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Abstract

In this thesis we study the problem of containment queries on nested sets of atomic objects. A nested
set is a set that contains non-trivial sets as elements, as opposed to a flat set, a set that only contains
atomic elements. In general, given two sets of nested sets R and S, the containment join of R in S is
defined as:

R ./⊆ S = {(r, s) | r ∈ R ∧ s ∈ S ∧ r ⊆ s}.

Our study is motivated by the use of nested data sets in a wide variety of practical applications, e.g.,
in XML, scientific workflows, business process management, web mash-ups, NoSQL systems, and
complex object/nested relations. We introduce two novel algorithms which use an inverted file as a
physical representation, for evaluation of subset containment queries on nested sets. We compare both
algorithms by implementing them and subjecting them to extensive experiments where we investigate
the influence of data set sizes and distribution, i.e., realistic and synthetic data. Analytic and empirical
analyses shows that both algorithms have the same general runtime behaviour. Generally, they both
show fast response times with querying of synthetic and real data. We also saw a significant decrease
in querying time when we cached a subset of the payloads, on the skewed data sets. In general, both
solutions have difficulties handling highly skewed data.
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1
Introduction

In this thesis we study the problem of containment queries on nested sets of atomic objects. A nested
set is a set that contains non-trivial sets as elements, as opposed to a flat set, a set that merely
contains atomic elements.

Given two sets of nested sets R and S, the containment join of R in S is defined as:

R ./⊆ S = {(r, s) | r ∈ R ∧ s ∈ S ∧ r ⊆ s}.

Note that R ./⊆ S is not necessarily the same as S ./⊆ R.

We study here how to compute R ./⊆ S when R and S are too big to fit in main memory. Our study is
motivated by the use of nested sets in a wide variety of practical applications, e.g., in XML, scientific
workflows, business process management, web mash-ups, NoSQL systems, and complex object/nested
relations. A further motivation for studying containment queries on nested sets is because to our
knowledge no research has been done regarding this topic, so the potential for interesting results is
very high.

Contributions

Our novel contributions, in this thesis, are the following:

• A definition of containment joins with nested sets.

• Two algorithms, a top-down and a bottom-up, are presented that handle containment queries on
nested sets residing on disk.

• A full scale empirical analysis of our algorithms with a variety of synthetic and real data.

From our investigations we draw the following conclusions:

• our solutions for checking containment queries on nested sets are practical, and

• the solutions show promising results on real data sets.

1



CHAPTER 1. INTRODUCTION

Overview

We start by discussing preliminaries such as flat sets and the algorithms that check containment on flat
sets in Chapter 2. In Chapter 3, we extend the notion of flat sets to nested sets and we present data
structures and table structures to represent these. Chapter 4 discusses two algorithms for containment
queries on nested sets. These algorithms check for containment via a top down and a bottom up
approach. Chapter 5 discusses the setup in which we analyze different data sets (synthetic and real).
In Chapter 6, we present and discuss empirical results of our experiments. Finally, in Chapter 7 we
draw our conclusions and hint at directions for future research.

2



2
Flat sets

In this chapter we discuss the notions of containment queries on flat sets since they are widely studied
in the literature and give an intuition on how to handle nested sets. We give examples of flat sets,
then elaborate the different classes of access methods specialized for supporting containment queries
on flat sets and summarize algorithms that are associated with those classes. In the summary, we
state which class shows the best general performance.

2.1 Containment queries

Containment queries have a purpose whenever we need to examine membership properties such as “is
set x contained in set y?”. The three basic containment operators are the subset, set equality and the
superset. In this thesis we focus primarily on the subset (⊆) join.
An example of set relations are shown in Table 2.1.

id values
a {2,9}
b {8,18}
c {1,3}

id values
A {2,4,9}
B {3,8,18}
C {1,3,4}
D {3,4,7}

Table 2.1: Two flat set relations R(left) and S(right) are shown. A subset join R ./⊆ S = {(a,A), (b, B), (c, C)}.

A practical example [Mam03] of a flat set containment join: “Consider the join of a job-offers relation
R with a persons relation S such that R.required_skills ⊆ S.skills, where R.required_skills stores
the required skills for each job and S.skills captures the skills of persons”.

2.2 Flat set algorithms

In the literature there are different classes, i.e., signatures, inverted files and hash-based solutions,
that support containment queries. These classes are implemented in different algorithms that evaluate
containment queries on flat sets.

3



CHAPTER 2. FLAT SETS

2.2.1 Signatures

A signature of a set is a hash value over the content of the set [HM97]. It is a bit field of length b ∈ N.
Signatures are used to represent or approximate sets [HM97].

Example: Suppose we have a hash function h(j) = j mod 4. The signature of set b (Table 2.1) is
computed as follows:

h(8) = 0

h(18) = 2

The result

sig(b) = sig({8, 18}) = 1010

i.e., index 0 gets a 1, index 2 gets a 1 and all other indices remain 0.

A property of signatures [HM97] : if b ⊆ B, then sig(b) ⊆ sig(B) (i.e., sig(b) is bit-wise contained in
sig(B)).
In the previous example, if the signature of B (Table 2.1) is computed, it will result in 1011. Indeed,
it holds that b ⊆ B implies 1010 ⊆ 1011.
It may occur that sig(b) ⊆ sig(B), but ¬(b ⊆ B). This is called a false drop [HM97]. Computing the
signatures for b and A (Table 2.1) results in sig(b) ⊆ sig(A), but ¬(b ⊆ A).

To conclude, validating with signatures is merely a pretest (efficient because of pruning). A second
validation (element comparisons) is still required for eliminating false drops.

The following algorithms use signatures as an underlying structure:

• NL: Nested-Loop ([HM97])

• SHJ: Signature Hash Join ([HM97])

• SSF: Sequential Signature File ([HM03] )

• ST: Signature Tree ([HM03] )

• ESH: Extendable Signature Hashing ([HM03] )

• PSJ: Partitioned Set Join ([Mam03], [MGM03] and [RPNK00])

• SNL: Signature Nested Loop ([Mam03])

• APSJ: Adaptive Pick-and-Sweep Join ([MGM03])

The signature-based algorithms use this validation to significantly reduce the search space in computing
flat set containment.

2.2.2 Inverted file

In [Mam03], the inverted file is described as an alternative index for set-valued attributes. For each set
element in the domain D, an inverted list, which we define as SIF , is created with the tuple IDs of the
sets that contain this element in sorted order. Table 2.2 shows the (partial) inverted file of Table 2.1.

4



2.3. DISCUSSION

Domain elements IDs
1 {C}
2 {A}
3 {B,C,D}
... ....
18 {B}

Table 2.2: The inverted file SIF of relation S in Table 2.1. The domain elements are shown in the left column.
The right column shows the records associated with the domain elements.

Example: If query q = {1, 3} is applied on the inverted file of Table 2.2, the tuple C qualifies since

SIF (1) ∩ SIF (3) = {C}.

If q = {2, 3}, no tuple qualifies, since

SIF (2) ∩ SIF (3) = ∅.

The following algorithms use the inverted file as an underlying structure:

• IF: Inverted Files ([HM03])

• BNL: Block Nested-Loop using inverted file ([Mam03])

• IFJ: Inverted File Join ([Mam03])

• OIF: Ordered Inverted File ([TBV+11])

The inverted file based algorithms use this approach to minimize disk accesses, i.e., only retrieve the
payloads with respect to the query, while computing set containment joins ([Mam03]).

2.2.3 Hash-based solutions

The final group of algorithms use multiple hash functions to partition and process set containment.
These algorithms have been demonstrated in [MGM03] to work well on sets with small cardinalities
(e.g., ≤ 10). The algorithms are:

• DCJ: Divide-and-Conquer Set Join ([MGM02])

• ADCJ: Adaptive Divide-and-Conquer Set Join ([MGM03])

2.3 Discussion

Empirical analysis presented in [HM03] shows that the inverted file has the best general performance,
especially with set-valued attributes of low cardinality. The hash-based ESH algorithm outperformed
the inverted file for set equality queries. Also, the authors generally state that signature-based index
structures have difficulties with Zipfian distribution (i.e., skewed distribution) of the frequency of
domain elements in the database and some important query cases such as small query sets for subset
queries. We elaborate this type of distribution in Section 5.2.

5



CHAPTER 2. FLAT SETS

The results presented in [MGM03] show that the PSJ outperforms the APSJ and the ADCJ when the
set cardinalities are very small. For larger cardinalities, APSJ shows an increase in performance in
comparison to the other algorithms. Figure 2.1 shows the relationship between the flat set algorithms.

flat set algorithms

inverted file

OIFIFJIFBNL

hash-based

DCJ

ADCJ

signatures

PSJ

APSJ

SNLSTSSFESHSHJNL

Figure 2.1: The relationship between flat set algorithms. The Figure shows that the APSJ algorithm extends
the PSJ algorithm and the ADCJ algorithm extends the DCJ algorithm.

2.4 Summary

The chapter discussed the notion of containment queries on flat sets. We have addressed the classes
signatures, inverted file and hash-based solutions. For each of these classes, several different algorithms
have been proposed. The results presented in [HM03] show that the inverted file has the best general
performance, especially with set-valued attributes of low cardinality. The authors also state that
signature-based index structures have difficulties with skewed data and frequently used query sets.

6



3
Nested sets

In this chapter we extend the notions of containment queries on flat sets to nested sets. To the best of
our knowledge, nested set containment queries have not been studied. We start by explaining the
difference between flat and nested sets, then we present related work regarding nested sets. Nested
sets can also be represented as trees. We briefly discuss different notions of containment on trees since
they have different complexities and properties. We summarize the chapter in the last section and
discuss why we choose the inverted file, as a physical representation of nested sets.

3.1 Nested sets

In the previous chapter we discussed flat sets. We distinguish flat and nested sets, by allowing nested
sets to have non-trivial subsets and flat sets only atomic elements. We need this distinction since the
evaluation of containment differs. Table 3.1 shows two nested set relations, where e.g., a ⊆ A and
c ⊆ C. In general, we want to compute

R ./⊆ S = {(r, s) | r ∈ R ∧ s ∈ S ∧ r ⊆ s}.

id values
a {2,9, {3,4} }
b {8,18, {{{4,45}}} }
c {1,3}

id values
A {2,4,9, {3,4, {12,35}}}
B {3,8,18}
C {1,3,4, {5,65,34,6,76,87}}
D {3,4,7}

Table 3.1: An example of two nested set relations R(left) and S(right). A subset join R ./⊆ S = {(a,A), (c, C)}.

3.2 Notions of containment

Nested sets can also be represented by trees. Figure 3.1 shows a tree representation of the following
two sets:

tr = {a, b, {a, b}, {b, c}} and ts = {a, b, {a, b, c}}.

7



CHAPTER 3. NESTED SETS

root(tr)

j

cb

i

ba

ba

root(ts)

k

cba

ba

Figure 3.1: The tree representation of the nested sets relations tr and ts. Note that identifiers are used to
identify leaf values and children, e.g., nodes(root(tr))={i, j}, leaves(root(tr))={a, b} and leaves(k)={a, b, c}.

For internal node n of tree t, we use the notation nodes(n) to define the non-leaf children nodes of n
in t and leaves(n) the leaf values (direct children) under n in t.

Example: Consider the query tr “is contained” in ts. There are three natural notions of tree
containment:

• Subtree isomorphism, i.e., an injective function maps the nodes in tr to the nodes of ts. In the
example the query does not hold since tr has cardinality four and ts has cardinality three.

• Subtree homomorphism, i.e., the mapping from the nodes in tr to the nodes of ts is not necessarily
injective. The query does hold because a ∈ ts, b ∈ ts, {a, b} ⊆ {a, b, c} and {b, c} ⊆ {a, b, c} .

• Subtree homeomorphism, i.e., the mapping from the nodes in tr to the nodes of ts is not
necessarily injective and the query does not necessarily has to match strict descendants (relaxation
applies at all levels). Note that the query holds, if we do not consider strict descendants.

The best known main memory, i.e., Random Access Memory, algorithms for subtree homo- and
homeomorphism are presented in [KAR12]. The running time of both algorithms is O(|r||s|), for
checking r ⊆ s. The algorithms use parallel computing for checking containment. The best known
running time for subtree isomorphism is O(|r|

√
|r||s|/ log(|r|)) [ST99].

In our work we focus on subtree homomorphism because:

• it is computationally cheaper than isomorphism,

• homomorphism is very natural (e.g., corresponds to standard XPath semantics [GKM09] &
[KAR12]), and

• solutions for homomorphism extend easily to the more relaxed homeomorphism and to the
stricter isomorphism problem [GKM09] & [KAR12].

We discuss extensions for iso- and homeomorphism in Section 4.6.

3.3 Inverted files for nested sets

In Section 2.2.2 we discussed the inverted file for flat sets. We choose, in our work, to use the inverted
file as our physical representation for nested sets because:

• it is widely used in literature, e.g., [HM03] and [Mam03],

• it is especially suitable for real-life applications where the sets are sparse and the domain
cardinality large [Mam03] & [HM03], as we saw in Chapter 2,

• it is easier than signatures since we do not have conversions and different representations, and

8



3.4. RELATED WORK

• industrial strength open source solutions for building inverted files are widely available and used,
e.g., indexing in search engines.

In order to create the inverted file, it is not sufficient to store the table IDs; we also have to store the
non-leaf children, since otherwise containment checks can only happen at the root level. We extend
the inverted file for nested sets with the non-leaf children, as shown in Figure 3.2 (right). We can
construct a path from the nodes with IDs 201→ 208 by matching the children IDs with the node IDs,
e.g.,

(201,<202,203>) ./ (203,<204,208>) = (201,<204,208>)

(201,<204,208>) ./ (204,<>) = (201,<>)

The ’<>’ marker is used to denote a leaf node. Also, the left value (root node ID) never changes since
we want to return that value.

201

203

208

54

31204

21

4321202

654
leaf IDs
1 (201, <202,203>), (203, <204,208>), (204,<>)
2 (201, <202,203>), (204,<>)
3 (201, <202,203>), (203, <204,208>)
4 (201, <202,203>), (202,<>), (208,<>)
5 (202,<>), (208,<>)
6 (202,<>)

Figure 3.2: An example of an inverted file that is build on a nested set relation (represented as a tree). The
left figure shows the tree and the inverted file is shown on the right.

The inverted file can have multiple representations, i.e.,

• parent-children: (p,<c1, ..., cn>), where c1 ≤ ... ≤ cn,
• parent-child: (p, c1), ..., (p, cn),

• children-parent: (<c1, ..., cn>, p), and

• child-parent: (c1, p), ..., (cn, p).

We decided to use the first representation, also shown in Figure 3.2 (right), because it simplifies our
join algorithms. Further more, it is well-suited for compression, since the intersection only requires
the p-values, thus leaving the c1, ..., cn compressed; this is a topic for future research. Note that the p-
values are also in sorted order, i.e., for every inverted list, (p1,<...>), ..., (pk,<...>), in the inverted
file, the following holds: p1 < ... < pk.

3.4 Related work

Sets can be seen as the highest level of abstraction of a hierarchy since they do not maintain any
ordering, e.g., the set {a, b, {{{{c}}}}} has a “nested level” 4, which can be seen as a hierarchical
property.

9



CHAPTER 3. NESTED SETS

3.4.1 Tree pattern matching

Pattern matching is the process of locating substructures of a larger structure, the target, by comparing
them against a given form called the pattern [Kil92]. The problem of nested sets containment given in
the previous section can also be viewed as tree pattern matching problems [Kil92].
In [Kil92] the authors state that a node label preserving embedding f of a tree P = (V,E, root(P )) in
a tree T = (W,F, root(T )) is a “path” embedding if it preserves the parent relation. That is, for all
nodes u and v: (u, v) ∈ E if and only if (f(u), f(v)) ∈ F .
Pattern tree P is an unordered path included subtree of target tree T if there is a path embedding of
P in T . Clearly, such an embedding exists if and only if the set represented by P is a homomorphic
subset of the set represented by T .

Note that our work differs in that we consider bulk containment checks between sets of trees. A naive,
baseline algorithm we have implemented, for bulk containment checks, is the Nested Loop join, i.e.,
given relations R and S, check for every r ∈ R and s ∈ S: r ⊆ s. As expected, empirical analysis
showed that this approach is not feasible for large data sets.

3.4.2 Xpath

In [HD11] and [GC07] different tree pattern matching techniques are discussed regarding XML query
processing. The most popular processing techniques are for XPath [CD99] and XQuery [SCF+07]. An
optimized approach of tree pattern matching is twig pattern matching (TPM). TPM is the process
of finding in an XML data tree D all matches that satisfy a specified path query pattern Q [GC07].
Twig patterns respect parent-child and ancestor-descendant relationships and express node constraints
in formulas with operators such as equals to and contains [HD11].

Standard TPM solutions use an inverted file representation of XML documents. In our work we are
not comparing these standard industrial strength solutions for TPM with our solutions. Our solutions
have a different data representation, different encodings and the algorithms use a different approach.
It is not a trivial task to understand how to extend XML-join solutions to efficiently handle nested
containment queries. We illustrate this by the following example:

Example: Suppose we have the query q = {a, b, {g}} and our database encoded in XML. In Xpath,
the query is formulated as: /*[/a][/b][/*[/g]]. The wildcard ’*’ is defined as “matches any element
node”. How should we interpret this? Retrieve every list in the inverted file encoded XML database?
This would drastically affect the performance with respect to the disk accesses (see also [TBV+11]).

3.4.3 Nested relations

A master student [Boe11] has done research on the nested join operator, for nested relations, in a
mediator-based setting. Nested relations can be thought of as a special restricted case of nested sets.
In particular, all sets in a nested relation have the exact same structure. Nested relations can be
used to describe data on practically all de facto data models such as relational, object-relational and
XML-based DBMS. In [Boe11], the author states that information systems companies have difficulties
concerning data integration, in their IT-landscape. To solve these difficulties in an efficient way a
mediation service, also known as a mediator, is introduced to their IT-landscape. The mediator
facilitates communication between different databases and the end-user. The solution presented in
that report is a generalized version of the join introduced by [GJ00]. Our work is complementary to
this prior work.
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3.5. SUMMARY

3.5 Summary

In this chapter we explained the difference between nested sets and flat sets. Then we discussed
nested sets in tree representation and notions of tree containment. There are three basic notions of
containment on trees: subtree isomorphism, subtree homomorphism and subtree homeomorphism. We
motivated the study of solutions for homomorphic containment. To conclude, we chose the inverted
file as a physical access method because of its robustness, suitability for real-life applications and
simplicity.

11





4
Algorithms

In this chapter two algorithms are presented that handle containment queries on nested sets. Section
4.1 discusses Bloom filters that are implemented in the first algorithm. Next, list intersection is
discussed since this is an important part of both algorithms. In Section 4.3 both algorithms are
demonstrated via an example, followed by the pseudo-code and concluded with the analysis. In Section
4.4 an optimization is presented for both algorithms. Sections 4.5 and 4.6 discuss extensions to both
algorithms (e.g., set equality and superset joins). We summarize the chapter in the last Section.

4.1 Bloom filters

In Section 2.2.1 we discuss the signatures that are variously used in flat sets algorithms. Bloom filters
are a generalization of signatures that use k ≥ 1 hash functions, as opposed to signatures that use
only one hash function.

4.1.1 Preliminaries

Bloom filters are compact data structures for probabilistic representation of a set that supports
membership queries (‘is element x in set Y ?’)[BM02].
In [BM02], Bloom filters are defined for a set A = {a1, ..., an} of n elements. The idea is to allocate a
vector v of M bits, initially all set to 0, and then choose k independent hash functions, h1, .., kk, each
with range 1 to M . For each element a ∈ A, the bits at position h1(a), ..., hk(a) in v are set to 1.

The hash functions h1, ..., hk are defined as follows (Universal Hashing [CSRL01]):

hi(a, b, k) = ((ak + b) mod P ) mod M , where:

• P is large prime (i.e., larger than any key k),

• a ∈ {0, 1, ..., p− 1},

• b ∈ {1, 2, ..., p− 1}, and

• M is the number of bits.

13
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Example: Let P = 492876847, M = 9 and h1, ..., h4 four hash functions:

• h1(k) = ((2k + 5) mod P ) mod M

• h2(k) = ((8556k + 454) mod P ) mod M

• h3(k) = ((345k + 99) mod P ) mod M

• h4(k) = ((45467k + 5346) mod P ) mod M

If we want to hash the key 123 in the Bloom filter, we need to store (h1(123), h2(123), h3(123), h4(123)).
Figure 4.1 shows the result after adding the value 123. Figure 4.2 shows the result after adding keys
123 and 67. Each hash function sets up one bit and it is possible that the same bit is set multiple
times (Figure 4.2).

1

0

0

1

1

0

0

0

1

h1(123)

h2(123)

h3(123)

h4(123)

Figure 4.1: The result after adding the key 123
in the Bloom filter. Note that it is possible that a
bit can be set multiple times.

1

0

0

1

1

1

0

0

1

h1(123)

h2(123)

h3(123)

h4(123)

h1(67)

h2(67)

h3(67)

h4(67)

Figure 4.2: The result after adding the keys 123
and 67 in the Bloom filter. This example shows
that multiple functions set the same bit.

4.1.2 Hierarchical Bloom filters

Bloom filters are applicable for flat sets, however they are unable to represent hierarchies [KP04]. In
[KP04], two data structures are presented, Breadth and Depth Bloom filters, which are multi-level
structures that assist efficient processing of containment queries on XML trees. We do not use these
algorithms for our solutions, but we state them to get an idea on how to use Bloom filters in a hierarchy
based setting.

Breadth Bloom filter (BFF)

The BBF takes the values at each level of a hierarchical structure and places them in a Bloom filter.
A tree of j levels gets j + 1 BFFs. For each level i : 1 ≤ i ≤ j in the tree, we construct a Bloom filter,
i.e., BBFi is the Bloom filter at level i. BBF0 is a special filter with the logical OR over all other
filters. Figure 4.3(b) shows the BBF of Figure 4.3(a). We use a simple hash function that maps a
letter to a slot, i.e., a maps to bit 0, b maps to bit 1,..., and f maps to bit 5.

Depth Bloom Filter (DBF)

The DBF takes the values of a path of different length in a tree and places them in a Bloom filter
[KP04]. A tree of j levels gets j − 1 DBFs. For each level i : 1 ≤ i ≤ j − 1, we construct a Bloom
filter, i.e., DBFi is a Bloom filter at level i. Figure 4.3(c) shows the DBF of Figure 4.3(a). The hash
function is the binary number of the path count, e.g., DBF0 has 6 paths of length 0 and its binary
representation is 110.
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a

b c

d e f

(a) A simple tree.

a

b ∪ c
d ∪ e ∪ f

a ∪ b ∪
c ∪ d ∪
e ∪ f

BBF0

BBF1

BBF2

BBF3

1 0 0 0 0 0

0 1 1 0 0 0

0 0 1 1 10

1 1 1 1 1 1

(b) The BBF of the tree in Figure 4.3(a)

DBF0 → Paths of length 0

DBF1 → Paths of length 1

DBF2 → Paths of length 2

a ∪ b ∪ c
d ∪ e ∪ f

a 7→ b ∪ a 7→ c ∪
b 7→ d ∪ b 7→ e ∪ c 7→ f

a 7→ b 7→ d ∪
a 7→ b 7→ e ∪
a 7→ c 7→ f

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 0 1 1

(c) The DBF of the tree in Figure 4.3(a)

Figure 4.3: An example of the BBF and DBF data structures. The left most figure shows a simple tree. The
middle figure shows the construction of the tree in BBF and the most right figure shows the construction of the
tree in DBF.

4.1.3 Bloom filters for containment queries

In the previous Section we discussed hierarchical Bloom filters. These types of filters are well suited
for assisting in the evaluation of set containment queries on nested sets. In this Section we show how
we can use Bloom filters to assist us in evaluating containment queries. The idea is to prune false
matches without investigating the complete tree structure. The Bloom filter contains leaf values taken
from a data set. Since it is not feasible to store all leaf values in a Bloom filter, we show how we can
find a subset of values to store in the Bloom filter. There are different ways of selecting a subset. One
way is to compare Bloom filters by range, as shown in Figure 4.4. Another way is to compare them by
level, i.e., the values of the Bloom filters are taken from the same level, as shown in Figure 4.5.

rootR rootS
S1 S2

Figure 4.4: An example of two comparable sets
by same depth range. Note that a containment
check is a latter step. For comparability we are
merely interested in the pattern.

rootR rootS

S1

S1

S1

S2

S2

S2

Figure 4.5: An example of two comparable sets
that have values taken from the same depth. In
this example the values are: depth modulo 2.

4.1.4 Augmenting inverted files with Bloom filters

Figure 4.4 and 4.5 show two different methods of storing leaf values in a Bloom filter. Although these
methods take up less space than storing all leaf values, it still may be the case that a large number of
leaves are stored in the Bloom filter, e.g., the leaf count at every level is still relatively large. Another
method, that we experimented with in our empirical study (Chapter 5), is to store leaf values in the
Bloom filter by ranking, e.g., frequency. Suppose we have a Bloom filter that is built on data which
has a non-uniform distribution on the leaf values, e.g., some leaf values occur more frequently than
other leaf values. Then, it is likely that the Bloom filter contains leaf values that occur frequently in
the data. A Bloom filter that contains data with frequently occurring leaf values will prune less data
than a Bloom filter that contains the least frequent values.
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We extend our inverted file with the Bloom filter:

`→ (id,<n1, ..., nm>, [v1, ..., vk]) , where:

• ` is a leaf value in the data set,

• id is the identifier of the tree,

• <n1,...,nm> are the children nodes of id, and

• [v1, ..., vk] is an k-bit vector (the Bloom filter) that contains the hash values of the least frequent
leaves of the tree.

4.2 List intersection

Recall that in Section 2.2.2 we showed that the inverted file takes the intersection of the set values
(Table 2.2):

SIF (1) ∩ SIF (3) = {c, C}

In general, for every query node with leaves `1, ..., `n, we would like to compute:⋂
1≤i≤n

SIF (`i)

4.2.1 Preliminaries

In [CM10], different set intersection algorithms are discussed. The first algorithm iteratively applies
the standard two-set intersection algorithm method as a sequence of pairwise operations. The second
algorithm combines all the sets and sweeps through them all in a single run. The results presented in
that paper show that such a n-way intersection outperforms an iterative 2-way intersection. In Section
4.2.2 we present our adaptation of an n-way list intersection algorithm. We do not compare our list
intersection algorithm with the set intersection algorithms presented in [CM10].

4.2.2 Intersection algorithm on inverted files

We now present an n-way (n is the number of lists) intersection algorithm for the inverted file. We
start with an example, then we give the pseudo code and conclude with the running time analysis.

Example: Let A =< 1, 5, 9, 11, 12 >, B =< 2, 5, 6, 9, 10, 11 > and C =< 1, 5, 6, 11 > be sorted lists.
Figures 4.6(a)-4.6(i) shows the intuition behind the multi-way intersection algorithm. The algorithm
uses the shortest list (of the lists) as a basis, for finding the intersection of all lists.

Algorithm 4.1 shows the pseudo code of the intersection algorithm. The first step is sorting the lists
by length. Then, we initialize a pointer array to keep track of the current index of each list. We store
the intersected results in list R. Lines 6 and 7 are elaborated in Figures 4.6(b)- 4.6(h). These steps
involve increasing the pointers. In lines 12 and 13 we state that if a match is found and the last list is
reached, we add the result in R. In line 17 we skip to the next value in the smallest list, if every other
list, i.e., T2, ..., Tn, has a higher value at their current indices. The process ends when we reach the
last index of any list T1, ..., Tn (line 8).
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(a) The initial situation (pre-
condition).

(b) Sort the list of lists
by length and initializing a
pointer array P that keeps
track of the current index of a
list. The value of P [A]<P [C],
we increase the pointer of A.

(c) The value of P [B]<P [A],
we increase the pointer of B.

(d) The value of P [C]<P [B],
we increase the pointer of C.

(e) The first result is 5. We
output 5 and increase the
pointers of all lists.

(f) The value of
P [A]<P [B], we increase
the pointer of A.

(g) The value of P [B]<P [A],
we increase the pointer of B.

(h) The value of
P [C]<P [A], we in-
crease the pointer of
C.

(i) The second result is 11.
We stop here, since the end
of list A is reached.

Figure 4.6: An example of a multi-way list intersection. The input is a list of three sorted lists. The output
is the intersection of these lists, namely <5, 11>.
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Algorithm 4.1 Multi-way intersection of lists T1, ..., Tn
1: Sort T1, ..., Tn by length
2: Initialize pointer array P = [0,...,0] with length n
3: R← ∅;
4: for all i: 0 ≤ i < |T1| do
5: for all j: 1 < j ≤ n do
6: while Tj [P [j]] < T1[i] do
7: P [j]← P [j] + 1
8: if P [j] = |Tj | then
9: return R

10: end if
11: end while
12: if T1[i] = Tj [P [j]] then
13: if j = n then
14: R← R ∪ {T1[i]}
15: end if
16: else
17: skip to next i
18: end if
19: end for
20: end for
21: return R

Analysis

Every list Ti, for all 1 ≤ i ≤ n, is visited at most once. The running time is:

O(
n∑

i=1

|Ti|+ n log n).

If (n�
n∑

i=1

|Ti|), the running time is O(
n∑

i=1

|Ti|).

4.3 Containment join algorithms

We next develop two algorithms to compute homomorphic containment queries on collections of nested
sets represented as inverted files. The first uses a top-down approach that starts by evaluating the root
node and continues with its children nodes. The second algorithm uses a bottom-up approach which
starts exploring a tree at its leaf nodes in a Depth-first search fashion. We explain both algorithms
via an example, then we give the pseudo code and conclude with the running time analysis.

4.3.1 Top-down approach

The first algorithm we introduce evaluates queries (i.e., containment of nested sets) starting at root of
the tree.
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Example: Let query q = {1, 2, {1, {4, 5}, {5}}} and SIF be the inverted file of Table 4.7.

leaf IDs
1 (201, <202,203>), (203, <204,208>), (204,<>)
2 (201, <202,203>), (204,<>)
3 (201, <202,203>), (203, <204,208>)
4 (201, <202,203>), (202,<>), (208,<>)
5 (202,<>), (208,<>)
6 (202,<>)

Figure 4.7: An example of an inverted file to illustrate the top-down algorithm (and the bottom-up algorithm
we present in the next section).

Figure 4.8(a) shows the tree representation of the query. The top-down algorithm does the following:
the algorithm starts at the root of the tree and intersects its leaf values, as shown in Figure 4.8(b).
The results (T1) are passed down to the children of the root. The second step is retrieving the inverted
list of the node with leaf 1 (SIF (1) in Figure 4.8(c)) and doing a join that involves matching the
children node IDs in T1 with the IDs in SIF (1) (we explained this process in Section 3.3). The join
shown in Figure 4.8(c) is computed as follows:

T2 = T1 ./ SIF (1) (4.1)

≡
T2 = ((201,<202,203>),(204,<>)) ./ ((201,<202,203>), (203,<204,208>), (204,<>)) (4.2)

≡
T2 = (201,<204,208>) (4.3)

The same process is repeated for the remaining nodes, as shown in Figures 4.8(d) and 4.8(e). The
results of T3 and T4 are:

T3 = (201,<>) and T4 = (201,<>) (4.4)

The final step is propagating the results up and returning the intersection of the node IDs, i.e.,

T1 ∩ T2 ∩ T3 ∩ T4 = (201) (4.5)

Note that the children are not a part of the intersection, e.g., the intersection of

T2 ∩ T4 (4.6)

≡
(201,<204,208>) ∩ (201,<>) (4.7)

≡
(201) (4.8)

We give the pseudo code of the top down approach in Algorithms 4.2 and 4.3. The algorithm starts
with a call to Algorithm 4.2 with a query q and an inverted file encoded database SIF . Note that
if the query does not have leaf values, but merely children nodes, we pass the root IDs Sroots as a
parameter to Algorithm 4.3.
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554

1

21

(a) The tree representa-
tion of query q

T1 ← SIF (1) ∩ SIF (2)

554

1

21

(b) Initially, we evaluate the
first node, i.e., the root node.

T1

T2 ← T1 ./ SIF (1)

554

1

21

(c) Next, we evaluate the first
child of the root node.

T1

T2

5

T3 ← T2 ./ (SIF (4) ∩ SIF (5))

54

1

21

(d) In the third step, we evaluate the left leaf node.

T1

T2

T4 ← T2 ./ SIF (5)

5

T3

54

1

21

(e) Finally, we evaluate the final leaf node
and propagate the information and return
the intersected results.

Figure 4.8: An example that shows the execution of the top-down algorithm with the query q =
{1, 2, {1, {4, 5}, {5}}}.

Algorithm 4.2 TD-BNL-Root(query q, SIF )

1: if leaves(q) = ∅ then
2: P ← Sroots
3: else
4: P ← ⋂

`∈leaves(q) SIF (`)
5: end if
6: return TD-BNL-HMInterior(nodes(q), SIF , P )
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The children nodes are processed in Algorithm 4.3. The variable TR denotes children nodes of the
query. If TR is empty, we return the results since we cannot continue (in Figures 4.8(d) and 4.8(e),
the results are T3 and T4). The variable P contains the values that pass the join (./) condition, as
shown in Equations 4.1-4.4. Lines 10-13 show the formal definition of the join condition. The variable
Q contains the IDs of the retrieved lists that passed the join condition. In line 16, we propagate the
results up and returning the intersection, as shown in Equation 4.5.

Algorithm 4.3 TD-BNL-HMInterior(TR, SIF , P )

1: if TR = ∅ then
2: return {p | ∃c : (p, c) ∈ P}
3: else if P = ∅ then
4: return ∅
5: else
6: Q← {p | ∃c : (p, c) ∈ P}
7: for all tuple t ∈ TR do
8: P ′ ← ⋂

`∈leaves(t) SIF (`)
9: T ← ∅

10: for all (p1, c1) ∈ P , (p2, c2) ∈ P ′ do
11: if p2 ∈ c1 then
12: T ← T ∪ {(p1, c2)}
13: end if
14: end for
15: Q′ ← TD-BNL-HMInterior(nodes(t), SIF , T )
16: Q← Q ∩Q′
17: end for
18: return Q
19: end if

Analysis

The worst case running time for a leaf value of q is O(|SIF |), i.e., the number of trees in the data set.
The worst case running time of line 2-4 (Algorithm 4.2) becomes O(|leaves(q)| ∗ |SIF |).
The running time of Algorithm 4.3 is:

• line 8. Each leaf node in SIF is called exactly once, worst case is that the complete SIF is
fetched: O(|leaves(q)| ∗ |SIF |).

• lines 10-14. Worst case is that P contain all trees in data set S. Since both lists are sorted, a
merge join is sufficient: O(|S|).

• line 16. An intersection of two sorted lists having at most O(|S|).

• line 15. For each node, lines 10-14 and 16 are executed:
O(|nodes(q)| ∗ 2|S|). Leaving out the constant, the running time becomes O(|nodes(q)| ∗ |S|).

The total running time is

O((|leaves(q)| ∗ |SIF |) + (|nodes(q)| ∗ |S|)).
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4.3.2 Bottom-up approach

The second algorithm we introduce evaluates containment in a depth first-search manner. The
algorithm uses a stack to store temporary and final results.

Example: We use the same example to explain the intuition behind the algorithm. The algorithm
starts by initializing an empty stack at the root of the tree. Figure 4.9(a) shows that a marker ’$’ is
pushed on the stack. Figure 4.9(b) and 4.9(c) show that two markers are pushed onto the stack since
two nodes are visited. If the current node has no children, the algorithm intersects the leaf values of
the current node, as shown in Figure 4.9(d). The algorithm pops the marker and pushes the head
values onto the stack, i.e.,

head(SIF (4) ∩ SIF (5)) (4.9)

≡

head((202, <>), (208, <>)) (4.10)

≡

(202, 208) (4.11)

The algorithm continues with the next node, as shown in Figure 4.9(e). The current node does not
have any children and the inverted list associated with the leaf value 5 is retrieved and pushed onto
the stack, as shown in Figure 4.9(f). The algorithm propagates up, retrieves all elements in the stack
up to the first encountered marker and pushes back the merged results, i.e., the children of the nodes
is SIF (1) are matched with the retrieved elements from the stack, as shown in Figure 4.9(g). The
algorithm continues propagating up to the root and repeating the process with leaf values 1 and 2, as
shown in Figure 4.9(h). The final step is to pop the stack and return the results.

We give the pseudo code of the bottom-up approach in Algorithms 4.4 and 4.5. The algorithm starts
with a call to Algorithm 4.4 with a query q and an inverted file encoded database SIF .

Algorithm 4.4 BU-BNL-Root(query q, SIF )

1: Stack s← ∅
2: BU-BNL-HMInterior(root(q), s, SIF )
3: return pop(s)

Lines 1-3, in Algorithm 4.5, correspond to Figures 4.9(a)-4.9(c) and 4.9(e). The formal definition of
the matching condition, shown in Figures 4.9(g) and 4.9(h), is presented in Algorithm 4.5 (line 12).

Analysis

The running time of Algorithm 4.5 is :

• line 11. In the worst case the complete inverted file is retrieved: O(|leaves(q)| ∗ |SIF |).

• line 12. In the worst case both of the sets contain all elements in S. Since both sets are sorted,
a merge join is sufficient : O(|S|).
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$

554

1

21

stack:
$

(a) We start by pushing the first
marker onto the stack.

$

$

554

1

21

stack:
$
$

(b) We continue pushing the sec-
ond marker onto the stack.

$

$

5

$

54

1

21

stack:
$
$
$

(c) We continue pushing the third
marker onto the stack.

$

$

5

T1 ← head(SIF (4) ∩ SIF (5))

54

1

21

stack:
T1
$
$

(d) We process the third node and put the intersected values
onto the stack.

$

$

$

5

T1

54
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21

stack:
$
T1
$
$

(e) We push the fourth marker onto
the stack.

$

$

T2 ← head(SIF (5))

5

T1

54

1

21

stack:
T2
T1
$
$

(f) We process the fourth node and put the intersected
values onto the stack.

$

T3 ← match(T1, T2, SIF (1))

554

1

21

stack:
T3
$

(g) We process the second node and put the intersected
values onto the stack.

T4 ← match(T3, SIF (1) ∩ SIF (2))

554

1

21

stack:
T4

(h) We process the first node and return the results.

Figure 4.9: An example that shows the execution of the bottom-up algorithm with the query q =
{1, 2, {1, {4, 5}, {5}}}. Note that the bottom-up algorithm uses a data structure (the stack) to store temporary
results.
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Algorithm 4.5 BU-BNL-HMInterior(Node u, Stack s, SIF )

1: push($, s)
2: for all c ∈ nodes(u) do
3: BU-BNL-HMInterior(c, s, SIF )
4: end for
5: Lists← ∅
6: while peek(s) 6= $ do
7: Lists← Lists ∪ {pop(s)}
8: end while
9: pop(s)

10: if {∀L ∈ Lists : L 6= ∅} then
11: Pairs← ⋂

`∈leaves(u) SIF (`)
12: Heads← {h | ∀L ∈ Lists : ∃ci : 1 ≤ i ≤ n : (h, {c1, ..., cn}) ∈ Pairs ∧ ci ∈ L}
13: push(Heads, s)
14: else
15: push(∅, s)
16: end if

The running time of lines 1-10 are neglectable and will be left out in the total running time. For each
child node in q, line 12 is performed. For each leaf value in q, we scan - in the worst case- all of SIF .
The total running time is:

O((|nodes(q)| ∗ |S|) + (|leaves(q)| ∗ |SIF |))

Note that the worst-case running time of the top-down and bottom-up algorithm are equal.

4.4 Caching

The inverted file SIF is accessed continuously in the top-down and the bottom-up approach, i.e., for
every leaf ` in a query, retrieve SIF (`). Retrieving the inverted list for every leaf value is fine for small
queries, but for large queries and/or a batch of queries, e.g., a number of queries executed after each
other, accessing SIF can incur many random accesses. We can reduce access cost by caching a subset
of the leaf values in main memory. In [TPVS06] an inverted file, with an additional trie data structure,
is proposed that can efficiently answer queries with set-valued attributes by indexing merely a subset
of the most frequent of the items that occur in the indexed relation. The indexing is done with respect
to the data set. Table 4.1 shows the top two most frequent item list of the data set with respect to
Figure 3.2 (left). Suppose we want to find a match for the set {1, 2, {1, 4, 3, 64}}. The inverted file is
accessed three times (instead of six times) since leaf values 2, 3 and 64 are not in main memory.

leaf frequency
1 3
4 3

Table 4.1: The top two most frequent items of the data set shown in Figure 3.2 (left).

Table 4.1 shows an example of caching with respect to the data set. Another natural notion of caching
is with respect to the queries, i.e., based on an observed workload. We leave the study of query
workload driven caching open for future research.
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4.5 Extension 1: evaluation of other join predicates

Recall the practical example, of a set containment join, we gave in Section 2.1: “Consider the join
of a job-offers relation R with a persons relation S such that R.required_skills ⊆ S.skills, where
R.required_skills stores the required skills for each job and S.skills captures the skills of persons".
In some cases we want that the

• required skills of a job exactly matches the skills of a person (R.required_skills = S.skills),
i.e., set equality join,

• that the person is not over qualified (R.required_skills ⊇ S.skills), i.e., superset join, and
• that the person and job share at least ε common requirements, (|R.required_skills∩S.skills| ≥
ε), i.e., ε-overlap join.

The top-down and bottom-up algorithms presented in Section 4.3 can also be adapted to process these
set-based joins. Note that these adjustments must be implemented in the intersection operation of
both algorithms (i.e., line 8 of Algorithm 4.3 and line 11 of Algorithm 4.5).

Let S be a data set and tree T1, ..., Tm ∈ S. Let SIF be the inverted file of S.

4.5.1 Set equality join

For subset joins that satisfies a query q : 1 ≤ i ≤ m : q ⊆ Ti, the following holds: |leaves(q)| ≤
|leaves(Ti)|. For the set equality join, which is defined as q = Ti, the condition is strengthened in both
algorithms, for each Ti found in the inverted list, i.e.,

S′ ←
⋂

`∈leaves(q)

SIF (`) (4.12)

S′ ← remove Ti ∈ S′ not satisfying: |leaves(q)| = |leaves(Ti)|. (4.13)

4.5.2 Superset join

For subset joins the inverted lists for all elements in q are fetched and intersected. For the superset
join, which is defined as q ⊇ Ti, a more relaxed nature of processing is required, i.e.,

S′ ←
⊎

`∈leaves(q)

SIF (`) (4.14)

S′ ← remove Ti ∈ S′ not satisfying: |leaves(Ti)| = number of occurrences of Ti in S′, (4.15)

where
⊎

is the multi-set union. Note that multi-set semantics is required to allow duplicates.

4.5.3 ε-overlap join

The superset join retrieves all trees that have at least one common element. For the ε-overlap join
[Mam03], which is defined as |q ∩ Ti| ≥ ε , every Ti ∈ S′ should appear at least ε times, for some fixed
ε ∈ N, i.e.,

S′ ←
⊎

`∈leaves(q)

SIF (`) (4.16)
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Figure 4.10: An example of an iso- and homomorphic containment, i.e., the left tree, query q, is contained in
the right tree s.

S′ ← remove Ti ∈ S′ that do not appear at least ε times. (4.17)

4.6 Extension 2: other embeddings

The algorithms presented in Section 4.3 can also be adapted to evaluate iso- and homeomorphic
containment. We illustrate this on the top-down approach.

4.6.1 Isomorphic containment

An extra condition that is added in the algorithm: at every level of a query, the matches must be
injective. As a result the running time of the algorithm increases significantly, i.e., higher order in
running time compared to the running times of the algorithms presented in Section 4.3, since we have
to do some backtracking in some cases to find the right containment. Figure 4.10 shows that query q
is isomorphic contained in tree s, but node i is not satisfied by node j. Backtracking is required to
ensure that i→ m and k → j. For homomorphic containment, i→ m and k → j or k → m.
Isomorphism significantly increases the complexity of the algorithm since we have to do more book-
keeping to ensure that the nodes of the query and the nodes of the data set match. First, we have to
mark retrieved lists of the inverted file to ensure that they are not reused again (injective part). Then,
we have to check multiple scenarios to ensure that the correct match is made. This means that we
also have to unmark marked lists in order to reuse them for new scenarios.

4.6.2 Homeomorphic containment

Figure 4.11(c) shows a type of containment which is not regarded as homeomorphism with respect to
the query shown in Figure 4.11(a). In particular, homeomorphism only applies to set nesting and not
set membership. Hence, a and b must appear together as leaves.

The algorithm can be changed in two different ways to check for such homeomorphic containment:

Variant 1 First, all nodes in the inverted lists are tagged with a scheme that stores ancestor-
descendant relationships (e.g., pre-post ordering [GC07]). Next, the join condition in the algorithm is
updated to check ancestor-descendant containment (i.e., lines 10-13 of Algorithm 4.3). This adjustment
does not increase the complexity since we can determine the ancestor-descendant relationship between
any two nodes in constant time by using only two number-comparison operations [GC07].
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root(q)
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(a) query q

root(s)
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root(s′)
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...b
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(c) q is not
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contained in s′

Figure 4.11: The left tree, query q, is homeomorphic contained in the middle tree s but not in the right tree
s′. Note that iso- and homomorphic containment is not possible since both s and s′ do not satisfy q at the root
level.

Variant 2 The
⋂
-operator in the algorithm is relaxed such that failures (intersection may return ∅)

are allowed to occur during the evaluation of a query, as shown in Figure 4.11(b). The Figure shows
containment is found at a sublevel and not at the root level. This adjustment increases the complexity
of the algorithm slightly since we have to add extra recursive calls to allow the relaxation. A direct
consequence of adding extra recursion is that the performance of the algorithm deteriorates.

4.7 Summary

In this chapter we introduced our fundamental tools. Bloom filters are similar to signatures, but a
major difference is that Bloom filters use k ≥ 1 hash functions, as opposed to signatures that use
a single hash function. Next, an algorithm for list intersection was presented. For both algorithms,
top-down and bottom-up, examples were given followed by the pseudo-code and concluded with the
analysis of both algorithms. Analysis shows that both algorithms have the same worst-case running
time. We also discussed an optimization, namely caching the most frequent leaf values occurring in a
data set. An advantage of caching these leaves is that they have the largest payloads and placing them
in main memory we hope to obtain less disk IOs. Finally, the chapter is concluded with extensions for
iso- and homeomorphism, and evaluation of other join predicates such as the set equality, superset
and ε-overlap join.
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5
Experiment set-up

In this chapter we discuss the experimental set-up to evaluate the top-down and bottom-up algorithms,
and the impact of the Bloom filter and caching. The system parameters are described in Section 5.1.
Section 5.2 describes the synthetic data used for the experiments. There are two types of synthetic
data: uniform and skewed. Then, in Section 5.3 we describe the realistic data and the evaluation of
queries (Section 5.4). In Section 5.5 we describe a high level overview on how to construct the inverted
file. We conclude the chapter with a summary.

5.1 System parameters

The experiments were conducted on a system that is composed of 7 servers with each 144 GB that
are aggregated by the vSMP software to appear as one system. The specifications are Fedora 12 /
64-bit, 56 x 2 Ghz, 935 GB memory (aggregated) and an 2.8 TB local disk. The data structures and
algorithms are implemented in Java (version J2SE-1.5), as a single threaded process.

Database The inverted file is implemented in Java, using Tokyo Cabinet1 as the storage engine.
Tokyo Cabinet supports relations with a key and value pair. According to the authors, Tokyo Cabinet
replaces conventional DBM products:

• improves space efficiency : smaller size of database file,

• improves time efficiency : faster processing speed,

• improves parallelism : higher performance in multi-thread environment,

• improves usability : simplified API, and

• improves robustness : database file is not corrupted even under catastrophic situation.

We also experimented with other solutions such as, Berkeley DB2 and cdb3, but Tokyo Cabinet
outperformed those solutions regarding the creation and retrieving of trees in synthetic data, that we
used for our experiments (Section 5.2).

1http://fallabs.com/tokyocabinet/ (version 1.24)
2http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html
3http://cr.yp.to/cdb.html
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parameter min value max value
data set cardinality 125, 000 4, 000, 000
leaf value cardinality 0 10,000,000

Table 5.1: The parameters for generating the data sets. The data sets increase by a factor 2 (i.e., 125k,
250k,...,4000k).

Caching Each benchmark was run with and without caching, as described in Section 4.4. The
caching parameter, i.e., the number of lists that are stored in main memory is set to 250.

Assumptions The payloads, i.e., the retrieved inverted lists, fit in main memory. As each intersection
is on flat sets, the BNL algorithm of [Mam03] could be used if the payloads do not fit in main memory.
The stack used in the bottom-up algorithm always fits in main memory. I/O efficient solutions for
stacks, presented in [DKS08], can be used if the payloads do not fit in the main memory.

5.2 Synthetic data

Two different synthetic data sets were used in our experiments. One data set has a uniform distribution
of leaf values, another has a Zipfian distribution 4. For a summary, see Table 5.1.

We devised a function, called RandomTree, that randomly generates and builds a tree T (note that T
is a class in Java, Appendix A). The function requires four parameters:

RandomTree(l, c, p, z) : T,

where l is the maximal number of leaves at every level of the tree T , c is the maximum number of
node children at every level of the tree T , p is the stopping probability (p ∈ [0, 1)) and z ∈ R is the
Zipfian. This distribution is relevant since a part of our real data (Section 5.3) is also highly skewed.
We want to simulate the effects on our synthetic data.
We build a tree by generating leaves and node children per level. The stopping probability p determines
the depth of T and eventually stops the building process, i.e, at every level of T , we check:

if Math.random()>p then create new node children for T else return T

Table 5.2 shows the different tree types used in our experiments.

Example: Suppose we want to create a data sets that contains 500, 000 wide trees, with skewness
0.5. We do this by calling function RandomTree(12, 6, 0.8, 0.5) 500,000 times (in a for-loop) and saving
the results in a file.

5.2.1 Constructing the inverted file

The top-down and bottom-up algorithm of Section 4.3 share common attributes (identifier, # of child
nodes and whether the current node is a root or not) but also have their own attributes. For example,
the top-down algorithm uses a Bloom filter (Section 5.4.2) which uses 7 bytes per tree. This additional
overhead is undesirable for the bottom-up algorithm since it does not use Bloom filters. To overcome
this, two inverted files are implemented for fair comparisons.

4Various naturally occurring phenomena exhibit a certain regularity that can be described by Zipf’s law, e.g., word
usage or population distribution [HM03]. For further discussion see: http://en.wikipedia.org/wiki/Zipf’s_law
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parameter wide trees deep trees
max # of leaves 12 2
max # of child nodes 6 3
stopping probability 0.8 0.2
skewness 0.5, 0.7, 0.9 0.5, 0.7, 0.9

Table 5.2: The parameters for generating different types of trees. Analyses shows that using higher skewness
values significantly increases the construction time of the inverted file and lower values tends toward a uniform
distribution (a skewness value 0 is uniform).
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Figure 5.1: The creation time of the inverted
files for the uniform data set. The top-down data
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bottom-up data set (wide) takes the most time to
construct.
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Figure 5.2: The creation time of the inverted
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between the different sizes.
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uniform Zipf(0.5)
wide deep wide deep

dataset TD BU TD BU TD BU TD BU
125k 27.84 38.95 7.3 9.25 27.57 39.05 7.24 9.20
250k 54.06 75.59 14.0 17.89 53.86 77.86 13.90 17.88
500k 103.57 144.4 27.16 34.86 106.25 159.04 27.01 35.16
1000k 191.54 266.79 52.67 67.78 210.57 330.68 53.11 70.67
2000k 335.64 469.19 - - 388.25 615.69 - -
4000k 585.42 850.36 - - 596.48 981.58 - -

Zipf(0.7) Zipf(0.9)
wide deep wide deep

dataset TD BU TD BU TD BU TD BU
125k 60.30 121.48 9.66 14.71 397.68 1.014.01 123.19 236.20
250k 165.2 342.78 22.46 36.08 987.44 1.945.08 432.32 392.52
500k 467.46 840.94 62.70 109.47 2.271.51 2.814.92 466.58 942.95
1000k 1.069.51 1.659.54 179.35 317.55 3.725.11 4.608.03 1.338.16 1.595.47
2000k 2.028.63 2.811.54 - - - - - -
4000k 3.075.34 4.416.92 - - - - - -

Table 5.3: The disk size of the inverted files (in kB), for the top-down (TD) and bottom-up (BU) algorithms.
The deep data sets take less disk space than the wide data sets. Recall that deep trees (Figures 5.1-5.4) are
constructed faster than wide trees.

Figure 5.1 shows the elapsed time of constructing the inverted files for uniform data sets and Figures
5.2, 5.3 and 5.4 for skewed data sets (with different skewness parameters). Note that a logarithmic
scale is used on the vertical axis. The figures show that constructing deep trees is overall faster than
constructing wide trees. This is a result of the recursion, on the node children, that is required in
deep trees and as a consequence we decided to cap the number of these type of trees at 1000k because
of the exponential growth of leaf values (= l ∗ cmaxdepth). We also do the same for wide trees with
skewness 0.9. The figures also show that an increase in the data sets does not imply an increase in
construction time. Figure 5.1 shows a decrease in construction time between the 125k and 250k, and
1000k and the 2000k bottom-up data sets (wide). This decrease is also visible in Figure 5.3. The
bottom-up data set (deep) shows a decrease in construction time between the 125k and 250k, and the
500k and 1000k. These dips are a side effect of the RandomTree function. In some cases the number
of leaves and node children of a tree can have higher values in smaller data sets. The parameters l
and c in the RandomTree function are upper bounds.

Example: Suppose that D1 is tree in a 250k data set and D2 is a tree in a 500k data set and let l1
and c1 be the leaf values and node children, respectively of D1, and l2 and c2 of D2. Then, we know
that

l1, l2 ≤ l and c1, c2 ≤ c, but it may be the case that l1 > l2 and c1 > c2.

As a result, smaller data sets can have an increased creation time. Table 5.3 shows the disk sizes of
the inverted files for the synthetic data.
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min value max value
data set cardinality Twitter 125, 000 500, 000
data set cardinality DBLP 125, 000 4, 000, 000
leaf value cardinality Twitter 1 1, 745, 277
leaf value cardinality DBLP 1 267, 142

Table 5.4: The statistics for real data. We use two different data sets: Twitter and DBLP. For Twitter, we do
not have data sets higher than 500k. The leaf value cardinalities depend on the string values in the data sets,
e.g., no value in the Twitter data set has an integer representation higher than 1, 745, 277.
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Figure 5.5: The creation time of the inverted
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Figure 5.6: The creation time of the inverted file
for DBLP data set. Again, we see an exponential
relationship and that the top-down inverted file is
created faster than the bottom-up.

5.3 Real data

Two different real data sets were used:

• tweets from Twitter; the tweets are in JSON format and contain information (e.g., messages,
dates, user ids and urls) about ‘Justin Bieber’. This data is also used in the Master’s Thesis of
J.Roijackers [Roi12], and

• the DBLP Computer Science Bibliography5, as an XML database. This bibliography contains
computer science related articles.

For a summary, see Table 5.4. The real data sets have strings as leaf values. An injective function was
devised that converted the string based data sets to an integer based data sets, i.e., if two strings are
equal, then their integer representation must also be equal.

5.3.1 Constructing the inverted file

For the real data, both algorithms also use different inverted files.

Figure 5.5 and 5.6 show the elapsed time of constructing the inverted files. In both cases, the inverted
file for the bottom-up algorithm takes longer to construct. Also, constructing the inverted files for the

5http://www.informatik.uni-trier.de/~ley/db/
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Twitter DBLP
data set size TD BU TD BU
125k 1.265.472 2.344.588 49.580 191.304
250k 3.459.844 5.237.492 75.880 239.304
500k 6.856.564 8.917.884 267.992 488.636
1000k - - 476.020 1.050.528
2000k - - 764.784 1.339.644
4000k - - 1.893.560 2.572.796

Table 5.5: The disk size of the inverted files (in kB). The Twitter data sets takes significantly more disk space
than the DBLP data set. This can be explained by the leaf count of the data sets. Table 5.4 shows that the
Twitter sets contains approximately 6.5x more leaves than the DBLP data set.

Twitter data set with 500k trees takes almost the same amount of time as constructing the inverted
file for the DBLP data set with 4000k trees. The cause is the size of the inverted lists retrieved from
the inverted file. Long lists take more time to update than small lists. The Twitter data set shows a
long tail distribution (e.g., frequency of popular tweets, number of posts per user). This results in
long inverted lists. The DBLP data sets shows a more uniform distribution (the lists are relatively
small). Table 5.5 shows the disk sizes of the inverted files for real data.

5.4 Generating queries

For queries, we took random trees from our data sets and stored them in main memory. The number
of queries is set to 100, from which 50 are contained in the data sets (positive) and 50 are distorted
(negative). Distorting a tree here means adding leaf values at an arbitrary level of that tree.

5.4.1 Unit of measurement

The unit of performance measurement in our experiments is the elapsed time of sequentially executing
those queries ten times. From those ten, we exclude the minimum and maximum times. Also, we
noticed that the maximum, in most of the cases, was the first run out of the ten runs (due to overhead
setting up the Java Virtual Machine).

5.4.2 Bloom filter

We conduct an experiment with the Bloom filter, using the top-down algorithm, for synthetic data.
The additional cost (in disk space) is the space storage for the Bloom filter. Every query and tree
in the inverted file has a Bloom filter in the form of a boolean array with length 20. An important
aspect of the Bloom filter is that the number of bits set to 1 should be relatively small. If the number
of bits set to 1 is high, it is more likely that less records will be pruned. Figure 5.7 shows the impact
of adding values in the Bloom filter (See Appendix B for source code and hash functions).

Queries

For queries with a Bloom filter, we evaluate deep trees since preliminary analysis showed that wide
trees are not well-suited for Bloom filters. The data set contains 100k trees and the average depth is
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Figure 5.7: An example of a Bloom filter that contains values taken from the range [0, ..., 100000]. The figure
shows that more than 40% of the bits remains 0 if the number of elements added is less than 5. The figure also
shows that every bit is set to 1, if 20 elements are added in the Bloom filter.

set to 7. The queries are a subset of the data set but with a little twist. Every query is distorted, i.e.,
random leaves are added at the lowest level of the query. We want to investigate if the Bloom filter
spots false matches relatively fast without traversing the entire tree.

5.5 High level overview of preprocessing

Figure 5.8 shows procedure prior to querying. The process starts by extracting all leaf values in the
trees, of the data set and storing them in a hash table. The keys are the leaves and the values are the
number of occurrences in the data set. The second step is updating the data set with Bloom filters
(merely for the top-down algorithm). Every tree in the set gets a Bloom filter which contains the
least frequent leaf values of the tree. The last step is building the inverted file. We refer the reader to
Appendix A, for more implementation details.

data set hash table

inverted file

1. update leaf count

2. add bloom filter

3. build the inverted file

Figure 5.8: A high level overview of the construction regarding the most frequent leaves and the inverted file.
Note that the steps 1-3 are not executed every time, but merely after added new trees in the data set.

5.6 Summary

In this chapter we explained the system parameters and set-up used for the experiments. The synthetic
data (uniform and Zipfian) consist of wide and deep trees. The results, of measuring construction
time of the inverted files, show that wide trees are constructed faster than deep trees.
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The real data is taken from Twitter and the DBLP Computer Science Bibliography. For both data
sets, constructing the inverted file for the top-down algorithm is faster than the bottom-up algorithm.
For queries, we took random trees from our data sets and stored them in main memory. Also, we
added Bloom filters in the queries. We concluded the chapter with a high level overview on how to
construct the inverted file.
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6
Empirical analysis

In this chapter we present our empirical results. Section 6.1 discusses the synthetic data. Recall we
use uniform and skewed distribution of the leaf values in all data sets. Then, in Section 6.2, we present
the results of the realistic data sets, i.e., Twitter tweets and the DBLP Computer Science Bibliography.
In Section 6.3, we compare positive and negative queries. Recall that positive queries are subsets and
negative queries return zero results. In Section 6.4 we present an experiment with the Bloom filter.
We conclude the chapter with the discussion of the results.

6.1 Experiment 1: Synthetic data

In this Section we present the results of the synthetic data experiments. The synthetic data consists
of uniform and skewed (i.e., Zipfian distributed) data sets.

6.1.1 Uniform

Figure 6.1 and 6.2 show the results of the uniform data. The figures show that an increase in size does
not always imply an increase in querying time. Also, caching shows no effect on the uniform data sets.

6.1.2 Skewed

For the skewed data set we use the parameters 0.5 (Figures 6.3 and 6.4), 0.7 (Figures 6.5 and 6.6)
and 0.9 (Figures 6.7 and 6.8). Note that a logarithmic scale is used on the vertical axis, for Figures
6.5-6.8. A direct observation is that as the skewness parameter increases, the querying time also
increases. Figures 6.7 and 6.8 show that the length of the inverted lists grows exponentially fast
with an increasing value of the skewness parameter. The wide data sets (Figures 6.3, 6.5 and 6.7)
do not show a decrease in querying time with caching. Also, there is barely any difference between
the top-down and bottom-up algorithm. Figure 6.5 shows there is a slight decrease in querying time
with caching. For the deep data sets, with skewness 0.7 (Figure 6.5), caching shows a slight decrease
in querying time. Also, Figure 6.8 shows that the top-down algorithm (with and without caching)
performs better than the bottom-up algorithm.

A general observation is that Figures 6.1-6.6 show noise/artifacts, i.e., dips in querying time. The dips
only occur if the querying time is less than 1 second. An explanation for this phenomenon lies in the
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Figure 6.1: The cumulative, average querying
time on uniform, wide data sets (Experiment 1).
The figure shows that the bottom-up algorithm
performs worse than the top-down algorithm. Also,
there is not a significant increase in querying time
with respect to the data sets.
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Figure 6.2: The cumulative, average querying
time on uniform, deep data sets (Experiment 1).
The figure shows noise with the bottom-up algo-
rithm.
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Figure 6.3: The cumulative, average querying
time on wide data sets with skewness 0.5 (Experi-
ment 1). The figure shows that both algorithms
have the same overall querying time. Also, there
is a decrease in querying time from the 1000k to
the 2000k data set, due to noise.
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Figure 6.4: The cumulative, average querying
time on deep data sets with skewness 0.5 (Experi-
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rithms.
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Figure 6.5: The cumulative, average querying
time on wide data sets with skewness 0.7 (Exper-
iment 1). The figure shows a slight decrease in
querying time with caching. Also, both data sets
show a decrease in querying time from the 500k
to the 1000k data sets.
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Figure 6.6: The cumulative, average querying
time on deep data sets with skewness 0.7 (Exper-
iment 1). The figure shows a slight decrease in
querying time with caching. The figure also shows
noise with caching, for both algorithms. In this
case the noise occurs on different data sets.
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Figure 6.7: The cumulative, average querying
time on wide data sets with skewness 0.9 (Experi-
ment 1). The figure shows a significant increase in
querying time with respect to the sizes. The top-
down algorithm, with caching, shows promising
results with the smallest data set, however this is
not the case for the other sizes.
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Figure 6.8: The cumulative, average querying
time on deep data sets with skewness 0.9 (Exper-
iment 1). The figure shows that the top-down
algorithm is overall faster than the bottom-up al-
gorithm. The figure also shows that caching does
not make any difference in most of the cases. With
caching, there is a slight decrease in querying time
with sizes greater than 250k (with top-down algo-
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Figure 6.9: The cumulative, average querying
time on the Twitter data set (Experiment 2). The
figure shows a significant decrease in querying time
with caching enabled for both algorithms. Also,
the top-down algorithm with caching has the least
querying time.
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Figure 6.10: The cumulative, average querying
time on the DBLP data set (Experiment 2). Ini-
tially, the bottom-up algorithm with caching en-
abled has the least querying time, but this drop
when the size exceeds the 2000k.

number of leaf values and node children of a tree (in a data set). In Section 5.2, we explained the
number of leaves and node children of a tree depend on a random function. Smaller data sets can
have higher leaf values and more node children than larger data sets. As a result, the querying time
of smaller data sets is in some cases higher than larger data sets. We do not see this phenomenon
with highly skewed data sets (Figures 6.7-6.9). Uniformly distributed data sets have relatively small
inverted lists and the most expensive part of the querying time is retrieving the inverted lists from the
inverted file. Highly skewed data have longer inverted lists and the intersection part of the querying
time dominates the retrieval time of the inverted lists.

6.2 Experiment 2: Real data

In this Section we present our real data results. Note that a logarithmic scale is used on the vertical
axis. Figure 6.9 shows the results of the Twitter data set. The figure shows an increase by a factor of
100 with caching. In most cases, the top-down algorithm performs better than the bottom-up. Figure
6.10 shows the results of the DBLP data set. The bottom-up algorithm with caching shows the lowest
querying time with data sets ≤ 1000k. Also, both algorithms show a significant increase in querying
time for larger data sets.

6.3 Experiment 3: Positive vs negative queries

Table 6.1 shows the cumulative, average querying time of the positive and negative queries (discussed
in Section 5.4), for the data sets of size 500k. Recall that positive queries are subsets and negative
queries return zero results. Our first observation is that 15

24 experiments, the negative queries are
executed faster than the positive queries. The bottom-up algorithm performs much worse when
evaluating negative queries. Also, the top-down algorithm spots negative queries faster. The second
observation is that 9

12 data sets caching performs better. This is shown in the speed-up, which is
defined as no caching

caching (especially with the Twitter data sets caching shows a significant improvement).
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Figure 6.11: The cumulative, average querying time with the top-down algorithm (Experiment 4). The data
set contains 100, 000 trees. Every tree is distorted and the average depth is 7. The figure shows that the
querying time increases significantly with 1000 queries, as apposed to the Bloom filter, there we see a linear
increase with respect to the query size.

The third observation is the ratio α = TD
BU . The top-down algorithm perform in 13

24 experiments better
than the bottom-up algorithm. This is not significant, but what is interesting is that these are all
negative queries in which the top-down algorithm performs better.

6.4 Experiment 4: The impact of Bloom filter

We implemented the Bloom filter with both synthetic and real data. Analyses shows that the Bloom
filter performs better with data sets where every tree is distorted. Figure 6.11 shows that the Bloom
filter spots false matches faster than without the Bloom filter.

6.5 Discussion

In the previous sections we presented the results of the experiments. We showed that the cumulative,
average querying of Experiment 1 was relatively fast, for the uniform data sets (≤ 350 ms). The results
of the uniform data sets in Experiment 1 showed artifact, i.e., larger data sets have lower querying
time than smaller data sets. We explained that smaller data sets can have higher leaf values and more
node children than larger data sets. As a result, the querying time of smaller data sets was in some
cases higher than larger data sets. We also explained that his only occurs with uniformly distributed
data. Also, caching a subset of the payloads has little effect on the uniform data sets. The leaf values
are uniformly distributed, therefore it is unlikely that a cached leaf value is fetched frequently. As a
result caching merely caused overhead instead of gain in querying time. For the skewed data set in
Experiment 1, we saw that an increase in the skewness parameter resulted in an increase in querying
time. The data sets with skewness 0.9 in Experiment 1 showed that the length of the inverted file grew
exponentially fast with an increasing skewness value. The intersection of relatively large inverted lists
takes longer and as a result the querying time also increases. Both, the uniform and skewed data in
Experiment 1 showed noise when the querying time was relatively low. The data sets in Experiment 1,
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6.5. DISCUSSION

with skewness 0.9, do not show any noise. This is quite logical since the order of magnitude is almost
a factor 10 with respect to the size of the data set.

The Twitter data set in Experiment 2 showed promising results with caching. There, we saw an
speed-up by a factor 100. The most frequent leaves in the data set were tweets that were post during
the weekends and a subset of users that posted on a regular basis. Caching these items increased the
performance of the inverted file. Also, the top-down algorithm performs better than the bottom-up in
most cases. We elaborate this result in the following paragraph (Experiment 3). The results of the
DBLP data sets in Experiment 2 showed that caching had little effect. An explanation of this is the
distribution on the leaf values which tend towards uniform, e.g., the gaps between the most frequent
leaves became smaller with larger data sets. Also, both algorithms showed a significant increase in
querying time for larger data sets.

In Experiment 3, we focussed on the data sets of size 500k. There, we did a comparison between
positive and negative queries. Negative queries are overall executed faster than positive queries. This
is expected, since positive queries imply that the complete trees have been visited, as opposed to the
negative queries. There, we see that if no match is found at the current level of a tree, the evaluation
immediately stops. The comparison also showed that the bottom-up algorithm performs much worse
when evaluating negative queries. A logical explanation is the distorting function of a tree. The
distorting starts at the top of a tree and is bounded by a stopping probability (the same as the one
described in Section 5.2). As a result, it may be the case that the upper part of a tree is distorted
and the lower part of a tree remains the same. The top-down algorithm spots negative queries faster
because the top levels are distorted. This also explains all the cases in which the top-down algorithm
outperforms the bottom-up algorithm. Finally, we implemented a Bloom filter with both synthetic
and real data, in Experiment 4. We showed that false matches are spotted faster with the Bloom filter.
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7
Conclusion

In this thesis we studied the problem of containment queries on nested sets of atomic objects. We
showed that nested sets can also be represented as trees and with that representation in mind, we
introduced two novel algorithms for evaluating containment queries on nested sets. The algorithms use
an inverted file as an approach for evaluating subset containment. The first algorithm uses a top-down
approach that starts by evaluating a query at the root node and continues with its children nodes.
The second algorithm uses a bottom-up approach, i.e., starts exploring a query at the leaf nodes and
propagates up to the root node. Analytic and empirical analyses shows that both algorithms have the
same general runtime behaviour. Generally, they both showed fast response times with querying of
synthetic and realistic data. We also saw a significant decrease in querying time when we cached a
subset of the payloads, on the skewed data sets. In general, both solutions have difficulties handling
highly skewed data.

Future work

In Sections 4.5 and 4.6, we discussed several extensions to both algorithms. A future work might
involve implementing those extensions and doing the same empirical analysis as in Chapter 6. Also,
the empirical analyses can be extended with other real data. In Section 4.4 we discussed the notion of
caching with respect to the data set. Another natural notion of caching, that can be implemented, is
with respect to an observed query workload. As opposed to caching, in [TPVS06] and [TBV+11], the
authors present additional data structures for the inverted files for further pruning the number of disk
pages that need to be retrieved from the hard disk. It is worth investigating if additional data structures
can support our solutions, particularly for skewed data sets. Also, to reduce storage and retrieval
costs, compression techniques for the payloads used in both solutions should be investigated. We also
discussed the notion of bloom filters and how we can use them to assist us in evaluating containment
queries, i.e., prune false matches without investigating the complete tree structure. In [HAB12] and
[TP10] they present different approaches for measuring structural similarities of semistructured data
and hashing tree-structured data. These approaches are also worth investing, for pruning purposes in
our context.
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A
Appendix: Description of the source code

In this Appendix we give a high level description of the source code. We elaborate important packages,
classes and discuss the programs we used in our empirical analyses (Chapter 5).

A.1 Packages

The Java project consists of the following packages:

• main. This package contains the implementation of both algorithms.

• tokyocabinet. This package contains classes that use the embedded database Tokyo Cabinet.

• util. A utility package for generating data, statistics and other static methods that can be
accessed without instantiating classes.

• xml. This package contains classes for converting an XML database to our schema.

• twitter. This package contains classes for converting Twitter (i.e., JSON) data to our schema.

A.2 Classes

In this section we highlight a few relevant classes:

• Tree. This class represents a tree. It contains attributes and methods such as :

– Integer id: returns the identifier of the Record class.

– Set<Integer> leafV alues: a set with the leaf values of the Record class.

– Set<Record> childNodes: a set with the children of the Record class.

– Boolean isRoot: returns true if the Record is at the root node.

– Integer computeMaxDepth: computes the maximum depth of the Record.

• PairList. This class is the payload of a retrieved leaf value. It consists of an id, i.e., the leaf value
and a List<PairDisk>. In Figure 3.2 we give an example of an inverted file. In that example a
PairList of the leaf value 1 is:

47



APPENDIX A. APPENDIX: DESCRIPTION OF THE SOURCE CODE

(201,<202,203>), (203,<204,208>), (204,<>)

• PairDisk. A PairDisk is a part of the payload in a PairList, e.g., (201,<202,203>), (203,<204,208>)
and (204,<>) are three PairDisks of the PairList above.

• TDInvertedFileDisk. This class implements the top-up algorithm presented in Section 4.3.1.

• BUInvertedFileDisk. This class implements the bottom-up algorithm presented in Section 4.3.2.

A.3 Programs

These are the 8 programs used for this thesis, divided into different groups:

• Database: These classes create the records up to 4, 000, 000.

A1 JSONRecConverter: this class converts Twitter tweets into the Record format used by the
algorithms.

A2 XMLRecConverter: this class converts a XML database into the Record format used by the
algorithms.

A3 TCSaveSyntDataProgram: (TC is an abbreviation of Tokyo Cabinet): this class creates
synthetic data with an uniform or Zipfian distribution on the leaf values. Also, parameters
such as the maximum leave count or maximum child nodes can be provided.

• Additions of the databases: These classes add extra information to the databases. Note that
these classes are only created once.

B1 TCSaveMostFreqDataProgram: this class builds a hash table that contains the most frequent
leaves. It requires the database and the number of leaves. E.g., if the number = 100, then
the 100 most frequent leaves will be stored in a hash table with key: the leaf and value:
the number of times the key occurs in the database.

B2 TCUpdateBloomFilterProgram: this class add a bloom filter to every record in the database.
Bloom filters are only used in some cases, therefore we use a separate class to avoid the
overhead in the other cases.

• Constructing the inverted files.

C1 TCConstructIFProgram: This class constructs the inverted file from the provided databases.
Three types of inverted files (we distinguish for fair comparisons and overhead reasons) can
be constructed: a top-down inverted file, a bottom-up inverted file and a top-down inverted
file with a bloom filter.

• Querying: These classes are used for querying.

D1 TDViewSyntDataIFProgram: this class evaluates the queries with the top-down algorithm.
It requires a database (to fetch the queries from) and a top-down inverted file or a top-down
inverted file with a bloom filter.

D2 BUViewSyntDataIFProgram: this class evaluates the queries the bottom-up algorithm. It
requires a database (to fetch the queries from) and a bottom-up inverted file.

All classes are console based and have their own parameters. E.g., create 1000 records with relative
deep queries, maximum leaf count at each level is 3, the maximum child nodes is 2 and the distribution
is uniform. The result is shown in the following command:
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java -cp proj.jar tokyocabinet.TCSaveSyntDataProgram -h data.out 1000 3 2 0.2 false

where:

• java -cp is the JVM command,

• proj.jar is the executable jar file that contains the entire project,

• tokyocabinet.TCSaveSyntDataProgram is the name of the package and class,

• -h is a prefix, no execution takes place without his parameter,

• data.out is the newly created database with 1000 records,

• 0.2 is the deepness of the record (this parameter was discussed in section 5.2), and

• false implies uniform distribution.

The other parameters, i.e., 1000, 3 and 2 are respectively the number of records, maximum leaf count
and maximum child nodes.

The programs cannot be executed independently. There are 9 executions possible (in total 12 but we
exclude the combinations with the bloom filter and bottom-up algorithm since it is only implemented
in the top-down algorithm):

[A1 or A2 or A3] · [B1 or B2] · C1 ·D1

[A1 or A2 or A3] ·B1 · C1 ·D2

e.g., the following sequence generates a synthetic data set with bloom filters, builds the inverted file
and uses the top-down algorithm for evaluation:

A3 ·B2 · C1 ·D1
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B
Appendix: Bloom filter implementation

In this Appendix we present the source code of the bloom filter, that is implemented in the top-down
algorithm, in Java.

Listing B.1: Source code bloom filter (in Java)

/∗∗
Bloom f i l t e r : hash f unc t i on s h1 , . . . , h4 wi th formula ( from Cormen e t a l . ) :
− h (a , b , k ) = (( a∗k+b ) % p) % M, where :
− p i s l a r g e prime ( i . e . l a r g e r than any key k ) ,
− a in [0 , p−1] ,
− b in [ 1 , p−1] , and
− M i s bucke t s i z e .

∗/
public class BloomFi lter {

private stat ic f ina l int M = 20 ;
private stat ic f ina l int p = 15485863;

private boolean [ ] hashTable ;
private int s i z e = 0 ;

public BloomFi lter ( ){
hashTable = new boolean [M] ;

}

public void add ( int va l ){
i f ( ! conta in s ( va l ) ){

hashTable [ h1 ( va l ) ] = true ;
hashTable [ h2 ( va l ) ] = true ;
hashTable [ h3 ( va l ) ] = true ;
hashTable [ h4 ( va l ) ] = true ;
s i z e++;

}
}
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public boolean [ ] getHashTable ( ){
return hashTable ;

}

public int s i z e ( ){
return s i z e ;

}

public boolean conta in s ( int va l ){
return hashTable [ h1 ( va l ) ]
&& hashTable [ h2 ( va l ) ]
&& hashTable [ h3 ( va l ) ]
&& hashTable [ h4 ( va l ) ] ;

}

private stat ic int h1 ( int va l ){
return ( ( va l ∗307 + 67) %p)%M;

}

private stat ic int h2 ( int va l ){
return ( ( va l ∗173 + 9739) %p)%M;

}

private stat ic int h3 ( int va l ){
return ( ( va l ∗563 + 19) %p)%M;

}

private stat ic int h4 ( int va l ){
return ( ( va l ∗37 + 31) %p)%M;

}

}
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