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Abstract

We consider the inverse Laplace transform f(t) = L−1{F (s)}. This prob-
lem is extremely ill-posed (in the sense of Hadamard’s definition of well-
posedness) in the case when the Laplace transform is measured, computed
or known on the real positive axis only. The problem is difficult because a
stable inversion formula does not exist. In such a case, numerical methods
and possibly regularization must be used to reconstruct the inverse Laplace
transform f(t).

Consequently, we examine three different numerical methods for the inversion
of the Laplace transform: the Gaver-Stehfest method, the Piessens methods
(based on a Chebyshev polynomial expansion of the Laplace transform func-
tion) and we construct a new method, the regularized collocation method
(based on Tikhonov regularization).

We show that the Gaver-Stehfest and the Piessens methods are suitable in
the case of exact data F (s), whereas the regularized collocation method is
well suited to handle both cases, i.e., for exact and noisy data.

Finally, we implement these methods and test their applicability on a wide
class of Laplace transform functions in the case of exact and noisy data. For
noisy data, we examine the methods and compare them with respect to their
stability.
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Chapter 1

Introduction

1.1 Introductive sentences

The Laplace transform is an important integral transform with several ap-
plications in physics and engineering. There, it is for example used in the
solution and analysis of time-invariant systems such as electrical circuits,
mechanical systems, optical devices, harmonic oscillators and several other
applications.

At the moment, there exists an extensive list of literature on the Laplace
transform. However, only a selected few are listed in this section. Wid-
der [64] wrote a seminal monograph on the Laplace transform and inversion
formulas in 1941. The book by Jaeger [32] written in 1961 provides an in-
troduction to the Laplace transform with engineering applications. Spiegel’s
[55] Schaum’s outline on the Laplace transform applications was published
in 1965. Then in 1973, Stroud [58] completed his work on the Laplace trans-
form containing several example problems. Bogart [9] examined the Laplace
transform on a theoretical and experimental perspective in 1984. In 1996,
Poularikas [52] gave an extensive review of the Laplace transform applied to
ODEs and PDEs. More recently in 2003, Beerends et al. [6] considered the
Fourier as well as the Laplace transform.

The Laplace transform of a function f(t), t > 0 is denoted by L{f(t)}
and defined as

L{f(t)} = F (s) =

∫ ∞
0

f(t)e−stdt (1.1)
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provided that the integral (1.1) exists. In Section 5.2, we give sufficient con-
ditions for the existence of the Laplace transform F (s).

In general, three different cases are encountered when a problem is being
solved or a system is been analysed by means of the Laplace transform:

1. In the first case, the Laplace transform is obtained analytically. In
such a case (and when the expression for the transform is simple), the
inverse Laplace transform can be determined by the use of tables of
Laplace transforms or by means of analytical methods.

2. In the case when the Laplace transform is only computed in the complex
half-plane of convergence, then the inverse Laplace transform can be
reconstructed by the use of the complex inversion integral (also known
as the Bromwich Integral):

f(t) =
1

2πi
lim
ω→∞

∫ σ+iω

σ−iω
F (z)eztdz, (1.2)

where the integration is carried out along the vertical line <(s) = σ in
the complex plane such that σ is greater than all real part of all the
singularities of F (s).

3. Finally, in the case when the Laplace transform F (s) is measured, com-
puted or known only for <(s), s > 0, i.e., only on the real positive axis,
the problem of reconstructing the original function f(t) from F (s) is
extremely ill-posed. In this case, stable inversion formulas do not exist.

The ill-posed case, i.e., when the Laplace transform is only known at a finite
number of points F (si), i = 1, 2, . . . , N for <(s), s > 0, is the focus and mo-
tivation of this masters thesis. As a result, we now consider some numerical
methods for reconstructing the inverse Laplace transform.

1.2 Numerical inversion of the Laplace trans-

form

In this section, we provide a brief review of some numerical methods for re-
constructing the inverse Laplace transform.
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The books by Krylov, Shoblya and Louvish [38] and Cohon [13] describe some
numerical methods for the Laplace transform inversion. Miller and Guy, Jn
[42] introduced an inversion method based on Jacobi polynomial, whereas Al-
Shuaibi [1] used Legendre polynomials for his method. Essah and Delves [23]
developed an inversion method using cross-validation Galerkin techniques,
while Lee and Sheen’s [40] method was based on the location of the poles in
the Laplace transform F (s). By using eigenfunctions and eigenvalues of the
Laplace transform, Mcwhirter and Pike [41] developed a method for inverting
the Laplace transform and similar Fredholm integral equations of the first
kind. Ramm [54] considered an inversion method which uses only real values
of s > 0 of the transform function F (s). De Hoogs, Knight and Stokes [18]
worked on an improved method for the numerical inversion of the Laplace
transform by accelerating the convergence of the Fourier series obtained from
the inversion integral by using a trapezoidal rule. A numerical method based
on a Chebyshev polynomial expansion of the Laplace transform function was
later introduced by Piessens [48], whereas Stehfest [56] expressed the inverse
Laplace transform operator as coefficients, which depends only on the dis-
cretization parameter N . Finally, Coumo et al. [15] introduced a collocation
method which uses real values of the Laplace transform.

We observe that in the above references, no regularization properties are
built in into their methods. This implies that they become highly unstable
in the presence of noisy data. Consequently, we examine some numerical
methods, which have some form of regularization in them. In this direc-
tion, Al-Shuaibi [2] constructed a regularized displacement operator, while
Ang, Lund and Stenger [3] introduced a complex variable and regularization
method for the inversion of Laplace transform. Finally, Dong’s [20] method
was based on Tikhonov regularization method.

An extensive survey and comparison of numerical methods for the inversion
of the Laplace transform was given be Davis and Martin [16].

1.3 Outline of thesis

The organization of this thesis is briefly described in this section.

5



In Chapter 2, we present the theory of integral equations and describe the
classification scheme for them. We give some important definitions and re-
sults related to the solution of integral equations. We list some numerical
methods for solving integral equations of the second kind. At the end, we
give the conditions ensuring the existence of a solution to an integral equa-
tion of the first kind.

In Chapter 3, we examine the theory of inverse and ill-posed problems with
respect to an operator equation Kf = F . We give some definitions and typ-
ical examples of inverse problems. We consider the relation between inverse
and ill-posed problems. Finally, we present some important results related to
the Moore-Penrose (generalized) inverse corresponding to the ill-posed oper-
ator K.

In Chapter 4, we consider regularization methods for ill-posed problems. We
mention some iterative regularization methods and examine continuous reg-
ularization method. Regularization by a-priori and a-posteriori parameter
choice rules are also examined. Lastly, we investigate the Tikhonov regular-
ization method and its numerical realization.

In Chapter 5, we analyse the Laplace transform. We give sufficient conditions
for the existence of the Laplace transform and prove several important prop-
erties. We consider the inverse Laplace transform and derive the complex
inversion integral. For both, the direct Laplace transform and its inverse, we
give some example problems.

In Chapter 6, we examine three numerical methods for the inversion of the
Laplace transform. We begin by showing that the Laplace transform is indeed
an ill-posed problem. We derive the Gaver-Stehfest method, Piessens method
and we construct a regularized collocation method based on Tikhonov regu-
larization.

In Chapter 7, we make use of MATLAB to implement the algorithms de-
rived in Chapter 6. We test the algorithms on a wide class of transform
functions in the case of exact data and noisy data. We make comparison
between the methods and examine their numerical stability in the case of
noisy data. Finally, we give a concise summary of the entire masters thesis
and some concluding remarks.
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In the appendix, we present some definitions for normed linear space, oper-
ators, differentiability and some other definitions that appear in this thesis.
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Chapter 2

Integral equations

In this chapter, we briefly introduce the theory of integral equations. We
classify integral equations, present some useful definitions and mention some
numerical methods for solving certain type of integral equations. The mo-
tivation for including this chapter is that the Laplace transform is a typical
example of a Fredholm integral equations of the first kind. This overview on
the theory of integral equations is based on Engl [22] and Kress [37].

2.1 Introduction

An integral equation is a mathematical statement in which the unknown func-
tion is part of an integrand and it appears under an integral sign. Integral
equations are an intriguing branch of applied mathematics because several
problems with physical applications can be formulated as integral equations.
This underscores its importance in mathematics, see Poularikas [52], physics,
see Engl [22], and engineering, see Poljak and Tham [50], Dolezel, Karban
and Solin [19], and Rahman [53].
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2.2 Classification of integral equations

We classify integral equations according to its type and kind. Thus, we
consider a general, one-dimensional, linear integral equation of the form:

a(s)f(s)−
∫ s1

s0

k(s, t)f(t)dt = F (s), (2.1)

where a(s) is a given function, f(t) the unknown function, k(s, t) the kernel
function, and F (s) is the given right hand side. We present the following
classification scheme. (See, e.g., Engl [22]).

Classification by kind :

• If a(s) = 0 in (2.1), we have an integral equation of the first kind.

• If a(s) = constant in (2.1), we obtain an integral equation of the second
kind.

• If a(s) = nonconstant function 6= 0 in (2.1), we get an integral equation
of the third kind.

Classification by type:

• If the limit of integration in (2.1) is fixed and not allowed to vary, we
obtain a Fredholm type integral equation, e.g.,∫ s1

0

k(s, t)f(t)dt = F (s),

with s1 fixed, is a Fredholm integral equation of the first kind.

• If the limit of integration in (2.1) is allowed to depend on the free
variable, we obtain a Voltera type integral equation, e.g.,

λf(s)−
∫ s

0

k(s, t)f(t)dt = F (s), s ∈ G ⊆ R,

where s is a free variable, is a Voltera integral equation of the second
kind.
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Relationship between integral equations of different types and kinds

A Voltera integral equation can be formally expressed as a Fredholm integral
equation via the following relation∫ s

0

k(s, t)f(t)dt =

∫ s1

0

k(s, t)χ[0,s](t)f(t)dt, s ∈ [0, s1],

where

χ[0,s](t) =

{
0, t ∈ [0, s]

+∞, t /∈ [0, s]

is the characteristic function. This implies that the Voltera equations is a
special case of the Fredholm integral equation.

Whereas, the third kind integral equation can be written as a second kind
integral equation. For this, we consider a second kind integral equation given
as:

a(s)f(s)−
∫ s1

s0

k(s, t)f(t)dt = F (s).

Assume a(s) 6= 0 for all s, we can write the above equation as a second kind
integral equation in the form:

f(s)−
∫ s1

s0

k(s, t)

a(s)
f(t)dt =

F (s)

a(s)
, a(s) 6= 0.

In the following, we present some useful definitions and propositions related
to the solution of integral equations.

2.3 Definitions and results

All the definitions and propositions that we present in this section are taken
from Engl [22].

Definition 2.1. (Degenerated kernel)
The kernel function k : G × G → R is called degenerated if there exist
functions: ϕ1, . . . , ϕn and ψ1, . . . , ψn ∈ L2(G), G ⊆ R, such that

k(s, t) =
n∑
i=1

ϕi(s)ψi(t)

almost everywhere.
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Proposition 2.2. Let K : L2(G)→ L2(G) be an integral operator generated
by the kernel function k. Then k is a degenerated kernel if and only if the
range of K is finite dimensional.

Definition 2.3. (Weakly singular kernel)
Let G ⊆ Rn be compact, and Jordan measurable. Then the kernel function
k : (G×G)\{(s, s) : s ∈ G} → R is weakly singular if k |(G×G)\{(s,s) : s∈G} is
continuous and there exist constants β > 0 and M > 0 such that

|k(s, t)| ≤M‖s− t‖β−NN , (s 6= t).

In the study of integral equations, compact linear operators are of great im-
portance, since, as we have mentioned earlier, a lot of problems with physi-
cal applications can be formulated as integral equations. Under appropriate
conditions (assumptions), integral operators are compact. It is known that
compact operators do not have a continuous inverse, see Engl, Hanke and
Neubauer [7], and as a result, integral equations of the first kind (Kf = F ),
having a compact operator K are standard examples of ill-posed problems,
see Chapter 3 of this work.

In the light of the above, we now present the conditions ensuring the com-
pactness of integral operators.

Proposition 2.4. Let the integral operator K be generated by the kernel
function k ∈ C(G × G). Then the operator K is compact between all the
combinations of L2(G) and C(G); that is

K : L2(G)→ L2(G)

K : L2(G)→ C(G)

K : C(G)→ L2(G)

K : C(G)→ C(G)

 are all compact.

Proposition 2.5. Let K : L2(G)→ L2(G) be an integral operator generated
by the kernel function k ∈ L2(G×G). Then the operator K is compact.

Proposition 2.6. Let the kernel function k be weakly singular. Then the
integral operator (Kf)(s) =

∫
G
k(s, t)f(t)dt exist and is well defined for

f ∈ C(G) and K : C(G)→ C(G) is compact.

Furthermore, the proposition given below contains some important properties
of compact operators.
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Proposition 2.7. Let X, Y, Z be normed spaces. Let K : X → Y be a linear
operator. Then,

1. if K is compact, then K is bounded,

2. linear combinations of compact operators are compact.

3. Let K1 ∈ L(X, Y ) and K2 ∈ L(Y, Z), then K1K2 is compact if either
K1 or K2 is compact.

4. Let Y be a Banach space, for all n ∈ N. Let Kn : X → Y be linear and
compact. If limn→∞ ‖K −Kn‖ = 0, then K is compact.

5. If K is bounded and dimR(K) <∞, then K is compact.

We now present other useful definitions and results related to compact oper-
ators.

Definition 2.8. (Adjoint operator)
Let K : X → Y be an integral operator, where X, Y are Hilbert spaces. The
operator K∗ satisfying

〈Kx, y〉Y = 〈x,K∗y〉Y ∀ x ∈ X, y ∈ Y

is called the adjoint operator of K.

As a side note, we mention that the adjoint operator does not always exist
if X, Y are not Hilbert spaces and equipped with a general dual system.

Definition 2.9. (Self-adjoint operator)
Let X be a Hilbert space, then the integral operator K : X → X is said to be
a self-adjoint operator (K = K∗) if

〈Kx, y〉Y = 〈x,Ky〉Y ∀ x, y ∈ X.

Definition 2.10. (Eigensystem)
Let X be a Hilbert space, K : X → X a compact self-adjoint operator. Let
λ1, λ2, . . . be the (non-zero) eigenvalues of K, where the λ′is are written
dimN (λiI −K) times. Suppose x1, x2, . . . form an orthonormal system with
λixi = Kxi. Then the pair, (λi, xi)i∈N is called the eigensystem of the opera-
tor K.

12



Proposition 2.11. For a compact, self-adjoint operator K : X → X, be-
tween Hilbert space X, an eigensystem exists.

Definition 2.12. (Eigensystem expansion)
Let K be a compact linear self-adjoint integral operator with eigensystem
(λi, xi), then the following eigensystem expansion exist for K,

Kf =
∞∑
i=1

λi〈f, xi〉xi (2.2)

for f ∈ X.

Whereas, for non self-adjoint operators, an eigensystem expansion as given
above is not possible. This is so because non self-adjoint operators do not
necessarily have eigenvalues or an eigensystem. Thus, for such operators, a
singular value expansion exists in place of an eigensystem expansion. As a
result, we now give the definition of the singular value expansion.

Definition 2.13. (Singular value expansion)
Let K : X → Y be a self-adjoint compact linear operator, and
K∗ : Y → X the adjoint operator. Let {σ2

i }i∈N be the (non zero) eigenvalues
of the self-adjoint operator K∗K (and also of KK∗) written in decreasing
order and with multiplicity, σi > 0. The triad (σi;xi, yi) defines the singular
system, where {xi}i∈N is a complete orthonormal system of eigenvectors of
K∗K, and where {yi}i∈N forms a complete orthonormal system of eigenvec-
tors of KK∗ and is define through

yi :=
Kxi
‖Kxi‖

.

From the above definition, we can write an expansion for non self-adjoint,
compact, linear operators, given below in (2.3) and (2.4),

Kxi = σiyi, K∗yi = σixi

and

Kf =
∞∑
i=1

σi〈f, xi〉yi, f ∈ X, (2.3)

K∗g =
∞∑
i=1

σi〈g, yi〉xi, g ∈ Y. (2.4)
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In Chapter 4 of this thesis, we examine the regularization of ill-posed prob-
lems and in doing so, we will make use of the spectral family of a function.
As a result, we present the following definition.

Definition 2.14. (Spectral family, Eλ)
Let (σi;xi, yi) be a singular system for the non self-adjoint compact linear
operator K. Given the eigensystem (σ2

i ;xi) for the self-adjoint compact op-
erator K∗K, we have the following expansion

K∗Kf =
∞∑
i=1

σ2
i 〈f, xi〉xi. (2.5)

The expression in (2.5) can be written as an integral operator

K∗Kf =

∫
λdEλf,

where the spectral family Eλ of f is defined through

Eλf :=
∞∑
i=1
σ2
i<λ

〈f, xi〉xi + Pf (2.6)

and P : K∗K → N (K∗K) is an orthogonal projector, λ > 0.

For a more detailed explanation on the spectral theory as it applies to com-
pact operators, see Engl [22].

Definition 2.15. (Spectrum of K)
Let X be a normed space, K : X → X be a linear operator. The spectrum of
K is defined as

σ(K) = {λ ∈ C | λI −K : X → X has no continuous inverse on X},

where λ ∈ C is an eigenvalue of K if N (λI −K) 6= {0}.

Proposition 2.16. Let X be a normed space, K : X → X a compact oper-
ator, then the following holds

1. If dimX =∞, then 0 ∈ σ(K).
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2. If λ ∈ σ(K) \ {0}, then λ is an eigenvalue of K with finite geometrical
multiplicity, i.e., dimN (I −K) <∞.

3. σ(K) is at most countable, and 0 is the only accumulation point.

We note that the Laplace transform (see Chapter 5 of this work) is a typical
example of a Fredholm integral equation of the first kind and it has sev-
eral important properties. However, at this point, we briefly introduce the
Laplace transform as it relates to integral equation of the first kind.

The Laplace transform integral

We recall the definition of the Laplace transform of a function f(t) given in
(1.1), i.e., ∫ ∞

0

f(t)e−stdt = F (s) (2.7)

provided the integral (2.7) exists and the sufficient conditions given in Chap-
ter 5 are satisfied. In operator notation, we define the Laplace transform
as

Kf = F (2.8)

where

K ≡
∫ ∞
0

· e−stdt is the Laplace transform operator

f ≡ f(t) is the unknown function

F ≡ F (s) is the data

e−st ≡ the kernel function associated with the integral operator K.

Numerical methods for solving certain class of integral equations are consid-
ered in the next section.

2.4 Solution methods for integral equations

In this section, we examine the solution methods for equations of the first
kind and list some solution methods for equations of the second kind.
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Methods for equations of the first kind

In the following theorem, we present the conditions ensuring the existence
of a solution of equations of the first kind. The theorem can be found in
Engl [1].

Theorem 2.17. Let H be a Hilbert space and K : H → H a compact self-
adjoint operator. Let (λi, xi) be the corresponding eigensystem of K. Then
the integral equation of the first kind∫ s

0

k(s, t)f(t)dt = F (s) ⇒ Kf = F

is solvable if and only if:

1. F ∈ N (K)⊥, and

2. f =
∑∞

i=1
|〈F,xi〉|2

λ2i
<∞ (Picard condition)

are satisfied. In this case, the solution of the integral equation is given by

f =
∞∑
i=1

〈F, xi〉
λi

xi + q (2.9)

where q ∈ N (K).

Some useful references related to the solution of Fredholm integral equation
of the first kind include Landweber [39], Baker et al. [5], Nashed and Wahba
[45], Nair and Pereverzev [44], Wahba [62], and Hilgers [30] and their refer-
ences.

For simplicity, we have stated Theorem 2.17 for self-adjoint operators K.
This assumption is not needed, but a similar theorem also holds in the non
self-adjoint case making use of the singular value decomposition.

Methods for equations of the second kind

Consider a Fredholm integral equation of the second kind given as

λf(s)−
∫ 1

0

k(s, t)f(t)dt = F (s).

For the above equation, standard numerical methods for obtaining approxi-
mate solution are:
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1. Degenerated kernel approximation,

2. Quadrature methods,

3. Projection methods,

4. Collocation methods.

For a detailed description of the above solution methods, see Kress [37] and
Engl [22].

The numerical inversion of the Laplace transform is an inverse problem,
and as we know, a mathematical formulation involving inverse problem often
leads to ill-posedness. In the light of this, the next chapter is devoted to the
study of inverse and ill-posed problems.
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Chapter 3

Inverse and ill-posed problems

In this chapter, we introduce the theory of inverse and ill-posed problems,
and we present this in terms of an operator equation. We consider some
typical examples of inverse problems. Finally, we recall some results from
Engl, Hanke and Neubauer [21].

3.1 Introduction

In the words of Keller [35], two problems are said to be inverse to each other
if the formulation of one of the problems involves the other. In this sense
(mainly for historical justification), one might call one of these problems
(mostly the one which was first studied or the less difficult one) the direct
problem, while the other one is called the inverse problem.

Throughout this chapter, we will always make reference to the operator equa-
tion:

Kf = F (3.1)

where K : X → Y is a bounded linear operator between the Hilbert spaces
X, Y .

A direct problem to (3.1) is: given information about the operator K and
value(s) of f, we seek to compute corresponding values of the right hand side
F .

Whereas, the inverse problem, is: given information about the operator K
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and data F, we seek to reconstruct value(s) of f . The inverse problem is then
the problem of finding f, given the data F and information on the forward
problem.

For more introductory notes on the theory of inverse problems and regu-
larization of integral equations of the first kind, see Groetsch [25].

3.2 Examples of inverse problems

In this section, we present some standard examples of inverse problems taken
from Kabanikhin [33] and Engl, Hanke and Neubauer [21].

Signal and image processing

We consider a blurred image or a signal function which has been passed
through a medium acting as a filter. An inverse problem is then to deblur
or reconstruct an unblurred version of the image or the original signal func-
tion before it was filtered. This application is often important, e.g., in the
field of telecommunications, where for example, telephone signals are dis-
torted as they travel over several distances and the original signal needs to
be reconstructed.

Parameter identification

In certain technical applications, the physical laws controlling a particular
process are given, but the parameters associated with this process have to be
determined. In such cases, the inverse problem is the determination of these
parameters. A one-dimensional example of this is the determination of the
diffusion coefficient a in the stationary heat equation:

−(a(s)u(s)s)s = f(s), s ∈ (0, 1)

u(0) = 0 = u(1),

where f ∈ L2 represent the internal heat source of the process, a stands for
the heat conductivity of the process, and the subscript s represent a single
derivative with respect to s.
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Geophysics

An inverse problem that is frequently used by geophysicists is the determina-
tion of information from the interior of the earth from measurements taken
at the surface of the earth. In this case, seismic waves are propagated into
the interior of the earth and this is used, for example, to determine the den-
sity of rocks, location of natural resources (e.g., crude oil), to determine the
location of earthquakes epicentre in the earth crust, and many other physical
and industrial applications.

Numerical analysis

Inverse problem techniques are also used in the numerical solution of certain
kind of integral equation (e.g., of the first kind):∫ s1

s0

k(s, t)f(t)dt = F (s),

where the right hand side F (s) and the integral operatorK ≡
∫
k(s, t) · dt are

known and we seek to reconstruct the unknown function f(t). The numerical
inversion of the Laplace transform is a typical example of this.

Radon inversion (X-ray tomography)

A well studied medical application of inverse problem is X-ray tomography.
In this case, we seek to obtain transverse slices through the body of a patient
in a non-destructive manner. Given a set of measurements of X-ray through
the patient’s body as well as a measurement of the total absorption along
lines through the body, we seek to reconstruct the X-ray absorption as a
function of the location in the body under examination.

Other references on the theory of inverse problems are Hofmann [31] and
Kirsch [36].

Since the formulation of inverse problems often leads to ill-posedness, the
next section is devoted to the study of ill-posed problems.
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3.3 Ill-posed problems

We consider the inverse problem of recovering the function f from the oper-
ator equation,

Kf = F, (3.2)

given the bounded linear operator K : X → Y and the data F. The inverse
problem given above is assumed to be ill-posed in the sense of Hadamard’s [26]
definition of a well-posed problem.

Definition 3.1. (Hadamard’s definition of a well-posed problem)
Let the operator equation Kf = F satisfy the conditions given above for (3.2).
The following three criteria should be fulfilled for it to be a well posed problem:

R(K) = Y, i.e., existence of solution to (3.2)

N (K) = {0}, i.e., uniqueness of solution to (3.2)

K−1 ∈ L(Y,X), i.e., continuous dependence of solution f on the data F .

If one of the conditions given in Definition 3.1 do not hold, we call the problem
(3.2) ill-posed. This implies that in the presence of noisy data or perturba-
tions of the exact data with some random noise, the solution of an ill-posed
problem is unstable and thus a naive solution method has to be remedied.
Special numerical methods designed to handle ill-posed problems in a nu-
merically stable way are the so-called regularization methods (see Chapter 4
of this work for details).

In the ill-posed case, violating the existence condition sometimes does not
pose any particular problem, e.g., if exact data are given. However, in gen-
eral, for noisy data the lack of this condition does lead to problems, and
hence regularization methods have to be used.

The second condition (i.e., the uniqueness condition) not being satisfied can
be remedied by generalizing the notion of solution. If the problem is an ill-
posed one, and it has several solutions, based on available information, one
has to decide which of the solutions is most appropriate with respect to the
particular problem in question.
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A violation of the last condition (i.e., the continuous dependence of the so-
lution on the data) leads to severe numerical problems, i.e., an instability of
numerical methods. As a result, it therefore does not make sense to solve
an ill-posed problem with traditional numerical methods. In such a case,
regularization methods has to be used.

The existence and stability conditions are closely related (see Engl, Hanke
and Neubauer [21]).

In the next section, we introduce the Moore-Penrose (generalized) inverse
corresponding to the ill-posed operator K in Equation (3.2) and also present
some definitions and useful results.

3.4 The Moore-Penrose (generalized) inverse

In this section, we present the definitions of a least-squares solution, best-
approximate solution, and some useful results. For the definitions and proof
of the theorems given in this section, see Engl, Hanke and Neubauer [21]. In
the following, X, Y are Hilbert spaces.

Definition 3.2. Let K : X → Y be a bounded linear operator as given in
(3.2), then

1. f ∈ X is called a least-squares solution of Kf = F if
‖Kf − F‖ = inf{‖Ky − F‖ | y ∈ X}

2. f ∈ X is called best-approximate solution of Kf = F if f is a least-
squares solution of Kf = F and
‖f‖ = inf{‖y‖ | y is a least-squares solution of Kf = F} are satisfied.

From the above definition, it is obvious that the best-approximate solution to
the ill-posed problem in (3.2) is therefore defined as the least-squares solution
with the smallest norm.

Definition 3.3. The Moore-Penrose (generalized) inverse K† of
K ∈ L(X, Y ) is defined as the unique linear extension of K̃−1 to

D(K†) = R(K) +R(K)⊥
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with
N (K†) = R(K)⊥

where
K̃ := K |N (K)⊥ : N (K)⊥ → R(K).

And finally, in the last two theorems, we give the relation between the Moore-
Penrose (generalized) inverse and the least-squares solution. We also intro-
duce the normal equation corresponding to the operator equation in (3.2).

Theorem 3.4. Let f ∈ D(K†), then Kf = F has a unique best approximate
solution, which is given by

f † := K†F.

Theorem 3.5. Let f ∈ D(K†), then f ∈ X is a least-squares solution of
Kf = F if and only if the normal equation

K∗Kf = K∗F

is satisfied.

Theorem 3.6. The Moore-Penrose inverse K† is continuous if and only if
R(K) is closed.

This theorem relates the existence and the stability conditions in Defini-
tion 3.1.

As already mentioned in this chapter, attempting to solve an ill-posed prob-
lem with traditional numerical methods results in the instability of such
methods. Instead, regularization methods should be used in the solution of
ill-posed problems. This will be considered in the next chapter.
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Chapter 4

Regularization of ill-posed
problems

In this chapter, we construct a regularization operator for an ill-posed oper-
ator. We also discuss regularization by a-priori and a-posteriori parameter
choice rules. Finally, we examine Tikhonov regularization and its numerical
realization.

4.1 Introduction

In general, regularization of ill-posed problems is the approximation of such
problems by a family of closely related well-posed problems. As a result of
the inherent numerical instability associated with the solution of ill-posed
problems (when they are being solved by traditional numerical methods)
regularization methods must be used. However, it must be noted that a
regularization method only serves as a partial remedy to the numerical in-
stability of an ill-posed problem and it cannot completely recover the entire
information lost due to the ill-posedness. The difficulty encountered in the
solution of ill-posed problems is clearly explained in the works of Varah [61]
and Tikhonov and Arsenin [60].

In the following, we consider the operator equation Kf = F and seek to
obtain the best-approximate solution f † = K†F in the case when the exact
data F are not known, but the noisy data F δ are available. We assume also
that the noise level ‖F δ − F‖ ≤ δ is known.
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With the above setting and in the case where K† is an ill-posed operator,
K†F δ is for sure not an appropriate approximate solution since K† is not
continuously invertible, or K†F δ might not even be defined. Thus, regu-
larization techniques are used to seek for an approximate solution f δα of f †.
After regularization, it is expected that the solution f δα will now depend con-
tinuously on the noisy data F δ, and as the noise level δ tends to 0 and with
a suitably chosen regularization parameter α, we can obtain the convergence
f δα → f †.

An excellent reference on the regularization of ill-posed problems is the book
by Engl, Hanke and Neubauer [21], and as a result, the results given in
this chapter are taken from this book. Other useful references on regular-
ization methods for ill-posed problems are Hanke and Hansen [28], Hein
[29], Kaltenbacher, Neubauer and Scherzer [34], Tikhonov et al. [59], Wang,
Yagola and Yang [63], and Zhdanov [66].

In the next section, we provide the definition and actual construction of
a regularization operator.

4.2 Regularization operator

For the definition and proposition given in this section, see Engl, Hanke and
Neubauer [21].

Definition 4.1. Let K : X → Y be a bounded linear operator between Hilbert
spaces X and Y , α0 ∈ (0,+∞]. For every α ∈ (0, α0), let

Rα : Y → X

be a continuous operator (which is in general nonlinear). The family {Rα}
is known as a regularization or a family of regularization operators for K†,
if for all F ∈ D(K†), there exits a parameter choice rule α = α(δ, F δ) such
that

lim
δ→0

sup{‖Rα(δ,F δ)F
δ −K†F‖ | F δ ∈ Y, ‖F δ − F‖ ≤ δ} = 0 (4.1)

holds. In this case,
α : R+ × Y → (0, α0)
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is such that

lim
δ→0

sup{α(δ, F δ) | F δ ∈ Y, ‖F δ − F‖ ≤ δ} = 0. (4.2)

For a particular F ∈ D(K†), the pair (Rα, α) is called a convergent regular-
ization method for solving Kf = F provided that (4.1) and (4.2) are both
satisfied.

From the above theorem, it is obvious that a convergent regularization meth-
od consists of a regularization operator Rα as well as a parameter choice rule
α(δ, F δ) such that if the regularization parameter α is chosen according to
the rule, then convergence of the regularized solution towards the best ap-
proximate solution is obtained, i.e., f δα → f † as the noise level δ tends to 0.

We now briefly distinguish between the two known main types of param-
eter choice rules, i.e., a-priori and a-posteriori parameter choice rules. If the
regularization parameter α does not depend on F δ but only on δ, then we
have an a-priori parameter choice rule which is written as α = α(δ). On
the other hand, we have an a-posteriori parameter choice rule if α depends
both on the noise level δ and the noisy data F δ. In this later case, we write
α(δ, F δ).

In the proposition below, we give the actual construction of a convergent
regularization operator.

Proposition 4.2. Let Rα be a continuous (and in general nonlinear) oper-
ator for all α > 0. Then the family {Rα} is a regularization for K† if

Rα → K† pointwise on D(K†), as α→ 0.

In this case, there exits, for every F ∈ D(K†), an a-priori parameter choice
rule α such that (Rα, α) is a convergent regularization method for solving
Kf = F .

We now turn our attention to a consideration of suitable parameter choice
rules and regularization operators.
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4.3 Continuous regularization methods and

parameter choice rules

In this section, we give the main idea for the construction of regulariza-
tion methods as well as a-prior and a-posteriori parameter choice rules.
We also give some convergence and stability results from Engl, Hanke and
Neubauer [21].

4.3.1 Regularization by spectral filters and a-priori pa-
rameter choice rule

A regularization is constructed by the use of the spectral theory for self-
adjoint linear operators. If we assume that the operator K∗K is continuously
invertible, then we get (K∗K)−1 =

∫
1
λ
dEλ where {Eλ} is a spectral family

for K∗K. We recall that the best-approximate solution corresponding to the
operator equation Kf = F is given as f † = K†F . Using the continuous
invertibility of K∗K and the normal equation K∗Kf = K∗F , we can write
the best-approximate solution formally as

f † =

∫
1

λ
dEλK

∗F, (4.3)

provided that such an expression exists. We observe that the above result in
Equation (4.3) is equivalent to that in Equation (2.9).

We note that in the ill-posed case, F might not be contained in D(K†)
and that R(K) might not be closed, and as such the integral (4.3) might not
exists for all F because of a pole in 0 in the integrand 1

λ
. In such a case, the

best-approximate solution might not exits. A remedy for this is to substitute
the integrand 1

λ
with a parameter-dependent family of functions hα(λ) being

piecewise continuous on the interval [0, ‖K‖2]. Hence, in place of (4.3), we
can write

fα :=

∫
hα(λ)dEλK

∗F. (4.4)

In this case, the family {Rα} such that Rα :=
∫
hα(λ)dEλK

∗ can be made
a regularization for the ill-posed operator K†. In the case of noisy data F δ

with noise level ‖F − F δ‖ ≤ δ, (4.4) becomes

f δα :=

∫
hα(λ)dEλK

∗F δ. (4.5)

27



To guarantee the existence of the solution f δα and the convergence of the
regularization, it is important that the parameter-dependent family hα(λ) is
carefully chosen such that the limα→0 hα(λ) = 1

λ
, i.e., it should approximate

the integrand 1
λ

for all λ ∈ (0, ‖K‖2].

For the difference between the regularized solution fα with exact data (as
given in (4.4)) and the best approximate solution f †, we have the following
relation

f † − fα = f † − hα(K∗K)K∗F =
(
I − hα(K∗K)K∗K

)
f †

=

∫ (
1− λhα(λ)

)
dEλf

†.

Hence, we can write the residual term as f † − fα = rα(K∗K)f †, where

rα(λ) := 1− λhα(λ). (4.6)

With the regularization operators Rα already constructed and the expression
for the regularized solution fα known, it is appropriate that we also provide
some convergence results of the regularized solution in the case of exact data
F . This is the motivation for the next theorem.

Theorem 4.3. Let for all α > 0, hα : [0, ‖K‖2] → R fulfill the following
assumptions: hα is piecewise continuous, and there is a constant M > 0 such
that

|λhα(λ)| ≤M

and

lim
α→0

hα(λ) =
1

λ
∀ λ ∈ (0, ‖K‖2].

Then for all F ∈ D(K†)

lim
α→0

fα = lim
α→0

hα(K∗K)K∗F = f †

holds with f † = K†F .

See Engl, Hanke and Neubauer [21].

Moreover, we present the stability of the regularized solution fα in the next
theorem.
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Theorem 4.4. Let hα and M be as in Theorem 4.3, fα and f δα be defined as
in (4.4) and (4.5) respectively. For α > 0, let

Gα := sup{|hα(λ)| | λ ∈ [0, ‖K‖2]}. (4.7)

Then,
‖fα − f δα‖ ≤ δ

√
MGα.

See Engl, Hanke and Neubauer [21].

Finally, we present convergence rate estimates of the regularized solution
fα with an a-priori parameter choice rule. This estimate is given in terms of
the residual functions in (4.6).

Theorem 4.5. Let hα fulfil the assumptions of Theorem 4.3, rα be defined
by (4.6), µ > 0. Let for all α ∈ (0, α0) and λ ∈ [0, ‖K‖2],

λµ|rα(λ)| ≤ mµα
µ

hold for some mµ > 0 and assume that Gα as defined in (4.7) fulfills

Gα = O(α−1) as α→ 0.

If f † satisfies the source condition

f † ∈ R
(
(K∗K)µ

)
, (4.8)

then, with the parameter choice rule

α ∼ δ
2

2µ+1 , (4.9)

we obtain the following estimate

‖f δα − f †‖ = O
(
δ

2µ
2µ+1

)
. (4.10)

See Engl, Hanke and Neubauer [21].

Hence, with the a-priori parameter choice rule (4.9), the best possible con-
vergence rate that can be obtained is given in (4.10), i.e., in the order of(

2µ
2µ+1

)
. It can be shown that this is the best possible rate for any regulariza-

tion under the source condition (4.8), i.e., the estimate (4.10) is sharp and
cannot be improved.
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4.3.2 Regularization by an a-posteriori parameter cho-
ice rule

In order to construct an a-priori parameter choice rule, information about
the parameter µ > 0 in the source condition (4.8) (i.e., the smoothness of the
solution) has to be known. In general, this information is not always avail-
able. A way out of this is to construct an a-posteriori parameter choice rule.
We will consider the well-known discrepancy principle according to Morozov
[43]. Since we will be using Tikhonov regularization in this thesis, the work
by Anzengruber and Ramlau [4] and Bonesky [10] on Morozov’s discrepancy
principle for Tikhonov-type functionals is of importance.

To begin, we first recall the parameter-dependent family of function hα(λ)
as given in Theorem 4.3 and the term rα(λ) as given in (4.6). Besides, we
assume that

τ > {|rα(λ)| | α > 0, λ ∈ [0, ‖K‖2]}. (4.11)

With the above setting, we define the regularization parameter using the
discrepancy principle as

α(δ, F δ) := sup{α > 0 | ‖Kf δα − F δ‖ ≤ τδ}. (4.12)

The regularization parameter (4.12) is selected by comparing the discrepancy
‖Kf δα − F δ‖ with the noise level δ.

We point out that there exists a reciprocal relationship between the regu-
larization parameter and the numerical stability of the method. Now, given
noisy data F δ such that the bound ‖F − F δ‖ ≤ δ is known, we seek to re-
cover the solution f from Kf = F . As a result, it is not logical to look for
an approximate solution, say f̃ of f † with a residual ‖Kf̃ −F δ‖ < δ because
a smaller regularization parameter α → 0 is equivalent to less stability. It
therefore makes sense to select the biggest possible regularization parameter
which leads to a discrepancy of the order of δ.

In the next theorem we will give the convergence rate result in the case
of the a-posteriori parameter choice rule given by the discrepancy principle.

Theorem 4.6. The regularization method (Rα, α), where the regularization
parameter α is defined through the discrepancy principle given in (4.12), is
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convergent for all F ∈ R(K) and of optimal order in R
(
(K∗K)µ

)
for µ ∈

(0, µ0 − 1
2
], i.e.,

f δα(δ,F δ) − f
† = O

(
δ

2µ
2µ+1

)
.

See Engl, Hanke and Neubauer [21].

Well known regularization methods in literature are Tikhonov and iterative
regularization (such as the Conjugate gradient method, Landweber method,
Accelerated Landweber method and Newton type methods). However, in this
thesis, our focus is on Tikhonov regularization because of the nice properties
it possesses. Hence, the next section, we consider the Tikhonov regularization
method.

4.4 Tikhonov regularization

Tikhonov regularization method, named after Andrey Nikolayevich Tikhonov
(a Russian mathematician), is the most commonly used regularization method
for ill-posed problems. In order to derive this method, we begin by letting
Kf = F δ be an ill-posed problem and we seek to recover the unknown func-
tion f given the bounded linear operator K : X → Y (X, Y Hilbert spaces)
and noisy data F δ. Then, a standard procedure is known as Linear Least
Squares, where we seek to minimize the residual ‖Kf − F δ‖2 where ‖ · ‖ is
the norm in Y , in the discrete case usually a (weighted) Euclidean norm.
In order to give preference to a specific solution with useful properties, the
regularization term is added to the minimization, i.e.,

‖Kf − F δ‖2 + ‖Γf‖2

for some suitably selected Tikhonov matrix Γ. In many cases, the Tikhonov
matrix Γ is chosen as the identity matrix Γ = I, thereby giving preference to
solutions with smaller norms. The degree of regularization may be controlled
by adding some parameter α (i.e., the Tikhonov regularization parameter)
which serves as a scaling of the Tikhonov matrix, Γ = αI. And in the
case where α = 0, this reduces to the unregularized least squares solution of
Kf = F δ provided the inverse (K∗K)−1 exists.

The regularization process thus improves the conditioning of the ill-posed
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problem, thereby enabling a stable numerical solution to exits. In the case
of Tikhonov regularization, a precise expression for the regularized solution
is given as

f δα = (K∗K + αI)−1K∗F δ, where Γ = αI. (4.13)

We observe that the explicit form of the Tikhonov regularized solution can
be characterized in a variational form. This is given in the theorem below.

Theorem 4.7. Let f δα be as in (4.13). Then f δα is the unique minimizer of
the Tikhonov functional

f 7−→ ‖Kf − F δ‖2 + α‖f‖2. (4.14)

See Engl, Hanke and Neubauer [21].

Finally, to ensure the convergence of the Tikhonov regularized solution, the
following conditions given in the next theorem have to be be taken into con-
sideration.

Theorem 4.8. Let f δα be defined by (4.13), F ∈ D(K†), ‖F − F δ‖ ≤ δ. If
α = α(δ) is such that

lim
α→0

α(δ) = 0 and lim
α→0

δ2

α(δ)
= 0

then

lim
α→0

f δα(δ) = K†F.

See Engl, Hanke and Neubauer [21].

Numerical realization of Tikhonov regularization

Again, we consider the operator equation Kf = F δ, K : X → Y and we
seek to recover the unknown function f given the bounded linear operator
K and the data F δ. We discretize the solution space X and the data space
Y such that Xn ⊂ X and Ym ⊂ Y with basis Xn = span{ϕ1, . . . , ϕn}, and
Ym = span{ψ1, . . . , ψm}.
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In the discrete case, the approximate solution fn ∈ Xn is given by its co-
ordinate vector f ∈ Rn corresponding to the representation

fn = ζ1ϕ1, . . . , ζnϕn, f = [ζ1, . . . , ζn]T .

By minimizing the continuous form of the Tikhonov functional

f 7−→ ‖Kf − F δ‖2 + α‖f‖2

over Xm, we can generate a finite-dimensional approximate solution fn of the
best approximate solution f †.

We also observe that the minimization problem given above is the same
as minimizing the discrete form of the Tikhonov functional

f 7−→ ‖Kmf − F δ‖2 + α‖f‖2

over the entire space X. In this case, the operator Km is discretized such
that Km := KPm where Pm : X → Xm is the orthogonal projector on
the subspace Xm. With this discretization scheme, the regularized solution
corresponding to the Tikhonov minimization problem is then given by

f δα,m = (K∗mKm + αI)−1K∗mF
δ.

Suppose we have an increasing sequence of finite-dimensional subspace of X
with a dense union in X, our goal is to achieve the convergence

f → f † as α→ 0 and m→∞.

We note that achieving convergence of the approximate solution fα,m towards
the best approximate solution f † as the regularization parameter α→ 0, and
the level of discretization m→∞ at the same time is to be expected only if α
and m are suitably related. Thus for convergence of the regularized solution,
the choice of α with respect to m is very important.

The choice of the discretization (Xn) is also important. There are several
ways to do this. One possibility, with some advantages, is to use the dual pro-
jection method. Here, at first, the data space Y is discretized using the spaces
Ym. In this case, the discretization of the space X is given by Xn = K∗Yn.
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For the computer realization of the regularization parameter αδm and the
approximate solution f δα,m we recall the assumption that Ym is spanned by
{ψ1, . . . , ψm}. As a result, the approximate solution satisfies

f δα,m = K∗m(KmK
∗
m + αI)−1F =: K∗mx

δ
α,m

and the following relation holds

〈K∗mxδα,m, K∗mψi〉X + α〈xδα,m, ψi〉Y = 〈F δ, ψi〉Y , i = 1, . . . ,m.

Employing the expansion for xδα,m and f δα,m through

xδα,m =
m∑
i=1

ζiψi, f δα,m =
m∑
i=1

ζiK
∗ψi, f = [ζ1, . . . , ζm]T ,

then f solves the linear system

(M + αH)f = F, (4.15)

where M = [〈K∗ψi, K∗ψj〉X ], F = [〈F δ, ψi〉Y ] and H = [〈ψi, ψj〉Y ].

The implementation and numerical solution (4.15) will yield the Tikhonov
regularized solution of the ill-posed problem Kf = F δ.

In the next chapter, we examine some properties of the Laplace transform
and derive the complex inversion integral.
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Chapter 5

The Laplace transform

In this chapter, we present sufficient conditions for the existence of the
Laplace transform, and we also prove some important properties of the
Laplace transform. Finally, we provide the derivation of the complex in-
version integral.

5.1 Introduction

As already mentioned in Chapter 1 of this thesis, the Laplace transform is an
integral transform that is frequently used in physics and engineering applica-
tions, where it is often used to solve differential and integral equations. It is
named after a French mathematician and astronomer Pierre-Simon Laplace,
who introduced the transform in his work on probability theory. It is repre-
sented using the notation L{f(t)} : f(t) → F (s), i.e., it is a linear operator
acting on a function f(t) with a real argument t (t ≥ 0), such that f(t) is
transformed into a new function F (s) with a positive real or complex ar-
gument with positive real part, see Jaeger [32] and Beerends et al. [6]. In
physics and engineering applications, the Laplace transform is often used
in the analysis of linear time-invariant systems such as electrical circuits,
mechanical systems, optical devices, harmonic oscillators. For other applica-
tions of the Laplace transforms, see Spiegel [55], Stroud [58] and Bogart [9].
Deakin [17] present an historical development of the Laplace transform.

It is important to mention that not all functions f(t) are Laplace trans-
formable. The Dirichlet conditions must be satisfied for any function to be
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Laplace transformable. We consider this and more in the next section.

5.2 Definitions and examples

In this section, we give some important definitions needed for the proofs
of the properties of the Laplace transform and we also solve some example
problems.

Definition 5.1. (Uniform convergence)
Let E be a set and fn : E → R a real valued function for every natural number
n. The sequence (fn)n∈N is uniformly convergent with limit f : E → R if for
every ε > 0, an integer N can be found such that for t ∈ E and all n ≥ N ,
we have |fn(t)− f(t)| < ε.
A series of real valued functions

∑
fn(t) is said to converge uniformly on E

if the sequence {Sn} of partial sums defined by

n∑
i=1

fi(t) = Sn(t)

converges uniformly on E.

Definition 5.2. (Sectionally continuous)
A function f(t) is said to be sectionally continuous (or piecewise continuous)
on an interval t ∈ [a, b] if the interval can be subdivided into a finite number
of intervals, such that the function is continuous and has finite right and left
hand limits.

Definition 5.3. (Laplace transformable)
A function f(t) is said to be Laplace transformable if it satisfies the Dirichlet
conditions. These are:

1. f(t) is sectionally continuous (only a finite number of discontinuities
are allowed in the function).

2. f(t) is of exponential order, i.e., |f(t)| ≤ Meαt at t → ∞, where M
and α are both real positive constants.
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Definition 5.4. (Laplace transform)
Let f(t) be a function that satisfies the Dirichlet conditions given in Defini-
tion 5.1, then

L{f(t)} = F (s) =

∫ ∞
0

f(t)e−stdt ∀ <(s) > σ, (5.1)

is called the Laplace transform of f(t) provided that the integral (5.1) exists,
and it is uniformly convergent.

Definition 5.5. (Abscissa of convergence)
Suppose that for some σ = σf > 0, F (s) converges for s > −σf and diverges
for s < −σf and that σf <∞. We call σ the abscissa of convergence of the
Laplace transform F (s).

See Hall, Teugels and Vanmarcke [27].

This definition is motivated from the fact that if F (s) converges (exits) for
some s, it will also converge (exits) for all values with real part larger than
<(s). See Widder [64].

Theorem 5.6. Let f(t) be Laplace transformable and hence of exponential
order with constants α,M as in Definition 5.3. Then the Laplace transform
converges (exits) uniformly for all s with <(s) > α.

Proof. See Widder [64].

In order to illustrate the procedure of finding the Laplace transform of a
given function f(t), we consider the following examples.

Example 5.7. Find the Laplace transform of the function f(t) = v(t), with

v(t) =

{
1, t > 0,
0, t < 0.

(5.2)

From the definition given in (5.1), we have

L{v(t)} = F (s) =

∫ ∞
0

v(t)e−stdt =

∫ ∞
0

e−stdt = −e
−st

s

∣∣∣∞
0

=
1

s
.

See Poularikas [52].
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Example 5.8. Find the Laplace transform of the function f(t) = 2
√

t
π

.

We introduce the substitution x = t
1
2 ⇒ dx = 1

2
t−

1
2 ⇒ dt = 2t

1
2dx = 2xdx,

and from the tables of standard integral, we know that
∫∞
0
x2e−sx

2
dx =

√
π

4s3/2
.

Hence, we obtain the Laplace transform L{f(t)} = F (s) = 1
s3/2

.

See Poularikas [52].

Example 5.9. Find the Laplace transform of the function f(t) = sinh at.

The exponential form of the function f(t) is given as

sinh at =
eat − e−at

2
.

Using the definition of the Laplace transform given in (5.1), we obtain

L{sinh at} = F (s) =
1

2

∫ ∞
0

[e−(s−a)t − e−(s+a)t]dt

=
a

s2 − a2
.

See Poularikas [52].

In the next section, we examine some important properties of the Laplace
transform.

5.3 Properties of the Laplace transform

In this section, we develop some important properties of the Laplace trans-
form and also provide their proofs. These properties are a direct application
of Definition 5.2. In order to develop these properties, it is necessary that
we provide the following convention: limt→0 f(t) denote the function f(t) at
t = 0 assumed from the positive direction. The nth derivative at t = 0+
is denoted as f (n)(0+). With these definition and notations, we can now
rewrite Equation (5.1) as

L{ f(t)} = F (s) = lim
G→∞
b→0+

∫ G

b

f(t)e−stdt, G > 0, b > 0. (5.3)

38



In the following, we assume that s is always larger (or has larger real part)
than the abscissa of convergence. Thus, the integral (5.3) will always be
uniformly convergent. The theorems and proofs in this section can be found
in Poularikas [52].

Theorem 5.10. (Linearity)
Let the functions f(t) and h(t) be Laplace transformable. Then the Laplace
transform of the linear sum of the two functions f(t) + h(t) is

L{f(t) + h(t)} = F (s) +H(s).

Proof. Applying Equation (5.3), we can write

L{f(t) + h(t)} =

∫ ∞
0

[f(t) + h(t)]e−stdt =

∫ ∞
0

f(t)e−stdt+

∫ ∞
0

h(t)e−stdt.

Thus we obtain the desired result

L{f(t) + h(t)} = F (s) +H(s).

We note that, for given constants β1 and β2, the above result can be extended
to

L{β1f(t) + β2h(t)} = β1F (s) + β2H(s).

Theorem 5.11. (Differentiation)
Assume the function f(t) is continuous and with sectionally continuous deriv-

atives df(t)
dt

in the interval 0 ≤ t ≤ T . Assume also that the function f(t) is
of exponential order eαt as t→ 0. Then

L
{df(t)

dt

}
= sL{f(t)} − f(0+) = sF (s)− f(0+).

Proof. Again applying the definition (5.3), we obtain

L
{df(t)

dt

}
= lim

T→∞

∫ T

0

df(t)

dt
e−stdt.

Splitting the above integral, we obtain∫ T

0

f (1)(t)e−st =

∫ t1

0

[ ]dt+

∫ t2

t1

[ ]dt+ · · · +

∫ T

tn−1

[ ]dt.
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Using integration by part on each of the above integrals, we obtain

u = e−st =⇒ du = −se−stdt

dv =
df

dt
=⇒ v = f.

And as a result, we write∫ T

0

f (1)(t)e−stdt = f(t)e−st
∣∣∣t1
0

+ f(t)e−st
∣∣∣t2
t1

+ · · · + f(t)e−st
∣∣∣tn−1

T

+ s

∫ T

0

f(t)e−stdt.

Recall that f(t) is continuous (by assumption), thus we obtain∫ T

0

f (1)(t)e−stdt = −f(0+) + e−sTf(T ) + s

∫ T

0

f(t)e−stdt.

Taking the limit limT→∞ f(T )e−sT = 0, we get the desired result.

By extension, we can write the form

L{f (n)(t)} = snF (s)− sn−1f(0+)− sn−2f (1)(0+)− · · · − sn−1f (n−1)(0+).

Theorem 5.12. (Integration)
Let f(t) be Laplace transformable. Then the function

∫ t
0
f(ζ)dζ is Laplace

transformable, and its transform is given as

L
{∫ t

0

f(ζ)dζ
}

=
F (s)

s
.

Proof. Since f(t) is Laplace transformable, it can be seen that
∫ t
0
f(ζ)dζ is

Laplace transformable as well. Then its integral can be written as

L
{∫ t

0

f(ζ)dζ
}

=

∫ ∞
0

[ ∫ t

0

f(ζ)dζ
]
e−stdt.

Using integration by parts, we obtain

u =

∫ t

0

f(ζ)dζ =⇒ du = f(ζ)dζ = f(t)dt

dv = e−stdt =⇒ v = −1

s
e−st.
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Then we get

L
{∫ t

0

f(ζ)dζ
}

=
[
− e−st

s

∫ t

0

f(ζ)dζ
]∣∣∣∞

0
+

1

s

∫ ∞
0

f(t)e−stdt

=
1

s

∫ ∞
0

f(t)e−stdt.

Hence from the above, we obtain the desired result

L
{∫ t

0

f(ζ)dζ
}

=
1

s
F (s).

Corollary 5.13. (Division by s)
The division of the Laplace transform of a function F (s) by s is equivalent
to an integration of the function between the limits 0 and t. More precisely,
the relations holds

L−1
{F (s)

s

}
=

∫ t

0

f(ζ)dζ

L−1
{F (s)

s2

}
=

∫ t

0

∫ ζ

0

f(λ)dλdζ

and in general, this result also hold for division by sn, provided that the func-
tion f(t) is Laplace transformable, and we assume that the inverse Laplace
transform L−1{F (s)} is defined.

Proof. The proof of the above theorem follows as an extension of that given
above in Theorem 5.12.

Theorem 5.14. (Multiplication by t)
Let f(t) be a Laplace transformable function, then

L{tf(t)} = −dF (s)

ds
,

and by extension,

L{tnf(t)} = (−1)n
dnF (s)

dsn
.
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Proof. From the assumption of the uniform convergence of the integral in
(5.3), we obtain

∂F (s)

∂s
=

∫ ∞
0

f(t)e−st(−t)dt = L{−tf(t)}.

Similarly, we have

∂2F (s)

∂s2
=

∫ ∞
0

f(t)e−st(−t)2dt = L{t2f(t)}.

And in general, we obtain

∂nF (s)

∂sn
=

∫ ∞
0

f(t)e−st(−t)ndt = L{(−1)ntnf(t)}.

Corollary 5.15. (Differentiation of a transform)
The differentiation of the Laplace transform of a function f(t) is equivalent
to multiplying the function by −t, i.e.,

dnF (s)

dsn
= F (n)(s) = L{(−t)nf(t)}, n = 1, 2, 3, . . .

Proof. The proof of this theorem follows as an extension of the proof given
in Theorem 5.13.

Theorem 5.16. (Complex integration)
Let f(t) be a Laplace transformable function and assume that the limit

limt→0+
f(t)
t

exists, then the integral of the function
∫∞
s
F (s)ds is equivalent

to the Laplace transform of the division of the function by t, i.e.,

L
{f(t)

t

}
=

∫ ∞
0

F (s)ds.

Proof. Let the function f(t) be piecewise continuous and of exponential or-
der, then

F (s) =

∫ ∞
0

f(t)e−stdt
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is uniformly convergent with respect to s. Integrating both side of the equa-
tion, and for <(s) > α and any b > α, we write∫ b

s

F (s)ds =

∫ b

s

∫ ∞
0

f(t)e−stdtds.

Rearranging the right hand side of the above integral, we obtain∫ b

s

F (s)ds =

∫ ∞
0

f(t)

∫ b

s

e−stdsdt =

∫ ∞
0

f(t)

t
(e−st − e−bt)dt.

Letting b → ∞ and assuming that the limit limt→∞
f(t)
t

exists, then the
Dirichlet conditions are satisfied, and as a result the last integral is uniformly
convergent with respect to b. Hence, we obtain the desired result∫ ∞

s

F (s)ds = L
{f(t)

t

}
.

Theorem 5.17. (Time delay; real translation)
Let f(t) be a function with Laplace transform L{f(t)}, then substituting t−λ
for the variable t is equivalent to multiplying the function F (s) by e−λs, i.e.,

L{f(t− λ)v(t− λ)} = e−λsF (s).

where v(t) is defined in (5.2)

Proof. Consider the function f(t)v(t) which is delayed by t = λ, λ > 0. By
the definition of Laplace transform, we write

L{f(t− λ)v(t− λ)} =

∫ ∞
0

f(t− λ)v(t− λ)e−stdt.

Making use of the substitution γ = t− λ, we obtain

L{f(γ)v(γ)} = e−sλ
∫ ∞
−λ

f(γ)v(γ)e−sγdγ = e−sλ
∫ ∞
0

f(γ)e−sγdγ = e−sλF (s)

where v(γ) = 0 for −λ ≤ t ≤ 0.

Similarly, we have L{f(t+ λ)v(t+ λ)} = esλF (s).
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Theorem 5.18. (Complex translation)
Let F (s) be the Laplace transform of the function f(t), then the substituting
s+ b for s (where b is real or complex) in the function F (s+ b), is equivalent
to the Laplace transform of the product e−btf(t).

Proof. From the definition of Laplace transform given in (5.3) and for
<(s) > α−<(b) we obtain

L{e−btf(t)} =

∫ ∞
0

e−btf(t)e−stdt =

∫ ∞
0

f(t)e−(s+b)tdt = F (s+ b).

Similarly, we have
L{ebtf(t)} = F (s− b).

Theorem 5.19. (Convolution)
The multiplication of the transforms of the two Laplace transformable func-
tions f1(t) and f2(t) is equivalent to the Laplace transform of the convolution
of f1(t) and f2(t)

F1(s)F2(s) = L{f1(t) ∗ f2(t)}.

Where the convolution of the two functions f1(t) and f2(t) is defined as

f1(t) ∗ f2(t) =

∫ t

0

f1(t− γ)f2(γ)dγ =

∫ t

0

f1(γ)f2(t− γ)dγ.

Proof. From the definition given in (5.3), we have

L{f1(t) ∗ f2(t)} = L
{∫ t

0

f1(t− γ) ∗ f2(γ)dγ
}

=

∫ ∞
0

[ ∫ t

0

f1(t− γ) ∗ f2(γ)dγ
]
e−stdt

=

∫ ∞
0

f2(γ)

∫ ∞
γ

f1(t− γ)e−stdtdγ,

where we used Fubini’s theorem to change the order of integration. Intro-
ducing the change of variable in the above, i.e., t − γ = ζ ⇒ dt = dζ, we
obtain

L{f1(t) ∗ f2(t)} =

∫ ∞
0

f2(γ)dγ

∫ ∞
0

f1(ζ)e−s(ζ+γ)dζ,
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which leads to the desired result

L{f1(t) ∗ f2(t)} = F1(s)F2(s).

Corollary 5.20. Let the functions f1(t), f2(t), f3(t) be Laplace transformable,
then

L{f1(t) ∗ f2(t) ∗ f3(t)} = L
{
f1(t) ∗ {f2(t) ∗ f3(t)}

}
= F1(s)F2(s)F3(s).

Proof. The proof follows as a direct extension of Theorem 5.19.

Theorem 5.21. (Initial value theorem)
Let the function f(t) and its derivative f (1)(t) be Laplace transformable, then

lim
s→∞

sF (s) = lim
t→0+

f(t)

holds, provided the limit lims→0 sF (s) exists.

Proof. From Theorem 5.11, we have

L
{df(t)

dt

}
=

∫ ∞
0

df(t)

dt
e−stdt = sF (s)− f(0+)

and as s→ 0, we can write

lim
s→0

∫ ∞
0

df(t)

dt
e−stdt = lim

s→0
[sF (s)− f(0+)].

Since the integration (on the left hand side) above is independent of s, the
calculation of the limit and the integration can be interchanged provided
(assumption) the integral (on the left hand side) converges uniformly. Since
the Laplace transform exits, then

lim
s→0

df(t)

dt
e−st = 0

hold. Hence, we get
lim
t→0

f(t) = lim
s→∞

sF (s).
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We note that the initial value theorem does not hold if f(t) has an impulse
term.

Theorem 5.22. (Final value theorem)
Let the function f(t) and its derivative f (1)(t) be Laplace transformable, then
for t→∞,

lim
t→∞

f(t) = lim
s→0

sF (s).

Proof. Again from Theorem 5.11, we have

L
{df(t)

dt

}
=

∫ ∞
0

df(t)

dt
e−stdt = sF (s)− f(0+)

and we evaluate the limit

lim
s→0

∫ ∞
0

df(t)

dt
e−stdt = lim

s→0
[sF (s)− f(0+)].

Similarly, we can permute the sequence of limit and integration provided
(assumption) the integral (on the left hand side) converges uniformly. Then,
the result ∫ ∞

o

df(t)

dt
dt = lim

s→0
[sF (s)− f(0+)]

holds. And after integration, we get

lim
t→∞

f(t)− f(0+) = lim
s→0

[sF (s)− f(0+)].

Hence, we have that the required result holds, i.e.,

lim
t→∞

f(t) = lim
s→0

sF (s).

Here, we note that the final value theorem does not hold if F (s) has imaginary
axis poles, poles in the right half plane, or poles of higher order at the origin.
However, a simple pole at the origin of F (s) may occur and the result will
still hold.

Theorem 5.23. The Laplace transform is a continuous operator between
L : L2(0,∞)→ L2(0,∞). Moreover, L is not compact.
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See Boumenir and Al-Shuaibi [11].

Remark 5.24. We recall that the spectrum of compact operators have at
most countably many eigenvalues. Now, since the spectrum of the operator
L ≡

∫∞
0
· e−stdt not countable as it was shown in Al-Shuaibi [11], therefore

the Laplace transform operator is not compact. However, by the results of
Chapter 2, the Laplace transform is compact of it is restricted to a finite
interval L : L2(0, T )→ L2(0, T ).

5.4 The inverse Laplace transform

Given a function f(t) with Laplace transform F (s), the inverse Laplace trans-
form corresponding to the Definition 5.4 is denoted as L−1{F (s)}. Thus, the
equivalent relationship existing between the direct Laplace transform and its
inverse is given as

F (s) = L{f(t)}, f(t) = L−1{F (s)}.

By definition, we note that the determination of the Laplace transform F (s)
for a given function f(t) is unique. In a similar way, using the complex in-
version integral, it can be shown also that for a given F (s), there exists a
unique f(t). This implies that there exists a one-to-one equivalence between
the Laplace transform and its inverse, justifying the notation L−1.

It should be noted that the study of the inverse Laplace transform is very
important because many solutions of practical problems usually provide a
known F (s) from which f(t) has to be reconstructed.

We now illustrate, by examples, the use of partial fractions in reconstructing
the original function f(t) from its Laplace transform F (s).

Example 5.25. Find the inverse Laplace transform of

F (s) =
s− 3

s2 + 5s+ 6
.

By partial fractions, we can write

F (s) =
s− 3

(s+ 2)(s+ 3)
=

A

s+ 2
+

B

s+ 3
. (5.4)
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To determine the constant A, we multiply (5.4) by (s + 2) and set s = −2.
This leads to

A = F (s)(s+ 2)
∣∣∣
s=−2

=
s− 3

s+ 3

∣∣∣
s=−2

= −5.

Similarly, to determine B, we multiply (5.4) by (s+ 3) and set s = −3

B = F (s)(s+ 3)
∣∣∣
s=−3

=
s− 3

s+ 2

∣∣∣
s=−2

= 6.

Using tables of Laplace transforms, we obtain

f(t) = L−1{F (s)} = −5L−1
{ 1

s+ 2

}
+ 6L−1

{ 1

s+ 3

}
= −5e−2t + 6e−3t.

Example 5.26. Find the inverse Laplace transform of

F (s) =
s+ 1

[(s+ 2)2 + 1](s+ 3)
.

Again, by partial fractions, we can write

F (s) =
s+ 1

[(s+ 2)2 + 1](s+ 3)
=

A

s+ 3
+

Bs+ C

[(s+ 2)2 + 1]
. (5.5)

To obtain the value of the constant A, we multiply (5.5) by (s + 3) and set
s = −3. This leads to

A = F (s)(s+ 3)
∣∣∣
s=−3

=
−3 + 1

(−3 + 2)2 + 1
= −1.

To determine the values of B and C, we proceed as follows: merge the frac-
tions in (5.5) and using the value of A = −1, we obtain

F (s) =
−1[(s+ 2)2 + 1] + (s+ 3)(Bs+ C)

[(s+ 2)2 + 1](s+ 3)
=

−3 + 1

(−3 + 2)2 + 1
= −1.

Rearranging in terms of the powers of s, we obtain

−(s2 + 4s+ 5) +Bs2 + (C + 3B)s+ 2C = s+ 1,
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and from which we find

(−1 +B)s2 + (−4 + C + 3B)s+ (−5 + 3C) = s+ 1.

This implies: −1 + B = 0, − 4 + C + 3B = 1,−5 + 3C = 1, and hence
B = 1, C = 2.

Using tables of Laplace transforms, we obtain the inverse Laplace transform

f(t) = L−1{F (s)} = −L−1
{ 1

s+ 3

}
+ L−1

{ s+ 3

(s+ 2)2 + 1

}
= −e−3t + e−2t cos t, t > 0.

A very important theorem useful in the inversion of the Laplace transform
is the Heaviside expansion theorem which is given below.

Theorem 5.27. Let f(t) be a Laplace transformable function, and
F (s) = P (s)/Q(s) be the corresponding transform and a ratio of two poly-
nomials in s such that Q(s) has a higher degree. Assume also that Q(s)
consist of simple poles, the factor s − sk is not repeated. Then the inverse
Laplace transform is given as

L−1{F (s)} =
P (sk)

Q(1)sk
eskt.

An example will make the use of the above theorem clearer.

Example 5.28. Using the Heaviside expansion theorem, we redo the
Example 5.26, i.e., to obtain the inverse Laplace transform of

F (s) =
s+ 1

[(s+ 2)2 + 1](s+ 3)
.

Using the Heaviside expansion theorem, we can re-write the above problem as

F (s) =
P (s)

Q(s)
=

s− 3

s2 + 5s+ 6
=

s+ 3

(s+ 2)(s+ 3)
.

Differentiating the function Q(s), we obtain

Q(1)(s) = 2s+ 5 =⇒ Q(1)(−2) = 1, Q(1)(−3) = −1.

Thus, we obtain the inverse Laplace transform

f(t) = L−1{F (s)} = −5e−2t + 6e−3t.
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The complex inversion integral

An integral formula named after Hjalmar Mellin, Joseph Fourier and Thomas
John I’Anson Bromwich that is commonly used for reconstructing the inverse
Laplace transform is called the Bromwich integral (also known as the Fourier-
Mellin integral, and Mellin’s inverse formula) and it is given by the contour
integral. We present this in the next theorem.

Theorem 5.29. (Bromwich inversion integral)
Let f(t) be a Laplace transformable function and F (s) the corresponding
transform function. The function f(t) can be reconstructed from the contour
integral

f(t) =
1

2πi
lim
ω→∞

∫ σ+iω

σ−iω
F (z)eztdz (5.6)

where i =
√
−1.

For a rigorous proof of the Bromwich inversion integral, see Widder [64].

In what follows however, we provide a heuristic derivation of Theorem 5.29.
We recall the equivalence relation existing between the Laplace transform
and its inverse (i.e., the Laplace transform pair):

F (s) = L{f(t)}, f(t) = L−1{F (s)}

and Cauchy’s second integral theorem,∮
F (z)

s− z
dz = i2πF (s), (5.7)

where the contour encloses the singularities at s. Let the Laplace transform
F (s) be analytic in the half-plane <(s) ≥ α. Taking the inverse Laplace
transform of the functions in s on both sides of (5.7) and assuming that we
can interchange the integral and the inverse Laplace transform operator L−1,
we obtain

i2πL−1{F (s)} = lim
ω→∞

∫ σ+iω

σ−iω
F (z)L−1

{ 1

s− z

}
dz.

Since L−1{F (s)} = f(t) and from the tables of Laplace transforms, we know

that L−1
{

1
s−z

}
= ezt, thus we get the desired result.
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The Post inversion formula

Apart from the Complex inversion integral given in Theorem 5.29, in theory,
the Post inversion formula (named after Emil Leon Post) can also be used
to reconstruct the inverse Laplace transform. Although this inversion for-
mula looks simple, in reality however, it is usually impractical for evaluating
an inverse Laplace transform. We note that the complex inversion formula
is more practical for reconstructing an inverse Laplace transform than the
Post inversion formula. We formulate the Post inversion formula in the next
theorem.

Theorem 5.30. (Post inversion formula)
Let f(t) be a Laplace transformable function, then the inverse Laplace trans-
form is given by

f(t) = L−1{F (s)} = lim
k→∞

(−1)k

k!

(k
t

)k+1

F (k)
(k
t

)
for t > 0, where F (k) is the k − th derivative of F with respect to s.

See Post [51].

In the next theorem, we prove that f(t) is uniquely determined by F (s).

Theorem 5.31. For a given Laplace transform function F (s), there exists a
unique f(t).

Proof. Let f1(t) and f2(t) be two Laplace transformable functions with the
same transforms F (s), i.e.,

L{f1(t)} = L{f2(t)} = F (s).

We introduce the definition, ϑ(t) := f1(t)− f2(t),

where the function ϑ(t) is also Laplace transformable. Then we get

L{ϑ(t)} = F (s)− F (s) = 0.

Moreover, from the complex inversion integral (5.6), we have

ϑ(t) = L−1{0} = 0.

And from this, we obtain the desired result, i.e., f1(t) = f2(t). This implies
that the Laplace transform pair is unique.
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In the case where the Laplace transform is measured or computed only on
the positive real axis, then the problem is extremely ill-posed. In such a case,
a stable inversion formula does not exist, and we therefore cannot use ana-
lytical methods, Laplace transform tables or the complex inversion formula
to reconstruct the inverse Laplace transform. As a result, numerical methods
have to be used in reconstructing the function f(t) from its transform.

We note that the complex inversion formula is not applicable for numeri-
cal implementation. This is so because, for it to be used, one has to know
the analytic extension of F (s) to the complex plane. Now the analytic exten-
sion is, however, an ill-posed problem, see Engl, Hanke, Neubauer [21] and
Hadamard [26].

In the next chapter, we examine some numerical methods for the recon-
struction of the inverse Laplace transform.
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Chapter 6

Numerical inversion of the
Laplace transform

In this chapter, we derive three numerical algorithms for the inversion of the
Laplace transform: the Gaver-Stehfest method, the Piessens method, and
the regularized collocation method.

6.1 Introduction

As a result of the importance of reconstructing the original function f(t)
from its transform F (s), several numerical algorithms has been developed.
The survey and comparison by Davis and Martin [16] tests 14 inversion algo-
rithms on a set of 16 transform functions. Piessens [48] compiled an extensive
bibliography up to 1975. The book by Bellman [8] presents a wide range of
applications of numerical inversion. Krylov, Shoblya and Louvish’s [38] work
covers the theoretical basis of a number of inversion methods but do not
include their implementation or present numerical results. Cohen’s [13] work
also contains some numerical methods for the Laplace transform inversion.
For more references, see the review given in Chapter 1 of this thesis.

We begin by recalling the definition of the Laplace transform given in the
previous chapter, i.e.,

L{f(t)} = F (s) =

∫ ∞
0

f(t)e−stdt. (6.1)
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The discrete form of (6.1) is given as

L{f(t)} = F (si) =

∫ ∞
0

f(t)e−sitdt, i = 1, 2, . . . , N, (6.2)

where the data F (si) and the Laplace transform operator K ≡
∫∞
0
· e−stdt

are both given and we seek to reconstruct f(t) or possibly only a finite num-

ber of functions values
(
f(ti)

)N
i=1

.

Now based on Chapter 2 of this thesis, we know that the Laplace trans-
form is an integral equation of the first kind. Although it should be noted
(see Boumenir and Al-Shuaibi [11]) that the Laplace transform operator is
not a compact operator between L2−spaces because the domain of integra-
tion is not compact. However, the inversion of the Laplace transform shares
many similarities with integral of the first kind with a compact operator.
It is well known that the task of reconstructing a real function f(t), t ≥ 0
from (6.1) is an ill-posed problem in the sense of Hadamard’s definition of
well-posedness described in Section 3.3. As a result, the solution of the in-
verse Laplace transform is affected by numerical instability (see Mcwhirter
and Pike [41] and Brianzi and Frontini [12]). In the following, we examine
the ill-posedness of the problem.

Ill-posedness of the problem

We show here, that the problem of reconstructing the function f(t) from
(6.1) is ill-posed. To this end, we consider the Laplace transform as an
operator L mapping from C0β into the space L2, i.e., L : C0β → L2, where
L ≡ K =

∫∞
0
· e−stdt and

C0β = {f(t) ∈ C[0,+∞) | supp f ⊂ [0, β)},
L2 = L2[0,+∞), β = const. > 0.

With the above setting, we examine the conditions in Section 3.3 (i.e., Hada-
mard’s conditions of well-posedness) with respect to the inverse Laplace
transform operator:

1. R(K) 6= L2, i.e., the existence condition is not satisfied. This is true be-
cause it is possible that F (s) ∈ L2 but F (s) /∈ L{C0β}. (See Dong [20]).
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2. N (K) = {0}, i.e., the uniqueness condition is satisfied (see Theo-
rem 5.31).

3. K−1 /∈ L(L2, C0β), i.e., the solution f(t) is not continuously dependent
on the data F (s), and this leads to an instability of the solution. To
show this, we consider (see Dong [20]) the function

fn(t) =

{
sinnt, 0 ≤ t ≤ 2π,

0, t > 2π.

In this case, we consider f(t) = 0 the exact solution of the equation
(6.1). It is easy to see that fn(t), f(t) ∈ C0,β.

From tables of Laplace transforms, we know that L{sinnt} = n
s2+n2 ,

and furthermore L{fn} = n
s2+n2 − ne−2πs

s2+n2 , thus the L2−norm is given
as:

‖L{fn(t)} − L{f(t)}‖2L2 ≤
∫ ∞
0

[ n

s2 + n2
− ne−2πs

s2 + n2

]2
ds

=

∫ ∞
0

[n− ne−2πs
s2 + n2

]2
ds

≤ n2

∫ ∞
0

ds

(s2 + n2)2
=

π

4n
→ 0 (n→∞).

Whereas, for the C0β-norm, we have:

‖fn(t)− f(t)‖2C0β
= max

0≤t≤β
| sinnt| = 1

The instability is evident from the difference in the values of the
L2−norm and the C0β−norm.

In the next section, we consider the Gaver-Stehfest method for the inversion
of the Laplace transform.

6.2 The Gaver-Stehfest method

In this section, we present the Gaver-Stehfest method for the numerical in-
version of the Laplace transform which was introduced by D.P. Gaver but
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was later improved by H. Stehfest. The formula for the inversion as given by
Stehfest [56] is

fnum(t) =
ln 2

t

N∑
i=1

GiF
( ln 2

t
i
)
, (6.3)

where N must be an even integer.

Derivation of the method

The method was initially introduced by Gaver [24], where he considered
the expectation of the function P (t) with respect to the probability density
function

ρn(b, t) = b
(2n)!

n!(n− 1)!
(1− e−bt)ne−nbt, b > 0, n = 1, 2, 3, . . . ,

P̄n =

∫ ∞
0

P (t)ρn(b, t)dt, (6.4)

where P̄n is the probability that a particular process is in the state n when
it is observed, and P (t) is some function describing the process at time t.

Gaver based this method on the asymptotic expansion

P̄n ∼ P
( ln 2

η

)
+
η1
n

+
η2
n2

+
η3
n3

+ · · ·

However, Stehfest [56] later improved the work done by Gaver for approxi-
mating P ( ln 2

η
) using a linear combination of P̄1, P̄2, . . . , P̄N/2 and requiring

that

K∑
i=1

xi(K)
1

(N/2 + 1− i)j
= δj0, j = 0, 1, . . . , K − 1, K ≤ N

2
,

where the function xi(K) is given as

xi(K) =
(−1)i−1

K!

(
K

i

)
i(N/2 + 1− i)K−1.
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This implies that

K∑
i=1

xi(K)P̄N/2+1−i = P
( ln 2

η

)
+ (−1)K+1ηK

(N/2−K)!

(N/2)!
+ o
((N/2−K)!

(N/2)!

)
.

From equation (6.4), and setting b = ln 2
t
, K = N

2
, we obtain the desired

result

fnum(t) =

N/2∑
i=1

xi(N/2)P̄N/2+1−i =
ln 2

t

N∑
i=1

GiF
( ln 2

t
i
)
,

where the coefficient Gi present in (6.3) is given by the expression

Gi = (−1)N/2−i
min(i,N/2)∑
j=[ i+1

2
]

jN/2(2j)!

(N/2− j)!j!(j − 1)!(i− j)!(2j − i)!
. (6.5)

We note that some errors have crept into the original paper by Stehfest
[56]. Significant among them is in the calculation of the coefficient Gi, in
which 1 was mistakenly added to the index of a term in the numerator, i.e.,
jN/2+1(2j)!, and this yields a bad approximation. However, Stehfest [57]
later gave an erratum which contained the correct form, i.e., jN/2(2j)! which
is given above in (6.5).

We note that in theory, the approximate solution fnum(t) becomes more ac-
curate as N increases, and limN→∞ fnum(t) = f(t) for exact data. In reality
however, this is not the case, because round-off errors begins to set in and
thus worsen the approximation as N becomes too large. This is so because
increasing the values of N implies that the absolute values of Gi begin to in-
crease as well. Moreover, since the coefficients Gi appear with different signs,
cancelation effects set in. This is to be expected since the inverse Laplace
transform operator is not bounded and as a result the solution fnum(t) will
not depend continuously on the data F (s) as N tends to ∞.

We observe that the Gaver-Stehfest method is only applicable in the case
of exact data F (s) and not suitable for dealing with noisy data F δ(s). This
is so because the method has no regularization properties.
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Algorithm 6.1. (Gaver-Stehfest method)

1. Choose a reasonable value for N (which must be an even integer).

2. Set up the vector F
(
ln 2
t
i
)
.

3. Compute the value of the coefficient Gi using (6.5).

4. Compute (i.e., reconstruct) the numerical approximation fnum(t) using
(6.3).

In the next section, we examine the Piessens method.

6.3 The Piessens method

In this section, we present a numerical method for the inversion of the Laplace
transform which was developed by Piessens [48] and is given as

fnum(t) = eβt
ta−1

Γ(a)

∞∑
k=0

ckφk

(bt
2

)
. (6.6)

Derivation of the method

Piessens based his method on the fact that the Laplace transform F (s) can be
expanded using Chebyshev polynomials (see Definition 7.8 in the appendix)
of the first kind. The computer realization of the algorithm is described by
Piessens [46], and a convergence result of this method was presented by Cope
[14].

To begin, we assume that the function f(t) has a (one-sided) Laplace trans-
form F (s). We also assume that the function F (s) is analytical for <(s) > β
and there exists a parameter a > 0 such that saF (s) possesses a removable
singularity at infinity. With this setting (assumptions), the Laplace trans-
form can be expanded as

F (β + s) = s−a
∞ ′∑
k=0

ckTk

(
1− b

s

)
, (6.7)
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where Tk(x) is the Chebyshev polynomials of the first kind and of degree k,
and ck’s are the corresponding Chebyshev coefficients. The parameter b is
positive and arbitrary, and the single prime in the summation (6.7) indicate
that the first term is pre-multiplied by the factor 1

2
.

Taking the inverse Laplace transform on both sides of Equation (6.7), we
obtain the inversion formular given above in (6.6) where

φk(x) =

 −k k
;x

1
2

a


is a generalized hypergeometric function (see Definition 7.9 in the appendix).

For computer implementation, we truncate the infinite series in (6.6) after
some N + 1 terms, and we obtain

fnum(t) = eβt
ta−1

Γ(a)

N∑
k=0

c∗kφk

(bt
2

)
+ ε(t) (6.8)

where ε(t) is the truncation error term. In order to determine the coeffi-
cients c∗k’s of the truncated Chebyshev series expansion in (6.8), we solve the
approximate system

( b

1− u

)a
F
( b

1− u
+ β

)
'

N∑
k=0

c∗kTk(u). (6.9)

It is obvious from (6.9) that the c∗k’s are approximations of the Chebyshev
coefficients ck, k = 0, 1, . . . , N in (6.8).

In order to determine the generalized hypergeometric function φk(x) in (6.8),
we make use of the recurrence relation

φn = (An +Bnx)φn−1 + (Cn +Dnx)φn−2 + Enφn−3 (6.10)
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where

An =
3n2 − 9n+ an− 3a+ 6

(n+ a− 1)(n− 3)

Bn =
−4

(n+ a− 1)

Cn = −3n2 − 9n− an+ 6

(n− 2)(n+ a− 1)

Dn = − 4(n− 1)

(n+ a− 1)(n− 2)

En = −(n− 1)(n− a− 2)

(n+ a− 1)(n− 2)

and the first three terms of the generalized hypergeometric function φk(x) in
(6.10) are given as

φ0(x) = 1

φ1(x) = 1− 2x

a

φ2(x) = 1− 8x

a
+

8

a(a+ 1)
x2.

Finally, we compute ε∗(t) by an approximation of the truncated error term
ε(t). This estimate is given by the expression:

ε∗(t) = eβt
ta−1

Γ(a)

N∑
k=N−2

c∗kφk

(bt
2

)
.

We note that, like the Gaver-Stehfest method, the Piessens method works
best in the case of exact data. Since the method has no regularization prop-
erty, it is not suitable for dealing with noisy data.

Algorithm 6.2. (Piessens method)

1. Chose the parameters β, a, b,N :

(a) β such that <(s) > β

(b) a > 0 such that saF (s) has a removable singularity at infinity
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(c) b > 0 considering the analytic property of F (s)

(d) N is taken as the length of the sampling points of F (s)

2. Set up the vector F
(

b
1−u + β

)
.

3. Compute the truncated Chebyshev coefficients c∗k by solving the approx-
imate system in (6.9).

4. Compute the generalized hypergeometric function φn(x) using the re-
currence relation in (6.10).

5. Compute the gamma Γ(a) and exponential eβt terms.

6. Compute (i.e., reconstruct) the numerical approximation fnum(t) using
(6.8).

In the next section, we construct the regularized collocation method.

6.4 The regularized collocation method

In this section, we construct a Tikhonov based regularized collocation method
for the numerical inversion of the Laplace transform which is given as

fnum(t) = − 1

α

N∑
i=1

e−sitci. (6.11)

Derivation of the method

The method is based on the Tikhonov regularization method described in
Section 4.4 of this thesis and by Engl, Hanke and Neubauer [21]. To begin,
we recall the definition of the Laplace transform given in Equation (6.2),
where it is evaluated at some distinct collocation points si, i = 1, . . . , N , i.e.,

F (si) =

∫ ∞
0

f(t)e−sitdt, i = 1, 2, . . . , N. (6.12)

The Tikhonov minimization functional corresponding to (6.12) is given as

J(f) =
N∑
i=1

[ ∫ ∞
0

f(t)e−sitdt− F (si)
]2

+ α‖f(t)‖2L2

61



and writing the regularization term as an integral, we get

J(f) =
N∑
i=1

[ ∫ ∞
0

f(t)e−sitdt− F (si)
]2

+ α

∫ ∞
0

f(t)2dt (6.13)

where α is the Tikhonov regularization parameter.

From the definition of the Gateaux derivative (see Definition 7.11 in the
appendix, and Behmardi and Nayeri [49]), we know that

J ′(f ;h) = lim
ε→0

J
(
f(t)− εh(t)

)
− J

(
f(t)

)
ε

(6.14)

provided the limit exists.

Thus by Gateaux differentiability, equation (6.13) becomes

J ′(f ;h) = 2

∫ ∞
0

[( N∑
i=1

f(t)e−sitdt− F (si)
)
e−sit + αf(t)

]
h(t)dt. (6.15)

Since the optimality condition corresponding to the minimization problem
in (6.13) is J ′(f ;h) = 0, we can write

N∑
i=1

[ ∫ ∞
0

f(t)e−sitdt− F (si)
]

︸ ︷︷ ︸
ci

e−sit + αf(t) = 0

from which we get

− 1

α

N∑
i=1

e−sitci = f(t), (6.16)

where

ci =

∫ ∞
0

f(t)e−sitdt− F (si). (6.17)

Substituting (6.16) into (6.17) yields

1

α

N∑
i=1

∫ ∞
0

e−(si+sj)tdt︸ ︷︷ ︸
Mij

cj + ci = −F (si)
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and the resulting system( 1

α
Mijcj + ciI

)
= −F (si), i = 1, 2, . . . , N. (6.18)

The coefficients ci’s given by (6.17) are obtained by solving the linear system

(Mc + αIc) = −αF, (6.19)

where

M =

∫ ∞
0

e−(si+sj)tdt (6.20)

F = [F (s1), F (s2), · · · , F (sN)]T (6.21)

c = (M + αI) \ (−αF). (6.22)

We observe that the regularized collocation method is an excellent numeri-
cal method for the inversion of Laplace transform. This is so because, the
method has an efficient regularization property that works very well even in
the presence of noisy data.

Algorithm 6.3. (regularized collocation method)

1. Set up the matrix Mij and vector F (si) using (6.20) and (6.21) respec-
tively.

2. Calculate the coefficients ci using (6.22).

3. Choose the Tikhonov regularization parameter α using the discrepancy
principle given in (4.12).

4. Compute (i.e., reconstruct) the numerical approximation fnum(t) using
(6.11).

We note that the matrix Mij can be computed analytical, i.e., Mij = 1
si+sj

,

and we use the left division (i.e., back slash) in MATLAB to calculate the
coefficients c appearing in (6.22).

Remark 6.4. From the three methods considered, we observe that the Gaver-
Stehfest method need the samples of the Laplace transform F (s) at the points(
ln 2
t
i
)
, i = 1, 2, . . . , N . Whereas the Piessens method need the samples at

the points
(

b
1−ui + β

)
, i = 1, 2, . . . , N . For the regularized collation method,

however, we need the samples at arbitrary points (si), i = 1, 2, . . . , N .
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In the next chapter, we consider the implementation of the three algorithms
described in this chapter.
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Chapter 7

Numerical results

In this chapter, we consider the numerical implementation of the Gaver-
Stehfest method, the Piessens method and the regularized collocation method.
First, we give the parameter setup for the various methods. Then we de-
scribed the implementation of these methods using MATLAB in the case of
exact data. And for noisy data, we examine the stability of the methods and
also give a comparison of the methods.

7.1 Introduction

We test the applicability of the algorithms using the functions given in Ta-
ble 7.1. In choosing the functions used in comparing the methods, we consid-

Table 7.1: Functions used in comparing methods.

Laplace transform Inverse Laplace transform

F1(s) = 1
s5

f1(t) = 1
24
t4

F2(s) = 1
(s+1)2

f2(t) = te−t

F3(s) = 1√
s

f3(t) = 1√
πt

F4(s) = s
(s2+1)2

f4(t) = 0.5t sin(t)

F5(s) = 1
s
e−2s f5(t) = θ(t− 2) =

{
0, t ≤ 2
1, t > 2

F6(s) = erf(2/
√
s) f6(t) = 1

πt
sin(4

√
t)

ered different properties of such functions, such that we are able to classify
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the numerical inversion methods according to the functions for which they
are most suitable. For example, f1(t) is an increasing function, f2(t) is an
exponentially decaying function, f3(t) is a function with singularities, f4(t) is
an oscillating function with some increasing properties, f5(t) is a discontinu-
ous function (i.e., not differentiable), and f6(t) is also an oscillating function
with singularities.

Moreover, in order to observe the discrepancy between the numerical ap-
proximations and the exact solutions, we calculate the L2−norm and the
L∞−norm of the difference between between the exact solutions f(t) and
the numerical approximations fnum(t).

7.2 Implementation

In this section, we consider the details of the implementation and the set-
ting of the parameters appearing in the algorithms described in the previous
chapter.

The Gaver-Stehfest method

The only parameter we have to determine here is the discretization parame-
ter N . For the coefficient Gi in Equation (6.5) corresponding to the inverse
Laplace transform operator to exits, N must be an even integer. And for
stability of the Gaver-Stehfest method, the value of N cannot be allowed to
be large. This is because, as already explained in Section 6.2, a large value
of N leads to a greater absolute value of the coefficient Gi, which implies
the unboundedness of the inverse Laplace transform operator. Stehfest [35]
suggested that for N = 18 nice inversion results can be obtained.

Roughly speaking, N can be regarded as a regularization parameter since
a discretization itself acts as a regularization, as it is well known (see Engl,
Hanke and Neubauer [21] and Figure 7.16).

As a result, we compare the performance of the Gaver-Stehfest method for
the numerical reconstruction of te−t = L−1

{
1

(s+1)2

}
using different values of

N in the case of exact data (i.e., Table 7.2). Thus, from the results shown in
Table 7.2, we observe that N = 18 is an optimal discretization parameter in
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Table 7.2: Comparing the Gaver-Stehfest method for N = 8, . . . , 26 (with
exact data), for the numerical reconstruction of te−t = L−1

{
1

(s+1)2

}
.

N ‖fnum − f‖2
8 0.0167
10 0.0053
12 0.0016
14 4.3931× 10−4

16 1.0900× 10−4

18 2.4182× 10−5

20 2.3282× 10−5

22 6.4749× 10−4

24 0.0084
26 0.1873

the case of exact data since this choice yields the best approximate solution
which is closest, in the L2−norm, to the exact solution. So, for our numer-
ical implementation, we fixed our discretization parameter at N = 18 since
smaller values of N directly imply that we discretize F (s) at very few points,
which is not enough to obtain a good approximation of the inverse Laplace
transform f(t).

The Piessens method

In the case of the Piessens method, we have to set four parameters, i.e.,
β, a, b and N . And for this, Piessens [48] provided the following suggestion.
The parameter β should be chosen such that F (s) is analytical for <(s) > β.
And to obtain good convergence of (6.7), the parameter a must be chosen
such that F (s) ∼ s−a, s→∞, i.e., a > 0 such that saF (s) has a removable
singularity at infinity. The parameter b determines the size of the interval
for which the Chebyshev polynomial expansion (6.7) is valid. We note that
the smallest value of b is determined by ensuring the analyticity of F (s) for
<(s) > b/2, in which case smaller values of b imply that the Laplace trans-
form F (s) has to be approximated on a larger interval, resulting in a slower
convergence. The parameter N is chosen as the length of the sampling points
of the Laplace transform F (s).
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For most of our numerical implementation, we used the values: β = 0, a = 1,
b = 1 and we obtained good results. However, we also slightly vary these
values for some functions and we still obtain good results.

The regularized collocation method

For the Tikhonov based regularized collocation method, we need to deter-
mine the regularization parameter α. And for this, we make use of Morozov’s
discrepancy principle given in Equation (4.12). Hence, we determine the reg-
ularization parameter α such that the relation ‖Kf δ

α(δ,F δ)
− F δ‖ ≤ τδ holds,

i.e., by comparing the discrepancy ‖Kf δ
α(δ,F δ)

− F δ‖ to the assumed limit
δ of the level. We determine the constant τ from the expression in Equa-
tion (4.11), and for our numerical implementation (in the case of noisy data)
we take τ = 2 or even τ = 1.5.

In the following (i.e., Table 7.3 and Figure 7.1) we implement the discrepancy
principle described above with a view to determining an optimal Tikhonov
regularization parameter α for the numerical reconstruction of
te−t = L−1

{
1

(s+1)2

}
with noise level δ, such that ‖F − F δ‖ ≤ 0.0024.

Table 7.3: Determining the Tikhonov regularization parameter α, by the
discrepancy principle for δ = 0.0024.

α ‖Kf δα − F δ‖2 ‖fnum − f‖2
102 1.0194 1.5114
10 0.6241 1.1885
1 0.1827 0.7632
10−1 0.0449 0.2775
10−2 0.0061 0.1033
10−3 0.0014 0.0397
10−4 8.9180× 10−4 0.1149
10−5 7.6943× 10−4 0.2074
10−6 7.6548× 10−4 0.2240
10−7 7.6283× 10−4 0.3306

From the implementation of the discrepancy principle (i.e., Table 7.3 and
Figure 7.1), we observe that α = 10−3 is a suitable Tikhonov regularization
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Figure 7.1: Determining the Tikhonov regularization parameter α, for
δ = 0.0024 using the discrepancy principle in the numerical reconstruc-
tion of te−t = L−1

{
1

(s+1)2

}
.

parameter for the given noisy level δ = 0.0024, since at this α the residual is
for the first time below the noise level, δ = 0.0024.

We also compare the convergence of the regularized solutions f δnum (with
noisy data) towards the exact solution f for various values of α using the
results from Table 7.3. We display this in Figure 7.2.
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Figure 7.2: Comparing the convergence of the regularized solutions f δnum
(with noisy data) towards the exact solution f for various values of α.

From Table 7.3, we observe that for α = 10−3 (i.e., using the discrepancy
principle) with a noise level of δ = 0.0024, we obtain the best convergence of
the regularized solution, since ‖fnum−f‖2 = 0.0397 is the smallest at this α.
This clearly shows the importance of the discrepancy principle when choos-
ing the regularization parameter α. This also shows the typical behavior of
regularization methods: for small α the problem is more unstable and the
propagated data error dominates. For large α we have a bad approximation
and the approximation error dominates. The ”right” α is in the middle, a
compromise between stability and approximation.

For exact data, we do not make use of the discrepancy principle in choosing
the regularization parameter α. In this case, we used trial and error to detect
the best α.

In the next section, we test the applicability of the three numerical methods
described in Chapter 7 using the parameter setting described in Section 7.2.

70



7.2.1 Exact data F (s)

In this section, we implement the numerical methods and using the example
problems given in Table 7.1, we test the the applicability of these methods.
Here, we make use of exact values of the Laplace transform F (s).

Figure 7.3: Numerical reconstruction of 1
24
t4 = L−1

{
1
s5

}
.

Table 7.4: Numerical reconstruction of 1
24
t4 = L−1

{
1
s5

}
.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 1.6813× 10−4 7.5576× 10−5

Piessens method 2.2126× 10−9 1.1982× 10−9

regularized method 222.2180 56.0845
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Figure 7.4: Numerical reconstruction of te−t = L−1
{

1
(s+1)2

}
.

Table 7.5: Numerical reconstruction of te−t = L−1
{

1
(s+1)2

}
.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 2.4182× 10−5 8.7517× 10−6

Piessens method 1.0732× 10−4 5.4516× 10−5

regularized method 0.0138 0.0035
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Figure 7.5: Numerical reconstruction of 1√
πt

= L−1
{

1√
s

}
.

Table 7.6: Numerical reconstruction of 1√
πt

= L−1
{

1√
s

}
.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 2.0900× 10−5 8.5744× 10−6

Piessens method 1.3278 0.5657
regularized method 0.9854 0.4338
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Figure 7.6: Numerical reconstruction of 0.5t sin(t) = L−1
{

s
(s2+1)2

}
.

Table 7.7: Numerical reconstruction of 0.5t sin(t) = L−1
{

s
(s2+1)2

}
.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 0.2495 0.1020
Piessens method 0.0101 0.0037
regularized method 3.3836 1.1420
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Figure 7.7: Numerical reconstruction of θ(t− 2) = L−1
{

1
s
e−2s

}
.

Table 7.8: Numerical reconstruction of θ(t− 2) = L−1
{

1
s
e−2s

}
.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 0.8318 0.5251
Piessens method 1.0881 0.4718
regularized method 1.4980 0.6832
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Figure 7.8: Numerical reconstruction of 1
πt

sin(4
√

(t)) = L−1
{

erf(2/
√
s)
}

.

Table 7.9: Numerical reconstruction of 1
πt

sin(4
√

(t)) = L−1
{

erf(2/
√
s)
}

.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 6.8897× 10−5 3.2812× 10−5

Piessens method 4.1449 1.8519
regularized method 2.3567 1.3334

Exact data: Explaining the results and plots

For the reconstruction of the first function, f1(t) = 1
24
t4 (i.e., increasing func-

tion), the Gaver-Stehfest method and the Piessens method performed very
well with respect to the shape and values of the original function. Whereas
the regularized collocation method was able to partially reconstruct the shape
and values of the function. It seems that the regularized collocation method is
not so good for reconstructing an increasing function. This can be explained
since the regularization penalizes the large values at large t and therefore
only yields a suboptimal reconstruction.
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In the case of the second method, f2(t) = te−t (i.e., exponentially decay-
ing function), all the three methods performed very well in reconstructing
the shape of the original function. As for the values of the function, the per-
formance of the Gaver-Stehfest and the Piessens methods were better than
that of the regularized collocation method, although it also performed well.

For the third function, f3(t) = 1√
πt

(i.e., function with singularities), all
the three methods performed very well in reconstructing the shape of the
original function. In reconstructing the values of the function, the Piessens
and the regularized collocation method performed well. However, the Gaver-
Stehfest method was better.

In reconstructing the fourth function, f4(t) = 0.5t sin(t) (i.e., oscillating func-
tion), all three methods performed well with respect to the shape and values
of the of the original function.

For the fifth function, f5(t) = θ(t − 2) (i.e., discontinuous function), all
three methods were able to partially reconstruct the shape and values of the
original function.

For the last function, f6(t) = 1
πt

sin(4
√
t) (i.e., oscillating function with singu-

larities), all three methods reconstructed the shape and values of the original
function well. However, the performance of the Gaver-Stehfest method was
the best.

7.2.2 Noisy data F (sδ)

In this section, we repeat the numerical inversion of the Laplace transform
using the same example problems given in Table 1.1, but this time with noisy
data F (sδ). Hence, we added some noise to the data F (s) and examined the
stability of the numerical methods. For all three methods, we added noise of
magnitude 10−3 ∗ rand(1, 1) in the vector containing the Laplace transform

values
(
F (si)

)N
i=1

.
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Figure 7.9: Numerical reconstruction of 1
24
t4 = L−1

{
F1(s

δ)
}

.

Table 7.10: Numerical reconstruction of 1
24
t4 = L−1

{
F1(s

δ)
}

.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 2.7487× 108 1.844× 108

Piessens method 1.4476× 103 542.9727
regularized method 222.2357 56.0877
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Figure 7.10: Numerical reconstruction of te−t = L−1
{
F2(s

δ)
}

.

Table 7.11: Numerical reconstruction of te−t = L−1
{
F2(s

δ)
}

.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 1.3449× 108 6.3673× 107

Piessens method 3.1524× 103 1.4205× 103

regularized method 0.0244 0.0064
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Figure 7.11: Numerical reconstruction of 1√
πt

= L−1
{
F3(s

δ)}.

Table 7.12: Numerical reconstruction of 1√
πt

= L−1
{
F3(s

δ)}.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 4.6764× 108 3.4338× 108

Piessens method 4.0262× 103 1.7946× 103

regularized method 1.0652 0.7938
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Figure 7.12: Numerical reconstruction of 0.5t sin(t) = L−1
{
F4(s

δ)}.

Table 7.13: Numerical reconstruction of 0.5t sin(t) = L−1
{
F4(s

δ)}.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 2.3400× 108 1.9503× 108

Piessens method 4.3474× 103 1.7168× 103

regularized method 3.2410 1.1155
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Figure 7.13: Numerical reconstruction of θ(t− 2) = L−1
{
F5(s

δ)}.

Table 7.14: Numerical reconstruction of θ(t− 2) = L−1
{
F5(s

δ)}.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 2.4097× 108 1.9210× 108

Piessens method 2.3890× 103 1.0138× 103

regularized method 2.0268 0.8503
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Figure 7.14: Numerical reconstruction of 1
πt

sin(4
√

(t)) = L−1
{
F6(s

δ)}.

Table 7.15: Numerical reconstruction of 1
πt

sin(4
√

(t)) = L−1
{
F6(s

δ)}.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 3.6019× 108 3.2015× 108

Piessens method 2.1448× 103 775.6237
regularized method 2.2183 1.8530

Noisy data: Explaining the results and plots

In the case of noisy data, the Gaver-Stehfest method is extremely unstable
for all six functions: f1(t), . . . , f6(t) and as such fails to reconstruct both the
shape or the values of the original function. The Piessens method also failed
for all functions as well. However, the instability is more pronounced for the
Gaver-Stehfest method.

As a result of its regularization properties, the regularized collocation method
performed very well in reconstructing the shape and values of the original
function in the case of noisy data.
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7.3 Discussion

In general, numerical algorithms for the inversion of the Laplace transform
begin to oscillate and therefore become unstable in the presence of noisy data.

A consideration of the numerical results and plots shown in Sections 7.2.1 and
7.2.2 showed that the Gaver-Stehfest method is indeed an excellent method
for the numerical inversion of several class of the Laplace transform. In the
case of exact data, the method produced better numerical approximation
when compared to the Piessens and the regularized collocation methods.
However, the Piessens method gave better results than the regularized collo-
cation method in the case of exact data.

In the case of noisy data, the regularized collocation method remained stable
for appropriately chosen regularization parameter (according to the discrep-
ancy principle) and hence produced nice approximate solution. The Piessens
method did not do well in this regard, while the Gaver-Stehfest method
completely failed to reconstruct both the shape or the values of the original
function.

For all implementation above, we have carried out the Laplace transform in-
version on the interval, t ∈ [0, 4]. However, for a larger interval, say t ∈ [0, 20],
we observe that the Piessens methods becomes highly unstable and it even
fails to produce a good approximation. This is true even in the case of exact
data for all the functions in Table 7.1 except for the increasing function, i.e.,
f1(t). Whereas for smaller t−interval, the Piessens method performed well,
and as a result, we conclude that the Piessens method works best at smaller
t−interval. On the other hand, the Gaver-Stehfest, and the regularized col-
location method still remained stable and thus produce nice approximate
solutions at larger t−interval in the case of exact data.

The regularized collocation method is based on Tikhonov regularization which
minimizes the Tikhonov functional in Equation (4.14). This obviously ex-
plains why the method did not perform well for reconstructing the increasing
function, i.e., f1(t). But for the exponentially decaying function and those
with singularities, it performed well.

Again for all our implementation so far, we have sampled the Laplace trans-
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form at 17 data points, i.e., si, i = 1, . . . , 17 and the results for this are
shown in Sections 7.2.1 and 7.2.2. However, for more data points, say
si, i = 1, . . . , 161, the Piessens method completely failed and became ex-
tremely unstable. To illustrate this, we reconsider the numerical reconstruc-
tion of the exponentially decaying function te−t = L−1

{
1

(s+1)2

}
using an

increased number of data points, i.e.,
(
F (si)

)
i = 1, . . . , 161.

Figure 7.15: Numerical reconstruction of te−t = L−1
{

1
(s+1)2

}
for si, i = 1, . . . , 161.

Table 7.16: Numerical reconstruction of te−t = L−1
{

1
(s+1)2

}
for si, i = 1, . . . , 161.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 2.4182× 10−5 8.7517× 10−6

Piessens method 9.3557× 1018 6.6610× 1018

regularized method 0.0144 0.0036

From the implementation in Table 7.16 and Figure 7.15, it is easy to see that
the Piessens method completely fails when the data points of the Laplace
transform is increased.
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The Piessens, and the regularized methods did not produce good approx-
imation for the reconstruction of fnum(t) near t = 0. Whereas, the Gaver-
Stehfest method performed very well in this case.

As we have already mentioned at the outset of this chapter, the discretiza-
tion parameter N in the Gaver-Stehfest can be seen (roughly speaking)
as a regularization parameter, which becomes useful in the case of noisy
data. In the following therefore, we revisit the numerical reconstruction of
1
πt

sin(4
√
t) = L−1

{
erf(2/

√
s)
}

in the case of noisy data, and we try to im-
prove the result by using N = 4 as the discretization parameter for the
Gaver-Stehfest method. In the first plot (i.e., Figure 7.16), we compare the
performance of the Gaver-Stehfest method for N = 2, . . . , 20 with a view
to determining the optimal discretization parameter N in the case of noisy
data. From the implementation (i.e., Table 7.17 and Figure 7.17), we ob-

Table 7.17: Comparing the Gaver-Stehfest method for N = 2, . . . , 20 (with
noisy data), for the numerical reconstruction of 1

πt
sin(4

√
t) = L−1

{
F6(s

δ)
}

.

N ‖fnum − f‖2
2 1.2669
4 0.5092
6 2.8674
8 52.8888
10 1.3347× 103

12 3.3329× 104

14 5.0353× 105

16 1.1117× 106

18 3.0183× 108

20 4.5764× 109

serve that N = 4 gave the best result for the Gaver-Stehfest method in the
case of noisy data. Thus in Figure 7.17, we make use of N = 4 to reconstruct
1
πt

sin(4
√
t)e−t = L−1

{
F6(s

δ)
}

.
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Figure 7.16: Gaver-Stehfest method for N = 2, . . . , 20 (with noisy data) for
the numerical reconstruction of 1

πt
sin(4

√
t) = L−1

{
F6(s

δ)
}

Table 7.18: Numerical reconstruction of 1
πt

sin(4
√
t)e−t = L−1

{
F6(s

δ)
}

,
where N = 4 serves as a regularization parameter for the Gaver-Stehfest
method.

‖fnum(t)− f(t)‖2 ‖fnum(t)− f(t)‖∞
Gaver-Stehfest mth. 0.5345 0.1439
Piessens method 2.1729× 103 783.4614
regularized method 1.9724 1.5428

Again, we mention here that the shape of the plot in Figure 7.16 is the typi-
cal behavior of regularization methods (i.e., stability versus approximation).
Comparing the result obtained in Figure 7.17 to the one in Figure 7.14, we
observe a significant improvement in the Gaver-Stehfest method both in the
reconstruction of the shape and values of the original function when the dis-
cretization parameter is reduced from N = 18 to N = 4. However, it should
be noted that this is a poor approximation of the original function since
N = 4 does not contain enough points to obtain a good approximation of
the inverse Laplace transform f(t). Thus, the discretization parameter N
in the Gaver-Stehfest can only be intuitively considered as a regularization
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Figure 7.17: Numerical reconstruction of 1
πt

sin(4
√
t)e−t = L−1

{
F6(s

δ)
}

,
where N = 4 serves as a regularization parameter for the Gaver-Stehfest
method.

parameter and not in a practically useful sense.

7.4 Summary

There are several known algorithms for the numerical inversion of the Laplace
transform. In this thesis, we have considered three different methods: the
Gaver-Stehfest method, the Piessens method and we constructed the regu-
larized collocation method based on Tikhonov regularization.

For the Gaver-Stehfest method, the inverse Laplace transform operator is
given as a coefficient Gi which depends only on the discretization parameter
N . In the presence of exact data, the Gaver-Stehfest method gave very nice
approximate solution for a wide range of functions. However, it completely
failed in the presence of noisy data. Roughly speaking, the discretization pa-
rameter N served as a regularization parameter for this method, and when
this parameter is significantly reduced, the method still performed well in
the presence of noisy data. In this case, it is only able to reconstruct the
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shape of the original function but not the values.

The Piessens method is based on a Chebyshev polynomial expansion of the
Laplace transform F (s), and it also performed well in the case of exact data
F (s) for several functions. Since the method has no regularization, it became
unstable in the presence of noisy data. However, the instability was less com-
pared with that obtained from the Gaver-Stehfest method in the presence of
noisy data.

In the case of the regularized collocation method, good approximate solu-
tions were also obtained in the case of exact data. However the method did
not do so well for reconstructing an increasing function. The method is ev-
idently most suitable for dealing with noisy data as a result of the inherent
regularization property it possesses.

From the numerical implementation, we conclude that there exists no single
algorithm that is able to invert all classes of Laplace transform functions
F (s) in a numerically stable way. Therefore, a given numerical algorithm for
the inversion of Laplace transform is most effective when it is applied to a
specific class or classes of function for which it is most suitable.
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Appendix

Definition 7.1. (Norm−Banach space)
Let X be a real vector space.

(i) The mapping ‖ · ‖ : X → [0,∞) is called norm on X, if

a) ‖x‖ ≥ 0 ∀ x ∈ X
b) ‖x‖ = 0⇔ x = 0

c) ‖λx‖ = |λ|‖x‖ ∀ x ∈ X, λ ∈ R (positive homogeneity)

d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ X (triangle inequality)

Then (X, ‖ · ‖) is known as a real(normed) space.

(ii) A normed real vector space X is called Banach space, if it is complete,
i.e., if every Cauchy-sequence converges in X, thus a limit x ∈ X exists.

Definition 7.2. (Inner product−Hilbert space)
Let H be a real vector space.

(i) A mapping (·, ·) : H ×H → R is called inner product on H, if

a) (x, y) = (y, x) ∀ x, y ∈ H
b) For every y ∈ H the mapping x ∈ H 7→ (x, y)is linear

c) (x, x) ≥ 0 ∀ x ∈ H and (x, x) = 0⇔ x = 0.

(ii) A vector space H with an inner product (·, ·) and a related norm

‖x‖ :=
√

(x, x)

is called a pre-Hilbert space.
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(iii) A Pre-Hilbert space (H, (·, ·)) is called a Hilbert space, if it is complete
with respect to its norm ‖x‖ :=

√
(x, x).

Definition 7.3. (Linear operator)
A mapping K : X → Y is called a linear operator, if

K(x+ y) = Kx+Ky ∀ x, y ∈ X
K(λx) = λKx ∀ x ∈ H and ∀ λ ∈ R.

Definition 7.4. (Bounded linear operator)
A linear operator K : X → Y is called bounded, if there exists a c > 0 such
that

‖Kx‖Y ≤ c‖x‖X ∀ x ∈ X.

Definition 7.5. (Compact operators)
Let X, Y be normed spaces, K : X → Y be linear. K is compact if for every
bounded set B ⊆ X, the set K(B) is compact.

Definition 7.6. (Compact operators)
Let X, Y be normed spaces, K : X → Y be linear. K is compact if for every
bounded sequence {xn} ⊂ X, the sequence {Kxn} is compact.

Definition 7.7. A subset Xn of X (metric space) is compact if for every
sequence in Xn, there exists a convergent subsequence with limit in Xn.

Definition 7.8. (Chebyshev polynomials)
The Chebyshev polynomials Tn(x) of the first kind are defined by the recur-
rence relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)
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where the conventional generating function for Tn is given as:

∞∑
n=0

Tn(x)tn =
1− tx

1− 2tx+ t2
,

and the exponential generating function for Tn is given as:

∞∑
n=0

Tn(x)
tn

n!
=

1

2

[
e(x−

√
x2−1)t + e(x+

√
x2−1)t

]
.

Definition 7.9. (Generalized hypergeometric function)
A generalized hypergeometric function pHq(a1, . . . , ap; b1, . . . , bp;x) is a func-
tion which can be defined in the form of a hypergeometric series, i.e., a series∑∞

k=0 ck for which the ratio of successive terms can be written

ck+1

ck
=
P (k)

Q(k)
=

(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
x.

Definition 7.10. (Directional derivative)
Let X, Y be normed linear spaces. Let x ∈ X, h ∈ X and assume the limit
limt→0

1
t

(
f(x + th) − f(x)

)
exits. Then f : X −→ Y is called directional

differentiable at x in the direction h, and we write

f ′(x;h) = lim
t→0

(
f(x+ th)− f(x)

)
t

.

Definition 7.11. (Gáteaux derivative)
Let X, Y be normed linear spaces, and let f : X −→ Y be directional dif-
ferentiable at x. If f ′(x;h) = Ah with A ∈ L(X, Y ) ∀ h ∈ X, then f
is called Gáteaux differentiable at x. If f is Gáteaux differentiable, then
f ′(x;h) = f ′(x)h.

Definition 7.12. (Frechét derivative)
Let X, Y be normed linear spaces, and let f : X −→ Y be Gáteaux differen-
tiable at x. f is called Frechét differentiable at x if and only if

lim
‖h‖X→0

‖f(x+ h)− f(x)− f ′(x)h‖Y
‖h‖X

= 0.
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