering a highway in a
range of 16×103 meters in spatial grig points with step size ∆x = 160 meters. All velocities
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in this case are measured in m/s. For the legend of the plots presented here, the black solid
line represents the initial state of the Rascle model, the blue solid line is the density profile
after 2 minutes, the green solid line is the density profile at 4 minutes, the red solid line
represents the density at 6 minutes, the dashed-line represents the exact density profile at 2
minutes, the dotted-line is the exact density after 4 minutes and finally the exact density at
6 minutes is manifested by the dashed-dotted line. In all numerical experiments performed
here the maximum density ρmax is estimated to be ρmax = 1 like in the previous case. We
want to simulate the traffic flow for a considered highway within six minutes. We consider
different situations to investigate the effects of parameters appeared in the model, such as
γ and the maximum velocity vmax, on the behavior of the density profile.

Problem 1: Let the initial density be defined as in (4.38). In this case initial velocity is
scaled by a factor vmax and therefore we get v` = 12m/s and vr = 8m/s. Numerical
results are plotted in Figure 4.6.

Figure 4.6: Solution of the Rascle model with Riemann data ρ` = 0.8, v` = 12 m/s, ρr =
0.6, vr = 8 m/s. On the top from left to right are density profiles with γ = 1 and γ = 2,
respectively, and their corresponding velocity profiles at the bottom.

Problem 2: Now take the initial density as in (4.39). Here we have v` = 12 m/s and
vr = 20 m/s. Numerical results are plotted in Figure 4.7.

Problem 3: Now take the initial density as in (4.40). Here we have v` = 2 m/s and
vr = 18 m/s. Numerical results are plotted in Figure 4.8.
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Figure 4.7: Solution of the Rascle model with Riemann data ρ` = 0.8, v` = 12 m/s, ρr =
0.6, vr = 20 m/s. On the top from left to right are density profiles with γ = 1 and γ = 2,
respectively, and their corresponding velocity profiles at the bottom.

(a) with γ = 1 (b) with γ = 2

Figure 4.8: Density profiles of the Rascle model with Riemann data ρ` = 0.4, v` =
2 m/s, ρr = 0.1, vr = 18 m/s.
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Problem 4: Now take the initial density as in (4.41), and initial velocity v` = 12 m/s and
vr = 20 m/s. Numerical results are plotted in Figure 4.9.

(a) with γ = 1 (b) with γ = 2

Figure 4.9: Density profiles of the Rascle model with Riemann data ρ` = 0.5, v` =
12 m/s, ρr = 0, vr = 20 m/s.

Problem 5: Finally consider the initial density as in (4.42) with initial velocity v` =
10 m/s and vr = 10 m/s. Numerical results are plotted in Figure 4.9.

(a) with γ = 1 (b) with γ = 2

Figure 4.10: Density profiles of the Rascle model with Riemann data ρ` = 0, v` =
10 m/s, ρr = 0.5, vr = 10 m/s.
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4.4 Qualitative Properties of the Aw-Rascle Model

• The Aw-Rascle model defined by the system (4.6) is strictly hyperbolic, except for
ρ = 0 where the two eigenvalues of the corresponding Jacobian matrix collapse.

• For any pressure function p(ρ) satisfying assumptions (4.3), and any chosen initial
state U0 = (U`, Ur) in the bounded convex region

Ω := (ρ, v)|0 ≤ v ≤ vmax − p(ρ), ρ ≥ 0, 0 ≤ v ≤ vmax,

there exists a unique solution to the Riemann problem associated with (4.6) and the
data U0.

• The Rascle model (4.6) satisfies all the natural qualitative requirements that one can
impose: the velocities and the densities remain nonnegative all times. They stay in a
bounded invariant region Ω defined above, and therefore, they remain bounded from
above.

• The propagation speed of any wave involving a state U is at most equal to its velocity
v, this means, there is no information travelling faster than the velocity of cars.

• The model always predicts the natural waves: shocks when braking, contacts when
following, rarefactions, possibly with appearance of vacuum, when accelerating, insta-
bilities near vacuum, especially with a few slow drivers ahead.

• When one of the Riemann data is near the vacuum, the solution presents the instabil-
ities discussed in section 4 of [2].
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Chapter 5

Numerical Comparisons of the LWR
Model with the Aw-Rascle Model

In this chapter we present numerical comparisons of the LWR model (3.6) with the Aw-
Rascle model (4.2), already discussed in the previous chapters, by giving differences and
similarities between them. All our results presented in this chapter are computed under
the assumption the maximum concentration of cars on the considered highway is unity, i.e.,
ρmax = 1. We study different situations with various choices of parameters in our models
such as the maximum velocity vmax, as well as γ that appears in the Aw-Rascle model. In
all numerical experiments treated in this chapter we propose two different choices of γ :
we choose γ = 1 and γ = 2. In this chapter the input velocity in the Aw-Rascle model is
computed from the following density-velocity relationship

v(ρ) = vmax(1− ρ) (5.1)

since the maximum density is ρmax = 1 in all numerical tests. We assess the comparisons
of our models by first considering the simple case where vmax = 1, and then we extend this
case to a realistic one in which the considered highway, density and velocity variables are
respectively measured in realistic units: m (meter), 1/m, and m/s (meter/second). In the
plots of this subsection, the black solid line represents the initial state of both models, the
blue line is the solution of the Rascle model at t = 2, the green line is the solution of the
Rascle model at t = 4, the red line represents the solution of the Rascle model at t = 6,
the dashed-line represents the solution of the LWR model at t = 2, the dotted-line is the
solution of the LWR model at t = 4, and finally the solution of the LWR model at t = 6 is
manifested by the dashed-dotted line.

5.1 Simplified models

We simplify our computations by choosing the maximum velocity vmax = 1. Here we study
the density profiles of the following four distinct Riemann problems of the two models of
our interest and present the comparisons between them.

Problem 5.1 We start with a situation in which more cars are concentrated on the right
of the discontinuity with initial state

ρ(x, 0) =

{
0.5, x < 0,

0.8, x > 0.
(5.2)
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In this case, the exact solution of the LWR model is a left-going shock wave of the form
(3.13), moving at speed s = −0.3 computed from (3.14). In order to solve the Aw-Rascle
model with the same initial density we first compute the initial velocity from (5.1). Hence
the initial velocity for the Aw-Rascle model associated with the initial density (5.2) is given
by

v(x, 0) =

{
0.5, x < 0,

0.2, x > 0.

For the Aw-Rascle model, since vr < v`, the corresponding exact solution is given by a
left-going shock wave followed by a contact discontinuity moving at the speed of the leading
cars vr = 0.2. This is already described in Case 1 of the later chapter. Numerical results are
plotted in Figures 5.1 (evolution of density and velocity).

Figure 5.1: Density profiles of the two models for the Riemann problem with ρ` = 0.5, v` =
0.5, ρr = 0.8, and vr = 0.2. On the top from left to right we have density profiles with
γ = 1 and γ = 2, respectively, and their corresponding velocity profiles at the bottom. Here
the black solid line represents the initial state of both models, the blue line is the solution
of the Rascle model at t = 2, the green line is the solution of the Rascle model at t = 4,
the red line represents the solution of the Rascle model at t = 6, the dashed-line represents
the solution of the LWR model at t = 2, the dotted-line is the solution of the LWR model at
t = 4, and finally the solution of the LWR model at t = 6 is manifested by the dashed-dotted
line.
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Fixing γ = 1 in the Rascle model, the intermediate state ρm coincides with the right state
ρr; this is proven in the last section of this chapter. Hence the wave of the second family
in the Rascle model disappears and the solution is only a shock wave propagating to the
right at exactly the same speed s = 0.2 as that of the shock of the LWR model. Numerical
solutions in this Riemann problem are the same in both models and are presented in Figure
5.1. About the numerical aspects, this shock wave is properly captured by the Godunov
scheme applied to simulate our models. Now setting γ = 2, we have ρm 6= ρr. Thus we have
an additional second wave (contact discontinuity) of the Rascle model going to the right.
We observe from 5.1 that the wave of the Rascle model is faster than the wave of the LWR
model, this is because some cars of the Rascle model are distributed in the intermediate
state ρm, while cars of the LWR are dense in a certain range of the chosen highway: cars of
the Rascle model are more distributed than cars of the LWR model. In our tests, but not
presented in this thesis, we observe that the contact discontinuity of the second family is
properly resolved as we refine the mesh.

Problem 5.2 Now let us consider the initial state

ρ(x, 0) =

{
0.8, x < 0,

0.6, x > 0.

With this data the corresponding initial velocity, computed as above, is given by

v(x, 0) =

{
0.2, x < 0,

0.4, x > 0.

For the LWR model the exact solution of this problem is a left-going rarefaction wave,
since ρ` > ρr. As for the Aw-Rascle model, the exact solution is a rarefaction wave followed
by a contact discontinuity. This last wave disappears for γ = 1, since in this particular case
ρm = ρr. Hence we have for both models a single left-going rarefaction wave moving at the
same speed, but we observe the difference when γ = 2. With this choice the rarefaction wave
of the Rascle model moves faster than the wave of the LWR model as shown in Figure 5.2.

Problem 5.3 Now set the initial state

ρ(x, 0) =

{
0.4, x < 0,

0.1, x > 0,

with initial velocity

v(x, 0) =

{
0.6, x < 0,

0.9, x > 0.

The exact solution of the LWR model is a right-going rarefaction wave since ρ` > ρr.
For the Rascle model the solution is a rarefaction wave moving to the right connected to a
vacuum state followed by a fast contact discontinuity going to the right with speed vr = 0.9.
The results are shown in Figure 5.3.

We have with γ = 1, the solution is a right-going rarefaction wave for both models,
while with γ = 2 the solution of the Rascle model presents an artificial jump that cannot be
captured by the numerical scheme we used, even if we refine the mesh it cannot be reduced.
In this case the LWR model present nice results without any jump.
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Figure 5.2: Solution of the Rascle model with Riemann data ρ` = 0.8, v` = 0.2, ρr = 0.6,
and vr = 0.4. On the top from left to right we have density profiles with γ = 1 and γ = 2,
respectively, and their corresponding velocity profiles at the bottom. The black solid line
represents the initial state of both models, the blue line is the solution of the Rascle model at
t = 2, the green line is the solution of the Rascle model at t = 4, and the red line represents
the solution of the Rascle model at t = 6.
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(a) with γ = 1 (b) with γ = 2

Figure 5.3: Density profiles of the two models with Riemann data ρ` = 0.4, v` = 0.6, ρr =
0.1, and vr = 0.9. The black solid line represents the initial state of both models, the blue
line is the density of the Rascle model at t = 2, the green line is the density of the Rascle
model at t = 4, and the red line represents the density of the Rascle model at t = 6.

Problem 5.4 Consider the following Riemann data

ρ(x, 0) =

{
0.5, x < 0,

0, x > 0,

with initial velocity

v(x, 0) =

{
0.5, x < 0,

1, x > 0.

For both choices of γ, we have a single rarefaction wave for the two models as shown in
Figure 5.4.

Problem 5.5 Finally we study a group of moving cars followed by an empty road with
initial state

ρ(x, 0) =

{
0, x < 0,

0.5, x > 0,

with initial velocity

v(x, 0) =

{
1, x < 0,

0.5, x > 0.

In this case we have a right-going shock wave for the LWR model, and a single contact
discontinuity for the Aw-Rascle model as shown in Figure 5.5. Here we see that the shock
wave of the LWR model coincides with the contact discontinuity of the Rascle model, because
this shock moves exactly at the same speed as the contact discontinuity: s = 0.5 = vr.

• For γ = 1 the solutions of LWR model are the same as for the Aw-Rascle model.

• To be able to see the significant effects of the second-order model, i.e., the Aw-Rascle
model, we should increase the value of γ.
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(a) with γ = 1 (b) with γ = 2

Figure 5.4: Density profiles of the two models with Riemann data ρ` = 0, v` = 1, ρr = 0.5,
and vr = 0.5. The black solid line represents the initial state of both models, the blue line is
the density of the Rascle model at t = 2, the green line is the density of the Rascle model at
t = 4, and the red line represents the density of the Rascle model at t = 6.

(a) with γ = 1 (b) with γ = 2

Figure 5.5: Density profiles of the two models with Riemann data ρ` = 0, v` = 1, ρr = 0.5,
and vr = 0.5. The black solid line represents the initial state of both models, the blue line is
the density of the Rascle model at t = 2, the green line is the density of the Rascle model at
t = 4, and the red line represents the density of the Rascle model at t = 6.

5.2 Realistic Problem

Now we extend the above results for the simple case by choosing, instead of assuming vmax to
be unit, realistic data. Here we perform a numerical experiment for 6 minutes for a highway
of 8 km in spatial grig points with step size ∆x = 80 meters. We want to simulate the traffic
flow for 6 minutes with some fixed parameter vmax measured in [m/s] (meter/second). Like
in the late section, initial velocities of the Rascle model are again computed from the density-
velocity relationship (5.1). Variables in our models are now scaled by the chosen value of
the parameter vmax. To be precise we propose vmax = 20 m/s.
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Problem 1: with initial density (5.2), we present the corresponding results in Figure 5.6.

Figure 5.6: Density profiles of the two models for the Riemann problem with ρ` = 0.5, v` =
20, ρr = 0.8, and vr = 8. Here the black solid line represents the initial state of the two
models, the blue solid line is the density of the Rascle model at 2 minutes, the green solid
line is the density of the Rascle model at 4 minutes, the red solid line represents the density
of the Rascle model at 6 minutes, the dashed-line represents the density of the LWR model
at 2 minutes, the dotted-line is the density of the LWR model at 4 minutes, and finally the
density of the LWR model at 6 minutes is manifested by the dashed-dotted line.

From these results we observe the difference between the two models only when γ = 2.
Initially the shock wave of both models is located at distance x = 0 m. After two
minutes we see from Figure 5.6 that the shock of the LWR model is located at distance
of x = −849 m while the shock of the Rascle model is already at x = −1091 m, i.e.,
at 242 m ahead. As time advances the gap between them grows up; after minutes the
Rascle shock is at 889 m ahead of the LWR shock. In order words drivers of the Rascle
model are faster than drivers of the LWR model all the time. This can be explained
by the fact that part of the resultant wave (contact discontinuity) of the Rascle model
moves to the right with a big speed vr, and other part (shock) goes to the left with a
speed bigger than that of the LWR shock. Hence on the left side of the discontinuity
we have less concentration of cars of the Rascle model, here the density for this model
lies in the interval [0.5, 0.74], while the density for the LWR model varies in the interval
[0.5, 0.8]. Therefore drivers of the LWR model present a faster braking.
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Problem 2: with initial density (5.2), we present the corresponding results in Figure 5.7.

(a) with γ = 1 (b) with γ = 2

Figure 5.7: Density profiles of the two models for the Riemann problem with ρ` = 0.8, v` =
4, ρr = 0.6, and vr = 8. Here the black solid line represents the initial state of the two
models, the blue solid line is the density of the Rascle model at 2 minutes, the green solid
line is the density of the Rascle model at 4 minutes, the red solid line represents the density
of the Rascle model at 6 minutes, the dashed-line represents the density of the LWR model
at 2 minutes, the dotted-line is the density of the LWR model at 4 minutes, and finally the
density of the LWR model at 6 minutes is manifested by the dashed-dotted line.

Problem 3: with initial density (5.3), we present the corresponding results in Figure 5.8.

(a) with γ = 1 (b) with γ = 2

Figure 5.8: Density profiles of the two models for the Riemann problem with ρ` = 0.4, v` =
12, ρr = 0.1, and vr = 18. Here the black solid line represents the initial state of the two
models, the blue solid line is the density of the Rascle model at 2 minutes, the green solid
line is the density of the Rascle model at 4 minutes, the red solid line represents the density
of the Rascle model at 6 minutes, the dashed-line represents the density of the LWR model
at 2 minutes, the dotted-line is the density of the LWR model at 4 minutes, and finally the
density of the LWR model at 6 minutes is manifested by the dashed-dotted line.
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Problem 4: with initial density (5.4), we present the corresponding results in Figure 5.9.

(a) with γ = 1 (b) with γ = 2

Figure 5.9: Density profiles of the two models for the Riemann problem with ρ` = 0.5, v` =
10, ρr = 0, and vr = 20. Here the black solid line represents the initial state of the two
models, the blue solid line is the density of the Rascle model at 2 minutes, the green solid
line is the density of the Rascle model at 4 minutes, the red solid line represents the density
of the Rascle model at 6 minutes, the dashed-line represents the density of the LWR model
at 2 minutes, the dotted-line is the density of the LWR model at 4 minutes, and finally the
density of the LWR model at 6 minutes is manifested by the dashed-dotted line.

Problem 5: with initial density (5.5), we present the corresponding results in Figure 5.10.

(a) with γ = 1 (b) with γ = 2

Figure 5.10: Density profiles of the two models for the Riemann problem with ρ` = 0, v` =
20, ρr = 0.5, and vr = 10. Here the black solid line represents the initial state of the two
models, the blue solid line is the density of the Rascle model at 2 minutes, the green solid
line is the density of the Rascle model at 4 minutes, the red solid line represents the density
of the Rascle model at 6 minutes, the dashed-line represents the density of the LWR model
at 2 minutes, the dotted-line is the density of the LWR model at 4 minutes, and finally the
density of the LWR model at 6 minutes is manifested by the dashed-dotted line.
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5.3 Observations and some Remarks

We end this chapter with the following observations from our numerical tests discussed in
the two later subsections above.

• with γ = 1, cars of the LWR model are moving at almost the same speed as those of
the Rascle model. This is because, in the Rascle model, the intermediate state ρm is
simply

ρm = v` − vr + ρ`,

= ρr

by the use of (5.1). Hence in this case the speed of the Rascle shock wave (4.27) is
reduced to

s =
ρrvr − ρ`v`
ρr − ρ`

,

= vmax

(
1− (ρr + ρ`)

)
after substituting (5.1). This speed is exactly the same as the speed of the shock
(3.14) obtained in the LWR model. In the case of rarefaction waves, we also have the
wave speeds

λ(U) = vmax(1− 2ρ)

in the LWR model, and the speed of the Rascle rarefaction wave is given by

λ1(U) = v − γργ,
= v − ρ

since γ = 1. Using (5.1) yields

λ1(U) = vmax(1− ρ)− ρ.

Therefore for a given choice of initial density and fixed maximum velocity vmax = 1,
the rarefaction wave of the LWR model moves exactly at the same speed as the one
of the Rascle model. This explains the similarities of the LWR and Aw-Rascle models
for the choice of γ = 1.

• Now increasing the value of γ and setting γ = 2, the intermediate state of the Rascle
model is no longer the same as the right state, which results in the change of the wave
speeds in both shock and rarefaction wave cases. With this choice of the parameter
γ, we observe that

– the shock wave of the Rascle model is faster than the shock of the LWR model as
shown in the Figures 5.1 - 5.5. This means that drivers of the LWR model show
a faster breaking than those of the Aw-Rascle model.

– We observe a fast rarefaction wave in the Aw-Rascle model, which means drivers
of the LWR model accelerate faster than drivers of the Rascle model.
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Chapter 6

Conclusion

In this thesis, we have considered two macroscopic traffic flow models: the LWR and Aw-
Rascle models. The LWR model, which is a quasi-linear first order partial differential
equation, has been used to predict the density and velocity profiles at certain points of a
highway of 16 km after 6 minutes, and the Aw-Rascle model was considered in order to in-
corporate second-order effects. The Aw-Rascle model incorporates the idea that drivers only
care about what is happening in front of them not in behind. We have solved the Riemann
problems associated with these two models and arbitrary chosen initial data. We treated
different Riemann problems analytically and then applied the first order Godunov-type ap-
proximation for their numerical simulations. Regarding the numerical comparisons of the
LWR and Aw-Rascle models we presented in the later chapter above, we observed, while
simulating associated Riemann problems, that drivers of the LWR model present a faster
braking and accelerating comparing to those of the Aw-Rascle model. This is explained by
the fact that cars of the LWR model are densely distributed than cars of the Rascle model.

Depending on the choices of the parameter γ in the Aw-Rascle model we have seen that
the Aw-Rascle model is equivalent to the LWR model when we set γ = 1, that is, when
the pressure function is a linear function of the density ρ, whereas for γ = 2, i.e., with high
pressure, in the order of power of density, drivers of the Rascle model tend to be faster than
those of the LWR model due to an additional intermediate state that is not existed in the
LWR model. This intermediate state explains the reason why cars in the Aw-Rascle model
are less densely distributed comparing to cars in the LRW model.

We have verified the qualitative behaviour of different flow variables in our models and
the outcome of different parameters of the model has also been presented. While studying
the Rascle model all the inconsistencies of second-order models presented by Daganzo and
other authors have been disappeared. The Aw-Rascle model predicts instabilities near the
vacuum, when very light traffic flow is concerned. With this consistency we have ascertained
that it provides an efficient way and easy-to-use method for modelling traffic flows of our
interest. For instance, it can be extended to model traffic problems on road networks.
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