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Abstract

In this thesis models are checked for correctness. The models describe a Home Heating
System and a machine that is part of the solar panel production. Their components and
configuration are modeled with a domain-specific Piping and Instrumentation diagram, while
the behavior is modeled with restricted UML State Machines. For the model checking of
the behavior a translation is made from these models to a formal verification system. This
consists of an mCRL2 Specification and modal µ-calculus requirements. The translation is
feasible, but the requirement specification and the model checking need quite some expert
knowledge. Part of the results are guidelines for future modeling.
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1 Introduction

1.1 Context

This thesis is the result of a Master project carried out as an internship at Sioux Embedded
Systems B.V. in Eindhoven. This company provides solutions to high-tech companies in the
area. Solutions are software, electronic, mathematical or part of secondment or consultancy.
In more and more projects the paradigm of Model Driven Software Development (MDSD)
gains a foothold.

In MDSD software models are used to design a system. The models are domain models,
designed by a domain expert. For example, a software engineer is a domain expert in
behavior and a liquid/gas flow expert is a Piping and Instrumentation domain expert. The
domain experts have their own view on the system. They work together to create models,
which describe the system. A domain language used in a model is defined by a meta model.

Often a software engineer is responsible for automatically generating code for a working
system out of these models. When changes are made to the models, the new behavior is
observed after regenerating the code. Figure 1 describes the current situation, where lessons
about the behavior of the system are learned by inspecting the working system, which is
run on a machine or in simulation.

Some benefits of this way of software development are that

Figure 1: Domain experts
interaction

• (almost) all the work is done on the
model and not on code, because the
model is closer to the domain and is
used to generate code from. The mod-
els can be reused, hence, the develop-
ment is more efficient and has higher
quality.

• the domain expert models in a language
that is close to the problem domain.

• the domain expert expresses exactly
what he wants in the model. The do-
main expert is in control of the power
and responsibility of development.

• by performing analysis on the model,
instead of on the code, the quality of
the model is higher, because the analy-
sis is closer to the domain and thus the
semantic level of analysis is higher.

1.2 Problem

The models used at Sioux are complete enough to make working systems of. However,
models are more than just a nice abstraction for source code; there is a powerful potential
in model checking. Namely that errors, such as safety violations, can be found before actual
code is generated or used. Also insight in the behavior of a system can be obtained. Using
the model checking outcome to correct the models, increases the quality of the system.

The problem investigated in this thesis is to see whether mCRL2, as a means for model
checking, is useful in the context of Sioux to add model checking and analysis to model
driven software development in a multi-disciplinary setting.

To make model checking possible an infrastructure needs to be made which has the
following usability requirements:

• system requirements are specified by the domain expert, so each domain must have a
suitable way to specify requirements and

• results of model checking must be understandable by the domain expert.

Furthermore the ingredients needed to make (meta) models suitable for formal verification
have to be defined.

The proposed solution consists of the following steps:
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1. translate the domain specific models and requirements to a formal verification system,

2. verify and analyze the formal model with respect to the formal requirements and

3. relate the results from the verification and analysis back to the domain-specific models.

Figure 2 shows this interaction of the domain expert with the formal verification system,
where lessons are learnt from formal verification. The figure also shows that the effect of the
changes made to the model, possibly due to the inconsistencies found in the system, should
be observable after renewed verification and code generation.

Figure 2: Domain expert interaction with formal verification

1.3 Cases

In this thesis, two cases are used to illustrate the work done. In the first case the mod-
els originate from the Language Workbench Challenge 2012 (LWC 2012) case [1] for the
CodeGen 2012 Conference to which Sioux contributed. In the second case, the models are
developed for SoLayTec, a company that makes machines which cover part of the process of
solar panel production.

For the LWC 2012 case, the assignment was to apply MDSD in a non-software domain,
controlled by software, hereby using / combining models based on multiple meta models.
The non-software language Piping and Instrumentation (P&I) in general is used to design
liquid and gas flow systems in industry, but in this case the language is used for the gas
and liquid flow of a central heating system as can be found in houses. A domain expert in
this area makes the models with the P&I language (an extension of the Unified Modeling
Language (UML)). The syntax (notation) and semantics (meaning) are explained in Section
2.2.

Components that control the central heating system have behavior that is described with
state machine diagrams (a part of UML). The syntax and semantics are explained in Section
2.3.

For the SoLayTec [28] case, also the P&I language and state machine diagrams are
used to model the system. Due to intellectual property regulations, the (meta) models and
requirements are not described in full detail.
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1.4 Approach

Here the steps are listed, which are taken to come to the first parts of the infrastructure,
namely the translation and the verification. During the steps concerning the translation a
minimal example state machine, that contained the most important concepts, was used first,
but later the Language Workbench Challenge 2012 (LWC 2012) and the SoLayTec models
were used. The steps concerning verification, are applied to the LWC 2012 case, which is
described in detail (Section 3.1) and SoLayTec case, a real life case, which is described very
briefly (Section 3.2). The changes needed to make the models and meta models suitable for
formal verification are recorded as guidelines for future modeling efforts (See Section 6).

1. A description of the syntax and the semantics of state machines is given (See Section
2.3).

2. A translation of the state machine syntax to the mCRL2 syntax is made on paper.
This is done to get insight in the concepts of the translation and in the semantics of
the state machine (See Section 4).

3. The translation is implemented and tested (See Section 4.1).

4. The translation is extended with the use of data, i.e., the (concrete) values of variables
are seen as state of the modeled system. This way the behavior of the system is
described at a more detailed level.

5. A few typical requirements to which the (behavior of the) system should adhere, are
specified in modal µ-calculus (See Section 5.1).

6. These requirements are checked with the model using the mCRL2 toolset (See Section
5.1).

7. The results of the model checking process are related back to the domain-specific
models, so the domain expert can understand them. This last step is important for
usability of the proposed solution, but the automatic implementation is out of scope.
However, it is tried to provide understandable explanations with each requirement and
its model checking results.

1.5 Summary of conclusions

Translating the models used in the two case studies is feasible, but becomes significantly
less straightforward when the formal model and the requirements (which both result from
translation) must be formulated in such a way that the vast state spaces can be verified in
an acceptable amount of time. Something that still needs further investigation is how to get
the requirements specified in a domain-specific way, usable for the domain expert and how
to give the model checking results back to the domain expert, also in a usable way.
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2 Languages

In this section the modeling languages as used at Sioux, the formal verification language
mCRL2 and the modal µ-calculus, a requirement specification language, are explained,
since these languages will be used in the remainder of this thesis. First the meta model
format is explained in Section 2.1. In this thesis two different meta models are used. One
describes the Piping and Instrumentation Language (Section 2.2) and the other describes
the State Machine Language (Section 2.3). Section 2.4 gives a brief description of the
language mCRL2, which is the basic input for model checking and analysis. The formalism
to denote requirements to be checked against the modeled system, called modal µ-calculus,
is explained in Section 2.5.

2.1 Meta Model language

In Sections 2.2 and 2.3 some non-trivial textual notation is used to describe the syntax of
state machines specified in the Uniform Modeling Language (UML) version 2.4.1 notation.
The notation used and their relations are described in Table 2. For all other concrete syntax
definitions of UML see [13].

Semantics Syntax (UML graphic)
Syntax (custom defined
textual)

a class (with associa-
tions and attributes)

Class(c: C, d: D, a: A,
b: B)

Child inherits from
Parent (or Parent
generalizes Child)

Child(b: B, inherits:
{Parent})

a class with a collection
of A attributes (multi-
plicity 1..* for A)

Class(a: A+)

a class with an op-
tional collection of A
attributes (multiplicity
0..* for A)

Class(a: A∗)

a class with an A at-
tribute (multiplicity 1
for A)

Class(a: A)

a class with an optional
A attribute (multiplic-
ity 0..1 for A)

Class(a: A?)

Table 2: Meta model notation used in Section 2.2 and 2.3

A meta model is a model that describes the concepts of a (modeling) language and the
relationships between them. The meta model records the syntax, i.e., how elements may or
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must be connected and in what quantities.
Besides the use of a meta model to describe a language, a meta model can also be

extended. For example a basic meta model that describes the basis concepts of a UML class
diagram, is extended with domain specific concepts, to define a domain specific language.
In this thesis this is done for the Piping & Instrumentation language. An extension to a
meta model is called a Profile. With a Profile restrictions can be made, but also graphical
notation can be added to the original meta model.

A profile denoted in UML can consist of the following elements:

metaclass a class whose instances are existing (meta model) classes

stereotype a class that extends a metaclass

Figure 3: Profile example displaying metaclass and stereotype

In Figure 3 the metaclass ‘Association’ is extended by the stereotype ‘Pipe’.
The profile and (meta) models used in this document are made with Enterprise Architect

9.2 [29].

2.2 Piping and Instrumentation Language

In this section the Piping and Instrumentation (P&I) Language is described. Diagrams
made with the Piping and Instrumentation Language are used in the process industry. The
difference between a process in terms of mCRL2 and a process here, is that the first is a
behavioral process, while the second is an industry process or procedure, concerning the
processing of, for example, chemicals or raw materials. The diagram shows the piping of
the process flow together with the installed equipment and instrumentation. It also shows
the connections of the equipment and the instrumentation used to control the process. The
diagrams play an important role in the specification, maintenance and modification of the
described process.
In Section 2.2.1 the profile of the language is described and in Section 2.2.2 the concrete
syntax elements of the language are shown and explained.

2.2.1 Profile

The profile shown in Figure 4 is an extension to a UML meta model. In this case it
customizes a UML Class Model. Every stereotype also extends metaclass ‘Class’ directly. For
readability, these arrows are not shown. Stereotype ‘Pipe’ extends metaclass ‘Association’
and stereotype ‘PILSModel’ extends metaclass ‘Package’. Dashed arrows indicate that the
source stereotype uses the target enumeration. In the language there is an inheritance
hierarchy, for example a ‘ThreeWayValve’ is also a ‘Valve’ and a ‘Valve’ is also a ‘Node’,
which extends the metaclass ‘Class’. Note that some stereotypes are in italics. This means
that they are abstract, i.e., cannot actually be applied to a class. ‘ThreeWayValve’, for
example, can be applied to a class.

2.2.2 Syntax

The restricted Piping & Instrumentation elements used in this document and defined in
the profile in Figure 4 are described here. There are also some elements that are not part
of the standard that is defined for the language [18]. This profile describes a user made
Domain Specific Language specifically tailored towards home heating systems. The visual
representation of the described elements is shown in Table 3. Note that some elements did
not get a domain specific representation, but are just represented by a normal class.
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Figure 4: Piping and Instrumentation Profile
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Element Name
Graphical Representa-
tion

Description

Central Heating
Unit

A Central Heating Unit is a burner
that increases the temperature of the
water flowing through it.
The Central Heating Unit is con-
nected to three pipes, one for the wa-
ter input, one for the water output
and one for the gas input.
The burner can be turned on or off.

Controller

A Controller controls the other ele-
ments in the diagram. This is done
by a state machine as described in
Section 2.3. The double vertical edge
line denotes that the Controller is ac-
tive.

Heat Exchanger

A Heat Exchanger is a boiler or a
radiator exchanging the heat of the
water to water or to the air respec-
tively.

Joint
A joint connects two or more pipes
with each other.

Measuring Instru-
ment

A Measuring Instrument measures
temperature, flow or speed of the re-
source in the element which it is con-
nected to.

Pipe
A pipe connects other elements and
is used to let gas or water flow
through it.

Regular Pump

A Regular Pump transports the gas
or water in a certain direction. It
is connected to three pipes, one for
the input, one for the output and
one for the flow Measurement Instru-
ment. It can be switched on and off.

Sink

A Sink is an output of the system,
for example connected to a valve to
tap off water. It is connected to one
pipe.

Source

A Source is an input of the system
and provides external resources to
the system. It is connected to one
pipe.
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Element Name
Graphical Representa-
tion

Description

Thermostat

A Thermostat contains a tempera-
ture sensor and a set point unit. The
behavior connected to this is man-
aged by a separate controller.

Three Way Valve

A Three Way Valve connects three
pipes. One is input and two are out-
put. The valve can be opened to the
left, the right or to both sides. So it
is always open.

Two Way Valve
(manual)

A manual Two Way Valve connects
two pipes. The valve can be opened
or closed.

Two Way Valve
(controlled)

A controlled Two Way Valve con-
nects two pipes. The valve can be
opened or closed by a Controller.

Table 3: Piping and Instrumentation Language elements

2.3 UML State Machine

In this Section the UML state machine language that is used in this document is explained.
Section 2.3.1 describes the meta model that defines the abstract syntax of the state machine
language. In Section 2.3.2 the concrete syntax, i.e., the graphical representation of state
machines, is found. The semantics are described in Section 2.3.3. More about the UML
state machine language is found in Appendix A and [23].

2.3.1 Meta Model

In this section the UML meta model of the state machine language is described. It is based
on the UML version 2.4.1 standard [13] defined by the Object Modeling Group (OMG) [23].
In this document the state machine language is not used in its full extent. Some adaptations
have been made, with respect to the standard. They make model checking easier. These
adaptations are:

• An initial state may have multiple outgoing transitions.

• A state machine or composite state may have only one region.

• A pseudostate can only be an initial state.

• Sub state machines, i.e., references to other state machines, are not allowed, and thus
also entry and exit points of a state machine are not allowed.

The description of the notation used in Figure 5 is found in Section 2.1. In Figure 5 are,
besides the state machine meta model, the classes ‘Model’, ‘Package’ and ‘Class’ added, to
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Figure 5: Simplified UML State Machine Meta Model

represent the hierarchy as used in the modeling program Enterprise Architect. So a ‘Model’
is a special ‘Package’, a ‘Package’ contains nested packages or classes and a ‘Class’ can
contain any number of state machines. The inheritance and UML package relations that are
not used in this document are left out.

2.3.2 Syntax

The concrete syntax elements of the state machine language is explained by means of the
state machine diagram in Figure 6. The numbers (i) in the following element descriptions
correspond to the numbers in the figure:

• A state machine, which is denoted by the rectangular bounding box (1).

• A state machine contains one region, which is the workspace of the state machine, but
has no graphical representation.
A region can contain states, transitions, an initial state and possibly a final state.

• A state denotes a state of the state machine. A state can be either composite (2),
meaning that it contains a region, such as described above, or simple (3), meaning
that it contains no region. States can be nested, using a composite state, since its
region can contain states.
A state can also have behavior in it, entry, do and exit behavior.

• Entry behavior (4) is performed when the state is entered.

• Do behavior (5) is performed when the state is active.

• Exit behavior (6) is performed when the state is exited.
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Figure 6: State Machine example

• A transition (7) denotes a transition from one state to another, possibly the same
state. A transition can have a trigger, a guard and an effect.

• The trigger (8) is enabled by an event from the outside.

• The guard (9) is a boolean expression. When the trigger is enabled and the guard is
true, the transition is enabled.

• The effect (10) behavior is executed, when a transition is performed. The effect is
updating a variable with a new value, either directly via an assignment or indirectly
via a function call.

• An initial state (11) has only outgoing transitions to the states in the region where it
can begin.

• A final state (12) has only incoming transitions and denotes that the behavior of that
region (state or state machine) is finished.

2.3.3 Semantics

The behavior of a state machine is defined with the following list of statements. To denote
which statement has priority over another when multiple options are enabled, the order of
the statements is their priority. For example statement 1 has priority over statement 2.

The semantics given here are based on the semantics as used by Sioux in their translation
of state machine diagrams to Programmable Logic Controller (PLC) code. Such a PLC
executes its code every few milliseconds and inspects then the state of the system (described
by the state machines), executes the actions that are then enabled and finally updates the
state.

For a good understanding of the behavior, the Least Common Ancestor (LCA) of two
states is used. The LCA of two states is what it says, the element that contains both states
and is lowest in the hierarchy of the state machine. The LCAs for the states of the state
machine in Figure 6 are found in Table 4. Also the state hierarchy that is used to determine
the LCA is found there.

The initial behavior for a region is to start in its initial state.

1. For the state machine start in its region.

2. In a region continue in the active state. Initially this is the initial state.
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Source Target LCA Hierarchy
Initial STATE1 StateMachine StateMachine
STATE1 STATE1 StateMachine Initial
STATE1 STATE2 StateMachine STATE1
STATE2 STATE3 StateMachine STATE2
Initial STATE2 1 STATE2 Initial
STATE2 1 STATE2 StateMachine STATE2 1
STATE2 1 STATE2 2 STATE2 STATE2 2
STATE2 2 STATE2 1 STATE2 STATE3
STATE2 2 STATE3 StateMachine Initial
STATE2 2 STATE3 2 StateMachine STATE3 1
STATE3 STATE4 StateMachine STATE3 2
Initial STATE3 1 STATE3 STATE4
STATE3 1 STATE3 2 STATE3
STATE3 1 Final StateMachine
STATE3 2 STATE3 1 STATE3
STATE3 2 STATE2 2 StateMachine
STATE4 STATE1 StateMachine

Table 4: Least Common Ancestors (left) and hierarchy (right) of the states of the
state machine in Figure 6

3. In a state perform the entry behavior if in the previous round a transition was per-
formed.

4. In a state perform the do behavior.

5. If this round no transition is performed yet, check the transitions in order of appearance
in the state machine.

6. If a transition is enabled, i.e., the trigger is set and the guard is true, update the state
and perform the effect behavior.

7. Continue with (2) if state is composite, i.e., contains a region.

8. If during this round a transition was performed perform exit behavior.

Since the behavior is recursively defined, the entry behavior and do behavior is performed
from the outside to the inside, and the exit behavior from the inside to the outside. For
transitions priority is dependent on the LCA of the source and target state of the enabled
transitions. The LCA higher in the hierarchy has higher priority than the LCA lower in the
hierarchy. If no transitions are enabled, the state machine stays in the same state, possibly
only executing its entry and do behavior.
If more than one transition is enabled on the same level, i.e., they have the same LCA, the
transition that is checked first is taken, the order is determined by the order in which the
transitions are defined in the state machine diagram. Thus if the diagram is constructed in
a different order the resulting code and thus its behavior is most likely not the same. Note
that all behavior, i.e., entry, do, exit and effect behavior, is only performed if it is present.
Also the checks, i.e., trigger and guard, for a transition are only done if they are present.

2.4 mCRL2

In this section the language mCRL2 is explained briefly, because this is the formal language
to which the models are translated, to make formal verification possible. The abbreviation
mCRL2 stands for micro Common Representation Language 2. The language is used for
the specification, analysis, verification and validation of the behavior of communicating
processes and protocols. The language is based on the Algebra of Communicating Processes
(ACP) [3], extended with data and time. An overview of the toolset that accompanies the
language can be found in Appendix C.1.
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2.4.1 mCRL2 Specification

A specification in the mCRL2 language consists of data, actions, processes and an initial
process. The data specification consists of sorts, constructors, functions, variables and data
equations.

Sorts are data types that can be used throughout the whole specification. There are
some basic sorts built into the language, such as Bool, Real and Int. A sort is defined with
the keyword sort and constructors for a sort with the keyword cons. For example the sort
Bool is defined as follows:

1 sort Bool;
2 cons true, false: Bool;

Constructors are not the only way to define a sort, a structured sort is defined by using the
struct keyword and a function sort, denoting the sort of all functions over the used sorts,
uses an arrow:

1 sort States = struct Initial | S 0 | S 1 | Final;
2 sort Int2Bool = Int −> Bool;

Sorts often have operators and functions defined on them, some are built in, such as
comparison operators on sorts and others have to be defined. An example is a function for
the ‘exclusive or’ on two booleans:

1 map xor: Bool # Bool −> Bool;
2 var b1, b2: Bool;
3 eqn xor(b1,b2) = if(b1, if(b2, false, true), b2);

The keyword map declares the function (or mapping). The keyword var defines some
variables that are used in the function definition, which is denoted with the keyword eqn.
The ‘if’ function takes a boolean expression as first argument and if the expression is true
it returns the second argument and if it is false it returns the third argument.

Actions are declared with the keyword act. Actions can contain data parameters. There
is also an internal action ‘tau’, which is used to denote actions not observable for the outside
world. Two or more actions can be combined to a multi action with a bar (‘|’).

A Process specification starts with the keyword proc followed by its name and possible
data parameters. A process can be made up of the following constructs:

• (Multi)actions

• The process that does nothing, i.e., it deadlocks or terminates unsuccessfully. This is
denoted by delta.

• The sequential composition of processes is the sequential execution of two processes.
The process term a . b denotes that action a happens first and after that action b
happens.

• The alternative composition of processes is the nondeterministic choice of two pro-
cesses. The process term a + b denotes that either action a happens or action b
happens.

• A summand over processes (generalized alternative composition) is the general form
of the nondeterministic choice of processes. The choice is determined by the data
parameter(s) over which the summand ranges. The process term sum b:Bool . c(b) is
a shorthand for c(true) + c(false).

• A conditional choice of processes is used to guard processes. The process term
(b) −> c <> d, denotes that if b is true, the process continues with action c and
otherwise with action d.

• The parallel composition of processes denotes that the actions of the parallelized pro-
cesses are interleaved, i.e., occur after each other, and communicate, i.e., happen simul-
taneously. This communication is denoted by a multi action when the parallel processes
are unfolded. For example a . b || c . d denote the parallel composition of process a . b
with process c . d, unfolded it is written as a.(b.c.d+c.(b.d+b|d)+b|c.d)+c.(a.(b.d+
b|d)+d.a.b+a|d.b)+a|c.(b.d+d.b+b|d) representing all combinations possible when in-
terleaving and synchronizing the actions. Here, for example, the synchronized actions
b and d are denoted by the multi action b|d.
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• Recursion is used to execute the same process again, with possibly altered parameters.
For example proc B = a.B + c, denotes that after doing an a action the same process
is executed again.

As seen above, the unfolding of the parallel composition of two simple process, leads easily
to a quite complicated process. To cope with that complexity there are operators that can
help to reduce the process. These are:

• the communication operator, which takes synchronized (communicating) actions ans
gives them a single action name. A process term looks like comm({a|c −> e}, a . b ||
c . d). Note that communication only takes place if also the data parameters are the
same.

• the blocking operator, which blocks actions. Blocking means that the actions are
rewritten to delta. The blocking operator is denoted by block(B, ...), where B is the
set of actions that are blocked.

• the allowing operator, which allows actions (and disallows all others). A process term
using this is allow({e, b, d}, ...). Note that a multi action to be allowed, should be
provided explicitly.

• the hiding operator, which hides actions from the outside world, i.e., makes the actions
internal. This is denoted by hide({b}, ...).

• the renaming operator, which renames an action to another action name. The num-
ber and sorts of the parameters of the defined actions, must be equal. For example
rename({a −> b}, ...) renames the action a to action b.

Note that the parallel operators may only be used in the initial process. Such initial process
is executed by using the init keyword, as in init B(true); stating that process B will start
with its parameter set to true.

The language contains also the possibility of modeling timed behavior. For this and
more detailed information see [7, 12].

2.4.2 Example

To illustrate the described language constructs consider the following example of an mCRL2
Specification:

1 sort State = struct Initial | State1 | State2 | Final;
2 act Initial, Final;
3 Transition1: Bool;
4 Transition2;
5 read, send, exchange: Bool;
6 map isGreaterThanZero: Int −> Bool;
7 var i:Int;
8 eqn isGreaterThanZero(i) = i > 0;
9 proc Process(currentState: State) =

10 (currentState == Initial) −> Initial . Process(currentState = State1)
11 + (currentState == State1) −> sum j:Int . (−10 < j && j < 10) −>
12 Transition1(isGreaterThanZero(j)) .
13 Process(State2)
14 + (currentState == State2) −> (sum boolExpr:Bool . (boolExpr) −> read(boolExpr) .
15 Transition2 . Process(State2) <> read(boolExpr) .
16 Process(Final))
17 + (currentState == Final) −> Final . delta;
18 proc Var(i:Int) = send(i < 2) . Var(i+1);
19 init block({send, read}, comm({send|read −> exchange}, Process(Initial) || Var(0)));

In Line 1 of the example above a structured sort is defined which represents state names
used in the process Process.

In Lines 2 till 5 the actions ‘Initial’, ‘Final’ and ‘Transition2’ are defined without data
parameter and the actions ‘Transition1’, ‘read’, ‘send’ and ‘exchange’ are defined with one
boolean data parameter.

The function ‘isGreaterThanZero’, taking an integer value and returning a boolean value
is declared and defined in Lines 6 till 8.
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The process ‘Process’, defined in Lines 9 till 17, has one data parameter representing the
current state of the process.

When the process is in state ‘Initial’ it can execute action ‘Initial’ and then does a
recursive call to ‘Process’, whereby the current state is updated to state ‘State1’.

In state ‘State1’ a summand over the integer parameter ‘j’ is used to give a value to
the data parameter of ‘Transition1’, namely ‘isGreaterThanZero’ for integer parameter ‘j’.
Since the integer numbers are infinite, the value of ‘j’ is bounded by -10 and 10. This could
also be a smaller range, for example 0 and 1 as bounds would also do. The value of ‘is-
GreaterThanZero(j)’ has two possible values, which can both be reached with the integers
and thus the summand only yields two different transitions, which can occur multiple times:
‘Transition1(true)’ and ‘Transition1(false)’. After such transition the process ‘Process’ con-
tinues with state ‘State2’.

In state ‘State2’ a summand over boolean parameter ‘boolExpr’ is used to guard the
subsequent processes. If ‘boolExpr’ is true then a ‘read’ action with data parameter ‘bool-
Expr’, i.e., true is executed after which ‘Transition2’ is executed and the process ‘Process’
continues in state ‘State2’. If ‘boolExpr’ is false then a ‘read’ action with data parameter
‘boolExpr’, i.e., false is executed and it will continue in state ‘Final’.

In state ‘Final’ the action ‘Final’ is performed and then the process continues with the
‘delta’ process, meaning that it does nothing anymore.

Process ‘Var’ with one integer parameter, denoting a counter, executes action ‘send’
with data value true if ‘i > 2’ and false if ‘i ≤ 2’. The process continues with parameter ‘i’
increased by one.

The initial process in Line 18 first puts processes ‘Process’ and ‘Var’, with their data pa-
rameter initially set to ‘Initial’ and ‘0’ respectively, in parallel. The multi action ‘send|read’
must communicate to action ‘exchange’, all other occurrences of ‘send’ and ‘read’ actions
are blocked, leaving only actions ‘Initial’, ‘Transition1’, ‘Transition2’, ‘exchange’ and ‘Final’
available.

2.4.3 Linearization

An mCRL2 Specification needs to be linearized to be used by most of the tools in the
mCRL2 toolset. This linearization yields a Linear Process Specification (LPS). An LPS is a
restricted form of an mCRL2 Specification. With such an LPS a Labeled Transition System
(LTS) can be generated. This can best be done if the data used in the specification is finite,
because if it is infinite, it takes a long time.

An LTS is a directed graph, where the vertices represent states, and the edges represent
transitions. A transition contains a label. The action (names) in an mCRL2 Specification
correspond to these labels. The values of the parameters in the processes and the position in
the process while executing define the state, so in the example of Section 2.4.2 the so called
state vector is made up of the values of ‘currentState’, ‘i’ and the positions of processes
‘Process’ and ‘Var’. The LTS of the example above is shown in Figure 7.

Figure 7: Labeled Transition System corresponding to the example specification of
Section 2.4.2

Verification with the mCRL2 toolset is mainly done with the LPS of an mCRL2 Spec-
ification. In Section 2.5 the formalism is explained that is used to specify requirements
concerning states, but also concerning transitions and paths.
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2.5 Modal µ-calculus

In this Section the modal µ-calculus is described, in Sections 2.5.1 till 2.5.4 the language
is built up. In Section 2.5.5 some examples of properties stated in the µ-calculus are given
and explained.

2.5.1 Hennesy-Milner

The modal µ-calculus is a requirement specification language. The language is based on
Hennesy-Milner logic [17]. The Hennesy-Milner logic has the following syntax grammar:

φ ::= true | false | ¬φ | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ

These modal formulas say something about a state. The modal formula true is true in each
state of a process (see Section 2.4.3) and false is never true in a state. The connectives ∧
(and), ∨ (or) and ¬ (not) have their usual logical meaning. It is also allowed to use other
propositional logic connectives as⇒ (implication) and⇔ (bi-implication), because they can
be expressed in the connectives described above. The diamond modality 〈a〉φ holds whenever
an a-action can be performed, and φ holds afterwards. The box modality [a]φ holds in a
state, when after each a-action that can be performed from that state, afterwards φ holds.
The 〈a〉φ and [a]φ formulas clearly express different properties. They can be combined with
other constructs to formulate more complex properties or requirements.

2.5.2 Regular Formulas

To be able to express properties over more than one action, regular formulas can be used
within modalities. They are based on action formulas, having the following syntax:

α ::= α1| · · · |αn | true | false | ᾱ | α ∩ α | α ∪ α.

An action formula defines a set of actions. So the formula α1| · · · |αn defines the set with
only that multi action in it. The formula true denotes the set of all actions in the process
and false then represents the empty set. The connectives ∩,∪ denote intersection and union
of sets of action. The complement of the set of actions α is denoted by ᾱ. This is done with
respect to the set of all actions.

The definitions of modalities with action formulas is the following.

〈α〉φ =
∨
a∈α

〈a〉φ [α]φ =
∧
a∈α

[a]φ,

where α is a set of actions.
Regular formulas extend the action formulas to allow the use of sequences of actions in

modalities. The syntax of regular formulas is given by the following grammar.

R ::= ε | α | R ·R | R+R | R? | R+.

The formula ε represents the empty sequence of actions. For this it holds that [ε]φ = 〈ε〉φ =
φ, meaning that it is always possible to perform no action and thus staying in the same
state. The formula α denotes an action formula. The regular formula R1 · R2 denotes the
concatenation of the sequences represented by R1 and R2. The formula R1 + R2 expresses
the union of the sequences in R1 and R2. Their definition is as follows:

〈R1 +R2〉φ = 〈R1〉φ ∨ 〈R2〉φ [R1 +R2]φ = [R1]φ ∧ [R2]φ

〈R1 ·R2〉φ = 〈R1〉〈R2〉φ [R1 ·R2]φ = [R1][R2]φ.

The regular formulas R? and R+ allow for iterative behavior and denote zero or more
repetitions and one or more repetitions of the sequences in R respectively.

Two formulas are commonly used: the always and eventually modalities. The always
modality is often denoted as and expresses that φ holds in all reachable states. The
eventually modality is denoted as �φ and expresses that there is a sequence of actions that
leads to a state in which φ holds. They can be expressed in regular formulas as follows:

�φ = [true?]φ � φ = 〈true?〉φ.

The always modality is a typical instance of a safety property, saying that something bad will
never happen. The eventually modality is used in liveness properties, saying that something
good will eventually happen.
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2.5.3 Fixed Point Modalities

Regular expressions are very expressive and suitable to state most behavioral properties, but
cannot serve every purpose. The Hennesy-Milner logic can be extended by adding explicit
minimal and maximal fixed point operators. This is called the modal mu-calculus. Its
expressiveness is shown by the fact that all regular formulas can be translated in the modal
µ-calculus, but the expressiveness also makes it far from easy to formulate properties using
the modal mu-calculus. The syntax of the basic form of the modal mu-calculus is given by
the following grammar:

φ ::= true | false | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | 〈a〉φ | [a]φ | µX.φ | νX.φ | X.

The formula µX.φ is the minimal fixed point and νX.φ denotes the maximal fixed point.
Variable X ranges over strings. To understand fixed point modalities, X can be considered
as a set of states. The formula µX.φ holds in all those states in the smallest set X that
satisfies the equation X = φ, where it is likely that X occurs in φ. Stated otherwise, think
of X as the set of states where φ holds. In the same way, νX.φ holds for the states in the
largest set X that satisfies X = φ.

Since safety properties, stating that something bad will never happen, have to hold in the
whole system, the maximal fixed point operator can be used, since it ‘looks’ for the largest
set satisfying the property. Conversely the minimal fixed point can be used for liveness
properties, stating that something good will eventually happen, since it is already satisfied
if it holds for a smallest set.

By nesting fixed point operators, so-called fairness properties can be expressed, saying
that some action must happen, provided that it is unboundedly often enabled or because
some other action happens only a bounded number of times.

2.5.4 Modal Formulas with Data

Processes in mCRL2 are extended with data and in a similar way modal formulas are
extended with data, and sometimes time, to describe the real world more closely. The
extension is done in three ways:

1. modal variables can have arguments,

2. actions can carry data arguments and time stamps and

3. existential and universal quantification is possible.

This results in the following syntax, where α denotes a multi-action, af stands for an action
formula, R denotes a regular formula and φ represents a modal formula.

α ::= τ | a(t1, . . . , tn) | α|α.
af ::= t | true | false | α | af | af ∩ af | af ∪ af | ∀d :D.af | ∃d :D.af.

R ::= ε | af | R ·R | R+R | R? | R+.

φ ::= true | false | t | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | ∀d :D.φ | ∃d :D.φ | 〈R〉φ | [R]φ |
µX(d1 :D1 := t1, . . . , dn :Dn := tn).φ |
νX(d1 :D1 := t1, . . . , dn :Dn := tn).φ | X(t1, . . . , tn).

Any expression t of sort B is an action formula. if t is true, it represents the set of all actions
and if it is false it represents the empty set. The action formula ∃d : D.af represents

⋃
d:D af.

Dually,
⋂
d:D af is a representation for ∀d :D.af. Also the normal meaning of the universal

and existential quantification over data can be used in the modal formulas, i.e., ∀d :D.φ is
true, if φ holds for all values from the domain D substituted for d in φ. For the existential
quantifier, it works similar.

For more and detailed information see [12].

2.5.5 Examples

A typical example of a safety property is the statement that a deadlock should be absent.
In the modal µ-calculus this is written as:

[true∗]〈true〉true
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Here [true∗] means ‘in every reachable state’ and 〈true〉true means ‘there exists a transition
after which true holds’. Because true holds in every state, this can also be stated as
just ‘there exists a transition’. Concluding the statement says: ‘In every reachable state
there exists a transition’. If that is indeed the case, then there is of course no deadlock,
because that would mean that there is a state for which there exists no transition and thus
contradicting the statement.
In systems the situation that something happens and after that something else should happen
is called a liveness property. An example is:

[true∗ · send]µX.[read]X ∧ 〈true〉true

Here [true∗ ·send] means ‘in every reachable send state’ and µX.[read]X∧〈true〉true means
‘the read action must be done anyhow’. Note that the 〈true〉true part enforces that the
formula is not also true if a deadlock occurs. Concluding it states that after a send action a
read action must be done. This formula is not true if there is a loop in the system without
a read action, which can be done infinitely often and thus never reach the read action.
A fairness property says that an action must happen provided that this action is unboundedly
enabled, or because another action happens only a bounded number of times. Consider the
formula:

µX.νY.((〈read〉true ∧ [send]X) ∨ (¬〈read〉true ∧ [send]Y ))

This says that on an infinite send path, only a finite number of states have read actions
enabled. This is caused by the minimal fixed point before the X, which allows for finite
traversal, which in this case only happens when a read action is enabled. The maximal fixed
point before the Y , allows to traverse the send action infinitely often, whereby a read action
is never enabled.

Also data can be used in formulas, for example in this formula:

[true∗ · ∃n : N.error(n)]µX.([shutdown]X ∧ 〈true〉true)

which states that a if an error with some error number n occurs, a shutdown is inevitable.
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3 Case descriptions

In this section the two cases as used in this thesis are explained. In Section 3.1 the Language
Workbench Challenge case is described, and Section 3.2 contains the description of the
SoLayTec case.

3.1 Language Workbench Challenge Case

The Language Workbench Challenge 2012 Case [1] described here, is part of the Sioux
contribution to the CodeGen 2012 Conference. The assignment consisted of a description of
a Home Heating System, for which a meta model and model had to be defined. Furthermore
state machines had to be developed to control the system. Enterprise Architect was used to
build the meta model (profile), model and state machines. A Programmable Logic Controller
(PLC) Simulator was used to execute generated (and handmade) code to simulate a working
Home Heating System. In such a PLC every few milliseconds a run is made over all the
PLC code. So for each state machine the steps belonging to one state are executed.
In Section 3.1.1 the model as specified in the case is given and explained and in Section 3.1.2
the state machines are described.

3.1.1 Model

Figure 8: Home Heating Model

The model that describes the Home Heating System in the Piping and Instrumentation
Language can be found in Figure 8. The system has inflow of gas and water and outflow of
water. There are a manual valve, a three way valve and a controlled valve, a pump in the
center and two heat exchangers, namely a boiler and a radiator. Furthermore there is one
central heating unit at the bottom and a thermostat. Several elements have a measuring
instrument, measuring the flow, temperature or the speed, connected to it. All elements are
connected by pipes and joints.

The model contains several controllers. Every controller has a state machine connected
to it, describing the behavior of the controlled element. The state machines are shown in
Figure 9 till 12.
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3.1.2 State Machines

This section describes the state machines connected to the controller elements of the model.

BoilerController

Figure 9: Home Heating State Machine for the Boiler Controller

The Boiler Controller State Machine in Figure 9 describes the states in which the con-
trolled element (the Boiler) can be and the transitions between these states. Taking a
transition depends on variables belonging to elements.

In this state machine the Boiler can be in the state ‘NotWarmingUp’ or in the state
‘WarmingUp’. When state ‘WarmingUp’ is entered a timer is started for the Boiler. When
leaving the state due to following one of the outgoing transitions, the timer is stopped.

• The transition from the ‘Initial’ state to the state ‘NotWarmingUp’ is performed with-
out any restrictions.

• The guard of the transition from ‘NotWarmingUp’ to ‘WarmingUp’ is true when
the temperature of the Boiler Temperature Sensor is less or equal than the low set
point of the Boiler requested temperature. As an effect of the transition function
‘DoWarmUp()’ belonging to the Boiler is called and afterwards the ‘StartTempera-
ture’ of the Boiler is set to the current temperature of the Boiler Temperature Sensor.

• The transition from ‘WarmingUp’ to ‘WarmingUp’ is enabled when the elapsed time
of the boiler timer is greater or equal than a certain value called ‘CheckPeriod’. The
effect of this transition is then that the percentage heat needed for the Boiler is set to
the value of the high set point of the Boiler minus the temperature of the Temperature
Sensor, divided by the start temperature.

• The transition from ‘WarmingUp’ to ‘NotWarmingUp’ is enabled when the Boiler tem-
perature is greater or equal than the high set point of the Boiler requested temperature.
The effect is that the function ‘DontWarmUp()’ is called.
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HeatController

Figure 10: Home Heating State Machine for the Heat Controller

The Heat Controller State Machine in Figure 10 describes the heating states of the
system, i.e., the states of the Burner. The states and transitions depend on the states of the
Boiler and the Radiator.

The states the Burner can be in are INITIALIZING, WAIT FOR HEAT REQUEST,
CONTROL BURNER and ADJUST BURNER. When the INITIALIZING state is entered,
the Gas valve is closed and the Burner is switched off. In state CONTROL BURNER a
timer is started when entered, and when the state is left the timer is stopped.

• From the ‘Initial’ state a transition is taken to state INITIALIZING.

• From the INITIALIZING state a transition is taken to state WAIT FOR HEAT REQUEST.

• To go from state WAIT FOR HEAT REQUEST to state CONTROL BURNER the
Boiler or the Radiator should be warmed up. The effect of the transition is then
that the maximum percentage heat needed for the Burner is determined by taking the
maximum of the percentages of heat needed by the Boiler and the Radiator. After
that the set point of the Burner are adjusted in the function ‘AdjustSetpoint()’.

• The transition going back from CONTROL BURNER to state WAIT FOR HEAT RE-
QUEST is when there is no need to warm up the Boiler and the Radiator anymore.
The effect is that the Gas valve is closed and the Burner is switched off.

• The transition to go from state CONTROL BURNER to state ADJUST BURNER is
enabled when the elapsed time for the Burner is greater or equal than the ‘CheckPeriod’
value. The maximum percentage heat needed is updated and the set point adjusted in
the same way as is done as effect of the transition from state WAIT FOR HEAT REQUEST
to state CONTROL BURNER.

• From state ADJUST BURNER one option to return to state CONTROL BURNER
is when the Burner set point is greater than 0, with the effect that the Gas valve is
opened and the Burner turned on.

• From state ADJUST BURNER the second option to return to state CONTROL BURNER
is when the Burner set point is smaller or equal to 0, with the effect that the Gas valve
is closed and the Burner is turned off.
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PumpController

Figure 11: Home Heating State Machine for the Pump Controller

The Pump Controller State Machine in Figure 11 describes the states of the Pump.
It can be in the states INITIALIZING, PUMP ON, PUMP OFF or PUMP AND WAIT.

In state PUMP AND WAIT a timer is started when entered and when left the timer is
stopped again.

• The transition from ‘Initial’ to INITIALIZING is taken without restrictions.

• From the INITIALIZING state the transition has no guard or effect, so continues in
the state PUMP OFF.

• The transition from state PUMP OFF to state PUMP ON is enabled if there is a flame
detected in the Burner. The effect is that the Pump is switched on.

• From state PUMP ON the state PUMP AND WAIT is entered when there is no flame
detected in the Burner.

• The transition from PUMP AND WAIT is taken, when the elapsed time is greater
than a certain amount.

• The Pump is switched off as an effect of the transition from PUMP AND WAIT to
PUMP OFF.

ThreeValveController

Figure 12: Home Heating State Machine for the Three Way Valve Controller

The Three Way Valve Controller State Machine in Figure 12 describes the states the
three way valve can be in. The valve is positioned between the Pump, the Boiler and the
Radiator.
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It can be in states: INITIALIZING, ‘LeftOpen’ and ‘RightOpen’. When the ‘LeftOpen’
state is entered, the Three Way Valve is opened to the left with a call to its function
‘OpenLeft()’. Entering state ‘RightOpen’ has similar behavior.

• From the ‘Initial’ state a transition is taken to state INITIALIZING.

• From the INITIALIZING state a transition is taken to state ‘LeftOpen’.

• When the Boiler does not need to be warmed up, but the Radiator does need to be
warmed up, the transition from state ‘LeftOpen’ is taken to state ‘RightOpen’.

• When then the Boiler does need to be warmed up or the Radiator does not need to be
warmed up, state ‘RightOpen’ is left and the ‘LeftOpen’ state is entered again.

RadiatorController

Figure 13: Home Heating State Machine for the Radiator Controller

The Radiator Controller State Machine in Figure 13 is similar to the State Machine of
the Boiler Controller, since they both handle a Heat Exchanger. The difference is that the
temperature sensor now is part of the Thermostat and also the requested temperature is
now set by the Thermostat.

3.2 SoLayTec Case

In this Section a real life case at a company called SoLayTec is described. SoLayTec is a
spin-off from TNO, a Dutch research organization. SoLayTec makes machines for Atomic
Layer Deposition (ALD) on solar cells. They have a way to do that at a fast rate, to make
it possible to make solar energy a competitive alternative to energy sources. The software
for this machine is developed by Sioux.

The reason to use model checking in this project is that the Atomic Layer Deposition is
done with gases TMA(l) (Trimethylaluminum or Al2(CH3)6) and water vapor (H20). These
gases are not allowed to mix, because it leads to an explosive reaction. Therefore the bearer
gas N2 is added to separate the TMA and H2O. Figure 14 shows how the ALD Process
is performed. The horizontal bar is the solar cell wafer to which the layers are added.
The wafer is moved from left to right and back with an air flow, the wafer is in this way
consecutively exposed to TMA and H2O. The reaction that happens causes an atomic layer
of Aluminum Oxide (Al2O3) to appear on the surface of the wafer. Doing this several times,
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Figure 14: Atomic Layer Deposition with TMA, H2O and N2 (from [27])

creates a passivation layer for the solar cell wafer. This layer helps to make the solar cell
more efficient.

In Section 3.2.1 the model is explained.

3.2.1 Model

Figure 15: SoLayTec Gas test rig abstract structure

The machine contains a gas / liquid circuit, which is modeled in the Piping and Instru-
mentation Language. There are more elements than in the LWC Case of Section 3.1. The
test rig that is built for this gas / liquid circuit is controlled by several state machines. These
state machines correspond to procedures that have to be carried out by the machine. The
overall hierarchical structure of the state machines is shown in Figure 15. The top node
represents the overall state machine controlling the subcomponents TMAL and H2O. In the
configuration used here, they both have a subcomponent Vessel, denoting the container of
the materials TMAL and H2O. For each component in the structure there are state machines
controlling the procedures for this component.
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4 Translation of Models to mCRL2

For the purpose of generating an mCRL2 specification (Section 2.4) from the state machines
(Section 2.3), a generator is used. To generate the correct mCRL2 code, a formal translation
from the State Machine Syntax to mCRL2 code is made. This is described in Section 4.2.
The translation of triggers, guards and effects as used in the state machines is done with
the help of a dedicated parser described in Section 4.3. How the generation process works
is explained in Section 4.4.

4.1 Translation Concept

In this section the translation from the (meta) model elements to the mCRL2 elements is
described. In Table 5 the state machine elements are mapped to mcrl2 elements. The first
column lists the UML State machine elements from the Meta model in Figure 5 on Page 14.
The second column lists the mCRL2 syntax elements as defined in Appendix B of [12]. In the
third column there are some example code snippets given that result from the translation.

When there is more than one element in the second column, this means that the element
in the first column is used in different parts of the mCRL2 specification. For example
a State is used when the sort of state names is defined (ConstrDecl) and also when the
process expression is constructed (ProcExpr).

State
machine
element

mCRL2
syntax
element

code example

Model set of
mCRL2Spec

Package set of
mCRL2Spec

Class set of
mCRL2Spec

StateMachine mCRL2Spec sort Region States = struct ...; ...
act ...; ...
map ... ; var ... : ...; eqn ... = ...; ...
proc StateMachine(...) = ... ; ...
init hide({...}, allow({...}, comm({...}, StateMachine
|| ... )));

Region SortSpec sort Region States = struct ...;
ActSpec act ...; ...
ProcSpec proc StateMachine(...) = ... ;
IdsDeclList Region currentState: Region States, ...
ProcExpr (Region currentState == Initial) −> Initial . (...) + ...
DataExprList b1 && b2 || if(b3,b4,b5)
Init init hide({...}, allow({...}, comm({...}, StateMachine

|| ... )));

PseudoState ConstrDecl Initial
ActSpec act StateInitial;
ProcExpr (Region currentState == Initial) −> StateInitial . (...)
DataExpr Region currentState == Initial

State ConstrDecl State
ActSpec act StateState;
IdsDecl Region State currentState : Region States
ProcExpr (Region currentState == State) −> StateState . (...)
DataExpr Region currentState == State

FinalState ConstrDecl Final
ActSpec act StateFinal;
ProcExpr (Region currentState == Final) −> StateFinal . delta
DataExpr Region currentState == Final

Transition ConstrDecl guard var
ActSpec act trigger; act guard; act effect;
ProcExpr sum trigger:Bool . (trigger) −> sum guard:Bool .
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State
machine
element

mCRL2
syntax
element

code example

(guard) −> trigger|guard|bool setget s(guard var,
guard, guard) . effect <> bool setget s(guard var,
guard, guard) . ... <> tau . ...

Constraint Id guard var
ProcExpr bool setget s(guard var, guard, guard)

Trigger Id trigger
ProcExpr trigger

Behavior Id effect
ProcExpr effect

Table 5: State machine to mCRL2 mapping

The general translation goes as follows:
For each state machine in the model

• Collect all state names, initial and final states included, into the structured sort
‘States’. The names are made unique by adding a namespace, which consists of the
ancestor states, so if STATE2 1 is nested in STATE2, which is part of state machine
SM, the name of that state is SM STATE2 STATE2 1. Since a model can contain
state machines with the same name, the state machine names are also made unique,
by adding the name of the containing class, so the full name of the state machine SM
becomes CLASS SM. Note that if the state names, must be machine parsable, the
concatenation with an underscore (‘ ’) must be different from what is allowed in state
names.

• Collect the variable names used in the model in a structured sort ‘VarNames’.

• Collect the action names, these are trigger names, state names concatenated with
‘State’, guard and behavior variable names.

• Collect the constants and represent them as map and eqn parts.

• Make a process description with for each region a ‘currentState’ and ‘aTransition-
WasPerformed’ parameter. The first is of sort ‘States’ and represents the state the
corresponding region is in. The second parameter is of sort Bool and represents whether
in the previous round a transition was performed.

– In the process description, add for each region a conditional choice to check in
which state the region is in. The actions to add for such a state are:

∗ If available: entry behavior. This should be wrapped in a conditional choice
to check whether there was a transition performed in the previous round.

∗ If available: do behavior.

∗ If available: For each outgoing transition of the State the following is added.
- If available: A conditional choice for the trigger.
- If available: A conditional choice for the guard.
- If the above conditionals are available and true and the effect is available,
the effect is added. If the above conditionals are not available and the effect
is available, the effect is added, also. - If the state is composite, translate its
region, but only the part for the entry and do behavior. This is done to make
sure that if a transition was performed in the previous round, all the available
entry and do behavior of the entered state hierarchy is executed, before the
transition is executed.
- If available, add the exit behavior of the states exited by the transition.
This is done for those states in the state hierarchy that are below the Least
Common Ancestor of the source and target states.
- Add a recursive call to the state machine with the ‘currentState’ and ‘aTran-
sitionWasPerformed’ parameters updated.

∗ If the state is composite, translate its region in the same way as the current
region is translated.
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• Make a shortcut process description which is used as a shortcut for the same pro-
cess representing the state machine, but then with the initial values filled in for the
parameters.

• Make a coordinator process, that decides which state machine may take its turn. (LWC
Design Decision 1)

• Make a process that keeps track of the variables that are used in the guards and
behaviors. (LWC Design Decision 2)

• Make a process that represents the actions and effects of the environment of the system.
(LWC Design Decision 5)

• Make an initial process where the environment process, the variable process, and the
shortcut state machine processes are put in parallel composition.

– To make linearizing easier, for some groups there are only the specific multi-actions
allowed. Thus these have to be collected.

– Make a communication between the variable process and the rest, so the setting
and getting of variables is synchronized.

– Depending on the purpose of the resulting mCRL2 specification, hide actions that
are irrelevant.

In the above schema the ‘trigger’, ‘guard’, ‘effect’, ‘entry’, ‘do’ and ‘exit’ actions are
presented too simple. They are represented by plain text, but have a meaning. This has to
be taken into account and therefore parsers are made with Xtext. More on that in Section
4.3.

4.2 Formal Translation

The schema given in the Section 4.1 was fairly abstract. To be sure that the translation
is correct, a formal translation is made. The input is the textual representation of the
restricted UML State Machine Meta Model, which can be found in Appendix A. Since the
syntax is inductive, also the translation is inductive. To deal with that in an intuitive way,
a function is defined, taking a piece of UML State Machine syntax and producing mCRL2
code. For example consider the translation of a Vertex with respect to the action names in
the mCRL2 specification. The textual representation of a Vertex is:

V ertex(outgoing : Transition∗, incoming : Transition∗, container : Region,

inherits : {NamedElement}).

The translation function that corresponds is:

JV ertex(outgoing, incoming, container, inherits : {NamedElement})KActionName :=
If V ertex.metaType = Pseudostate ∧ outgoing.size > 0

JoutgoingKActionName

ElseIf V ertex.metaType = State
J(State)thisKStateActionName

The notation J·KActionName := denotes the function definition, with the textual represen-
tation, without the type information of the parameters, at the · position. If the J·KActionName

is used after the := (is defined as) sign, it is a call to a function, with at the · position the
parameter values. The name of the function is at the bottom right of the double square
brackets. The body of the function is placed after the := sign. The If-ElseIf construction
works by indentation. In the function body of this example is a distinction made on the
type of the vertex, recorded in the property metaType. If the vertex of the input is a
Pseudostate, i.e., an Initial state, and has at least one outgoing transition, the function
ActionName with parameter outgoing is called. If the type is State then the input is cast
to State and passed as parameter value to function StateActionName. These functions call
other functions or write mCRL2 specification code.

More explanation of the notation and the translation functions for the restricted UML
State Machines can be found in Appendix B.

The translation is set up in this way, so it is easily transformed to Xpand templates
and Xtend helper functions. The Xpand template code for the ActionName function for a
Vertex, as explained above is:
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1 �DEFINE ActionName FOR uml::Vertex−�

2 �IF this.metaType == uml::Pseudostate && this.outgoing.size > 0−�

3 �EXPAND ActionName FOR this.outgoing−�

4 �ELSEIF this.metaType == uml::State−�

5 �EXPAND StateActionName FOR (uml::State)this−�

6 �ENDIF−�

7 �ENDDEFINE�

In this piece of Xpand the �DEFINE ActionName FOR uml::Vertex−�...
�ENDDEFINE� block defines the ActionName function, where the input is an element
of type uml :: V ertex. This corresponds to the textual representation of a Vertex.

In the DEFINE-ENDDEFINE block the parameter element is referred to as this. The
body of the DEFINE-ENDDEFINE block contains an IF-ELSEIF-ENDIF block, where the
conditions correspond to the formal translation conditions of the If-ElseIf construction. To
call a function the �EXPAND StateActionName FOR
(uml::State)this−� where StateActionName is the function name and after the FOR key-
word the parameter is given. Note that in this way only one parameter can be given to a
function, but ActionName in the first line can be expanded with parameters too.

4.2.1 Language Workbench Challenge Design Decisions

In this section specific modeling decisions for the Language Workbench Challenge are de-
scribed that influence the translation described in Sections 4.1 and 4.2.

Design Decision 1
The state machine models are designed with generation to Programmable Logic Controller
code in mind. In this code a certain order is defined in which the state machines must be
executed. To incorporate this order in the mCRL2 specification, the specification is extended
with a Coordinator process (based on the Coordinator from [11]), which decides which state
machine may execute. Most of the mCRL2 specification is generated, but the order must
be defined manually.

This decision has also an impact on the state space. Since all processes (representing the
state machines) are put in parallel, the state space grows exponentially in the size of the
processes, but with the coordinator the state space grows linearly in the sum of the sizes of
the processes. The order is of importance since this can influence the order in which certain
updates or state transitions in the system can be performed.

Design Decision 2

Initially there was an mCRL2 specification generated where no data was involved. The
transitions between states could be taken independent of the data playing a role on the
transition. With this specification, properties where no data is involved are checked, such
as reachability, but with the assumption that the data needed to get there is provided in
the real system.

To verify more advanced and interesting properties, data is introduced to incorporate
more detail. This detail was already part of the manual PLC code. The variables used
in guards and assignments are manually defined in PLC code and the functions called, as
part of for example the entry behavior in a state, are implemented there. Assignments to
variables, at transitions and in states influence the behavior of the system.

To incorporate the data involved in the system, a ‘Framework’ class diagram is added
to the Piping & Instrumentation Profile Enterprise Architect file. The Burner part of the
‘Framework’ is shown in Figure 16. The numbers in the figure correspond to the numbers
in the description below. For each element, i.e., Boiler, Radiator, Burner, etc.:

• a class (1) is added, with for each class

– attributes (2), representing variables and constants, with possible default and
boundary values and

– operations (3), representing the actions available for that element, such as Open
and Close actions. For each operation a state machine is provided.

• an operation (4) and state machine are defined, since in PLC code, the elements
function block has behavior.
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Figure 16: Burner part of the Framework of the Language Workbench Challenge Case

Default values are needed to initialize the elements. Boundary values are needed to bound
the model checking, for example, the integer numbers are infinite, but when they are
bounded, this yields a finite range. Constant values have the statement {readOnly} be-
hind it.

The values of the variables are recorded by an mCRL2 process ‘Var’. For each vari-
able variable its parameters are variable.name ++_value, variable.name ++_lowerbound

and variable.name++_upperbound, representing the current value, lower bound and upper
bound. For boolean variables, the upper and lower bounds are omitted. The ++ notation,
denotes concatenation, so the value of variable.name is concatenated to a string, yielding
another string. The process contains for every used combination of variables a summand.
In the following definition the following shorthands are used:
name := variable.name
element := element.name
fullName := element++name
var := name++_var

currentV alue := fullName ++_value

newV alue :=new_fullName
upperBound := fullName ++_upperbound

lowerBound := fullName ++_lowerbound

Type := variable.type
type := LowerCase(variable.type)

For a boolean variable the summand is as follows:

sum ++ newV alue++:++ Type++ . ++ type++_setget_r(++ element++, ++ var,
++ currentV alue++, ++ newV alue++) . Var(++ currentV alue++ = ++ newV alue++)

This results for a variable bWarmUp of element B1 in the following mCRL2 code:

sum new_B1_bWarmUp:Bool . bool_setget_r(B1, bWarmUp_var, B1_bWarmUp_value,

new_B1_bWarmUp) . Var(B1_bWarmUp_value = new_B1_bWarmUp)
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For an integer or real value, the bounds are used. At the end of the first line comes:

(++lowerBound++ <= ++newV alue++ && ++newV alue++ <= ++upperBound++) -> ++

For the variable iElapsedT ime of element R1 this becomes:

sum new_R1_iElapsedTime:Int .

(R1_iElapsedTime_lowerbound <= new_R1_iElapsedTime &&

new_R1_iElapsedTime <= R1_iElapsedTime_upperbound) ->

int_setget_r(R1, iElapsedTime_var, R1_iElapsedTime_value,

new_R1_iElapsedTime) . Var(R1_iElapsedTime_value = new_R1_iElapsedTime)

The ..._setget_r actions correspond to ..._setget_s actions which are used for the vari-
able occurrence in the model, so for the iElapsedT ime variable above, the getting of the
value results in:

sum R1_iElapsedTime:Int . int_setget_s(R1, iElapsedTime_var,

R1_iElapsedTime, R1_iElapsedTime)

for setting the value, the last parameter of the ..._setget_s action must have a possi-
ble different value. This value is based on the current value, but also constants or other
variables are used. An example of the first case is the update of the iElapsedT ime variable,
by increasing it by 1:

sum R1_iElapsedTime:Int . int_setget_s(R1, iElapsedTime_var,

R1_iElapsedTime, R1_iElapsedTime + 1)

Design Decision 3
When the mCRL2 specification with data is generated, this leads to a lot of more states
in the labeled transition system it represents. The number of states became so large that
model checking could not be done in a reasonable amount of time and space. Therefore
several minimization techniques have been applied to reduce the state space.

hide actions With this technique the hidden actions become internal actions. These can
later on be removed or used during the reduction of the state space.

put actions together to multi-actions When several actions are put sequentially exe-
cuted as in the process a . b . c this process has four states, while the process with the
multi-action a|b|c has only two states. If this is applied to many actions the reduction
is significant.

confluence reduction This technique removes confluent τs, i.e., internal actions. Conflu-
ence occurs when processes are put in parallel and perform their actions independently.
So there are several ways to reach the same state. This phenomenon is the cause of
the state space explosion problem. When τ -prioritization is used, i.e., in every state
a confluent τ can be chosen and other actions can be ignored, the state space can be
reduced. For more on this reduction technique see [12].

branching-bisimulation reduction This technique can be used to reduce the state space
after generating it. If a τ transition can be mimicked by zero or more τ transitions and
lead to a state from which the same transitions are possible, these τ transitions can be
removed. This does not preserve τ -loops. These τ -loops could occur when a system is
in a state, where it can stay infinitely long, but the branching-bisimulation considers
the fairness property that a this never happens and a loop is always at sometime exited.

divergence-preserving branching-bisimulation reduction This technique is the same
as the branching-bisimulation reduction, but it does preserve τ -loops.

Design Decision 4
For some variables in the original problem, large bounds apply. To reduce the state space it
is legitimate to lower these bounds. For example the bounds of timers: A timer could run
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for 500 iterations, before a certain checkpoint, say 500, is reached. To mimic the behavior,
the timer has now a range from 0 to 2 and the checkpoint is set to 1. The timer is normally
increased by an assignment timer := timer + 1, but the way it allows this assignment is to
match the new value timer + 1 with the bound. With timer = 2 this would introduce a
deadlock. To overcome this, in the mCRL2 specification the statement

int setget s(<element>, <timer var>, timer, timer + 1)
is replaced by

int setget s(<element>, <timer var>, timer, if(timer == 2, 2, timer + 1)).

Design Decision 5
The environment, i.e., the hardware and user interaction, is modeled in the LWC solution
by simulation. The simulation is implemented in simulation function blocks, corresponding
to the controller function blocks (from the Framework) for the elements. This environment
is also needed in the mCRL2 specification to restrict the behavior of the system. This
environment is modeled by an extra process called ‘Env’. This process sets variables to
certain values (normally their bound values) taking the values of the current state of the
system into account. With knowledge of mCRL2 this process can be modeled manually,
otherwise the behavior should be modeled as a state machine as part of a Controller. When
it is manually added to the mCRL2 specification, it is more efficient, because the behavior
can be put in one transition, while in the state machine it is clearer to put it in several
transitions.

4.2.2 SoLayTec Design Decisions

In this section the design decisions that are made for the SoLayTec project are described
and explained. These design decision are an extension of the design decisions made for the
LWC 2012 case in Section 4.2.1.

Design Decision 1
A Framework as described in Design Decision 2 of Section 4.2.1 is also added here to the
Piping & Instrumentation Language Profile file. The variables, constants and functions are
only defined for the things that influence variables that are used in the properties to check.
This is done to reduce the number of variables influencing the state space, because when
there are a lot of variables, they can make the state space explode.

Design Decision 2
The class with the controller state machines for the test rig is moved from the Software
Architecture Model, which contains all the software models for the SoLayTec ALD Machine,
to the Test Rig Model. This class with state machines is then stereotyped to Controller.
This is done to be compatible with the generator workflow script created for the LWC Case.

Design Decision 3
In the controllers, global variables and constants are used in calculations of effects and in
guards. Since in the model checking data variables are used in the properties, the variables
and constants that influence the ‘property variables’ are modeled in the Controller class,
which also contains the state machines. This is done to take the important variables and
values into account while checking the properties involving data variables.

Design Decision 4
The constants used are written with capital letters and in the attribute definition of the
class they are marked as constant. This is done to distinguish them from variables.

Design Decision 5
For the Interlock checking (see Section 5.2.3) the guards and effects are flattened, i.e.,
reduced to a boolean variable for the parts that do not contain the variables, used in the
interlocks, or that influence them. This decision is strongly connected to Design Decision
1 of this section. This decision is made to reduce the number of variables influencing the
state space.
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4.3 Parser

In this section the translation of the textual representation of triggers, guards and effects
that occur on transitions and in states is described. To translate these texts to mCRL2, a
dedicated parser is developed. The reason to make this parser is that the triggers, guards
and effects are represented by ordinary strings in the model and thus lack any meaning. By
providing a parser for this, the string gets meaning.

The grammars as described in Sections 4.3.1, 4.3.2 and 4.3.3 are the basis for the parser.
They are coded in Xtext, a formalism to describe a language. With this grammar description
a parser is generated. The Eclipse project in which this is done was then exported to a
deployable plug-in, which is used in the generator project as a library. For each trigger,
guard or effect passed as string to the parser a structured representation of the parsed
string is returned. This representation is traversed by some Java functions, to generate an
mCRL2 string. The parser is divided into three different sub parts. To distinguish the
strings between those sub parts, the prefixes ‘trigger’ for triggers, ‘constraint’ for guards
and ‘effect’ for effects are added to the strings to be parsed.

In the coming sections, there are first the (lexical) grammar rules defined and after that
the formal translation into mCRL2. The parsing happens on the fly, so the structure of the
text is not available for Xpand to traverse over. Therefore the translation is not done by
Xpand templates, but with Java code.

The grammar notation can be read as follows: the right hand side of the grammar rules
(after ::=) contains bracket pairs “(. . .)” to denote grouping, the “∗” notation means zero
or more times, the “+” notation means one or more times and the “?” notation means
zero or one times. Furthermore the “..” notation represents a range. In the grammar there
is distinction between normal production rules and lexical elements. The lexical elements
specify the characters of the building blocks that can be used by the production rules. For
example ID is a lexical element and is for example used as a building block in the production
rule Field, which is either an ID followed by any number of a dot and an ID, or a CAPITAL
followed by one or more dot and ID pairs. Thus Fields that are parsed correctly are field,
field.param1.param2 and ELEMENT.param1, but ELEMENT is not a correct Field.

4.3.1 Trigger Parser

Grammar
A trigger has the following grammar rules:

Model ::= “trigger”Field;

Field ::= ID(“.”ID)∗ | CAPITAL(“.”ID)+;

Lexical elements

ID ::= (‘̂ ′)?(‘a’..‘z’|‘A’..‘Z’|‘ ’)(‘a’..‘z’|‘A’..‘Z’|‘ ’|‘0’..‘9’)∗;

CAPITAL ::= (‘ ’|‘A’..‘Z’)(‘ ’|‘A’..‘Z’|‘0’..‘9’)∗;

Translation
The translation of a trigger parsed by the parser based on the above grammar rules is:
JtriggerKModel :=

J(Field)triggerKField

JfieldKField :=
If field.fields.size > 0

field.name++Jfield.fieldsKFieldParams

Else
field.name

JfieldB fieldsKFieldParams :=
If fields.size > 0

_++ field++JfieldsKFieldParams

Else
_++ field
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4.3.2 Constraint Parser

Grammar
A guard has the following grammar rules:

Model ::= “constraint”OrBool;

OrBool ::= XorBool(‘OR’OrBool)?;

XorBool ::= AndBool(‘XOR’XorBool)?;

AndBool ::= NotBool(‘AND’AndBool)?;

NotBool ::= (‘NOT’)?BoolExpr;

BoolExpr ::= Add(OpBoolExpr)?;

Add ::= Sub(‘+’Add)?;

Sub ::= T imes(‘-’Sub)?;

T imes ::= Divide(‘*’T imes)?;

Divide ::= Min(‘/’Divide)?;

Min ::= (‘-’)?Bracket;

Bracket ::= ‘(’OrBool‘)’ | Const;
Const ::= “TRUE” | “FALSE” | Field | V arFunc | INT | REAL |

CAPITAL;

V arFunc ::= Function | MinMax | FunctionUpdate;
Function ::= (ID | CAPITAL)(‘.’ID) ∗ ‘(’(OrBool(‘,’OrBool)∗)?‘)’;

MinMax ::= “MIN(”OrBool(‘,’OrBool)+‘)’ |

“MAX(”OrBool(‘,’OrBool)+‘)’;

FunctionUpdate ::= (ID | CAPITAL)(‘.’ID)∗‘(’Assignment‘)’;

Op ::= ‘=’ | ‘<>’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’;

Lexical elements

INT ::= (‘-’)?(‘0’..‘9’)+

REAL ::= (INT ‘.’INT ) | (INT ‘E’(‘-’)?INT );

Translation
The translation of the above syntax elements is:
JconstraintKModel :=

J(OrBool)constraintKOrBool

JorboolKOrBool :=
Jorbool.lhsKXorBool ++||++ Jorbool.rhsKOrBool

JxorboolKXorBool :=
(++ Jxorbool.lhsKAndBool ++&& !++ Jxorbool.rhsKXorBool ++) || ++

(!++ Jxorbool.lhsKAndBool ++&&++ Jxorbool.rhsKXorBool ++)

JandboolKAndBool :=
Jandbool.lhsKNotBool ++&&++ Jandbool.rhsKAndBool

JnotboolKNotBool :=
If notbool.is not

!++ Jnotbool.boolexprKBoolExpr

Else
Jnotbool.boolexprKBoolExpr

JboolexprKBoolExpr :=
Jboolexpr.lhsKAdd ++Jboolexpr.opKOp ++Jboolexpr.rhsKBoolExpr

JaddKAdd :=
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Jadd.lhsKSub ++ + ++ Jadd.rhsKAdd

JsubKSub :=
Jsub.lhsKTimes ++ - ++ Jsub.rhsKSub

JtimesKTimes :=
Jtimes.lhsKDivide ++ * ++ Jtimes.rhsKTimes

JdivideKDivide :=
Jdivide.lhsKMin ++ / ++ Jdivide.rhsKDivide

JminKMin :=
If min.is min

-++ Jmin.bracketKBracket

Else
Jmin.bracketKBracket

JbracketKBracket :=
If bracket.brackets

(++ Jbracket.orboolKOrBool ++)

Else
Jbracket.constKConst

JconstKConst :=
If const = ‘TRUE’

true

ElseIf const = ‘FALSE’
false

ElseIf const.isF ield
J(Field)constKField

ElseIf const.isV arFunc
J(V arFunc)constKVarFunc

Else
const

JvarfuncKVarFunc :=
If varfunc.isFunction

J(Function)varfuncKFunction

ElseIf varfunc.isMinMax
J(MinMax)varfuncKMinMax

ElseIf varfunc.isFunctionUpdate
J(FunctionUpdate)varfuncKFunctionUpdate

JfunctionKFunction :=
If function.params.size > 0

function.name++Jfunction.fieldsKFieldParams ++(++ Jfunction.paramsKParams ++)

Else
function.name++Jfunction.fieldsKFieldParams

Jorbool B orboolsKParams :=
If orbools.size > 0

JorboolKOrbool ++, ++ JorboolsKParams

Else
JorboolKOrbool

JminmaxKMinMax :=
If minmax.is min

min(++ Jminmax.paramsKParams ++)

Else
max(++ Jminmax.paramsKParams ++)
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JfunctionupdateKFunctionUpdate :=
If functionupdate.fields.size > 0

functionupdate.nameJfunctionupdate.fieldsKFieldParams ++
(++ Jfunctionupdate.assKAssignment ++)

Else
functionupdate.name++(++ Jfunctionupdate.assKAssignment ++)

JopKOp :=
If op = ‘=’

==

ElseIf op = ‘<>’
!=

Else
op

4.3.3 Effect Parser

Grammar
An effect often consists of more than one effect, thus lists of effects are considered. A list of
effects has the following syntax:

Model ::= “effect”Effect(‘;’)?(Effect(‘;’)?)∗;

Effect := V arFunc | Assignment;
Assignment := Field2“:=”(OrBool | STRING);

Field2 ::= ID(‘.’ID)∗ | CAPITAL(‘.’ID)∗;

Lexical Element

STRING ::= “‘’ ( ‘\\’(‘b’ | ‘t’ | ‘n’ | ‘f’ | ‘r’ | ‘u’ | “‘’ | ”’” | ‘\\’) | !(‘\\’ | ‘”’) )∗ ‘”’ |
“‘” ( ‘\\’(‘b’|‘t’|‘n’|‘f’|‘r’|‘u’|“‘”|‘”’|‘\\’) | !(‘\\’|“’”) )∗ “’”;

This just means any plain text within “double” or ‘single’ quotes.

Translation
The translation of the above syntax elements is:
JeffectsKModel :=

J(List[Effect])effectsKEffects

JeffectB effectsKEffects :=
If effects.size > 0

JeffectKEffect ++ . ++ JeffectsKEffects

Else
JeffectKEffect

JeffectKEffect :=
If effect.is V arFunc

J(V arFunc)effectKVarFunc

Else
J(Assignment)effectKAssignment

JassignmentKAssignment :=
If assignment.rhs.is OrBool

Jassignment.lhsKField2 ++_to_++ J(OrBool)assignment.rhsKOrBool

Else
Jassignment.lhsKField2 ++_to_++ assignment.rhs

Jfield2KField2 :=
If field2.params.size > 0

field2.name++Jfield2.paramsKFieldParams

Else
field2.name
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4.4 Generator overview

Figure 17: The translation toolchain

The mCRL2 generation process is based on the generation process for PLC code from
state machines as used at Sioux. It starts with a UML Model (and UML Meta Model or
Profile) made in Enterprise Architect (EA) [29]. The EA file format is not directly usable by
the generator in Eclipse [8], therefore the file is translated to a UML format which is usable.
This is done with the EA2UML library [6], which transforms the EA file to an XML file. This
format has a hierarchical structure, and is thus very much suitable to traverse over. This
can be easily done with the openArchtectureWare / Eclipse modeling Project tooling [24, 9].
This tooling consists of the components Workflow Engine, Xpand, Xtend, Check and Xtext,
with Java as programming language behind it.

With the WorkFlow Engine workflow scripts are executed. The workflow script for the
generation process, manages the translation from the EA file to the usable XML format and
after that the translation from that XML format to an mCRL2 Specification.

The actual generation of the mCRL2 code, is done using Xpand templates. These tem-
plates use functions defined in the Xtend language. For more complex functions a call to
Java functions are made. The Check language, for checking some constraints on the model,
is not really used, except for the parts which were already present in the PLC generator.
The Xtext language is used to describe parser rules. With a dedicated workflow script a
parser and accompanying editor are generated. In this project only the parser is used.

Figure 17 captures the above description of the tool chain visually.
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5 Verification

The goal of the translation of UML State Machines to an mCRL2 Specification is formal
verification. This is done with the mCRL2 toolset (version 201202.0.10804 (Release)) and
the LTSMIN toolset (version ltsmin-1.8-dirty). In Appendix C a description of the used
tools can be found. For the formal verification it is not enough to have only an mCRL2
Specification. It is also needed to have properties or requirements to which the modeled
system should adhere. For each property an explanation of the verification is given. If the
property holds, a proof is given and if the property does not hold, an explanation is given
why it does not hold. The properties are divided into liveness and safety properties. The
properties for the LWC 2012 case are captured in Section 5.1 and the properties for the
SoLayTec case can be found in Section 5.2.

In the coming sections command line tools are used and the commands are preceded by
a $ sign, denoting the command prompt. With the following command a Linear Process
Specification (LPS) model.lps is generated from an mCRL2 Specification model.mcrl2.
This specification was obtained by running the generator workflow script with the files and
parameters corresponding to the desired project.

$ mcrl22lps model.mcrl2 | lpsconstelm | lpsparelm | lpssuminst | lpsconstelm |

lpsparelm > model.lps

With this command mcrl22lps takes an mCRL2 Specification and makes a Linear Process
Specification (LPS) of it. From this LPS constants are removed with lpsconstelm and then
parameters with lpsparelm. Summands are instantiated, so for example sum b:Bool . a(b)
is rewritten to a(true) + a(false). Then again constants and parameters are removed. The
resulting LPS is used directly or translated to a Labeled Transition System (LTS), reduced
modulo some equivalence relation and than converted back to an LPS. This is done with
the following commands:

$ lps2lts -rjittyc --alternative --cached --prune model.lps model.aut

$ ltsconvert -edpbranching-bisim model.aut model_dpbb.aut

$ lts2lps -lmodel.lps model_dpbb.aut model_dpbb.lps

In the first line the options are to do the translation with the compiled Just In Time rewrite
strategy (the compiled version is not available under Windows), making use of the alternative
implementation together with caching and pruning. The ‘aut’ extension is used so the output
is immediately written, which saves time in the total process. The transition information is
kept, but the state information is lost, but this can be solved to add actions that have data
parameters that represent the state values. But in most cases the state information is not
needed.
In the second line the conversion is done with the divergence-preserving branching-bisimula-
tion equivalence relation.
In the third line the LTS is transformed back to an LPS. This LPS can then be used for the
model checking.

The actions used in the natural language and µ-calculus properties are of the form

HU1 CV2.Open().

In the state machine models of Section 3.1 the action is represented by

MDL HU1 CV2.Open()

and in machine readable µ-calculus format (and mCRL2 format) it is denoted as

actControlledValve_Open(MDL_HU1_CV2).

5.1 Language Workbench Challenge Requirements

In this section the requirements or properties to which the Home Heating System should
adhere are specified and verified.

5.1.1 Liveness properties

Recall from Section 2.5 that a liveness property states that something good will happen in
the future.
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Property 1: Reachability
For each action that should occur in the specification, a µ-calculus formula is given. Let A
be the set of actions that should occur, then for each action in A must hold:

〈true∗ · action〉true (1)

meaning ‘there exists a path on which action occurs’. In this case A = {HU1 CV 2.Open(),
HU1 CV 2.Close(), HU1 B1.On(), HU1 B1.Off(), CV 1.OpenLeft(), CV 1.OpenRight()
B1.DoWarmUp(), B1.DontWarmUp(), R1.DoWarmUp(), R1.DontWarmUp(), P1.Off(),
B1.StartT imer(), R1.StartT imer(), HU1 B1.StartT imer(), P1.StartT imer(), P1.On(),
B1.StopT imer(), R1.StopT imer(), HU1 B1.StopT imer(), P1.StopT imer()}

These 20 formulas are all true, meaning there exists a path from the initial state to a state
where these actions can be performed. These formulas could be checked with lps2pbes and
pbes2bool, but since the model with data is very large, this can take very long. Also when
using lps2lts with the option to look for particular actions while generating the Labeled
Transition System takes often a very long time. The solution to this was making use of the
ltsmin toolset, in which a tool called lps-reach is present, which was run with the following
command:

$ lps-reach -rgs --mcrl2-readable-edge-labels --action=’<action>’ model.lps

where the options have the following meaning:

-rgs This is an option to enable regrouping of the next state dependency matrix with
transformation gs (Group Safely: group columns, group rows, swap columns and sort
rows).

--mcrl2-readable-edge-labels This is an mCRL2 option to use human readable edge
labels, without this option set, the action will not be found.

--action=’<action>’ The option to detect an action. The name of the action should be
filled in instead of <action>. Note that the action name should be the name including
the data parameters.

When the action is found it returns:

lps-reach: found action <action>

lps-reach, ** error **: exiting now

In most cases the action was found in a few seconds.

Property 2: Warming Up
This property is explained in full detail, this is done to provide insight into the process of
verification and property refinement.

A requirement for the system is that the Three Way Valve must be opened to the correct
side, namely to the left if the Boiler needs to be warmed up and to the right if the Radiator
needs to be warmed up. For the Boiler this was first stated in the following property:
If Boiler B1 needs to be warmed up, Three Way Valve CV 1 needs to be opened to the left.

[true∗ ·B1.DoWarmUp()]〈true∗ · (CV 1.OpenLeft() ∪ CV 1.OpenBoth())〉true (2)

With the command:

$ lps2pbes -f34.mcf model.lps | pbes2bool -rjittyc -s3

the verification of this formula returns true, because after each action B1.DoWarmUp()
a trace exists on which CV 1.OpenLeft() occurs, because that is actually what the for-
mula says: ‘whenever a B1.DoWarmUp() action has occurred, there is a path on which
CV1.OpenLeft() or CV1.OpenBoth() occurs’. This statement is too weak, because paths ex-
ist that possibly do not have a CV1.OpenLeft() or CV1.OpenBoth() action on it. A stronger
statement is the following:

[true∗ ·B1.DoWarmUp()]µX.[CV 1.OpenLeft() ∪ CV.OpenBoth()]X ∧ 〈true〉true
(3)

stating that ‘whenever a B1.DoWarmUp() action has occurred, a CV1.OpenLeft() or
CV1.OpenBoth() action is inevitably done’. Verifying this formula with the command:
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$ lps2pbes -f35.mcf model.lps | pbes2bool -rjittyc -s3 -c

the tool returns false. The counterexample returns a trace, which, with simulation in
lpsxsim, returns a path which contains an infinite loop on which CV1.OpenLeft() does
not occur. This is caused by the fact that the Three Way Valve was already opened to the
left, and thus does not need to be opened to the left if the Boiler needs to be warmed up.
When also the Manual Valve is open, the Boiler stays in this state and thus never comes in
a state where the Three Way Valve is opened to the left.
The outcome of formula 3 gives rise to another formula, incorporating the fact that before
a B1.DoWarmUp() action already a CV1.OpenLeft() action could have taken place:

νX(bOL : B = false).

[CV 1.OpenRight()]X(false) ∧
[CV 1.OpenLeft() ∪ CV 1.OpenBoth()]X(true) ∧

[CV 1.OpenLeft() ∪ CV 1.OpenBoth() ∪ CV.OpenRight()]X(bOL) ∧
[B1.DoWarmUp()](

bOL ∨ µY.(

[CV 1.OpenLeft() ∪ CV 1.OpenBoth()]Y ∧ 〈true〉true) (4)

The formula starts with a νX fixed point, meaning that it starts an infinite search for the
actions that are in its body. While searching and finding, a variable (bOL) records whether
the Three Way Valve is open to the left. In the second line, the action CV 1.OpenRight()
makes this variable false and the action CV1.OpenLeft() or CV 1.OpenBoth() makes the
variable true. If an action other than these three are encountered the variable does not
change.
When the search encounters a B1.DoWarmUp() action, it checks whether the value of
the variable is true or continues a finite search for a CV1.OpenLeft() or CV 1.OpenBoth()
action.
This formula gives true as result. For the Radiator the verification is similar as for the
Boiler. The used formulas are:

[true∗ ·R1.DoWarmUp()]〈true∗ · (CV 1.OpenRight() ∪ CV 1.OpenBoth())〉true (5)

[true∗ ·R1.DoWarmUp()]µX.[CV 1.OpenRight() ∪ CV 1.OpenBoth()]X ∧ 〈true〉true
(6)

Results
The results are: true (5) and false (6) .
The explanation of Formula 6 being false is as follows: The Boiler can ask for heat indef-
initely, in the case that the Manual Valve is open. In this case the Three Way Valve is
opened to the left. The Radiator asking for heat is never served, because the state machine
transition which is guarded by ¬B1.bWarmUp ∧R1.bWarmUp, representing that only the
Radiator is asking for heat, becomes never true.
Formula 6 gives rise to another formula in the same way as for Formula 3, but then with
Left and Right exchanged:

νX(bOR : B = false).

[CV 1.OpenLeft()]X(false) ∧
[CV 1.OpenRight() ∪ CV 1.OpenBoth()]X(true) ∧

[CV 1.OpenLeft() ∪ CV 1.OpenBoth() ∪ CV.OpenRight()]X(bOR) ∧
[R1.DoWarmUp()](

bOR ∨ µY.(

[CV 1.OpenRight() ∪ CV 1.OpenBoth()]Y ∧ 〈true〉true)) (7)

Formula 7 returns false. From the counterexample it could be inferred that the same prob-
lem as with Formula 6 occurs. To deal with that, the formula needs to incorporate also
that between the R1.DoWarmUp() action and inevitably doing a CV 1.OpenRight() or
CV 1.OpenBoth() action, there must have been a B1.DontWarmUp() action, making the
B1.bWarmUp variable false and thus enabling the transition from the state ‘LeftOpen’ to
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state ‘RightOpen’ in the ThreeWayValveController state machine diagram (See Figure 12
on Page 26). The formula representing this is:

νX(bOR : B = false, bBD : B = false).

[CV 1.OpenLeft()]X(false, bBD) ∧
[CV 1.OpenRight() ∪ CV 1.OpenBoth()]X(true, bBD) ∧
[B1.DoWarmUp()]X(bOR, true) ∧
[B1.DontWarmUp()]X(bOR, false) ∧

[CV 1.OpenLeft() ∪ CV 1.OpenRight() ∪ CV 1.OpenBoth() ∪

B1.DoWarmUp() ∪B1.DontWarmUp()]X(bOR, bBD) ∧
[R1.DoWarmUp()](bOR ∨ νZ(b : B = bBD).µY.

(¬b⇒ [CV 1.OpenRight() ∪ CV 1.OpenBoth() ∪B1.DoWarmUp()]Y ∧
〈true〉true) ∧

[B1.DoWarmUp()]Z(true) ∧
[B1.DontWarmUp()]Z(false) ∧

[CV 1.OpenRight() ∪ CV 1.OpenBoth() ∪B1.DoWarmUp() ∪

B1.DontWarmUp()]Z(b)) (8)

In this formula some things are recorded by data parameters added to some fixed point
variables: bOR records whether the Three Way Valve is opened to the right, bBD and b
record whether the Boiler needs to be warmed up. The formula starts with a greatest fixed
point, so an infinite search is started. By reaching certain actions, the variables are updated
and the search continues.
If CV 1.OpenLeft() is reached then the variable bOR is set to false and if CV 1.OpenRight()
or CV 1.OpenBoth() is reached then the variable bOR is set to true.
IfB1.DoWarmUp() is reached then the variable bBD is set to true and ifB1.DontWarmUp()
is reached then the variable bBD is set to false.
If an action different from CV 1.OpenRight(), CV 1.OpenLeft(), CV 1.OpenBoth(),
B1.DoWarmUp() or B1.DontWarmUp() is reached the search is continued with unchanged
variables.
If R1.DoWarmUp() is reached, there are two cases which makes the formula true:

• variable bOR is true, meaning that the Three Way Valve is open to the right, or

• variable bOR is false, meaning that the Three Way Valve is not open to the right and
the search should continue to look for a state where the Three Way Valve is opened to
the right.

The formula first used to achieve this was:

µY.[CV 1.OpenRight() ∪ CV 1.OpenBoth()]Y ∧ 〈true〉true

This formula searches for a finite path on which CV 1.OpenRight() or CV 1.OpenBoth()
occurs, but there is a cyclic path on which those actions do not occur.
This can be solved by wrapping this formula in a ν-formula, searching for an infinite path,
where

• the Boiler needs to be warmed up forever, as in the cyclic path mentioned before (which
is allowed behavior), or

• the infinite path is broken by the action B1.DontWarmUp(), enabling the search for
a state where CV 1.OpenRight(), CV 1.OpenBoth() or B1.DoWarmUp() can be done.
Action B1.DoWarmUp() is allowed, because it can indicate the start of the cyclic
path mentioned before.

To mark which search should be active, depending on the Boiler’s need to be warmed up,
the variable b was introduced. If b is true, marking that the Boiler needs to be warmed up,
the formula searches for a path on which it does not need to be warmed up anymore and if
b is false, the formula searches for a path that opens the Three Way Valve to the right or
where the Boiler needs to be warmed up again.
Assuming that the variables bOR and bBD are initially false, verification of this formula
yields true.
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Property 3: Not Warming Up
When the Burner HU1 B1 has been turned On, then at some moment the Boiler B1 or
Radiator R1 do not need to be warmed up. The first formula used to verify this was:

[true∗ ·HU1 B1.On()]µX.[B1.DontWarmUp() ∪R1.DontWarmUp()]X ∧ 〈true〉true
(9)

Results

Formula 9, stating that ‘after the Burner is turned on, inevitably the Boiler does not
have to be warmed up or the Radiator does not have to be warmed up’, was checked with
the command:

$ lps2pbes -f29.mcf model.lps | pbes2bool -rjittyc -s3 -c

The result it returned was false. The counterexample gave a trace which ended in a cycle
on which the property does not hold. For this formula this is the case for the part that the
Boiler or the Radiator do not need to be warmed up. Interpreting the path ending in that
state, it became clear that the property was violated because the Boiler asks to be warmed
up, but at the same time the Manual Valve is open and thus the Boiler is immediately using
its heat, thus the Boiler staying in the same state asking for heat and delivering heat and
not reaching the state where there is no heat needed anymore.
The formula is enhanced so that the counter example is excluded, because the counterex-
ample represents desired behavior:

νX(BDo : B = false, RDo : B, HS : B = false).

[B1.DoWarmUp()]X(true,RDo,HS) ∧
[B1.DontWarmUp()]X(false, RDo,HS) ∧
[R1.DoWarmUp()]X(BDo, true,HS) ∧
[R1.DontWarmUp()]X(BDo, false, HS) ∧
[∃b:B,i,j:Zenv(10, b, i, j)]X(BDo,RDo, false) ∧
[∃b:B,i,j:Zenv(900, b, i, j)]X(BDo,RDo, true) ∧

[B1.DoWarmUp() ∪B1.DontWarmUp() ∪R1.DoWarmUp() ∪R1.DontWarmUp ∪

∃b:B,i,j:Zenv(10, b, i, j) ∪ ∃b:B,i,j:Zenv(900, b, i, j)]X(BDo,RDo,HS) ∧
[HU1 B1.On()]((¬BDo ∧ ¬RDo) ∨ νY (BDo1 : B = BDo,RDo1 : B = RDo,

HS1 : B = HS).µZ.(

((BDo1 ∧HS1)⇒ [B1.DontWarmUp() ∪B1.DoWarmUp() ∪R1.DoWarmUp() ∪

∃b:B,i,j:Zenv(10, b, i, j)]Z ∧ 〈true〉true) ∧

((¬BDo1 ∧RDo1)⇒ [R1.DontWarmUp() ∪B1.DoWarmUp() ∪R1.DoWarmUp() ∪

∃b:B,i,j:Zenv(10, b, i, j)]Z ∧ 〈true〉true) ∧
[∃b:B,i,j:Zenv(10, b, i, j)]Y (BDo1, RDo1, false) ∧
[∃b:B,i,j:Zenv(900, b, i, j)]Y (BDo1, RDo1, true) ∧
[B1.DoWarmUp()]Y (true,RDo1, HS1) ∧
[R1.DoWarmUp()]Y (BDo1, true,HS1) ∧

[B1.DoWarmUp() ∪

B1.DontWarmUp() ∪R1.DoWarmUp() ∪R1.DontWarmUp() ∪

∃b:B,i,j:Zenv(10, b, i, j) ∪ ∃bB,i,j:Zenv(900, b, i, j)]Y (BDo1, RDo1, HS1))) (10)

This is a fairly complicated formula, for which the explanation is as follows:
The νX fixed point, starts with an infinite search while keeping track of the Boiler asking
for heat (BDo), the Radiator asking for heat (RDo) and whether the heat is served for the
Boiler (HS).
If action B1.DoWarmUp() is encountered, variable BDo is set to true and if action
B1.DontWarmUp() is encountered, it is set to false. Similar for R1.
When action env(10, b, i, j) is encountered, representing the values of the environment vari-
ables. The values of the second, third and fourth parameter are not of interest, therefor
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the existential quantifier is used over these data parameters. The first value represents the
Boiler temperature in tenths of a degree Celsius. When this is ten, the heat need of the
Boiler is not satisfied, thus variable HS is set to false. If the similar action env, but then
with the first value 900 is encountered, the heat needed is met and the variable HS is set
to true.
If the action HU1 B1.BurnerOn() is reached, it is checked that the Boiler and the Radia-
tor do not need heat, because then searching further is not necessary, but if the Boiler and
/or the Radiator needs heat, a new search infinite (νY ) search is started, where again it
is recorded whether the Boiler or Radiator is asking for heat and whether the heat for the
Boiler is met.
If the variable BDo1 and HS1 are both true the formula continues with a finite search for a
B1.DontWarmUp() action, or, to break the finite path, aR1.DoWarmUp(), B1.DoWarmUp()
or an env(10, b, i, j) for arbitrary boolean values for b and integer values for i and j.
If the variable BDo1 is false and RDo1 is true the formula continues with a finite search for a
R1.DontWarmUp() action, or to break the finite path, aR1.DoWarmUp(), B1.DoWarmUp()
or an env(10, b, i, j) for arbitrary boolean values for b and integer values for i and j.
When the action B1.DoWarmUp() is encountered it starts the second infinite search again
with variable BDo1 set to true. For the Radiator similar.
Also in the second search the variable HS1 is updated according to the environment actions
encountered.
If other actions than the above occur the infinite search is continues with unchanged vari-
ables.
Checking this formula yields as result true.

Property 4: Burner Off
After the Burner HU1 B1 is switched on and before the Burner is switched off, the Boiler
and the Radiator do not need heat anymore.

[true∗ ·HU1 B1.On() ·B1.DontWarmUp() ∪R1.DontWarmUp()
∗
·

HU1 B1.Off()]false (11)

Formula 11, stating that ‘between a Burner On and a Burner Off action the Boiler or the
Radiator is warmed up and do not need heat anymore’, was checked with the following
command:

$ lps2pbes -f31.mcf model.lps | pbes2bool -rjittyc -s3 -c

The result returns false, with a counterexample. The counterexample path has a Boiler
DoWarmUp action, after which the Burner is turned On. The Boiler is then warmed up, so
the Boiler DontWarmUp action is performed. Hereafter the Burner is turned On again and
then turned Off. So between the second turning On of the Burner and the turning Off of
the Burner no DontWarmUp action is performed, hence the property is violated.

The cause for this property to fail is that the Burner acts upon a value that is set in
the round before, making it possible to turn the Burner On while it was already On. This
however is not harmful, since nothing changes in the state of the Burner.
A formula that takes the turning on of the Burner, possibly multiple times, into account
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and the warming up and not warming up of the Boiler and Radiator also, is the following:

νX(BO : B = false, BA : B = false, RA : B = false).

[HU1 B1.On()]X(true,BA,RA) ∧
[HU1 B1.Off()]X(false, BA,RA) ∧
[B1.DoWarmUp()]X(BO, true,RA) ∧
[B1.DontWarmUp()]X(BO, false, RA) ∧
[R1.DoWarmUp()]X(BO,BA, true) ∧
[R1.DontWarmUp()]X(BO,BA, false) ∧

[HU1 B1.On() ∪HU1 B1.Off() ∪B1.DoWarmUp() ∪B1.DontWarmUp() ∪

R1.DoWarmUp() ∪R1.DontWarmUp()]X(BO,BA,RA) ∧
[HU1 B1.On()]νY (BA1 : B = BA,RA1 : B = RA).µZ.(

((¬BA1 ∧ ¬RA1)⇒ [HU1 B1.Off() ∪B1.DoWarmUp() ∪R1.DoWarmUp()]Z ∧
〈true〉true) ∧

[B1.DoWarmUp()]Y (true,RA1) ∧
[R1.DoWarmUp()]Y (BA1, true) ∧
[B1.DontWarmUp()]Y (false, RA1) ∧
[R1.DontWarmUp()]Y (BA1, false) ∧

[B1.DoWarmUp() ∪B1.DontWarmUp() ∪R1.DoWarmUp() ∪

R1.DontWarmUp() ∪HU1 B1.Off()]Y (BA1, RA1)) (12)

In Formula 12 a the variable BO represents whether the Burner is on, BA whether the Boiler
is asking for heat and RA whether the Radiator is asking for heat. The corresponding ac-
tions that influence this are listed below the first line. If a different action was performed,
the variables are not updated. If the Burner is set on, also an infinite search is started,
where only the variables BA1 and RA1, which have the same meaning as the BA and RA
variables, respectively. If the Boiler and Radiator are not asking for heat, then a finite search
is started for the Burner Off action. The search can be broken, when a Boiler DoWarmUp
or Radiator DoWarmUp action is performed. The Do- and DontWarmUp actions update
the parameters of the νY fixed point. If another action than the actions mentioned before,
the variables are not updated.

Results
Verifying this formula yields true. The transitions and states at which the Burner Off action
occurs, are the following:

1. the state INITIALIZING in State Machine of the HeatController

2. the transition from state ADJUST BURNER to state CONTROL BURNER

3. the transition from state CONTROL BURNER to state WAIT FOR HEAT REQUEST

Option (1) is performed only once, during the initialization phase. This action is not verified
in the νY part, because no Burner On action has taken place before.
Option (2) is performed when the guard NOT(MDL B1.bWarmUp OR MDL R1.bWarmUp)
is true, i.e., this corresponds exactly to the part in the formula (¬BA1 ∧¬RA1) that guards
the finite search for the Burner Off action. It is possible that this transition becomes true
when there was no Burner On action performed prior to that, so then it is also not taken
into account.
Option (3) is performed when the guard NOT(MDL HU1 B1.Q BurnerSetpoint > 0.0) is
true. This means that the Burner setpoint is set to 0. This is done when the values of
the previous Burner setpoint and the Maximum percentage of heat needed are as shown in
Table 6. This maximum percentage is obtained, from the percentages of heat needed in the
Boiler and the Radiator.

Property 5: Burner vs Pump
When asked to warm up, the Burner HU1 B1 and the RegularPump P1 must go On.
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previous Burner setpoint Maximum percentage heat needed
5 < −5
4 < −6
3 < −7
2 < −8
1 < −9
0 < 11

Table 6: Previous Burner setpoints and Maximum percentages heat needed to make
the new Burner setpoint 0

The formulas that are used are the following:

[true∗ ·B1.DoWarmUp()]µX.[HU1 B1.On()]X ∧ 〈true〉true) (13)

[true∗ ·B1.DoWarmUp()]µX.[P1.On()]X ∧ 〈true〉true) (14)

[true∗ ·R1.DoWarmUp()]µX.[HU1 B1.On()]X ∧ 〈true〉true) (15)

[true∗ ·R1.DoWarmUp()]µX.[P1.On()]X ∧ 〈true〉true) (16)

Results
Formula 13, stating that after the Boiler needs to be warmed up, inevitably the Burner must
go on, was checked with the command:

$ lps2pbes -f19.mcf model.lps | pbes2bool -s3 -c -rjittyc

The result is false, because the Burner was already on when at a certain moment the Boiler
needed to be warmed up. After the Boiler has been warmed up, the Burner is turned off
and not turned on, because there is no heat demanded.
To incorporate that the Burner can be already on, the following formula is used:

νX(bBOn : B = false).[HU1 B1.On()]X(true) ∧
[HU1 B1.Off()]X(false) ∧

[HU1 B1.On() ∪HU1 B1.Off()]X(bBOn) ∧

[B1.DoWarmUp()](bBOn ∨ (µY.[HU1 B1.On()]Y ∧ 〈true〉true)) (17)

Verification yields true.
Formula 14, stating that after the Boiler needs to be warmed up, inevitably the Pump must
go on, was checked with the command:

$ lps2pbes -f24.mcf model.lps | pbes2bool -s3 -c -rjittyc

The result is false, because the Pump was already on when at a certain moment the Boiler
needed to be warmed up. After the Boiler has been warmed up, the Pump is turned off and
not turned on, because there is no heat demanded.
To incorporate that the Pump can already be on, the following formula is verified:

νX(bPOn : B = false).[P1.On()]X(true) ∧
[P1.Off()]X(false) ∧

[(P1.On() ∪ P1.Off()]X(bPOn) ∧

[B1.DoWarmUp()](bPOn ∨ (µY.[P1.On()]Y ∧ 〈true〉true)) (18)

The verification yields false again. This is caused by the fact that the Temperature of the
Boiler is increased when only the Burner is On and the ThreeWayValve opened to the left
and thus the BoilerController executes the Boiler DontWarmUp action and after that the
Burner is turned off by the HeatController. Probably this fault was introduced, due to the
fact that some timers are very short, but when the Timers are set to their true values, the
resulting mCRL2 specification describes a process that is too large to verify. Formula 15,
the Radiator equivalent of Formula 13 does yield true
Formula 16, stating that after the Radiator needs to be warmed up, inevitably the Pump
must go on, was checked with the command:
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$ lps2pbes -f1.mcf model.lps | pbes2bool -s3 -c -rjittyc

This returned as result false and a counterexample. The same cause as with Formula 14
was observed here. A similar formula as Formula 18 was created and verified, and there also
the same result did appear.

5.1.2 Safety properties

The properties in this section, state that something bad must not happen.

Property 6: Controlled Valve Open and Burner On
ControlledValve HU1 CV2 must be opened before Burner HU1 B1 is switched on.

[HU1 CV 2.Open()
∗
·HU1 B1.On()]false (19)

[true∗ ·HU1 CV 2.Close() ·HU1 CV 2.Open()
∗
·HU1 B1.On()]false (20)

The Parameterized Boolean Equation System (PBES) obtained from lps2pbes was solved
with pbes2bool, but this takes a very long time. Therefore abstraction with pbesabstract is
used. The abstraction is done from all actions, except the actions that influence the actions
of the formula. These are for Formula 19: the variables regarding the state of the HeatCon-
troller state machine and MDL HU1 Q BurnerSetpoint value Var, because it is used on the
guard before the actions. For Formula 20 these are the same as for Formula 19, but also
MDL B1 bWarmUp value Var and MDL R1 bWarmUp value Var are not abstracted from.

Result
For both formulas, the tool gives with the ‘true’-abstraction the result true, which says noth-
ing about the original formula, however the ‘false’-abstraction has also as result true, which
means that the original system (and thus) formula returns true. When theHU1 CV 2.Open()
and HU1 B1.On() actions are looked up in the state machines that play a role in the sys-
tem, they appear both only once and on the same transition in the correct order (Figure 10
on Page 25). So it is good that true is the outcome.
However Formula 19 gives true when it finds the first occurrence of a Burner On action
which is preceded by a ControlledValve Open action. Interesting behavior, i.e., what hap-
pens after a ControlledValve Close action, is captured in Formula 20. To incorporate both
in one formula, the following is used:

νX(CV 2 : B = false).[HU1 CV 2.Open()]X(true) ∧
[HU1 CV 2.Close()]X(false) ∧

[HU1 CV 2.Open() ∪HU1 CV 2.Close()]X(CV 2) ∧
[HU1 B1.On()]CV 2 (21)

The formula starts with an infinite search keeping track of the openness of ControlledValve
HU1 CV 2. Whenever a Burner On action is encountered, the variable CV 2 must be true,
meaning that the ControlledValve is open. Verification yields true.

Property 7: RegularPump On and Burner On
RegularPump P1 must be on before Burner HU1 B1 is switched on.

[P1.On()
∗
·HU1 B1.On()]false (22)

[true∗ · P1.Off() · P1.On()
∗
·HU1 B1.On()]false (23)

The same strategy as was applied to Property 6 is applied here. The actions that are not ab-
stracted from are: MDL HU1 Q BurnerSetpoint value Var, MDL HU1 B1 bFlameDetected,
MDL HU1 B1 I FlameDetected and the state machine state variables of the HeatController,
PumpController, Burner and Environment. For Formula 23 also MDL P1 iElapsedTime is
of influence.

Result
In contrast with Property 6, where the solution was obtained as desired, this is not the case
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here. Abstraction could be done from less variables, yielding a longer search. But with the
intuition that this property really does not hold, a manual search for a counter example
was started. With lps2lts a search for action HU1 B1.On() was performed. For Formula
22 a trace was found that did not contain a P1.On() action, hence contradicting the state-
ment. And for Formula 23 a trace was found where a P1.Off() was present and after that
no P1.On() action did occur, thus also contradicting this statement.
In the original system, this behavior can be explained as follows: The action P1.On() is
guarded by MDL HU1 B1 bFlameDetected. This variable denotes whether there is a flame
detected in the Burner. This flame can only be detected if the Burner is On. Thus the
Burner has to go On before the Pump goes On, thus contradicting the statement that the
Pump must be on before the Burner is switched on.
For Formula 22 the same holds as for Formula 19: it only captures the truth of the first
occurrence of a Burner On action preceded by a RegularPump On action. Here Formula 23
captures more interesting behavior: what happens after a Pump Off action. These can both
be fit into the formula:

νX(p1 : B = false).[P1.On()]X(true) ∧
[P1.Off()]X(false) ∧

[P1.On() ∪ P1.Off()]X(p1) ∧
[HU1 B1.On()]p1 (24)

The formula starts with an infinite search keeping track of the RegularPump P1 being on.
Whenever a Burner On action is encountered, the variable P1 must be true, meaning that
the RegularPump is on. Verification yields false and the explanation is as given above.

Property 8: Timer
The property is as follows: For each timer, StartTimer must come before StopTimer.
Since StartTimer and StopTimer are actions that occur at four elements (Boiler, Radiator,
Burner and Pump), this property is represented by the following four formulas.

[B1.StartT imer()
∗
·B1.StopT imer()]false (25)

[R1.StartT imer()
∗
·R1.StopT imer()]false (26)

[HU1 B1.StartT imer()
∗
·HU1 B1.StopT imer()]false (27)

[P1.StartT imer()
∗
· P1.StopT imer()]false (28)

For these formulas abstraction is applied to abstract from certain variables. This is done in
the same way as in Property 6. For the Boiler the variables of influence are: s3 Coordinator,
active id Coordinator, s2 MDL BoilerController SM1, MDL BoilerController SM eCurrent−
State MDL BoilerController SM1, MDL BoilerController SM bATransitionWas−
Performed MDL BoilerController SM1, s6 MDL RadiatorController SM1,
MDL B1 TS2 lrTemperature value Var.
For the Radiator these are: s3 Coordinator, active id Coordinator, MDL TH1 lrRoom−
Temperature value Var, MDL TH1 lrTemperatureSetpointLow value Var,
MDL TH1 lrTemperatureSetpointHigh value Var, s2 MDL BoilerController SM1,
MDL R1 iElapsedTime value Var, MDL R1 lrStartTemperature value Var
For the Burner these are not recorded, since the outcome was not achieved by abstraction,
but with verification on a reduced model.
For the Pump these are: s3 Coordinator, active id Coordinator,
MDL HU1 B1 bFlameDetected value Var, MDL P1 bTimerRunning value Var
MDL P1 iElapsedTime value Var, s5 MDL PumpController SM1, MDL Pump−
Controller SM eCurrentState MDL PumpController SM1, MDL PumpController SM bA−
TransitionWasPerformed MDL PumpController SM1, s12 RegularPump RegularPump.

Results
With all formulas the ‘true’-abstraction results in true and the ‘false’-abstraction results in:
true for Formula 25. This can be verified in the original state machine in Figure 9 on Page
24, where the StartTimer and StopTimer are part of the entry and exit actions of one state,
and thus the StartTimer action is performed when the state is entered and the StopTimer
action is performed when the state is left, and thus a StartTimer comes always before a
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StopTimer.
true for Formula 26. This can be verified in the same way as with Formula 25, but now with
the state machine in Figure 10 on Page 25.
true for Formula 27. This can be verified in the same way as with Formula 25, but now with
the state machine in Figure 13 on Page 27.
true for Formula 28. This can be verified in the same way as with Formula 25, but now with
the state machine in Figure 11 on Page 26.
The argument given in Property 6 and 7, regarding the incompleteness of the formulas does
also apply here: Only the truth of the first occurrence of a StartTimer - StopTimer pair is
recorded. To find them all, the following formula is used:

νX(TS : B = false).[B1.StartT imer()]X(true) ∧
[B1.StopT imer()]X(false) ∧

[B1.StartT imer() ∪B1.StopT imer()]X(TS) ∧
[B1.StopT imer()]TS (29)

The formula represents an infinite search where it is recorded whether the timer is started.
Whenever a StopTimer is encountered, the value of variable TS must be true, meaning that
the timer was started. Validating the formula yields true. For the Burner, Radiator and
RegularPump a similar formula is used and the verification yields for all of them true as
well.

Property 9: StartTimer
The property is: No two StartTimer actions on the same object may occur without a
StopTimer in between.
As with Property 8, this is represented by four formulas:

[true∗ ·B1.StartT imer() ·B1.StopT imer()
∗
·B1.StartT imer()]false (30)

[true∗ ·R1.StartT imer() ·R1.StopT imer()
∗
·R1.StartT imer()]false (31)

[true∗ ·HU1 B1.StartT imer() ·HU1 B1.StopT imer()
∗
·

HU1 B1.StartT imer()]false (32)

[true∗ · P1.StartT imer() · P1.StopT imer()
∗
· P1.StartT imer()]false (33)

The abstracted variables are the same as with Property 8.

Results
Also the results and justification are the same as with Property 8.

Property 10: StopTimer
This property states: No two StopTimer actions on the same object may occur without a
StartTimer in between.
This is represented by four formulas as in Property 8 and 9.

[true∗ ·B1.StopT imer() ·B1.StartT imer()
∗
·B1.StopT imer()]false (34)

[true∗ ·R1.StopT imer() ·R1.StartT imer()
∗
·R1.StopT imer()]false (35)

[true∗ ·HU1 B1.StopT imer() ·HU1 B1.StartT imer()
∗
·

HU1 B1.StopT imer()]false (36)

[true∗ · P1.StopT imer() · P1.StartT imer()
∗
· P1.StopT imer()]false (37)

The abstracted variables are the same as with Property 8 and 9.

Results
Also the results and justification are the same as with Property 8 and 9.

Property 11: Final
A deadlock may only occur immediately after a ‘Final’ action.

[Final
∗
]〈true〉true (38)
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This formula is a variation of the standard absence of deadlock formula. The difference is
that instead that there must be an action possible in every state, now there must be an
action possible in every state that is not reached by taking a Final action as the last action.
For this formula the whole state space has to be inspected. There are a few things to notice
about this property:

• Abstraction does not help, because all variables in the specification are influential for
reaching all states.

• This formula is basically looking for the absence of deadlocks, except for those coming
right after a Final action. Therefore a deadlock search was started with lps-reach,
but it did find no deadlocks. If no deadlocks are found, the formula holds right away.
But if one would have been found, other methods for deadlock search have to be taken,
such as a deadlock search with lps2lts, where traces are recorded and afterwards are
inspected on the occurrence of ‘Final’ as the last taken action.

Results
Since the deadlock search with lps-reach did not find any deadlock, it did also not find any
deadlocks that did not have ‘Final’ as its last action and thus the formula holds.

Property 12: Open Both
ThreeWayValve CV1 must not be opened to both sides at the same time.

[true∗ · CV 1.OpenBoth()]false (39)

This formula can be checked with a reachability check, because it is the same as ¬〈true∗ ·
CV 1.OpenBoth()〉true. Thus if the reachability check returns true, the statement is false
and vice versa. The reachability check is done as follows:

$ lps-reach --regroup=gs --mcrl2-readable-edge-labels

--action=’actThreeWayValve_OpenBoth(MDL_CV1)’ model.lps

where the ltsmin tool lps-reach is used with some options. For explanation see Property
1.

Result
The result is that it cannot find the action, so the statement is true. This is the result with
the semantics as used in the PLC code, i.e., if more than one transition is enabled, the first
one in the specification is taken, thus it is possible that a transition is never taken, although
it is enabled. The semantics according to the UML standard does create a state space where
the action is reachable, because it allows each transition that is enabled to happen.

The trace obtained in the second case (UML semantics) could be mapped back to the
state machines, although it was not trivial. With the proper understanding of the system
it could be led back to the fact that a transition was taken that was not present in the
diagram. In Figure 12 on Page 26 the state machine is shown as seen by the user, but in
Figure 18 the state machine is shown as it was translated. The difference lies in the presence
of the ‘OpenBoth’ state and the transitions connected to it. The error was introduced by
deleting state ‘OpenBoth’ from the diagram, but not from the model, just meaning that the
‘OpenBoth’ state was hidden.
In the first case (PLC semantics), where the transition from ‘OpenRight’ to ‘OpenBoth’ is
not taken, this is due to the fact that when that transition is enabled, i.e., MDL B1 bWarmUp
AND NOT MDL R1 bWarmUp is true, also the transition from ‘OpenRight’ to ‘OpenLeft’
is enabled, i.e., MDL B1 bWarmUp OR MDL R1 bWarmUp is true. Since the transitions
are checked in order, the ‘OpenRight’ to ‘OpenLeft’ transition is taken first and thus ne-
glecting the other transition.

Property 13: Burner Off
It is impossible to turn Burner HU1 B1 On two times, without switching Burner HU1 B1
Off in between.

[true∗ ·HU1 B1.On() ·HU1 B1.Off()
∗
·HU1 B1.On()]false (40)

Formula 40, stating that ‘between two Burner On actions a Burner Off action should
take place’, was checked with the following command:
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Figure 18: Real Three Way Valve Controller Model

$ lps2pbes -f32.mcf model.lps | pbes2bool -rjittyc -s3 -c

The result returns false, with a counterexample. The part of the example that has a ‘false’
in it is used to reconstruct the trace. This trace showed that indeed two Burner On actions
could be done without a Burner Off action in between. The reason is that the Burner
periodically checks whether there is still heat needed and if heat is needed, it calculates the
percentage heat needed and then opens the Gas Valve and turns the Burner on again.
Although it is strange that it happens, it is not a problem to open the Valve or turn the
Burner on again, because internally nothing changes.

Property 14: Burner On
It is impossible to turn Burner HU1 B1 Off two times, without switching Burner HU1 B1
On in between.

[true∗ ·HU1 B1.Off() ·HU1 B1.On()
∗
·HU1 B1.Off()]false (41)

This formula was verified with the command:

$ lps2pbes -f33.mcf model.lps | pbes2bool -rjittyc s3

Results
The verification of Formula 41 yields true, when verified with a model where the Burner,
Boiler and Radiator Timer checkpoints are set to 1. When verified with the timers set to
2, 10 and 10, respectively, the result yields false. This is caused by the fact that during the
Boiler or Radiator Timer running, the Burner runs several times, with a Burner setpoint
set to 0, but that causes the Burner Off action to be taken. The behavior is consistent with
Property 13, and also in this case the multiple Burner Off actions, do not cause any harm.

Property 15: Controlled Valve
If Burner HU1 B1 is not burning, the ControlledValve HU1 CV 2 must be closed.
This formula is ambiguous in the sense that it is not clear whether ControlledValveHU1 CV 2
must be closed before the Burner is turned off or after the Burner has been turned off. The
first attempt of formulas representing the two possibilities are listed here:

[HU1 CV 2.Close().HU1 B1.Off()]false (42)

[HU1 B1.Off().HU1 CV 2.Close()]false (43)

Verification yields true for the first and false for the second. The counterexample of Formula
45 returns a very short trace to the first ControlledValve Close action, since it is not preceded
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by a Burner Off action. As stated earlier in Properties 4, 5 and 8 these formulas do only say
something about the first occurrence. To incorporate the other occurrences, the following
formulas are used:

νX(CV 2 : B = false).[HU1 CV 2.Open()]X(true) ∧
[HU1 CV 2.Close()]X(false) ∧

[HU1 CV 2.Open() ∪HU1 CV 2.Close()]X(CV 2) ∧
[HU1 B1.Off()]¬CV 2 (44)

νX(BO : B = false).[HU1 B1.On()]X(true) ∧
[HU1 B1.Off()]X(false) ∧

[HU1 B1.On() ∪HU1 B1.Off()]X(BO) ∧

[HU1 CV 2.Close()]¬BO ∨ µY.[HU1 B1.Off()]Y ∧ 〈true〉true (45)

Formula 44 represents an infinite search, where the openness of ControlledValve HU1 CV 2
is recorded. Whenever a Burner Off action takes place, the value of variable CV 2 must be
false, meaning that the ControlledValve is closed. Verification yields true.
Formula 45 represents an infinite search, where it is recorded whether the Burner is on.
Whenever a ControlledValve Close action is encountered, the value of variable BO must be
false, meaning that the Burner is off. The verification of the formula as described, yields
false, for the same reason as Formula 43 fails also. To make the formula true, the µ-part is
added. This part searches for a finite path on which the Burner is turned Off. Verification
of this formula yields indeed true.

Property 16: Max Temperature
The following requirements were not clear enough to come up with formulas, which capture
the real intentions:

• Temperature of the Boiler B1 may never exceed the maximum allowed temperature.

• Temperature of the Radiator R1 may never exceed the maximum allowed temperature.

• Temperature of the water in the Central Heating System may never exceed the maxi-
mum allowed temperature.

Some questions that could be asked in relation to these requirements are the following:

• What is the maximum allowed temperature? Is that ‘lrTemperatureSetPointHigh’, the
high setpoint of the Boiler or the Thermostat?

• What is the Central Heating System? Is that the Burner (Central Heating Unit) or the
total of the pipes and elements? What is in the latter case the maximum temperature
allowed?

Due to the domain expert, being ill, there could no answers be obtained from the domain
expert.

5.2 SoLayTec Requirements

In this section the properties are described to which the SoLayTec system must adhere. Also
the outcome of the verification or why it did not succeed to verify the property is explained.

5.2.1 No deadlock

The system should not end up in a deadlock state. This can be expressed by the modal
mu-calculus formula:

[true∗]〈true〉true (46)

Due to the large state space resulting from linearizing the mCRL2 specification, this formula
is not checked with lps2lts or lps2pbes and pbes2bool. Instead symbolic reachability with
lps-reach is used to explore the state space.

Result
In separate state machines some deadlocks were found, due to the reachability of some
modeled error states.
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5.2.2 Reachability

All states of the state machines should be reachable. For this purpose the names of the
states are added as actions to the mCRL2 specification. To check this property, the formula

〈true∗ · state name〉true (47)

is used, where state name represents the state name for which the reachability check is
done. The formulas are checked on the separate state machines in two types:

1. all guards are true.

2. the variables that influence the behavior are manipulated by the ‘environment’. This is
done by setting the values of the variable to either their minimum or maximum value.

Results
For the first case in only one state machine some states could not be reached. The argument
of SoLayTec was that this state machine was conceptual. The intended behavior was not
modeled correctly.
In the second case, the same states could not be reached plus some other states too:
In one state machine one state (and a following state) was not reachable, because the guard
on the transitions that lead to this state become never true. The guard checks whether a
variable is at some warning level boundaries. This guard becomes never true, because the
state machine and the environment, do never manipulate the value of the variable in such a
way that it reaches these boundary values.
In another state machine a series of states is not reachable if only the environment and the
state machine are modeled in detail. This was solved by adding the processes that also
influence the environment.

Note that the outcome can be different if all state machines are put in parallel and data
values block or enable certain transitions.

5.2.3 No Interlocks

The system should not have interlocks. Interlocks are states in the system that are not al-
lowed. The interlocks specified by SoLayTec can be categorized into three property groups.
Since all these properties deal with data, the most convenient way of specifying the prop-
erties is as conditionals in the variable process. The conditional guard, guards an action
called error. As data parameter for this action a positive number is assigned. To verify this
properties a simple reachability check for this error action is sufficient. This is again done
with symbolic reachability analysis with lps-reach.

Due to limited time and the complexity of the model it was not feasible to get results
for the described properties.

Property 1
The human readable form of the property:

1. Setpoint CoriFlow > ’0’ and Setpoint MFC101 < ’1’ should not be possible because
of contamination risk N2 main supply with TMAL (always).
This property states that the flow set point for the Liquid Flow Meter (LFM or CoriFlow)
and Mass Flow Controller (MFC) elements must be below or above a certain value. If that
is not the case, the system is in error. The mCRL2 code corresponding to this property:

1 (LFM101 MDLI FlowSetPoint value > 0 &&
2 MFC101 MDLI FlowSetPoint value < 1) −> error(1) . delta

Property 2
The general form of this property is concerned Pressure Valves. It prohibits that a certain
valve is opened when another valve is already open. Here the first human readable property:

2. Opening PV114 if PV103 is open should not be possible because of contamination
risk N2 main supply with TMAL (always)
The mCRL2 formula is:
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1 (PV103 MDLOU IsOpen value && PV114 bIsOpening value) −> error(2) . delta

The second property is the converse of the previous:

3. Opening PV103 if PV114 is open should not be possible because of contamination
risk N2 main supply with TMAL (always)
In mCRL2 code:

1 (PV114 MDLOU IsOpen value && PV103 bIsOpening value) −> error(3) . delta

The next formula and its converse are:

5. Opening PV301 if PV308 is open should not be possible because of shared orifice
OR302 (only possible in manual mode SoLayTec service engineer) and

6. Opening PV308 if PV301 is open should not be possible because of shared orifice
OR302 (only possible in manual mode SoLayTec service engineer)
which in mCRL2 are:

1 (PV301 MDLOU IsOpen value && PV308 bIsOpening value) −> error(5) . delta
2 +
3 (PV308 MDLOU IsOpen value && PV301 bIsOpening value) −> error(6) . delta

Idem for property 11 and 12:

11. Opening PV107 if PV108 is open should not be possible. Avoid gas cabinet abate-
ment line and process line to be open simultaneously (only possible in manual mode So-
LayTec service engineer) and

12. Opening PV108 if PV107 is open should not be possible. Avoid gas cabinet abate-
ment line and process line to be open simultaneously (only possible in manual mode So-
LayTec service engineer)
which in mCRL2 are:

1 (PV108 MDLOU IsOpen value && PV107 bIsOpening value) −> error(11) . delta
2 +
3 (PV107 MDLOU IsOpen value && PV108 bIsOpening value) −> error(12) . delta

Property 3
This property looks like Property 2, but instead of the condition that a Pressure Valve is
open, now the pressure values of two Pressure Transmitters are compared. If this is in the
wrong position in combination with the opening of a Pressure Valve, the system is in error.

4. Opening PV114 if PT102 > PT205 should not be possible because of contamination
risk N2 main supply with TMAL (only possible in manual mode SoLayTec service engineer)

1 (PT102 lrPressure value > PT205 lrPressure value &&
2 PV114 bIsOpening value) −> error(4) . delta

The next properties do also take an offset into account while comparing the pressure
values.

7. Opening PV307 if PT305 (minus offset) > PT301 should not be possible because of
back flush risk (only possible in manual mode SoLayTec service engineer)

1 (PT305 lrPressure value − OFFSET PRESSURE SMALL) > PT301.lrPressure value &&
2 PV307 bIsOpening value) −> error(7) . delta

8. Opening PV305 and PV306 (in which order and which time interval doesn’t matter)
if PT305 (minus offset) > PT302 should not be possible because of back flush risk (only
possible in manual mode SoLayTec service engineer)

1 (PT305 lrPressure value − OFFSET PRESSURE SMALL) > PT302 lrPressure value &&
2 PV306 bIsOpening value) −> error(8) . delta
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9. Opening PV301 if PT301 (minus offset) > PT303 should not be possible because of
contamination risk N2 main supply with TMAL (only possible in manual mode SoLayTec
service engineer)

1 (PT301 lrPressure value − OFFSET PRESSURE SMALL) > PT303 lrPressure value &&
2 PV301 bIsOpening value) −> error(9) . delta

10. Opening PV313 if PT301 (minus offset) > PT303 should not be possible because of
contamination risk N2 main supply with TMAL (only possible in manual mode SoLayTec
service engineer)

1 (PT301 lrPressure value − OFFSET PRESSURE SMALL) > PT303 lrPressure value &&
2 MDL PV313.bIsOpening value) −> error(10) . delta

13. Opening PV103 if PT101 (minus offset) > PT205 should not be possible to prevent
a higher pressure on the liquid side then on the N2 side of the CEM and the possible
contamination risk N2 main supply with TMAL (only possible in manual mode SoLayTec
service engineer)

1 (PT101 lrPressure value − OFFSET PRESSURE SMALL) > PT205 lrPressure value &&
2 PV103 bIsOpening value) −> error(14) . delta

14. Opening PV103 if PT102 (minus offset) > PT101 should not be possible because of
back flush risk (only possible in manual mode SoLayTec service engineer)

1 (PT102 lrPressure value − OFFSET PRESSURE SMALL) > PT101 lrPressure value &&
2 PV103 bIsOpening value) −> error(15) . delta

15. Opening PV112 if PT104 (minus offset) > PT205 should not be possible because of
back flush risk (only possible in manual mode SoLayTec service engineer)

1 (PT104 lrPressure value − OFFSET PRESSURE SMALL) > PT205 lrPressure value &&
2 PV112 bIsOpening value) −> error(16) . delta

16. Opening PV108 if PT104 (minus offset) > PT103 should not be possible because of
back flush risk (only possible in manual mode SoLayTec service engineer)

1 (PT104 lrPressure value − OFFSET PRESSURE SMALL) > PT103 lrPressure value &&
2 PV108 bIsOpening value) −> error(17) . delta

17. Opening PV317 if PT305 (minus offset) > PT303 should not be possible because of
back flush risk (only possible in manual mode SoLayTec service engineer)

1 (PT305 lrPressure value − OFFSET PRESSURE SMALL) > PT303 lrPressure value &&
2 PV317 bIsOpening value) −> error(18) . delta
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6 Guidelines for Modeling with Formal Verification
in Mind

In this section the guidelines as recorded during the development process are listed. They
are split into modeling guidelines (Section 6.1) and verification guidelines (Section 6.2). The
guidelines given should be taken into account when developing models, which should also
be suitable for formal verification in the way as is described in this thesis.

At a high level the guidelines are as follows:

1. For Formal verification, the model must be sufficiently precise to have the needed
information for verification and sufficiently abstract such that verification is doable.
For instance hand written code that is of importance must be incorporated in the
model in some way.

2. The language used in guards, effects and triggers, must have a clear syntax and se-
mantics. In this thesis, the PLC code language is used, but when the output of the
code generation process is not PLC code, the guards, effects and triggers most likely
contain different syntax and semantics. To make model checking generation and also
modeling in general more robust, a language must be used, that is both concise and
expressive enough to model the artifacts that correspond to the target language. This
has advantage in modeling, because there is a common language to reason with. It has
also an advantage in model checking, since a parser has to be made only once, which
can be used in the translation to mCRL2 and any other desired language. If the PLC
language is chosen, the guidelines are explained in more detail in Section 6.1.

3. In model checking different tasks are discerned, such as reachability or deadlock detec-
tion. For each task a certain recipe must be made and followed. Some of these recipes
are documented in Section 6.2.

6.1 Guidelines for modeling

For the generation of a good specification for the use of model checking, there are some
guidelines to follow. They are clustered in guidelines for the Framework accompanying the
Domain-specific language profile and in guidelines for the model, made with this language.

Framework

• The meta model (profile) file has to contain a ‘Framework’ package. This package must
contain a class diagram in which the classes represent the abstract elements represented
by the meta model.
This description of the variables, constants and actions that belong to the element is
used by the generator to make a specification that is complete enough to model the
behavior in enough detail to make model checking with data possible.

• The attributes of the element class should represent the variables corresponding to
that element as used in the target language of the code generation (in this document:
a PLC function block). The attributes must be statically typed:

int for all integer types

double for all real types

boolean for all boolean types

For the generation of the mCRL2 specification with variables and constants, the type
information must be part of the model.

• The attributes must have a default value (initial value) and for the integer and real
values, also an upper and lower bound must be provided.
The default value is necessary to instantiate an element with an initial value. Since
integer and real values have an infinite domain, the mCRL2 specification (or any other
code) would in general be infinite as well. To help prevent this, the domain is bounded.
Note that for real values the domain is still infinite, therefore the real variables must
directly or indirectly be dependent on integer or constant values.
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• If the attribute must represent a constant, it should be marked as such and then an
upper and lower bound are not needed.
This is done to distinguish between variables and constants. The upper and lower
bound are not needed, because for a constant the upper and lower bounds are the
same as the value of the constant. Besides that, the representation of a constant in
the mCRL2 specification is done by a function taking zero arguments and returning
the value.

• The operations of the element class should represent the actions and behavior of that
element or the manipulations of the attributes of that element. Since operations rep-
resent behavior, use state machines to model this. The state machine has the same
name as the operation to link these two in the generation process.

• The general behavior of an element, must be represented by an operation and a corre-
sponding state machine.
This is done, because the modeled behavior can influence the state of the system and
is thus of importance for the mCRL2 specification.

• The state machine modeling this kind of behavioral actions must consist of at least
an Initial state and a Final state with a transition path from the Initial state to the
Final state. On this path one or more simple states are allowed. The transitions may
contain a guard and/or a list of assignments (effect). A list of assignments must not
end with a semicolon (;).
These restrictions are made, because then the generator and parser can handle them
correctly.

• The hand written IF guard THEN effect ENDIF constructs in PLC code must be
translated into the state machine construct in Figure 19. The dotted arrows denote
connections to states before and after these states. If no connected states are before
or after this construct, State1 is an Initial state and State2 is a Final state.
The translation is done in this way, so at least one path is followed, because otherwise
there would be a deadlock when the guard is false.

Figure 19: If-then-else construct in State Machine format

Model

• A Controller element in the domain-specific model must contain one or more state
machines that control the elements in the model and the Controller must be active.
If modeled in this way, the generator will translate the state machine, otherwise it will
not.

• Guards and assignments can contain global variables and constants. These should
be added as attributes to the Controller element the state machine is part of. The
same recommendations as above according to types, default values, bound values and
constants apply.
This is again done, to model the behavior of the system in such detail as is necessary
to check the properties in a decent way.

• Global actions must be modeled with operations as part of the Controller element and
must have a corresponding state machine.
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• Action calls as part of effects must be postfixed with ‘()’.
This must be done to distinguish actions from variables.

• To avoid the state space explosion problem, there should be only a few state machines,
which have only a few states. Most important is to use as less data as possible and
otherwise, they should have small finite domains, such as the booleans.

6.2 Guidelines for model checking

Since the model checking is not done automatically, but with manual use of the mCRL2
toolset, some guidelines are given to work with the toolset in a productive way.

6.2.1 Properties

The properties to which the modeled system must adhere can be specified in several ways.
Here follow some guidelines:

• For reachability, the standard form of the µ-calculus formula is:

〈true∗ · action〉true

where action is the action (with its parameters) for which the reachability is checked.
There are several ways to get a result with a linear process specification (LPS) obtained
from linearizing the generated mCRL2 specification:

– Use lps2lts with the flags --action=action for reachability check of the specified
action (or comma separated list of actions) and --trace for trace recording. Note
that here action must be used without parameters.

– Use lps2pbes with the flag --formula=<file> to generate a parameterized boolean
equation system, where <file> is a *.mcf file containing a µ-calculus formula in
machine readable format. In this case <true*.action>true, where action is the
action for which the reachability is checked. The obtained parameterized boolean
equation system is then solved by pbes2bool with flags --strategy=2 or 3 and
--counter to generate a counter example if the outcome is false and returns a
witness if the outcome is true.

– Use lps-reach with the options --regroup=gs (where gs stands for Group Safely),
--mcrl2-readable-edge-labels and --action=action to use a tool that performs
a symbolic reachability check for the provided action.

• For deadlock, the standard form of the µ-calculus formula is:

[true∗]〈true〉true

If for example only after a Final transition a deadlock is allowed, the first true can be
replaced by Final. Also here are several ways to check for deadlock. Note that these
ways work all for the standard form.

– Use lps2lts with the flags --deadlock for deadlock detection and --trace for
trace recording of the trace to the deadlock. For the alternative form, every trace
may only have the Final action as its last action.

– Use lps2pbes in the same way as with reachability. In this case the formula file
contains the µ-calculus in the standard or the alternative form.

– Use lps-reach with the flags --regroup=gs and --deadlock to let the tool per-
form a search for a deadlock. Note that this tool terminates after the first deadlock
has been found.

• For more complex properties which involve actions, it is best to formulate a µ-calculus
formula. Note that this is most of the time not very intuitive or easy to come up with a
formula that expresses what you mean. The tools to use are lps2pbes and pbes2bool

as described in the tools that can be used for a reachability check. A few patterns that
did occur in this thesis are given here:

– The pattern: ‘Between two actions actionA an action actionB must occur’. The
µ-calculus formula for this pattern is:

[true∗ · actionA() · actionB()
∗
· actionA()]false

It represents that in every reachable state, where an actionA action can be done,
it is not possible to reach an actionA action again, without an actionB
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– The pattern: ‘If action actionA happens, then action actionB must happen’.
With this pattern it is often the case that action actionB may also be done before
action actionA, i.e., action actionB influences the state S of the system. The
µ-calculus formula is the following:

νX(Sstatus : B = false).

[ABad]X(false) ∧
[AGood]X(true) ∧
[ABad ∪AGood]X(Sstatus) ∧
[actionA()]Sstatus ∨ µY.[AGood]Y ∧ 〈true〉true

where ABad and AGood are the sets of actions that influence the state S negatively
and positively. Action actionB() is part of set AGood. The inverse of the union of
these sets (ABad ∪AGood) is the set of actions that do not influence state S. The
action actionA is the triggering action in the pattern. The Sstatus∨µY.[AGood]Y ∧
〈true〉true part represents the second part of the pattern, i.e., the state is already
good (Sstatus), or no loop or finite path exists on which an action in AGood does
not occur.

– The pattern: ‘If action actionA happens, then action actionB must happen or ac-
tion actionC may happen unboundedly often, before that. The µ-calculus formula
is as follows:

νX(Sstatus : B = false).

[ABad]X(false) ∧
[AGood]X(true) ∧
[ABad ∪AGood]X(Sstatus) ∧
[actionA()]Sstatus ∨ (νY (S1status : B = Sstatus).

µZ.(¬S1status ⇒ [AGood ∪ABreak]Z ∧ 〈true〉true) ∧
[ABreak]Y (false) ∧
[AUnbreak]Y (true) ∧
[ABreak ∪AUnbreak ∪AGood]Y (S1status))

where the A··· sets have the same meaning as in the previous pattern. The ABreak
set contains actions that break the finite search (the µZ-search), for example,
because that action starts an infinite path (νY -search) on which the searched for
(AGood) actions do not occur. Whenever this infinite path (or loop) is exited by
an action in the set AUnbreak, the finite search is started again.

Note that the state of the system is here recorded in one variable. It is possible to
model more complex states with more variables or with variables of a different type.

• For properties where only data is involved, it is better to model these properties as
guards, followed by an error action or another action which expresses the result of
the guard being true. The construct you get is (guard) −> error . delta in an mCRL2
process that has the variables that occur in the guard as parameters. The delta process
is to make the action error end in a deadlock state. This is done to help create more
ways to search for the error:

– Do a reachability check on the error action.

– Do a deadlock check and inspect the trace or counter example to verify that the
deadlock found is one caused by the error action.

6.2.2 Tools

Some tools can be substituted by others. Instead of lps2pbes, lts2pbes can be used with
a Labeled Transition System (LTS) obtained by lps2lts and possible manipulations of
the LTS and instead of pbes2bool, pbespgsolve can be used, to solve the Parameterized
Boolean Equation System with an other algorithm. In general lps-reach is the fastest tool
for reachability check.
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The Linear Process Specifications and Parameterized Boolean Equation Systems (PBES)
can be optimized by using various manipulation tools. See Appendix C.1 for a description
of these tools. One tool is mentioned here: pbesabstract. With this tool some variables
of the PBES are set to true or false (called abstraction) to approximate the solution to the
system:

• If variables are set to true, the solution is made more true, so if then the solution returns
true, there cannot be said anything about the original formula, but if it returns false
the original formula was also false.

• If the variables are set to false, the solution is made less true, so if then the solution
returns true, the original formula was also true, otherwise, nothing can be said about
the original formula.

Note that the variables that are left out, must not influence the property. By abstracting
from the correct variables this tool can improve the solving time of the PBES immensely.
A downside of the program is that in some cases, there cannot be said anything about the
original formula, and several tries may be needed to select the right variables. Another
downside is that if a counter example is provided, it can be hard to reconstruct the trace
that caused it, because some relevant trace information is abstracted away.

A performance difference can also be obtained to use the compiling rewriter, with the
flag --rewriter=jittyc instead of the normal rewriter. The rewriter is a part of many
tools. Note that the compiling rewriter is not available on the Windows platform.
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7 Related Work

State charts, similar to state machines, were formalized by David Harel [15] in the eighties
of the 20th century. It was inteded to be a visual formalism to represent complex system.
After his proposal, several other people have proposed different formalisms, but also different
semantics. It has been clear that it is hard to say what the ‘official’ semantics are. The
Object Modeling Group [23] nowadays provide the standard for the state machines as part
of the Unified Modeling Language (UML).

In [25] a formalization is given for the UML statemachine semantics as seen by the
writers. The version of the standard is there 1.3 and the version in this thesis 2+ is used.
Their formalization is used in model checking as well. In their vUML tool [21] they use the
PROMELA language, the input language for SPIN, for model checking. The translation
of UML to PROMELA in vUML makes use of class diagrams, collaboration diagrams and
state machine diagrams.

In [20] the approach is almost the same as used in this document. The approach there
is that the Programmable Logic Controller the basis is and modeled by UML state charts.
The UML state charts are then translated to the formal verification language nuSMV.

State Machines are closely related to finite state machines. In [30] the finite state ma-
chines as captured in Stateflow diagrams as part of Simulink are translated to mCRL2 for
model checking. The INESS Project [14] uses a similar approach, where there is made a
model transformation from Executable UML Models (xUML) to mCRL2 processes.

Another way of model checking is described in [16]. It is based on Live Sequence Charts,
instead of State Charts. Their approach was worked out in Java. An advantage of their
approach is that they can leave the transformation to a verification language out.

In [4] an overview of model checking of statechart models is given, where different ap-
proaches are discussed. Part of these approaches are based on SPIN with PROMELA, others
on SMV or UPPAAL [2]. All have different requirement specification languages that can be
used.

It is well known that it is always hard to formulate requirements or properties of a system
in a non-ambigu way. An approach taken in [26] is to use specification patterns and parse /
translate these to formal requirements. A drawback would be that some expressiveness can
be lost, especially with a rich language as the mu-calculus.

In some tools for model checking the results are given in a trace, for example in vUML
[21] and UPPAAL. These traces are often feed back to the user by means of a Message
Sequence Charts [10, 19]. In such a chart the elements are listed horizontally as a box with
a vertical lifeline and the actions (messages) are visualized vertically, as horizontal arrows
between the lifelines.
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8 Conclusions and Future Work

In this section the results and conclusions are given as a response to the problem put
forward in the introduction. Since this report handles the first steps towards successful
model checking also future work is mentioned.

8.1 Problem Revisited

The problem investigated in this thesis is to see whether mCRL2, as a means for model
checking, is useful in the context of Sioux to add model checking and analysis to model
driven software development in a multi-disciplinary setting. The systems and models that
need to be developed are getting more and more complex, partly due to the multi-disciplinary
setting. This demands for a way of verification of the models, to be sure that the complex
system adheres to the intended specification.

8.2 Results/Conclusions

To get an answer to the problem, an infrastructure was developed to make model checking
possible. This consists of

1. guidelines for modeling and model checking and

2. a generator that can take the (meta)models and generate an mCRL2 Specification.

These (meta)models involve a domain specific language to describe the structure of the
modeled system and the state machine language to describe the behavior of the (elements
of the) modeled system.

The properties to which the system should adhere were provided by the domain expert.
The human readable properties were manually transformed into formal properties using
the µ-calculus or the mCRL2 language. With these formal properties model checking was
applied to the system. To get solutions to the properties, several tools of the mCRL2 toolset
and LTSmin toolset were used.

While this approach was applied to two different cases, several flaws of the modeling
could be shown.
In the Language Workbench Challenge 2012 Case there were several properties that could
be proven true, and counter examples were given, for the properties that were not valid. For
the SoLayTec Case the reachability checks could be performed.

When the work done on the SoLayTec case was shown at SoLayTec, the only result at
that time was that there were some states not reachable. Although they see the potential in
model checking, the current drawback is the usability. The generation of the mCRL2 spec-
ification can be done mostly automatically, but the model checking is all done by manually
using the tools of the toolsets. To use these effectively one needs to have quite some expert
knowledge and insight into mCRL2 and µ-calculus. The ideal situation for them would be
that they provide the (meta)models and with one push of a button they get the results: ei-
ther everything is okay or in an understandable way feedback where possible flaws are found.

The conclusion is that model checking as a method to improve software quality in an
early stage will add value to projects done at Sioux, but one needs an expert to facilitate
this, and / or more effort should be put in making model checking more usable by the
domain expert. The guidelines can be used in future projects concerning model checking.

8.3 Future Work

Model checking gives added value, but only when usable. For this usability and applicability
the following things need to be done. Regarding Modeling these are:

• Following the guidelines for modeling when creating new models.

• Investigate more efficient ways to facilitate model checking. This could be done by
choosing a different modeling strategy with adapted generator according to it, but it
could also be done by using different optimization techniques on the obtained mCRL2
specification.

Regarding the Generator these are:
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• A “one-click” development integration of model checking in MDSD should be provided.

• The toolchain should be packaged as a tool, so it is usable by Sioux for all projects
that work with state machines.

Regarding Property specification these are:

• It should be investigated in which way the properties can be specified in the language of
the domain expert or another specification language. For SoLayTec this would be the
target language of the Programmable Logic Controller, but for other projects where
PLC is not the target, it could be another formalism.

• These properties must automatically be translated in to the µ-calculus or mCRL2,
depending on the type of the requirement(s) at hand.

Regarding Model Checking these are:

• For some model checking tasks, scripts or code can be generated, which then can be
run (as part of the toolchain) to perform these tasks.

• It should be investigated in which way the formal verification and analysis results will
be returned to the domain expert. Message Sequence Charts seem a good option, but
also directly relating back to the State Machines will help to use the model checking
results to improve the model and thus the system.

• It is useful to further investigate which ways of model checking give the best, i.e.,
fastest results.

To add real value to Model Driven Software Development, the infrastructure must be applied
to more projects and adapted according to the findings as a result of the application.
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A State Machines Meta Models

In this section the meta model of the UML 2.4.1 standard for the State Machine Language
is given (Section A.1). The restricted version is given in Section A.2. The notation used in
this section is given in Section 2.1.

A.1 UML 2.4.1 State Machines

This section contains a description of the UML State Machine meta model specified by
OMG [23] that is relevant to this document. In Figure 20 the meta model is graphically
shown. In the following sections, the different classes of the meta model are listed. For the
full description of the standard see [13].

Figure 20: UML 2.4.1 State Machine Meta Model [13, fig. 15.2]

A.1.1 Behavior

Behavior(specification: BehavioralFeature?, context: BehavioredClassifier?, ownedParameter:
Parameter, redefinedBehavior: Behavior, precondition: Constraint, postcondition: Constraint,
isReentrant: Boolean = true) [13, sec. 13.3.2]

A.1.2 NamedElement

NamedElement(namespace: NameSpace?, name: String?, qualifiedName: String?, visibility:
VisibilityKind?, inherits: {Element}) [13, sec. 7.3.34]

A.1.3 Namespace

Namespace(elementImport: ElementImport∗, importedMember: PackageableElement∗, member:
NamedElement∗, ownedMember: NamedElement∗, ownedRule: Constraint∗, packageImport:
PackageImport∗, inherits: {NamedElement}) [13, sec. 7.3.35]
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A.1.4 StateMachine

Statemachine(regions: Region+, connectionPoint: Pseudostate∗, extendedStateMachine: State-
Machine∗, inherits: {Behavior}) [13, sec. 15.3.12]

A.1.5 Region

Region(stateMachine: StateMachine?, state: State?, transition: Transition∗, subvertex: Vertex∗,
extendedRegion: Region?, redefinitionContext: Classifier, inherits: {Namespace, Redefinable-
Element}) [13, sec. 15.3.10]

A.1.6 Vertex

Vertex(outgoing: Transition∗, incoming: Transition∗, container: Region?, inherits: {Named-
Element}) [13, sec. 15.3.16]

A.1.7 Pseudostate

Pseudostate(stateMachine: StateMachine?, state: State?, kind: PseudostateKind = initial,
inherits: {Vertex}) [13, sec. 15.3.8]

A.1.8 PseudostateKind

Enumeration(initial, deepHistory, shallowHistory, join, fork, junction, choice, entryPoint,
exitPoint, terminate) [13, sec. 15.3.9]

A.1.9 ConnectionPointReference

ConnectionPointReference(entry: Pseudostate∗, exit: Pseudostate∗, state: State?, inherits:
{Vertex}) [13, sec. 15.3.1]

A.1.10 State

State(connections: ConnectionPointReference∗, connectionPoint: Pseudostate∗, deferrableTrigger:
Trigger∗, doActivity: Behavior?, entry: Behavior?, exit: Behavior?, redefinedState: State?,
region: Region∗, submachine: StateMachine?, stateInvariant: Constraint?, redefinitionContext:
Classifier, isComposite: Boolean = false, isOrthogonal: Boolean = false, isSimple: Boolean
= true, isSubmachineState: Boolean = false, inherits: {Namespace, RedefinableElement,
Vertex}) [?, sec. 15.3.11]

A.1.11 FinalState

FinalState(inherits: {State}) [13, sec. 15.3.2]

A.1.12 Transition

Transition(trigger: Trigger∗, guard: Constraint?, effect: Behavior?, source: Vertex, target:
Vertex, redefinedTransition: Transition?, redefinitionContext: Classifier, container: Region,
kind: TransitionKind = external, inherits: {Namespace, RedefinableElement}) [13, sec. 15.3.14]

A.1.13 TransitionKind

Enumeration(external, internal, local) [13, sec. 15.3.15]

A.1.14 Trigger

Trigger(event: Event, inherits: {NamedElement}) [13, sec. 13.3.31]

A.1.15 Constraint

Constraint(constrainedElements: Element∗, context: Namespace?, specification: ValueSpeci-
fication, inherits: {PackageableElement}) [13, sec. 7.3.10]

69



A.2 Restricted UML State Machines

In this section the restricted State Machine meta model as used in this thesis is described.
The listed classes correspond to the meta model given in Figure 5 on Page 14.

A.2.1 Model

Model(inherits: {Package})

A.2.2 Package

Package(nestedPackage: Package∗, nestingPackage: Package?, class: Class∗, inherits: {Named-
Element})

A.2.3 Class

Class(isActive: Boolean = false, stateMachine: StateMachine∗, package: Package, inherits:
{NamedElement})

When a class has isActive = true, then this class is used in the translation.

A.2.4 Behavior

Behavior(inherits: {NamedElement})

In Section 4.3.3 the grammar of the effect, entry, do and exit name is described.

A.2.5 Element

Element(owner: Element?, ownedElement: Element∗)

A.2.6 NamedElement

NamedElement(name: String?, qualifiedName: String?, inherits: {Element})

A.2.7 StateMachine

StateMachine(region: Region, class: Class, inherits: {Behavior})

A.2.8 Region

Region(stateMachine: StateMachine?, state: State?, subvertex: Vertex+, inherits: {Named-
Element})

A.2.9 Vertex

Vertex(outgoing: Transition∗, incoming: Transition∗, container: Region, inherits: {Named-
Element})

A.2.10 Pseudostate

Pseudostate(kind: PseudostateKind = initial, inherits: {Vertex})

A.2.11 PseudostateKind

Enumeration(initial)

A.2.12 State

State(doActivity: Behavior?, entry: Behavior?, exit: Behavior?, region: Region?, isComposite:
Boolean = false, isSimple: Boolean = true, inherits: {Vertex})
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A.2.13 FinalState

FinalState(inherits: {Vertex})

A.2.14 Transition

Transition(trigger: Trigger?, guard: Constraint?, effect: Behavior?, source: Vertex, target:
Vertex, inherits: {NamedElement})

A.2.15 Trigger

Trigger(inherits: {NamedElement})

In Section 4.3.1 the grammar of the trigger name is described.

A.2.16 Constraint

Constraint(inherits: {NamedElement})

In Section 4.3.2 the grammar of the constraint name is described.
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B Translation of Restricted UML State Machines
to mCRL2

In this section the translation from the restricted UML State Machine meta model (the
syntax) from Section A.2 to an mCRL2 Specification is given. The translation process is
described in Section 4.
The syntax representation of Section A.2 has an inductive structure. This structure is used
to traverse the model which is given as input for the translation. For each element in
the meta model a translation function and auxiliary functions are defined. Each section
describes a translation function. In each section the return type of the function is denoted.
See [12] for their definition.

B.1 Notation

A translation function has the following structure:

JparametersKstate
ActionNames := body

where ActionNames is a name of the function, state denotes the state in which the function
is. This is optional. The parameters variable represent the parameters which are used in
the functions body, denoted by body.

When in this body this is used, it represents the current element the function is operated
on, e.g.,

JExample(parameters), argumentsKTest := Jthis, argsKExample

Here this represents Example(parameters) and args is a subset of arguments ∪ parameters
plus possible other elements.

In this example it is also clear that the translation function notation is used in the defi-
nition of the function (left) and the calling of other translation functions (right).

The function body has several notation styles, which are explained in the corresponding
sections:

• meta notation (Section B.1.1)

• mCRL2 code (Section 2.4), but denoted with this typeface.

The elements do not only have the arguments as given in the description of Section A.2,
but also attributes (Section B.1.2), auxiliary functions (Section B.1.3) and lists (Section
B.1.4).

B.1.1 Meta Notation

(Child)Parent(parameters) denotes casting from the Parent class to the Child class.

To walk over the inheritance relation the :: notation is introduced, so A::B::C::D::e means
that A inherits from B and B from C, etc. The attribute / association e from class D is
put at the end.

〈parameters〉 denotes a tuple.
πi(〈parameters〉) returns the i-th parameter of the tuple.

[] denotes the empty list
[element] denotes a singleton list, where element is the only element in the list. element B
list denotes a list, where element is the head of the list and list is the tail of the list.

∅ denotes the empty set
set1 ∪ set2 means union of two sets.⋃

element ∈ collectionfunction(element) denotes the union of all the results of function(element)
for all the elements of a collection. Note that function(element) should return a set.
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element ∈ collection denotes whether element is included in collection. Here collection
can be either a set or a list.

set ← other set denotes assignment of the right hand side to the left hand side variable.
{ai | i ∈ N} is a set comprehension, which means that this set contains elements ai for all
i ∈ N. So i ∈ N is the domain and ai is the range.

expr whr a1 = expr1, . . . , an = exprn is a shorthand notation to avoid duplicate calcula-
tions, expri may contain variables aj in the range 1 ≤ j ≤ i − 1, while expr may contain
variables ai for 1 ≤ i ≤ n.

a ++b denotes the string concatenation of string a with string b. If a or b is in italics,
they denote a variable, and when they are not italics, they denote concrete text.

The construct
If condition

code
Else

other code
denotes a case distinction, where the function definitions, as part of the code, make use of
pattern matching.

B.1.2 Attributes

metaType denotes the type of an inherited class. Example: in a parent-child configuration
the test ‘parent.metaType = Child ’

returns

{
true If Child is a child of parent, i.e., Child inherits from parent

false Otherwise

size denotes the number of elements in a collection.

owners is defined on the type State as follows:
If Vertex::container.state is available

Vertex::container.state ∪ Vertex::container.state.owners
Else
∅

B.1.3 Functions

selectType(class name) is a function to select elements of a certain type (class name) out of
a collection of elements.

first() denotes the first element of a non-empty list, i.e., the head.

withoutFirst() denotes the list without the head, i.e., the tail.

B.1.4 Global sets

actionNames denotes the set of unique action names.

B.2 Translation

In this section is for each syntax element in the State Machine meta model of Section A.2
a translation function defined. The notation used here is explained in Section B.1.

There are different types of generation:

• single, where the controller state machines are translated to separate mCRL2 specifi-
cations, or

• full, where all controller state machines are translated to one mCRL2 specification,
where they are put in parallel.

The translation can have two options:
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• simple, where the guards and the behavior of the states and the transitions is translated
to one boolean. This is called serialized.

• states, where for each state an action, is introduced, which can be used for reachability
check.

If both options are not set, then the variables, which are defined in the UML model, are
translated in detail, while the rest of, for example the guard, is omitted. When in a guard
or behavior no defined variables occur, it is translated as with option simple.

In the sections below it is made clear to which type and option a function belongs.

B.2.1 Model

Returns a set of mCRL2Spec
JModel(inherits: {Package})KModel :=

⋃
p∈Package::nestedPackagesJpKPackage

B.2.2 Package

Returns a set of mCRL2Spec
JPackage(nestedPackage, nestingPackage, class, inherits: {NamedElement})KPackage :=⋃
p∈nestedPackageJpKPackage

∪⋃
c∈classJcKActiveClass

B.2.3 ActiveClass

Returns a set of mCRL2Spec
JClass(isActive, stateMachine, inherits: {NamedElement})KActiveClass :=

If isActive
{JsmKStateMachine | sm ∈ stateMachine)}

B.2.4 StateMachine

Returns mCRL2Spec
JStateMachine(region, class, inherits: {Behavior})KStateMachine :=

JBehavior::NamedElement::name, regionKSortSpec

++ JclassNamesKElements

++ JfunctionUpdatesKFunctionUpdates

++ sort VarName = struct none

++ JvarNamesKSortSpecVarNames

++ ;

++ JregionKActSpec

++ JBehavior::NamedElement::name, this, regionKProcSpec

++ JBehavior::NamedElement::name, regionKInit

B.2.5 SortSpec

Returns SortSpec
Jprefix, Region(stateMachine, state, subvertex, inherits: {NamedElement})KSortSpec :=

sort E_ ++prefix ++_States = struct ++Jprefix, subvertexKStateNames ++;

B.2.6 StateNames

Returns ConstrDeclList
Jprefix, Region(stateMachine, state, subvertex, inherits: {NamedElement})KStateNames :=

Jprefix, subvertexKStateNames

If vertices 6= []
Jprefix, vertex B verticesKStateNames :=

Jprefix, vertexKStateName ++ | ++ Jprefix, verticesKStateNames

Else
Jprefix, [vertex]KStateNames := Jprefix, vertexKStateName
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B.2.7 StateName

Returns ConstrDeclList
Jprefix, Vertex(outgoing, incoming, container, inherits: {NamedElement})KStateName :=

If this.metaType = Pseudostate
Jprefix, (Pseudostate)thisKInitialStateName

ElseIf this.metaType = State
Jprefix, (State)thisKStateName

ElseIf this.metaType = FinalState
Jprefix, (FinalState)thisKFinalStateName

Returns ConstrDeclList
Jprefix, State(doActivity, entry, exit, region, isComposite, isSimple, inherits: {Vertex})KStateName

prefix ++_ ++Vertex::NamedElement::name
If isComposite

++ | ++Jprefix++ _ ++Vertex::NamedElement::name, regionKStateNames

B.2.8 InitialStateName

Returns ConstrDecl
Jprefix, Pseudostate(kind, inherits: {Vertex})KInitialStateName :=

prefix ++_ ++Vertex::NamedElement::name

B.2.9 FinalStateName

Returns ConstrDecl
Jprefix, FinalState(inherits: {Vertex})KFinalStateName :=

prefix ++_ ++Vertex::NamedElement::name

B.2.10 Elements

JclassName B classNamesKElements :=
JclassNameKElement

++ JclassNamesKElements

J[className]KElements :=
JclassNameKElement

B.2.11 Element

JclassNameKElement :=
sort ++className ++ = struct

++ className ++_default

++ JclassName, classInstancesKInstances

++ ;

B.2.12 Instances

JclassName, classInstance B classInstancesKInstances :=
If className = classInstance.name

| ++classInstance.instance
++ JclassName, classInstancesKInstances

JclassName, [classInstance]KInstances :=
If className = classInstance.name

| ++classInstance.instance

B.2.13 FunctionUpdates

JfunctionUpdate B functionUpdatesKFunctionUpdates :=
JfunctionUpdateKFunctionUpdate

++ JfunctionUpdateKFunctionUpdates
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J[functionUpdate]KFunctionUpdates :=
JfunctionUpdateKFunctionUpdate

B.2.14 FunctionUpdate

JfunctionUpdateKFunctionUpdate :=
sort ++functionUpdate ++ = struct

++ functionUpdate ++_default

++ JfunctionUpdate, functionValuesKFunctionValues

++ ;

B.2.15 FunctionValues

JfunctionUpdate, functionValue B functionValuesKFunctionValues :=
If functionUpdate = functionValue.name

| ++functionValue.value
++ JfunctionUpdate, functionValuesKFunctionValues

JfunctionUpdate, [functionValue]KFunctionValues :=
If functionUpdate = functionValue.name

| ++functionValues.value

B.2.16 SortSpecVarNames

JvarName B varNamesKSortSpecVarNames :=
If varName 6∈ actionNames

actionNames ← {varName}
| ++varName ++_var

++ JvarNamesKSortSpecVarNames

J[varName]KSortSpecVarNames :=
If varName 6∈ actionNames

actionNames ← {varName}
| ++varName ++_var

B.2.17 ActSpec

Returns ActSpec*
JRegion(stateMachine, state, subvertex, inherits: {NamedElement})KActSpec :=

actionNames ← ∅
JsubvertexKActionNames

++ act int;

++ act error: Pos

++ act Final;

actionNames ∪ {int, error, Final}

B.2.18 ActionNames

Returns ActSpec*
JRegion(stateMachine, state, subvertex, inherits: {NamedElement})KActionNames :=

JsubvertexKActionNames

Returns ActSpec*
If vertices 6= []

Jvertex B verticesKActionNames :=
JvertexKActionName ++
JverticesKActionNames

Else
J[vertex]KActionNames := JvertexKActionName
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B.2.19 ActionName

Returns ActSpec*
JVertex(outgoing, incoming, container, inherits: {NamedElement})KActionName :=

If this.metaType = Pseudostate ∧ outgoing.size > 0
JoutgoingKActionName

ElseIf this.metaType = State
J(State)thisKStateActionName

Returns ActSpec*
If transitions 6= []

Jtransition B transitionsKActionName :=
JtransitionKActionName ++
JtransitionsKActionName

J[transition]KActionName := JtransitionKActionName

Returns ActSpec*
JTransition(trigger, guard, effect, source, target, inherits: {NamedElement})KActionName :=

If trigger is available
If JtriggerKTrigger 6∈ actionNames

++ act ++JtriggerKTrigger ++;

actionNames ∪ {JtriggerKTrigger}
If guard is available

If JguardKConstraint 6∈ actionNames
++ act ++JguardKConstraint ++;

actionNames ∪ {JguardKConstraint}
If effect is available

If JeffectKBehavior 6∈ actionNames
++ act JeffectKBehavior ++;

actionNames ∪ {JeffectKBehavior}

B.2.20 StateActionName

Returns ActSpec*
JState(doActivity, entry, exit, region, isComposite, isSimple, inherits: {Vertex})KStateActionName :=

If entry is available
If JentryKBehavior 6∈ actionNames

++ act ++JentryKBehavior ++;

actionNames ∪ {JentryKBehavior}
If doActivity is available

If JdoActivityKBehavior 6∈ actionNames
++ act ++JdoActivityKBehavior ++;

actionNames ∪ {JdoActivityKBehavior}
If exit is available

If JexitKBehavior 6∈ actionNames
++ act ++JexitKBehavior ++;

actionNames ∪ {JexitKBehavior}
If Vertex::outgoing.size > 0

++ JVertex::outgoingKActionName

If isComposite
++ JregionKActionNames

B.2.21 Trigger

Returns Id
JTrigger(inherits: {NamedElement})KTrigger := Parse(trigger ++NamedElement::name)

B.2.22 Constraint

Returns Id
JConstraint(inherits: {NamedElement})KConstraint := Parse(constraint ++NamedElement::name)
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B.2.23 Behavior

Returns Id
JBehavior(inherits: {NamedElement})KBehavior := Parse(effect ++NamedElement::name)

B.2.24 ProcSpec

Returns ProcSpec
Jprefix, state machine, Region(stateMachine, state, subvertex, inherits:
{NamedElement})KProcSpec :=
∀class ∈ getClasses()getClassProcess(class)
actionNames ← ∅
proc ++ prefix ++( ++

Jprefix, state machine, thisKStateMachineParameters

++ ) = ++
Jprefix, state machine, [], ∅, thisKRegion ++;

B.2.25 StateMachineParameters

Returns IdsDeclList
Jprefix, state machine, Region(stateMachine, state, subvertex, inherits:
{NamedElement})KStateMachineParameters :=
active_id: Pos ++
Jprefix, state machine, thisKStateMachineParameters2

B.2.26 StateMachineParameters2

Returns IdsDeclList
Jprefix, state machine, Region(stateMachine, state, subvertex, inherits:
{NamedElement})KStateMachineParameters2 :=
++, ++prefix++_eCurrentState: E_++state machine.NamedElement::name++_States

++ , ++prefix ++_ATransitionWasPerformed: Bool

++ Jprefix, state machine, subvertexKStateMachineParameter

B.2.27 StateMachineParameter

Returns IdsDeclList
If vertices 6= []

Jprefix, state machine, vertex B verticesKStateMachineParameter :=
Jprefix, state machine, vertexKStateMachineParameter

Jprefix, state machine, verticesKStateMachineParameter

Else
Jprefix, state machine, [vertex]KStateMachineParameter :=

Jprefix, state machine, vertexKStateMachineParameter

Jprefix , state machine, Vertex(outgoing, incoming, container, inherits:
{NamedElement})KStateMachineParameter :=
If this.metaType = State

Jprefix, state machine, (State)thisKStateMachineParameter

Jprefix, state machine, State(doActivity, entry, exit, region, isComposite, isSimple, inherits:
{Vertex})KStateMachineParameter :=
If isComposite

++ , ++Jprefix++ _ ++Vertex::NamedElement::name, state machine,
regionKStateMachineParameters2

B.2.28 Region

Returns ProcExpr
Jprefix, state machine, exits, states, Region(stateMachine, state, subvertex, inherits:
{NamedElement})KRegion :=
Jprefix, state machine, exits, states, subvertexKVertices
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B.2.29 Vertices

Returns ProcExpr
If vertices 6= []

Jprefix, state machine, exits, states, vertex B verticesKVertices :=
Jprefix, state machine, exits, states, vertexKVertex

++ +

++ Jprefix, state machine, exits, states, verticesKVertices

Else
Jprefix, state machine, exits, states, [vertex]KVertices :=

Jprefix, state machine, exits, states, vertexKVertex

B.2.30 Vertex

Returns ProcExpr
Jprefix, state machine, exits, states, Vertex(outgoing, incoming, container, inherits:
{NamedElement})KVertex :=
If this.metaType = Pseudostate

Jprefix, state machine, (Pseudostate)thisKPseudostate

ElseIf this.metaType = State
Jprefix, state machine, exits, states, (State)thisKState

ElseIf this.metaType = FinalState
Jprefix, state machine, (FinalState)thisKFinalState

B.2.31 Pseudostate

Returns ProcExpr
Jprefix, state machine, Pseudostate(kind, inherits: {Vertex})KPseudostate :=

(++prefix++_eCurrentState == ++prefix++_++Vertex::NamedElement::name++) ->

If this.Vertex::NamedElement::Element.owner.owner.metaType = StateMachine
++ enter_r(active_id) .

If getOption().contains(“states”)
++ State ++prefix ++_ ++Vertex::NamedElement::name ++ .

++ (

++ Jprefix, state machine, [], ∅, Vertex::outgoingKTransitions

++ )

B.2.32 State

Returns ProcExpr
Jprefix, state machine, exits, states, State(doActivity, entry, exit, region, isComposite, isSimple,

inherits: {Vertex})KState :=
(++prefix++_eCurrentState == ++prefix++_++Vertex::NamedElement::name++) -> (

If this.Vertex::NamedElement::Element.owner.owner.metaType = StateMachine
++ enter_r(active_id) .

If getOption().contains(“states”)
++ State ++prefix ++_ ++Vertex::NamedElement::name ++ .

++ Jprefix, thisKStateInitPre

If Vertex::outgoing.size = 0
++ JthisKStateInitPost

If Vertex::outgoing.size > 0 ∨ isComposite ∨ doActivity is available
++ (

If exit is available
Jprefix, state machine, exit B exits, states ∪ {this},

this, Vertex::container.state.Vertex::outgoingKTransitions

Else
Jprefix, state machine, exits, states ∪ {this},

this, Vertex::container.state.Vertex::outgoingKTransitions

++ )

Else
++ delta

++ )
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B.2.33 StateInitPre

Jprefix, State(doActivity, entry, exit, region, isComposite, isSimple, inherits:
{Vertex})KStateInitPre :=

If entry is available
++ (( ++prefix ++_ATransitionWasPerformed) -> ++JentryKBehavior

If doActivity is available
++ . ++JdoActivityKBehavior ++ <> ++JdoActivityKBehavior ++) .

Else
++ <> int) .

Else
If doActivity is available

++ JdoActivityKBehavior ++ .

B.2.34 StateInitPost

JState(doActivity, entry, exit, region, isComposite, isSimple, inherits: {Vertex})KStateInitPost :=
If ¬isComposite∧doActivity is not available ∧entry is not available ∧exit is not available

int

B.2.35 StateInit

JRegion(stateMachine, state, subvertex, inherits: {NamedElement})KStateInit :=
Jsubvertex.select(e|e.metaType 6= FinalState)KStateInit

JverticesKStateInit :=
If vertices.size > 0

Jvertices.first()KStateInit

++ +

++ Jvertices.withoutFirst()KStateInit

Else
delta

JVertex(outgoing, incoming, container, inherits: {NamedElement})KStateInit :=
( ++prefix ++_eCurrentState == ++prefix ++_ ++NamedElement::name ++) -> (

If getOption().contains(“states”)
++ State ++prefix ++_ ++NamedElement::name ++ .

If this.metaType = Pseudostate
++ int

Else
J(State)thisKStateInit

++ )

JState(doActivity, entry, exit, region, isComposite, isSimple, inherits: {Vertex})KStateInit :=
Jprefix, thisKStateInitPre

If isComposite
++ JregionKStateInit

If isComposite ∧ exit is available
++ .

If exit is available
++ JexitKBehavior

++ JthisKStateInitPost

B.2.36 FinalState

Returns ProcExpr
Jprefix, state machine, FinalState(inherits: {Vertex})KFinalState :=

(++prefix ++_eCurrentState == ++prefix ++_++Vertex::NamedElement::name ++) ->

If this.Vertex::NamedElement::Element.owner.owner.metaType = StateMachine
++ enter_r(active_id) .

If getOption().contains(“states”)
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++ State ++prefix ++_ ++Vertex::NamedElement::name ++ .

++ Final . delta

B.2.37 Transitions

Returns ProcExpr
Jprefix, state machine, exits, states, pseudoState, transitionsKTransitions :=

If transitions 6= []
(

++ Jprefix, state machine, exits, transition.first()KTransition

++ +

++Jprefix, state machine, exits, states, pseudoState, transitions.withoutFirst()KTransitions

++ )

Else
delta

Jprefix, state machine, exits, states, state, transitionsKTransitions :=
If transitions 6= []

( ++Jprefix, state machine, exits, transitions.first()KTransition

++ <> tau .

++ Jprefix, state machine, exits, transitions.withoutFirst()KTransitions ++)

Else
If state.isComposite

Jprefix, state machine, exits, states, state.regionKRegion

Else
exit_s(active_id) .

++ state machine.Behavior::NamedElement::name ++(

++ Jstate machine, (target.owners \ source.owners) ∪ target,
(source.owners \ target.owners) ∪ sourceKNextStateMachineParameters ++)

B.2.38 Transition

Returns ProcExpr
Jprefix, state machine, exits, Transition(trigger, guard, effect, source, target, inherits:
{NamedElement})KTransition :=
If trigger is available

++ sum ++JtriggerKTrigger ++:Bool . ( ++JtriggerKTrigger ++) -> (

If guard is available
++ sum ++JguardKConstraint ++:Bool . ( ++JguardKConstraint ++) -> (

Else
++ (true) -> (

If trigger is available
++ JtriggerKTrigger ++ .

If guard is available
++ JguardKConstraint ++ .

If effect is available
++ JeffectKBehavior ++ .

If source.metaType = State ∧ ((State)source).isComposite
++ ( ++J((State)source).regionKStateInit ++) .

If exits.size > 0
++ Jexits, (source.owners \ target.owners) ∪ sourceKExits

++ exit_s(active_id) .

++ state machine.Behavior::NamedElement::name ++(

++ Jstate machine, (target.owners \ source.owners) ∪ target,
(source.owners \ target.owners) ∪ sourceKNextStateMachineParameters

++ )

Else
If exits.size > 0

Jexits, (source.owners \ target.owners) ∪ sourceKExits

++ exit_s(active_id) .

++ state machine.Behavior::NamedElement::name ++(
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++ Jstate machine, (target.owners \ source.owners) ∪ target,
(source.owners \ target.owners) ∪ sourceKNextStateMachineParameters

++ )

If trigger is not available ∨ guard is not available
++ )

Else ++ ))

B.2.39 Exits

Returns ProcExpr
Jexit B exits, statesKExits :=

If exits 6= []
If exit.NamedElement::Element::owner ∈ states

JexitKBehavior ++ .

++ Jexits, statesKExits

J[exit], statesKExits :=
If exit.NamedElement::Element::owner ∈ states

JexitKBehavior ++ .

B.2.40 NextStateMachineParameters

Returns DataExprList
Jstate machine, targets, sourcesKNextStateMachineParameters =

Jstate machine.Behavior::NamedElement::name, state machine,
state machine.region, targets, sourcesKNextStateMachineParameters2,
π1(Jstate machine.regionKNextGuardValues) π1(Jsubvertices, ∅, “”, nextKBehaviorVariables)

B.2.41 NextStateMachineParameters2

Returns DataExprList
Jprefix, state machine, Region(stateMachine, state, subvertices, inherits : {NamedElement}),

targets, sourcesKNextStateMachineParameters2 =
Jstate machine.Behavior::NamedElement::name, state machine, subvertices,
targets, sourcesKNextCurrentStateName,
Jprefix, state machine, subvertices, targets, sourcesKNextStateMachineParameter

B.2.42 NextStateMachineParameter

Returns DataExprList If vertices 6= []
Jprefix, state machine, vertexB vertices, targets, sourcesKNextStateMachineParameter =

Jprefix, state machine, vertex, targets, sourcesKNextStateMachineParameter

Jprefix, state machine, vertices, targets, sourcesKNextStateMachineParameter

Else
Jprefix, state machine, [vertex], targets, sourcesKNextStateMachineParameter =

Jprefix, state machine, vertex, targets, sourcesKNextStateMachineParameter

Jprefix, state machine, V ertex(outgoings, incomings, container, inherits : {Named−
Element}), targets, sourcesKNextStateMachineParameter =
If V ertex.type = State

Jprefix, state machine, (State)this, targets, sourcesKNextStateMachineParameter

Jprefix, state machine, State(doActivity, entry, exit, region, isComposite, isSimple,
inherits : {NamedElement, V ertex}), targets, sourcesKNextStateMachineParameter =
If isComposite

, Jprefix, state machine, region, targets, sourcesKNextStatemachineParameters2

B.2.43 NextCurrentStateName

Returns DataExpr
Jprefix, state machine, vertexB vertices, targets, sourcesKNextCurrentStateName =
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If targets ∩ sources = ∅
Jprefix, state machine, vertexB vertices, targets, sources ∪

sources.childsKNextCurrentStateName

If vertices.size ≥ 0
If V ertex.type 6= Pseudostate

If vertex in targets
prefix++state.name
, true

ElseIf vertex.container.state in sources
Jprefix, vertex.container.subverticesKInitialStateName

Else
Jprefix ++vertex.NamedElement::name, state machine, vertices, targets,

sourcesKNextCurrentStateName

Else
prefix ++CurrentState
, false

B.2.44 Init

Returns Init
Jprefix, Region(stateMachine, state, subvertices, inherits : {NamedElement})KInit =

proc Coordinator(active id : Pos) = enter s(activive id).exit s(active id).
Coordinator(if(active id == 1, 1, active id+ 1));

init comm({exits|exitr → exit, . . .}, prefix(Jprefix, thisKInitialStateMachineParameters)||V ar(. . .)||
Coordinator(1);

B.2.45 InitialStateMachineParameters

Returns DataExprList
Jprefix, Region(stateMachine, state, subvertices, inherits : {Namespace, Redefinable-

Element})KInitialStateMachineParameters =
Jprefix, thisKInitialStateMachineParameter2

π1(Jprefix, subverticesKInitialGuardVariables) π1(Jsubvertices, ∅, “”, initKBehaviorVariables)

B.2.46 InitialStateMachineParameters2

Returns DataExprList
Jprefix, Region(stateMachine, state, subvertices, inherits : {Namespace, Redefinable-

Element})KInitialStateMachineParameters2 =
Jprefix, subverticesKInitialStateName,
Jprefix, subverticesKInitialStateMachineParameter

B.2.47 InitialStateMachineParameter

Returns DataExprList
If vertices 6= []

Jprefix, vertexB verticesKInitialStateMachineParameter =
Jprefix, vertexKInitialStateMachineParameter

Jprefix, verticesKInitialStateMachineParameter

Else
Jprefix, [vertex]KInitialStateMachineParameter =

Jprefix, vertexKInitialStateMachineParameter

Jprefix, V ertex(outgoings, incomings, container, inherits : {Named−
Element})KInitialStateMachineParameter =
If V ertex.type = State

Jprefix, (State)thisKInitialStateMachineParameter

Jprefix, State(doActivity, entry, exit, region, isComposite, isSimple, inherits : {Named−
Element, V ertex})KInitialStateMachineParameter =
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If isComposite
, Jprefix ++Vertex::NamedElement::name, regionKInitialStatemachineParameters2

B.2.48 InitialStateName

Returns DataExpr
If vertices 6= []
Jprefix, vertexB verticesKInitialStateName,

Jprefix, vertexKInitialStateName

Jprefix, verticesKInitialStateName

Else
Jprefix, [vertex]KInitialStateName =

Jprefix, vertexKInitialStateName

Jprefix, V ertex(outgoings, incomings, container, inherits : {NamedElement})KInitialStateName =
If V ertex.type = Pseudostate

Jprefix, (Pseudostate)thisKInitialStateName =

Jprefix, Pseudostate(kind : PseudostateKind = initial, inherits : {V ertex})KInitialStateName =
prefix ++Vertex::NamedElement::name
, true
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C Toolsets

In this section the toolsets that are used in this thesis and work with mCRL2 in- and output
are described. Section C.1 gives an overview of the mCRL2 toolset version 201202.0.10804
(Release) that is found at [7]. In Section C.2 a part of the LTSMIN toolset is described. The
toolset is found at [22] and the theory behind is decribed in [5].

C.1 mCRL2 Toolset Overview

Figure 21: Toolset Overview (from [7])

The mCRL2 Specification is a plain-text file which specifies the behavior of the system
that will be analyzed in the mCRL2 language (see Section 2.4). The Linearizer mcrl22lps

is a tool that takes an mCRL2 Specification and transforms it into an LPS. In an LPS all
the parallelism is removed.

C.1.1 LPS Tools

As soon as the Specification is transformed into the LPS format several tools are available
to start analyzing. The first is simulating the model, i.e., from the initial state performing
sequences of actions. Hereby unexpected or erroneous behavior can be observed. The tool

lpsxsim provides a graphical user interface for simulation.

lpsinfo provides statistical information about an LPS.

lpspp can print the binary format of an LPS in a humanreadable format.

lps2lts can generate the state space (LTS) from an LPS, since the LPS is a symbolic
representation of an LTS, which describes the behavior of the system explicitly.

State space generation can take a lot of time and therefor there are tools that can reduce or
alter the LPS to make it more suitable for state space generation. The tool

lpssumelm eliminates summands that are redundant;

lpssuminst instantiates summands, so expanding them for every data value in it;

lpsconstelm removes constant variables from the specification, by substituting the values
for them;

lpsparelm removes parameter of the process specification, that do not contribute to the
behavior of the system;

lpsrewr rewrites data expressions to their normal form;
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lpsconfcheck marks confluent tau’s.

lpsrealelm removes real variables.

C.1.2 LTS Tools

When an LTS is generated, other tools can be used to visualize the state space. A graph
representation is provided by ltsgraph. For small state spaces this tool is suitable, but for
larger ones another visualization tool can be used: ltsview. This tool clusters the nodes,
so the complexity of the image is reduced. It produces a 3D visualization which aims to
show symmetry in the behavior of the system. The tool diagraphica clusters the states
also and depicts them in a 2D representation. It clusters based on state parameters, while
ltsview clusters on structural properties. Besides visualization, reduction modulo several
equivalences, belongs to the options. The tool ltsconvert often reduces the state space
dramatically, preserving important properties. For example, if there are a lot of internal
actions, these can be removed, and thus reduces the state space. Some equivalences reduce
more, but also at the cost of losing some properties. The tool can also convert between
several textual and binary LTS file formats. Another tool, ltscompare, can compare two
LTSs to check whether they are behaviorally equivalent or similar given several notions of
equivalence or similarity. An LTS can also be transformed back to an LPS using lts2lps,
for example to further analyze the specification with LPS tools after minimization of the
LTS.

C.1.3 PBES Tools

To verify that certain desired or undesired properties respectively hold or not hold, the
aforementioned tools give insight into the behavior of the modeled system, but cannot give
an answer to complex model checking questions. In the mCRL2 toolset model checking is
done by parameterized boolean equation systems (PBESs). Model checking starts mostly
with an LPS (or LTS) and a formula expressing the property that must hold or must not
hold. This formula is expressed using the regular modal µ-calculus (extended with data).
(See also Section 2.5). The tool lps2pbes takes such LPS and formula and produces a
PBES. Solving the PBES yields an answer, but that is generally undecidable, and thus may
fail. The main tool for trying to solve a PBES is pbes2bool. There are other tools that help
getting insight into the PBES and also reduce it. The tool

pbespp prints the binary PBES in human readable format;

pbesinfo gives some statistical information about the PBES;

pbesrewr simplifies a PBES, by rewriting data expressions;

pbesconstelm removes constant variables from the PBES, by substituting the values for
them;

pbesparelm removes parameters that do not contribute to the solution of the PBES;

pbesabstract abstracts from given variables, making the PBES less true, but if the answer
is still true, then the original PBES certainly was true also.

The toolset also contains some import and export tools, which are not used for this
project.

C.2 LTSMIN Toolset

The toolset consists of tools, which can manipulate and model check Labeled Transition
Systems. The tool used in this thesis is lps-reach. This tool performs symbolic reachability
analysis for mCRL2 models. The input of the tool is a Linear Process Specification generated
with mcrl22lps (see Section C.1).
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